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Overview

•Visual SLAM (Simultaneous Localization And
Mapping) algorithms fail due to variable image
quality in the real world.

•Such failures are often resolved by simple
actions such as turning or moving to the side.

•We use a Convolution Neural Network (CNN)
and Support Vector Machines (SVMs) to learn
the best recovery trajectory for any failure.

•We focus on autonomous flight through
forests, but our system of learning failure
recovery is generalizable to many domains.
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Figure 1: The algorithm in block diagram form. Failure recovery
is integrated with a deep introspection framework that predicts
when a failure may occur [1].

Results

Effectiveness of the approach was validated in hand held flight. Future testing will demonstrate the ability of
this approach to extend flight time and reliability.
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Examples of failed images from the training set. Our algorithm used these images, and thousands like
them, to learn which trajectories recover from different failures.

Candidate Trajectories

Figure 8: Each candidate trajectory has the potential to resolve
different failures, but which trajectory is best for a given failure
is not always intuitive.

Two SVM classifiers output independent probabili-
ties that each trajectory will recover or fail.

Figure 9: The testbed: an autonomous quadcopter for flight
through dense forests with a camera as the primary sensor [2]

Training Data

7539 images were collected by holding the quad-
copter while walking and executing a given trajec-
tory when alerted of a failure.

Trajectory Recovered Failed
Translate Right 745 631
Translate Left 738 530
Rotate Right 1280 863
Rotate Left 1234 1518

Table 1: Images in the training set

Images from throughout 825 trajectories were
used. Highly similar images were removed by com-
paring L1 distances in feature space.

Conclusion

This framework could be used to improve reliability
of small autonomous aircraft in exploration, disaster
response, mapping, and many other applications.

Additionally, our data driven approach to failure re-
covery can be used to improve reliability in many
fields, from autonomous ground vehicles to robot
manipulation.
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