Physics-Based Approach to Pruning Search Space in Multi-Object Pose Estimation Algorithms Joe Shepley, Venkatraman Narayanan, Maxim Likhachev The Robotics Institute, Carnegie Mellon University Methods Results Introduction Determines if scene is false in as little as 1 Simulate using Open Dynamics Engine Perception is a critical part in robotic millisecond. Series of checks are used. Speed up via series of checks manipulation Obtain absolute validation certainty or Important to quickly identify multiple \bullet Steps vs Time with Scene of 4 items probabilistic estimate objects and their poses in the

step = iteration of

- search can take a long time
- Constraints from physics can be used to reduce search time

Algorithms like PERCH using generative

PERCH-like Algorithm

environment

 \bullet

- Access to database of 3-D models and \bullet RGB-D image of the environment.
- Searches for set of object configurations \bullet that best explain observed scene
- Search space is very large and state \bullet expansions (rendering) is expensive

Observed scene

Generated scenes in search space

Set model data

Height reward function maximized in \bullet 0.3 sec. using scene validator program

Conclusion

Objects identified and 6DoF poses determined

Objectives

- Reduce computation time by pruning search space
- Before executing rendering step, falsifying generated scenes that would not exist in the real world

Scene that cannot exist in real life

- Achieves fast scene validation
- Proves its merit in a simple reward function maximization search
- Speeds up PERCH or D2P, search can include 6DoF poses
- Probabilistic estimate can be made after only running the simulation for a very short amount of time.
- Allows development of an algorithm which can exploit this probabilistic estimate.

References

- Tom Erez, Yuval Tassa and Emanuel Todorov "Simulation Tools for Model-Based Robotics: Comparison of Bullet, Havok, MuJoCo, ODE and PhysX" (ICRA) 2015.
- A. Roennau, F. Sutter, G. Heppner, J. Oberlaender and R. Dillmann "Evaluation of Physics Engines for Robotic Simulations with a

Complete validation as fast as possible

Special Focus on the Dynamics of Walking Robots" (ICAR) 2016. Venkatraman Narayanan and Maxim Likhachev "PERCH: Perception via Search for Multi-Object Recognition and Localization" (ICRA) 2016.

Venkatraman Narayanan and Maxim Likhachev "Discriminativelyguided Deliberative Perception for Pose Estimation of Multiple 3D *Object Instances*" (RSS) 2016.