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We write to you today to share our summer 
experiences with you. Not just as fellow 
roboticists, but as fellow summer scholars.  
 
For those of you who are not familiar with this 
program, the Robotic Institute Summer Scholars 
(RISS for short) is a summer internship designed 
to expose undergraduates to research in the 
robotics disciplines. Here students get to learn 
and experience the cutting edge research in 
robotics while working with a diverse and 
passionate team of research students and 
professors. Students get to learn about the 
process, the teamwork, the documentation, and 
the presentation aspects that are involved in the 
research field. However, the RISS program was 
about more than just research; it was about 
learning about a new field, exploring graduate 
work, meeting innovative faculty, and forming 
friendships with fellow interns.  
 
 

For scholars aspiring to graduate studies in 
robotics, this experience offers an insight to the 
ongoing research and applications currently 
under study by passionate roboticists. Aside  
 
 
 
 
 
 
 
 
 
 
 
from technical work, this program gives the 
scholars an opportunity to attend thesis 
presentations given by Ph.D candidates, to learn 
about graduate fellowship programs, and to 
attend various technical presentations from 
roboticists and professors from around the 
various institutions. This experience offers 
various leadership opportunities to help 
strengthen teamwork and organizational qualities. 
We strongly advise the scholars to take 
advantage of all of these opportunities in order to 
make the most out of this internship. 
 
Your work as a summer scholar has lasting 
impacts on the research community. Though this 
is an intimidating prospect, the friends you meet 
and the mentors you find at CMU will help you 
along the way. One of the most important things 
we learned that summer was that research is a 
collaborative process. Nothing in computer 

 

To Future Summer Scholars 
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science (or any other field for that matter) can be 
achieved alone. Additionally, scholars may be 
asked to attend the National Conference of 
Undergraduate Research (NCUR) in DC after the 
summer. Here students from all over the US 
present the cutting edge research that they were 
involved in the summer. This is a chance to meet 
students and program directors from various 
academic institutions as well as board members 
of the National Science Foundation (NSF). This is 
an extreme honor and we encourage the students 
to accept this opportunity given the chance. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
During this program, students are also given the 
opportunity to give back to the community by 
sharing their knowledge and experience with local 
and international educational programs that 
engage students in practical, hands-on Science, 
Technology, Engineering, and Mathematics 
(STEM) activities. Other examples include 
showing local grade schools about the innovative, 
thoughtful, and creative work involved in the 

construction of space robots. Here, local students 
learn about the daunting challenges that can be 
solved by a group of passionate engineers 
working together as a team. In another 
experience, the RISS scholars educated and 
demonstrated to local environmental programs 
about how a swarm of surveying hoverboats 
collect information of polluted water bodies. From 
designing an optimal hull that will perform in 
different conditions to the full implementation and 
testing in a real environment, students were 
involved hands-on through the whole process.  
 
Finally, the last lesson we leave behind to the 
future scholars is to 
simply have fun. 
This program will 
enrich your 
understanding, 
expand your 
horizons, and 
strengthen your 
desires. However, all of these rewards are in vain 
unless you have fun with those around you. 
During free time, we encourage the scholars to 
explore the city, to organize social events with the 
entire group, and to meet other students from 
around the world. We truly wish you the best of 
luck as you endeavor in the path set in front of 
you and that you enjoy your time that this 
wonderful program offers you. 
 
Sincerely, 
 

          
 
Julia Deeb               &       Ander Solorzano 
RISS Scholars 2013 
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In 2013, the Robotics Institute Summer 

Scholars Program (www.ri.cmu.edu/RISS) 

partnered with the Carnegie Cooperative 

Robotic Watercraft Group (http://crw-

cmu.blogspot.com/) and RiverQuest 

(www.riverquest.org) to (1) launch a 

capstone experience for undergraduate 

researchers that enabled the students to 

apply previous course and lab work to the 

challenges and unpredictability of 

designing, operating, and testing a robot in 

a real-world environment and to (2) 

contribute to the development of robotic air 

boat activities for middle and high school 

students. For the scholars, the capstone 

started with an introduction to robotic air 

boats, opportunity to join the scholar 

leadership team that would plan the 

capstone field experience, opportunities to 

join practice field testing, a hull design 

seminar and challenge, and the culminated 

with an afternoon of field testing on the 

river.  Caroline Suni, working with a team of 

scholars and partners, organized the field 

experience and translated this experience 

into draft curriculum for future use.  

 

The capstone impacted the way the 

scholars see themselves as scientists and 

how they approach problem-solving. 

Working with robots in a real-world 

environment gives scholars a different 

perspective on what needs to be done, how 

it needs to be done and to some degree 

inspires their efforts. Scholars conducted 

mini-field tests over the summer in multiple 

environments.  However, on the day of field 

testing on the river, scholars faced 

additional challenges.  Heavy rains forced 

the opening of dams.  The flow of the river 

was greatly increased and littered with 

debris.  Controlling the boats and obstacle 

avoidance became increasingly 

challenging. This real-world experience 

impacted how these future roboticists will 

approach system design and problem 

solving.    

 

Scholars applied their skills from a broad 

range of fields to examine how robotic 

watercraft could be used in environmental 

studies.  The robotic air boats provide a 

novel way of presenting water science and 

environmental issues to younger students. 

In an era where technology is ubiquitous, 

fusing new technologies with these 

sciences can engage students in exciting 

hands-on and learner-driven activities. The 

study of nonpoint source pollution and its 

impact on water quality provides the nexus 

between RiverQuest's environmental 

education programs and the new 

technology represented by the robotic air 

boats.  While traditional testing modes are 

often dependent upon water sample 

collection and manipulation to determine 

http://www.ri.cmu.edu/RISS
http://crw-cmu.blogspot.com/
http://crw-cmu.blogspot.com/
http://www.riverquest.org/
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pH, oxygen concentration, dissolved solids, 

and other parameters, the air boats may 

contribute to a robust data collection by 

enabling the testing of certain parameters 

in situ.  Potential use of airboats for testing 

tributaries where the large vessel cannot 

access provides a next-step opportunity for 

student engagement and expanded data 

collection. Scholars also learned about hull 

design, system components, preparation 

and testing. 

 

During the field experience, the scholars 

tested robotic boat activities designed by 

cohort members. The field experience 

design and activity development were led 

by summer scholar Caroline Suni and a 

team of scholars including Tao Fu, James 

Samotshozo, Ander Solorzano, Troi 

Williams, Zesheng Xi, and Wenqiang Zhou.  

The resulting activities contributed to 

ongoing collaboration and development of 

robotic boat curriculum for K-12 Pittsburgh 

students.   

 

Community engagement and broader 

impact are important aspects of being a 

scientist today. Each year the summer 

scholars eagerly embrace multiple 

opportunities to share their research 

results, projects, and knowledge with 

educators and members of the community. 

Scholars have the opportunity to work and 

research alongside labs and science 

educators recognized for not only their 

innovative research but also for sharing 

current research with the public. Such an 

experience deepens the scholars’ sense of 

responsibility to contribute to the health of 

our communities through science and 

action. Like their faculty mentors and 

research advisors, summer scholars are 

also role models and mentors for future 

scientists. 

 

Many thanks to Carnegie Cooperative 

Robotic Watercraft group (led by Paul 

Scerri and George Kantor) and the 

RiverQuest team (led by Jeffrey Jordan, 

Suzi Bloom, Megan Griffin, and Gerry 

Balbier).  Additional project guidance and 

support provided by CMU’s Leonard 

Gelfand Center for Service Learning and 

Outreach led (by Judith Hallinen) and the 

Richard King Mellon Foundation 

contributed to the success of this 

partnership. 
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The Robotics Institute Summer Scholars (RISS) 

Program is an intensive undergraduate research 

program at Carnegie Mellon University.  Summer 

scholars participate in innovative research that 

focuses on robotics as the intelligent connection of 

perception to action.  Scholars work with faculty, 

post-doctoral fellows, researchers, graduate 

students, and fellow summer scholars from around 

the world to conduct research work in: 

 

• Intelligence: including core AI technologies, motion planning, control theory, planning 

under uncertainty, POMDPS, game theory, and machine learning. 

• Perception: including computer vision, stereo processing, understanding ladar and 3D 

sensing, state-estimation, and pattern recognition. 

• Action: including work mechanisms, actuators, their design and control.  

 

Previous scholars have worked on projects ranging from 

distributed sensing to autonomous flight through 

cluttered forests.  Learn more about RI participating 

projects at www.ri.cmu.edu/RISS and scholar 

contributions to this research.   

 

  

Robotics Institute Summer Scholars Program  
 

http://www.ri.cmu.edu/RISS
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Through the program, scholars are: 

(1) Immersed in a guided research process that enables them to experience the thrill of 

discovery and to adopt the role of scientist as one that is authentically their own; 

(2) Inspired to pursue careers in robotics and related STEM fields and equipped with the 

skills and new knowledge to seize industry and graduate school opportunities; 

(3) Challenged by the interdisciplinary nature of robotics, the complexity of the research, and 

the vast potential to impact and improve the world’s quality of life;   

(4) Supported by robust student-development programming that complements the research 

immersion and informs the student’s post research experience trajectory; and 

(6) New members of lifelong global community of researchers, entrepreneurs, and innovators 

that support, encourage, and enrich each other’s lives.  

 

The Robotics Institute at Carnegie Mellon University, the largest university-affiliated robotics 

research group in the world, offers a diverse breadth of research with an extensive range of 

applications; with over a hundred funded research projects. The 

Institute is a global leader in robotics research, education, and 

innovation.  The Institute’s experience, capacity, and faculty 

engagement extends unparalleled opportunities for students to be 

immersed in cutting-edge research while building in-demand 

STEM knowledge and skills. 

 

The institute has seven years of experience hosting successful formal summer 

undergraduate research programs. The RI Summer Scholars program has grown to an 

average cohort size of 30 students and yields an impressive number of successful graduate 

school applications (at CMU and top universities around the world) and research position 

placements. For instance, 7 former Summer Scholars were admitted to the fall 2012 Robotics 

Institute incoming class (1 PhD, 2 research MS, and 4 Masters of Robotics Systems 

Development).  For fall of 2013, there were 4 PhD and 5 masters offers of admission were 

extended to RISS alumni.     
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Software for Cooperative Assembly of an Airplane 
Wing Ladder Using Mobile Robots 

 
Micah Corah, Chris Niessl, and Reid Simmons 

 
 
 

I.  INTRODUCTION 

ODAY  airplane wings are assembled  by large groups 
of workers  over a  period of days who use cranes to 

position heavy ribs inside large wing-spars.  Because this is 
a slow process, airplane manufacturers simply cannot keep up 
with demand. Automation  is a desirable option  for increasing 
production. However, the assembly  process  is difficult  for 
robots for some of the same reasons as it is for humans: 

• Ribs and spars are heavy 
• Airplane wings are large compared to people and robots 
• Small holes holes impose tight positional tolerances 

When mounted  on tracks, robotic arms are able to move 
around the entire length of a wing. This kind of setup implies 
installation of large and expensive fixtures. We believe that 
robotic arms are unsatisfactory,  as are factory workers. 

