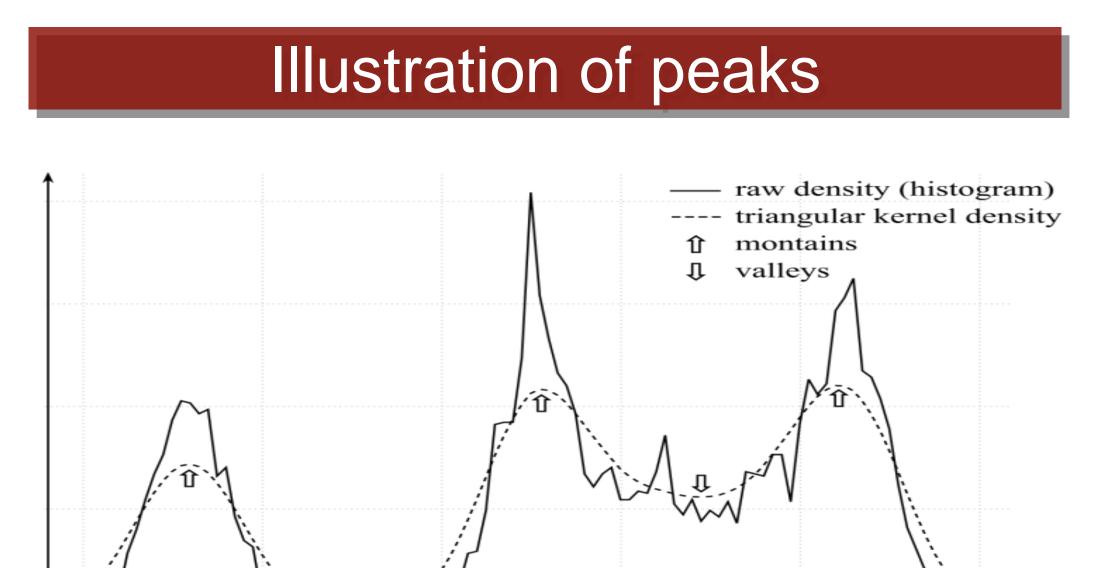
Carnegie Nellon University

Introduction

- Custering is the process of automatically finding groups of similar objects in data.
- Marginal clustering is clustering by detecting suitable planes that separate groups of similar data called clusters..
- > We aim to compare and evaluate various marginal, distance based and density based clustering methods.



60

80

100

Peaks: Points of local maxima and minima Mountain: Maximum peak Valley: Minimum peak Cut: a plane separating clusters

40

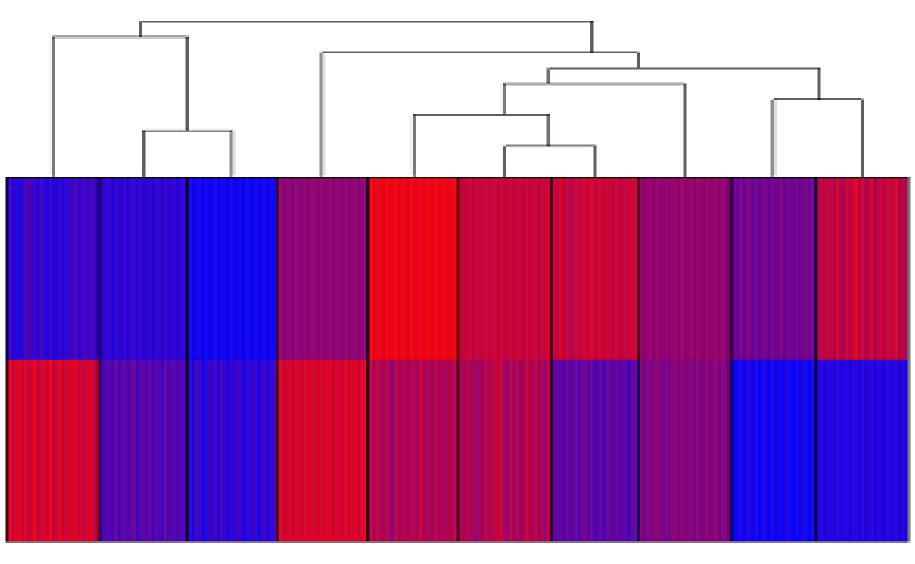
20

0

> A deep valley between 2 tall peaks indicates region of low density suitable for a cut.

