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At the core of the program are incredibly talented 

and dedicated faculty, graduate students, staff, and 

RISS alumni.  

We are incredibly thankful for their support, 

participation, leadership, and vision that make this 

one of the best research experiences in robotics and 

intelligent systems in the world. 
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The Robotics Institute Summer Scholars 
Program (RISS) is a research experience that 
gives undergraduate students the opportunity 
to work on research projects in the fields of 
robotics and intelligent systems, supervised 
by faculty from the Robotics Institute at 
Carnegie Mellon. RISS also provides a series 
of events and seminars to help students 
prepare for graduate school and future 
careers in academia and industry. 
 
The experience of a singular focus on one 
research project is unknown to many 
undergraduates, who typically divide their 
attention between coursework, extracurricular 
activities, and, if time permits, research. RISS 
gives students the rare experience of devoting 
their productive effort to one project, giving 
them a sense of what’s involved in a career of 
academic research. Scholars work closely 
with faculty mentors and graduate students on 
real research projects, and make tangible 
contributions to that research. 
 

 
 
Scholars are given numerous opportunities to 
build relationships with faculty, graduate 
students and other scholars, both in and 
outside of their individual projects 

 
 
As a cohort, we have developed a close 
community outside of our research. Many 
connections and friendships we developed 
over the summer will persist into our careers 
as roboticists and researchers.  

 

 
 
The program also helps students to prepare 
for the path ahead of them, including 
preparing for, being admitted to, and attending 
graduate school. RISS helps scholars by 
offering seminars, information sessions, and 
individual meetings to help them apply to 
graduate schools, write statements of purpose 
and apply to fellowships. Many scholars from 
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previous years have gone on to research 
positions at top graduate schools across the 
country. 
 
But why go to grad school? Many undergrads 
that enroll in RISS come from programs at 
universities that position them well for jobs in 
industry. Students in graduate programs give 
up the salary and lifestyle their peers receive, 
while spending four to six stressful years 
scrambling for publications and funding. We 
feel that it is worth these drawbacks to enter 
the unique research environment that is the 
engine of innovation in America. 
 
Research has been the basic building block of 
the future since the days of Francis Bacon 
and Louis Pasteur. The origins of the modern 
internet are found in collaborations between 
networking companies, the US government, 
and research institutions. It was research at 
Carnegie Mellon and Stanford that spawned 
the self-driving car, a technology that is 
certain to become industry standard in our 
lifetimes.    
 

  
The unique environment of the university 
fosters ingenuity by promoting the 
collaborative growth of human knowledge. 
 
Being a member of academia allows one to be 
at the forefront of this growth, and to influence 
its direction. Innate in all researchers is the 
drive to create and discover new things. All of 
the summer scholars from this year and years 
past are marked by our passion for our 
research and our desire to change the field of 
robotics or artificial intelligence. The RISS 
program has served as an excellent outlet for 
this passion. 

In this journal you will see the fruits of our two 
brief summer at Carnegie Mellon. Some of the 
work presented here represents ongoing 
research efforts, while others were complete 
when we returned to our respective 
institutions. We hope that you will enjoy 
reading about what we have done.  
 
Sincerely, 
 

            
                    
Kenneth Marino        &     Ben Weinstein-Raun 
RISS Scholars 2014 
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The Robotics Institute Summer Scholars (RISS) Program 

is an intensive undergraduate research program at 

Carnegie Mellon University. Summer scholars participate 

in innovative research that focuses on robotics as the 

intelligent connection of perception to action. As part of 

our commitment to undergraduate research, the institute 

hosts an National Science Foundation Research 

Experience for Undergraduates Site through the RISS 

program. All scholars work with faculty, post-doctoral fellows, researchers, graduate 

students, and fellow summer scholars from around the world to conduct research work in: 
 

• Intelligence: including core AI technologies, motion planning, control theory, planning 

under uncertainty, POMDPS, game theory, and machine learning. 

• Perception: including computer vision, stereo processing, understanding ladar and 3D 

sensing, state-estimation, and pattern recognition. 

• Action: including work mechanisms, actuators, their design and control.  

Previous scholars have worked on projects ranging 

from distributed sensing to autonomous flight through 

cluttered forests. Learn more about RI participating 

projects at www.ri.cmu.edu/summerscholars and 

scholar contributions to this research.   
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6

http://www.ri.cmu.edu/summerscholars


Through the program, scholars are: 

(1) Immersed in a guided research process that enables them to experience the thrill of 

discovery and to adopt the role of scientist as one that is authentically their own; 

(2) Inspired to pursue careers in robotics and related STEM fields and equipped with the 

skills and new knowledge to seize industry and graduate school opportunities; 

(3) Challenged by the interdisciplinary nature of robotics, the complexity of the research, and 

the vast potential to impact and improve the world’s quality of life;   

(4) Supported by robust student-development programming that complements the research 

immersion and informs the student’s post research experience trajectory; and 

(6) New members of lifelong global community of researchers, entrepreneurs, and innovators 

that support, encourage, and enrich each other’s lives.  

 

The Robotics Institute at Carnegie Mellon University, the largest university-affiliated robotics 

research group in the world, offers a diverse breadth of research with an extensive range of 

applications; with over a hundred funded research projects. The 

Institute is a global leader in robotics research, education, and 

innovation. The Institute’s experience, capacity, and faculty 

engagement extends unparalleled opportunities for students to be 

immersed in cutting-edge research while building in-demand STEM 

knowledge and skills. 

 

The institute has eight years of experience hosting successful formal summer undergraduate 

research programs. The RI Summer Scholars program has grown to an average cohort size 

of 30 students and yields an impressive number of successful graduate school applications 

(at CMU and top universities around the world) and research position placements.   
 

Offers of admissions to RI graduate programs received by RISS alums:  

 

• 2012: 7 offers (1 PhD, 6 masters) 

• 2013: 9 offers (4 PhD and 5 masters) 

• 2014: 11 offers (4 PhD and 7 masters)   
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Over half of the 2014 scholars will continue to collaborate with their RISS mentors and labs. 

By continuing their research together and writing articles to disseminate research results, 

scholars have the opportunity to further develop critical skills needed for success in graduate 

school and industry. In addition to this 2014 RISS Working Papers Journal, at least 10 other 

papers are in process for submission to peer-reviewed journals and conferences. A growing 

number of scholars have also received offers of employment by robotics labs, centers, and 

companies. In 2014, three RISS alumni returned as robotics researchers to the Pittsburgh 

area.    

 

At the core of the program are incredibly talented and dedicated faculty, graduate students, 

staff, and RISS alumni.  We are incredibly thankful for their support, participation, leadership, 

and vision that make this one of the best research experiences in robotics and intelligent 

systems in the world.  
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Auto-Calibration and Hybrid Force/Position Control for the Cerberus 
Cardiac Robot 

Macauley S. Breault, Nathan A. Wood, Cameron N. Riviere

Abstract — Gene therapies have emerged as a promising 
treatment for congestive heart failure, yet they lack a 
method for minimally invasive, uniform delivery.  To 
address this need we developed Cerberus, a minimally 
invasive parallel wire robot for cardiac interventions.  
Prior work on Cerberus was limited to controlling the 
device using only position feedback.  In order to ensure 
safety for both the patient and the device, as well as to 
improve the performance of the device, this paper 
presents work on enhancing the existing system with 
force feedback capabilities.  By modelling the statics of 
the system and developing a tension distribution 
optimization technique, existing position control schemes 
were modified to a hybrid force/position controller.  The 
addition of force control was utilized in an auto-
calibration procedure to measure the geometry of the 
robot.  The presented auto-calibration routine is able to 
identify the shape of the device to within 0.5 mm and 
0.9°, while the hybrid control scheme yields a positioning 
error of 1.78 mm. 

I. INTRODUCTION 

A promising topic in the field of cardiovascular research 
has been the use of gene therapies for congestive heart 
failure. Current practices lack effective ways to deliver a 
uniform distribution of gene expression that is required for 
myocardium interventions [1]. Ideally, this would entail a 
large number of small injections that cover large areas of a 
beating heart where accuracy matters. 

Traditional cardiac procedures involve opening the 
chest cavity to gain access to the paused heart and lungs. 
This exposes the patient to a high risk of infection and long 
traumatic recovery times [2]. Minimally invasive 
thorascopic techniques allow surgeons to reach the beating 
heart using rigid tools that are inserted between the ribs via 
small incisions [3]. Thoracic procedures are limited by the 
trauma inflicted by deflating the left lung in order to reveal 
the heart, the need to stabilize the beating heart, and the 
rigidity of the tools that limits the workspace. Neither option 
provides an effective way for the delivery of gene therapy 
drugs. 

Cerberus is a planar parallel wire robot developed for 
minimally invasive cardiac interventions [4]. The device is 
inserted using a subxiphoid approach that accesses the heart 
while avoiding the lungs. Flexible arms then allow the 
device to expand into a triangular shape and adhere to the 
surface of the beating heart with suction on its three bases, 
providing a stable platform with no motion relative to the 
heart. Wires from each base connect to an injector head that 
moves within the triangular support structure by changing 
the wire lengths. This design has the typical advantages of 
parallel wire robots, namely a large workspace and the 

ability to move quickly within this workspace [5]. These 
advantages give the device the potential to deliver multiple 
injections accurately within the entirety of the workspace to 
the beating heart. 

Previous work on Cerberus has focused on adapting 
previously developed methods for parallel cable 
manipulators to our system [4]. Under simplifying 
assumptions about the geometry of the robot and neglecting 
the curvature of the heart, inverse kinematics that yield the 
wire lengths were successfully derived, and a control system 
was developed and tested in vivo using only position 
feedback. 

Errors in the calculations can cause wires to be too 
loose, resulting in loss of injector control and accuracy, or 
too tight, potentially interfering with heart activity or 
breaking the device. Such errors are amplified by the fact 
that the kinematics require accurate knowledge of the 
geometry which becomes altered once deployed on the heart 
to the point where position feedback alone will not suffice.  

With the long-term goal of Cerberus to be in the 
operating room, it is crucial that the forces produced by the 
robot are monitored and controlled to ensure safety. Such 
forces can be measured by the tensions in the wires under 
the assumption that the device is frictionless and non-
inertial. Further, wires can only exert force by pulling [5, 6]. 
Due to the device’s actuator redundancy, the state equations 
for the forces in static equilibrium are coupled and 
nonlinear, leading to an infinite number of possible tension 
combinations. Hence, at a given point, the tension for each 
wire must be found by maximizing the number of wires that 
are within a safe range in the workspace. Limited work 
exists on finding tension distribution for planar cable-driven 
robots. While other parallel cable robots, such as NIST 
ROBOCRANCE, have the advantage of gravity to keep 
wires taut, Cerberus relies entirely on its actuators to 
maintain tensions [7]. 

In this paper, state equations for statics are adapted from 
previously developed methods for one degree of actuation 
redundancy to fit this system [5], a method to find the 
optimal tension distribution at a given point is developed [6], 
and an algorithm that estimates the geometry of the device 
based on force and encoder values is constructed which 
allows the injector to start anywhere once deployed and 
move independent of location knowledge. Preliminary work 
is also done in adding force control to the existing position 
control that would confine tensions within an allowable 
range and increase position accuracy to make the device 
safer for surgery. 

II. METHODS 

A. System Hardware 
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Existing electrical control system introduced in 
Costanza et al. [4] was adapted to fit three load cells using a 
pulley system and calibrated to measure the tension in each 
wire. A profile view of the system can be seen in Fig. 1.  For 
the purposes of this experiment, a desktop set-up was 
designed capable of fixing the three bases of the robot to a 
planar surface while allowing variation the lengths and 
angles of the arms at known values as shown in Fig. 1. A 
Pixy camera was mounted directly above to capture all 
possible configurations within the camera’s field of view. 
Ground truth was established using the camera’s color 
tracking software via markers on the bases and injector. 

B. Kinematics 

Kinematic equations were adapted to fit this system 
from previous work for general parallel wire manipulators 
with one degree of actuation redundancy [5]. No closed form 
solution exists for the forward kinematics because the 
system is a parallel manipulator. Inverse kinematics can be 
found by drawing concentric circles around each base that 
intersect at the injector to find the Euclidean distance 
between each base assuming that the middle base is set as 
the origin under Cartesian coordinates (Fig. 2). As provided 
by Costanza et al. [4], the lengths of the wires are given by: 

 

 �
𝑟𝑙2

𝑟𝑚2

𝑟𝑟2
� = �

(𝑥0 + 𝐿𝑙 cos 𝜃𝑙)2 + (𝑦0 − 𝐿𝑙 sin𝜃𝑙)2

𝑥02 + 𝑦02

(𝑥0 − 𝐿𝑟 cos𝜃𝑟)2 + (𝑦0 − 𝐿𝑟 sin 𝜃𝑟)2
� (1) 

 
Note that this depends on knowledge of desired injector 

position and the geometry of the robot. However, geometric 
measurements become skewed once the device is deployed, 
rendering the previous equations inaccurate. Upcoming 

sections will discuss a solution to this dilemma using an 
auto-calibration procedure. 

C. Statics 

Previously developed methods by Williams et al. [5] for 
parallel wire robots with one degree of actuation redundancy 
were adapted for Cerberus. In this system, it is assumed that 
the mass of the end-effector, or the injector, is negligible. 
Then, even in motion, the system can be modeled such that 
the sum of the wire tensions will always be zero. A free-
body diagram of this static model is shown in Fig. 2. The 
Cartesian coordinates are altered from the frame used in 
kinematics (𝑥,𝑦)  with the middle base as the origin to 
(𝑥′,𝑦′), where the injector is now taken as origin such that 
the middle wire lines up with negative 𝑦′  with a similar 
transformation for the angles (Fig. 2b). Resulting static 
equations are given by: 

 
 ∑𝐹𝑥′ = 𝑡𝑙 sin𝜙𝑙 + 𝑡𝑚 sin𝜙𝑚 + 𝑡𝑟 sin𝜙𝑟 = 0  (2a) 
 ∑𝐹𝑦′ = 𝑡𝑙 cos𝜙𝑙 + 𝑡𝑚 cos𝜙𝑚 + 𝑡𝑟 cos𝜙 = 0  (2b)  

 
where 𝑡𝑙 , 𝑡𝑚, 𝑡𝑟 are the tensions applied by the left, middle, 
and right wires respectively. This can also be expressed as: 
 
 𝐒 𝐓 =  𝟎 

     𝐒 =  �𝑠𝑖𝑛 𝜙𝑙 𝑠𝑖𝑛 𝜙𝑚 𝑠𝑖𝑛 𝜙𝑟
𝑐𝑜𝑠 𝜙𝑙 𝑐𝑜𝑠 𝜙𝑚 𝑐𝑜𝑠 𝜙𝑟

� (3) 

     𝐓 = �
𝑡𝑙
𝑡𝑚
𝑡𝑟
� 

   
Due to the actuation redundancy, (3) is underconstrained 
meaning there are infinitely many tensions combinations 
possible that would satisfy the equation. 

D. Optimal Tension Distribution 

In order to solve for the tensions in the system, 𝐓, (3) 
must be inverted. Then the tensions of the wires in our 
system can be expressed as: 

 
 𝐓 = 𝛼𝐍, (4) 
 
where 𝐍 = [𝑛𝑙 𝑛𝑚 𝑛𝑟]𝑇  is the kernel vector of the 
components of the tensions from (3) and 𝛼  is a scalar 

b) 

 

 

Fig. 1  (Top) Control system in acrylic box. Each servo rotates a reel 
that tensions the corresponding wire. The wires extend across pulleys 
to a corresponding load cell. (Bottom)  Desktop set-up with three 
bases fixed on a platform, where the left and right base can be set to 
various lengths, and a mounted camera. 

 

      

Fig. 2  a) Ideal kinematics and b) the free body diagram of the planar 
wire robot manipulator. 

 

a) 
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weight. A method to calculate the kernel vector was adapted 
from Williams et al. [5] where each component is found by 
taking the determinant of the 2x2 submatrix of 𝐒 with the 
corresponding column removed. Using this method the 
kernel vector for this system would be: 
 

 𝐍 = �
𝑛𝑙
𝑛𝑚
𝑛𝑟
� = �

sin(𝜙𝑚 − 𝜙𝑟)
sin(𝜙𝑟 − 𝜙𝑙)
sin(𝜙𝑙 − 𝜙𝑚)

� (5) 

 
By setting the coordinate system such that 𝜙𝑚 = 180° , 
equation (5) can be simplified to: 
 

 𝐍 = �
sin(𝜙𝑟)

sin(𝜙𝑟 − 𝜙𝑙)
− sin(𝜙𝑙)

�  (6) 

 
The kernel vector given by equation (6) gives us the 

ratios of tensions that satisfy equation (3). Recall that 
parallel wire robots can only exert tension. Thus, the 
tensions in the wires 𝐓  will always be positive in the 
workspace. The signs of the tensions are expressed by the 
trigonometric expressions in 𝐍, where a point outside of the 
workspace will result in an angle that produces a negative 𝑛 
and a point taken on the edge of the workspace will result in 
𝑛 = 0. 

The tensions are also constrained by  𝑇𝑚𝑖𝑛 ≤ 𝐓 ≤ 𝑇𝑚𝑎𝑥 , 
where 𝑇𝑚𝑖𝑛 > 𝐓 will result in a loose wire that could get 
caught on something and 𝐓 > 𝑇𝑚𝑎𝑥  may snap the wire, 
break the robot or restrict heart movement [6]. To ensure 
that this is satisfied by each of the wires, the scalar 𝛼 must 
be chosen such that they all meet the minimum tension 
requirement for any given point within the workspace. This 
can be generalized as: 

 𝛼 = 𝑇𝑚𝑖𝑛
min𝐍

 (7) 

Combining (4), (6), and (7), the optimal tensions required to 
keep the injector static can be found for any point within the 
workspace. Note that tensions above the maximum allowed 
force must be manually rejected. 