A group of mobile robots could instead be used to assemble 
airplane wings with no need for such fixtures.  Given  access to 
the necessary parts a group of mobile robots could potentially 
assemble airplane wings having beeng placed in an otherwise 
empty warehouse with absolutely no fixtures. Before achieving 
this, a number  of problems must be addressed.  The robots 
used on this project  are innaccurate and cannot on their own 
satisfy the tolerances. As no fixtures in the evironment will 
be allowed,  the robots then provide their own fixtures for fine 
positioning of the parts. At the same time the assembly process 
must be coordinated  at the grand scale as all of the robots must 
arrive at the correct positions at a specified  time in order to 
efficiently perform the assembly process. 

This paper is a technical  report  discussing software  devel- 
opment primarily for a simulation  of the coordinated assembly 
process but also relating to components that will  run on the 
physical robots. First, the robots being used are introduced. 
High-level details of the assembly  process are covered  as are 
many of the details and difficulties encountered  during the 
implementation. We finish with a discussion  of integration of 
a planning  layer and implementation of a  hybrid simulation 
where simulated robots can dynamically switch to represent 
real robots for parts of the assembly process. 

 
II.  THE ROBOTS 

Assembly  is performed  by robots with identical omnidi- 
rectional  bases having  three different  kinds of tooling. These 
robots are the rib-carrier (Figure 1), rib-catcher (Figure 2), and 
spar-carrier. 

 
A. The Rib-Carrier 

The rib-carrier is responsible for carrying and inserting ribs. 
The top will rotate compliantly  in all directions to allow the 

rib to be passively  aligned to the spar. A column lift  will 
lower the fingers  once the rib is inserted, allowing the rib- 
carrier to escape under the assembly. Additional sensors will 
be integrated  as the problem of rib-insertion is solved. 
 

 
B. The Rib-Catcher 

The function of the rib-catcher is to provide fixtures for fine 
positioning of the rib. Pictured is a metal  target that attaches 
flush with the post (attachment point) on the spar. Detections 
of impact of the rib with the target will be used as part of the 
process of servoing the rib into place. 
 

 
C. The Spar-Carrier 

Currently the spar-carriers only exist in simulation with no 
physical equivalent. Instead, the wing-ladder is held in place 
by a set of jack-stands. The spar-carrier robots are responsible 
for retrieving the spar and holding  it in place. 
 

III.  THE SIMULATION ENVIRONMENT 

A. Simulated Robots 
In simulation,  the robots are composed of a small collection 

cylinders and cuboids  representative  of their main physical 
features. These robots go through the motions of the assembly 
process without simulation of lower level details or dynamics. 
The assembly  process  is performed by seven  robots, five 
spar-carriers (four to carry the spars and one which is used 
intermittently),  one rib-catcher, and one spar-catcher. 
 

 
B. The Wing-Ladder 

The simulated wing-ladder is made up of two spars and five 
ribs. The ribs have holes for fasteners on either end and are 
inserted into the spar and fixed to posts (attachment points) on 
the spars. The ribs are spaced at roughly  equal distances with 
one rib at each end of the spar. The ribs each fall on the same 
side of their respective posts except that one of the end ribs is 
flipped such that the end ribs are each attached outside of the 
posts. 

The wing-ladder is the only object in the simulation taken 
directly from the real world, derived from the original CAD 
model (Figure 3). This provides  a one-to-one correspondence 
between real and simulated components allowing the simulated 
assembly process to be related directly,  even simultaneously, to 
the real assembly process despite incomplete simulation  of the 
robots and of dynamics. The real wing-ladder  does not have 
properties  such as identical  ribs or the centroids of each rib 
all falling on a single plane or axis. In order to deal with this 
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the reference frames used for each part of the ladder are not 
based on strict alignment to certain features but instead offset 
from the reference frame of the original CAD model, which 
is the center of the rib on the larger end. 

 
C. Abstractions in the Environment 

The abstractions in the environment are the objects of the 
simulated environment  without any graphical  representation. 
Each however places strong contraints on the simulation. Note 
that, although  these are abstracted in simulation,  some or all 
would be physical elements of a complete implementation.  For 
instance, a device at some location would likely be necessary 
to load ribs or spars onto the robots, defining  the parts depot. 
Likewise, the assembly-station may be a well-defined  section 
part of a factory. These abstractions  are as follows: 

1) The Parts-Depot: This is the physical  space where  the 
ribs and spars are initially located. The parts are each placed 
next to each other  and are rotated ninety degrees from their 
positions when assembled. 

2) The Assembly-Station:  The assembly-station is the loca- 
tion where the wing-ladder will be assembled. For the purpose 
of the simulation few assertions are made about this or other 
spaces except that the intersection of any two is empty. 

3) Corridors: At the moment corridors  have not been im- 
plemented  explicitly  in the software but are the pathways 
that robots may follow when moving  between parts-depots or 
assembly-stations. Implicitly, the paths that the robots follow 
when picking up parts can be thought of as corridors. 

4) Intersections:  Intersections are the regions  where cor- 
ridors would intersect.  Motion through the intersections  is 
therefore  managed explicitly  in order to prevent collisions. 
These like corridors  have not yet been implemented. 

5) Parking Spaces:  These  are explicit  locations where a 
single robot may sit idle with the guarantee that no other robot 
will  collide while the robot remains in that space. Currently 
parking  spaces are defined by the initial positions of the robots. 
In the future, when additional robots and wing-ladders  are 
added,  parking lots with dynamically-allocated   spaces will 
be defined.  These may for instance  be defined  by a  point 
indicating the location of the first space,  a vector indicating 
the direction of additional  spaces, and a maximum  number of 
parking  spaces in the lot. 

 
IV.  THE ASSEMBLY PROCESS 

The assembly process for the wing-ladder is composed of 
five basic steps: retrieval of the spars, positioning  of the spars, 
rib-retrieval, shuffling of  the spar-carriers  when necessary, 
attachment of the rib-catcher,  and insertion of the rib. This 
process is demonstrated in Figure 4. The summary below cov- 
ers the basic logic of this process while details and technical 
issues will be explained more thoroughly later. 

1) Retrieval of the spars  from the depot is performed by 
a  group of carriers.  The number  of carriers  and hold 

 
 

 
 
Fig. 1.   The Rib-Carrier in position for rib-insertion 
 

 
 
Fig. 2. The Spar-Catcher  aligning to the spar during the post-attachment 
process 
 
 

locations  are calculated  based on the length of the spar. 
Spar-carriers are selected and made to approach and grab 
the spar. This group then carries the spar to the assembly 
station while maintaining rigid  formation in  order to 
prevent collisions. 

2) Once the spars  are in  the assembly  station, they are 
moved to their relative  positions for  assembly.  Tight 
tolerances are crucial. This step is an open problem in the 
physical assembly process and even somewhat difficult in 
simulation. 

3) The rib-carrier  moves to the depot picking up the appro- 
priate rib and then carries the rib to a position  in front of 
the spars. 

4) The rib-catcher attaches to the post on the spar in prepa- 
ration for insertion of the rib. 
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Retrieve Spars Position Spars 
 
 
 
 
 
 
 
 
 

Fig. 3.   The wing-ladder after being assembled 
 
 
 

5) Often, one of the spar-carriers will be in the way of the 
rib-catcher.  When this occurs,  a  free spar-carrier  takes 
up an alternative position on the spar, and the offending 
spar-carrier is parked. 

6) The rib-carrier  enters the spar at an angle such that there 
is sufficient  clearance on each side of the rib. Once the 
edge of the rib taps the target on the spar-catcher  a fine 

 
disengages and exits the wing-ladder. 

 
Shuffle Carriers 
 

×5 Ribs 
 
 
 
 
 
 
 
 
Attach Catcher 

 
Retrieve Rib 
 
 
 
 
 
 
 
 
 
 

Insert Rib 
 

V.  SOFTWARE STRUCTURE 

As this project involves large numbers of robots operating 
simultaneously the software  stack includes  a number of pro- 
cesses running  in parallel. IPC (Inter Process Communication) 
provides non-blocking communication between all of the pro- 
cesses when running  in simulation or on the physical hardware 
[1]. We use the Syndicate architecture which is composed of 
three layers of abstraction: planning, executive, and behavioral 
running simultaneously on multiple robots [2]. As of yet, the 
planning  has not been included. The executive is implemented 

 
 
Fig. 4.   A diagram of the steps of the assembly process 
 

 
 
 
 

Tasks 
Leader:Exec. Robots:Exec. 

using TDL (Task Description Language) [3]. TDL is used to 
initiate execution  of high-level tasks such as  moving from 
one point to another or grabbing an object. TDL maintains 
constraints between tasks and provides a variety of options for 
how a task is executed and completed. The behavioral layer is 
composed of blocks  each representing  a robot behavior gen- 
erally involving closed loop interaction with the environment, 
such as moving  forward  until a switch is activated. Below these 
are an intermediate robot controller, hardware level control, 
and a simulator  based in OpenRave. The relationships between 

Poses Poses 
 

 
 
Robots:Control 
 
 
 

Poses 

 
 
Poses 
 
 
Goal 
Status 
 
Velocity 

Goals Status 
 

 
 

Robots:Beh. 

each of these processes is diagrammed in Figure 5. 
 

A. The Leader Process 
The leader  is an executive  layer process  responsible  for 

spawning tasks related to the entire group of robots which then 
spawn individual  tasks on each of the robots. For instance, the 

Simulation & Hardware 
 
 
Fig. 5.  A simplified diagram of the flow of control and information  between 
processes 
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top level wing-assembly task is spawned on the leader resulting 
in high level tasks being spawned for insertion of each rib and 
then motion tasks being spawned on each of the robots. As 
tasks are being executed the leader also maintains  some high- 
level data on the individual robots related to their state and 
location. This process will also be important later on as it will 
be primarily responsible for communication with the planner 
layer which will soon be integrated into the software stack. 

 

 
B. Robot Processes 

Each robot is associated  with  an executive,  behavioral, 
and control process.  The executive  process maintains  tasks 
associated  with the robot and also data relevant  its current 
state. With few exceptions the behavioral layer communicates 
and monitors position goals obtained  from the executive  to 
the controller.  The robot controller  provides several modes of 
velocity control for point to point motion tasks. The controller 
is also responsible  for  interfacing with  the simulated  and 
physical  robots and is responsible for distributing robot pose 
information. 

