
ROBOTICS INSTITUTE
Summer Scholars (RISS) Working Papers

JOURNAL

VOLUME 1 FALL 2013

Editors: Founding Editors
J. Andrew Bagnell
Reid Simmons
Rachel Burcin

Managing Editor
Rachel Burcin
rachel@cmu.edu

Assistant Managing Editors
Ander Solorzano
Julia Deeb

Cover Design
Debra Tobin

Document Layout
Alexandra Yau

The Robotics Institute Summer Scholars Working Papers Journal is an annual
publication of the Robotics Institute’s Summer Scholars Program at Carnegie Mellon
University. Copyright © Carnegie Mellon University 2013

We gratefully acknowledge the support of the National Science Foundation
through the Research Experience for Undergraduates (REU) program
(Grant # CNS 1263266).

Robotics Institute Summer Scholars
Working Papers Journal

Volume 1 Fall 2013

mailto:rachel@cmu.edu

I

Table of Contents

Congratulations Cohort of 2013! ……………………………………………………. 1

To Future Summer Scholars…………………………………………………………. 2

2013 Robotics Institute Summer Scholars Program Partnerships…..…………… 4

Robotics Institute Summer Scholars Program……………………………………... 7

Photos Gallery…………………………………………………………………………. 9

Working Papers.……………………………………………………………………….. 13

 Micah Corah…………………………………………………………………. 14

 Software for Cooperative Assembly of an Airplane. Wing Ladder
Using Mobile Robots

 Lu Hou……………………………………………………………………….. 22
 Multi Sensor Fusion and 2D State Estimation of Lunar Rover

 Ander Solorzano……………………………………………………………. 27

 Designing a PID Control Algorithm for a Lunar Tyrolean Robotic
Survey Platform

 Zesheng Xi and Yaonan Guan……………………………………………. 34
 Airboats in Pittsburgh and Nanjing

 Burak Yücesoy…………………………………………………….……… 39
 Improved Localization and Mapping for Miniature Aerial Vehicles

 Wenqiang Zhou……………………………………………………………... 43
 Using Machine Learning to Detect Yellow Lines on the Road

II

Table of Illustrations

Pictures used in “Robotics Institute Summer Scholars Program” can be found on
the Carnegie Mellon Robotics Institute website at

Picture 1: http://www.ri.cmu.edu/news_view.html?news_id=338&menu_id=238

Picture 2: http://www.ri.cmu.edu/riss

Picture 3: http://www.ri.cmu.edu/news_photo_view.html?news_id=337&menu_id=238

Pictures used in “2013 Robotics Institute Summer Scholars Program
Partnerships”

Picture: Carnegie Mellon The Robotics Institute:

http://www.ri.cmu.edu/downloads/other_pdfs/2014_Summer_Scholars_poster.pdf

Picture: River Quest courtesy of Jeffrey Jordan

http://www.riverquest.org

Picture: Carnegie Mellon University Cooperative Robotic Watercraft courtesy of Debra
Tobin

Pictures used in “Photo Gallery”

Courtesy of Debra Tobin

Pictures of Students used in “Articles”

Courtesy of Debra Tobin

http://www.ri.cmu.edu/news_view.html?news_id=338&menu_id=238
http://www.ri.cmu.edu/riss
http://www.ri.cmu.edu/news_photo_view.html?news_id=337&menu_id=238
http://www.ri.cmu.edu/downloads/other_pdfs/2014_Summer_Scholars_poster.pdf
http://www.riverquest.org/

1

Luis Bilbraut Márquez Universidad del Turabo
Harrison Billmers The College of New Jersey
Philip Cooksey California State University, Monterey Bay
Micah Corah Rensselaer Polytechnics Institute
Julia Deeb Georgia Institute of Technology
Adrian Escoto University of the Pacific
Tao Fu Nanjing University of Science and Technology
Allison Funkhouser Trinity University
Yaonan Guan Nanjing University of Science and Technology
Lu Hou Nanjing University of Science and Technology
Emmanuel Johnson North Carolina Agricultural & Technical State University
Jacqueline Kay Swarthmore College
Aida Khosroshahi San Jose State University
Andrey Kurenkov Georgia Institute of Technology
Christopher Okwonko Norfolk State University
Ellis Ratner Bowdoin College
Karuna Relwani University of Pittsburgh
Nelson Rivera Garcia Universidad del Turabo
James Samotshozo Howard University
Krishna Raj Sapkota Jacobs University Bremen
Roger Smith Hampton University
Stephen Smith North Carolina State University
Ander Solorzano Rose-Hulman Institute of Technology
Caroline Suni Pennsylvania State University, University Park
Albert Toledo Hampton University
Ruffin White-Magner Rose-Hulman Institute of Technology
Micah Williams Fort State Valley University
Troi Williams Norfolk State University
Weilun Wu National University of Singapore
Zesheng Xi Nanjing University of Science and Technology
Danfei Xu Dickinson College
Burak Yücesoy Bilkent University
Abdullah Zafar Carnegie Mellon University, Qatar
Wenqiang Zhou Nanjing University of Science and Technology

Congratulations Cohort of 2013!

2

We write to you today to share our summer
experiences with you. Not just as fellow
roboticists, but as fellow summer scholars.

For those of you who are not familiar with this
program, the Robotic Institute Summer Scholars
(RISS for short) is a summer internship designed
to expose undergraduates to research in the
robotics disciplines. Here students get to learn
and experience the cutting edge research in
robotics while working with a diverse and
passionate team of research students and
professors. Students get to learn about the
process, the teamwork, the documentation, and
the presentation aspects that are involved in the
research field. However, the RISS program was
about more than just research; it was about
learning about a new field, exploring graduate
work, meeting innovative faculty, and forming
friendships with fellow interns.

For scholars aspiring to graduate studies in
robotics, this experience offers an insight to the
ongoing research and applications currently
under study by passionate roboticists. Aside

from technical work, this program gives the
scholars an opportunity to attend thesis
presentations given by Ph.D candidates, to learn
about graduate fellowship programs, and to
attend various technical presentations from
roboticists and professors from around the
various institutions. This experience offers
various leadership opportunities to help
strengthen teamwork and organizational qualities.
We strongly advise the scholars to take
advantage of all of these opportunities in order to
make the most out of this internship.

Your work as a summer scholar has lasting
impacts on the research community. Though this
is an intimidating prospect, the friends you meet
and the mentors you find at CMU will help you
along the way. One of the most important things
we learned that summer was that research is a
collaborative process. Nothing in computer

To Future Summer Scholars

3

science (or any other field for that matter) can be
achieved alone. Additionally, scholars may be
asked to attend the National Conference of
Undergraduate Research (NCUR) in DC after the
summer. Here students from all over the US
present the cutting edge research that they were
involved in the summer. This is a chance to meet
students and program directors from various
academic institutions as well as board members
of the National Science Foundation (NSF). This is
an extreme honor and we encourage the students
to accept this opportunity given the chance.

During this program, students are also given the
opportunity to give back to the community by
sharing their knowledge and experience with local
and international educational programs that
engage students in practical, hands-on Science,
Technology, Engineering, and Mathematics
(STEM) activities. Other examples include
showing local grade schools about the innovative,
thoughtful, and creative work involved in the

construction of space robots. Here, local students
learn about the daunting challenges that can be
solved by a group of passionate engineers
working together as a team. In another
experience, the RISS scholars educated and
demonstrated to local environmental programs
about how a swarm of surveying hoverboats
collect information of polluted water bodies. From
designing an optimal hull that will perform in
different conditions to the full implementation and
testing in a real environment, students were
involved hands-on through the whole process.

Finally, the last lesson we leave behind to the
future scholars is to
simply have fun.
This program will
enrich your
understanding,
expand your
horizons, and
strengthen your
desires. However, all of these rewards are in vain
unless you have fun with those around you.
During free time, we encourage the scholars to
explore the city, to organize social events with the
entire group, and to meet other students from
around the world. We truly wish you the best of
luck as you endeavor in the path set in front of
you and that you enjoy your time that this
wonderful program offers you.

Sincerely,

Julia Deeb & Ander Solorzano
RISS Scholars 2013

4

2013 Robotics Institute Summer Scholars Program
Partnerships

5

In 2013, the Robotics Institute Summer

Scholars Program (www.ri.cmu.edu/RISS)

partnered with the Carnegie Cooperative

Robotic Watercraft Group (http://crw-

cmu.blogspot.com/) and RiverQuest

(www.riverquest.org) to (1) launch a

capstone experience for undergraduate

researchers that enabled the students to

apply previous course and lab work to the

challenges and unpredictability of

designing, operating, and testing a robot in

a real-world environment and to (2)

contribute to the development of robotic air

boat activities for middle and high school

students. For the scholars, the capstone

started with an introduction to robotic air

boats, opportunity to join the scholar

leadership team that would plan the

capstone field experience, opportunities to

join practice field testing, a hull design

seminar and challenge, and the culminated

with an afternoon of field testing on the

river. Caroline Suni, working with a team of

scholars and partners, organized the field

experience and translated this experience

into draft curriculum for future use.

The capstone impacted the way the

scholars see themselves as scientists and

how they approach problem-solving.

Working with robots in a real-world

environment gives scholars a different

perspective on what needs to be done, how

it needs to be done and to some degree

inspires their efforts. Scholars conducted

mini-field tests over the summer in multiple

environments. However, on the day of field

testing on the river, scholars faced

additional challenges. Heavy rains forced

the opening of dams. The flow of the river

was greatly increased and littered with

debris. Controlling the boats and obstacle

avoidance became increasingly

challenging. This real-world experience

impacted how these future roboticists will

approach system design and problem

solving.

Scholars applied their skills from a broad

range of fields to examine how robotic

watercraft could be used in environmental

studies. The robotic air boats provide a

novel way of presenting water science and

environmental issues to younger students.

In an era where technology is ubiquitous,

fusing new technologies with these

sciences can engage students in exciting

hands-on and learner-driven activities. The

study of nonpoint source pollution and its

impact on water quality provides the nexus

between RiverQuest's environmental

education programs and the new

technology represented by the robotic air

boats. While traditional testing modes are

often dependent upon water sample

collection and manipulation to determine

http://www.ri.cmu.edu/RISS
http://crw-cmu.blogspot.com/
http://crw-cmu.blogspot.com/
http://www.riverquest.org/

6

pH, oxygen concentration, dissolved solids,

and other parameters, the air boats may

contribute to a robust data collection by

enabling the testing of certain parameters

in situ. Potential use of airboats for testing

tributaries where the large vessel cannot

access provides a next-step opportunity for

student engagement and expanded data

collection. Scholars also learned about hull

design, system components, preparation

and testing.

During the field experience, the scholars

tested robotic boat activities designed by

cohort members. The field experience

design and activity development were led

by summer scholar Caroline Suni and a

team of scholars including Tao Fu, James

Samotshozo, Ander Solorzano, Troi

Williams, Zesheng Xi, and Wenqiang Zhou.

The resulting activities contributed to

ongoing collaboration and development of

robotic boat curriculum for K-12 Pittsburgh

students.

Community engagement and broader

impact are important aspects of being a

scientist today. Each year the summer

scholars eagerly embrace multiple

opportunities to share their research

results, projects, and knowledge with

educators and members of the community.

Scholars have the opportunity to work and

research alongside labs and science

educators recognized for not only their

innovative research but also for sharing

current research with the public. Such an

experience deepens the scholars’ sense of

responsibility to contribute to the health of

our communities through science and

action. Like their faculty mentors and

research advisors, summer scholars are

also role models and mentors for future

scientists.

Many thanks to Carnegie Cooperative

Robotic Watercraft group (led by Paul

Scerri and George Kantor) and the

RiverQuest team (led by Jeffrey Jordan,

Suzi Bloom, Megan Griffin, and Gerry

Balbier). Additional project guidance and

support provided by CMU’s Leonard

Gelfand Center for Service Learning and

Outreach led (by Judith Hallinen) and the

Richard King Mellon Foundation

contributed to the success of this

partnership.

7

The Robotics Institute Summer Scholars (RISS)

Program is an intensive undergraduate research

program at Carnegie Mellon University. Summer

scholars participate in innovative research that

focuses on robotics as the intelligent connection of

perception to action. Scholars work with faculty,

post-doctoral fellows, researchers, graduate

students, and fellow summer scholars from around

the world to conduct research work in:

• Intelligence: including core AI technologies, motion planning, control theory, planning

under uncertainty, POMDPS, game theory, and machine learning.

• Perception: including computer vision, stereo processing, understanding ladar and 3D

sensing, state-estimation, and pattern recognition.

• Action: including work mechanisms, actuators, their design and control.