E. Auto-Calibration 

Due to the flexible arms, the geometry of the robot after 
it is deployed onto the heart can vary. Obtaining visual 
confirmation of robot using medical imaging would be 
undesirable as it would take extra time and be more 
expensive. Other research has explored alternative methods 
of calculating cable lengths from geometric properties [6]. 
The method previously used by Cerberus involved manually 
adjusting wire lengths until the user felt that the injector was 
at a base given that that base’s wire was fully taut. The 
encoder values at said base were then recorded and the user 
would then manually position the injector to the next base. 
The lengths of the robots arms were then determined using 
these wire lengths. 

In an effort to automate this process, an auto-calibration 
routine was developed that takes advantage of force 
measurements. Similar to the manual process, the auto-

calibration begins by pulling the wire of a designated base as 
the other two wires maintain a minimum tension as to not 
inhibit the main wire. The robot will know that it is at the 
base when its designated wire cannot be pulled in without 
exceeding the maximum while the other wires are within the 
minimum range. This process repeated to record the encoder 
values at each base. The encoder values are then converted 
into wire lengths based on the reel’s diameter where the 
difference between each base will give the designated arm 
length as well as the angle between the left and right base. A 
summary of this algorithm can be seen in Fig. 3. Accuracy 
and precision of the auto-calibration algorithm was tested by 
running it under varying the geometry of the set up and 
comparing the results to the known geometry values. 

F. Hybrid Force/Position Control 

Due to the device’s unique design, the actuation 
redundancy means that each wire must be controlled 
separately via servos. Prior controls relied on varying 
individual wire lengths, calculated using inverse kinematics 
based on the desired position and the encoder values of the 
servos translated into lengths, to move the injector. Hence 
errors in calculation or geometric error could cause errors in 
position allowed for the possibility of loose or too tight 
wires. Such occurrence would translate to the surgeon 
having poor control of injection placement in an application 
setting. 

With the ability to monitor tensions in the wires, the 
possibility of melding both position and force measurements 
to control the injector’s movement and location is explored. 
A hybrid of force and position control would give the best of 
both scenarios; allowing for accurate position of the injector, 
determined by wire length and optimal tensions, while wire 
tensions are maintained within the proper range. A parallel 
controller was implemented using two PID controllers using 
desired location. One controller used force feedback as the 
input with the set point based on the calculated desired 
tensions for the desired target location. The other controller 
used position feedback as the input with the set point based 
on the calculated desired wire lengths for the desired target 
location. Both yield portions of the servo speed that, when 
added together, resulted in the actual speed. In cases where 
the injector was far from the target but a tension was too 
high, the corresponding servo would release wire quicker. 

 

Fig. 3  Algorithm for auto-calibration. 
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The hybrid force/position controller was tested against 
the controller that used only position feedback for various 
geometric configurations. The injector was sent to ten 
desired locations within the workspace. These points were 
compared to the injectors’ actual location obtained from a 
camera via color markers. The resulting points were 
compared to the desired locations to find error and 
covariance. 

III. RESULTS 

Simulations and bench top experiments were conducted 
to verify the validity of tensions measurements, auto-
calibration results and hybrid controller under operation 
conditions. 

A. Optimal Tension Distribution 

A method of calculating the tension distribution from 
desired injector location such that all tensions are at least the 
minimum tension requirement for every point in the 
workspace was found. A model of the device was simulated 
using MATLAB to assess the dependence of the workspace 
with regard to geometry and tension limits. 

The simulation was able to calculate the optimal tension 
distributions with various arm lengths and angles, validating 
that the technique is robust against any geometry. An 
example of such a distribution is demonstrated in Fig. 4, 
where the color map indicates the minimal tension required 
by the wires within the workspace as a ratio between the set 
maximum and minimum tensions. Smallest tensions closer 
to the minimum tension are shown in blue while the smallest 
tensions closer to the maximum allowed tension are shown 
in red. The lowest minimum tensions are in the middle of the 
workspace where as the highest minimum tensions are 
present on the boundaries of the workspace. The lack of 
color around the arms of the robot indicates that tensions in 
those areas could not satisfy the constraint, namely that the 
larger tensions were above the maximum. The amount of 
usable workspace depends on the ratio of maximum to 
minimum tension. Increasing the maximum tension will 

increase the accessible workspace. Conversely, this 
technique can be used to determine the geometry that 
optimizes the amount of usable workspace. 

B. Auto-Calibration 

Kinematics and statics depend on accurate knowledge 
of the arm lengths and angles of Cerberus to position the 
injector. This geometry is unknown once robot is deployed 
onto the heart. An auto-calibration algorithm was designed 
that can estimate the unknown geometry of the device after 
it is deployed onto the heart and allows the injector to start 
in any arrangement. An example of the auto-calibration 
process in screenshots is shown in Fig. 5. 

Auto-calibration was tested using various geometries to 
verify the accuracy of the procedure. Estimates of the left 
and right arm lengths and symmetric angle between the arms 
compared from the calibration procedure were compared to 
the actual measurements. The average mean error of the left 
and right arm were 0.47 mm (±0.37) and 0.59 mm (±0.30) 
where the actual dimensions were both 100 mm while the 
mean error for the angle was 0.90° (±0.14) with the actual 
angle being 30°. 

C. Hybrid Force/Position Control 

A preliminary controller was implemented that uses 
desired wire lengths and tensions to move the injector. These 
controls were used in parallel with a PID controller and 
combined to output the speed of the servo to control the wire 
lengths. Fig. 6 shows the time trial results of hybrid 
controller of desired values and actual values showing each 
wire achieving desired tension within 20 seconds. To reach 
this tension, the wires had to deviate away from its desired 
length value. This compromise is present due to the small 
inaccuracies in the calculation for the wire length due to 
oversimplification of the system. 

 

Fig. 4  Contour graph of tension optimization under the geometry of 
𝐿𝑙 = 100 𝑚𝑚,  𝐿𝑟 = 100 𝑚𝑚, 𝜃 = 30°, 𝑇𝑚𝑖𝑛 = 100 𝑚𝑁,
and  𝑇𝑚𝑎𝑥 = 500 𝑚𝑁. 

 

 

Fig. 5  Screenshots during auto-calibration (a)-(d). (a) Robot starts in 
any configuration. (b) Injector moves to middle base. (c) Injector 
moves to left base. (d) Injector moves to right base and then restarts 
back at middle base. 

(a)     (b) 

 

 

 

(c)     (d) 
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Movements of the injector were divided into stages. 
After a desired position is commanded via the surgeon, the 
robot calculates the desired wire lengths and optimal 
tensions. In the first stage of the motion, both position and 
force control are given equal weights in moving the robot. 
As the injector closes in one the desired wire lengths within 
1 cm of the desired wire lengths, position control is weighted 
heavier than force control until the wire lengths are within a 
2 millimeters of desired values. After which, force control 
takes over and alters the wire lengths until the desired statics 
are achieved. This can be seen in Fig. 6 where within 10 
seconds after starting, the arm lengths diverge from their 
desired values to compensate for tensions. 

The injector’s position accuracy was tested using hybrid 
force/position control and position-only control. The injector 
was commanded to go to ten known coordinates within the 
workspace. Ground truth of the end-effectors was found 
using the built-in color tracking system of a Pixy camera 
fixed above the platform set-up. Arm lengths and angles 
were varied. An example of an experiment is seen in Fig. 7. 
Local accuracy of the hybrid approach appears to be no 
better than position-only control with improvements in some 
areas. Analysis of global accuracy reveals that hybrid control 
has proportional error for both x and y position error while 
position control has significantly higher error in the x-
direction. Overall, the hybrid controller yielded of 
positioning error of 1.78 ± 0.78 mm, while the position 
control yielded an error of 2.89 ± 1.40 mm 

IV. DISCUSSION 

Current models of the device are simplified for ideal 
conditions. Future work could focus on improving the 
geometric assumptions made to better reflect realistic 
conditions. Particularly taking into account the base 
diameter will change both wire length and angles used to 
calculate optimal tensions. Further work could also explore 
different controller architectures. The ideal controller would 
be able to balance the relationship between force and 
position for smoother movements without stages. In vivo 

should be performed to assess how the periodic motion of 
the heart will affect the additional force control. 

The next step for this robot would be to translate the 
algorithm from the current planar model to a curved surface 
to replicate more realistic heart conditions. This would begin 
on an idealized sphere and then move onto irregular curved 
surfaces similar to the heart. Finally, the movement of the 
heart should be taken into account so that the wires will 
adjust to move with the beating heart as to maintain constant 
tensions in the wire without moving the injector. 

V. CONCLUSION 

Force measurements of a parallel wire manipulator with 
actuation redundancy for cardiac interventions were 
successfully integrated with the pre-existing system using 
load cells. The capability of monitoring tensions of wires 
ensures the safety of the patient by ascertaining that the 
forces are within a range that allows the surgeon to maintain 
control of the injector’s placement by keeping wires taut yet 
low enough to maintain the integrity of the robot as well as 
to not interfere with heart movement. The additional 
information about the system’s state also means that desired 
injector position potentially can be more accurate. More 
importantly, the injector can now be moved without 
knowledge of position, allowing for the ability to update the 
geometry of the robot after it is deployed using auto-

 

Fig. 6  Experimental arm lengths and tension distribution results when 
injector commanded to go to center of workspace for one sample run. 
Commanded values are shown in red and experimental measurements 
are shown in blue. Assume injector starts at middle base where the left 
and right wires are fully extended. Negative wire lengths indicate that 
the wire must retract. 

 

 

Fig. 5  Local (left) and global (right) point positioning results from 10 
points (black) within workspace using hybrid (blue) or position (red) 
controller with the geometry of 𝐿𝑙 = 100 𝑚𝑚, 𝐿𝑟 = 100 𝑚𝑚, 𝜃 =
30°, 𝑇𝑚𝑖𝑛 = 100 𝑚𝑁 and 𝑇𝑚𝑎𝑥 = 500 𝑚𝑁. 
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calibration. This geometry is essential part of calculating the 
wire lengths and tensions that are used to move the injector. 
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Abstract

We present a detection-based approach to perform real-
time estimation of the viewpoint, scale, and translation of
an object in front of the camera. In this work, we use a 3D
model to render example poses of an object, and find the
nearest match to the input image using a GPU implementa-
tion. To achieve invariance to illumination and appearance
across an object, we transform images to the Laplacian of
Gaussian space. To meet the real-time requirement, we re-
structure both template set and the image into two huge
matrices and simultaneously process hundreds of templates
with the vectorized normalized cross correlation. We fur-
ther speed up our method by PCA based matrix dimension
reduction and candidate elimination method. Comparative
results for several image sequences are shown to validate
the effectiveness of our approach.

1. Introduction
Real-time recognition of the precise pose of an ob-

ject is an essential function for many computer vision ap-
plications, like robotic manipulation, scene understanding
and human-computer interaction. Though impressive re-
sults have been produced, these methods usually depend on
long-time offline training stage or various tracking meth-
ods to achieve real-time speed. We present a more general
model-based pose estimation method without using track-
ing method. We achieve good accuracy and time perfor-
mance (see Section 4). In summary, our method has the
following main contributions.

(1) Present a robust pose estimation method in the photo-
metric invariant image space. Our method address changes
in illumination and appearance across an object by Lapla-
cian of Gaussian transformation.

(2) Develop a novel GPU-based vectorized Normalized
Cross-Correlation algorithm aimed at improving the perfor-
mance of exhaustive template matching. We achieve state-
of-art speed for template matching.

(3) Propose a PCA based candidate elimination method
to limit the searching space of the image and speed up large
sparse matrix multiplication .

(a) Frame (b) Result
Figure 1. Example frames from our object detection and pose es-
timation results. Our detection-based method does massive tem-
plate matching in the laplacian of Gaussian space. It is capable
of handling different illumination, both texture-less and textured
objects. Our method produces multiple hypotheses, each top pose
is drawn in white contour on the image with different line width.

(4) Introduce a general approach for the real-time pose
estimation system with multiple hypothesis output. The
same approach can be applied into depth image similarity
measure. The multiple hypotheses can be integrated in the
particle filtering based tracking method.

2. Related work
Real-time object detection and 6DOF pose estimation is

critical for robotic applications involving object grasping
and manipulation, and also human robot interaction. A pop-
ular approach to the pose estimation problem is to establish
visual feature matches between an input 2D image and a 3D
object model [1], [2], [3]. However, lack of texture, object
appearance change or occlusion will make it difficult to find
the reliable visual features in the image.

Another way to estimate an 3D object pose is massive
template matching, that is, matching whole templates to
an input image and finding the best match. The object
templates are generated by rendering or capturing the 3D
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model in different viewpoints. However, this approach has
two main drawbacks: Firstly, template matching usually
needs long computation time. Numerous techniques aimed
at speeding up the basic approach have been devised. Dom-
inant orientation template [6] represent an image as a grid
of dominant orientation in each image patch. Other meth-
ods reduce the computation cost by organizing templates in
a hierarchical structure [7], [8]. However, these techniques
imply a non-exhaustive search process because they do not
compare the full resolution image with each template at ev-
ery search position and can be trapped by local optimum
resulting in wrong localisation of the template.

Normalized cross-correlation (NCC) is another effective
template matching method which makes pixel-wise com-
parison between the image and the template. Since it is
computationally expensive, many research works have been
done to speed up NCC. Fast NCC algorithm [10] was pro-
posed to decrease the computation load by using precom-
puted integrals of the image and using fast fourier trans-
form in the frequency domain. GPU based NCC has been
implemented [11] [12] [13] and it becomes a new feature in
Matlab 2014a. Several work intend to simplify the proce-
dure of NCC by using an upper bound of the NCC function
[15] [16] [17], or using Cauchy-Schwartz inequality [18]
[19]. All these approaches need to process one template
each time and cannot meet the requirement of real-time 3D
pose estimation in which a large number of templates are
required to cover all possible object rotations and scales.

Secondly, template matching is sensitive to difference in
illumination or appearance between the template and the
image. This requires the model-based matching method to
make a precisely same 3D model for detection and pose es-
timation. Several work try to overcome this drawback by
matching the images with edge pixels orientation [5] [6] or
corner points orientation [14] [20].

In this paper, we perform real-time 3D object pose es-
timation in the Laplacian of Gaussian space via massive
templates matching, one template for each pose, while ad-
dressing the computational efficiency by using GPU-based
vectorized NCC and PCA based dimensionality reduction.

3. Method

3.1. Vectorized similarity measure

Given one object, we pre-render its 3D model from sev-
eral viewpoints that span the space of rotations as well as
several scales to get n templates. Given an image I of the
object, we match all templates with the image simultane-
ously by vectorizing templates and image patches. Let us
consider a template Ti ∈ Rn , here i ∈ {1, 2, . . . , n} ,
and n is the number of templates. We vectorize this tem-
plate into a vector ti ∈ Rm, m is the pixel number in one
template. Similarly, consider an image patch Pj with same

...

Figure 2. Image matrix P
′

and template matrix T
′
.

size of the template at location j in the image I ∈ RN ,
where j ∈ {1, 2, . . . , N} , and N represents the number of
image patches in I. We vectorize this patch into a vector
p(j) ∈ Rm. The cross-correlation between the two vec-
tors, ti and pj , represents the similarity between the i-th
template Ti and j-th image patch Pj .

s = tTi pj , (1)

where s represents two vectors’ similarity. However, simply
using cross-correlation is not robust to the different illumi-
nation, different model appearance and deformation change
between the template and image patch.

Our aim is to develop a robust similarity measurement
method between the template vector and image patch vec-
tor. Specifically, we want to transform the patches ti and pj

to t
′

i and p
′

j under a function f(·) : Rm ← Rm, i.e., to com-
pute t

′

i = f(ti), and p
′

j = f(pj). Under this function, we
use the cross-correlation as a robust way to measure the sim-
ilarity of these two vectors. We find the method is robust to
different illumination, different model appearance, texture
and even slight deformation change if the transformation
function f(·) performs the mean-variance normalization of
the Laplacian of Gaussian of the image patch, i.e., if

f(·) = (fmvnorm ◦ fLoG)(·), (2)

where

fmvnorm(v) =
(v − µv)

σv
, (3)

µv and σv being the mean and standard deviation of the
intensity values of a vectorized patch v ∈ Rm , and

fLoG(u) = (∆G) ∗ u, (4)

where u is a patch from the original image, G represents
a two-dimensional Gaussian, and ∆ represents the Laplace
operator.

We then represented the similarity between the trans-
formed patches t

′

i and p
′

j by:
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Figure 3. Illustration of the score matrix S

s
′

= t
′

i
Tp

′

j , (5)

where s
′

represents the normalized cross-correlation be-
tween the Laplacian of Gaussians of the original patches
Ti and Pj .

By vectorizing the patches, we leverage the matrix-
vector multiplication on GPU to speed up the computation.
We develop a score matrix, S with the size of Rn×m, where
n is the number of templates andm is the number of patches
in the image.

S = T
′
P

′
, (6)

where T
′

is the vectorized template matrix, each row of
T

′
represents one vectorized template t

′

i. P
′

is the image
matrix, each column of P

′
represents one vectorized image

patch p
′

j and S(i, j) represents the correlation value of i-th
template Ti with the j-th image patch Pj .

T
′

=


t
′

1
T

t
′

2
T

· · ·
t
′

n
T

 ,P′
=

[
p

′

1,p
′

2, · · · ,p
′

N

]
(7)

3.2. Dimensionality reduction in large sparse matrix

After vectorizing all the templates, we get one large
sparse matrix T

′
. To further speed up calculation of equa-

tion (5), we precompute a dimensionality reduction on the
template matrix T

′
.

T
′

= AZ, (8)

where A is an orthogonal matrix and Z is the basis matrix
with the first k principal components. To obtain A and Z,
we do the singular value decomposition on T

′
:

T
′

= UDVT , (9)

where D represents a diagonal matrix of the same dimen-
sion as X, with non-negative diagonal elements in decreas-
ing order, and U and V are diagonal matrices unitary ma-
trices. Here we select k principal components and keep α
percentage variance: ∑k

i=1 Dii∑n
i=1 Dii

≥ α. (10)

In our experiments, we find α = 90% can keep the accuracy
while reducing dimensionaloty of the matrix.

If we select first k columns from U

A = [U1,U2 . . .Uk] , (11)

and define Z as

Z =

 D11 . . . 0
...

. . .
...

0 · · · Dkk


 V11 . . . Vmk

...
. . .