 

 
C. The Simulator 

The robots are simulated using a plugin to OpenRave which 
duplicates the interface to the physical robots. The simulator 
itself is devoid of dynamics and other complexities. Robot 
position is calculated  by discretely  integrating commanded 
robot velocities in real time. Note that there are absolutely no 
artificial sources of error and that simulated robots are assumed 
to exactly follow the commanded velocities  as they are given. 
The simulator also provides grab commands that allow a robot 
to pick up any intersecting simulated object. 

 
VI.  MOTION PRIMITIVES 

Most tasks on the executive eventually  spawn some motion 
primitive. Most commonly, the primitive is either a straight line 
motion or an in-place rotation. This is a side-effect   of using 
primarily taxi-cab style motions. When used together,  these 
span the configuration  space of the robots. For the most part, 
these primitives  are sufficient, but during some parts of the 
assembly process, motion  is constrained. Additional  primitives 
were implemented to deal with such situations. 

 

 
A. Rotation About a Point 

The constraints  encountered during the assembly  process 
are generally  of the form of a rigid relationship of the robot 
to some fixed point in the environment. Such tasks require 
the robot to be able to rotate relative  to an arbitrary point. 
Two examples are the rib-insertion  and post-attachment tasks. 
During rib-insertion, the rib is rotated into place while main- 
taining contact with the target. During rib-insertion, the rib- 
catcher rotates about the end of its arm in order to align itself 
perpendicularly  to the spar while also maintianing  contact. 
Thus, a motion primitive was implemented which takes a point 
and an angle to address this issue. This is then executed by the 
controller  (discussed later). Previous to this work, a velocity 

controller mode for curved motion had been implemented. 
However, this computed velocities appropriate for differential 
drive robots. The velocity controller was rewritten to compute 
velocities for omnidirectional bases instead  as a part of imple- 
mentation of this motion primitive. 
 
 
B. Primitives for Rigid Motion of Groups 

Another type of constraint is a rigid relationship  between 
two or more robots. This constraint occurs in the simulation 
when the spar-carriers  must move  the spar. Note that the 
motion of the group of robots as a whole  is unconstrained. For 
simple translations, the existing primitives are sufficient.  If all 
of the robots move with the same velocities  the rigid relation- 
ship is maintained. However, rotation of the spar is necessary 
in addition to translation. As the spar and spar-carriers together 
do not have any meaningful  center of rotation,  a point in the 
plane can be chosen arbitrarily.  If all of the robots in the group 
rotate  about  a single point with the same radial velocity the 
rigid relationship is maintained. The task for rotation  about a 
point can then be extended to rotations of groups of robots. The 
only requirement is to determine  a valid rotational velocity. For 
each kind of robot, values are set for maximum rotational and 
translational velocities. The maximum rotational velocity about 
the center  is limited by each  of these.  Naturally, rotational 
velocity about the centerpoint is no greater than the minimum 
of the robots’ maximum rotational  velocities. Also, given a 
rotational  velocity  ω about a point a distance r from the robot 
and translational  velocity Vmax : 
 

Vmax  ≥ ω × r. 
 
Given a  valid rotational velocity, the rotation about  a point 
primitive can be run on each of the robots in the group while 
maintianing an ideally rigid relationship.  Using this, three 
motion primitives were added for motion of groups of robots. 
The simplest spawns straight  line primitives  on each of the 
robots; the second rotates  the group about  a point; and the 
third combines the two, taking initial and final positions   as 
input. In the case  of the last, note that the motions can be 
varied without changing  the end conditions by moving the 
positions in their local frames (equivalent to moving a single 
robot’s  center of rotation). Using this property,  a group can 
complete  a motion using a single  rotation  and no translation 
or rotate about the centroid of the group before translating. 
With both translation and rotation, groups of robots can reach 
any point in their configuration   space. When applied to the 
physical robots, the controller will have to be able to react to 
innacuracies in the motions of the robots relative to each other. 
This work is likely a good starting point to drive development 
of such a controller  for the robots. This result is sufficient  as 
the simulation is only intended to demonstrate the process of 
assembly, not simulating dynamics or contact. 
 

VII.  CONTROL AND LATENCY 

Although the simulator attempts to provide idealized robot 
motion, the control remains far from ideal due to the non- 
deterministic  nature of parallel execution.  Generally,  when 



  

19 
 

 
 

running the simulation,  twenty-three  processes and a number 
of threads run and communicate concurrently.  Often, this all 
occurs on a single  virtual machine, severely taxing resources. 
For the most part, the simulation tends to run smoothly. 
However, at a minimum,  there are motion innaccuracies similar 
or greater in magnitude to those on the physical robots. Latency 
is observed  as a result of the large quantity of processes all 
running round-robin  on a single machine. In the best case, pose 
information on the controller is always slightly old as are the 
velocities  that the simulator  integrates  based on a  real-time 
clock. In the worst  case, such as if the simulator is configured 
to send out pose updates too quickly (the controller  reponds 
to each pose update  with a velocity update), communication 
may slow almost to a halt, and robots may continue moving 
based on either old velocity commands or velocity commands 
computed with old positions for even several seconds. Old 
positions may also have negative effects on the executive. 

There are a variety of ways of dealing with the latency issue. 
As mentioned  previously, lowering the update  rate reduces 
traffic. An appropriate  update  rate was  found heuristically 
with an appropriate trade-off between increasing latency and 
decreasing  accuracy.  Message queue lengths  are also set  to 
one to eliminate old messages. In addition to reducing latency, 
measures  were taken to increase  the resilience to motion 
errors. At the executive layer, when precise relative positions 
must be known, robot positions are sampled after an action 
is completed. For instance, the spar-carriers may sometimes 
report succesfully reaching the locations of their holds on the 
spar when they are actually outside  tolerances. Because the 
precise location of the simulated spars are already known,  the 
transform from each spar-carrier  to its spar is updated after 
grabbing the spar. The simulation is then resilient to error in 
spar-carrier positions at this step so long as the grabbing  spar- 
carrier is in collision with the spar. With small tolerances and 
high speeds a robot can potentially jump across the goal region. 
As mentioned previously, this kind of problem can have serious 
consequences for curved motions. To deal with this, a feature 
was  added  to the curved motion controller to detect jumps 
from (−90◦ , 0◦ ) and (0◦ , 90◦ ) where the goal is 0◦   on the 
circle the robot is moving in. When this happens an existing 
motion finalization  mode that moves the robot directly to the 
goal is triggered. 

 

 
VIII.  TOWARD PLANNING INTEGRATION AND 

ADDITIONAL ASSEMBLIES 
 

The simulation described in this paper features assembly of 
only a single wing-ladder.  Reasonable results were achieved 
with hard-coded steps. As the number of wing-ladders increase 
and factors such as failure to complete  a task are included  in 
the simulation,  the need for an actual planning layer increases. 
Development  of the planning layer is outside  of the scope 
of this paper. However,  an important part of integration  of 
work on the planning layer is that the executive  layer be 
designed in a  way that simplifies the interface  between the 
layers. This is achieved through features that can easily afford 
various levels of abstraction to the designers of the planner. 
The planner being developed  will  use  information on the 

connectivity of the environment,  the structure of the assembly 
task, and information  on the time to complete  tasks to move 
robots around the environment to the four assembly stations 
and depots and to schedule tasks using a just-in-time  model. 
Note that the planner will  not have  a spacial  or geometric 
representation of the environment. However, the geometric and 
spacial  components  each affect parts of the task structure. 
For example, the carrier shuffle is not performed if there is 
no carrier in the way of the rib-catcher.  Use of abstraction 
eliminates the need to create rules on the planner to describe 
these interactions. 

In  order to  simplify  this  abstraction the  concept of 
workspaces  has been  added  to the executive  layer. The set 
of robot workspaces  is the set  of vertices  of the planner’s 
graph of the environment.  The executive then must guarantee 
that there can be no interactions  between robots in different 
workspaces. The designers of the planner are then free to cede 
any desired level of control of robots within a workspace to 
the executive. Therefore the executive can be allowed to assign 
sub-tasks to robots within a workspace  as a part  of execution 
of a task assigned by the planner. Workspaces are assigned to 
robots implicitly by motion tasks assigned by the planner. The 
planner may assign a task such as, “cross Intersection1, 
and enter Station1.” Preceding assignment of the task, the 
robot workspace would have been Intersection1.  After 
completing the task, the robot would be assigned the current 
workspace Station1. 

Two additional pieces of information  are also tracked by the 
executive: robot names (which are derived from robot type) 
and robot state. State may be information  such as which rib a 
robot is carrying, which hold a robot  has been assigned to on 
the spar, or whether  a robot is currently free to be assigned 
tasks by the executive. 

The result of storing this information is that the planner 
may be designed to manage tasks to whatever level of detail 
is desired.  The command  to insert a  rib may have  as  few 
parameters  as the assembly station it applies to. Given a rib- 
carrier with a rib, spar-carriers holding  the spars, and sufficient 
additional robots all in the assembly-station, the executive can 
infer all subtasks and assignments necessary to complete the 
rib-insertion task. Just as  easily the name of the rib-carrier 
could be used, in which case the executive  would simply look 
up the rib-carriers  workspace and state  as part of inferrring 
further subtasks. On the other hand, designers of the planner 
may deem necessary explicit  assignment of robots to a  rib- 
insertion task. In this case,  the executive may skip looking 
up which robots are in the workspace or look up names and 
locations to ensure the validity of the assignment or possibly 
to determine whether to wait until a robot has arrived  in the 
workspace to start the task. The executive is therefore flexible 
to the needs of those designing the planner instead of being  a 
driving force in the development of the planner, by not having 
strict requirements on the information  needed before executing 
a task. 
 

IX.  DEVELOPMENT OF A HYBRID SIMULATION 

The simulation portrays  the overlapping   steps of the as- 
sembly process  but lacks finer details such as dynamics. 
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The tooling simply has not been designed with simulation in 
mind and furthermore  was being developed in parallel to the 
simulation.  Instead of simulating the hardware we chose to 
use the physical hardware to drive  a subset of the steps of the 
simulation.  We therebye can demonstrate a level of accuracy in 
simulation  when a real robot can be substituted for a simulated 
robot without consequence. 
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Poses 

 
 
 
 
Velocity 

A number of technical challenges were overcome to imple- 
ment this idea: 

• There must be some toggle that causes a simulated  robot 
to track a real robot 

• The toggle should not be enacted when the real robot is 
not present 

• The reference frames of the real and simulated environ- 
ments must be related 

• Simulated and real time must be related 
Naively, implementation of the toggle was initially ap- 

proached with the idea that the simulated robot could simply 
be told to stop publishing  positions and listening to velocity 
commands and instead just listen for positions being published 
by the real counterpart. Both the real and simulated  robots 
would need to listen to some message and then switch  to the 
appropriate  mode. However,  there are a number of difficulties 
and problems with this method: 

• The real and possibly  also simulated robots would have 
to send messages indicating their presence to syndicate 

• An  initialization step would be necessary  specifying 
whether simulated or real robots are active 

• The environments would either have to have the same ref- 
erence frame or software would have to be implemented 
to allow the controller to use a transform   between  the 
environments 

• The velocity controller would have to be able to distin- 
guish between position information from simulated and 
real sources 

Overall this would require a large amount of modification and 
effort for a cosmetic feature, especially considering potentially 
issues with the controller. 

