

Design of a Soft Textile-Based Robotic Arm

Hesham Zaini (RISS), Preston Ohta, Yong-Lae Park and Chris Atkeson (RI)

Soft Robotics and Bionics Laboratory, Carnegie Mellon University

Motivation

Traditional robots are composed of hard modules

 This makes them potentially dangerous and unsuitable for direct personal interaction

Design a soft robotic arm

- Human-like degrees of freedom

Soft Materials

Poly-fill stuffing

Elastic Bands

Spectra fiber

Fishing Line

Kevlar/PVC glove

Braided Tubing

Acknowledgements

Chris Atkeson

Yong-Lae Park

Preston Ohta

This arm was co-designed with Preston Ohta under the guidance of Prof. Chris Atkeson and Prof. Yong-Lae Park.

Design

Key Features

DoF 1

DoF 2

All cables are actuated by McKibbentype pneumatic air muscles. Pressure is regulated using binary valves.

Wrist differential consists of 6 cables. It allows for decoupled bending and twisting of the wrist.

Future Work

- Analyze gripping performance on a wide range of gripping geometries.
- ♦ Longer, thinner fingers with stiffer tips would be better suited to gripping smaller, finer objects.