Previous scholars have worked on projects ranging from

distributed sensing to autonomous flight through

cluttered forests. Learn more about RI participating

projects at www.ri.cmu.edu/RISS and scholar

contributions to this research.

Robotics Institute Summer Scholars Program

http://www.ri.cmu.edu/RISS

8

Through the program, scholars are:

(1) Immersed in a guided research process that enables them to experience the thrill of

discovery and to adopt the role of scientist as one that is authentically their own;

(2) Inspired to pursue careers in robotics and related STEM fields and equipped with the

skills and new knowledge to seize industry and graduate school opportunities;

(3) Challenged by the interdisciplinary nature of robotics, the complexity of the research, and

the vast potential to impact and improve the world’s quality of life;

(4) Supported by robust student-development programming that complements the research

immersion and informs the student’s post research experience trajectory; and

(6) New members of lifelong global community of researchers, entrepreneurs, and innovators

that support, encourage, and enrich each other’s lives.

The Robotics Institute at Carnegie Mellon University, the largest university-affiliated robotics

research group in the world, offers a diverse breadth of research with an extensive range of

applications; with over a hundred funded research projects. The

Institute is a global leader in robotics research, education, and

innovation. The Institute’s experience, capacity, and faculty

engagement extends unparalleled opportunities for students to be

immersed in cutting-edge research while building in-demand

STEM knowledge and skills.

The institute has seven years of experience hosting successful formal summer

undergraduate research programs. The RI Summer Scholars program has grown to an

average cohort size of 30 students and yields an impressive number of successful graduate

school applications (at CMU and top universities around the world) and research position

placements. For instance, 7 former Summer Scholars were admitted to the fall 2012 Robotics

Institute incoming class (1 PhD, 2 research MS, and 4 Masters of Robotics Systems

Development). For fall of 2013, there were 4 PhD and 5 masters offers of admission were

extended to RISS alumni.

9

PHOTO GALLERY
RISS Presentations 2013

10

PHOTO GALLERY
RISS Ceremony 2013

11

PHOTO GALLERY
RISS Posters 2013

12

 PHOTO GALLERY
RISS 2013

13

Micah Corah
Software for Cooperative Assembly of an
Airplane. Wing Ladder Using Mobile Robots

Lu Hou
Multi Sensor Fusion and 2D State Estimation of
Lunar Rover

Ander Solorzano
Designing a PID Control Algorithm for a Lunar
Tyrolean Robotic Survey Platform

Zesheng Xi and Yaonan Guan
Airboats in Pittsburgh and Nanjing

Burak Yücesoy
Improved Localization and Mapping for
Miniature Aerial Vehicles

Wenqiang Zhou
Using Machine Learning to Detect Yellow Lines
on the Road

Working Papers

Authors

14

Micah Corah
RISS 2013

15

T

Software for Cooperative Assembly of an Airplane
Wing Ladder Using Mobile Robots

Micah Corah, Chris Niessl, and Reid Simmons

I. INTRODUCTION

ODAY airplane wings are assembled by large groups
of workers over a period of days who use cranes to

position heavy ribs inside large wing-spars. Because this is
a slow process, airplane manufacturers simply cannot keep up
with demand. Automation is a desirable option for increasing
production. However, the assembly process is difficult for
robots for some of the same reasons as it is for humans:

• Ribs and spars are heavy
• Airplane wings are large compared to people and robots
• Small holes holes impose tight positional tolerances

When mounted on tracks, robotic arms are able to move
around the entire length of a wing. This kind of setup implies
installation of large and expensive fixtures. We believe that
robotic arms are unsatisfactory, as are factory workers.

A group of mobile robots could instead be used to assemble
airplane wings with no need for such fixtures. Given access to
the necessary parts a group of mobile robots could potentially
assemble airplane wings having beeng placed in an otherwise
empty warehouse with absolutely no fixtures. Before achieving
this, a number of problems must be addressed. The robots
used on this project are innaccurate and cannot on their own
satisfy the tolerances. As no fixtures in the evironment will
be allowed, the robots then provide their own fixtures for fine
positioning of the parts. At the same time the assembly process
must be coordinated at the grand scale as all of the robots must
arrive at the correct positions at a specified time in order to
efficiently perform the assembly process.

This paper is a technical report discussing software devel-
opment primarily for a simulation of the coordinated assembly
process but also relating to components that will run on the
physical robots. First, the robots being used are introduced.
High-level details of the assembly process are covered as are
many of the details and difficulties encountered during the
implementation. We finish with a discussion of integration of
a planning layer and implementation of a hybrid simulation
where simulated robots can dynamically switch to represent
real robots for parts of the assembly process.

II. THE ROBOTS

Assembly is performed by robots with identical omnidi-
rectional bases having three different kinds of tooling. These
robots are the rib-carrier (Figure 1), rib-catcher (Figure 2), and
spar-carrier.

A. The Rib-Carrier

The rib-carrier is responsible for carrying and inserting ribs.
The top will rotate compliantly in all directions to allow the

rib to be passively aligned to the spar. A column lift will
lower the fingers once the rib is inserted, allowing the rib-
carrier to escape under the assembly. Additional sensors will
be integrated as the problem of rib-insertion is solved.

B. The Rib-Catcher

The function of the rib-catcher is to provide fixtures for fine
positioning of the rib. Pictured is a metal target that attaches
flush with the post (attachment point) on the spar. Detections
of impact of the rib with the target will be used as part of the
process of servoing the rib into place.

C. The Spar-Carrier

Currently the spar-carriers only exist in simulation with no
physical equivalent. Instead, the wing-ladder is held in place
by a set of jack-stands. The spar-carrier robots are responsible
for retrieving the spar and holding it in place.

III. THE SIMULATION ENVIRONMENT

A. Simulated Robots
In simulation, the robots are composed of a small collection

cylinders and cuboids representative of their main physical
features. These robots go through the motions of the assembly
process without simulation of lower level details or dynamics.
The assembly process is performed by seven robots, five
spar-carriers (four to carry the spars and one which is used
intermittently), one rib-catcher, and one spar-catcher.

B. The Wing-Ladder

The simulated wing-ladder is made up of two spars and five
ribs. The ribs have holes for fasteners on either end and are
inserted into the spar and fixed to posts (attachment points) on
the spars. The ribs are spaced at roughly equal distances with
one rib at each end of the spar. The ribs each fall on the same
side of their respective posts except that one of the end ribs is
flipped such that the end ribs are each attached outside of the
posts.

The wing-ladder is the only object in the simulation taken
directly from the real world, derived from the original CAD
model (Figure 3). This provides a one-to-one correspondence
between real and simulated components allowing the simulated
assembly process to be related directly, even simultaneously, to
the real assembly process despite incomplete simulation of the
robots and of dynamics. The real wing-ladder does not have
properties such as identical ribs or the centroids of each rib
all falling on a single plane or axis. In order to deal with this

16

the reference frames used for each part of the ladder are not
based on strict alignment to certain features but instead offset
from the reference frame of the original CAD model, which
is the center of the rib on the larger end.

C. Abstractions in the Environment

The abstractions in the environment are the objects of the
simulated environment without any graphical representation.
Each however places strong contraints on the simulation. Note
that, although these are abstracted in simulation, some or all
would be physical elements of a complete implementation. For
instance, a device at some location would likely be necessary
to load ribs or spars onto the robots, defining the parts depot.
Likewise, the assembly-station may be a well-defined section
part of a factory. These abstractions are as follows:

1) The Parts-Depot: This is the physical space where the
ribs and spars are initially located. The parts are each placed
next to each other and are rotated ninety degrees from their
positions when assembled.

2) The Assembly-Station: The assembly-station is the loca-
tion where the wing-ladder will be assembled. For the purpose
of the simulation few assertions are made about this or other
spaces except that the intersection of any two is empty.

3) Corridors: At the moment corridors have not been im-
plemented explicitly in the software but are the pathways
that robots may follow when moving between parts-depots or
assembly-stations. Implicitly, the paths that the robots follow
when picking up parts can be thought of as corridors.

4) Intersections: Intersections are the regions where cor-
ridors would intersect. Motion through the intersections is
therefore managed explicitly in order to prevent collisions.
These like corridors have not yet been implemented.

5) Parking Spaces: These are explicit locations where a
single robot may sit idle with the guarantee that no other robot
will collide while the robot remains in that space. Currently
parking spaces are defined by the initial positions of the robots.
In the future, when additional robots and wing-ladders are
added, parking lots with dynamically-allocated spaces will
be defined. These may for instance be defined by a point
indicating the location of the first space, a vector indicating
the direction of additional spaces, and a maximum number of
parking spaces in the lot.

IV. THE ASSEMBLY PROCESS

The assembly process for the wing-ladder is composed of
five basic steps: retrieval of the spars, positioning of the spars,
rib-retrieval, shuffling of the spar-carriers when necessary,
attachment of the rib-catcher, and insertion of the rib. This
process is demonstrated in Figure 4. The summary below cov-
ers the basic logic of this process while details and technical
issues will be explained more thoroughly later.

1) Retrieval of the spars from the depot is performed by
a group of carriers. The number of carriers and hold

Fig. 1. The Rib-Carrier in position for rib-insertion

Fig. 2. The Spar-Catcher aligning to the spar during the post-attachment
process

locations are calculated based on the length of the spar.
Spar-carriers are selected and made to approach and grab
the spar. This group then carries the spar to the assembly
station while maintaining rigid formation in order to
prevent collisions.

2) Once the spars are in the assembly station, they are
moved to their relative positions for assembly. Tight
tolerances are crucial. This step is an open problem in the
physical assembly process and even somewhat difficult in
simulation.

3) The rib-carrier moves to the depot picking up the appro-
priate rib and then carries the rib to a position in front of
the spars.

4) The rib-catcher attaches to the post on the spar in prepa-
ration for insertion of the rib.

17

Retrieve Spars Position Spars

Fig. 3. The wing-ladder after being assembled

5) Often, one of the spar-carriers will be in the way of the
rib-catcher. When this occurs, a free spar-carrier takes
up an alternative position on the spar, and the offending
spar-carrier is parked.

6) The rib-carrier enters the spar at an angle such that there
is sufficient clearance on each side of the rib. Once the
edge of the rib taps the target on the spar-catcher a fine

disengages and exits the wing-ladder.

Shuffle Carriers

×5 Ribs

Attach Catcher

Retrieve Rib

Insert Rib

V. SOFTWARE STRUCTURE

As this project involves large numbers of robots operating
simultaneously the software stack includes a number of pro-
cesses running in parallel. IPC (Inter Process Communication)
provides non-blocking communication between all of the pro-
cesses when running in simulation or on the physical hardware
[1]. We use the Syndicate architecture which is composed of
three layers of abstraction: planning, executive, and behavioral
running simultaneously on multiple robots [2]. As of yet, the
planning has not been included. The executive is implemented

Fig. 4. A diagram of the steps of the assembly process

Tasks
Leader:Exec. Robots:Exec.

using TDL (Task Description Language) [3]. TDL is used to
initiate execution of high-level tasks such as moving from
one point to another or grabbing an object. TDL maintains
constraints between tasks and provides a variety of options for
how a task is executed and completed. The behavioral layer is
composed of blocks each representing a robot behavior gen-
erally involving closed loop interaction with the environment,
such as moving forward until a switch is activated. Below these
are an intermediate robot controller, hardware level control,
and a simulator based in OpenRave. The relationships between

Poses Poses

Robots:Control

Poses

Poses

Goal
Status

Velocity

Goals Status

Robots:Beh.

each of these processes is diagrammed in Figure 5.

A. The Leader Process
The leader is an executive layer process responsible for

spawning tasks related to the entire group of robots which then
spawn individual tasks on each of the robots. For instance, the

Simulation & Hardware

Fig. 5. A simplified diagram of the flow of control and information between
processes

18

top level wing-assembly task is spawned on the leader resulting
in high level tasks being spawned for insertion of each rib and
then motion tasks being spawned on each of the robots. As
tasks are being executed the leader also maintains some high-
level data on the individual robots related to their state and
location. This process will also be important later on as it will
be primarily responsible for communication with the planner
layer which will soon be integrated into the software stack.

B. Robot Processes

Each robot is associated with an executive, behavioral,
and control process. The executive process maintains tasks
associated with the robot and also data relevant its current
state. With few exceptions the behavioral layer communicates
and monitors position goals obtained from the executive to
the controller. The robot controller provides several modes of
velocity control for point to point motion tasks. The controller
is also responsible for interfacing with the simulated and
physical robots and is responsible for distributing robot pose
information.