For this reason another  option was  initially  implemented 
where the simulation  contains  a robot dedicated to tracking 
the real robot. This eliminates the serious technical  issues but 
has consequences on the assembly process. As there is no parts 
depot in the real environment, a simulated robot would ideally 
pick up a rib and move to the spar before switching  to tracking 
the real robot. Instead the real robot would have to have some 
other way of obtaining  a rib. Since the simulated robot would 
not have performed  the insertion, it may not end up in the 
position it usually would post-insertion. The process  would 
have to be modified  to deal with it potentially not being in ths 
position, or the simulated rib-carrier  would have to be moved 
to this position by some other method. 

Fortunately,  when the previously  discussed options are com- 
bined these complications   go away.  In our implementation 
there is  a  simulated robot that can be made to  track a 
corresponding real robot, but these robots have different  names 
as demonstrated   in figure 6. Before the real robot performs 
a  task, the simulation is passed  the name of the real robot 

Sim-Robot Real-Robot 
 
 
Fig. 6.    Diagram of a simulated  robot, “Sim-Robot” tracking a real robot, 
“Real-Robot” 
 
 
 
and also a  transform   between  the environments.  To ensure 
a smooth  transition  before  the simulated robot snaps  to the 
position of the real robot,  a task should  be spawned to move 
the real robot into some starting  position before the switch, 
and once this task has been completed, another task should be 
spawned to move the simulated robot to the position of the 
real robot. This immediately  eliminates  issues related to the 
controller as there  is now one instance of the controller for 
both the simulated and real robots. Since the real robot and 
corresponding  simulated  robot are represented  by the same 
robot in the simulation  there are also no issues with acquiring 
the simulated rib or differences in final position. 
 
 
 

X.  CONCLUSIONS 
 

This paper has presented a summary  of software develop- 
ment work for multi-robot assembly of an airplane wing-ladder 
and a simulation  of the assembly process. For background, we 
begin with a description  of the robots, the environment, and the 
basic steps of the assembly process. Development  of both hard- 
ware and software for this project continues, and the simulation 
is a self-contained  subproject demonstrating  work on software 
development and the large scale assembly process. We  then 
move on to describe the software structure and communication 
between robots and processes. The motion primitives are the 
basic components  of the assembly  process, and performing 
the assembly  process requires  a set of primitives that satisfy 
the constraints  at each step. During implementation,  large 
overheads related  to running so  many robots and processes 
were recognized  and delt with.  As components  from the 
executive down were completed, we began to look upward and 
developed components to support integration of the planning 
layer. 

Cooperative assembly with mobile robots is not a new con- 
cept. This project is set apart by both its scale and granularity. 
The simulation   as described  in this paper uses seven robots 
to assemble  a single wing-ladder. This is being extended to 
multiple wing-ladders  and even more robots making the plan- 
ner critical. Through various subprojects development extends 
downward  through software (some of which being the focus 
of this paper) and hardware from tooling to the mobile  bases 
themselves. 
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Abstract—Wheeled skid-steer localization poses special 

challenges due to the complexity of kinematics and wheel/ground 
interaction. This paper provides two possible approaches to 
estimating the lunar rover’s 2D state fusing information from 
wheel odometry, fiber optic gyroscope (FOG) and inertial 
measurement units (IMU). The first method applies a differential 
drive model after analyzing the kinematics of the lunar rover and 
uses wheel odometry and FOG to estimate the rover’s state. The 
second effective means of combining encoder and IMU data 
together is to use a discrete Kalman Filter (KF). Both methods 
show proficiency in some particular applications. While using a 
fiber optic gyro can reduce heading error caused by lateral 
slippage, the Kalman Filter is able to calculate the rover’s state 
without introducing the IMU’s drift resulting from integration of 
accelerations and non-systematic errors of wheel odometry like 
slippage. Finally, we tested and validated the simplified model 
and KF with a laser range finder. 
 

Index Terms—differential drive model, Kalman Filter 
 

I. INTRODUCTION 

Wheeled skid-steering mechanisms are widely used for all-
terrain vehicles, especially true of some field applications like 
planetary exploration. The lunar rover named prototype 3 (Fig. 
2.a) is a typical wheeled skid-steering vehicle.  

A robust robot system relies much on its localization. 
Basically, two kinds of positioning methods are widely 
applied for mobile robot localization: absolute positioning and 
relative positioning [1]. Absolute positioning methods usually 
utilize expensive and complex systems like map matching and 
Global Positioning System (GPS) signal processing while 
relative positioning is based on the inertial measurement units 
and odometry. Considering the limitation of GPS signal on the 
moon and complexity of implementing map matching, it is 
urgent to build a reliable and powerful way to estimate the 
lunar rover’s state using relative positioning methods.  

The sliding interaction for a skid steer rover is often too 
complex for on-board calculation and real time control. A 
differential drive approximation is proposed based on studies 
that analyze the equivalence between these two models. Wheel 
odometry suffers from non-systematic errors like slippage, 
thus the accuracy of the heading estimation is significantly 
affected. Using a fiber optic gyro to provide the angle 
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information independently will effectively help overcome this 
problem. In addition, building a Kalman Filter that combines 
both the wheel odometry and IMU data will provide the rover 
with both localization and slippage information.  

 

 
 

Fig. 1.  a) Lunar Rover Prototype 3   b) on-board sensor suite of Prototype 3 

II. DIFFERENTIAL DRIVE MODEL 

A. Model simplification 
The experimental platform is a 4-wheel skid steer rover. 

However, the sliding interaction is often too complex to model 
accurately in application and it is not possible to predict the 
exact motion of the vehicle only according to the controlling 
inputs. So it is a necessity to obtain an optimized kinematic 
model for skid-steer vehicles. 

Some work has already been done in studying the dynamics 
and model simplification in order to improve the on-board 
computation of a skid-steer vehicle. The kinematic 
equivalence between skid-steering and differential drive 
vehicles has been proposed for tracked vehicles [2]. 

Since the wheels on each side of Prototype 3 are connected 
together and always have the same angular velocity, the 
kinematics of Prototype 3 is similar to those of a tracked 
vehicle. For simplicity of development and testing, a 
differential drive approximation is utilized for Prototype 3. 

However, once the differential drive model is employed for 
the lunar rover, we need to consider the turning efficiency of 
the rover, which has been studied in [3].  

              
Fig. 2. a) Skid Steer Kinematics [3]   b) simplified differential drive model 
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The ideal turning rate Ω  without longitudinal slippage for 
an standard Ackerman steering geometry is described by Eq. 1 

                             
R
rω

=Ω                                                (1) 

where ω is the wheel angular velocity in radians per second, 
r  is the wheel radius, and R  is the distance from the center 
of the wheels to the center of rotation of the rover. 

To calculate the rate of rotation Ω  (Fig.2.a) for a skid steer 
rover, the actual turning radius which is reflected by the angle 
θ  must be taken into account.  

                            )cos(θω
R
r

=Ω                                    (2) 

Denote l  as wheel track (the distance between the centre of 
the two wheels), we can simplify the model Prototype 3 into a 

differential drive model by replacing l  with
)cos(θ

l
. 

Namely, change its wheel track from into the diagonal 
distance of front left wheel and rear right wheel. 

And then it is straightforward to calculate the robot’s state 
using the differential drive equation based on the encoder 
readings. 

 

B. Differential drive kinematics 
Differential drive mechanisms consist of two wheels which 

are mounted on a common axis [4], wheels on both sides can 
be driven forward or backward. It is possible to change the 
trajectories the robot takes by varying the velocities of the two 
wheels.  

If the rover’s position at time t is ),( yx , with a heading 
direction θ  relative to the X axis. Then the instantaneous 

centre of curvature ( ICC ) location is described as  
            )]cos(),sin([ θθ RyRxICC +−=                   (3) 

Given the velocities rl VV , , we can get the rotation radius 

R  (the distance between ICC and the center of the two 
wheels) and rate of rotation Ω using equation (3). 
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then the robot’s pose at ( tt ∆+ ) is 
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C. Fiber optic gyroscope (FOG) 
Non-systematic errors are inevitable in wheel odometry. 

The wheels will encounter slippage when pivoting and turn 
less than the expected degree as a result. One way to 
overcome this problem is to adapt the coefficient of the wheel 
track according to the real texture of the terrain. However, 
whenever the terrain changes, one needs to do a series of tests 
before the optimized coefficient is found, which is not 

convenient. Another means of giving better pivoting 
performance is employing a fiber optic gyroscope which has 
high accuracy and is not affected by slippage for the heading 
measure independently. 

In this way, the rover’s heading angle θ  is derived directly 
from the fiber-optic gyroscope and the Cartesian coordinates 

),( yx  are calculated using dead reckoning equations: 

));cos()(cos('
));sin()(sin('
θθω

θθω
−+×−=

−+×+=
tRyy

tRxx
                (6) 

 
D. Experiments and results 

The on-board sensor suit of the lunar rover shown in Fig.1.b 
. We use a DSP-3000 fiber optic gyroscope from KVH 
Industries.Inc and a Crossbow 400CC IMU for attitude 
measurements. The optical wheel encoder readings and 
motion control are implemented on Galil Controller. The 
control system is realized using Robot Operating System 
(ROS) with the control algorithm and Kalman filter design 
located in the higher level and the PID-based motor control 
located at the lower level. A laser range finder system is 
employed to provide the robot’s absolute position information 
in all experiments. 

In order to test the performance of the simplified differential 
drive model and the improved differential drive model with a 
FOG. We set the trajectory as a circle with a radius of 3m for 
the rover, the state estimations by differential drive equation 
with and without FOG are given in the graph. 

 
Fig. 3. Robot state estimation by differential drive equation with and without 
FOG compared to absolute position from laser data 

 
The differential drive model works well in the state 

estimation for the rover. The improved one with a FOG 
providing the heading angle information shows greater 
accuracy. We have found an effective way of estimating the 
rover’s state without introducing the complex skid steer 
model. This also helps save large amount of on-board 
calculation and makes real time control more robust. 