...
Vm1 · · · Vmk


T

,

(12)
with equation (6), (8), we get

S = AQ, (13)

where Q is

Q = ZP
′
. (14)

Algorithm 1 Off-line template matrix generation and PCA
Input:

all templates T1 ...Tn
Output:

coefficient matrix A, basis matrix Z
1: for all template Ti do
2: LoG (Ti) with CUDA parallel threads;
3: mean normalize Ti with CUDA parallel threads;
4: transform Ti to one column in the image matrix T

′

i;
5: end for
6: A,Z⇐ PCA(T

′

i);

3.3. Elimination of unlikely image location

Rather than directly calculating equation (15), we speed
up the calculation of AQ by first eliminating image loca-
tions where a high score is unlikely. Specifically, we want
to eliminate columns in Q and get Q

′
= [· · ·Qi · · · ], i ∈ I,

where I is a small subset of index into the image matrix
columns corresponding to the probable image location. The
final score matrix S

′
will be

S
′

= AQ
′
. (15)
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We use the L2 norm of each column in matrix Q,
i.e.,‖Qj‖, as a measurement. We prove that if ‖Qj‖ is
bounded above by λ, then every element S(i, j) in the corre-
sponding column S(j) in the large Score matrix is bounded
above by λ, that is, all templates score at this pixel is below
λ. This observation allows us to eliminate unlikely image
patches corresponding to j-th column in Q.

Theorem 3.1 if ‖Qj‖ < λ, then every element S(i, j) < λ.

Based on equation(15), ‖S(j)‖ = ‖AQj‖. Since A is
an orthogonal matrix, ‖AQj‖ = ‖Qj‖. Therefore, if

‖Qj‖ < λ, then ‖S(j)‖ < λ. Therefore,
m∑
i=1

S(i, j)2 < λ2.

Therefore, each single value S(i, j) < λ.
In experiments, if we choose the λ properly, the column

number in ZP
′

can decrease to a small number. The cal-
culation time of T

′
P

′
will decrease at least 50% using the

PCA and candidate elimination method described above.

Algorithm 2 On-line massive template matching
Input:

template coefficient matrix A, basis matrix Z,
threshold λ

Output:
Score matrix S for each frame

1: for each new frame I do
2: LoG(I) with CUDA parallel threads;
3: call one parallel thread each image patch Pj ;
4: for all cuda threads do
5: mean normalize Pj ;
6: transform Pj to one column in the image matrix

P
′

j ;
7: end for
8: compute Q⇐ ZP

′
with CUDA parallel threads;

9: m⇐ 1;
10: for j = 1 to N do
11: if ‖Qj‖ > λ then
12: Q

′

m ⇐ Qj ;
13: m⇐ m+ 1;
14: end if
15: end for
16: S⇐ AQ

′

17: end for

4. Experiments
All experiments were performed using a standard desk-

top computer (Intel Xeon(R) CPU E5-2609 v2 @ 2.50GHz,
32G RAM) with an off-the-shelf GPU (NVIDIA Quadro
K6000, 12GB GDDR5). We implement Vectorized NCC
algorithm using NVIDIAs Compute Unified Device Archi-
tecture (CUDA) for real-time massive template matching.

4.1. Model and templates generation

For all 3D mesh models of the objects, they were gen-
erated by using Autodesk 123D Catch, the online free 3D
modeling apps which generate 3D model from photos. We
further use OpenGL rendering program to generate the ob-
ject templates from different viewpoints.

4.2. Accuracy and speed evaluation

For each image sequence, we obtain the ground-truth ro-
tation angles by manual annotation using EPNP [21]. The
accuracy performance is quantitatively evaluated by the fol-
lowing equation:

erri = |θi − αi| (16)

Where i represents the azimuth, elevation and yaw angle
respectively, θi is the ground truth rotation vector, and αi is
the estimated rotation vector.

We evaluate our method on five objects with 218 images.
Different from the feature-based approach, our method does
the exhaustive search and can produce multiple hypothesis
for each frame in the real-time system. Specifically, we di-
vide the result matrix into twelve regions and find the maxi-
mal value and its position in each region. Table 1 shows the
average error for each estimated angle of top one hypoth-
esis, top three hypotheses and top ten hypotheses respec-
tively.

Table 1. Average error of estimated angles

yaw elevation azimuth

Top one hypothesis 2.4454 5.7676 17.4349
Top three hypotheses 1.347 3.2638 10.512
Top ten hypotheses 0.347 1.2638 2.512

Table 2 shows the run-time comparison of OpenCV gpu-
based NCC, our method of vectorized NCC, and the vector-
ized NCC with PCA and candidate elimination. The image
size is 320x240, the template size is 180x180. Our method
can process 4860 templates per second, that is, decreasing
the processing time for each template to 0.206 ms. Our real-
time detection-based pose estimation approach achieves the
speed of 14 frames per second.

Table 2. Template number per second

OpenCV NCC V-NCC V-NCC with PCA

195 3980 4860

References
[1] Bay H, Ess A, Tuytelaars T, et al. Speeded-up ro-

bust features (SURF)[J]. Computer vision and image un-
derstanding, 2008.

28



(a) Frame (b) Aligned result
Figure 4. Example frames and pose estimation result. 3D model
are aligned to the image to visualize the accuracy of our method.

[2] D. Lowe, Distinctive image features from scale-
invariant keypoints, IJCV, 2004.

[3] Collet A, Berenson D, Srinivasa S S, et al. Ob-
ject recognition and full pose registration from a single im-
age for robotic manipulation[C] Robotics and Automation,
ICRA, 2009.

[4] H. Barrow, J. Tenenbaum, R. Bolles, and H. Wolf,
Parametric correspondence and chamfer matching: Two
new techniques for image matching, in IJCAI, 1977.

[5] C. Olson and D. Huttenlocher, Automatic target
recognition by matching oriented edge pixels, IEEE Trans-
actions on Image Processing, 1997.

[6] S. Hinterstoisser, V. Lepetit, S. Ilic, P. Fua, and N.
Navab, Dominant orientation templates for real-time detec-
tion of texture-less objects, in CVPR, 2010.

[7] D. M. Gavrila, A Bayesian, exemplar-based approach
to hierarchical shape matching, PAMI, 2007.

[8] M. Ulrich, C. Wiedemann, and C. Steger, CAD-based

recognition of 3d objects in monocular images, ICRA 2009.
[9] Marr D, Hildreth E. Theory of edge detection[J]. Pro-

ceedings of the Royal Society of London. Series B. Biolog-
ical Sciences, 1980.

[10] Lewis J P. Fast normalized cross-correlation[C] Vi-
sion interface, 1995.

[11] Ino F, Gomita J, Kawasaki Y, et al. A GPGPU ap-
proach for accelerating 2-D/3-D rigid registration of medi-
cal images[M] Parallel and Distributed Processing and Ap-
plications, 2006.

[12] Babenko P, Shah M. MinGPU: a minimum GPU
library for computer vision[J]. Journal of Real-Time Image
Processing, 2008

[13] Gangodkar D, Gupta S, Gill G S, et al. Efficient
variable size template matching using fast normalized cross
correlation on multicore processors[M] Advanced Comput-
ing, Networking and Security, 2012.

[14] Zhao F, Huang Q, Gao W. Image matching by nor-
malized cross-correlation[C]. Acoustics, Speech and Signal
Processing, 2006.

[15] Di Stefano L, Mattoccia S. Fast template matching
using bounded partial correlation[J]. Machine Vision and
Applications, 2003.

[16] Di Stefano L, Mattoccia S, Mola M. An efficient al-
gorithm for exhaustive template matching based on normal-
ized cross correlation[C] Image Analysis and Processing,
2003.

[17] Di Stefano L, Mattoccia S, Tombari F. ZNCC-based
template matching using bounded partial correlation[J]. Pat-
tern recognition letters, 2005.

[18] Sarvaiya J N, Patnaik S, Bombaywala S. Image
registration by template matching using normalized cross-
correlation[C] Advances in Computing, Control, Telecom-
munication Technologies, ACT, 2009.

[19] Di Stefano L, Mattoccia S. A sufficient condition
based on the Cauchy-Schwarz inequality for efficient tem-
plate matching[C] Image Processing, 2003.

[20] Zhao F, Huang Q, Gao W. Image matching by mul-
tiscale oriented corner correlation[M] Computer Vision-
ACCV 2006.

[21] Lepetit, Vincent, Francesc Moreno-Noguer, and
Pascal Fua. Epnp: An accurate o (n) solution to the pnp
problem. International journal of computer vision, 2009.

29



 

Shushman Choudhury and Mrinal Mohit 

RISS 2014  

30



T 

 

Visual Pose Estimation  for a Mobile Manipulator 
 

Shushman Choudhury and Mrinal Mohit 
 
 

Abstract—This report describes the contributions of the authors in the development of the vision pipeline for HERB - a 
bimanual robotic manipulator.  We describe the architecture of the vision system, pose estimation using AprilTags and tracking 
of the same using Extended Kalman Filters. We also discuss our work towards developing ROCK (Robust Object Category 
and Kinematic Pose), a fast and efficient visual classification and pose estimation  algorithm. 

 
Keywords—Pose Estimation, AprilTags, Kalman Filtering, ROCK, HERB 
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1   Introduction 

he objective  of our work and research  was 
to formulate and develop the vision system 

for HERB (Home Exploring Robotic Butler) [1] 
[2], a bimanual mobile manipulator. HERB is in- 
tended to perform useful tasks in general domestic 
environments, which lack the structure and pre- 
dictability  of factory environments. Accordingly, 
it needs  a vision system that  is comprehensive 
enough to identify objects of interest in clutter, 
is robust against failure, and is fairly efficient so 
as to provide actionable information to the other 
modules. 
In this regard, our work addressed a number of 
issues of HERB’s vision system. We developed a 
module for pose estimation and robust tracking 
of a visual fiducial system, using an Extended 
Kalman Filter  model, and leveraging other in- 
sights about the pose observations  we would ob- 
tain. We  also made key contributions towards a 
novel algorithm for visual classification and pose 
estimation - particularly developing the database 
of object models, testing pose hypotheses,  and 
obtaining the best result from multiple responses. 

 
 
2   Overview of Hardware Platform 
At the Personal Robotics Lab, a platform was 
needed  that  could operate synergistically with 
humans to perform tasks in the home. The de- 
sign of HERB,  therefore, reflects the  research 
interest in  human-aware  two-arm  manipulation 
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Fig. 1: The Hardware Platform - HERB 
 
of unstructured environments. HERB’s hardware 
allows it to navigate indoors for hours at a time, 
sense its surroundings, and manipulate objects of 
interest for or with human partners, with minimal 
reliance on supporting infrastructure. 
 

HERB’s base comprises a Segway mobility plat- 
form, and it manipulates its environment with a 
pair of Barrett 7-DOF WAM  arms with Barrett 
hands. Non-visual  sensing is enabled by an array 
of four laser rangefinders just above ground level, 
odometric sensors in actuators and tactile sensors 
on the end-effectors. Computing is provided by 
3 on-board high performance PCs while an ARM 
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microcontroller is used for low-level hardware con- 
trol. The vision hardware is composed of a high- 
sensitivity monochrome camera by Allied Vision 
for texture data, and an Asus Xtion Pro Live for 
depth sensing. 

The system can be remotely controlled  over the 
network through ROS (Robot Operating System), 
and all modules for the robot (perception, plan- 
ning, execution etc.) are based on the ROS nodes 
and topics architecture. 

 

3   Vision Pipeline 

 
 
 
 
 
Vision 
Sensors 

 

AprilTags 

ROCK 

LINEMOD 

MOPED 

 
 
 
 
 

Tracking 
Module 

 
 
 
Filtered Output 
 
 

Planning 
Module 

 

 
 

Fig. 2: Object detection for grasping - a use case 
 
 

The primary requirement of HERB’s vision 
system currently is to provide perceptual informa- 
tion to the planning and manipulation modules. 
Therefore, this information would be in the form 
of pose estimates  of objects in HERB’s current 
field of view, or which were seen recently. 

HERB’s image sensors provide the depth infor- 
mation of the immediate environment, as well as a 
high-definition video feed for obtaining color and 
texture information. We have envisaged HERB’s 
vision system to comprise different modules that 
can run parallelly. Each of these modules obtains 
the image information from HERB’s sensors and 
then applies its own algorithm to obtain relevant 
pose information. This information is then avail- 
able on request to other modules, to use as they 
see fit. A schematic diagram is shown in Fig 3. 

 
Fig. 3: The Vision Pipeline 

 
Our work progressed  in a number of phases, 

each  of  which is described in  the  subsequent 
sections. 
 
 
 
4 Detection and Tracking of AprilTags 
 
 
 

 
 

Fig. 4: Sample AprilTags 
 
 
 

AprilTags [3] is a visual fiducial system that 
can be useful for a number of applications. The 
tags can be detected quickly and reliably through 
cameras, and for our purpose, the pose estimates 
of the surfaces on which tags are attached, can 
be obtained. They have the advantage of being 
robust to  lighting  and angle. The existing im- 
plementation of AprilTags was  ported onto our 
system for use. 

Furthermore, in view of the fact that  HERB 
would often need information about moving ob- 
jects, and thereby moving tags, and also to pre- 
vent the loss of tags for a few frames when occlu- 
sion occurs, a tracking module for the tags, with 
persistence against frame-loss, was developed. We 
used a simple Extended Kalman Filter  (EKF) 
model [4] for this purpose. 
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4.1   EKF Model 
Since the observations  were of the pose estimate, 
but we were maintaining information that could 
predict its pose in the absence of observations, the 
measurement was of the form 

 

z = [x y z qx  qy  qz  qw ]
T

 
 

i.e. the pose  estimate of the tag in translation- 
quaternion format. Meanwhile, the state estimate 
of the tag was of the form 

This problem was  tackled by leveraging two 
ideas - the first was to use a measurement valida- 
tion gate to disallow the degradation of the state 
estimate from the Kalman Filter by an erroneous 
measurement. This requires the computation of a 
value called the normalized innovation squared, 
 

cv (k) = v(k)T S(k)−1v(k) 
 

where v(k) is the difference between the estimated 
state at the next time-step and the corresponding 
observation and S(k) is a procedural matrix. If 

x̂ = [x y z qx  qy  qz  qw  ẋ ẏ ż ωx  ωy  ωz ] this value is out of (user-defined) bounds, then 
 

where the seven variables for the measurement are the measurement is rejected. 

followed by the linear velocity (ẋ 
angular velocity (ωx  etc.) 

etc.) and the There was also the notion that ambiguous pose 
estimates would have similar re-projections in the 

The model was based on the usual EKF formu- 
lation of a two-step cycle of prediction (before a 
measurement), and (subsequent) correction: 

 

x̂k 
− = f (xk̂−1) 

 

where f is the state transition model, xk̂−1  is the 
state after the previous time step, and x̂k 

− is the 
next predicted state. After the measurement zk is 
obtained, the new state is obtained as follows: 

x̂k  = Kk zk + (1 − Kk )x̂k 
−

 

 

where Kk   is a quantity called the Kalman Gain 
that  is computed internally, based on the noise 
parameters of the model. 

 
 
4.2   Tag Persistence 

The tracking module was designed  so as to per- 
sistently maintain the state of a tag that is being 
tracked when it is lost for a few observations. The 
predicted state of the tag is projected forward, as 
the error of the estimate magnifies. The number 
of  frames for  which persistence  can last  is a 
parameter that the user may set, after which the 
tracker for that tag becomes idle. 

 
 
4.3   Pose Ambiguity  Resolution 

At certain perspectives, i.e. when the tag is not 
sufficiently skewed  with  respect to the camera, 
there are ambiguities in the solutions for the pose 
generated by the detection module. This results in 
two pose results being mathematically plausible, 
and the output of the module switching between 
the two, randomly, in successive frames. 

camera frame, thereby providing a means to dis- 
tinguish between a switched  pose and the actual 
movement of the tags. 
 
 
4.4   Preliminary Results 

There was  a reduction of the average  error in 
detections and an improvement  in the observed 
stability  of the tag detections. The module was 
used as  part  of a demonstration for the movie 
“Robots 3D”, a segment of which was shot by Na- 
tional Geographic in our lab. HERB’s task was to 
clear up a dinner table by locating, grasping and 
manipulating them. Tags were fixed on objects to 
facilitate their localization in world space. 
 
 
5   ROCK Detector 
ROCK (Robust Object Category and Kinematic 
Pose) is a method for visual recognition and pose 
estimation of objects in a manner that  is easily 
usable by HERB, and other platforms as  well. 
A method is desired which is fairly  lightweight, 
discriminative, tolerant  to variance in viewpoint 
and illumination,  can incorporate strong priors, 
and can have  an adjustable trade-off between 
accuracy and complexity. As shown in  Fig. 5, 
ROCK has a number of different  modules, each 
with  its own nuances and challenges. Our work 
was related to a certain portion of those modules. 
 
 
5.1   Object Models 

ROCK makes use of a database of object models, 
for recognition as  well as  pose  estimation. The 
structure of these have been formulated for easy 
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5.2   Pose Hypothesis Testing 

Priors like geometric information of point features 
and other expectations about the object generate 
a number of pose hypotheses,  each of which needs 
to be evaluated for likelihood. This is achieved by 
projecting the pattern for the pose onto the image 
and testing the expectation. 

The idea behind this is that the difference be- 
 

Pose Estimates Pose Decisions 
 
Tracker 

tween corresponding patches (in LAB color space) 
is fairly stable with respect to illumination and 
rotation. During the model creation phase, infor- 
mation about the patches of the model had been 
stored. For a patch P defined by a bounding box 
[x1 < x < x2, y1 < y < y2], it is characterized by 
averaging the L,A,B channels values of the patch: 

 
y2 x2  

 
Fig. 5: ROCK Workflow P (l) ≡ mean  


 

 
L(i, j) 

 
storage and processing of several dozen of them 
at a time, facilitating scalability. 

