Using a Visual Cuboid Classifier to Match Cuboids in RGBD images

Julia Deeb | Dr. Abhinav Gupta

Problem

The problem can be divided into two parts:

1) Can we build a visual cuboid classifier?
2) Can such a classifier be used to successfully match cuboids in RGBD images?

Constructing the Data Set
The data set was constructed from about 500 positive ground truth cuboids and about 1500 negative cuboids. Each cuboid was projected onto the image and a mask was extracted. The mask was then applied back onto the image and features were extracted from that region. The features extracted for training were color and visual texture.

Positive VS Negative Cuboids

TOP ROW: Ground truth positive cuboids, BOTTOM ROW: negative cuboids

The negative cuboids are often visually inconsistent and geometrically skewed. Whereas, the positive cuboids tend to be consistent in color and/or texture

FROM LEFT TO RIGHT: original RGB image, SVM positive results, top 100 results from [Jiang '13], SVM negative results

Matching Cuboids

To match the actual cuboids in the 2D image, we used the analytical method described in [Jiang '13]. However, instead of ranking the cuboids based on volume exclusion and surface cover and then optimizing over the top 100, we are instead optimizing over the positive results returned by the SVM cuboid classifier.

Selected Results

Comparison of Selected Results

LEFT COLUMN: our results, RIGHT COLUMN: results from [Jiang '13]
We can compare our results to the results of [Jiang '13]. Our results typically have less cuboids to explain the picture, but often more of the cuboids are 'correct'.

Conclusions

The visually-based SVM classifier does appear to be quite successful on many of the images. However, there a quite number of false positive and false negatives, especially in images with high occlusions and/or high clutter. This is perhaps due to the fact that the cuboids in this scenario are likely to not be visually consistent and therefore are indistinguishable from the non-cuboids. Perhaps, in these scenarios, accounting for geometric features like in [Xiao '12] may increase the number of 'correct' cuboids identified.

References

Lee, David C., et al. "Estimating Spatial Layout of Rooms using Volumetric Reasoning about Objects and Surfaces." NIPS. Vol. 1. No. 2. 2010.

Jiang, Hao, and Jianxiong Xiao. "A Linear Approach to Matching Cuboids in RGBD Images." CVPR, 2013
Xiao, Jianxiong, Bryan Russell, and Antonio Torralba. "Localizing 3D cuboids in single-view images." Advances in Neural Information Processing Systems. 2012.