III. DISCRETE EXTENDED KALMAN FILTER DESIGN 

A. Discrete Kalman Filter 
The encoder readings are influenced by non-systematic 

errors like slippage and the IMU data suffer from drift. In 
planetary applications, where other sensors are limited, an 
effective means of combining encoder and IMU data together 
is using discrete Kalman Filter [5].  
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The discrete Kalman Filter predicts the future state of the 

system 
^

)1|( −kkX based on the available system model F 
and projects the state error covariance matrix )1|( −kkP
using the time update equations  
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)()()1|1()()1|(

^^

kQBkBkkFkkPkFkkP
kukBkkXkFkkX

TT +−−−=−

+−−=− (7) 

Once the measurement )(kz  becomes available, the 
Kalman gain matrix will be computed to incorporate the 
measurement into the state estimation )|( kkX . The state 
error covariance for the updated state estimate )|( kkP will 
also be computed using the following measurement update 
equations: 
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Where I  is an identity matrix, and system )(kA , input 
)(kB along with measurement )(kH  matrices are defined 

according to the detailed model in the following part. 
 

B. Lunar Rover Model Setup 
 We denote two related frames for the lunar rover’s model:  

a fixed global frame ),,( zyxI and the rover’s body frame 
),,( zyxI as shown in Fig. 2. b. Given the headed direction

θ  , it is simple to calculate the transformation matrix from the 
body frame B to the global frame I using 2D rotation matrix: 
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BC                                    (9) 

The lunar rover's planar Cartesian coordinates ),( yx  and 
heading θ  describe the pose of the rover. The highly updated 
IMU readings (~100Hz) are treated as inputs to the system. 
and the velocities along YX , axes calculated from encoders 
are treated as the measurements. Denote vectors with I  as a 
subscript means accelerations, velocities or positions 
measured in the global frame while B  means measured in the 
body frame. 

The rover is modeled by the following kinematic equations 
representing the position of the mid-axis  and the orientation 
in the global frame [6]. 
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(10) 
Thus the state vector of the Kalman Filter can be written as 

Iyx vvyxX ],,,,[ θ=  and the input vector as

Byx accaccu ],,[ ω= . According to the kinematics 

discussed above, the system )(kA , input )(kB matrices for 
the Kalman Filter are given below: 
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We consider the velocities along YX , axes in the body 

frame Byx vv ],[  as the measurement vector z for the KF 

design. The velocity ],[ rl VV  is directly obtained from the 
encoder readings, and the relationship between the encoder 
reading is given as follows (assuming that there is no 
slippage). 
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The estimation of yaw angle θ  is calculated by directly 
integrating the angular velocity given by the IMU. Therefore, 
the transformation matrix I

BC given in Eq. (9) and its 

transpose matrix B
IC is then calculated. The measurement 

vector Byx vvz ],[= can be related to the current state using 
the following measurement matrix:  
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C. Localization simulations 
The filter was used to estimate the rover state (position and 

orientation) in planar terrain by fusing the odometry, FOG, 
and IMU data. It takes the highly updated (~100Hz) IMU raw 
data for the prediction step and relatively lowly updated 
(~10Hz) encoder data for the time update step if available.  

Assuming that the system noises are uncorrelated and time-
invariant, we will get a diagonal and time-invariant system 
noise covariance matrix. The system position noise standard 
deviation for the YX ,  coordinate, the system velocity noise 
standard deviation in the fixed frame and the orientation noise 
standard deviation are guessed as follows: 
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                          (14) 

We then obtain the system noise covariance matrix  
                                501.0 IQ •=                                    (15) 

The KF initial state )0(X  is taken to be equal to zero and 
the initial state error covariance matrix is initialized to be 
equal to the system error noise covariance 
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                              QP =)0( .                                        (16) 
 For the prediction step of the KF estimates, the input noise 

covariance matrix is initialized as 
                              301.0 I•=γ  
For the time update step, the measurement noise covariance 

matrix is set to relatively smaller values 
                             20001.0 IR •=  
 

D. Experiments and results 
The acceleration of IMU raw data suffers from great drift, 

especially after a long period of time. While at the same time, 
the wheel odometry cannot providing convincing information 
when the rover is pivoting or encountering lateral slippage. So 
the robot was set to run in a square shape which contains 
pivoting part to test the performance of the Kalman Filter.  

 
Fig. 4. Robot state estimation by Kalman Filter compared to estimation from 
differential drive equation and absolute position from laser data 

 
From the trajectory recorded by the laser range finder, it is 

explicit that when the rover pivoted at the corner, it underwent 
obvious shake and slippage all the time. However, the wheel 
odometry method which used the encoder and FOG pair 
shows no roughness at the four corners at all. Namely, it can 
not convey information about the rover’s state under some 
circumstances like pivoting, which is quite meaningful in 
rover controlling. The Kalman Filter, though did not show 
much improvement in the overall estimation, it clearly reflect 
the shake information when pivoting. This is because it 
utilizes the IMU data for the prediction step. So the Kalman 
Filter offers a nice estimation of the rover’s state as wheel 
odometry does, while at the same time, providing the slippage 
information. 

IV. CONCLUSION 
Localization for wheeled skid-steer vehicles are challenging 

because of the complexity of kinematics and wheel/ground 

interaction. This paper provides two means of estimating the 
lunar rover’s 2D state by fusing information from wheel 
odometry, fiber optic gyroscope (FOG) and inertial 
measurement units (IMU). The first method applys a 
differential drive model as a simplification and uses wheel 
odometry and FOG to estimate the rover’s state. The second 
method employs a discrete Kalman Filter which combines 
encoder and IMU data together to provide estimation for the 
rover. These two methods are easy to implement on a rover 
and have different applications. While using a fiber optic gyro 
can reduce heading error caused by lateral slippage, the 
Kalman Filter is able to calculate the rover’s state without 
introducing the IMU’s drift resulting from integration of 
accelerations and non-systematic errors of wheel odometry 
like slippage. The performance of these two methods are 
tested and validated with a laser range finder.  
     Although our tests only cover several simple trajectories, 
we are optimistic that these two methods will give good 
performance in more complex motions because our tests have 
covered basic parts like pivoting, turning, walking forward 
and backward. Intricate trajectories are composed with these 
primary parts.  
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ABSTRACT 

 
This paper presents the methodology for designing and 

simulating  a  motion  control  algorithm  for  a  Tyrolean-based 
descent and traversal robotic platform. A PID controller is 
developed which can perform a variety of traversal scanning 
trajectories including pulse and sine wave. The desired trajectory 
of the robot is first created using MATLAB and then utilized to set 
the velocities of each of the motors with respect to time. The path 
planning algorithm is modular and can be easily changed 
depending  on  the  environmental  constraints.  The  control 
algorithm deployed on the physical platform will then read the time 
v. velocity vector for each of the motors and compute the error 
between the ideal and the measurement to rectify its path 
trajectory. The parameters of a simulated plant model with a 
respectable uniform noise were used to calculate the desired PID 
gains of the motors. Simulation demonstrated that a stable 
controller with 5.82% overshoot, a settling time of 3.2 seconds, 
and control effort gain of 0.937 is achievable. The sampling rate of 
the discretized system done in the simulation is 0.005 seconds. A 
simulation for various velocities was performed to observe the 
steady state response of the controller. 

 

Keywords—Tyrolean, PID, sky moonlight, moon, simulation, 
survey, discrete-time 

 
I. INTRODUCTION 

First discovered in 2009 by Japan’s Kaguya spacecraft and 
further inspected by NASA’s Lunar Reconnaissance Orbiter 
(LRO), the “moon skylights” pose great interest for scientists 
since it can potentially serve as the foundation for possible 
colonization attempts due to natural protection from deadly 
electromagnetic radiation, meteorite bombardments, and large 
temperature variations [1][2]. Furthermore, scientists wish to 
explore these locations since it may consist of a network of 
underground lava tubes that can contain useful resources for 
future space exploration and colonization [1]. The mission 
objective  consists  of  creating  a  robotic  platform,  called 
Tyrobot, which will be deployed to the moon in the near future. 
The robot is tasked with exploring the “moon skylights” or 
moon pit locations. 

 

 
 

Figure 1. Snapshot taken of the first moon skylight located on 
Marius Hills. This picture was among the first set of photos captured 
by Japan’s Kaguya spacecraft as it orbited the moon. The height of the 
dashed rectangle is about 1 km in length. The pit is large enough to fit 
the White House completely inside [1][2]. 

 
 
 
 
 
 
 
 
 
 
 
Figure 2. A moon pit and the Capitol Building. This figure helps 
grasp the scale and magnitude of the moon pit locations recently 
discovered on the moon. 
 
 

This paper discusses and explains the control algorithm 
needed to deploy a robotic platform that can successfully 
explore and scan these locations in Earth-based test locations 
that resemble the moon pits. The Tyrobot consists of suspended 
platform that travels along a tightrope that is anchored down 
across the diameter of the pit. Once the robot is successfully 
suspended and deployed, it can traverse along the tightrope and 
lower or raise the carriage as commanded by a pre-determined 
path trajectory. As the robot moves along its trajectory, the 
attached sensor package will take thousands of laser scans and 
video data that can provide useful information about the 
composition and structure of these locations. Future 
improvements of the Tyrobot may even deploy a rover to 
autonomously explore the unknown surface and determine 
whether they consist of a network of underground lava tubes. 
These robots could be armed with radar-penetrating 
technologies to provide data and accurate models showing the 
stability and structural design of the underground lava tubes. 
Work on underground modeling applications on Earth has 
already been developed that maps out caves and tunnels using 
laser-range technologies [10]. 
 

 
 

Figure 3. The proposed stages and lunar missions of the Tyrobot. 
From left to right, the lunar lander will land in a location close to the 
moon skylight. It will then deploy a rover that will secure anchor 
points around the perimeter of the skylight and deploy the Tyrobot. 
The Tyrobot will then take scans of the wall structure and surface to 
discover information about the 
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Figure 4.   Tyrobot robotic platform design. This figure shows the 
overall design of the Tyrobot consisting of two sections: the carriage 
(top section) and platform (bottom section). The carriage houses all 
the actuators and motor controllers. The platform houses the computer 
and sensor package (not shown). The carriage and the platform 
communicate over radio signal. 

 
 

Once the robot is deployed and suspended on the tightrope, 
the carriage will be able to traverse the width of the pit while 
lowering or raising the platform for data acquisition. The 
carriage’s sensor packet, named Ferret, contains a LIDAR, an 
IMU, a camera, and a tracking prism. These sensors are used to 
capture video data about the pit and provide a 3D model. The 
tracking prism and IMU can provide the position and velocity 
of the platform as it moves. Sensor synchronization is provided 
via clock distribution system to match sensor scans, line 
tension, and position as measured by the ground survey system. 
The Ferret firmly attaches to the bottom of the platform (not 
shown) and remains static through the run. 