C. The Simulator

The robots are simulated using a plugin to OpenRave which
duplicates the interface to the physical robots. The simulator
itself is devoid of dynamics and other complexities. Robot
position is calculated by discretely integrating commanded
robot velocities in real time. Note that there are absolutely no
artificial sources of error and that simulated robots are assumed
to exactly follow the commanded velocities as they are given.
The simulator also provides grab commands that allow a robot
to pick up any intersecting simulated object.

VI. MOTION PRIMITIVES

Most tasks on the executive eventually spawn some motion
primitive. Most commonly, the primitive is either a straight line
motion or an in-place rotation. This is a side-effect of using
primarily taxi-cab style motions. When used together, these
span the configuration space of the robots. For the most part,
these primitives are sufficient, but during some parts of the
assembly process, motion is constrained. Additional primitives
were implemented to deal with such situations.

A. Rotation About a Point

The constraints encountered during the assembly process
are generally of the form of a rigid relationship of the robot
to some fixed point in the environment. Such tasks require
the robot to be able to rotate relative to an arbitrary point.
Two examples are the rib-insertion and post-attachment tasks.
During rib-insertion, the rib is rotated into place while main-
taining contact with the target. During rib-insertion, the rib-
catcher rotates about the end of its arm in order to align itself
perpendicularly to the spar while also maintianing contact.
Thus, a motion primitive was implemented which takes a point
and an angle to address this issue. This is then executed by the
controller (discussed later). Previous to this work, a velocity

controller mode for curved motion had been implemented.
However, this computed velocities appropriate for differential
drive robots. The velocity controller was rewritten to compute
velocities for omnidirectional bases instead as a part of imple-
mentation of this motion primitive.

B. Primitives for Rigid Motion of Groups

Another type of constraint is a rigid relationship between
two or more robots. This constraint occurs in the simulation
when the spar-carriers must move the spar. Note that the
motion of the group of robots as a whole is unconstrained. For
simple translations, the existing primitives are sufficient. If all
of the robots move with the same velocities the rigid relation-
ship is maintained. However, rotation of the spar is necessary
in addition to translation. As the spar and spar-carriers together
do not have any meaningful center of rotation, a point in the
plane can be chosen arbitrarily. If all of the robots in the group
rotate about a single point with the same radial velocity the
rigid relationship is maintained. The task for rotation about a
point can then be extended to rotations of groups of robots. The
only requirement is to determine a valid rotational velocity. For
each kind of robot, values are set for maximum rotational and
translational velocities. The maximum rotational velocity about
the center is limited by each of these. Naturally, rotational
velocity about the centerpoint is no greater than the minimum
of the robots’ maximum rotational velocities. Also, given a
rotational velocity ω about a point a distance r from the robot
and translational velocity Vmax :

Vmax ≥ ω × r.

Given a valid rotational velocity, the rotation about a point
primitive can be run on each of the robots in the group while
maintianing an ideally rigid relationship. Using this, three
motion primitives were added for motion of groups of robots.
The simplest spawns straight line primitives on each of the
robots; the second rotates the group about a point; and the
third combines the two, taking initial and final positions as
input. In the case of the last, note that the motions can be
varied without changing the end conditions by moving the
positions in their local frames (equivalent to moving a single
robot’s center of rotation). Using this property, a group can
complete a motion using a single rotation and no translation
or rotate about the centroid of the group before translating.
With both translation and rotation, groups of robots can reach
any point in their configuration space. When applied to the
physical robots, the controller will have to be able to react to
innacuracies in the motions of the robots relative to each other.
This work is likely a good starting point to drive development
of such a controller for the robots. This result is sufficient as
the simulation is only intended to demonstrate the process of
assembly, not simulating dynamics or contact.

VII. CONTROL AND LATENCY

Although the simulator attempts to provide idealized robot
motion, the control remains far from ideal due to the non-
deterministic nature of parallel execution. Generally, when

19

running the simulation, twenty-three processes and a number
of threads run and communicate concurrently. Often, this all
occurs on a single virtual machine, severely taxing resources.
For the most part, the simulation tends to run smoothly.
However, at a minimum, there are motion innaccuracies similar
or greater in magnitude to those on the physical robots. Latency
is observed as a result of the large quantity of processes all
running round-robin on a single machine. In the best case, pose
information on the controller is always slightly old as are the
velocities that the simulator integrates based on a real-time
clock. In the worst case, such as if the simulator is configured
to send out pose updates too quickly (the controller reponds
to each pose update with a velocity update), communication
may slow almost to a halt, and robots may continue moving
based on either old velocity commands or velocity commands
computed with old positions for even several seconds. Old
positions may also have negative effects on the executive.

There are a variety of ways of dealing with the latency issue.
As mentioned previously, lowering the update rate reduces
traffic. An appropriate update rate was found heuristically
with an appropriate trade-off between increasing latency and
decreasing accuracy. Message queue lengths are also set to
one to eliminate old messages. In addition to reducing latency,
measures were taken to increase the resilience to motion
errors. At the executive layer, when precise relative positions
must be known, robot positions are sampled after an action
is completed. For instance, the spar-carriers may sometimes
report succesfully reaching the locations of their holds on the
spar when they are actually outside tolerances. Because the
precise location of the simulated spars are already known, the
transform from each spar-carrier to its spar is updated after
grabbing the spar. The simulation is then resilient to error in
spar-carrier positions at this step so long as the grabbing spar-
carrier is in collision with the spar. With small tolerances and
high speeds a robot can potentially jump across the goal region.
As mentioned previously, this kind of problem can have serious
consequences for curved motions. To deal with this, a feature
was added to the curved motion controller to detect jumps
from (−90◦ , 0◦) and (0◦ , 90◦) where the goal is 0◦ on the
circle the robot is moving in. When this happens an existing
motion finalization mode that moves the robot directly to the
goal is triggered.

VIII. TOWARD PLANNING INTEGRATION AND

ADDITIONAL ASSEMBLIES

The simulation described in this paper features assembly of
only a single wing-ladder. Reasonable results were achieved
with hard-coded steps. As the number of wing-ladders increase
and factors such as failure to complete a task are included in
the simulation, the need for an actual planning layer increases.
Development of the planning layer is outside of the scope
of this paper. However, an important part of integration of
work on the planning layer is that the executive layer be
designed in a way that simplifies the interface between the
layers. This is achieved through features that can easily afford
various levels of abstraction to the designers of the planner.
The planner being developed will use information on the

connectivity of the environment, the structure of the assembly
task, and information on the time to complete tasks to move
robots around the environment to the four assembly stations
and depots and to schedule tasks using a just-in-time model.
Note that the planner will not have a spacial or geometric
representation of the environment. However, the geometric and
spacial components each affect parts of the task structure.
For example, the carrier shuffle is not performed if there is
no carrier in the way of the rib-catcher. Use of abstraction
eliminates the need to create rules on the planner to describe
these interactions.

In order to simplify this abstraction the concept of
workspaces has been added to the executive layer. The set
of robot workspaces is the set of vertices of the planner’s
graph of the environment. The executive then must guarantee
that there can be no interactions between robots in different
workspaces. The designers of the planner are then free to cede
any desired level of control of robots within a workspace to
the executive. Therefore the executive can be allowed to assign
sub-tasks to robots within a workspace as a part of execution
of a task assigned by the planner. Workspaces are assigned to
robots implicitly by motion tasks assigned by the planner. The
planner may assign a task such as, “cross Intersection1,
and enter Station1.” Preceding assignment of the task, the
robot workspace would have been Intersection1. After
completing the task, the robot would be assigned the current
workspace Station1.

Two additional pieces of information are also tracked by the
executive: robot names (which are derived from robot type)
and robot state. State may be information such as which rib a
robot is carrying, which hold a robot has been assigned to on
the spar, or whether a robot is currently free to be assigned
tasks by the executive.

The result of storing this information is that the planner
may be designed to manage tasks to whatever level of detail
is desired. The command to insert a rib may have as few
parameters as the assembly station it applies to. Given a rib-
carrier with a rib, spar-carriers holding the spars, and sufficient
additional robots all in the assembly-station, the executive can
infer all subtasks and assignments necessary to complete the
rib-insertion task. Just as easily the name of the rib-carrier
could be used, in which case the executive would simply look
up the rib-carriers workspace and state as part of inferrring
further subtasks. On the other hand, designers of the planner
may deem necessary explicit assignment of robots to a rib-
insertion task. In this case, the executive may skip looking
up which robots are in the workspace or look up names and
locations to ensure the validity of the assignment or possibly
to determine whether to wait until a robot has arrived in the
workspace to start the task. The executive is therefore flexible
to the needs of those designing the planner instead of being a
driving force in the development of the planner, by not having
strict requirements on the information needed before executing
a task.

IX. DEVELOPMENT OF A HYBRID SIMULATION

The simulation portrays the overlapping steps of the as-
sembly process but lacks finer details such as dynamics.

20

The tooling simply has not been designed with simulation in
mind and furthermore was being developed in parallel to the
simulation. Instead of simulating the hardware we chose to
use the physical hardware to drive a subset of the steps of the
simulation. We therebye can demonstrate a level of accuracy in
simulation when a real robot can be substituted for a simulated
robot without consequence.

Poses

Controller

Poses

Velocity

A number of technical challenges were overcome to imple-
ment this idea:

• There must be some toggle that causes a simulated robot
to track a real robot

• The toggle should not be enacted when the real robot is
not present

• The reference frames of the real and simulated environ-
ments must be related

• Simulated and real time must be related
Naively, implementation of the toggle was initially ap-

proached with the idea that the simulated robot could simply
be told to stop publishing positions and listening to velocity
commands and instead just listen for positions being published
by the real counterpart. Both the real and simulated robots
would need to listen to some message and then switch to the
appropriate mode. However, there are a number of difficulties
and problems with this method:

• The real and possibly also simulated robots would have
to send messages indicating their presence to syndicate

• An initialization step would be necessary specifying
whether simulated or real robots are active

• The environments would either have to have the same ref-
erence frame or software would have to be implemented
to allow the controller to use a transform between the
environments

• The velocity controller would have to be able to distin-
guish between position information from simulated and
real sources

Overall this would require a large amount of modification and
effort for a cosmetic feature, especially considering potentially
issues with the controller.

For this reason another option was initially implemented
where the simulation contains a robot dedicated to tracking
the real robot. This eliminates the serious technical issues but
has consequences on the assembly process. As there is no parts
depot in the real environment, a simulated robot would ideally
pick up a rib and move to the spar before switching to tracking
the real robot. Instead the real robot would have to have some
other way of obtaining a rib. Since the simulated robot would
not have performed the insertion, it may not end up in the
position it usually would post-insertion. The process would
have to be modified to deal with it potentially not being in ths
position, or the simulated rib-carrier would have to be moved
to this position by some other method.

Fortunately, when the previously discussed options are com-
bined these complications go away. In our implementation
there is a simulated robot that can be made to track a
corresponding real robot, but these robots have different names
as demonstrated in figure 6. Before the real robot performs
a task, the simulation is passed the name of the real robot

Sim-Robot Real-Robot

Fig. 6. Diagram of a simulated robot, “Sim-Robot” tracking a real robot,
“Real-Robot”

and also a transform between the environments. To ensure
a smooth transition before the simulated robot snaps to the
position of the real robot, a task should be spawned to move
the real robot into some starting position before the switch,
and once this task has been completed, another task should be
spawned to move the simulated robot to the position of the
real robot. This immediately eliminates issues related to the
controller as there is now one instance of the controller for
both the simulated and real robots. Since the real robot and
corresponding simulated robot are represented by the same
robot in the simulation there are also no issues with acquiring
the simulated rib or differences in final position.

X. CONCLUSIONS

This paper has presented a summary of software develop-
ment work for multi-robot assembly of an airplane wing-ladder
and a simulation of the assembly process. For background, we
begin with a description of the robots, the environment, and the
basic steps of the assembly process. Development of both hard-
ware and software for this project continues, and the simulation
is a self-contained subproject demonstrating work on software
development and the large scale assembly process. We then
move on to describe the software structure and communication
between robots and processes. The motion primitives are the
basic components of the assembly process, and performing
the assembly process requires a set of primitives that satisfy
the constraints at each step. During implementation, large
overheads related to running so many robots and processes
were recognized and delt with. As components from the
executive down were completed, we began to look upward and
developed components to support integration of the planning
layer.

Cooperative assembly with mobile robots is not a new con-
cept. This project is set apart by both its scale and granularity.
The simulation as described in this paper uses seven robots
to assemble a single wing-ladder. This is being extended to
multiple wing-ladders and even more robots making the plan-
ner critical. Through various subprojects development extends
downward through software (some of which being the focus
of this paper) and hardware from tooling to the mobile bases
themselves.