Split Clustering

Split clustering aims at uncovering clusters in high dimensional data with structure in lower dimensions. Hyperplanes that separate the data into groups are found recursively. Valleys serve as points of cut in the data.



Dendrogram for split clustering

Clustering Techniques: A comparison Deepthi Hegde, Mathieu Gulliame-Bert, Kyle Miller, Artur Dubrawski

OptiGrid

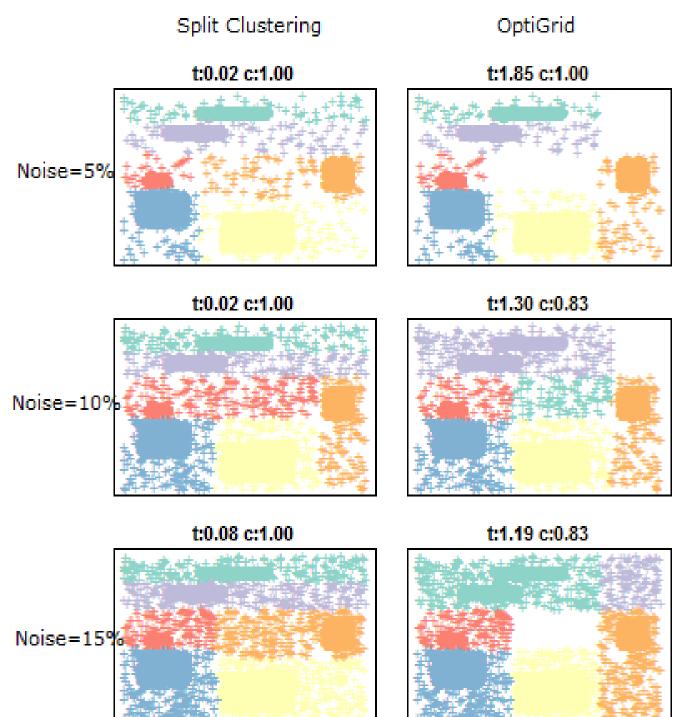
OptiGrid is a grid partitioning clustering technique that recursively finds optimal cutting planes to find clusters effectively. The algorithm cuts the dataset into grids and recursively finds more cuts (if possible) within each of the dense grids. The cuts are identified based on the density curve of each dimension of the dataset independently. The top q cuts across all dimensions are chosen based on the density score.