We  used Autodesk Inc’s free  software-service 
123D CatchTM   to generate fairly accurate and de- 
tailed three dimensional models from photographs 
of objects, shot under even lighting and fiducial 
backgrounds, from about two dozen perspectives 
(Fig 6). The software generates a mesh of vertices, 

i=y1 j=x1 
 

P (a) and P (b) are calculated similarly, using the 
A and B channels respectively. Thereafter, a patch 
P is represented as: 

P = {P (l), P (a), P (b)} 

The difference between pairs of nearby patches on 
the model is stored  as a binary vector 

 
P (l) > P (l) 

 
edges and faces, which can be further refined and 1 2 

P1(a) > P2(a)
 

isolated from the background in  3D modelling 
packages. Furthermore, patches of the model, i.e 

d(P1, P2) =  
 

 

P1(b) > P2(b) 

small rectangular regions of interest, are processed 
and information about them stored, for use in the 
subsequent testing phase. 

This is the vector that represents the relationship 
between a given pair of patches. The difference 
vectors for every such pair, is stored a priori for 
each model. For both training and test images, 
the patch information is computed quickly using 
the concept of integral images [10]. 

For each pose, the model is overlaid on the test 
image and the differences  between  patches are 
obtained and compared with  the corresponding 
difference vectors of  the  model. The  response 
(strength) of a pose hypothesis  is therefore 

RH  = 
 

sim(Md  , Hd  ) i i 
i 

 
 
 
 
 
 
 

Fig. 6: 3D Mesh from 2D photographs 

where sim  refers to a similarity  metric (cosine 
similarity, table lookup), Mdi   refers to a difference 
vector for a pair of patches in the model, and Hdi 
for the hypothesis. 

A  variety of similarity  metrics are being ex- 
plored for this purpose to account for noise, ran- 
domness  and occlusion.  For instance, a stricter 
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check mechanism  reduces the false positives  but 
also increases the effect of noise. 

The basic idea is to start testing with coarse 
samples and then progressively refine the promis- 
ing solutions. Testing at finer layers takes  more 
time but gives  more accurate responses,  as one 
would expect, and this accuracy/computation 
tradeoff is an interesting area of exploration. 

 
 
5.3   Pose Response Accumulation 

The first  stages of ROCK  generate a number 
of object pose hypotheses  with  their  respective 
responses, as mentioned  earlier. From this infor- 
mation, a decision  needs to be made about the 
number of instances of a particular object, and 
the most likely pose of each. For this purpose, we 
use mean-shift  clustering techniques. [5] [6] [7] 

For a set of pose hypotheses  for a particular 
object, we first group them based on their posi- 
tion in 3D space, i.e. based on the translational 
component. This is done via mean-shift clustering 
with Euclidean distance. The bandwidth for this 
clustering  is based on the known dimensions of the 
object, so as to disambiguate between hypotheses 
that must belong to different instances. Clustering 
in 3D space is a fairly fast procedure, and allows 
us to separate  poses into groups of interest, by 
leveraging our prior knowledge about the object 
in question. 

The next step is to analyze  each of the small 
clusters obtained from the first step, and to iden- 
tify if there is one or more instances of the object, 
and the best pose for each. For this, we use a non- 
linear mean-shift clustering for poses. The number 
of centres  for each cluster indicates the number 
of  instances that  we  believe  are present, and 
the weighted  average associated with each centre 
represents  the accumulated   pose hypothesis for 
that instance. 

 
 
5.4   GPU Parallelization 

The inherently independent  nature of the patch 
comparisons and reprojections, for evaluation of 
the response of a test pose against  an image for a 
given model, naturally incentivizes an exploration 
of parallel computing techniques to speeden  up 
the process. 

We made use of NVIDIA  Corporation’s 
CUDATM , a parallel computing architecture and 

API, implemented on Graphics Processing Units 
(GPUs), rather than on traditional processors. 
Although the platform has proven to be highly 
successful in general, certain restrictions on the 
expected  organization of the data structures in 
order to minimize bottlenecked memory transfer 
delays required re-organization of the ROCK De- 
tector module. 
 
 
5.5   Preliminary Results 

We used a simple framework to test the strength 
of our preliminary detections. A number of pose 
hypotheses for an object were generated, with the 
assumption that  it was  on a table. This meant 
keeping the z coordinate and the angles  about 
x  and y  axes constant  and varying the other 
3 components  of the pose.  Some of the poses 
were made to be near the ground truth.  Having 
obtained the responses, we accumulated  them as 
discussed and returned the best averaged  pose. 
The initial  results are encouraging,   as is shown 
with  one case  (Fig  7). The black mesh is the 
visualization of the best averaged pose. 
 

 
 

Fig. 7: The best response over several tested hypotheses 
is represented by the black mesh 

 

 
 
 
 
6   LINEMOD  Extensions 
The recently proposed LINEMOD  algorithm [8] 
has fared well in generic rigid object detection, 
proceeding  using very fast template matching. 
It combines multiple complementary  modes (e.g. 
images and depth maps), is fast, and can handle 
untextured objects. 
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The  algorithm  was  tested on the  same ob- 
jects as were used in the aforementioned detec- 
tors. Experiments resulted in high true positives 
(˜85%) and low false positives (<10%) with high 
tolerance (˜50%) to occlusions. However, robust 
and effective  detections require  a high number 
of templates (2,000-10,000),  leading to  a time- 
consuming, tedious and unscaling model capture 
stage. We thus investigated a procedure for auto- 
mated generation of these templates  from dense 
meshes (already  built as described  in Section 5.1) 

 

 
6.1   Automated Template Generation 

We set up a 3D modeling and rendering package 
to  capture color and depth images  of objects 
so  as  to  simulate the physical RGBD  camera. 
For every object, a camera captures these frames 
from multiple viewpoints as observed from equally 
spaced points on different-sized  spheres enclosing 
the object (Fig 8). These viewpoints  approximate 
physically moving the camera around the object. 
We  adapted LINEMOD  to  use these captured 
frames for model generation. 

 

 
 

Fig. 8: Object images are captured from the points 
shown on the green dome. 

 
 

Although the LINEMOD  detection responses 
were expectedly good on synthetic testsets, the 
real-world performance  turned out to be  worse 
than that  from a smaller number of hand- 
captured templates. The number of false posi- 

tives  were unacceptably high (>60%),  and the 
algorithm slowed down by an order of magni- 
tude. Possible reasons for this inadequacy were 
proposed -  disparities between the actual and 
simulated camera frames, lack of fidelity  in the 
generated  meshes and idiosyncrasies in the tem- 
plate matching metric for simulated streams, but 
none of the hypthoses could satisfactorily explain 
the discrepancies. 

A newer work on LINEMOD  [9] embraces the 
automatic template generation concept, but has 
not been made publically available yet. 
 
 
7   Miscellany 
We also contributed to a number of other tasks, 
some of which are outlined here. 
 
 
7.1   Camera Intrinsics Refinement 
The intrinsic parameters of a camera are based 
on the pinhole model, and affect how the camera 
forms images from the environment. 

Computationally, the intrinsic parameters are 
represented  as a matrix, called the camera matrix: 


fx 0 cx


 

C =  0 fy cy 
  

0 0 1 


 
 

where fx  and fy  are the focal lengths, and cx  and 
cy  refer to the co-ordinates of the image. 

Accurate intrinsics are important  for correct 
transformations from the 2D image space to the 
3D world space. With a mixture of calibration 
methods and parameter tuning, we were able to 
enhance the performance of HERB’s cameras. 
 
 
7.2   Extrinsic Calibration of Vision Sensors 

In  order for HERB to interact accurately with 
objects in the real world, it is important for the 
relative positions of certain components of HERB, 
to be accurately  known. The same applies to the 
vision sensors. 

We  wish to  obtain  TAC ,  the transformation 
from the actuator to camera, which is fixed and 
unknown. Having visual samples  of markers in 
the world from different  camera positions, and 
knowing that they are fixed with respect to the 
world, we  can formulate an expression  for the 
extrinsic parameters: 
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where n is  the  time. We   will   try   to  solve 
for  TAC , given several samples of  TW An    and 
 

=⇒ T ∗ T 

AC 

 
TW An  ≡ World to actuator (known) 
TW Cn  ≡ World to camera (unknown) 
TW Cn =  TW An ∗ TAC 

TC Mn  ≡ Camera to marker (known) 
TW Mn  ≡ World to marker (fixed; unknown) 
TW Mn  =  TW Cn ∗ TC Mn 

 
 
 
 

TC Mn . Considering that the observed markers are 
fixed w.r.t the world, we obtain: 

 
TW M1   = TW M2 

=⇒ TW C1  ∗ TC M1   = TW C2  ∗ TC M2 

 

Finally, the auxiliary tasks we did by investi- 
gating existing systems such as LINEMOD, and 
working on the vision system components, will be 
important for other future applications. 
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Active Control of Aerodynamic Disturbance
Adaptation

Li Liu, Vishnu R. Desaraju, Shih-Yun Lo, and Nathan Michael

Abstract—The quadrotor helicopter is an aerial vehicle
popular as a testbed for small unmanned aerial vehicle
development. Existing control approaches often ignore the
known aerodynamic effects on the quadrotor. The accepted
quadrotor model is based on a thrust and torque model with
constant coefficients calculated by static thrust tests. Such a
model is a reasonable assumption in the environment where wind
conditions do not change, but the static model is no longer valid
when the vehicle undertakes aggressive manoeuvres when the
wind conditions change. To address this problem and improve
controllability of quadrotors, this paper builds a dynamic model
of motors and propellers by using the setup we designed.
According to the dynamic model of, this paper enables the
quadrotor to adapt to changes in the environment wind
conditions.

Keywords—dynamic model, wind disturbance, simulation

INTRODUCTION

The quadrotor is an emerging rotorcraft concept for
unmanned aerial vehicle(UAV). The vehicle consists of four
individual rotors attached to a rigid cross airframe, as show in
Figure 1.

Control of the quadrotor is achieved by differential control
of the thrust generated by each rotor. A hierarchical approach
is common for quadrotors. The lowest level is the control of
the rotor rotational speed, directly with respect to the thrust of
four rotors. The next level is in control of vehicle attitude, and
the highest level is in control of position along a trajectory.

In this paper, we builds a dynamic model for more precise
control of the low-level rotor control, the control of the rotor.
The rotor controller gets the thrust and moments it needs from
the position controller and attitude controller. According to the
equation describing the relationship between thrust, moments
and rotor speeds, calculate the voltage of motor. However, the
equation should be revised when wind condition changes. This
paper introduces a method to build a dynamic model of the
rotor that is robust to changes in wind conditions.

AERODYNAMIC MODEL OF ROTOR

A. Steady-state model of thrust and moment

The steady-state thrust generated by a rotor in free air can
modeled as:

22
iirTi rACT

i
(1)

where, for rotor i ,
ir

A is the rotor disk area, ir is the radius,

i is the angular velocity of propeller, TC is the thrust

coefficient which depend on rotor geometry and profile, and
is the density of air. In practice, thrust can be models by a

simple lumped parameter model:

2
iTi cT (2)

Where Tc is often modeled as a constant.. In this paper,we

tested Tc in static thrust test.

The reaction torque acting on the airframe generated by a
hovering rotor in free air may be modeled as

2
iQi cQ (3)

where Qc is the coefficient of the model of motors and

propellers can be also impacted by rotor disk, radius and
density of air and Qc is also often used as a constant.

Our model assumes that quadrotor is hovering and the
thrust is vertical to x-y plane. The total thrust at hover applied
to the airframe is the sum of the thrusts from each individual
rotor.

4

1

4

1

2

i i
iTi cTT (4)

For quadrotors, we can write a model in matrix form to
representing the relationship between thrust and torque to rotor
speed

Fig.1 A quadrotor testbed with sensors
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where i ( i =1, 2, 3 ) is net moment arising from the

aerodynamics. Equation (5) shows that a change in wind
conditions changes the model.

B. Static test results and Tc value in different wind conditions

Before we figure out the dynamic model of motors and
propellers, we should test the static model which can be a basis
of the dynamic model.

For the static thrust test, we built our motor test setup. The
motor test setup we used consisted of two components, the load
cell which we can use to get the value of thrust and torque and
the prototype rotor, as shown in Figure 2a.

This setup also has a speed controller, which controls the
rotor speed by adjusting the voltage and current of the motor.
We can also get the data of rotor speed, the voltage and current
of the motor from the speed controller.

To finish the static thrust test, we need to send different
voltages to the motors and record the RPM of propeller and the
thrust generated by rotor. Then, according to the curve fit, get
static value of Tc , In this static thrust test, we used the T-
MOTOR MT2216 with APC 10 5E propeller.

After running the static test, The static result is shown the
value of Tc when wind conditions do not change as Figure 3.

From the curve fit, Tc =1.266 7-10 . And the value of

Tc shows here is often used as a constant coefficient of the
motor model.

The setup for the dynamic model is shown in Figure 2b. In
this paper, we now only consider one direction of wind as
shown in Figure 2b. In the dynamic test, we use a similar setup.
Besides We use a wind velocity censer to get the different wind
strength, and Figure 4 shows the value of Tc with changing
wind velocity.

3D SIM.ULATION

A. 3D dynamic model

The quadrotor nested control method is shown as Figure 5.
Most of the work in this paper is to figure out the values of

1u and 2u when wind condition changes. 1u and 2u are the
voltage of motor.

wind

Fig.2 a) Thrust and torque test setup b) Dynamic testbed Fig.4 Different value of Tc in four different wind condition

Fig.5 Nested feedback control frame of quadrotor

Trajectory
Planner

Position
Control

Motor
Control

Attitude
Control

Body
Dynamic

1u

2u

R

v

,

Fig.3 Tc fitting curve when wind condition doesn’t change
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Let A be the inertial frame, and B be the body frame.
The body frame is attached to the center of mass of the
quadrotor, as shown in Figure 6. To get the rotation matrix
R from body frame to inertial frame. We use the Euler angles
to model the quadrotor’s rotation in inertial first rotate
about Az by the yaw angle , then about Ax by the roll

angle , and finally about Ay by the pitch angle . The
rotation matrix is

ccssc

sccssccsscsc

sscscscssscc

R (6)

In this paper, cos is abbreviated to c and sin is abbreviated
to s .

The motion equations of the airframe are

T

R

mg

m 0

0

0

0

p (7)

r

q

p

I

r

q

p

MMMM

TTd

TTd

r

q

p

I

4321

13
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(8)

Where p is the position of quadrotor in inertial frame, m is the
mass of the quadrotor, and p , q and r are the angular
velocity of the quadrotor in body frame. The value of
p , q and r are related to the derivation of the roll, pitch and

yaw.

ccs

s

scc

r

q

p

0

10

0

(9)

According to the linearized model [2], we simplify the yaw
angle to be a constant. The desired roll angle and pitch angle
can be modeled by

cossin
1

21
dd rr

g
(10)

sincos
1

21
dd rr

g
(11)

The desired acceleration d
ir is from the feedback control.

Here we use PD control

pppe (12)

ppve (13)

iviidpiip
des

i rekekr ,,,, (14)

Where ipk , is the proportional coefficient of PD controller

for rotor i , and idk , is the derivation coefficient of PD

controller for rotor i .

B. Attitude simulation

In this paper, we first give the result of attitude control.
The attitude simulation based on the 3D dynamic model. We
change the value of Tc in (5) to represent the wind conditions
change. For the on-board attitude controller, we also use PD
controller. Desired yaw angle is set to zero. The initial
status of roll, pitch and yaw are also set to zero. Desired roll

angle is 10 , desired pitch angle is zero.

The error of roll angle from simulation is shown in Figure.7.
Rise time for this step response is less than 0.5s. We want to
make sure the rise time of attitude control is short enough to
guarantee the convergence of the system. The units of angular
error in figure 7 is meter and the time unit is second.

1T

2T

3T

4T
BX

BYBZ

1M

2M

3M

4M

d

Fig. 6. Rigid body frame and thrust and torque acting on the quadrotor

Fig. 7. Attitude error when close position control
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C. Simulation result

These are the theoretical results we get for our control
values in simulation. This simulation depends on model we
describe in 3D dynamic model. The result here shows when
wind conditions change and we do not change the model of
motors and propellers, the control of the quadrotor will have
offset.

The initial position of the quadrotor is (0,0,1) and desired
position is (0.5,0.5,1.5). The Figure 8 shows the step response
of the Z axis when wind conditions are constant.

When we add the aerodynamic disturbance as shown in
Figure 2b, the bigger the wind velocity the bigger the error in
the end. The error of Z axis is shown in Figure.9. And the
position changes of quadrotor is also shown in Figure.10.

These results show that the value of Tc changes with
different wind velocities. That results in large position errors if
we don’t change our rotor model. The reason is that when wind
conditions change, if we still use the static model, the motor
will provide a constant speed and never decrease the offset.

Another observation is that if Tc decrease, the final RPM
will increase. According to the equation (4), if motors want to
provide the same thrust, the speeds of motors should increase.

Before figure out the specific relationship between
wind conditions and Tc , we should also know the wind
velocity without installing sensors because quadrotors should
be lightweight. Current, voltage and RPM of rotor are provided
by speed controller and we can plot the curve to find the
equation between RPM and power. When wind conditions
changes, the curve will change and this change is with respect
to the value of Tc . In theory, the power of motor should be
third power of RPM, but because of the aerodynamic effect the
relationship changes.

The change of curve is shown in Figure 11. To make the
figure clearly, the partial magnification of Figure 11 is shown
in Figure 12. So when the quadrotor is flying, using the data of
current, voltage and RPM of propellers we can sense the wind
velocity.

Fig. 9. Z axis step response error when wind condition changes

Fig. 10. Position of quadrotor in different wind conditions

Fig. 8. Step response of Z axis when wind condition doesn’t change

x

y

z

Fig. 11. Power and RPM changes when wind condition changes
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IV. FUTURE WORK: CALCUATE Tc CHANGES

One future area of our research is to find the specific
relationship between Tc and wind conditions. Now we now that

when wind strength increase, the value of Tc will decrease.

We can learn the relationship between Tc and wind
velocity by using machine learning, and after we know the
wind velocity,we can change the model online.

V. CONCLUSION
This paper gives an approach to deal with the aerodynamic

disturbance when quadrotor works, because when wind
conditions are not constant, the model of rotor changes.

The static test gives the initial model of rotor and then we
can test different Tc value when wind condition changes and

find the relationship between Tc and wind conditions.

