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A machine learning approach that enables experience-based error 
detection and recovery during robotic task execution is developed. A 
task execution framework that uses classical task planning is used and 
integrated with persistent database storage of world state. Feature 
extraction is then done on the stored data to create classification trees 
that differentiate faulty from successful executions and impose 
additional constraints on future executions to avoid past errors.
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The goal of the Personal Robotics Lab is enabling robots to assist 
people with a wide range of everyday tasks. This research focused on 
the following two related problems associated with that goal: 

Representation and execution of 
varied tasks 

● Motivation
○ Tasks require a series of steps 

specified explicitly and 
formally to the robot

○ Even simple tasks require 
complex state machines to 
account for variations in state 

● Need 
○ A representation that is 

naturally adaptive and reuses 
the same actions smartly

● Related
○ STRIPS[1] and more 

advanced planners[2]

Error handling during task 
execution 

● Motivation
○ Many sources of 

uncertainty make it hard 
to account for every 
possible error 

○ Costly to reprogram the 
task every time an 
unexpected error occurs

● Need
○ A means of having the 

robot learn to avoid errors 
it has already encountered

● Related
○ Prior error detection and 

recovery[4]

Methods

● Interweaving of classical symbolic planning with execution
● Storage of state during both successful and failed executions with [3]
● Modification of subsequent planning and execution 

1. Decompose actions into subactions
2. Use 1D continuous variables
 for features
3. Train classification tree at start and 
end of each subaction
● simple constraints
● built-in feature selection
4. Impose constraints during execution
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Figure 2. The error detection and recovery framework
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Figure 1. The basic execution loop for execution with error handling

Figure 3. Classification trees for subactions 
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● Multiple tasks were carried out in simulation with simulated 
uncertainty of certain parameters to generate a test database 

● Implement on-line learning for constraint 
refinement and selection

● Perform experiments outside simulation 
● Test refining real-world results with subsequent 

batch simulations 
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Robot 
heading

At DriveSegway1_start:

if robot | locYaw>0.025: Failure 
elif robot | locYaw<=0.025:
     if robot | locYaw<=-0.020: Failure 
     elif robot | locYaw>-0.020: Success 

Robot 
correctly 
rotated to face 
the book

Book location 
on Y axis

At RotateSegway1_start:

if robot |relative | dracula | locY<=0.165: 
    Failure 
elif robot | relative | dracula| locY>0.165: 
    Success 

Robot aborted 
action if the 
book was 
violating its 
position 
constraint

● After being learned, the classification trees are 
used during execution to check whether the 
robot is ever in a state that predicts failure.

● In case of a failure statei n such a case provides 
a goal state by finding a path to success in the 
pertinent tree. 

● Trees with equivalent classification certainty 
are ranked by testing their effectiveness in 
simulation; Table 1 contains important trees.

Table 1. Results of learning for a task with two variations 