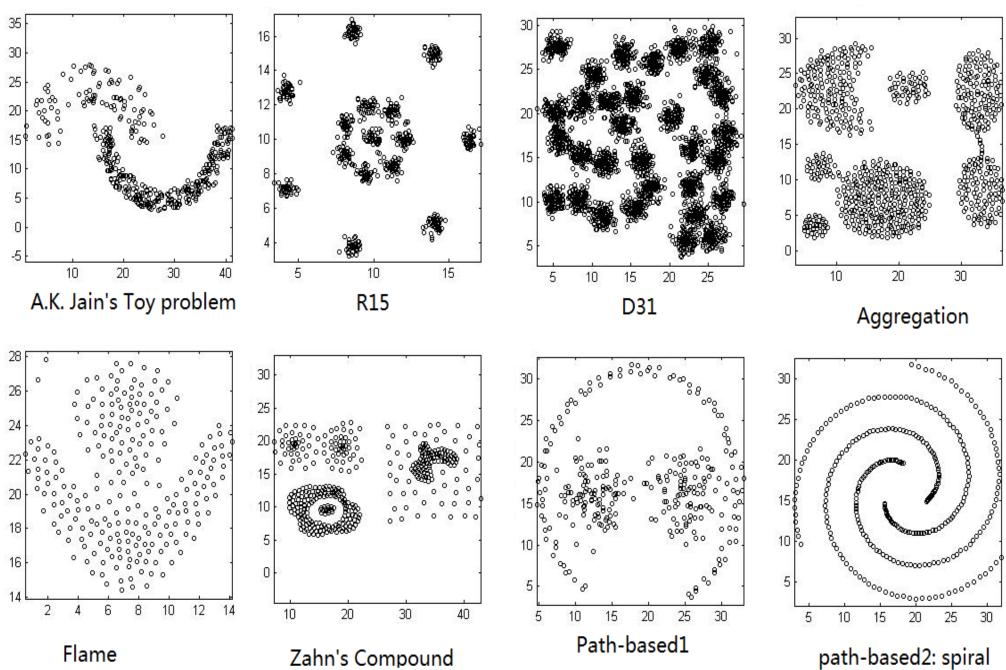
OptiGrid on synthetic dataset with q = 11.0 Noise=10% 0.8 0.6 t:0.08 c:1.00 t:1.19 c:0.83 0.4 0.2 Noise=15% 0.0 -0.2-0.2Split vs Others compound flame pathbased spiral --and the second s s_d2_c6 t:0.04 c:1.00 t:4.09 c:0.80 t:16.50 c:0.33 t:10.01 c:1.00 t:696.46 c:0.99 s_d2_c12 (🗰 🎒 🖉 🗰 🌰 🦉 🗰 🎒 * * (🗰 🥌 (🗰 🎒 🦛 🗰 🗰 🏠 . 🗰 🖠 aggr t0.15 c:0.93 t:0.19 c:0.97 t:3.02 c:0.97 t:0.57 c:0.97 t:17.96 c:0.16 t:19.52 c:0.76 t:443.23 c:0.98 t:859.69 c:0.76 t:15.09 c:0.80 t:19.91 c:0.98 t:15.27 c:0.96 t:89.62 c:0.94 t:150.18 c:0.86 t:17.18 c:0.96 t:1413.58 c:0.88 t:1413.58 c:0.88 t:1413.58 c:0.88 t:150.18 c:0.96 t:150.18 c: d31 Results