21

REFERENCES

[1] R. Simmons and D. James, “Inter-process communication: A reference
manual,” Robotics Institute, Carnegie Mellon University, April 2001.

[2] B. Sellner, F. W. Heger, L. M. Hiatt, R. Simmons, and S. Singh,
“Coordinated multiagent teams and sliding autonomy for large-scale
assembly,” Proceedings of the IEEE, vol. 94, no. 7, pp. 1425–1444, 2006.

[3] R. Simmons and D. Apfelbaum, “A task description language for robot
control,” vol. 3, pp. 1931–1937, 1998.

22

Lu Hou
RISS 2013

Nanjing University of Science and Technology (NUST) has been a partner in the CMU Robotics
Institute international graduate education program – the Master of Science in Robotics
Technology (MS-RT) since 2010. NUST became a special RI Summer Scholars program partner
in 2013. The working paper journal articles here represent a sampling of the range of projects
on which NUST students have collaborated.

23

Abstract—Wheeled skid-steer localization poses special

challenges due to the complexity of kinematics and wheel/ground
interaction. This paper provides two possible approaches to
estimating the lunar rover’s 2D state fusing information from
wheel odometry, fiber optic gyroscope (FOG) and inertial
measurement units (IMU). The first method applies a differential
drive model after analyzing the kinematics of the lunar rover and
uses wheel odometry and FOG to estimate the rover’s state. The
second effective means of combining encoder and IMU data
together is to use a discrete Kalman Filter (KF). Both methods
show proficiency in some particular applications. While using a
fiber optic gyro can reduce heading error caused by lateral
slippage, the Kalman Filter is able to calculate the rover’s state
without introducing the IMU’s drift resulting from integration of
accelerations and non-systematic errors of wheel odometry like
slippage. Finally, we tested and validated the simplified model
and KF with a laser range finder.

Index Terms—differential drive model, Kalman Filter

I. INTRODUCTION

Wheeled skid-steering mechanisms are widely used for all-
terrain vehicles, especially true of some field applications like
planetary exploration. The lunar rover named prototype 3 (Fig.
2.a) is a typical wheeled skid-steering vehicle.

A robust robot system relies much on its localization.
Basically, two kinds of positioning methods are widely
applied for mobile robot localization: absolute positioning and
relative positioning [1]. Absolute positioning methods usually
utilize expensive and complex systems like map matching and
Global Positioning System (GPS) signal processing while
relative positioning is based on the inertial measurement units
and odometry. Considering the limitation of GPS signal on the
moon and complexity of implementing map matching, it is
urgent to build a reliable and powerful way to estimate the
lunar rover’s state using relative positioning methods.

The sliding interaction for a skid steer rover is often too
complex for on-board calculation and real time control. A
differential drive approximation is proposed based on studies
that analyze the equivalence between these two models. Wheel
odometry suffers from non-systematic errors like slippage,
thus the accuracy of the heading estimation is significantly
affected. Using a fiber optic gyro to provide the angle

Lu Hou is with the Computer Science and Engineering Department,

Nanjing University of Science and Technology in Jiangsu Province, China.
Email: houlu369@gmail.com

This research was conducted at Carnegie Mellon University under the
guidance of William “Red” Whittaker and Uland Wong.

information independently will effectively help overcome this
problem. In addition, building a Kalman Filter that combines
both the wheel odometry and IMU data will provide the rover
with both localization and slippage information.

Fig. 1. a) Lunar Rover Prototype 3 b) on-board sensor suite of Prototype 3

II. DIFFERENTIAL DRIVE MODEL

A. Model simplification
The experimental platform is a 4-wheel skid steer rover.

However, the sliding interaction is often too complex to model
accurately in application and it is not possible to predict the
exact motion of the vehicle only according to the controlling
inputs. So it is a necessity to obtain an optimized kinematic
model for skid-steer vehicles.

Some work has already been done in studying the dynamics
and model simplification in order to improve the on-board
computation of a skid-steer vehicle. The kinematic
equivalence between skid-steering and differential drive
vehicles has been proposed for tracked vehicles [2].

Since the wheels on each side of Prototype 3 are connected
together and always have the same angular velocity, the
kinematics of Prototype 3 is similar to those of a tracked
vehicle. For simplicity of development and testing, a
differential drive approximation is utilized for Prototype 3.

However, once the differential drive model is employed for
the lunar rover, we need to consider the turning efficiency of
the rover, which has been studied in [3].

Fig. 2. a) Skid Steer Kinematics [3] b) simplified differential drive model

Multi Sensor Fusion and 2D State Estimation
of Lunar Rover

Lu Hou

encoders

IMU
FOG

2
l

rv

Ω
 θ

lv

R

y

x

mailto:houlu369@gmail.com

24

The ideal turning rate Ω without longitudinal slippage for
an standard Ackerman steering geometry is described by Eq. 1

R
rω

=Ω (1)

where ω is the wheel angular velocity in radians per second,
r is the wheel radius, and R is the distance from the center
of the wheels to the center of rotation of the rover.

To calculate the rate of rotation Ω (Fig.2.a) for a skid steer
rover, the actual turning radius which is reflected by the angle
θ must be taken into account.

)cos(θω
R
r

=Ω (2)

Denote l as wheel track (the distance between the centre of
the two wheels), we can simplify the model Prototype 3 into a

differential drive model by replacing l with
)cos(θ

l
.

Namely, change its wheel track from into the diagonal
distance of front left wheel and rear right wheel.

And then it is straightforward to calculate the robot’s state
using the differential drive equation based on the encoder
readings.

B. Differential drive kinematics
Differential drive mechanisms consist of two wheels which

are mounted on a common axis [4], wheels on both sides can
be driven forward or backward. It is possible to change the
trajectories the robot takes by varying the velocities of the two
wheels.

If the rover’s position at time t is),(yx , with a heading
direction θ relative to the X axis. Then the instantaneous

centre of curvature (ICC) location is described as
)]cos(),sin([θθ RyRxICC +−= (3)

Given the velocities rl VV , , we can get the rotation radius

R (the distance between ICC and the center of the two
wheels) and rate of rotation Ω using equation (3).

l

VV
VV
VVlR lr

rl

rl −
=Ω

−
+

= ,
2

 (4)

then the robot’s pose at (tt ∆+) is

Ω∆
+

−
−

Ω∆Ω∆
Ω∆−Ω∆

=

t
ICC
ICC

ICCy
ICCx

tt
tt

y
x

y

x

y

x

θθ 100
0)cos()sin(
0)sin()cos(

'
'
'

 (5)

C. Fiber optic gyroscope (FOG)
Non-systematic errors are inevitable in wheel odometry.

The wheels will encounter slippage when pivoting and turn
less than the expected degree as a result. One way to
overcome this problem is to adapt the coefficient of the wheel
track according to the real texture of the terrain. However,
whenever the terrain changes, one needs to do a series of tests
before the optimized coefficient is found, which is not

convenient. Another means of giving better pivoting
performance is employing a fiber optic gyroscope which has
high accuracy and is not affected by slippage for the heading
measure independently.

In this way, the rover’s heading angle θ is derived directly
from the fiber-optic gyroscope and the Cartesian coordinates

),(yx are calculated using dead reckoning equations:

));cos()(cos('
));sin()(sin('
θθω

θθω
−+×−=

−+×+=
tRyy

tRxx
 (6)

D. Experiments and results

The on-board sensor suit of the lunar rover shown in Fig.1.b
. We use a DSP-3000 fiber optic gyroscope from KVH
Industries.Inc and a Crossbow 400CC IMU for attitude
measurements. The optical wheel encoder readings and
motion control are implemented on Galil Controller. The
control system is realized using Robot Operating System
(ROS) with the control algorithm and Kalman filter design
located in the higher level and the PID-based motor control
located at the lower level. A laser range finder system is
employed to provide the robot’s absolute position information
in all experiments.

In order to test the performance of the simplified differential
drive model and the improved differential drive model with a
FOG. We set the trajectory as a circle with a radius of 3m for
the rover, the state estimations by differential drive equation
with and without FOG are given in the graph.

Fig. 3. Robot state estimation by differential drive equation with and without
FOG compared to absolute position from laser data

The differential drive model works well in the state

estimation for the rover. The improved one with a FOG
providing the heading angle information shows greater
accuracy. We have found an effective way of estimating the
rover’s state without introducing the complex skid steer
model. This also helps save large amount of on-board
calculation and makes real time control more robust.

III. DISCRETE EXTENDED KALMAN FILTER DESIGN

A. Discrete Kalman Filter
The encoder readings are influenced by non-systematic

errors like slippage and the IMU data suffer from drift. In
planetary applications, where other sensors are limited, an
effective means of combining encoder and IMU data together
is using discrete Kalman Filter [5].

25

The discrete Kalman Filter predicts the future state of the

system
^

)1|(−kkX based on the available system model F
and projects the state error covariance matrix)1|(−kkP
using the time update equations

)()()1|()1|1()()1|(
)()()1|1()()1|(

^^

kQBkBkkFkkPkFkkP
kukBkkXkFkkX

TT +−−−=−

+−−=− (7)

Once the measurement)(kz becomes available, the
Kalman gain matrix will be computed to incorporate the
measurement into the state estimation)|(kkX . The state
error covariance for the updated state estimate)|(kkP will
also be computed using the following measurement update
equations:

)()(
))()()(1|())()(()|(

)()1|()()(
)()()1|()(

))1|()()()(()1|()|(
1

^^^

kRWkW
kHkWIkkPkHkWIkkP

RkHkkPkHkS
kSkHkkPkW

kkXkHkzkWkkXkkX

T

T

T

T

+

−−−=

+−=

−=

−−+−=
−

(8)

Where I is an identity matrix, and system)(kA , input
)(kB along with measurement)(kH matrices are defined

according to the detailed model in the following part.

B. Lunar Rover Model Setup
 We denote two related frames for the lunar rover’s model:

a fixed global frame),,(zyxI and the rover’s body frame
),,(zyxI as shown in Fig. 2. b. Given the headed direction

θ , it is simple to calculate the transformation matrix from the
body frame B to the global frame I using 2D rotation matrix:

 −
=

)cos()sin(
)sin()cos(

θθ
θθI

BC (9)

The lunar rover's planar Cartesian coordinates),(yx and
heading θ describe the pose of the rover. The highly updated
IMU readings (~100Hz) are treated as inputs to the system.
and the velocities along YX , axes calculated from encoders
are treated as the measurements. Denote vectors with I as a
subscript means accelerations, velocities or positions
measured in the global frame while B means measured in the
body frame.

The rover is modeled by the following kinematic equations
representing the position of the mid-axis and the orientation
in the global frame [6].

By

xI
B

Iy

x

Iy

x

I
acc
acc

C
v
v

v
v

y
x

•=

=

••

,

(10)
Thus the state vector of the Kalman Filter can be written as

Iyx vvyxX],,,,[θ= and the input vector as

Byx accaccu],,[ω= . According to the kinematics

discussed above, the system)(kA , input)(kB matrices for
the Kalman Filter are given below:

∆
∆∆
∆−∆=

∆

∆

=

t
tt
ttkB

t
t

kA

00
0)cos()sin(
0)sin()cos(
000
000

)(,

10000
01000
00100
0010
0001

)(
θθ
θθ

 (11)

We consider the velocities along YX , axes in the body

frame Byx vv],[as the measurement vector z for the KF

design. The velocity],[rl VV is directly obtained from the
encoder readings, and the relationship between the encoder
reading is given as follows (assuming that there is no
slippage).

)(

2
1
0

rly

x

VVv

v

+=

=
 (12)

The estimation of yaw angle θ is calculated by directly
integrating the angular velocity given by the IMU. Therefore,
the transformation matrix I

BC given in Eq. (9) and its

transpose matrix B
IC is then calculated. The measurement

vector Byx vvz],[= can be related to the current state using
the following measurement matrix:

−

=
0)cos()sin(00
0)sin()cos(00

)(
θθ
θθ

kH (13)

C. Localization simulations
The filter was used to estimate the rover state (position and

orientation) in planar terrain by fusing the odometry, FOG,
and IMU data. It takes the highly updated (~100Hz) IMU raw
data for the prediction step and relatively lowly updated
(~10Hz) encoder data for the time update step if available.

