Carnegie Mellon University

Side by Side Motion Planning for a Humanoid Robot

Emmanuel Johnson' and Reid Simmons ${ }^{2}$

${ }^{1}$ 'North Carolina A\&T State University, ${ }^{2}$ Carnegie Mellon University,

Problem

Robots designed to navigate in dynamic environments with humans must be able to adhere to certain social norms especially when walking side by side.

Objective

- Design a planning algorithm for a robot which takes into account social norms as the robot walks side by side with a person

Utility Calculation

- The robot and human potential future positions are illustrated by a $7 X 7$ grid(anticipation grid) with each of their current position at the center of their respective grids. Each grid position is assigned a utility value.
- These values are calculated by summing the eight utilities using the utility modeling equation and a gains value - The future position of the human or robot is calculated by determining the utility values for each entity, summing them together and determining which grid position has the highest value

$$
\mathrm{f}_{\mathrm{x}}=\frac{1}{1+\left|\left(\frac{x-c}{\mathrm{a}}\right)^{2 b}\right|}-1 \quad \mathrm{f}_{\mathrm{o}}=-\left|\left(\frac{\mathrm{x}}{\mathrm{a}}\right)^{-2 b}\right|
$$

Function modeling equations

Anticipation grid for the robot anc human

Utility Function
$\mathrm{U}\left(\mathrm{p}^{\mathrm{i}}, \mathrm{p}^{\mathrm{j}}\right)=\mathrm{k}_{\mathrm{O}} \cdot \mathrm{f}_{\mathrm{O}}+\mathrm{k}_{\mathrm{S}} \cdot \mathrm{f}_{\mathrm{S}}+\mathrm{k}_{\mathrm{R}_{\mathrm{d}}} \cdot \mathrm{f}_{\mathrm{R}_{\mathrm{d}}}+\mathrm{k}_{\mathrm{R}_{\alpha}} \cdot \mathrm{f}_{\mathrm{R}_{\alpha}}+$
$\mathrm{k}_{\mathrm{R}_{\mathrm{v}}} \cdot \mathrm{f}_{\mathrm{R}_{\mathrm{v}}}+\mathrm{k}_{\mathrm{Ma}_{\mathrm{a}}} \cdot \mathrm{f}_{\mathrm{Ma}_{\mathrm{a}}}+\mathrm{k}_{\mathrm{Mv}_{\mathrm{v}}} \cdot \mathrm{f}_{\mathrm{M}_{\mathrm{v}}}+\mathrm{k}_{\mathrm{M}_{\mathrm{w}}} \cdot \mathrm{f}_{\mathrm{M}_{\mathrm{w}}}$
Standard Prediction
$\hat{\mathrm{p}}_{\mathrm{t}+1}^{\mathrm{i}}=\operatorname{argmax}_{\left\{p^{i} \mid p^{i}\right\}} \mathrm{U}\left(p^{i}, \hat{\mathrm{r}}_{\mathrm{t}+1}^{\mathrm{j}}\right)$
Self Anticipation

$$
\hat{\mathrm{p}}_{\mathrm{t}+1}^{\mathrm{i}}=\operatorname{argmax}_{\left\{p^{i} \mid p i\right\}} \mathrm{U}\left(p^{i}, \hat{\mathrm{p}}_{\mathrm{t}+1}^{\mathrm{j}}\right)
$$

Partner and self-anticipation
$\hat{\mathrm{p}}_{\mathrm{t}+1}^{\mathrm{i}}=\operatorname{argmax}_{\left\{p^{i} \mid P^{i}\right\},\left\{p^{j} \mid P^{j}\right\}}\left\{\mathrm{U}\left(p^{i}, p^{j}\right)+\mathrm{U}\left(p^{j}, p^{i}\right)\right\}$

Orientation

The robot is able to

 determine its orientation as it approaches the sub goal better now then it did before. This is done by keeping track of the robot's orientation relative to the sub goa relative to the sub goaland updating the robo and updating the robot orientation as it gets

Reference

1. Prassler, E., Bank, D., \& Kluge, B. (2002) Key technologies in robot assistants Motion coordination between a human and a mobile robot. Transactions on Control, Automation and Systems Engineering, 4(1), 56-61
2. Morales, Y., Satoru S., Huq R., Glas D Kanda T., Hagita N(2012). How Do People Kanda T., Hagita N(2012). Ho
Walk Side-by-Side? - Using a Computational Rot Pan Behavior or a Social Robot _-. Paper presented he ACMII Interaction (HRI2012)

Conclusions/Future work

The algorithm works well in the various test cases.
The next step is to implement it on an actual robot and run it in real time