Finally, we need to be able to know the wind conditions
without using sensors. Depending on the change of equation
between power and RPM of propeller when wind condition
changes, we can calculate the wind condition.
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Abstract— Current state-of-the-art for human pose estimation 

is in that it is unsuited for real-time performance without the 
addition of depth information, which can be a major limitation. 
In this paper, we extend the work on Pose Machines using GPU 
acceleration to achieve performance in real time. We also 
examine and propose solutions to the memory and time issues 
related to the training of Pose Machines with large datasets. 
These include a GPU accelerated algorithm for training Pose 
Machines and changing the way data is used, separating training 
data into “structure points” and “evaluation points.” Finally, we 

examine the effect of these changes to the speed of testing and 
training.  
 

Index Terms—computer vision, inference machines, machine 
learning, pose estimation.   

I. INTRODUCTION 

A. Problem 

The essential problem of human pose estimation from still 
images can be described simply as the identification of the 
locations of a number of joints on a two dimensional image. 
For instance, in our system, we predict the location of the 
forehead, the base of the neck, the left and right shoulders, the 
left and right elbows, the left and right wrists, the left and right 
hips, the left and right knees, and the left and right ankles. An 
example pose can be seen in Figure 1. 

We further specify that we do not have access to depth 
information. The Microsoft Kinect, which is currently the 
most robust real-time human pose estimator, collects a depth 
image using an infrared sensor, as well as an RGB image to do 
pose estimation [1]. While this allows for efficient prediction 
of human poses, it imposes a limitation in hardware. Most 
significantly, it makes pose estimation impossible for outdoor 
scenes where infrared sensing is ineffective. It also requires 
the use of specialized hardware which can limit its potential 
uses.  

Another challenge of the problem is to do this prediction in 
real time. For example, we might like to take a live video 
stream and overlay part locations so that we can have a real 
time 2D pose for human subjects. This requires that prediction 
take place relatively quickly. The Kinect runs at 
approximately 30 frames-per-second, meaning that part 
prediction takes no more than about 33.3 milliseconds. Most 
current approaches to the problem with still images use a 

 
 
 

graphical model to capture relationships between parts. 
However, many of these approaches suffer from either 
accuracy problems because the models are too simple, or 
suffer from tractability problems because the model is too 
complex [2]. Clearly time complexity is an issue because 
inference on these models takes orders of magnitudes longer 
than what is required for real-time performance. 

B. Previous Work 

Until quite recently, most work on pose estimation from 
single images was based on using graphical models to capture 
dependencies between parts for prediction [3, 4, 5, 6, 7, 8], 
typically with simple tree or star-structured models. The 
problem, however, with simplified graphical models is that 
they do not capture a number of important dependencies, such 
as symmetric parts (to avoid double counting) and these 
methods often fail when certain parts are occluded in the 
image. Inference on exact graphical models is too difficult and 
computationally expensive, except for very simple models. 

More recent work has examined using Deep Neural 
Networks to train and refine joint predictors [9]. Its use of 
refining predictions is similar to Pose Machines. 

C. Pose Machines 

Our approach is to extend the work of Ramakrishna et al on 
Pose Machines. Pose Machines are currently the state-of-the-
art for single-image human pose estimation. This approach 
sidesteps the issue of representation by approaching pose 
estimation as a structured prediction problem. The prediction 

Real Time Human Pose Estimation for Boosted 
Random Forests and Pose Machines 

Kenneth Marino, Georgia Institute of Technology 

 
Fig. 1.  An example generated pose. The colored line segments show the 
connection between the 14 annotated locations. The output pose gives the 
location of joints from which limbs can be inferred. 
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task is given an input image, we would like to predict the 
anatomical landmarks 𝑌 = (𝑌1, … , 𝑌𝑃) for each of the P parts, 
in this case P=14 [2]. We predict each part such that 𝑌𝑝 ∈ 𝑍 ⊂

 ℝ2, where 𝑍 is the set of all pixel locations (𝑢, 𝑣) in the 
image. The inference machine then consists of a sequence of 
multi-class classifiers, 𝑔𝑡(. ), which are trained to predict the 
location of each part. In each stage 𝑡 ∈ {1, … , 𝑇}, we predict a 
confidence for each output assignment 𝑌𝑃 = 𝑧, ∀𝑧 ∈ 𝑍 based 
on the input image data 𝑥𝑧 ∈ ℝ𝑑 and contextual information 
from the previous stage, 𝜓(𝑧, 𝑏𝑡−1

𝑖 ), where 𝑏𝑡
𝑝

 represents the 
confidence at stage t that 𝑌𝑝 = 𝑧, ∀𝑧 ∈ 𝑍. We can then 
compute the confidence that a particular part 𝑝 belongs at 
location 𝑧 by 𝑏𝑡(𝑌𝑝 = 𝑧) = 𝑔𝑡

𝑝
(𝑥𝑧; ⋃ 𝜓(𝑧, 𝑏𝑡−1

𝑖 )𝑃
𝑖=1 ), where 

the union operator is the concatenation of the outputs of  𝜓(. ) 
for each part.  

The intuition behind this framework is that passing 
information between predictors for each stage allows for 
information about the location of different parts to be used in 
the next stage to predict other parts. For instance, a high 
likelihood of the head in one location might make it far more 
likely that the neck is at a location near it. This framework, we 
believe, implicitly captures the statistical relationship between 
these parts. 
 The predictors themselves are implemented as gradient 
boosted random forests classifiers. The basis of this algorithm 
is the random forest [10]. Given an input 𝑥 ∈ ℝ𝑑, the 
algorithm returns the corresponding continuous output 𝑦 ∈
ℝ𝑃. This output is determined in the following way. For each 
tree in the forest, the algorithm determines the leaf node that 
corresponds to a particular 𝑥𝑖. Each internal node keeps track 
of a dimension of 𝑥 𝑑𝑖𝑚 and a threshold 𝑡ℎ𝑟𝑒𝑠ℎ. The value of 
𝑥𝑖 is compared to the threshold at that dimension to determine 
if the corresponding leaf node is a left or right descendant of 
the current node – if 𝑥𝑖[𝑑𝑖𝑚] ≤ 𝑡ℎ𝑟𝑒𝑠ℎ, it updates the current 
node to be the left child. Otherwise, it updates it to be the right 
child. Once it has reached a leaf node of the tree 𝑡𝑟, it outputs 
the distribution of 𝑦 that is stored there 𝑃𝑡𝑟(𝑥𝑖). This 
distribution corresponds to the distribution of training 
examples that also navigated to this node during training. 
Once this is done for all trees, the final output y is simply the 
average of all of the 𝑃𝑡𝑟(𝑥𝑖)’s. 
 

D. Fundamental Time, Energy Tradeoff 

One of the fundamental trade-offs in many problems is 
between speed and accuracy. As one might expect, methods of 
pose estimation that are more accurate often take longer to 
compute. This is no different for Pose Machines. Below is a 
chart showing the major parameters of the Pose Machine 
Algorithm, how the value of that parameter effects the runtime 
of the algorithm and the value used subsequently to compare 
running times for this paper. Increasing each of these 
parameters will improve the accuracy of the pose estimator to 
some extent, but causes the prediction to take longer [2]. 

 

II. APPROACH 

A. CUDA Accelerated Run Time Performance 

Before work was started, running Pose Machines for a 
complete image took approximately 270 milliseconds using 
the parameters from Table I. This would mean that you could 
run at approximately 4 frames-per-second on a top-of-the-line 
consumer processor. Perhaps additional improvements in 
processors could bring this up to a reasonable frame-rate, but 
for now it is simply too slow to allow for real time 
applications. 
 A major focus of this work, then, is to increase the speed of 
this prediction without sacrificing accuracy. To that end, Pose 
Machines was accelerated using GPU acceleration. 
 The original work on GPU accelerated algorithms for 
random forests was performed by Toby Sharp at Microsoft 
Research. The basic concept of the algorithm was to take 
advantage of the parallel capacity available with graphics 
processors and compute the output of all of the inputs 𝑥𝑖 , at the 
same time. Thus instead of computing the output  𝑦𝑖 = 𝑓(𝑥𝑖) ∀𝑖 
serially, they are computed in parallel. This is particularly 

TABLE I 
TUNABLE PARAMETERS 

Parameter Time Relationship Value in System 

Stages Linear 3 
Levels of Hierarchy Linear  3 

Depth Sublinear 12 
Number of Trees Linear 20 
Boosting Iterations Linear 25 
Image Resolution Quadratic 360p 

 

 
Fig. 2.  Pose Machine from Ramakrishna et al. For each image location, the figure shows the layers of prediction from Level 1 to Level L and the multiple stages 
of prediction from 1 to T. Photo courtesy of Ramakrishna. 
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useful with respect to pose machines because we are 
essentially computing this value for 𝑍, the set of all pixel 
locations (𝑢, 𝑣) in the image. Sharp’s algorithm stores each 
tree as a matrix where each row of the matrix is a node in the 
tree. A modified version of this matrix is shown in Figure 3.  

As before, each internal node stores a dimension and a 
threshold. Instead of doing a conditional branch to determine 
the successor node, the modified Sharp algorithm calculates 
the same comparison 𝑥𝑖[𝑑𝑖𝑚] > 𝑡ℎ𝑟𝑒𝑠ℎ [11]. Now if the 
condition was true, the value in memory is 1, otherwise the 
value is 0. The algorithm then loads the index of the next node 
by calculating 𝑛𝑒𝑥𝑡𝑛𝑜𝑑𝑒 = 𝑙𝑒𝑓𝑡𝑐ℎ𝑖𝑙𝑑 + 𝑥𝑖[𝑑𝑖𝑚] > 𝑡ℎ𝑟𝑒𝑠ℎ. 
The way the tree is laid out, the left and right children of a 
node are always next to each other. The significance of doing 
the calculation this way is that no branching is ever performed. 
This means that all of these calculations can be done 
simultaneously for  ∀𝑖 without forcing the GPU to spin some 
of its threads, which is what would happen with a 
𝑖𝑓, 𝑒𝑙𝑠𝑒 construct. Once all of the 𝑥𝑖’s reach leaf nodes, the 
average outputs for all of the trees are averaged. Additionally, 
since we are in fact running boosted random forests, this is 
repeated for each boosting iteration and the final output is 
determined by the normal weighted sum of the outputs for 
each stage.  

One additional change that was made from the Sharp 
Algorithm (besides the generalization of the conditions) is that 
the operation is further parallelized over trees (see Figure 4). 
In addition, while Sharp stores the node information (left 
child, leaf, dimension, thresh) in the same data structure as the 
average outputs, our modification puts them in separate data 
structures. These changes allow for more efficient GPU 
memory use and more efficient use of available threads. 

In addition to the random forest prediction being performed 
on GPU, most of the operations of Pose Machines was moved 
onto GPU. The most significant calculation moved to GPU 
was the calculation of the context features, earlier 
simplified 𝜓(𝑧, 𝑏𝑡−1

𝑖 ). Additional details of context features 
can be found in [11], but the basic idea is that the outputs from 
the previous stage for all of the parts are condensed into score 
maps and fed as input into the next prediction stage. In this 
case, each of these context features for each input 𝑥𝑖 is 
completely independent, so this was fairly easily parallelized.  

The boosted adding of the random forests was moved onto 
GPU. With all of the major calculations now done on GPU, 

memory copies between CPU and GPU (one of the most 
computationally expensive operations) were minimized.  

B. GPU-Accelerated Training 

Runtime performance is an important part of real time 
human pose estimators, but the other half of the problem, 
besides the runtime performance, is the training performance. 
Currently, for a dataset size of one thousand, it takes about 1 
day. Unfortunately, to achieve performance close to Kinect 
accuracy, the algorithm likely needs to train more on the order 
of 10 million images. Assuming an approximately linear 
runtime for training (this is likely optimistic). It would take 
approximately 10,000 days or about 27 years to train a model 
with 10 million images. Clearly this is intractable.  

One approach to fixing this problem is to parallelize using 
GPU acceleration. For this, first we look at the basic algorithm 
for training a random forest (the backbone of the prediction, 
and the part that takes up most of the training time). The 
recursive algorithm for building a tree, along with the runtime 
with respect to the number of examples, of different 
operations is shown in Figure 6.  

For parallelization, clearly the most important things to 
parallelize are the sorting of X, and the determination of the 
best gain on line 7. There are numerous parallel algorithms for 
sort, so we will concentrate on the determination of gain. 

The determination of the gain basically boils down to the 
simple operation of determining running sums. The formula 
we use to calculate the gain for a regression tree is 𝑒𝑟𝑟𝑝𝑎𝑟𝑒𝑛𝑡 −

(𝑒𝑟𝑟𝑙𝑒𝑓𝑡 + 𝑒𝑟𝑟𝑟𝑖𝑔ℎ𝑡). To calculate a particular error of a 
particular input dimension and split, the formula is 𝑒𝑟𝑟 =

 ∑ (∑ 𝑤𝑖𝑦𝑖𝑗
2𝑁

𝑖=1 ) −
(∑ 𝑤𝑖𝑦𝑖𝑗

𝑁
𝑖=1 )

2

∑ 𝑤_𝑖𝑁
𝑖=1

𝐷
𝑗=1 , where N is the number of 

samples and D is the dimensionality of the output. From this, 

 
Fig. 4.  GPU-optimized data structure for random forests. Sharp Trees are concatenated on top of each other to allow for additional parallel operations. 
Operations on the data structure are parallel over examples, as well as over trees. 
  

 
Fig. 5 Context Features Visualization. The output values for the locations 
surrounding each point are concatenated into a new input feature for the next 
stage of computation. Photo courtesy of Ramakrishna. 
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you can see the bulk of the work is computing these sums. 
Thus, we developed the following algorithm for computing the 
running sum in parallel shown in Figure 7 and Figure 8. 

The running time of this algorithm is 𝜃(
𝑁

𝑘
𝑙𝑜𝑔𝑁), where k is 

the number of parallel processes available. The only serial 
work is related to the log of the size of the input. The adding 
operations occur in parallel, but because hardware has a fixed 
limit to the number of parallel operations, the actual time 
depends on that hardware constant 𝑘. 

III. RESULTS 
Figure 9 shows the runtime performance of Pose Machines 

using the parameters from Figure 3 using naïve CPU 
parallelization and the GPU acceleration version. 

These results show a great improvement in runtime from 
about 4 frames per second to about 17, and approximately 
400% increase. In particular, the context feature calculation is 
greatly speeded by GPU acceleration, however, the prediction 
is still greatly sped up. The only operation not implemented on 
GPU was the Histogram of Gradients (HOG) feature 
computation. Clearly speeding up this computation could have 
a positive effect on runtime performance. 

Figure 10 shows the speed results for the GPU accelerated 
running sum algorithm. For sufficiently large inputs, the GPU 
accelerated algorithm runs about 3 times the speed. While this 
result is certainly promising, GPU acceleration of training may 
not be the ideal solution. First, there is a memory issue in that 
even high-end GPU processors have only about 10 GB of 
memory which may prevent GPU from being used for 
training. In addition, given that GPU memory is filled, only 
one CPU process can be used at a time during training which 
prevents CPU acceleration of training. This means that unless 

 
 
Fig. 6 Algorithm for growing a decision tree. Notice the bulk of the time is spent in the for loop starting on line 4. The running time of this part is 𝜃(𝑁𝑙𝑜𝑔𝑁).  

 
 
Fig. 7 New Algorithm to compute running sums in parallel.  

 
Fig. 8 Visualization of running sum algorithm in Figure 7. 
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the GPU accelerated training is far faster than a single-core 
CPU algorithm, GPU accelerated training is unlikely to help. 

IV. CONCLUSION 
The most impressive result of the work is the time 

performance. Based on the number reported, running Pose 
Machines using GPU acceleration achieves performance close 
to that of the Kinect with respect to speed. It is currently the 
fastest implementation of a working pose estimator that does 
not use depth information. DeepPose [9] claims a running time 
of 100 milliseconds, compared to our 60 milliseconds. 

The accuracy of the model is still the biggest problem. Pose 
Machines still do not match the prediction accuracy of the 
Kinect. One of the major problems right now is the limited 
training sets that the algorithm is trained on. Improvements in 
performance from GPU accelerated training and other 
improvements in training time such as the structure and 
evaluation point schema will be important to train the 
algorithm on extremely large datasets. 

V. FUTURE WORK 
Most of the future work on this project will concentrate on 

training larger datasets. This will involve solving problems 
surrounding training speed as well as problems with memory. 
Currently, the entire training dataset is put into memory for 
training, but as the dataset gets larger, this will become 
intractable.  

Additional work is currently being done to train by using 
some input examples as “structure points” and used to 
determine splits and using the rest to determine the 
distribution on leaf nodes. Ideally this would reduce the 
runtime by reducing the number of “splits” that internal nodes 
have to consider during training. This work is ongoing, so no 
results have been generated, but the preliminary findings make 
this a promising area. 

A possibility beyond directly solving the training time and 
space issues is to better use available training examples. The 
idea is to essentially learn which images will best improve the 
performance of the algorithm. The algorithm will train on one 

subset of the data and then predict the output for the other 
subset of the data. The images that the algorithm did poorly on 
will then be used in the next round of training so that it can 
better learn the things it missed. 
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Fig. 9 Bar graph showing runtime performance of Pose Machines. All 
parameters are listed in Table I. 
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Fig. 10 Line graph showing performance of new running sum algorithm 
compared to simply calculating a running sum on CPU. 
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Abstract—Accurate rover localization and distance determi-
nation is necessary for purposeful planetary exploration and
scientific missions. In this paper, the use of a planetary landing
map is examined for the purpose of lunar localization and total
distance traveled measurement in the context of the Google Lunar
X-Prize. A methodology for lunar localization using monocular
visual odometry scaled with wheel odometry is presented. In this
methodology, feature matches between the aerial map and the
on-board rover camera are utilized for absolute localization. This
methodology was tested in a 500m analog field experiment, during
which the rover drove over 500m in lunar-like terrain. This
experiment was analogous to the 500m lunar treks that Google
Lunar X-Prize teams will be undertaking. Next, the methodology
was tested and analyzed in a shorter 100m analog experiment
with a more complete data set in Pittsburgh, PA. The results of
the test are presented, showing distance determination to within
5 meters and overall localization to within 10 meters.

