Scalable Gravity Offloader

Student Team:
Francis Garcia – fgarcia@stevens.edu
X-Y Actuation Research and Delta Arm Design
Ammar Husain - ammarh@andrew.cmu.edu
Motion Tracking Research

Abstract

"Gravity offloading" is a process by which one may attempt to simulate lunar gravity on Earth to test equipment such as rovers, landers, and space suits. This is performed by applying a vertical force to an object, with magnitude equal to 5/6ths of that object's weight. This makes the effective weight of the object 1/6th of its actual weight, which is what it would weigh on the Moon.

One limitation of “gravity offloading” as it exists currently is that it can only be performed on an object in one location in space. The Scalable Gravity Offloader will be a commercial device that is able to perform gravity offload on any object at any location in a workspace of any size.

Force Application

The chosen force application device is manufactured by Gorbel, which produces lifting devices that are commonly used in industrial materials handling applications. One pre-set program on the device is “float” mode, which allows the user to pre-program a specific load into the unit, whereby the Gorbel unit will then autonomously adjust the tension of the lifting cord to maintain that load.

References:
NASA Argos 3D Render
“Modeling and control of a Delta 3- Robot” by Andre Alsson, Lund University
“Descriptive Geometric Kinematic Analysis of Clavel’s Delta Robot” by PJ Zsombo-Murray, McGill University
Handbook Timing Belts: Principles, Calculations, Applications

Advisors:
Jason Calaiaro - jason.calaiaro@astrobotictech.com
Professor William “Red” Whittaker - red@cmu.edu

X-Y Actuation

The purpose of X-Y actuation for the Gravity Offloader is to carry the Gorbel device across the desired workspace, which consists of a 4m span and a 10m long run. The kinematic requirements for actuation are 1.5 m/s and 3 m/s². These values were determined by the kinematics of Polaris, which is the primary rover to be tested, as well as a survey of NASA labs and other parties interested in a Gravity Offloader for testing purposes.

Various methods of linear motion were researched and analyzed for their capability to fulfill these technical requirements. The solution chosen was belt driven actuation due to the technology’s scalability and ease of installation. One potential configuration is shown below in CAD.

Motion Tracking

Combined with X-Y actuation, motion tracking will allow the Gravity Offloader to maintain the Gorbel device over the center of gravity of the object to be tested. This will ensure that the force applied is as close to vertical as possible. Otherwise, if an angular displacement were introduced, the resulting component forces will create overall testing errors.

One method by which motion tracking will be performed is by using a delta arm, commonly used in pick-and-place operations, in a passive configuration with rotary encoders. By measuring the angles of the arm with the encoders and using forward kinematic equations, the X, Y, and Z coordinates of the lifting cord can be calculated, which will allow vertical angular displacement and heading to be determined.

Acknowledgements

The team would like to thank Red Whittaker for supporting this research project, Jason Calaiaro for his support and assistance throughout the project’s lifespan, John Thornton, Steve Huber, Kevin Peterson, and Nick Letwin for their assistance during initial research, and anyone else involved in the project prior to the start of the summer session.