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Problem

• Use multiple stages of part prediction with boosted random forests [1]

• Predict on multiple hierarchies of parts

• Stages and hierarchies pass information using context features

• Achieved real-time speeds

• Accuracy could still be improved

• Larger training sets

• More stages/hierarchies

• Multiple scales

• Accuracy vs. time performance tradeoff

• Most non-data accuracy improvements are linear time additions
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Pose Estimation
• Determining position of limbs and joints of people from still images

• Useful for human robot interaction, gesture recognition, and prediction 

Challenges

• Kinect provides real-time pose estimation but requires IR sensor

• Current image-only pose estimators too slow for real-time application

Pose Machines

Random Forests

• Collection of trees trained on random subset of samples & features [2]

• Branching algorithm – each input navigates to leaf node of each tree 

to determine output distribution

• Used modification of method by Sharp (2008)

• Added parallelization over trees

Context Features

• Embarrassingly Parallel 

• Minimized copies between GPU, CPU

• Use GPU to accelerate training, train on more images

• Current speed: projected 10 days for 100,000 images

• Most time used in sort and deciding splits

• Main operation in deciding splits is calculating running sums to 

calculate gain

• Sort is 𝜃(𝑁𝑙𝑜𝑔𝑁)

• Gain calculation is 𝜃(𝑁)

• Developed new algorithm for faster running sums

• Multiple viewpoints with Kinect annotation from Panoptic studio

• Large image dataset introduces time and space problems for training
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• Runtime 𝜃(
𝑁

𝑘
𝑙𝑜𝑔𝑁) – k is number of parallel processes

• In practice k << N, so approximately 𝜃(𝑁𝑙𝑜𝑔𝑁) runtime

• More precise than naïve sum
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Conclusion

Works Cited

• Context Features extracted from patch around location z 
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