
Introduction

ROS (Robot Operating System) is a system
of libraries and tools that helps developers
make robot applications.

It provides:

 • package management
 • hardware abstraction
 • libraries
 • visualizers
 • message passing
 • other useful robot development tools

An active ROS system consists of a set of
nodes.

A Master node provides:

 • naming and registration services
 (for nodes to find each other)
 • a Parameter Server (that nodes use
 as a shared dictionary)

Nodes communicate by:

 • publishing / subscribing to topics
 • offering / requesting services

Many robotic systems require wireless communication between
multiple robots. The only quick way to do this in ROS is to run a
single Master on one of the robots, which all of the robots use to
initialize nodes and access parameters. This presents two main
problems:

 • Robots disconnected from Master cannot initalize new nodes
 or wait for services => unable to plan path back to Master

 • Robots want to communicate simple, high-level info,
 such as relative position. But in ROS:

 - all position info published as transforms on topic /tf
 - subscribers to /tf get flooded with unnecessary info,
 such as other robots’ joint angles
 - sharing high-bandwidth topics like /tf saturates network

Giving every robot its own Master solves both problems:

 • Robots retain complete independence (can initialize new nodes
 and wait for services even when disconnected):

 Robots can change tasks, retrieve data and take
 corrective action (plan a path back to wireless range).

 • High-bandwidth, built-in topics like /tf remain local. Messages
 can be published on low-bandwidth remote (non-local) topics:

 Robots can share select data (such as its position
 relative to another robot) without saturating the network.

Using a ROS package called WiFi_Com`m, we open up foreign relays between Masters.

 • High-bandwidth, built-in topics like /tf can remain local
 • Low-bandwidth messages can be published on /foreign_topic, which gets relayed
 to the other Master via foreign_relay
 • If Masters become disconnected, foreign topics die, but robots remain functional
 • Allows robots to communicate relative positions without saturating network

Successfully ran two-master PR2 simulations using
Gazebo and RViz:

 • Ran two complete PR2 simulations on two
 different computers, each with its own Master
 • Restarting foreign relay after wireless
 disconnect / reconnect resumed simulation
 with updated robot positions
 • Computed relative robot positions in real time
 with negligible latency (yellow X marks position
 of PR2 for single-master system at same time):

Local translation Foreign translation

Future work:

 • Test with more than two robots
 • Test with real robotic systems
 • Rigorous testing of communication limits
 and points of unreliability
 • Explore alternative approaches to multimaster• http://www.ros.org/wiki/wifi_comm

Kavan McEachern
RISS, Carnegie Mellon University, School of Computer Science

Problem: Single Master

 References

August 2012. RISS, Carnegie Mellon University, School of Computer Science
kamceachern@vassar.edu

Using Multiple Masters to Preserve Robot Independence
and Reduce Network Latency in a ROS System

Solution: Multimaster

Implementation: Foreign Relay

/tf

/foreign_topic /foreign_topic

/tf

/foreign_topic_[ip] /foreign_topic_[ip]

Master 1 Master 2

multimaster_example

foreign_relay

multimaster_example

foreign_relay

Results & Future Work