Keywords—Rover localization, Monocular Visual Odometry,
Google Lunar X-Prize.

I. INTRODUCTION

There is a need for simple and robust localization on
the lunar surface for purposeful exploration and scientific
missions. Recently, the Google Lunar X-Prize has sparked a
number of novel lunar rover missions. In addition to requiring
localization on the lunar surface, these missions will require
precise distance determination to prove with high confidence
that they have traveled at least 500m to win the prize. Unlike
on Earth, satellite-based GPS localization is not available on
the Moon, making absolute positioning challenging.

The Mars Exploration Rovers utilized stereo visual odom-
etry paired with wheel odometry and an IMU (inertial mea-
surement unit) to achieve high accuracy localization [1]. By
itself, wheel odometry is cheap and simple to implement;
however, it is prone to accumulating error caused by wheel
slip. This causes a position estimate with unbounded error over
time. Similarly, IMUs are susceptible to sensor noise and drift,
causing errors in the position estimate. By using stereo visual
odometry, the Mars Exploration Rovers were able to correct
for wheel odometry errors caused by wheel slip and generate
position estimates to within 1% of the actual rover position
[1].

Stereo-visual odometry has proven to be successful for
localization; however requires a stereo vision system that is
mechanically complex and may be impractical for smaller
rover missions. Other techniques employ additional, often ex-
pensive, sensors for localization. A popular technique includes

Fig. 1. Andy 2 rover exploring a simulated lunar pit in the Robot City test
site. The Andy rover mission aims to explore the Lacus Mortis pits on the
Moon as part of the Google Lunar X-Prize.

utilizing LIDAR-based horizon matching for long range posi-
tioning with a several kilometer range [2]. Another technique
includes using an upwards facing star tracker for celestial
navigation [3]. These strategies have been shown to produce
rover localization accurate to within tens of meters; however
they require additional hardware, adding system complexity
and cost.

With recent advances in monocular visual odometry and
the development of freeware, such as Visual Structure From
Motion (VisualSFM), it is possible to generate dense and
comprehensive 3D point clouds from monocular camera im-
ages [4]. The generated 3D point clouds provide information
about the shape of the camera’s motion throughout a traverse;
however, unlike stereo visual odometry, monocular visual
odometry does not provide any absolute scaling or distance
information. Recently, there has been research in utilizing
inertial measurement units to infer scaling for ground based
robots and UAVs [5]. In addition, crude scale can sometimes
be inferred from landmarks and known features within the
surroundings [5]. Wheel odometry can also be utilized to infer
the scale of the 3D point clouds generated through monocular
visual odometry.

Recently, there has been active research in robot localiza-
tion using Google Street View and aerial imagery from Google
Maps [6]. Analogously, rover position can be determined from
an aerial map generated during landing. Most contemporary
planetary landers are equipped with down-facing cameras and
LIDAR for autonomous landing operations. Images taken from
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a planetary lander during descent could be merged to generate
a 3D landing map using structure from motion techniques. The
coverage and detail of this map depend on the field of view
of on-board sensors and the landing path, however several
kilometers of coverage could be expected. This 3D landing
map could be utilized for absolute rover positioning on the
lunar surface for short-distance lunar missions.

In this paper, the use of a planetary landing map in conjunc-
tion with a monocular camera and wheel odometry is examined
for the purpose of lunar distance verification and localization.
VisualSFM, a freeware software, is utilized for generating 3D
point clouds from the on-board rover camera images (rover
ribbons). This rover ribbon is scaled with known time-stamped
distances from wheel odometry distance estimates. The rover
ribbon is then matched to a 3D aerial map that is generated
during rover landing. Wheel odometry is utilized for distance
verification and is cross-checked to the aerial map for higher
statistical confidence of total distance traveled. This system
uses basic sensors that are found on most robots (camera,
wheel encoders) paired with a detailed landing map that is
expected in planetary missions to achieve high performing
localization.

The aforementioned strategy was tested in two field ex-
periments during which the rover navigated through analog
lunar terrain (Figure 1). Both experiments took place in the
Robot City Site in Pittsburgh, PA. During the first experiment,
the rover drove over 500m in lunar-like conditions, mimicking
the operational conditions of an actual lunar mission. For the
second experiment, the rover drove a closed-loop of over 100m
in lunar-like terrain, exploring several lunar-like features and
returning to the simulated landing site. Results from these
experiments demonstrate high confidence in total distance
traveled using an in-situ wheel-odometry calibration factor. In
addition, a rover localization utilizing visual odometry with
matching to the aerial landing map was demonstrated for the
purpose of absolute positioning on the moon.

The aim of this research is to provide a framework for a
simple, yet accurate lunar localization methodology to enable
small-scale lunar rover missions, particularly for Google Lu-
nar X-Prize teams. A distance determination and localization
strategy using only an on-board monocular camera, wheel
odometry, and an aerial landing map is presented.

II. FIELD DATA

Data was collected in the Robot City Lunar analog test site
in Pittsburgh, PA. This site is an excavated construction site
with loose dirt, rocks, boulders, and steep pit-like excavation
areas. The site’s prominent positive (rocks) and negative (pits)
features make it an ideal lunar-analog site, since these are the
sorts of features that are prevalent on the lunar surface.

Before each of the field tests, an aerial landing site was
generated using a multi-rotor UAV (unmanned aerial vehicle).
The UAV collected several thousand fly-over images from
above the test-site. In addition, a FARO Focus 360 laser
scanner was utilized to obtain several high-precision laser
scans of the entire test site. The FARO laser scanner was placed
at several different locations to capture the entirety of the site.
The positions of the FARO scanner were recorded using survey
equipment accurate to 5mm in order to reconstruct the area.

The UAV images were fusing using VisualSFM to generate a
dense 3D point cloud of the site. This point cloud was scaled
and aligned using the laser scans. The 3D aerial map was
degraded to resemble the quality of imagery expected from
the Astrobotic lander (Figure 2).

Fig. 2. Aerial Map of analog test site. Ground truth rover position is
overlaid in red. The positive and negative features present in the test site
are characteristic to the lunar terrain.

Survey equipment was utilized to monitor the ground truth
rover position to within +/-5mm by using a tracking prism
mounted on top of the rover. This recorded the time-stamped,
ground-truth position of the rover for the duration of each
experiment. All further analysis of rover position and distance
traveled utilizes this survey data for comparison.

During the first test, the rover drove over 500m. Drivers
had no prior knowledge of the test site and navigated the rover
with an imposed 5 second delay (Figure 8). During the second
test, the rover drove a closed-loop of over 100m on the lunar-
analog terrain. Rover commands were sent from a mobile
ground station with a simulated control delay of 5 seconds.
Images were streamed from the rover to the ground station for
processing at a rate of 1Hz. These images were then rectified to
account for distortions in the camera lens using pre-determined
camera parameters. All data was time-stamped for correlation
between different data sets.

III. METHODOLOGY

A. Wheel odometry

Wheel encoder data is used to monitor the total distance
traveled and estimate rover pose. The rover distance and
position estimate is susceptible to error caused by wheel
slippage. This is mitigated by utilizing an odometry factor
calibrated for the lunar terrain.

The odometry factor (distance/turn) is calibrated on site by
driving the rover between two features of a known distance
apart and recording the number of wheel turns between the
features. In the absence of distance information between fea-
tures, the odometry factor calculated during rover testing can
be utilized in place of a lunar calibrated odometry factor. The
distance the rover travels is given by:

d = twheel · s (1)
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Where twheel is the number of wheel turns and s is the
odometry factor, a factor predetermined in testing that is
dependent on the rover wheel diameter and terrain (Figure 3).

For the first test, the wheel odometry factor was calibrated
on-site by driving between two rocks visible in the aerial map
and measuring the number of turns between those rocks using
wheel encoders. The rover path was greater than the straight-
line path between the rocks due to object avoidance, resulting
in an underestimated wheel odometry factor, which provided
underestimates of total distance traveled.

For the second test, the wheel odometry factor was cali-
brated using the test data from the first test, resulting in wheel
distance estimates close to the ground truth.

Fig. 3. Andy 2 rover with associated dimensions: d - rover wheel diameter,
a - track length, vL - average velocity of left wheels, vR - average velocity
of right wheels. Wheel turns were recorded for each wheel during testing.

B. Visual odometry

Visual odometry utilizes feature matches between cor-
responding image sequences to reconstruct the rover path.
Images from the rover’s onboard camera during the trek were
stitched together to create dense point clouds of the terrain that
the rover drove across. Structure from motion (SFM) imaging
techniques were used to generate the three-dimensional point
clouds and to extract the rover camera positions at each
location. Off the shelf software called VisualSFM was utilized
for SFM. VisualSFM first employs Scale-invariant feature
transform (SIFT) algorithm to detect correspondences between
features. These features are tracked between frames and used to
recover structure. The camera parameters (focal length, image
center, and radial distortion) were utilized in the generation of
the camera positions. In order to limit computational time and
minimize false matches when searching for correspondences,
each image was compared only to its adjacent two neigh-
bors rather than the whole image data. A bundle adjustment
procedure was used to distribute errors along the path. This
technique generated a sparse point cloud of the rover path
with corresponding camera locations. Finally, CMVS/PMVS
was utilized to generate dense point clouds of the rover traverse
[7] (Figure 4, 9).

For the second test, a framework for gathering transmitted
images and running the images through VisualSFM in real-

Fig. 4. Sparse rover ribbon with camera positions plotted generated from
VisualSFM

time was developed in Python, however was met with limited
success.

C. Scaling

The monocular visual odometry provides a geometry for
the rover traverse, but is incapable of determining speed.
Wheel odometry distances were utilized to find a scale for
the visual odometry point cloud based on corresponding time
stamps between the data (Figure 9).

The rover ribbons diverged and generated new models with
non-uniform scaling in areas without prominent features. These
models were matched together based on time and scaled using
timestamped wheel odometry distances (Figure 10).

D. Matching

The rover position can be manually or automatically
matched to the aerial map. Matches were found between the
aerial map and rover ribbon. These matches serve as landmarks
to register the rover ribbons to the 3D aerial map.

During the first experiment, the rover was manually
matched to the aerial map. Operators can manually match fea-
tures from the 3D aerial map to features seen from the onboard
rover camera to determine the rover location. 38 features were
selected from different points in the rover traverse. Features
were selected solely using the transmitted rover images and
aerial map - the operator never saw the test site, just like
during lunar operations. Since the aerial map is accurate to
within 0.1m, absolute rover positions can be determined at
each feature to reconstruct a map of the rover traverse (Figure
8).

The point clouds from the rover ribbon and the aerial map
were manually aligned in MeshLab though feature matching.
This process could be automated using iterative closest point
(ICP) algorithms.
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Fig. 5. Total distance traveled estimate for both wheel odometry and manual
feature matching during the 500m test.

IV. RESULTS

A. Test 1 - 500m trek

The distance verification analysis utilized 573.95 meters
of rover traverse. From this, the wheel odometry estimated
that the rover had traveled a total of 537.1 meters and the
feature recognition estimated a total of 539.5 meters. From
wheel odometry alone, the standard deviation for the estimate
of total distance traveled is 10.3 meters (Figure 5) (Figure 6).

Using feature recognition from the aerial map, the position
estimate at each feature has a maximum error less than 8.1
meters. The error in the feature position increases for segments
without any prominent features and decreases for segments
where there are copious features and it is easy to make
visual matches. The estimate of distance traveled using feature
matches is based on the linear interpolation between features,
assuming the minimum straight line distance between points.
Due to this, the distance estimate is always less than the total
distance traveled within the bounds of the aerial-map error,
since the actual rover path is not typically a straight line. Once
the total distance traveled from feature matching equals 500m,
there is a high level of confidence that the rover has traversed
at least that distance (Figure 8).

B. Test 2 - 100m trek

The wheel odometry was able to provide distance estimates
to within 5 meters of the true distance throughout the length
of the traverse (Figure 7). This distance estimate was utilized
to scale the visual odometry ribbon. The position estimate
was able to determine the rover absolute position to within
10 meters (Figure 10).

V. CONCLUSION

During the first field experiment, distance verification
was accomplished using wheel odometry and manual feature-
matching to an aerial map. These two systems provide redun-
dancy for distance verification. Rover position was estimated
using feature matched and straight-line interpolations between
matches.

Fig. 6. Error in the distance traveled estimate over the total distance traveled
for both wheel odometry and manual feature matching during the 500m test.

Fig. 7. Error in wheel odometry over a 100m rover trek.

During the second field test, the total driven distance was
determined to within 5m, and the rover position was calculated
to within 10m. This was accomplished using visual odometry
from a monocular camera scaled with wheel odometry. A
complete scaled rover ribbon was constructed for the duration
of the test, however was not matched to the aerial map due to
time limitations.

Throughout this paper, a simple rover localization system
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Fig. 8. Aerial map of Robot City analog test site. The rover drove a total of 567.5m and the ground truth position (red) is plotted on the map. Black dots
represent feature matches in which certain landmarks were registered to the onboard rover camera images (shown). Cyan lines show the straight-line interpolations
between points these were used to determine total distance traveled.

Fig. 9. Visual odometry process: dense point cloud constructed from sequence of camera images (left). This point cloud is scaled using the aerial map (right),
providing a position estimate very close to the ground truth (+/- 5m).
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Fig. 10. Rover position estimate Vs. Ground truth for 100m trek. The position
estimate was generated by fusing the camera positions from VisualSFM and
scaling the rover ribbon using wheel odometry.

without the need for additional hardware other than a camera
and wheel encoders was presented.

VI. FUTURE WORK

Next, the localization methodology presented in this paper
needs to be automated to enable real time rover localization.
In addition, a Kalman filter should be implemented to provide
a statistically optimal position estimate. Custom feature detec-
tion algorithms specially tailored to the lunar surface need to
be developed to enable better feature matches between image
frames. This will enable to the generation of a more accurate
rover ribbon for localization. A methodology for automatically
matching the rover ribbon to the aerial map needs to be
investigated. Automatic matching will enable full GPS-like
absolute positioning on the lunar surface.

This paper aims to serve as groundwork for a lunar
localization for the Astrobotic Google Lunar X-Prize mission.
Further work is necessary to implement this methodology
on the ground station for real-time distance and position
monitoring.
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Abstract— The Hummingbird is an electronic kit designed for 
educational purposes. It has been a tool for teachers to integrate 
robotics into their classrooms and to encourage students to 
pursue STEAM fields. While the Hummingbird has had positive 
impact on robotics education, the device is limited by requiring a 
wired connection to a computer so that it is able to run the 
application. In response to this limitation, the new Hummingbird 
Duo has the ability to run untethered by changing the controller 
to Arduino Mode. However, to use this feature some 
programming knowledge is needed, and our major targeted users 
(students and teachers) often have limited programming 
experience. We propose a converter that will simplify the process 
of coding. We use the CREATE Lab Visual Programmer's output 
to generate an equivalent program for the Arduino. The 
converter can be used as a standalone application and will also be 
integrated in the Visual Programmer. This will remove the need  
for the user of writing the Arduino code, and can also be used as 
a tool for learning programming. 
 

Index Terms— educational robotics, creativity, STEAM, 
technology fluency, converter, Arduino, controller, embedded 
systems.  

I. INTRODUCTION 
he Hummingbird is an electronic kit designed for 
educational purposes, and has been a tool for teachers to 
integrate robotics in their classrooms. It also encourages 

students to pursue fields in programming, engineering and 
robotics [1][2]. Although this device has made an impact in 
ordinary classrooms by inspiring kids to explore the world of 
robotics, the device has to be tethered at all times when 
executing a program. This means a computer with the required 
program is necessary to use this kit. This is a problem for 
schools that have a limited amount of computers.  
 
This educational kit contains a controller (see Figure 1) that is 
easy to use and program. Users can manipulate LEDs, motors, 
servos and sensors by programming the device using the 
CREATE Lab Visual Programmer. The Visual Programmer 
was developed by the Community Robotics, Education and 
Technology Empowerment Lab (CREATE Lab) at Carnegie 
Mellon University and was designed to help the user to 
program the Hummingbird controller [4]. As other visual 
programming tools, this allows the user to commit logical 
errors, but is not possible for the user to have syntax error.  
 
The CREATE Lab Visual Programmer's main components are 
expressions and sequences. Similarly to a video which consist 
of  a combination of images; sequences are a combination of 
expressions. Expressions can be defined as the basic unit of 
the Visual Programmer. Every other component available will 
be a set of expressions. Creating an expression is designing a 

basic action or a state that the Hummingbird can take such as 
turning on an LED, moving motors at a specific speed or 
moving a servo to a certain angle. It can also have more than 
one output. For example, one state can be to turn the LED on 
and at the same time move a motor (Figure 1 is an example of 
an expression with multiple outputs). Sequences are more 
complicated structures, in which the user can add a list of 
expressions, conditional loops, counters, and other sequences. 
Conditional loops are decision making components that can be 
set to repeat a set of elements and counters are structures that 
repeat a set of elements a number of times defined by the user. 
All of these components will be discussed in more detail in a 
further section.  
 
With the new Hummingbird Duo, applications can be run in 
the device without a connection to the computer. This new 
controller has an Arduino Leonardo microcontroller integrated 
into the board, which allows the user to write the program in 
the Visual Programmer, as in previous versions, or write the 
program in Arduino [3]. When the user writes a program for 
the Arduino, also known as a sketch, the code can be uploaded 
to the controller and the program may run untethered. Using 
this method, the controller changes from Hummingbird Mode 
to Arduino Mode. This eliminates the need of the computer 
when running the program. However, the Hummingbird Kit 
has mainly been used by users that have no previous 
background in programming, and learning how to code can be 
a long and frustrating process. The lack of knowledge in the 
subject could be a barrier for using this new feature. This is 
why we have created a converter that will facilitate the process 
for the user by taking the program developed with the 
CREATE Lab Visual Programmer and creating an equivalent 
in Arduino code.  
 

 
 
 

Figure 1. New Hummingbird Duo. (a) Back of the controller,  where 
the integrated Arduino can be seen. (b) Front of the controller.  

