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> Detailed 3D models of indoor space, from walls to floors to objects and
their configurations, can provide extensive knowledge about the
environments.

»People used to use accurate, expensive laser scanners for 3D indoor
modeling. Can we use a lower cost RGB-D sensor instead? RGB-D
sensors like Kinect are much cheaper than laser scanners and can provide
not only depth measurements, but also color information.

> Current existing RGB-D methods are limited in their size since they store
raw point cloud data. The memory requirement becomes prohibitive after a

while.

>The objective of this project is to reconstruct indoor scenes using a Kinect
by combining pose graph optimization with “as-rigid-as-possible” space
deformation. We efficiently store the map in an octree structure and use the
non-rigid deformation for octree map correction in a pose graph
optimization framework.

Objective

> The algorithm should be robust to sensor noise in Kinect, memory
efficient compared with other existing algorithms.
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Overview of the Algorithm

»Incrementally register point cloud using pairwise SURF feature matching
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> Store the map in an octree data structure.

> Create a new submap when accumulated uncertainty is high or closing a
loop.

> Using supervoxel clustering to get supervoxels and use center of
supervoxels as deformation graph nodes. Edges generated from
supervoxel adjacency information.

> Get transformation associated with each node from Global Pose Graph
Optimization (g20) framework and use it as user edit constraints for map
deformation.

»Compute deformed position of supervoxel center by as-rigid-as-possible
shape deformation (enforcing rigidity, smooth & user constraint).

Theory & Preliminary Result

»>VCCS Supervoxel Clustering [2].
»Construct an adjacency graph of occupied voxels.

> Initialize supervoxels by uniform seeding and filter out seeds caused
by noise.

»Compute edge weight in adjacency graph.

»Growing the seeds by running breadth-first-search of the adjacency
graph.

> As-rigid-as-possible Map Deformation [3].

> Construct deformation graph from uniform sampling of the model
surface.

»The influence of individual graph nodes on any 3D points is smoothly
blended by a weighted sum of its position.

»Associate affine transformation with each graph node.

»Optimization (Rotation, Regularization, Constraints).

> \Voxel map obtained using only feature matching & visual odometry.
> Smith Hall 2" Floor Dataset

**Note that drift error accumulates after a while and the map becomes
distorted.

**RGB-D SLAM result looks good overall. But surface lacks smoothness
after pose graph optimization.

Further Work

» Integrate code in each module into pipeline and make a working 3D
indoor modeling system.

> Collect more data sets for testing.
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