Assuming that the system noises are uncorrelated and time-
invariant, we will get a diagonal and time-invariant system
noise covariance matrix. The system position noise standard
deviation for the YX , coordinate, the system velocity noise
standard deviation in the fixed frame and the orientation noise
standard deviation are guessed as follows:

rad
sm

m

vyvx

yx

01.0

/01.0

01.0

=

==

==

θσ

σσ

σσ

 (14)

We then obtain the system noise covariance matrix
 501.0 IQ •= (15)

The KF initial state)0(X is taken to be equal to zero and
the initial state error covariance matrix is initialized to be
equal to the system error noise covariance

26

 QP =)0(. (16)
 For the prediction step of the KF estimates, the input noise

covariance matrix is initialized as
 301.0 I•=γ
For the time update step, the measurement noise covariance

matrix is set to relatively smaller values
 20001.0 IR •=

D. Experiments and results
The acceleration of IMU raw data suffers from great drift,

especially after a long period of time. While at the same time,
the wheel odometry cannot providing convincing information
when the rover is pivoting or encountering lateral slippage. So
the robot was set to run in a square shape which contains
pivoting part to test the performance of the Kalman Filter.

Fig. 4. Robot state estimation by Kalman Filter compared to estimation from
differential drive equation and absolute position from laser data

From the trajectory recorded by the laser range finder, it is

explicit that when the rover pivoted at the corner, it underwent
obvious shake and slippage all the time. However, the wheel
odometry method which used the encoder and FOG pair
shows no roughness at the four corners at all. Namely, it can
not convey information about the rover’s state under some
circumstances like pivoting, which is quite meaningful in
rover controlling. The Kalman Filter, though did not show
much improvement in the overall estimation, it clearly reflect
the shake information when pivoting. This is because it
utilizes the IMU data for the prediction step. So the Kalman
Filter offers a nice estimation of the rover’s state as wheel
odometry does, while at the same time, providing the slippage
information.

IV. CONCLUSION
Localization for wheeled skid-steer vehicles are challenging

because of the complexity of kinematics and wheel/ground

interaction. This paper provides two means of estimating the
lunar rover’s 2D state by fusing information from wheel
odometry, fiber optic gyroscope (FOG) and inertial
measurement units (IMU). The first method applys a
differential drive model as a simplification and uses wheel
odometry and FOG to estimate the rover’s state. The second
method employs a discrete Kalman Filter which combines
encoder and IMU data together to provide estimation for the
rover. These two methods are easy to implement on a rover
and have different applications. While using a fiber optic gyro
can reduce heading error caused by lateral slippage, the
Kalman Filter is able to calculate the rover’s state without
introducing the IMU’s drift resulting from integration of
accelerations and non-systematic errors of wheel odometry
like slippage. The performance of these two methods are
tested and validated with a laser range finder.
 Although our tests only cover several simple trajectories,
we are optimistic that these two methods will give good
performance in more complex motions because our tests have
covered basic parts like pivoting, turning, walking forward
and backward. Intricate trajectories are composed with these
primary parts.

ACKNOWLEDGEMENT
I would like to sincerely thank Uland Wong, William “Red”

Whittaker, Heather Jones, Kevin Peterson, Chris Cunningham,
and Chuck Whittaker for their kind help. Special thanks to my
teammate Tao Fu.

REFERENCES
[1] Borenstein.J and Feng.L 1996, Gyrodometry: A New Method for

Combining Data from Gyros and Odometry in Mobile Robots, in Proc. of
the IEEE Int. Conf. on Robotics and Automation, Minneapolis, Apr. 22-
28, 1996, pp. 423-428.

[2] Mandow.A, Martinez.J.L, Morales.J, Blanco.J.L, Experimental
kinematics for wheeled skid-steer mobile robots, in Proc. of the IEEE Int.
Conf. on Intelligent Robots and Systems, San Diego, USA, 2007, pp.1222-
1227.

[3] Daniel Flippo, Richard Heller and David P. Miller, Turning Efficiency
Prediction for Skid Steer Robots Using Single Wheel Testing, Springer
Berlin Heidelberg, 2010, pp 479-488.

[4] Dudek and Jenkin, Computational Principles of Mobile Robotics. Online
available:http://chess.eecs.berkeley.edu/eecs149/documentation/differentia
lDrive.pdf

[5] Yi.J.G, Zhang.J.J, Song.D.Z, Jayasuriya.S, IMU-based localization and
slip estimation for skid-steered mobile robots, in Proc. of the IEEE Int.
Conf. on Intelligent Robots and Systems, San Diego, USA, 2007, pp.2845-
2850.

[6]. P. Y. C. Hwang R. G. Brown. Introduction to random signals and
applied

Kalman filtering: with MATLAB exercises and solutions. John Wiley
Sons, Inc, third edition, 1997.

27

Ander Solorzano
RISS 2013

28

Designing a PID Control Algorithm for a Lunar Tyrolean
Robotic Survey Platform

Ander A Solorzano (ander@solorzano.com)
Rose-Hulman Institute of Technology ‘13

Carnegie-Mellon University Robotics Institute Summer Scholar Program
Supervisor: Dr. William (Red) Whittaker

ABSTRACT

This paper presents the methodology for designing and

simulating a motion control algorithm for a Tyrolean-based
descent and traversal robotic platform. A PID controller is
developed which can perform a variety of traversal scanning
trajectories including pulse and sine wave. The desired trajectory
of the robot is first created using MATLAB and then utilized to set
the velocities of each of the motors with respect to time. The path
planning algorithm is modular and can be easily changed
depending on the environmental constraints. The control
algorithm deployed on the physical platform will then read the time
v. velocity vector for each of the motors and compute the error
between the ideal and the measurement to rectify its path
trajectory. The parameters of a simulated plant model with a
respectable uniform noise were used to calculate the desired PID
gains of the motors. Simulation demonstrated that a stable
controller with 5.82% overshoot, a settling time of 3.2 seconds,
and control effort gain of 0.937 is achievable. The sampling rate of
the discretized system done in the simulation is 0.005 seconds. A
simulation for various velocities was performed to observe the
steady state response of the controller.

Keywords—Tyrolean, PID, sky moonlight, moon, simulation,
survey, discrete-time

I. INTRODUCTION

First discovered in 2009 by Japan’s Kaguya spacecraft and
further inspected by NASA’s Lunar Reconnaissance Orbiter
(LRO), the “moon skylights” pose great interest for scientists
since it can potentially serve as the foundation for possible
colonization attempts due to natural protection from deadly
electromagnetic radiation, meteorite bombardments, and large
temperature variations [1][2]. Furthermore, scientists wish to
explore these locations since it may consist of a network of
underground lava tubes that can contain useful resources for
future space exploration and colonization [1]. The mission
objective consists of creating a robotic platform, called
Tyrobot, which will be deployed to the moon in the near future.
The robot is tasked with exploring the “moon skylights” or
moon pit locations.

Figure 1. Snapshot taken of the first moon skylight located on
Marius Hills. This picture was among the first set of photos captured
by Japan’s Kaguya spacecraft as it orbited the moon. The height of the
dashed rectangle is about 1 km in length. The pit is large enough to fit
the White House completely inside [1][2].

Figure 2. A moon pit and the Capitol Building. This figure helps
grasp the scale and magnitude of the moon pit locations recently
discovered on the moon.

This paper discusses and explains the control algorithm
needed to deploy a robotic platform that can successfully
explore and scan these locations in Earth-based test locations
that resemble the moon pits. The Tyrobot consists of suspended
platform that travels along a tightrope that is anchored down
across the diameter of the pit. Once the robot is successfully
suspended and deployed, it can traverse along the tightrope and
lower or raise the carriage as commanded by a pre-determined
path trajectory. As the robot moves along its trajectory, the
attached sensor package will take thousands of laser scans and
video data that can provide useful information about the
composition and structure of these locations. Future
improvements of the Tyrobot may even deploy a rover to
autonomously explore the unknown surface and determine
whether they consist of a network of underground lava tubes.
These robots could be armed with radar-penetrating
technologies to provide data and accurate models showing the
stability and structural design of the underground lava tubes.
Work on underground modeling applications on Earth has
already been developed that maps out caves and tunnels using
laser-range technologies [10].

Figure 3. The proposed stages and lunar missions of the Tyrobot.
From left to right, the lunar lander will land in a location close to the
moon skylight. It will then deploy a rover that will secure anchor
points around the perimeter of the skylight and deploy the Tyrobot.
The Tyrobot will then take scans of the wall structure and surface to
discover information about the

mailto:ander@solorzano.com

29

ve
lo

ci
ty

D
el

ta

tic
ks

Figure 4. Tyrobot robotic platform design. This figure shows the
overall design of the Tyrobot consisting of two sections: the carriage
(top section) and platform (bottom section). The carriage houses all
the actuators and motor controllers. The platform houses the computer
and sensor package (not shown). The carriage and the platform
communicate over radio signal.

Once the robot is deployed and suspended on the tightrope,
the carriage will be able to traverse the width of the pit while
lowering or raising the platform for data acquisition. The
carriage’s sensor packet, named Ferret, contains a LIDAR, an
IMU, a camera, and a tracking prism. These sensors are used to
capture video data about the pit and provide a 3D model. The
tracking prism and IMU can provide the position and velocity
of the platform as it moves. Sensor synchronization is provided
via clock distribution system to match sensor scans, line
tension, and position as measured by the ground survey system.
The Ferret firmly attaches to the bottom of the platform (not
shown) and remains static through the run.

offer in uncertain domains. For future designs of the robot, a
more complex and adaptive controller could be implemented
once enough realistic field data is acquired.

Since this work consists of an innovative application,
development of an effective control algorithm was based on
several earth-based applications, like the control algorithm of a
hoist, the control algorithm of the ACROBOTER, and the
control theory of CMU’s Ballbot, and mobile control lectures
from MIT and Brown University [3-8]. Perhaps the most
relevant work done that resembles a line survey platform
consist of the Expliner robot [11][12]. This robot is used to
perform tests and inspections on high-voltage lines while
traversing along the lines. Several ideas and concepts
concerning the mechanical design and control architecture
were considered for the Tyrobot.

II. PROCEDURE

A. Plant modeling via simulated data and initial PID testing

The first step was to acquire some simulated data from a
virtual motor since the actual device and unknown system was
not constructed at the time. The simulated plant model
acquired sets the motor velocities to a reference value and
includes some simulated noise. The model records the Linux
CPU time versus simulated motor velocity in ticks. A uniform
10% noise was added in the simulation.

In experimentation, the motor load should be incorporated
in a physical test and measured by running in open-loop while
creating a data log over time as velocities change to acquire a
closer estimation of the motors by including inertia values,
load of the motors, power consumption, and power output.
The change in inertia and load can then be used to create a
more accurate description of the plant which will then yield a
more stable controller.

4

x 10
15

10

5

Velocity Ramp Up of Model Data: controller_test\6k.log

0

1.3748 1.3748 1.3748 1.3748 1.3748 1.3748 1.3748

Figure 5. Ferret sensor package. This figure shows the sensor
package that it is firmly attached to the bottom of the platform. This

2000

1500

1000

CPU time

Velocity Delta Changes

9
x 10

device is responsible for acquiring video data showing stratigraphic
sequence of a rock wall and mapping a 3D model of a pit.

500

0

Simulated Set Velocity Ramp
Ideal SS

0 20 40 60 80 100 120

sample

This paper focuses on the design, initial tests, and
simulation of an algorithm that will control the traversal (x-
axis) and winch (z-axis) motors via a PID closed-loop
controller. Although other common controllers were also
considered, like LQR and Ackermann pole-placement, a PID
controller was implemented for this application to show proof
of concept and due to the robustness and reliability that it can

Figure 6. Simulated plant model for PID tuning. The figure on the
top plots the accumulation of ticks as a function of CPU time. The
figure on the bottom shows the change in tick position (i.e. velocity).

After acquiring a simulated velocity log file for 4 different
settings, the corresponding differences of the motor velocity
(in ticks) were plotted as shown in Figure 6. The ideal steady-

30

state value (Ideal SS) can then be computed after isolating the
noise. This ideal reference value is then used to come up with
the desired motor inputs and to compute the controller gains.

B. Designing and tuning a PID controller for Tyrolean
traversal
The design and tuning of the PID controller was done

using MATLAB software tools. Using Simulink and Sisotool
utilities, a PID controller was designed and tuned for the
simulated plant models that would minimize the error or
difference between the actual value and the command value
[5][6]. At the time, several physical constraints of the robot
were estimated as shown below.

