
Real Time Human Pose Estimation:
Parallel Performance

Kenneth Marino, Advisor: Professor Yaser Sheikh

Problem

• Use multiple stages of part prediction with boosted random forests [1]

• Predict on multiple hierarchies of parts

• Stages and hierarchies pass information using context features

• Achieved real-time speeds

• Accuracy could still be improved

• Larger training sets

• More stages/hierarchies

• Multiple scales

• Accuracy vs. time performance tradeoff

• Most non-data accuracy improvements are linear time additions

[1] V. Ramakrishna, D. Munoz, M. Hebert, J. A. Bagnell, and Y. Sheikh, 

"Pose Machines: Articulated Pose Estimation via Inference Machines," 

ECCV, 2014.

[2] L. Breiman, “Random Forests,” Machine Learning, 2001.

[3] T. Sharp, “Implementing Decision Forests on a GPU,” ECCV 2008 

Pose Estimation
• Determining position of limbs and joints of people from still images

• Useful for human robot interaction, gesture recognition, and prediction 

Challenges

• Kinect provides real-time pose estimation but requires IR sensor

• Current image-only pose estimators too slow for real-time application

Pose Machines

Random Forests

• Collection of trees trained on random subset of samples & features [2]

• Branching algorithm – each input navigates to leaf node of each tree 

to determine output distribution

• Used modification of method by Sharp (2008)

• Added parallelization over trees

Context Features

• Embarrassingly Parallel 

• Minimized copies between GPU, CPU

• Use GPU to accelerate training, train on more images

• Current speed: projected 10 days for 100,000 images

• Most time used in sort and deciding splits

• Main operation in deciding splits is calculating running sums to 

calculate gain

• Sort is 𝜃(𝑁𝑙𝑜𝑔𝑁)

• Gain calculation is 𝜃(𝑁)

• Developed new algorithm for faster running sums

• Multiple viewpoints with Kinect annotation from Panoptic studio

• Large image dataset introduces time and space problems for training

0

50

100

150

200

250

300

HOG
Features

Prediction Context
Features

Other Total

T
im

e
 (

m
s
)

Runtime Performance

CPU CUDA

4x Speed Improvement from CPU testing

0

50

100

150

200

250

300

0 20,000,000 40,000,000 60,000,000 80,000,000

T
im

e
 (

m
s
)

Input Size

GPU Running Sum Algorithm - Time 
Comparison

CPU Parallel Alg

3x Speed Improvement in Running Sum Algorithm

Example output of prediction

GPU Parallelization - Testing

Massive Data

GPU Parallelization - Training

• Runtime 𝜃(
𝑁

𝑘
𝑙𝑜𝑔𝑁) – k is number of parallel processes

• In practice k << N, so approximately 𝜃(𝑁𝑙𝑜𝑔𝑁) runtime

• More precise than naïve sum

Approach

Results

Conclusion

Works Cited

• Context Features extracted from patch around location z 

Acknowledgements

• Thanks to Professor Yaser Sheikh and Varun Ramikirkrisna for their help 

and guidance this summer.


