
•  A Markov Decision Process (MDP) consists of


•  We model the user as an agent in an MDP, where 

achieving some goal has a high reward
•  An agent has a policy,
•  In reinforcement learning, we look for an optimal 

policy given a reward function
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Assistance!

To work toward a lower abandonment rate, how do we 
make assistive robotic arms easier to control for day-to-
day use?

Motivation!

•  We set up targets at arbitrary positions in a 3x3x3 grid
-  The user pushes a button with the arm
-  Non-modal dataset: All buttons have the same 

orientation, and the gripper only moves in x-y-z
-  Modal dataset: Buttons are aligned with one x-y 

plane and have varying orientations; the user 
must switch modes to press them

•  Collecting these datasets separately will allow us to 
more precisely determine users’ optimal policies

•  Possible factors in cost function: mode switching, 
maximum speed, visibility of the path

Testing Apparatus!

•  When the arm has more degrees of freedom than the 
input, modes allow the user to choose which ones to 
control
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•  We have some “expert” trajectories (recorded by 
users) and we want to learn a cost function

•  We have a hypothesis set of reward functions
•  We find the one that maximizes the probability of the 

observed trajectories

Inverse Reinforcement Learning!

•  Can we apply IRL to this?
-  We might accidentally learn something about the 

interface instead of the task
-  All observed trajectories control x-y-z and rotation 

separately
•  To explore possibilities, we’re currently gathering 

trajectory data
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