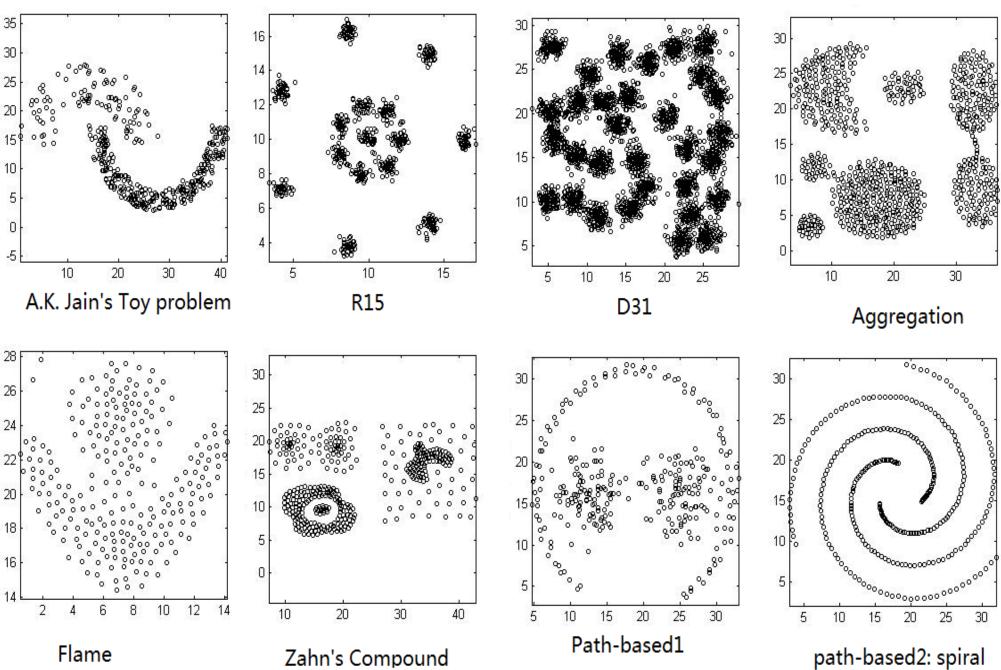
	inc surcs											
Algo\Data	Synthetic	Synthetic	Synthetic	Compound	Flame	Pathbased	Spiral	Aggregate	Iris	Wine	Breast	Average
split 1D	1	1	0.833333333	0.736842105	0.5375	0.696666667	0.426282	0.996193	0.96	0.606742	0.866432	0.787271
split 2D	1	1	1	0.86716792	0.829167	0.706666667	0.403846	0.998731	0.96	0.44382	0.653779	0.805743
split GRB	1	1	0.833333333	0.86716792	0.975	0.746666667	0.474359	0.996193	0.886667	0.539326	0.838313	0.832456
Split GRB RND	1	1	1	0.86716792	0.975	0.746666667	0.474359	0.996193	0.826667	0.539326	0.838313	0.842153
optiGrid	1	0.801920768	1	0.804511278	0.479167	0.696666667	0.442308	0.923858	0.846667	0.38764	0.637961	0.729154
optics	1	0.333333333	1	0.681704261	0.975	0.65	1	0.859137	0.793333	0.578652	0.720562	0.781065
pdfc	0.98293173	0.994297719	1	0.651629073	0.991667	0.79	0.365385	0.991117	0.893333	0.651685	0.727592	0.821785
spectral	0.83333333	0.708583433	0.833333333	0.696741855	0.645833	0.87	1	0.993655	0.9	0.629213	0.862917	0.815782
k-means	0.71084337	0.8737495	0.833333333	0.666666667	0.8375	0.743333333	0.346154	0.784264	0.893333	0.702247	0.85413	0.749595
pam	0.96485944	0.982292917	1	0.646616541	0.85	0.74	0.349359	0.777919	0.893333	0.707865	0.86819	0.798221
hclust	0.93674699	1	1	0.691729323	0.720833	0.76	0.371795	0.837563	0.893333	0.696629	0.778559	0.789744
agnes	0.66666667	0.75	0.333333333	0.862155388	0.833333	0.73	0.358974	1	0.906667	0.61236	0.662566	0.701459
diana	0.66666667	0.68597439	0.5	0.689223058	0.854167	0.713333333	0.358974	0.798223	0.88	0.52809	0.850615	0.684115
<u>clara</u>	0.96787149	0.962685074	1	0.656641604	0.85	0.743333333	0.358974	0.784264	0.893333	0.707865	0.86819	0.79937
fanny	0.97991968	0.990896359	1	0.513784461	0.841667	0.666666667	0.352564	0.681472	0.913333	0.707865	0.887522	0.775971
Clusters	6	12	6	6	2	3	3	7	3	3	2	NA
Rows	1046	10496	1046	399	240	300	312	788	150	178	569	NA
Dimension	2	2	4	2	2	2	2	2	4	13	30	NA
Dimension	2	2	4	Ζ	2	Ζ	2	2	4	15		50

Split vs OptiGrid: Noise comparison

Split clustering is robust to noise. The structure of detected clusters is not hampered by the presence of noise points in the data.







1999.

Thanks to all the members of the Auton lab and RISS team for the great experience. Special thanks to Mrs. Sowmya Kamath and Prof. Ram Mohan Reddy for their support.

THE

ROBOTICS

INSTITUTE

Split clustering can handle a wide range of datasets with different cluster shapes. While the 1D and 2D cuts can detect convex clusters, the kernel trick used in the algorithm works well with non convex clusters.

Conclusion

Split clustering algorithm is –

- Simple and easy to implement and
- interpret.
- Robust to noise
- Very low computation time
- Few parameters
- Capable of handling randomly shaped clusters

References

[1] Alexander Hinneburg and Daniel A. Keim. Optimal gridclustering: Towards breaking the curse of dimensionality

high-dimensional clustering. pages 506–517. Morgan Kaufmann,

Acknowledgements