 

offer in uncertain domains. For future designs of the robot, a 
more complex and adaptive controller could be implemented 
once enough realistic field data is acquired. 
 

Since this work consists of an innovative application, 
development of an effective control algorithm was based on 
several earth-based applications, like the control algorithm of a 
hoist, the control algorithm of the ACROBOTER, and the 
control theory of CMU’s Ballbot, and mobile control lectures 
from MIT and Brown University [3-8]. Perhaps the most 
relevant work done that resembles a line survey platform 
consist of the Expliner robot [11][12]. This robot is used to 
perform tests and inspections on high-voltage lines while 
traversing along the lines. Several ideas and concepts 
concerning  the  mechanical  design  and  control  architecture 
were considered for the Tyrobot. 
 

II. PROCEDURE 
 
A.  Plant modeling via simulated data and initial PID testing 

The first step was to acquire some simulated data from a 
virtual motor since the actual device and unknown system was 
not  constructed  at  the  time.  The  simulated  plant  model 
acquired sets the motor velocities to a reference value and 
includes some simulated noise. The model records the Linux 
CPU time versus simulated motor velocity in ticks. A uniform 
10% noise was added in the simulation. 
 

In experimentation, the motor load should be incorporated 
in a physical test and measured by running in open-loop while 
creating a data log over time as velocities change to acquire a 
closer estimation of the motors by including inertia values, 
load of the motors, power consumption, and power output. 
The change in inertia and load can then be used to create a 
more accurate description of the plant which will then yield a 
more stable controller. 
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Figure  5.  Ferret  sensor  package.  This  figure  shows  the  sensor 
package that it is firmly attached to the bottom of the platform. This 
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device is responsible for acquiring video data showing stratigraphic 
sequence of a rock wall and mapping a 3D model of a pit. 
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This paper focuses on the design, initial tests, and 
simulation of an algorithm that will control the traversal (x- 
axis) and winch (z-axis) motors via a PID closed-loop 
controller.   Although other common controllers were also 
considered, like LQR and Ackermann pole-placement, a PID 
controller was implemented for this application to show proof 
of concept and due to the robustness and reliability that it can 

 

Figure 6.  Simulated plant model for PID tuning. The figure on the 
top plots the accumulation of ticks as a function of CPU time. The 
figure on the bottom shows the change in tick position (i.e. velocity). 
 

After acquiring a simulated velocity log file for 4 different 
settings, the corresponding differences of the motor velocity 
(in ticks) were plotted as shown in Figure 6. The ideal steady- 
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state value (Ideal SS) can then be computed after isolating the 
noise. This ideal reference value is then used to come up with 
the desired motor inputs and to compute the controller gains. 

 

B.  Designing and tuning a PID controller for Tyrolean 
traversal 
The design and tuning of the PID controller was done 

using MATLAB software tools. Using Simulink and Sisotool 
utilities, a PID controller was designed and tuned for the 
simulated plant models that would minimize the error or 
difference between the actual value and the command value 
[5][6]. At the time, several physical constraints of the robot 
were estimated as shown below. 

 
Known system requirements for Tyrobot: 
•     Max traversal speed: 20 cm/s 
•     Max raise/lower speed (i.e. winch motor): 20 cm/s 
•     Operational time: 2.5 hours 
•     Max slope: 20 degrees 
•     Max payload power draw: 50 W 
•     Max deployment depth: 50 m 
•     Max payload mass: 15 kg 
•     Max carriage mass: 25 kg 

 
Types of operation expected for the Tyrobot: 
•     Data acquisition while traversing tightrope; 
•  Raise/lower platform and traverse to follow pre-planned 

trajectory as defined by ground operator; 
•  Allow   radio   control   communication   for   emergency 

retrieval; 
•  Computer communicate wirelessly to carriage 

compartment containing motor controllers; 
•  Increase angle wrap of tightrope to prevent slip during 

operation; 
•  Device subjected to pendulum motion and environmental 

changes such as wind; 
 

The constraints and controller requirements taken into 
consideration consisted of having a percent overshoot (P.O.) 
of less than 15% and a rise time of less than 5 seconds. In an 
ideal scenario, these constraints would correlate to having a 
control architecture that achieves stability within 5 seconds. 
Since the robot’s max speed is a slow 20 cm/s, achieving 
steady-state operation in this time makes the robot more 
reliable and robust to changes caused from abruptly changing 
speeds. However, due to the nature of the simulate log file for 
the motors that was used to create the controller, physical 
system limitations are not being taken into account. This 
includes the control effort, given the max speed, that the motor 
can physically attain and stall torque power when the motors 
need to hold the rotational speed of the platform at zero. The 
controller  was  discretized  using  zero-order  hold   and   a 
sampling time selected consisted of 0.005 seconds was 
selected. 

The controller takes in desired and simulated velocity 
commands  and  sets  the  gain  for  the  unknown  system  to 
achieve those values within the specified constraints. In the 

physical implementation, position and velocity feedback is 
provided via encoders attached to the motors. Using the clock 
synchronization from the computer, the control algorithm 
deployed on the survey platform will receive a list of velocity 
commands with a time stamp attached to it. It will then verify 
that the actual velocity commands are matching the reference 
values and corresponding timestamps. 
 

 
 
 
 
 
 
 
 
 
 
 
 
Table 1. PID configurations with varying controller constraints. 
The controller gains were computed for various controller 
requirements including rise time, P.O., and sampling time. 
 

Each of the controller configurations shown above were 
modeled and tuned to determine a feasible result for the 
simulated plant. Configuration 3 (i.e. Run 3) was chosen due 
to its settling time, overshoot, and control effort gains 
(highlighted).  The  process  for  selecting  these  parameters 
relied on the control system requirements and the type of 
application being developed. In a physical scenario, the 
controller’s max effort gain is estimated to be around 0.93 
thus allowing a gain of 0.07 (i.e. 7%) in case more effort is 
needed to achieve settling motion. Since fast and abrupt 
changes to the velocities are detrimental to the Tyrobot’s 
operation, a settling time of 3.20 seconds is acceptable.   Once 
the controller gains were set, the controller was tested for 
various inputs to observe its stability and settling time. Also, 
only PID configurations were tested (i.e. P,D, PI, PD not 
considered) since the P and D controller affect the rise time 
and P.O. while the I controller helps with the steady-state 
settling time [5][6][9]. 
 
 
C.  Path making program for Tyrolean survey 

To take data of area of interest (e.g. a moon pit or an 
Earth-based  test  location),  a  path  planner  algorithm  was 
created  that  generates  a  velocity  command  file  containing 
time, traversal motor velocity, and winch motor velocity 
vectors. Although physical data was not available at the time 
of this work, the paths created are vertical in path to minimize 
the work of the winch motor due to gravity. 
 

The program that makes the desired Tyrolean trajectory 
(pulse wave or sine wave) is modular and can be easily 
changed to accommodate for the test site. In particular, the 
width and height of the pit location (in meters), an offset 
distance (to account for unexpected irregularities in the site 
and hanging objects from the Tyrobot), and the period of the 
wave  can  be  edited  and  entered  as  needed.  Once  the  pit 
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settings are measured and defined, the user needs to specify a 
run time (in seconds) for the data gathering trajectory. The top 
left coordinate of the pit is defined as the origin (0,0) while the 
winch motion of travel goes along the negative z-axis. 

 
The functions used to make the paths are parameterized 

with respect to time so a velocity-time command file can be 
created. The algorithm does not take into account the slack of 
the traversal rope. It assumes an ideal case scenario where the 
traversal rope is perfectly tensioned. Thus the physical 
experimentation  will  be  initially  affected  by  these 
unaccounted forces. These repercussions should be dealt when 
data becomes available. 

 
Tyrobot Pit Trajectory 

Pit W idth(x-axis) = 50; Pit Depth(y-axis) = 100; Time (sec) = 800 

 
0 

Although   not   currently   designed   for   use,   another   file 
containing the position and time of the traversal and winch 
motion is also created by this program. This can later be tested 
against encoder feedback and data from the tracking prism to 
obtain the error of the trajectory and refine the control 
algorithm to take into account such errors. From the position- 
time command file and plot, the derivative is then taken to 
compute and output the velocity-time command file for the 
traversal and winch motors. 
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Figure 9. Position versus time plot for the traversal and winch 
motions when using a step wave. 
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Figure 7. Pulse wave Tyrolean trajectory. The user can select a 
step-like trajectory for data gathering once the pit dimensions and run 
time are properly tested. Here the robot starts at the origin and 
proceeds along the blue line. Once it gets to the bottom, the Tyrobot 
does a second sweep of the bottom before proceeding upwards if 
time remains. 

Tyrobot Pit Trajectory 
Bounding Box = 50; Time (sec) = 3600 
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Figure 8. Sine wave Tyrolean trajectory.   The user can select a 
sine-like trajectory for data gathering once a bounding box dimension 
of the test area (in meters) and the run time are specified. Here the 
Tyrobot starts at the top middle point and proceeds along the blue 
line. If time remains, the robot just keeps on repeating its path. 

 
From the generated path files, the position of each of the 

motors can be known independently and plotted versus time. 

Figure 10. Position versus time plot for the traversal and winch 
motions when using a sine wave. 
 

From the parameterized traversal and winch motion 
commands, the positions of the motors with respect to time 
can be known. In the figures above, the red plots represent the 
traversal positioning while the green represent the winch 
positioning through the timed run for data acquisition. It is 
important to keep in mind that the step wave increments or 
decrements discretely which in turn affects the velocity 
commands by changing the commands abruptly rather than 
gradually. Thus the sine wave poses a trajectory that can be 
stable due to its gradual motion. 
 

Looking at the velocity plots (Figure 11 and Figure 12), one 
can predict how the changing of speeds will alter the swinging 
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motion of the platform especially when the platform is at its 
lowest points. Simply changing the gain of the speeds and 
having the platform operate very slowly (e.g. max motor 
velocity for traversal and winch is 10%) can dampen the 
swinging motion of the platform especially as it reaches its 
lowest   descent  points.   To   achieve   higher   stability   and 
minimize the oscillations due to swinging motion, data from 
entire testing scenario that incorporates the pendulum motions, 
the slack of the traversal rope, and the external forces acting 
on the Tyrobot can be modeled to tune the control algorithm. 

10% overshoot. Figure 13 shows the simulated tests done in 
MATLAB. 
 