Visual Programmer Converter for Untethered 
Running of the Hummingbird Duo  

Cristina M. Morales Mojica, University of Puerto Rico at Bayamón, Puerto Rico, and 
Dr. Illah R. Nourbakhsh, Carnegie Mellon University, Pittsburgh, Pennsylvania 
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Even though our major target are users with no previous 
experience in programming, the converter will be beneficial to 
both newcomers and people already knowledgeable about the 
subject. Beginners will have the option to use the 
Hummingbird Duo untethered without the need of knowing 
how to program, but also it will give the user an opportunity to 
examine the code provided, learn from it, and make an easier 
transition from novice to intermediate. Users with experience 
in programming can use this tool to speed up the process of 
creating the code, giving them a good base from where they 
can build their application and create more complicated 
programs. 

II. DEVELOPMENT OF THE CONVERTER 
When using the CREATE Lab Visual Programmer, the user 
develops a program, a sequence, that is saved as an XML 
document. The converter, developed using Java, uses an 
XPATH library to search through the XML document for 
necessary information for the final Arduino sketch (see Figure 
2). The information retrieved from the XML document is 
translated to equivalent statements of Arduino code that use 
the Hummingbird Library. The equivalent statements are then 
saved as an Arduino sketch. The user can upload the final 
output to the Hummingbird Duo, and run the application 
directly off of the microcontroller.   
 
The Visual Programmer provides the user with four different 
components: Expressions, Conditional Loops, Counters, and 

Sequences. The following section will present in detail how 
we developed the translation from each Visual Programmer 
component to its equivalent statement for the Arduino code. 

A. Expressions 
With expressions, the user has the option to convert an 
expression by itself (as shown in Figure 3) or as a component 
in a sequence. When expressions are part of a sequence, each 
expression is written in the Arduino sketch as a method. These 
methods, the converted expressions, will be located below the 
loop method (equivalent of a main method). Inside the loop 
method, the converter will insert the method's call that invokes 
the corresponding expression statements.  
 
Through the conversion of a sequence, every time a new 
expression appears, the converter translates it to the equivalent 
code, saves this code in a list, and writes the method's call. On 
the other hand, when an expression is repeated in a sequence, 
the converter writes in the Arduino sketch the calling of the 
corresponding method without converting it again and 
continues to the next element. Each expression will be 
displayed as a method to avoid repetition and for better 
understanding of the program's flow. It is also a way to teach 
the concepts of methods to newcomers to programming. 
Finally, if an expression was deleted, the user has the option of 
continuing with the conversion without the missing file, or 
interrupting the conversion. 

 
 

 
Figure 2.  Process of conversion. The user creates the application using Visual Programmer, and this program is saved as an XML file. 
The converter uses the XML file to search for necessary information and translate it to an equivalent program for the Arduino Sketch. 

 

 
 

XML Document Visual Programmer Arduino Sketch 

  hummingbird.setLED(2,105); 
 hummingbird.setLED(1,171); 
 hummingbird.setLED(4,252); 
 hummingbird.setLED(3,173); 
 hummingbird.setServo(1,134); 
 hummingbird.setServo(3,78); 
 hummingbird.setServo(4,165); 
 hummingbird.setServo(2,219); 
 hummingbird.setVibration(1,0); 
 hummingbird.setTriColorLED(2,223,255,97); 
 hummingbird.setTriColorLED(1,190,115,239); 
 hummingbird.setMotor(2,-112); 
 hummingbird.setMotor(1,179); 
  

 
 
Figure 3. The expression component. (a) The view for designing an expression in Visual Programmer. (b) The equivalent 
statements of the expression (a) for the Arduino. 

 

(a) (b) 
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B. Conditional Loops 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Conditional loops are decision making structures associated 
with a specific sensor. The conditional acts on a threshold 
value specified by the user and the information received by a 
sensor. This element is treated as an if - else statement or a 
while statement, and for better understanding, in this paper we 
will label the left square as the if and the right square as the 
else (see Figure 4). In both of the squares the user can add 
expressions and sequences. Also, the set of elements inside of 
the squares may be repeated by changing the arrows below 
them. 

1) Regular if-else statement 
 This option will generate a regular if - else statement where 
the instructions or set of instructions will execute at most once 
and move on to the next element. (see Figure 5a)  
 
2) if with repetition and else without repetition 
 In order to have the corresponding behavior, it is needed to 
change the structure from an if - else statement into a while 
statement followed by a set of statements. When the user 
selects the option of repeating the if square, it means that it 
will continue doing the set of elements in its body until the 
condition is no longer satisfied. In the Arduino Sketch, the if 
square will be written as a while containing the corresponding 
statements. Outside the while, there will be the else square 
statements. When both blocks are executed it will continue to 
the next element. (see Figure 5b) 
 
3) if without repetition and else with repetition 
 When the else square is set for repetition, and the if is not; the 
"less than" sign needs to be changed to "greater than" sign. 
Also the order of the statements that invoke the methods from 
the squares need to be changed. The else square statement will 
be written as a while, and when the condition is no longer 
satisfied, the if statements will execute. (see Figure 5c)  
 
4) if and else with repetition 
This option will generate an infinite loop, which could be what 
the user intended, or it could be a logical error. Both the 
converter and the Visual Programmer allow this situation. It 
will be translated to an infinite while loop that has an if - else 
statement inside. (see Figure 5d) 

 

 
Figure 4. Conditional loops are decision making 
components that can be set to repeat the elements inside 
the square by changing the arrows below. The conditional 
loop can generate four different possibilities that translate 
to if-else statement or while statement. 

(a) Regular if-else statement 
 

 
 
if (hummingbird.readSensorValue(3) < 511) { 
 blue(); 
 delay(1000);  
}else{ 
 red(); 
 delay(1000); 
} 
 
(b) if with repetition and else without repetition 

 

 
 
while(hummingbird.readSensorValue(3)<511) { 
 blue(); 
 delay(1000); 
} 
 red(); 
 delay(1000); 
 

(d) if and else with repetition 
 

 
while(true){ 
    if(hummingbird.readSensorValue(3)<511) { 
      blue(); 
      delay(1000); 
     }else { 
      red(); 
     delay(1000); 
 } 
} 
 

(c) if without repetition and else with repetition 
 

  
 

while (hummingbird.readSensorValue(3)>511) { 
 red(); 
 delay(1000); 
} 
 blue(); 
 delay(1000); 
 

Figure 5. The four different possibilities when using the conditional loops 
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C. Counter 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In Visual Programmer, the counter is an element that allows 
the user to repeat a set of expressions and sequences a 
specified number of times. This is transformed to a for 
statement with the specified number of iterations. 
 

D. Sequence 
 
 
 
 
 
 
 
 
 
 

Sequences are containers of all the previously discussed 
elements, including other sequences. Because there is no 
maximum depth of sequences within sequences, we approach 
it by implementing tail recursion. (see Figure 7)  

III. SENSOR VALUES CONVERSION 
In this section we will discuss problems that we encountered 
while testing the sensors. Each sensor had a particular issue 
which needed a specific approach, and these will be discussed 
in more detail further in this section. We want to stand out that 
sensors are only used with the conditional loop component. 
Also,  the flow of program will depend on the threshold value 
set by the user at the percent bar and the information received 
from the sensor (see Figure 4). We want to be clear that 
conditional loops are conditional statements when are 
translated to the Arduino sketch, and this conditional 
statement (if-else or while)  will use this threshold to evaluate 
if the condition is satisfied, and with this decides the flow of 
the program.  This is why it is important to have an accurate 
and representative value of that threshold from the Visual 
Programmer. A common problem between sensors was that 
the threshold value saved in the XML document was the 
number of the percent. For example, when the user set the 
threshold at the middle of the percent bar the value saved at 
the XML document was 50 as in fifty percent, and not the real 
value. Usually sensors have a range from 0 to 1023, the real 
value when the threshold is set at 50% should be 511. To be 
able to have that real value, a percent conversion was applied. 
After this, we notice specific problems with the potentiometer 
sensor (rotary knob), distance sensor and temperature sensor. 
These other situations happened because not all of the sensors 
have the same range (0 to 1023) and not all have the values in 
ascending order. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Counters allow the user to repeat a set of 
components a specified number of times, as in a for loop. 

for(int counter = 0; counter <5; counter++){ 
 LEDs(); 
 delay(500); 
 Servoat27(); 
 delay(1000); 
} 
 

 
 
Figure 7. Sequences are the combination of all the components, 
including other sequences. 

//Start Seq: Sequence.xml: 
 Expression(); 
 delay(1000); 
       . . . 
//End Seq: Sequence.xml 
 

 

 

Fig.5. Conditional Loop with 

threshold in 65% 

 Fig.6. Representation of the 

potentiometer while running 

the program in Visual 

Programmer 

 

 

Fig.7. Correct code that behave like the 

original program 

 while(true){ 
  
if(hummingbird.readSensorValue(4)>358) { 
 blue(); 
 delay(1000); 
  
} 
 else { 
 red(); 
 delay(1000); 
 
 } 
} 

Blue Red 

Figure 8. Conditional Loop with 
threshold in 65% 

 

Figure 9.  Representation of the 
potentiometer while running the 
program in Visual Programmer 

Figure 10. Correct code that behaves like the 
original program 
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A. Potentiometer (Rotary Knob) 
 

 
Figure 11. Hummingbird's Kit Potentiometer. 

When running the application with Visual Programmer and 
with the threshold set at 65% as shown in Figure 8, the 
potentiometer was leaning towards the right (see Figure 9). 
With the percent conversion, we expected to have the same 
behavior when running the program with the converted file, 
but the mark was leaning towards the left.  This is because the 
potentiometer range is not in ascending order (1023 to 0), the 
numbers from the left are greater than the numbers from the 
right. Meanwhile, most of the sensors are from 0 to 1023. To 
address this situation, an equivalent number conversion was 
applied. This caused the program to have the correct values, 
but it did the opposite function. This was solved by changing 
the “greater than” sign to a “less than” sign (see Figure 10).  
The distance sensor had the same behavior, and the same 
approach as the potentiometer was applied, with the difference 
that the range from the distance sensor is smaller, and its 
maximum value is 600, not 1023. 

B. Temperature 
Even though the temperature value was not executing 
backwards, it also needed a conversion. During execution, the 
value generated with the percent conversion was higher than it 
needed to be in order to behave as the original program. A 
special conversion was applied by subtracting 20% from the 
original value. This made the value more accurate. 

IV. CONCLUSION 
After using the converter, the user will have an equivalent 
program in Arduino code. When the conversion is completed, 
a window with the new file will appear on the screen for the 
user to select and use.  The converter is available as a 
standalone application, and is also integrated in the CREATE 
Lab Visual Programmer. When using the standalone 
application, the user will search for the XML file that needs to 
convert. When using the Visual Programmer, the user selects 
the expression or sequence and presses an export button. Once 
the user has the Arduino Sketch, the user needs to upload the 
code to the Hummingbird. When this is saved in the device's 

memory, the user can unplug the Hummingbird Duo from the 
computer and run the application.  
 

V. RESULTS 
The Hummingbird Duo has not been released and neither has 
the new version of the CREATE Lab Visual Programmer with 
the integrated converter. Users with older versions of the 
Hummingbird will be able to use the new Visual Programmer, 
but the option of exporting the code is not available for those 
versions.  Since the Hummingbird Duo and the new version of 
the Visual Programmer have not been released, all testing was 
done in a controlled environment. It is our next step to do 
testing in classrooms and with volunteer subjects.  
 
This is a tool for any user that wishes to use the Hummingbird 
Duo controller in Arduino Mode and does not have the 
knowledge or the time for developing the code. We wanted to 
give the users the option and comfort to use this educational 
kit with no previous programming background. We hope to 
have eliminated any intimidation or frustration that this lack of 
knowledge might cause, while encouraging users to search 
further, and become part of the scientific community.   
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Abstract—This paper presents the mechanical redesign of the 

waterproof enclosure, specifically developed for the new Lutra 1.1 
autonomous boat from the company Platypus. The greatest 
constraint of the current enclosure is its inconvenience to operate 
and the feature of time-consuming. More concretely, the tedious 
operation includes screwing and unscrewing 14 wingnuts. Several 
mechanical simplifications have been made to meet the 
requirements both for time and ease of operation. In this paper, a 
detailed mechanical description of the redesigned system is 
provided, fulfilling the necessary design requirements. The main 
outcome of this work is a full size experimental device capable of 
mitigating the current drawbacks, especially decreasing the time 
consumed to a great extent. The device has been assessed in terms 
of waterproof tests, operating steps and time consumption, 
resulting in a rather satisfactory and promising performance. 
 

Index Terms—Lutra, autonomous boat, rotary module, 
waterproof, mechanical simplification 
 

[1] INTRODUCTION 
In recent years, electronic equipment has been used more and 

more intensively inside autonomous watercraft. As a result, the 
enclosure device for electronic equipment in aqueous 
environment has become a key part of the system’s mechanical 
design.  

The main function of the enclosure is to secure the 
water-tightness property. One of the other major benefits is its 
removability. It allows the operations of opening and closing 
for setting up and adjusting the internal electronic and other 
types of devices. The autonomous boat Lutra is shown in Fig.1. 
The part pointed by an arrow on the top is the lid. 

 

 
Fig 1. The boat Lutra (source: Platypus Inc.) 

 
Assembled in the boat’s hull, the electronics compartment 

contains an Android smartphone where the main computation 
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is performed, a custom made embedded board that acts as an 
interface between the phone and other peripherals and finally a 
LiPo battery that powers the entire system.  

Several versions of the enclosure have been made so far by 
the staff from Platypus. In the initial phase, a bolt-nut 
mechanism was used along with an electric screwdriver to 
screw and unscrew all the nuts for each boat. Then, a 
stud-wingnut mechanism was adopted. And this is also the 
current method, enabling completely manual operation. Both of 
the methods are rather time-consuming and inconvenient to 
operate.  

On the basis of the previous approaches, a novel mechanism 
capable of faster operation has been designed. The new 
mechanism is inspired from the tray table on the airplane. The 
rotary block is provided to facilitate the ease of operation. 

The paper is organized as follows: Sec.II introduces the 
design requirements that led to the entire design workflow, 
Sec.III describes the mechanical design in detail, while Sec.IV 
presents the development of the experimental devices and 
reports and analyses of their performances versus the 
requirements, finally, Sec.V suggests the future work that could 
be done. 
 

[2] DESIGN REQUIREMENTS 
As mentioned above, three essential requirements are to be 

met, which are ①the rapidity, ②ease of operation, and ③the 
waterproofness. 

Thus, it should have an easy-to-use design. The dimensions 
of the mechanism are constrained to the current size of the boat. 
Rotary blocks are designed to press the lid down to the body of 
the boat to ensure the waterproofness.  

To make the requirements more concrete, they are 
summarized as the follows: 

1. Kinematic: The enclosure can be opened and closed and 
the lid can be moved vertically. The other parts of the enclosure 
are fixed relative to the boat body. Rotary blocks can be rotated 
horizontally in their individual place. 

2. Waterproofing: Water cannot enter the compartment when 
the boat is running. 

3. Dimensions: 17 inch long by 14 inch wide is the maximum 
dimensions of the enclosure according to the current size of the 
boat. The height of the enclosure needs to be larger than the 
sum of the thickness of the lid and the gasket. 
 

Redesign of the Waterproof Enclosure on the 
Lutra Autonomous Boat 

Zhuhan Qiao, RI Summer Scholar, Robotic Institute, Carnegie Mellon University 
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[3] MECHANICAL DESIGN 
To reduce the complexity of the operation, the previous 

action of screwing and unscrewing is to be replaced by simply 
rotating the rotary blocks which are assembled on the 
protruding edge around the lid. 

There are many ways to guarantee waterproofness. In this 
work, the use of a water-resistant gasket was chosen because of 
its advantage of not needing complicated manufacturing 
process compared to other ones. 

[4] Main Design Elements 

The Base 
The base is the skeleton or the platform of the enclosure 

where all other components are inserted. 
 
The Rotary Block 
The rotary block is the major component of the enclosure 

mechanism that transmits the pressure onto the top of the lid.   
Its shape (Fig. 2) is designed to have a round contour along 

the edge on the lower half plane. This feature increases the 
smoothness during operation. 

 

 
Fig. 2 A solid model of the rotary block showing its shape 
 
Sleeve 
The sleeve is the component that creates space in vertical 

direction allowing free rotation for the rotary block. The 
thickness of the sleeve should be slightly larger than that of the 
rotary block. 

 
Rotary Module  
This module (Fig. 3) mainly consists of a rotary block, a 

sleeve, a screw, a t-nut and washers. It can be inserted into the 
system of the waterproof enclosure. 

 

 
Fig. 3 A solid model of the rotary module 
 
The Lid 
The lid is the module that acts as a mechanical interface 

among the sensors, electronic boards, the smartphone and the 
battery. The current lid is to be used, which is shown in Fig. 4. 

 
The Gasket 

The gasket is the key component that guarantees the 
waterproofness. 

 
The Handle 
The two handles (Fig. 4) which are attached on the top of the 

lid are used for taking out and putting in the lid. 
 

 
Fig. 4 A solid model of the lid and the handles (source: adapted from the 

drawings from Platypus Inc.) 

[5] Fabrication of the Components 

Most of the pieces composing the new waterproof enclosure 
were fabricated using standard procedures employing one or 
more of the following manufacturing processes: 
[6] Laser cutting  
[7] 3D printing  
[8] Sawing  
[9] Gluing  
 

[10] EXPERIMENT RESULTS AND PERFORMANCE ANALYSIS 
The mechanical design presented in Sec.III  is the outcome of 

a conceptual design based on the technical requirements, as 
reported at the beginning of the paper. Afterwards, 
experimental devices were built for tests to validate the design. 
The description of two different sizes of experimental devices 
are reported first, followed by the demonstration of the 
experiments and obtained results. 

 
Experiment Setup 

In order to reduce cost, a scaled down experimental device 
(Fig. 5) was made first according to the ratio of 1 to 5, followed 
by a full size one (Fig. 6). Around the peripheral of the full size 
device, multiple rotary modules can be inserted to enable 
testing of different numbers and distributions of them. 