Known system requirements for Tyrobot:
• Max traversal speed: 20 cm/s
• Max raise/lower speed (i.e. winch motor): 20 cm/s
• Operational time: 2.5 hours
• Max slope: 20 degrees
• Max payload power draw: 50 W
• Max deployment depth: 50 m
• Max payload mass: 15 kg
• Max carriage mass: 25 kg

Types of operation expected for the Tyrobot:
• Data acquisition while traversing tightrope;
• Raise/lower platform and traverse to follow pre-planned

trajectory as defined by ground operator;
• Allow radio control communication for emergency

retrieval;
• Computer communicate wirelessly to carriage

compartment containing motor controllers;
• Increase angle wrap of tightrope to prevent slip during

operation;
• Device subjected to pendulum motion and environmental

changes such as wind;

The constraints and controller requirements taken into
consideration consisted of having a percent overshoot (P.O.)
of less than 15% and a rise time of less than 5 seconds. In an
ideal scenario, these constraints would correlate to having a
control architecture that achieves stability within 5 seconds.
Since the robot’s max speed is a slow 20 cm/s, achieving
steady-state operation in this time makes the robot more
reliable and robust to changes caused from abruptly changing
speeds. However, due to the nature of the simulate log file for
the motors that was used to create the controller, physical
system limitations are not being taken into account. This
includes the control effort, given the max speed, that the motor
can physically attain and stall torque power when the motors
need to hold the rotational speed of the platform at zero. The
controller was discretized using zero-order hold and a
sampling time selected consisted of 0.005 seconds was
selected.

The controller takes in desired and simulated velocity
commands and sets the gain for the unknown system to
achieve those values within the specified constraints. In the

physical implementation, position and velocity feedback is
provided via encoders attached to the motors. Using the clock
synchronization from the computer, the control algorithm
deployed on the survey platform will receive a list of velocity
commands with a time stamp attached to it. It will then verify
that the actual velocity commands are matching the reference
values and corresponding timestamps.

Table 1. PID configurations with varying controller constraints.
The controller gains were computed for various controller
requirements including rise time, P.O., and sampling time.

Each of the controller configurations shown above were
modeled and tuned to determine a feasible result for the
simulated plant. Configuration 3 (i.e. Run 3) was chosen due
to its settling time, overshoot, and control effort gains
(highlighted). The process for selecting these parameters
relied on the control system requirements and the type of
application being developed. In a physical scenario, the
controller’s max effort gain is estimated to be around 0.93
thus allowing a gain of 0.07 (i.e. 7%) in case more effort is
needed to achieve settling motion. Since fast and abrupt
changes to the velocities are detrimental to the Tyrobot’s
operation, a settling time of 3.20 seconds is acceptable. Once
the controller gains were set, the controller was tested for
various inputs to observe its stability and settling time. Also,
only PID configurations were tested (i.e. P,D, PI, PD not
considered) since the P and D controller affect the rise time
and P.O. while the I controller helps with the steady-state
settling time [5][6][9].

C. Path making program for Tyrolean survey

To take data of area of interest (e.g. a moon pit or an
Earth-based test location), a path planner algorithm was
created that generates a velocity command file containing
time, traversal motor velocity, and winch motor velocity
vectors. Although physical data was not available at the time
of this work, the paths created are vertical in path to minimize
the work of the winch motor due to gravity.

The program that makes the desired Tyrolean trajectory
(pulse wave or sine wave) is modular and can be easily
changed to accommodate for the test site. In particular, the
width and height of the pit location (in meters), an offset
distance (to account for unexpected irregularities in the site
and hanging objects from the Tyrobot), and the period of the
wave can be edited and entered as needed. Once the pit

31

Z
Po

si
tio

n
(m

et
er

s)

Z
Po

si
tio

n
(m

et
er

s)

W
in

ch
 M

ot
io

n
(m

et
er

s)

W
in

ch
 M

ot
io

n
(m

et
er

s)

Tr
av

er
sa

l
M

ot
io

n
(m

et
er

s)

Tr
av

er
sa

l
M

ot
io

n
(m

et
er

s)

settings are measured and defined, the user needs to specify a
run time (in seconds) for the data gathering trajectory. The top
left coordinate of the pit is defined as the origin (0,0) while the
winch motion of travel goes along the negative z-axis.

The functions used to make the paths are parameterized

with respect to time so a velocity-time command file can be
created. The algorithm does not take into account the slack of
the traversal rope. It assumes an ideal case scenario where the
traversal rope is perfectly tensioned. Thus the physical
experimentation will be initially affected by these
unaccounted forces. These repercussions should be dealt when
data becomes available.

Tyrobot Pit Trajectory

Pit W idth(x-axis) = 50; Pit Depth(y-axis) = 100; Time (sec) = 800

0

Although not currently designed for use, another file
containing the position and time of the traversal and winch
motion is also created by this program. This can later be tested
against encoder feedback and data from the tracking prism to
obtain the error of the trajectory and refine the control
algorithm to take into account such errors. From the position-
time command file and plot, the derivative is then taken to
compute and output the velocity-time command file for the
traversal and winch motors.

50

40

30

20

10

0
0 100 200 300 400 500 600 700 800

Time (seconds)

-20

-40

-60

-80

0

-20

-40

-60

-80

-100

0 100 200 300 400 500 600 700 800

Time (seconds)

-100
Figure 9. Position versus time plot for the traversal and winch
motions when using a step wave.

-10 0 10 20 30 40 50 60

X Position (meters)

Figure 7. Pulse wave Tyrolean trajectory. The user can select a
step-like trajectory for data gathering once the pit dimensions and run
time are properly tested. Here the robot starts at the origin and
proceeds along the blue line. Once it gets to the bottom, the Tyrobot
does a second sweep of the bottom before proceeding upwards if
time remains.

Tyrobot Pit Trajectory
Bounding Box = 50; Time (sec) = 3600

10

50

40

30

20

10

0
0 500 1000 1500 2000 2500 3000 3500 4000

Time (seconds)

50

40

0

-10

-20

30

20

10

0
0 500 1000 1500 2000 2500 3000 3500 4000

Time (seconds)

-30

-40

-50

-60

-10 0 10 20 30 40 50 60
X Position (meters)

Figure 8. Sine wave Tyrolean trajectory. The user can select a
sine-like trajectory for data gathering once a bounding box dimension
of the test area (in meters) and the run time are specified. Here the
Tyrobot starts at the top middle point and proceeds along the blue
line. If time remains, the robot just keeps on repeating its path.

From the generated path files, the position of each of the

motors can be known independently and plotted versus time.

Figure 10. Position versus time plot for the traversal and winch
motions when using a sine wave.

From the parameterized traversal and winch motion
commands, the positions of the motors with respect to time
can be known. In the figures above, the red plots represent the
traversal positioning while the green represent the winch
positioning through the timed run for data acquisition. It is
important to keep in mind that the step wave increments or
decrements discretely which in turn affects the velocity
commands by changing the commands abruptly rather than
gradually. Thus the sine wave poses a trajectory that can be
stable due to its gradual motion.

Looking at the velocity plots (Figure 11 and Figure 12), one
can predict how the changing of speeds will alter the swinging

32

W
in

ch
 V

el
oc

ity
 (

m
/s

)
Tr

av
er

sa
l V

el
oc

ity
 (

m
/s

)
Tr

av
er

sa
l

Ve
lo

ci
ty

 (
m

/s
)

W
in

ch
 V

el
oc

ity
 (

m
/s

)

A
m

pl
itu

de

M
ot

or
 V

el
oc

ity
 (

tic
ks

)

motion of the platform especially when the platform is at its
lowest points. Simply changing the gain of the speeds and
having the platform operate very slowly (e.g. max motor
velocity for traversal and winch is 10%) can dampen the
swinging motion of the platform especially as it reaches its
lowest descent points. To achieve higher stability and
minimize the oscillations due to swinging motion, data from
entire testing scenario that incorporates the pendulum motions,
the slack of the traversal rope, and the external forces acting
on the Tyrobot can be modeled to tune the control algorithm.

10% overshoot. Figure 13 shows the simulated tests done in
MATLAB.

The next step would be to test the controller against the
physical hardware in a real testing scenario to observe a more
adequate system response. Due to lack of raw data and
unexpected forces not taken into account when performing the
simulation, it is expected that the controller might need tuning
after several dry runs. The control effort yielded by the
controller maintains the motor under 100% of maximum
output.

0.1

0.05

0

-0.05

-0.1

0.4

0.2

0

-0.2

-0.4

0 100 200 300 400 500 600 700 800

Time (seconds)

0 100 200 300 400 500 600 700 800

Time (seconds)

2000

1800

1600

1400

1200

1000

800

600

400

200

Steady-State Simulated Response

Kp1 = 1.451, Ki1 = 0.017, Kd1 = -0.5185

controller_test\8k.log

controller_test\6k.log

controller_test\4k.log

controller_test\2k.log

Simulated Model
Input Reference

Figure 11. Velocity versus time plot for the traversal and winch
motions when using a step wave. Using a limiter of 10% output, the
max traversal velocity is 0.1 m/s (system requirement). The winch
was capped at 20% output.

0.4

0.2

0

0
0 5 10 15

time (seconds)

Figure 13. PID controller steady-state response. This plot shows
the working PID controller done in simulation for several velocity
reference inputs.

Feeback Step Response
Model Filename: controller_test\2k.log

Kp1 = 1.451, Ki1 = 0.017, Kd1 = -0.5185
1.5

-0.2 1

-0.4

0 500 1000 1500 2000 2500 3000 3500 4000
Time (seconds)

0.5

0.1

0

0.05

0 -0.5

-0.05

-0.1

0 500 1000 1500 2000 2500 3000 3500 4000

Time (seconds)

-1

-1.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Figure 12. Velocity versus time plot for the traversal and winch
motions when using a sine wave.

III. RESULTS

A. PID simulation results for Tyrolean velocities
After obtaining the desired controller configurations and

controller gains from some desired system requirements, the
controller was tested for different speeds to achieve its steady-
state response. The simulation shows that the stability of the
scenario is achievable in less than 5 seconds with less than

Time (seconds)

Figure 14 Feedback step response plot. This shows the feedback
step response of the simulated controller.

IV. FUTURE WORK

Future work will focus on tuning and perfecting the

controller once actual test data becomes available as scenarios
of the real surveying conditions are performed.

33

In the short term, possibilities for tuning the controller
include gathering time data logs with motor velocity and
position values as reported by the encoders. From there a more
accurate description of the plant can be correctly modeled and
a controller can thus be designed that also includes
acceleration and jerk. By limiting the acceleration, the stability
and robustness of the control architecture can be improved.
Also, the corresponding velocities of the motors, in either
cm/s or m/s, have to be measured against ticks/s when the
motor is under load conditions. From there a more accurate
representation of the path and velocity command file can be
created.

In the long term, a more accurate projection of the

trajectory can be obtained that takes into account the swinging
motion of the pendulum as a function of distance away from
the carriage. The errors and differences of the path trajectory
due to the slack of Tyrolean rope can also be calculated and
accounted for. In addition, IMU data (accelerometer and
gyroscope) from the sensor package located in the platform
can be used to minimize the damping of pendulum, thus
reducing uncertainties in the system.

V. SUMMARY
My work consisted in creating and simulating a control

algorithm for a Tyrolean survey robotic platform that will be
launched to the moon. Simulation validates that stability of
the system is achievable in 3.2 seconds with an overshoot of
5.82% and control effort gain of 0.930. Tests of the physical
device are needed to perfect the control algorithm for smooth
data acquisition. Future work will focus on perfecting the
algorithm by implementing unaccounted variables.