The next step would be to test the controller against the 
physical hardware in a real testing scenario to observe a more 
adequate system response. Due to lack of raw data and 
unexpected forces not taken into account when performing the 
simulation, it is expected that the controller might need tuning 
after several dry runs. The control effort yielded by the 
controller maintains the motor under 100% of maximum 
output. 
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Figure 11. Velocity versus time plot for the traversal and winch 
motions when using a step wave. Using a limiter of 10% output, the 
max traversal velocity is 0.1 m/s (system requirement). The winch 
was capped at 20% output. 
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Figure 13.  PID controller steady-state response. This plot shows 
the working PID controller done in simulation for several velocity 
reference inputs. 
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Figure 12. Velocity versus time plot for the traversal and winch 
motions when using a sine wave. 

 
 

III. RESULTS 
 

A.  PID simulation results for Tyrolean velocities 
After obtaining the desired controller configurations and 

controller gains from some desired system requirements, the 
controller was tested for different speeds to achieve its steady- 
state response. The simulation shows that the stability of the 
scenario is achievable in less than 5 seconds with less than 

Time (seconds) 

Figure 14 Feedback step response plot. This shows the feedback 
step response of the simulated controller. 
 
 
 

IV. FUTURE WORK 
 

 
Future work will focus on tuning and perfecting the 

controller once actual test data becomes available as scenarios 
of the real surveying conditions are performed. 
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In the short term, possibilities for tuning the controller 
include gathering time data logs with motor velocity and 
position values as reported by the encoders. From there a more 
accurate description of the plant can be correctly modeled and 
a   controller   can   thus   be   designed   that   also   includes 
acceleration and jerk. By limiting the acceleration, the stability 
and robustness of the control architecture can be improved. 
Also, the  corresponding velocities of the  motors, in  either 
cm/s or m/s, have to be measured against ticks/s when the 
motor is under load conditions. From there a more accurate 
representation of the path and velocity command file can be 
created. 

 
In  the  long  term,  a  more  accurate  projection  of  the 

trajectory can be obtained that takes into account the swinging 
motion of the pendulum as a function of distance away from 
the carriage. The errors and differences of the path trajectory 
due to the slack of Tyrolean rope can also be calculated and 
accounted for. In addition, IMU data (accelerometer and 
gyroscope) from the sensor package located in the platform 
can be used to minimize the damping of pendulum, thus 
reducing uncertainties in the system. 

 
 

V. SUMMARY 
My work consisted in creating and simulating a control 

algorithm for a Tyrolean survey robotic platform that will be 
launched to the moon.   Simulation validates that stability of 
the system is achievable in 3.2 seconds with an overshoot of 
5.82% and control effort gain of 0.930. Tests of the physical 
device are needed to perfect the control algorithm for smooth 
data acquisition. Future work will focus on perfecting the 
algorithm by implementing unaccounted variables. 
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Introduction 
Multi-robot systems (MRS) have great promise for revolutionizing the way a variety of important and complex 
tasks are performed. In our research as summer scholars with Carnegie Mellon Robotics Institute Summer 
Scholars Program,we are developing teams of Cooperative Robotic Watercraft (CRW) for critical applications 
including flood response, water monitoring and security. 
A core design of our airboats is to use a commercial Android Smartphone to work as a CPU in our whole 
system, providing the computing, camera and communication for the boat. Moreover, using Android phones 
give us a relatively open and powerful development environment to try our idea. We work mainly in the 
Smartphone because of the access to multiple modes of communication like Wi-Fi and all kinds of data 
transferred from the sensors. For communicate with sensors, motors and servos, we use a relatively 
inexpensive microcontroller board named Arduino Mega to provide an array of digital and analog I/O for 
controlling the fan shroud, gyros and other external sensors modules.  
 
Our job in lab 
What we’ve done in our lab is to change the control system from PID to Motion Primitive. Unlike PID, a 
close-loop control method, Motion Primitives are elementary state trajectories used to produce motions in 
the position space. We can select appropriate elements based on the river environment parameters and 
combine them sequentially to produce more complicated and graceful trajectories. We created all the 
elements in Matlab and the boats worked pretty well in the simulation. In our strategy the boats could 
autonomously change the gain of thrust based on the trajectory elements. The gain will be increased if the 
boats only need to go straight to the waypoint while the gain will be decreased to move smoothly in turning. 
 
Test in Pittsburgh 
The first test was done at a lake near CMU. Our boats were only turning circles during the whole test because 
of the inexact model of the boats used to create all the elements. We took George’s advice to build a 
close-loop system to help our boats follow the trajectories. Notice that both the great inertial and current 
influence caused significant overshoot when we try to control the direction of the boats. We refer to the PID 
algorithm and add the idea of differential in our close-loop system. We tested our code several times at the 
lake near CMU, where the water was calm, similar to the environment in my simulation. 
Near the end of August, John, Ardalan and I took two boats to Ohio, the longest river in Pittsburgh. Testing 
was performed in several parts of the river with different current influence. This test showed that this Motion 
Primitive strategy did not take advantage in the straight line as we originally expected, which caused us to 
reevaluate our control algorithm. The boats could not keep their direction in the straight line due to the 
current influence and the monotone input signal in straight line. So we apply PID to handle such slight change 
in direction. 

mailto:zeshengx@gmail.com
mailto:tcgyn.student@sina.com
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Another test was done in the activity “River Quest”, in which each group made their own boats and competed 
with others with their boats. We sent three boats, two of which ran the PID and one ran my Motion Primitive. 
Winds cause significantly larger waves than the boats had encountered before, which reduced performance 
and the boats were not able to come back automatically because of the low gain in thrust we set for smooth 
turn.  
 

 

Fig.1. Final test in Ohio River 
 
Airboats arrived in China 
After 20 days leaving from Pittsburgh, we met the Airboats again in Nanjing, China. Flying thousands of miles 
across Pacific Ocean, the boats arrived in China on September 15. As we know, a good gain takes long pain. 
The boats were stuck in customs once they arrived. Fortunately, after we translating some necessary 
document, the boats finally ended their long trip and arrived at the destination----- Nanjing University of 
Science and Technology (NUST).     
 
Assembling 
Opening the package of the boats is as excited as opening the Christmas present. It’s amazing that you can 
receive a package that contains two robots. Before that, in our mind, robot should be complicated, delicate 
and hard to maintain. You can barely image to use common express to transport robots across half of the 
world and without worrying about some damages on them. In fact, we spent less than two hours to 
reassemble two boats by using some simple tools, then, following the checklist, do every step to test the boat. 
Consequently, both of boats are in good condition, which prove the robustness of Airboat, again. 
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Fig.2. Complete Airboats 

 
Test in NUST 
To celebrate the 60th anniversary of NUST, we did the demo of the Airboat in a pond within campus. Actually, 
it’s the first time for Airboat running in China and it adds another spot in the track of Airboat’s worldwide test, 
beside Australia, Philippines and Qatar. The demo caught the eyes and made many people to be curious 
about the Airboat. Since the interface for Airboat is designed user-friendly, operators can use the console to 
control boat with simple train. Thus we can take easy to let people try boat by themselves. We found that is a 
good approach to extend robotic technology by showing people some robots, which can be easily used by no 
specialist.   
 

 
Fig.3. Doing the demo in campus 

 
Attending an exhibition 
Just in time, there is a science park, near the campus, holding an exhibition about robots. We bring the 
Airboat to attend. Comparing with other robots, the Airboat seems to be weird, since others are much more 
complicated in structure. However, these robots needs to be prepared and modulated in several days before 
demonstrating, while Airboat can be used directly once we arrived. Also, Airboat is the cheapest robot in the 
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exhibition and it can be an autonomous platform for a broad set of applications including water quality 
monitoring, flood disaster mitigation and depth buoy verification. Therefore, Airboat is practical and flexible 
for multi-purpose application.    

 
Fig.4. Demonstrating Airboat in the exhibition 

 
Workshop by Prof. Paul Scerri 
We are appreciated that Prof. Paul Scerri can give us several precious workshops, sharing his inspiration and 
experience about multi-robots system, especially Airboat. His masterly speech deeply impressed us and 
broadens our vision in robotic field. 

 
Fig.4. Prof. Paul Scerri is giving a presentation about information collection 
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Abstract—Online mapping of the environment has been a 

growing interest for robotics researchers in many applications. 
The main focus of this study is to create fast, accurate and online 
3D maps to support flight planning algorithms for aerial robot 
platforms. To accomplish this goal, we modified the existed 
Hector SLAM library to localize our robot platform in 2D maps 
of the environment at different altitude levels. Then, we used 
height and orientation to create 3D map of the environment. The 
performance of our 3D map is tested on an aerial robot platform 
following the plan generated by using our map to navigate 
around 3D obstacles. Flight planning algorithm created collision-
free flight plans with the use of proposed 3D online mapping 
algorithm. We also showed that the aerial platform can perform 
the new flight plans during its flight. 
 

Index Terms— Simultaneous Localization and Mapping, 3D 
SLAM, Aerial Vehicle, Aerial Platform, Flight Planning 
 

I. INTRODUCTION 
OST online mapping techniques prefer the creation of 
2D maps, since 2D mapping can be done more 

accurately with relatively less computational power than 3D 
maps. In fact, 2D maps are accurate enough for most cases 
where the robot’s movement is restricted by two axes and 
there is no considerable amount of movement in the third axis. 
However, this is not the case for aerial vehicles, which are 
supposed to move in 3D environments. Working with aerial 
platforms also requires maintaining an accurate 4D position 
estimate of the platform while they are moving at a reasonable 
speed. Representing a 3D environment with 2D maps causes 
the flight planner to lose some relevant information about the 
environment, which can have significant importance for path 
planning. 
 Consider the case that robot platform tries to find a path to 
navigate from one point to another. In a 3D environment, such 
a flight plan may require movements in all three axes. Hence, 
working with only a 2D projection of the 3D environment may 
result in failing to find the optimum path or may result in no 
possible solutions even if they exist. For example, a 1 m × 1 m 
× 1 m box will cover its projection in a 2D map and the flight 
planner will try to avoid this region for creating a flight plan. 
 

This paper was submitted to RISS Journal at 29 September 2013.  
B. Yucesoy is an undergraduate student at Department of Computer 

Engineering, Bilkent University, Ankara 06800, Turkey (e-mail: 
burakyucesoy@gmail.com.tr) 
 

However, there will be some free space above the box in a 3D 
representation of the environment, which can be used to create 
a more efficient flight plan.  

The case mentioned above is just a simple example of the 
problems which can be encountered during flight planning in a 
3D environment with 2D maps. Therefore, 3D perception of 
the environment is necessary for high performance locomotion 
of aerial vehicles. However, 3D mapping of an environment 
may require high computational power and its online 
implementation can be problematic for most robotic systems. 
Thus, we propose a layered 3D SLAM approach to create fast 
3D maps of the environment by utilizing the Hector SLAM [1] 
algorithm.  

