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Mechanical systems that use their internal shape

changes to control their movements have always

interested the geometric control community.

However, the high dimensionality of these systems

makes it very difficult to control them.

We present a geometric solution to control highly

articulated systems using “Shape Basis”

We show how we can benefit from the shape basis

technique in order to generate gaits that move a

mechanical system in a desired direction

We apply these techniques to a Snake Robot

Floating in Space in order to generate gaits that

reorients this snake in any direction.

Introduction

Mathematical Model
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• 𝑔 ∈ 𝑆𝐸 3

•  ξ = 𝑔−1  𝑔  Body Velocity  

• r ∈ ℝ𝑛
 Base space (joint angles)
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ξ = A(r)  r

• A(r): Local Connection Matrix i.e. relates the body

velocity of the snake to the joint velocities

• Interested in finding the change in orientation

Snake robots are such

systems that have many

internal degrees of freedom

and use these internal DOF’s

to control their movements.

Shape Basis

r(n) =  (n) = sin(wt + n) = 

cos(wt)Sin(n) + sin(wt)cos(n) = 

𝜎1(t) sin(n) + 𝜎2(t) cos(n)

Shape Basis

Example:

•  (n) = angle of the nth joint 

•  = /3

• Shape Basis: {sin(n), cos(n)}

• 𝜎1(t) = π/8 (2sin(t)+sin(2t)) 

• 𝜎2(t)= π/8 (2sin(t)-sin(2t))

Future Work

• Optimizing the gaits for controlling the

orientation of a Floating Snake using

Minimum Perturbation Technique

• Optimization the choice of a shape

basis

• Exploring more mechanical Systems

that can be controlled using shape bases

• Shape Bases reduces the dimensionality

of the controlling Base space

• Using shape bases, we are able to easily

generate gaits that reorient the Floating

Snake Robot in any desired direction

simply by looking at the three height

function associated with our robot.

Conclusion

Around X axis

 = /3

𝜎1(t) = π/8 (2sin(t)+sin(2t)) 

𝜎2(t)= π/8 (2sin(t)-sin(2t))

Around Y axis

 = /15

𝜎1(t) = 0.7sin(2t)

𝜎2(t)= -0.7cos(2t)

Around Z axis

 = /2.6

𝜎1(t) = 0.85sin(4t)

𝜎2(t)= sin(2t)

Integrate ξ with time 

Simulation 

t = /5

t = /2

t = 3/2

ξ = A r
𝜕𝑟

𝜕𝜎
 𝜎

(3x2)

𝜎 =
𝜎1
𝜎2

∈ ℝ2

 ξ𝑖 ⅆt =  𝐴𝑖 𝑟 ⅆ𝑟 =  𝐶𝑢𝑟𝑙 𝐴𝑖(𝑟) ⅆs

• Fi = curl of the ith row of the 3x2 matrix A r
𝜕𝑟

𝜕𝜎
 HEIGHT Function

• : angle of rotation around inertial x axis 

• : angle of rotation around inertial y axis 

•  : angle of rotation around inertial z axis 
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