VI. REFERENCES
[1] B. Handwerk. (2009, 10, 26). First Moon “Skylight” Found –
Could House Lunar Base? [Online]. Available:
http://news.nationalgeographic.com/news/2009/10/091026-moon-
skylight-lunar-base.html
[2] D. Coulter. (2010, 7, 12). Down the Lunar Rabbit-Hole. [Online].
Available: http://science.nasa.gov/science-news/science-at-
nasa/2010/12jul_rabbithole/
[3] W. Su. “A Model Reference-Based Adaptive PID Controller for
Robot Motion Control of Not Explicitly Known Systems.” Vol. 12.
No 3. September 2007. Int’l Journal of Intelligent Control and
Systems
[4] G. Stepan et al. “ACROBOTER: a ceiling based crawling,
hoisting and swinging service robot platform,” Budapest Univ. of
Tech. and Econ.
[5] C. Jenkins. “Lecture 4: Control Theory and Robot Dynamics” in
CS148-Building Intelligent Robots. Brown Univ.
[6] C. Batten. “Control for Mobile Robots” in Maslab IAP Robotics.
Jan. 2005.
[7] U. Nagarajan, G. Kantor, and R. Hollis. “Integrated Planning and
Control for Graceful Navigation of Shape-Accelerated Underactuated
Balancing Mobile Robots.” May 2012. IEEE ICRA. CMU Press.
[8] U. Nagarajan, G. Kantor, and R. Hollis. “Trajectory Planning and
Control of an Underactuated Dynamically Stable Single Spherical

Wheeled Mobile Robot.” May 2009. IEEE ICRA. Kobe Int’l
Conference Center. CMU Press.
[9] R. Throne, Linear Control Systems, Rose-Hulman Institute of
Technology, Chapter 9, 10, 11, 14.
[10] U. Wong, A. Morris, C. Lea, J. Lee, C. Whittaker, B. Garney, W.
Whittaker. Comparative Evaluation of Range Sensing Technologies
for Underground Void Modeling. In Proc. Intelligent Robotics and
Systems (IROS), 2011.
[11] P. Debenest, M. Guarnieri, K. Takita, et al. “Expliner – Robot
for Inspection of Transmission Lines.” May 2008. IEEE Int’l Conf.
on Robotics and Automation, pp. 3978-3984.
[12] P. Debenest, M. Guarnieri, K. Takita, et al. “Expliner – Toward
a Practical Robot for Inspection of High-Voltage Lines.” May 2008.

http://news.nationalgeographic.com/news/2009/10/091026-moon-skylight-lunar-base.html
http://news.nationalgeographic.com/news/2009/10/091026-moon-skylight-lunar-base.html
http://news.nationalgeographic.com/news/2009/10/091026-moon-skylight-lunar-base.html
http://science.nasa.gov/science-news/science-at-nasa/2010/12jul_rabbithole/
http://science.nasa.gov/science-news/science-at-nasa/2010/12jul_rabbithole/
http://science.nasa.gov/science-news/science-at-nasa/2010/12jul_rabbithole/

34

Ander Solorzano
RISS 2013
Zesheng Xi and Yaonan Guan
RISS 2013

35

Airboats in Pittsburgh and Nanjing
Zesheng Xi , Yaonan Guan

Nanjing University of Science and Technology, Nanjing, 210094, China
zeshengx@gmail.com

tcgyn.student@sina.com

Introduction
Multi-robot systems (MRS) have great promise for revolutionizing the way a variety of important and complex
tasks are performed. In our research as summer scholars with Carnegie Mellon Robotics Institute Summer
Scholars Program,we are developing teams of Cooperative Robotic Watercraft (CRW) for critical applications
including flood response, water monitoring and security.
A core design of our airboats is to use a commercial Android Smartphone to work as a CPU in our whole
system, providing the computing, camera and communication for the boat. Moreover, using Android phones
give us a relatively open and powerful development environment to try our idea. We work mainly in the
Smartphone because of the access to multiple modes of communication like Wi-Fi and all kinds of data
transferred from the sensors. For communicate with sensors, motors and servos, we use a relatively
inexpensive microcontroller board named Arduino Mega to provide an array of digital and analog I/O for
controlling the fan shroud, gyros and other external sensors modules.

Our job in lab
What we’ve done in our lab is to change the control system from PID to Motion Primitive. Unlike PID, a
close-loop control method, Motion Primitives are elementary state trajectories used to produce motions in
the position space. We can select appropriate elements based on the river environment parameters and
combine them sequentially to produce more complicated and graceful trajectories. We created all the
elements in Matlab and the boats worked pretty well in the simulation. In our strategy the boats could
autonomously change the gain of thrust based on the trajectory elements. The gain will be increased if the
boats only need to go straight to the waypoint while the gain will be decreased to move smoothly in turning.

Test in Pittsburgh
The first test was done at a lake near CMU. Our boats were only turning circles during the whole test because
of the inexact model of the boats used to create all the elements. We took George’s advice to build a
close-loop system to help our boats follow the trajectories. Notice that both the great inertial and current
influence caused significant overshoot when we try to control the direction of the boats. We refer to the PID
algorithm and add the idea of differential in our close-loop system. We tested our code several times at the
lake near CMU, where the water was calm, similar to the environment in my simulation.
Near the end of August, John, Ardalan and I took two boats to Ohio, the longest river in Pittsburgh. Testing
was performed in several parts of the river with different current influence. This test showed that this Motion
Primitive strategy did not take advantage in the straight line as we originally expected, which caused us to
reevaluate our control algorithm. The boats could not keep their direction in the straight line due to the
current influence and the monotone input signal in straight line. So we apply PID to handle such slight change
in direction.

mailto:zeshengx@gmail.com
mailto:tcgyn.student@sina.com

36

Another test was done in the activity “River Quest”, in which each group made their own boats and competed
with others with their boats. We sent three boats, two of which ran the PID and one ran my Motion Primitive.
Winds cause significantly larger waves than the boats had encountered before, which reduced performance
and the boats were not able to come back automatically because of the low gain in thrust we set for smooth
turn.

Fig.1. Final test in Ohio River

Airboats arrived in China
After 20 days leaving from Pittsburgh, we met the Airboats again in Nanjing, China. Flying thousands of miles
across Pacific Ocean, the boats arrived in China on September 15. As we know, a good gain takes long pain.
The boats were stuck in customs once they arrived. Fortunately, after we translating some necessary
document, the boats finally ended their long trip and arrived at the destination----- Nanjing University of
Science and Technology (NUST).

Assembling
Opening the package of the boats is as excited as opening the Christmas present. It’s amazing that you can
receive a package that contains two robots. Before that, in our mind, robot should be complicated, delicate
and hard to maintain. You can barely image to use common express to transport robots across half of the
world and without worrying about some damages on them. In fact, we spent less than two hours to
reassemble two boats by using some simple tools, then, following the checklist, do every step to test the boat.
Consequently, both of boats are in good condition, which prove the robustness of Airboat, again.

37

Fig.2. Complete Airboats

Test in NUST
To celebrate the 60th anniversary of NUST, we did the demo of the Airboat in a pond within campus. Actually,
it’s the first time for Airboat running in China and it adds another spot in the track of Airboat’s worldwide test,
beside Australia, Philippines and Qatar. The demo caught the eyes and made many people to be curious
about the Airboat. Since the interface for Airboat is designed user-friendly, operators can use the console to
control boat with simple train. Thus we can take easy to let people try boat by themselves. We found that is a
good approach to extend robotic technology by showing people some robots, which can be easily used by no
specialist.

Fig.3. Doing the demo in campus

Attending an exhibition
Just in time, there is a science park, near the campus, holding an exhibition about robots. We bring the
Airboat to attend. Comparing with other robots, the Airboat seems to be weird, since others are much more
complicated in structure. However, these robots needs to be prepared and modulated in several days before
demonstrating, while Airboat can be used directly once we arrived. Also, Airboat is the cheapest robot in the

38

exhibition and it can be an autonomous platform for a broad set of applications including water quality
monitoring, flood disaster mitigation and depth buoy verification. Therefore, Airboat is practical and flexible
for multi-purpose application.

Fig.4. Demonstrating Airboat in the exhibition

Workshop by Prof. Paul Scerri
We are appreciated that Prof. Paul Scerri can give us several precious workshops, sharing his inspiration and
experience about multi-robots system, especially Airboat. His masterly speech deeply impressed us and
broadens our vision in robotic field.

Fig.4. Prof. Paul Scerri is giving a presentation about information collection

Acknowledgements
The experience in Pittsburgh will be an unforgettable memory for us. We would like to express gratitude to
our supervisor Paul Scerri and all those who have helped us during this summer and will continue to help us
in future. Also, it’s glad that we can meet such talented students and become friends with some of them in
Pittsburgh.

39

 Burak Yücesoy
RISS 2013

40

Abstract—Online mapping of the environment has been a

growing interest for robotics researchers in many applications.
The main focus of this study is to create fast, accurate and online
3D maps to support flight planning algorithms for aerial robot
platforms. To accomplish this goal, we modified the existed
Hector SLAM library to localize our robot platform in 2D maps
of the environment at different altitude levels. Then, we used
height and orientation to create 3D map of the environment. The
performance of our 3D map is tested on an aerial robot platform
following the plan generated by using our map to navigate
around 3D obstacles. Flight planning algorithm created collision-
free flight plans with the use of proposed 3D online mapping
algorithm. We also showed that the aerial platform can perform
the new flight plans during its flight.

Index Terms— Simultaneous Localization and Mapping, 3D
SLAM, Aerial Vehicle, Aerial Platform, Flight Planning

I. INTRODUCTION
OST online mapping techniques prefer the creation of
2D maps, since 2D mapping can be done more

accurately with relatively less computational power than 3D
maps. In fact, 2D maps are accurate enough for most cases
where the robot’s movement is restricted by two axes and
there is no considerable amount of movement in the third axis.
However, this is not the case for aerial vehicles, which are
supposed to move in 3D environments. Working with aerial
platforms also requires maintaining an accurate 4D position
estimate of the platform while they are moving at a reasonable
speed. Representing a 3D environment with 2D maps causes
the flight planner to lose some relevant information about the
environment, which can have significant importance for path
planning.
 Consider the case that robot platform tries to find a path to
navigate from one point to another. In a 3D environment, such
a flight plan may require movements in all three axes. Hence,
working with only a 2D projection of the 3D environment may
result in failing to find the optimum path or may result in no
possible solutions even if they exist. For example, a 1 m × 1 m
× 1 m box will cover its projection in a 2D map and the flight
planner will try to avoid this region for creating a flight plan.

This paper was submitted to RISS Journal at 29 September 2013.
B. Yucesoy is an undergraduate student at Department of Computer

Engineering, Bilkent University, Ankara 06800, Turkey (e-mail:
burakyucesoy@gmail.com.tr)

However, there will be some free space above the box in a 3D
representation of the environment, which can be used to create
a more efficient flight plan.

The case mentioned above is just a simple example of the
problems which can be encountered during flight planning in a
3D environment with 2D maps. Therefore, 3D perception of
the environment is necessary for high performance locomotion
of aerial vehicles. However, 3D mapping of an environment
may require high computational power and its online
implementation can be problematic for most robotic systems.
Thus, we propose a layered 3D SLAM approach to create fast
3D maps of the environment by utilizing the Hector SLAM [1]
algorithm.

Our mapping algorithm divides the height axis of the
environment into thin layers with a fixed height. Measurement
of the robot altitude gives us the layer in which our robot is
currently moving. Then, the Hector SLAM algorithm is used
for localizing the 2D position of our robot in the environment.
Finally, our algorithm uses the 2D position information
coming from Hector SLAM and orientation of the robot to
register newly seen obstacles in the 3D occupancy grid.

II. EXPERIMENT SETUP AND ROBOT SPECIFICATIONS
A miniature aerial vehicle (Fig. 1) is used for experiments.

The robot flies via its six rotors mounted on carbon fiber rods.
PID controllers are used to regulate system behavior in
different axes. The main computer of the robot runs Robot
Operating System (ROS) on Kubuntu and all the software are
implemented in C++.

Fig. 1. The robot used in experiments

Two Hokuyo UTM-30LX Laser Scanners are mounted to
the main body of the robot. One of the laser scanners is facing

Improved Localization and Mapping for
Miniature Aerial Vehicles (September 2013)

Burak Yucesoy

M

41

down to measure the altitude of the robot and the other one is
facing the front to sense the environment. The range of these
laser scanners is 30 m and it has 270º field of view. These
laser scanners work at 40Hz. The robot also has an inertial
measurement unit to measure its orientation.

Besides the robot setup, it should be noted that the Hector
SLAM algorithm. Hector SLAM is an open source SLAM
algorithm, which is compatible with ROS. It uses the
occupancy grid map approach, where the probability of being
an obstacle is assigned to each cell in the map. It uses laser
scan inputs to detect the obstacles in the environment. Below,
you can see a 2D map generated with the Hector SLAM
library (Fig. 2).

Fig. 2. 2D map created by Hector SLAM

III. CONTRIBUTION
The main contribution of this paper is to propose a new
technique for fast and accurate 3D mapping of the unknown
environment. The proposed layered 3D SLAM algorithm can
be divided into three major parts: altitude estimation,
localization and mapping.

A. Altitude Estimation
To measure altitude, a Hokuyo Laser Scanner is used facing

downward. It returns the distances of the points below the
robot. However, some of these points may come from
obstacles below the robot rather than the ground. Therefore,
the direct use of these points to estimate altitude will give an
incorrect estimation since the distance of these points will not
be the actual altitude of the robot with respect to ground. To
have a better estimation of the robot height, we remove outlier
points and then calculate arithmetic mean of the remaining
points as the altitude of the robot.

B. Localization
At the beginning of the algorithm, we initialize 2D maps

(layers) on top of each other with a fixed height. A sample
illustration of these 2D maps can be seen in Fig. 3.

Fig. 3. Layers of 2D maps using for localization purposes

After estimating the altitude of the robot, our algorithm
finds the layer, in which the robot is operating. Then, the
Hector SLAM algorithm is executed by only using this 2D
map. The position estimation part of the Hector SLAM
algorithm requires an initial estimation to approximate the
current position. In this step our algorithm uses the previous
position estimation to feed a new run of the position
estimation algorithm, even if the robot was in a different layer
on the previous run of the position estimation algorithm. Even
if the robot changes its layer, the change in the position will be
small in two consecutive runs of the position estimation
algorithm. Therefore, the previous position is a good
estimation for the current position.