Our mapping algorithm divides the height axis of the 
environment into thin layers with a fixed height. Measurement 
of the robot altitude gives us the layer in which our robot is 
currently moving. Then, the Hector SLAM algorithm is used 
for localizing the 2D position of our robot in the environment. 
Finally, our algorithm uses the 2D position information 
coming from Hector SLAM and orientation of the robot to 
register newly seen obstacles in the 3D occupancy grid.  

II. EXPERIMENT SETUP AND ROBOT SPECIFICATIONS 
A miniature aerial vehicle (Fig. 1) is used for experiments. 

The robot flies via its six rotors mounted on carbon fiber rods. 
PID controllers are used to regulate system behavior in 
different axes. The main computer of the robot runs Robot 
Operating System (ROS) on Kubuntu and all the software are 
implemented in C++.  
 

 
Fig. 1. The robot used in experiments 

Two Hokuyo UTM-30LX Laser Scanners are mounted to 
the main body of the robot. One of the laser scanners is facing 
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down to measure the altitude of the robot and the other one is 
facing the front to sense the environment. The range of these 
laser scanners is 30 m and it has 270º field of view. These 
laser scanners work at 40Hz. The robot also has an inertial 
measurement unit to measure its orientation. 

Besides the robot setup, it should be noted that the Hector 
SLAM algorithm. Hector SLAM is an open source SLAM 
algorithm, which is compatible with ROS. It uses the 
occupancy grid map approach, where the probability of being 
an obstacle is assigned to each cell in the map. It uses laser 
scan inputs to detect the obstacles in the environment. Below, 
you can see a 2D map generated with the Hector SLAM 
library (Fig. 2). 

 

 
Fig. 2. 2D map created by Hector SLAM 

III. CONTRIBUTION 
The main contribution of this paper is to propose a new 
technique for fast and accurate 3D mapping of the unknown 
environment. The proposed layered 3D SLAM algorithm can 
be divided into three major parts: altitude estimation, 
localization and mapping.  

A. Altitude Estimation 
To measure altitude, a Hokuyo Laser Scanner is used facing 

downward. It returns the distances of the points below the 
robot. However, some of these points may come from 
obstacles below the robot rather than the ground. Therefore, 
the direct use of these points to estimate altitude will give an 
incorrect estimation since the distance of these points will not 
be the actual altitude of the robot with respect to ground. To 
have a better estimation of the robot height, we remove outlier 
points and then calculate arithmetic mean of the remaining 
points as the altitude of the robot.  

B. Localization 
At the beginning of the algorithm, we initialize 2D maps 

(layers) on top of each other with a fixed height. A sample 
illustration of these 2D maps can be seen in Fig. 3.  

 
Fig. 3. Layers of 2D maps using for localization purposes 

After estimating the altitude of the robot, our algorithm 
finds the layer, in which the robot is operating. Then, the 
Hector SLAM algorithm is executed by only using this 2D 
map. The position estimation part of the Hector SLAM 
algorithm requires an initial estimation to approximate the 
current position. In this step our algorithm uses the previous 
position estimation to feed a new run of the position 
estimation algorithm, even if the robot was in a different layer 
on the previous run of the position estimation algorithm. Even 
if the robot changes its layer, the change in the position will be 
small in two consecutive runs of the position estimation 
algorithm. Therefore, the previous position is a good 
estimation for the current position. 

C. Mapping 
In the previous steps of the algorithm, the altitude and 

position on 2D-plane are found. The inertial measurement unit 
is also used to find the orientation of the robot. After finding 
the position and orientation of the robot, we just register laser 
scans into 3D occupancy grid. In this step some points are 
filtered out based on the number of times they seen. 

IV. EXPERIMENTS 
In the experiments, a wooden stick is placed between the 

starting and target point (Fig. 4). In Fig. 4, the starting point is 
marked with “A” and the target point is marked with “B”. 

Corresponding 3D map of this environment, created by the 
layered 3D SLAM algorithm, can be seen at Fig. 5. 
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Fig. 4. Experiment setup 

 
Fig. 5. Corresponding 3D map 

For this setup, the planner creates a flight plan using the 
collision free space over the stick. In Fig. 6 the planned path 
for flight is illustrated as dashed green line. Our proposed 
solution, layered SLAM, can continue to localize the robot 
while it was following this flight plan that went over the stick 
and at the same time updating the map. In Fig. 7 the robot is 
shown while performing generated flight plan. In these photos, 
robot starts its flight, approaches to the stick, goes up, goes 
over the stick, goes down, approaches to its destination and 
lands respectively. 
 

 
Fig. 6. Path generated using 3D map 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 7. Robot navigates in the environment using flight plan 
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Abstract—A robust algorithm is proposed to detect yellow lines 

both at day and at night. A Support Vector Machine is used to do 
the classification. To train the classifiers, ‘LabelMe’, combined 
with the Matlab Toolbox, is used to collect a large number of 
yellow lines and many other objects from sample images. A time 
detection classifier is also trained to determine whether the image 
is taken at day or at night. Different feature sets are extracted to 
do the training and detection.  

  
Index Terms—classifier, feature set, Support Vector Machine,  

yellow lines 

I. INTRODUCTION 

Yellow lines are important on the road since they provide 
drivers with valuable guidance. This work is motivated by the 
need to detect these lines automatically for maintenance 
purposes.  

The objective of this work is to design an algorithm to detect 
yellow lines on the road. The algorithm should be robust and 
adaptable to different situations.  

II. CLASSIFICATION METHOD 
Support Vector Machine (SVM) is a common method of 

machine learning which is widely used to classify objects. 
Given a set of training examples, each marked as belonging to 
one of two categories, an SVM training algorithm builds a 
model that assigns new examples into the one category or the 
other.       
     Fig. 1 shows an example of SVM. Maximum-margin 
hyperplane and margins for an SVM trained with samples from 
two classes. Samples on the margin are called support vectors. 
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Fig.  1.An example of SVM 

III. DATA COLLECTION 
For training ,  many images were needed which contain 

examples of yellow lines on the road. An Android application 
was created for data collection. We use a Samsung Galaxy 
Camera mounted in cars to take images and videos as the cars 
move across traffic.  The application transfers images using 
Dropbox and then uses Matlab to do the analysis. A picture of 
the camera and how it is mounted in a car is depicted in Fig. 2.

    
Fig.  2. Camera and its position in the car. 

IV. TRAINING 
To train the classifier, many examples of yellow lines were 

needed, and  a large number of examples of other objects in the 
image. We labeled a set of images using ‘LabelMe’, as shown 
in Fig. 3. 

 

Using Machine Learning to Detect Yellow Lines 
on the Road 
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Fig.  3. An example of ‘LabelMe’ 
 

The ‘libsvm’ toolbox was used to train the classifiers. 
Cross-Validation was used to verify the models obtained. The 
binary mask shown in Fig. 3 was obtained using Matlab. The 
yellow lines are shown in white, and other things are indicated 
in black. 

V. DETECTION 
 To detect yellow lines, we  need to consider different 

situations. Yellow lines are different at daytime or at nighttime. 
We extracted different features and trained two classifiers. 
Before detection, we need to know whether the image was 
taken at day or night. Therefore, we trained another classifier to 
do time-of-day detection. The overall framework is shown in 
Fig. 4. 
 

Image
Feature
set 1

SVM
(time)

1--day
0-night

Feature
set 3

Feature
set 2

day

night

SVM
(night)

SVM
(day)

Classifer

Calculate each pixel’s
distacne to the hyperplane

Binary
result

Gray image

 
Fig.  4. Overall Framework of Detection 

 
The feature sets used are listed in TABLE I. 

 
TABLE I 

FEATURE SETS FOR DETECTION 
Feature set 1 Feature set 2 Feature set 3 

Mean H,S,V,R,G,B values  
of the image 

The Proportion of:{H,S}<0.2; 
{R,G,B}<20;{R,G,B}>250 

H,S values of 
each pixel 

H,S,V values of 
each pixel 

Filtered image 
pixels 

VI. RESULTS 

A. Time-Of-Day Detection Results 
On a test set of about 40 images, the time-of-day detection 

classifier achieved 100% accuracy. That means the SVM 
classified all the day images into category “1” and all the night 
images into category “0”.  

B. Daytime Detection Results 
On a test set of about 40 daytime images, the yellow lines 

detection classifier achieved 95% accuracy. These results are 
promising, although a more extensive characterization of 
performance is needed.  Fig. 5 shows an example of daytime 
detection results. 
 

 
Fig.  5. An example of daytime detection results 

C. Nighttime Classification Results 
On a test set of about 40 images at night, half of the results are 

as good as those at daytime. But others are not mainly because 
of the influence of streetlights. Nearly 20% of the pixels that are 
not from yellow lines are classified into white and some pixels 
that are from yellow lines are classified into black. This 
suggests that more features need to be added. Some examples 
are depicted  in Fig. 6. 
 

 

 
Fig.  6. Examples of nighttime detection results 

VII. CONCLUSION 
   A methodology to detect yellow lines on the road was 

designed, which is capable of operation at both day and night. 
While detection performance during the day looks promising, 
future work needs to address the influence of streetlights in 
order to improve classification accuracy during the night. 

SUMMARY OF MY EXPERIENCE AND FUTURE WORK 

A. Research 
The Robotics Institute Summer Scholars Program at 

Carnegie Mellon University gave me a lot of opportunities to 
access high technology in robots. My research mainly focuses 
on Computer Vision (CV), which is a very hot topic these years.  
I also worked on Android Programming on a Ubuntu Operating 
System. After my summer research, I knew more about CV, 
including some hot research areas, using machine learning to 
do classification, filtering and some basic algorithms in CV. I 
also got more familiar with Linux Operating System and gained 
some experience in Robot Operating System(ROS). More 
importantly, by talking with my supervisor and some graduate 
students I know the important steps to do research and how to 
present  my research. 

B. Activities 
Besides research, I also took part in many activities, such as 

presenting my research to American high school teachers and 
mechanical hull design contest. Through these activities, I 
worked with many students from all over the world and 
understood more about their cultures. I also improved my oral 
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English and the ability to communicate with students from 
different cultures. In addition, I made many friends both from 
China and other counties. I believe these experiences will 
benefit me a lot for my future career. 

C. Future work 
First, I will continue to improve my algorithm to detect 

yellow lines at night. I am considering extracting more features 
in order to improve detection accuracy at night. I hope that I can 
still collaborate with my lab to continue my research. Second, I 
want to detect other objects, such as cars or persons on the road, 
which is much difficult than detecting yellow lines. Since I got 
some experience in ROS, I would also like to use ROS to 
operate on intelligent robot ‘NAO’ in my home university. 
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