
Learning from failure:
Improving task execution with experience

Andrey Kurenkov
Carnegie Mellon Institute

A machine learning approach that enables experience-based error
detection and recovery during robotic task execution is developed. A
task execution framework that uses classical task planning is used and
integrated with persistent database storage of world state. Feature
extraction is then done on the stored data to create classification trees
that differentiate faulty from successful executions and impose
additional constraints on future executions to avoid past errors.

Abstract

Problem

object_detect

not detected

PlanToNamedConfiguration

RotateSegway

right_arm.PlanToConfiguration

DriveStraightUntilForce

book_grasp:

failed
Reconfigure

The goal of the Personal Robotics Lab is enabling robots to assist
people with a wide range of everyday tasks. This research focused on
the following two related problems associated with that goal:

Representation and execution of
varied tasks

● Motivation
○ Tasks require a series of steps

specified explicitly and
formally to the robot

○ Even simple tasks require
complex state machines to
account for variations in state

● Need
○ A representation that is

naturally adaptive and reuses
the same actions smartly

● Related
○ STRIPS[1] and more

advanced planners[2]

Error handling during task
execution

● Motivation
○ Many sources of

uncertainty make it hard
to account for every
possible error

○ Costly to reprogram the
task every time an
unexpected error occurs

● Need
○ A means of having the

robot learn to avoid errors
it has already encountered

● Related
○ Prior error detection and

recovery[4]

Methods

● Interweaving of classical symbolic planning with execution
● Storage of state during both successful and failed executions with [3]
● Modification of subsequent planning and execution

1. Decompose actions into subactions
2. Use 1D continuous variables
 for features
3. Train classification tree at start and
end of each subaction
● simple constraints
● built-in feature selection
4. Impose constraints during execution

RobotAngle > 1.5
TF

Fail

BookY>3

TF

Fail

Succeed

RobotX > 3

Succeed

TF

Fail

PlanToPose

Rotate1

PlanToConfiguration1

book_grasp:

Succeed

Machine
learning

Symbolic
planning
interweaved
with
execution

Representation
of world state

Openrave

 PDDL
Fast Downward

Action,
predicate,
and goal
representation

Python

Storage of
execution
logs and
learned
constraints

MongoDB

Orange

ROS

Figure 2. The error detection and recovery framework

MemoryGoals ExecutePlanDomain

Figure 1. The basic execution loop for execution with error handling

Figure 3. Classification trees for subactions

Constraints

Future Work

References
1. Richard E. Fikes and Nils J. Nilsson. Strips: A new approach to the application of theorem proving to problem solving. Articial Intelligence, 2(3-4):189-208, 1971.
2. Seabra Lopes, L.; Camarinha-Matos, L.M. (1995) A Machine Learning Approach to Error Detection and Recovery in Assembly, Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS'95),

Pittsburgh, Pennsylvania, August 1995, vol. 3, pp. 197-203.
3. Thomas Keller, Patrick Eyerich, and Bernhard Nebel. Task planning for an autonomous service robot. In Proceedings of the 33rd annual German con-ference on Advances in articial intelligence, KI'10,

pages 358{365, Berlin,Heidelberg, 2010. Springer-Verlag.
4. Tim D Niemueller, Gerhard Lakemeyer, and Siddhartha Srinivasa. A generic robot database and its application in fault analysis and performance evaluation. In IEEE, editor, IEEE International Conference

on Intelligent Robots and Systems, October 2012.

● Multiple tasks were carried out in simulation with simulated
uncertainty of certain parameters to generate a test database

● Implement on-line learning for constraint
refinement and selection

● Perform experiments outside simulation
● Test refining real-world results with subsequent

batch simulations

Results

Figure 4. Task
start state

Figure 5. Failure due
to book location

Variable
varied

Classification Trees Learned Effect of
constraints

Robot
heading

At DriveSegway1_start:

if robot | locYaw>0.025: Failure
elif robot | locYaw<=0.025:
 if robot | locYaw<=-0.020: Failure
 elif robot | locYaw>-0.020: Success

Robot
correctly
rotated to face
the book

Book location
on Y axis

At RotateSegway1_start:

if robot |relative | dracula | locY<=0.165:
 Failure
elif robot | relative | dracula| locY>0.165:
 Success

Robot aborted
action if the
book was
violating its
position
constraint

● After being learned, the classification trees are
used during execution to check whether the
robot is ever in a state that predicts failure.

● In case of a failure statei n such a case provides
a goal state by finding a path to success in the
pertinent tree.

● Trees with equivalent classification certainty
are ranked by testing their effectiveness in
simulation; Table 1 contains important trees.

Table 1. Results of learning for a task with two variations