C. Mapping
In the previous steps of the algorithm, the altitude and

position on 2D-plane are found. The inertial measurement unit
is also used to find the orientation of the robot. After finding
the position and orientation of the robot, we just register laser
scans into 3D occupancy grid. In this step some points are
filtered out based on the number of times they seen.

IV. EXPERIMENTS
In the experiments, a wooden stick is placed between the

starting and target point (Fig. 4). In Fig. 4, the starting point is
marked with “A” and the target point is marked with “B”.

Corresponding 3D map of this environment, created by the
layered 3D SLAM algorithm, can be seen at Fig. 5.

42

Fig. 4. Experiment setup

Fig. 5. Corresponding 3D map

For this setup, the planner creates a flight plan using the
collision free space over the stick. In Fig. 6 the planned path
for flight is illustrated as dashed green line. Our proposed
solution, layered SLAM, can continue to localize the robot
while it was following this flight plan that went over the stick
and at the same time updating the map. In Fig. 7 the robot is
shown while performing generated flight plan. In these photos,
robot starts its flight, approaches to the stick, goes up, goes
over the stick, goes down, approaches to its destination and
lands respectively.

Fig. 6. Path generated using 3D map

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 7. Robot navigates in the environment using flight plan

V. ACKNOWLEDGEMENTS
I would like to thank Prof. Maxim Likhachev and Brian

MacAllister for their supervision, Rachel Burcin and all CMU
RISS coordinators for being kind, helpful and supportive
during the RISS program, Prof. Uluc Saranli, Ismail Uyanik
and Murat Kirtay for being excellent role models as
academics.

VI. REFERENCES
Kohlbrecher, S.; Von Stryk, O.; Meyer, J.; Klingauf, U., "A
flexible and scalable SLAM system with full 3D motion
estimation," Safety, Security, and Rescue Robotics (SSRR),
2011 IEEE International Symposium on , vol., no.,
pp.155,160, 1-5 Nov. 2011

Burak Yucesoy is in his senior year to of a
B.Sc. degree in Computer Engineering at the
Bilkent University, Ankara, Turkey..

He was a Summer Intern at Search-Based
Planning Laboratory, Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA,
during summer 2013 as part of the RISS
program. He is currently an undergraduate
member of Bilkent DRACO Research Group.

43

Wenqiang Zhou
RISS 2013

44

Abstract—A robust algorithm is proposed to detect yellow lines

both at day and at night. A Support Vector Machine is used to do
the classification. To train the classifiers, ‘LabelMe’, combined
with the Matlab Toolbox, is used to collect a large number of
yellow lines and many other objects from sample images. A time
detection classifier is also trained to determine whether the image
is taken at day or at night. Different feature sets are extracted to
do the training and detection.

Index Terms—classifier, feature set, Support Vector Machine,

yellow lines

I. INTRODUCTION

Yellow lines are important on the road since they provide
drivers with valuable guidance. This work is motivated by the
need to detect these lines automatically for maintenance
purposes.

The objective of this work is to design an algorithm to detect
yellow lines on the road. The algorithm should be robust and
adaptable to different situations.

II. CLASSIFICATION METHOD
Support Vector Machine (SVM) is a common method of

machine learning which is widely used to classify objects.
Given a set of training examples, each marked as belonging to
one of two categories, an SVM training algorithm builds a
model that assigns new examples into the one category or the
other.
 Fig. 1 shows an example of SVM. Maximum-margin
hyperplane and margins for an SVM trained with samples from
two classes. Samples on the margin are called support vectors.

This research was conducted at the Robotics Institute at Carnegie Mellon

University as part of the RI Summer Scholars Program.
Author Wenqiang Zhou is with the School of Automation, Nanjing

University of Science and Technology, Nanjing, Jiangsu 210094 CHINA
(e-mail:autozhouwq@gmail.com).

Fig. 1.An example of SVM

III. DATA COLLECTION
For training , many images were needed which contain

examples of yellow lines on the road. An Android application
was created for data collection. We use a Samsung Galaxy
Camera mounted in cars to take images and videos as the cars
move across traffic. The application transfers images using
Dropbox and then uses Matlab to do the analysis. A picture of
the camera and how it is mounted in a car is depicted in Fig. 2.

Fig. 2. Camera and its position in the car.

IV. TRAINING
To train the classifier, many examples of yellow lines were

needed, and a large number of examples of other objects in the
image. We labeled a set of images using ‘LabelMe’, as shown
in Fig. 3.

Using Machine Learning to Detect Yellow Lines
on the Road

Wenqiang Zhou, RI Summer Scholar, The Robotics Institute at Carnegie Mellon University

45

Fig. 3. An example of ‘LabelMe’

The ‘libsvm’ toolbox was used to train the classifiers.
Cross-Validation was used to verify the models obtained. The
binary mask shown in Fig. 3 was obtained using Matlab. The
yellow lines are shown in white, and other things are indicated
in black.

V. DETECTION
 To detect yellow lines, we need to consider different

situations. Yellow lines are different at daytime or at nighttime.
We extracted different features and trained two classifiers.
Before detection, we need to know whether the image was
taken at day or night. Therefore, we trained another classifier to
do time-of-day detection. The overall framework is shown in
Fig. 4.

Image
Feature
set 1

SVM
(time)

1--day
0-night

Feature
set 3

Feature
set 2

day

night

SVM
(night)

SVM
(day)

Classifer

Calculate each pixel’s
distacne to the hyperplane

Binary
result

Gray image

Fig. 4. Overall Framework of Detection

The feature sets used are listed in TABLE I.

TABLE I

FEATURE SETS FOR DETECTION
Feature set 1 Feature set 2 Feature set 3

Mean H,S,V,R,G,B values
of the image

The Proportion of:{H,S}<0.2;
{R,G,B}<20;{R,G,B}>250

H,S values of
each pixel

H,S,V values of
each pixel

Filtered image
pixels

VI. RESULTS

A. Time-Of-Day Detection Results
On a test set of about 40 images, the time-of-day detection

classifier achieved 100% accuracy. That means the SVM
classified all the day images into category “1” and all the night
images into category “0”.

B. Daytime Detection Results
On a test set of about 40 daytime images, the yellow lines

detection classifier achieved 95% accuracy. These results are
promising, although a more extensive characterization of
performance is needed. Fig. 5 shows an example of daytime
detection results.

Fig. 5. An example of daytime detection results

C. Nighttime Classification Results
On a test set of about 40 images at night, half of the results are

as good as those at daytime. But others are not mainly because
of the influence of streetlights. Nearly 20% of the pixels that are
not from yellow lines are classified into white and some pixels
that are from yellow lines are classified into black. This
suggests that more features need to be added. Some examples
are depicted in Fig. 6.

Fig. 6. Examples of nighttime detection results

VII. CONCLUSION
 A methodology to detect yellow lines on the road was

designed, which is capable of operation at both day and night.
While detection performance during the day looks promising,
future work needs to address the influence of streetlights in
order to improve classification accuracy during the night.

SUMMARY OF MY EXPERIENCE AND FUTURE WORK

A. Research
The Robotics Institute Summer Scholars Program at

Carnegie Mellon University gave me a lot of opportunities to
access high technology in robots. My research mainly focuses
on Computer Vision (CV), which is a very hot topic these years.
I also worked on Android Programming on a Ubuntu Operating
System. After my summer research, I knew more about CV,
including some hot research areas, using machine learning to
do classification, filtering and some basic algorithms in CV. I
also got more familiar with Linux Operating System and gained
some experience in Robot Operating System(ROS). More
importantly, by talking with my supervisor and some graduate
students I know the important steps to do research and how to
present my research.

B. Activities
Besides research, I also took part in many activities, such as

presenting my research to American high school teachers and
mechanical hull design contest. Through these activities, I
worked with many students from all over the world and
understood more about their cultures. I also improved my oral

46

English and the ability to communicate with students from
different cultures. In addition, I made many friends both from
China and other counties. I believe these experiences will
benefit me a lot for my future career.

C. Future work
First, I will continue to improve my algorithm to detect

yellow lines at night. I am considering extracting more features
in order to improve detection accuracy at night. I hope that I can
still collaborate with my lab to continue my research. Second, I
want to detect other objects, such as cars or persons on the road,
which is much difficult than detecting yellow lines. Since I got
some experience in ROS, I would also like to use ROS to
operate on intelligent robot ‘NAO’ in my home university.

ACKNOWLEDGMENTS
Special thanks to my supervisor Christoph Mertz for helping

me with my research. Thanks to Srivatsan Varadharajan for his
valuable suggestions. Thanks to the RISS Program.

www.ri.cmu.edu/RISS

	HOU, Lu- multisensor fusion 2D state estimation of Lunar Rover.pdf
	I. INTRODUCTION
	II. Differential Drive Model
	A. Model simplification
	B. Differential drive kinematics
	C. Fiber optic gyroscope (FOG)
	D. Experiments and results

	III. Discrete Extended Kalman Filter Design
	A. Discrete Kalman Filter
	B. Lunar Rover Model Setup
	C. Localization simulations
	D. Experiments and results

	IV. Conclusion
	Acknowledgement
	References

	Xi, Zesheng and Guan, Yaonan -Airboats in Pittsburgh and Nanjing.pdf
	Airboats in Pittsburgh and Nanjing

	zhou wenqiang-riss-journal-submission-edited.pdf
	I. INTRODUCTION
	II. Classification Method
	III. Data collection
	IV. Training
	V. Detection
	VI. Results
	A. Time-of-Day Detection Results
	B. Daytime Detection Results
	C. Nighttime Classification Results

	VII. Conclusion
	Summary of my experience and future work
	A. Research
	B. Activities
	C. Future work

	Acknowledgments
	References

	Yucesoy, Burak - Improved Localization and Mapping for Miniature Aerial Vehicles.pdf
	I. INTRODUCTION
	II. Experiment Setup and Robot Specifications
	III. Contribution
	A. Altitude Estimation
	B. Localization
	C. Mapping

	IV. Experiments
	V. Acknowledgements
	VI. References

	12_HOU, Lu- multisensor fusion 2D state estimation of Lunar Rover.pdf
	I. INTRODUCTION
	II. Differential Drive Model
	A. Model simplification
	B. Differential drive kinematics
	C. Fiber optic gyroscope (FOG)
	D. Experiments and results

	III. Discrete Extended Kalman Filter Design
	A. Discrete Kalman Filter
	B. Lunar Rover Model Setup
	C. Localization simulations
	D. Experiments and results

	IV. Conclusion
	Acknowledgement

	14_Xi, Zesheng and Guan, Yaonan -Airboats in Pittsburgh and Nanjing.pdf
	Airboats in Pittsburgh and Nanjing

	15_Yucesoy, Burak - Improved Localization and Mapping for Miniature Aerial Vehicles.pdf
	I. INTRODUCTION
	II. Experiment Setup and Robot Specifications
	III. Contribution
	A. Altitude Estimation
	B. Localization
	C. Mapping

	IV. Experiments
	V. Acknowledgements
	VI. References

	16_zhou wenqiang-riss-journal-submission-1_comments_CM.pdf
	I. INTRODUCTION
	II. Classification Method
	III. Data collection
	IV. Training
	V. Detection
	VI. Results
	A. Time-Of-Day Detection Results
	C. Nighttime Classification Results

	VII. Conclusion
	A. Research
	B. Activities
	C. Future work

	14_Xi, Zesheng and Guan, Yaonan -Airboats in Pittsburgh and Nanjing.pdf
	Airboats in Pittsburgh and Nanjing

	14_Xi, Zesheng and Guan, Yaonan -Airboats in Pittsburgh and Nanjing.pdf
	Airboats in Pittsburgh and Nanjing

	15_Yucesoy, Burak - Improved Localization and Mapping for Miniature Aerial Vehicles.pdf
	I. INTRODUCTION
	II. Experiment Setup and Robot Specifications
	III. Contribution
	A. Altitude Estimation
	B. Localization
	C. Mapping

	IV. Experiments
	V. Acknowledgements
	VI. References

	16_zhou wenqiang-riss-journal-submission-1_comments_CM.pdf
	I. INTRODUCTION
	II. Classification Method
	III. Data collection
	IV. Training
	V. Detection
	VI. Results
	A. Time-Of-Day Detection Results
	C. Nighttime Classification Results

	VII. Conclusion
	A. Research
	B. Activities
	C. Future work

