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Problem GPU Parallelization - Training 3x Speed Improvement in Running Sum Algorithm
Sose Estimation * Use GPU to accelerate training, train on more images GPU Running Sum Algorithm - Time
o - | . . » Current speed: projected 10 days for 100,000 images Comparison
- Determining position of limbs and joints of people from still images _ _ o _
+ Useful for human robot interaction, gesture recognition, and prediction * Most time used in sort and deciding splits 300
Challenges © Main operati_on In deciding splits is calculating running sums to @3(5)8
- Kinect provides real-time pose estimation but requires IR sensor calculate gain 5150
- Current image-only pose estimators too slow for real-time application © Sortis 6(NlogN) _qé 100
- Gain calculation is 8(N) = 5o
ApprOaCh - Developed new algorithm for faster running sums 0
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- Runtime (> logN) — K | ber of parallel
- Use multiple stages of part prediction with boosted random forests [1] untime (; ogN) — Ks number of parallel processes

* Predict on multiple hierarchies of parts * In practice k << N, so approximately 8(NlogN) runtime
- Stages and hierarchies pass information using context features - More precise than naive sum

- Multiple viewpoints with Kinect annotation from Panoptic studio

+ Large image dataset introduces time and space problems for training

Example output of prediction

Conclusion

» Context Features extracted from patch around location z

» Achieved real-time speeds

GPU Parallelization - Testing

» Accuracy could still be improved

Random Forests - Larger training sets

 Collection of trees trained on random subset of samples & features [2] Results . More stages/hierarchies
- Branching algorithm — each input navigates to leaf node of each tree

: NN | - Multiple scales
to determine output distribution 4x Speed Improvement from CPU testing
- Used modification of method by Sharp (2008)

- Accuracy vs. time performance tradeoff

L Runtime Performance - Most non-data accuracy improvements are linear time additions
- Added parallelization over trees
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