 

 
Fig. 5a  A solid model of the scaled down experimental device 
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Fig. 5b Actual hardware built of the scaled down experimental device 
 

 
Fig. 6 A solid model of  the full size device 
 
The cross-sectional view of the scaled down experimental 

device is shown for exposing the inner structure (Fig. 7). The 
specific mechanism in the full size device is analogous to the 
scaled down one. 

 

 
Fig. 7 Cross-sectional view of the scaled down device 
 
For the purpose of assessing the performance of the 

experimental devices, waterproofing tests were adopted to test 
the waterproofness. A piece of dry absorbent tissue is placed 
under the lid to check if the tissue is wet or not after the test. 
The test consists of 2 steps: 
[11] Splash water onto the device to simulate the water 

environment 
[12] Directly current impact on the lid 
After this, a comparison of the time consumed between the 

experimental device and the current enclosure was made.  
 

Experiment Results 
The results of the scaled down device showed that it passed 

the waterproof test. Thus, a full size device was built to be 
tested next. After several trials of different combinations of 
rotary modules, the one (Fig. 6) with the following distribution 
of rotary modules passed the waterproof test. 

 

 
Fig. 6 Actual full size experimental device that passed the waterproof test 

    
The table below shows the obtained time consumed by 

different devices. Time is measured by a stopwatch. 
 

 Operations required Time consumed 
Full size device Turn 12 rotary blocks around  25 seconds 
Current device Screw 14 wing nuts around 2 minutes 

Table 1. Comparison between the full size and current device 
 
The results showed a around 75% speed improvement.  

 

[13] FUTURE WORK 
Future work could focus on: 

[14] Making modifications to the shape of the edge of the lid 
and try other washers and gasket to further smooth the 
operation. 

[15] Making slight changes and then putting the full size device 
onto the boat  
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Abstract—This paper focuses on the system development for
an android app for blind and visually impaired users for
outdoor navigation needs. The application is called NavPal
Outdoor app. The larger aim of the app is to support blind
and visually impaired user to navigate outdoors independently
without help from any other person or device. The application
utilizes the hardware of an android supported smartphone to
get accurate and realtime information about the route and
navigation information. The app facilitates the users as well
as other sighted or visually impaired user to act as trusted
sources to add dynamic information to the map for updating
the users with accurate and realtime information about routes.
The paper highlights the main architecture of the application,
different components of the app and their respective functionality.

Index Terms—Android application, Breadcrumb approach,
Contact destination principle, Geo coding, Haptic and speech
interface, NavPal1,Navigation Aid,Smart-phone app, Trusted
sources, Trusted user interface

I. INTRODUCTION

The NavPal Outdoor app is an android application which is
designed to facilitate the outdoor navigation needs of blind and
visually impaired user. The app is a standalone unit which uses
the different hardware capabilities of an android supported
smartphone along with communicating with several servers
to return accurate realtime route and navigation information.
Therefore facilitating the users to navigate independently and
safely in an outdoor environment. The app calibrates the
routes according to the user’s preference and gives essential
information about route and path, to help the user localize,
navigate and create a log for future travel. Through this
work, we will be exploring the specific challenges encountered
by blind and visually impaired travelers and their counter
measures when navigating in an outdoor environment.

A. Motivation

There are more than 15 million people in the United
States of America who are blind or visually impaired, and

1 c©TechBridgeWorld
NavPal project was initiated by TechBridgeWorld research group along with
the Robotics Institute at Carnegie Mellon University. The first author was af-
filiated with Robotics Institute Carnegie Mellon University TechBridgeWorld
research group for the duration of this research. For more information on the
NavPal Project please visit http://www.cs.cmu.edu/ navpal/index.html.

majority of this population face some critical challenges
when navigating outdoors. Safety and independence of
navigation are some of the most cardinal issues to be
addressed. There is a huge risk involved for blind and
visually impaired users to navigate independently outdoors
due to limited nature of information present for the route
ahead. For example its very difficult for blind and visually
impaired users to estimate pot-holes and ditches in a
route and hence safety becomes an issue. Also day-to-day
activities such as using transit systems remain challenging
tasks for people with visual impairments even though the
use of transit systems is often a key factor for participation
in employment, educational, social, and cultural opportunities.

The current tools and devices that exist in today’s market
space that help blind and visually impaired travelers navigate
outdoors are limited. Some of them are very expensive and
not accessible to a larger community. Also many of these tools
depend upon external hardware which limits their usage and
often needs to be replaced at regular intervals to avoid faulty
measurements. Some tools use the infrastructure provided
by the cites or states like bluetooth beacon device, traffic
light alarms etc which may not be present universally in each
city thus making them limited. The breadth of information
about the route and navigation instruction provided by these
devices are also limited. Hence the overall accessibility
of these devices or tools are limited to a much smaller
population. Even today a majority of the target users just
rely on basic methods like using white-cane for finding
navigable path, using dog guides for finding routes etc. Also
the users often require the help of other individuals for their
daily navigation needs. It may be noted that mobility of the
blind travelers is also limited in cases where clear navigation
information is not present. For example a case where the user
is unable to find benches in parks where he/she usually sit.
All these problems are widely common within the blind and
visually impaired travelers community and must be addressed.

To address these problems NavPal Outdoor app project
was initiated to conceptualize an application on an android
smartphone platform. The main motivation to develop NavPal
Outdoor app over an android smartphone device was due
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to the fact that today smartphone technology has become
high accessible to a very large community and it provides a
platform to integrate state-of-the-art technology for outdoor
navigation. These devices have become more reliable with
higher processing power and loads of sensor attached as
peripheral systems to the device, all together at a very
cheap cost. With the advancement in the voice recognition,
text-to-speech and haptic technology it has also become
easier for the blind and visually impaired users to access,
communicate and work on the smartphone device, making
them a promising and independent solution for developing
apps for blind and visually impaired travelers. Along with
the development of the smartphone technology, android
operating system has also become highly popular. The ability
to implement cheap, easy and highly customize-able apps
have made android an excellent platform to develop new tools
for navigation. Traditionally blind and visually impaired users
preferred iPhone device with IOS operating system rather
than android technology, as iPhone devices initially offered
more user friendly environment and feature for the blind
users. However with rapid development in assistive android
technology, many blind and visually impaired users have
switched over to android devices making android a platform
for sustainable development.

B. Approaches

The NavPal Outdoor app project aims at creating a
standalone app on an android supported smartphone platform
to help assist blind and visually impaired users navigate
independently and safely. One of the major aims of NavPal
Outdoor app is to be highly accessible to the blind and visually
impaired users so that they can easily communicate with the
app and effectively customize the app as per their preference.
The NavPal Outdoor app via android device harness the power
to find locations of the user while navigating using GPS
and network services and reduce the error of the location
finding services using the INS or inertial measurement
sensors like accelerometer, gyrometer and compass by
tracking the last few location positions of the user and
correspondingly maintaining the accuracy of the GPS data.

The app parse information about the path and navigation
instructions from multiple servers like Google, Wiki and
local servers using the cellular network capabilities (2G/3G
data) and also allows users as well as other secondary sighted
and blind or visually impaired users to contribute to the
route or navigation information. This feature introduces
two important domain of the application that is Trusted
Sources contribution and Breadcrumb generation. The
data from these sources are dynamically represented and
updated on the map as way-points, in order to maintain
the navigation data as accurate as possible with regard
to the changing environment. The app communicates the
instructions and result to the users via text-to-speech interface
and vibrations, while taking feedback from the users via
accessible gesture drawing and voice recognition applications.

The gesture can be customized as per the preference of
the user for higher accessible communication with the app.

These approaches allow the users to get realtime and accurate
information about the route and navigation instructions even
in dynamically changing environments, with an ease of using
the app as per their preference. The way NavPal Outdoor
app communicates with the user is such that it tries to sync
the navigation instructions along with the inherent capability
of the user to navigate independently, so that the users can
utilize their navigation training while getting essentially
navigation information from NavPal Outdoor app.

C. Objective

The main objective of this paper is to highlight the primary
architecture of NavPal Outdoor app using an android platform,
its different components and their respective functionality. The
study of the architecture and design will help the readers to
understand how NavPal Outdoor app works and its ability and
efficacy to act as a standalone unit for facilitating outdoor
navigation for blind and visually impaired travelers. To de-
velop upon the understanding of NavPal outdoor app, the paper
has been organized as follows. In section II,we discuss the
related work. Section III describes the different components
of the NavPal outdoor app and their respective functionality
to achieve outdoor navigation. We validate the performance
of the app with respect to its accessibility and ease of use in
the sections IV where we underline an experiment conducted
with a focus group to test NavPal Outdoor app’s performance
with the target users. We highlight the results from the user
testing and finally conclude in section V.

II. RELATED WORK

The fundamental tools for navigation available for blind
and visually impaired users include white canes and dog
guides. A majority of blind and visually impaired users
prefer to use white canes to understand the obstacle and path
ahead of them, while the dog guides personified,are like their
GPS navigation medium. However, even though these tools
and methods are conventional and fundamental, they do not
provide the accurate and dynamic information about the route
and the path and are prone to navigational errors. These
tools and methods alone cannot facilitate for independent and
safe navigation.Some of the other navigation tools for the
target users include guidance robots. These robots help users
localize and navigate in indoor and outdoor environments.
The robots are packed with sensors like inertial measurement
sensors, GPS, WIFI receivers, laser scanner etc, that help
the bot analyses the environment and plan a route strategy.
The robots instructs and guides the user via touch or force
and voice interactions. Major limitations to these robot
based guidance platforms is that, the robot guides are very
expensive and hence not accessible to a large community.
Also the fact that the robots locomotion is restricted by its
own dynamics and degree of freedom brings the limitation
of the robot to navigate in different environments and paths.

69



Fig. 1. Blind traveler using conventional methods to navigate; white cane,
guide dog

Fig. 2. Robot quadruped guiding a blind traveler

Other tools include GPS based navigation device that
guide the users with a distance based navigation routine.
These devices rely on the pre-fed data about the environment
and simultaneous GPS location. Trekker Breeze is an popular
GPS hand-held tool which comes under the same category.
Some of these devices communicate the instructions to
the users via voice interface and take input form them
via fixed logic buttons present on the device. Even thou
popular in today’s market space, many of these hand-held
GPS devices only act as route and surrounding information
sources and hence are not efficacious for independent and
safe navigation. Other form of these GPS hand-held device
are smartphones which are far more complicated and accurate
for outdoor navigation for blind and visually impaired users.
Today with the advancements in the smartphone based
technologies these device have now become the modern
tool for navigation for the blind and visually impaired
community. The main advantage of the smartphone devices
is that they are encompassing devices with many essential
sensors for outdoor navigation along with ability to server
as a effective programmatic platform for developing mobile
apps. Many developers around the world are working in
the area of developing navigation tools for both indoor
and outdoor environment for blind and visually impaired
users. TechBridgeWorld’s NavPal Indoor app project is an
excellent example that help blind and visually impaired user
navigate in an indoor environment. NavPal Indoor project was
focused on generating or parsing indoor maps of buildings
and analysis them to draw paths and navigation instructions.
Some smartphone projects for blind and visually impaired
users for outdoor navigation include Sendero group’s GPS

Fig. 3. NavPal indoor application

enabled iPhone app. The app helps user localize and provides
navigation instructions on an Iphone device. The navigation
information is provided to the user for various intersections or
at system defined way-points. The limitation to the Sendero’s
app is that is does not provide realtime information about the
environment or path changes which are crucial to the target
users. Other representative smartphone GPS apps targeted
toward visually impaired users include BlindSquare and
Ariadne GPS. BlindSquare is a very popular app running
on the iOS platform. It uses points of interest information
from Open Street Map and allows navigation to the point of
the interest. Loadstone GPS is GPS navigation software for
visually impaired users. This software runs on Nokia mobile
phones and uses external devices such as screen readers and
a Bluetooth GPS receiver. The primary challenges for such
commercial navigation solutions come from their use of their
own map modules to provide map information. Because of
this, visually impaired users need to pay to run those apps on
their smartphones and require continuous updates on a map
that incurs additional charges. Moreover, most route planning
apps are inflexible to deal with dynamic changes, for example
handling a case of path blockage due to construction, and
are not designed to be updated and refined by users.The
notion of breadcrumbs and trusted source contributions via
the NavPal Outdoor app address these issues in much details
in section III.

III. METHODOLOGY

The main aim of NavPal Outdoor Application is to develop
an open source platform which is highly accessible to the
blind and visually impaired communities and facilitates for
their outdoor navigation needs, along with ensuring the safety
and independence of navigation. The platform acts as an stan-
dalone unit for providing navigation data with accuracy and
updating dynamic realtime information about the navigation
instructions and routes to the user. This paper aims to highlight
the main system architecture of the NavPal Outdoor app, along
with describing the various sub-modules, their functionality
and their respective contributions to help facilitate outdoor
navigation.

A. Prerequisites for NavPal Outdoor app operation

The main architecture of the app requires the users to
calibrate their respective android devices before usage. Thus
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certain prerequisites must be followed in order for the app to
perform normally. The prerequisites have been cites as follows:

1) The smartphone device must have a inbuilt GPS receiver,
accelerometer and compass sensors.

2) The device must also have an active 3G/2G/Edge cellular
data connectivity.

3) The device must have destinations stored in form of
contacts with atleast a contact name and contact address.

B. Main Architecture

The main architecture of NavPal Outdoor app has been
designed and written over an android framework with a
Linux-3 file structure operating system. Fig.4 highlights
the main architecture of the NavPal outdoor application.
The NavPal wrapper in the Fig.4 is the main the user

Fig. 4. NavPal outdoor application architecture

interaction element of the app. The wrapper communicates
with the various sub-modules to fetch different classes
of information needed at different intervals to facilitate
the outdoor navigation. The wrapper also facilitates and
maintains the flow of the control within the application
code structure. The users is able to interact with the
wrapper using the Haptic and Speech Interface, reference
section III-C, which provides instructions and system quires
to the user via a audio text-to-speech interface and vibrations
while the user provides his/her respective feedback and
preference control parameters via accessible gesture drawings
or via speech recognition modules. The wrapper is also
responsible for communicating with various servers in order
to return navigation and route information. The wrapper
is customize-able as per the users preference, with respect
to system verbosity, speech rate and changing accessible
gesture list which are discussed in section III-C. The NavPal
wrapper is also responsible for pinging and acquiring
data from accelerometer sensor and compass,inbuilt in the
smartphone to help the user localize and get additional
orientation information for navigation instructions. The
data from these sensors are also used explicitly when
GPS signals are lost during navigation, to maintain an
probabilistic estimation of the users current location.

The other sub-modules of NavPal Outdoor app’s architecture
like the breadcrumb interface and the trusted user interface
are the modules that help integrate dynamic environment
and route information to the navigation list. These modules
generate additional way-points on the navigation path that
would help the user localize and navigate safely in an familiar
or unfamiliar and changing environment. The additional
way-point data via these interfaces are contributed either
by the primary user or via secondary sighted or visually
impaired users, based on their navigation experience and
knowledge about the environment. The other sub-modules
like Mode of Transportation, Contact Destination and other
User Variables are used for calibrating the app with respect
to users navigation variables like intended destination,
which is parsed using the Contact Destination Principle,
and user’s preferred mode of transportation. The component
Coordinate, Route and Direction Interface and Optimal
Route Generator, are responsible for fetching the navigation
and route instructions and then mapping the optimal route
by integrating trusted source data, breadcrumb data and
Google server data for navigation. The traffic on the possible
routes is also analyzed, and the best possible route is
selected for the user based on selected transport medium.

The flow of the code structure has been elaborated in
the Fig.5. The flow shown in the figure illustrates the

Fig. 5. Flow of control structure in NavPal Outdoor App

sequence of the calling of different sub-modules during the
initialization of the app and before the navigation. During the
initialization stage of the app, the users are required to selected
mode of transportation, verbosity and contact destination.
Upon getting the desired parameters, the system coverts the
destination and origin locations into geo-coordinates and
pings the various servers like Google server, Wiki server
and Local server to plot an initial route. This route is
augmented with the date from selected trusted sources and
breadcrumbs and a final optimal route is generated. Upon
starting the navigation, the user is given route and navigation
information at different way-point intervals as shown in
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Fig. 6. Snapshot of NavPal Outdoor App functioning

Fig.6. The navigation information is reiterated to the user
at various instances of approaching the next way-point. At
intersections the street name and the direction of travel are
reiterated as well as the nearby points of interest if any, are
mentioned to the user while navigation for better localization
and orientation. The different sub-modules and their detailed
functioning is mentioned in the sub-sections below.

C. Haptic and Speech Interface

The Haptic and Speech interface establishes communica-
tion between the user and the app. The Haptic and Speech
interface is made of the 4 sub-components, namely a)Text-to-
Speech interface, b) Speech Recognition interface, c) Vibration
interface and d) Accessible gesture interface. The Text-to-
Speech interface helps read out important instruction to the
user. The app verbally communicates with the user via this
interface. The speed of speech is configurable as per the
users preference.Next the speech recognition interface, which
is made up of the Google speech recognition API, aims to
understand what the user is trying to indicate. The Speech
recognition api, in the NavPal Outdoor app has been set
to Action-Web-Search classifier so as to increase the prob-
ability of identifying a larger set of keywords within the
short instruction user’s speech. The app gives users certain
keyword to speak from, which are better estimated by the
Action-Web-Search classifier. Further the speech recogni-
tion API’s result is evaluated with respect to the keyword
viaLevenshtein distance algorithm. Mathematically Leven-
shtein distance between two strings a, b is given by below:
Note that the first element in the minimum corresponds to
deletion (from a to b), the second to insertion and the third
to match or mismatch, depending on whether the respective
symbols are the same. The higher probable results left, are

spoken to the user for further accurate selection.The terms i
and j represent the index of the character in a string a and b.

Vibration interface is used to indicates the users when

Fig. 7. Accessible Gesture Interface

something illegal with respect to control structure has hap-
pened like pressing the home button during run-time or bad
attempts while inputting the data. Finally the device vibrates
when the user takes a discourse from the actual path during
navigation. Finally Accessible gesture interface gives the user
the capability to answer YES-NO question or navigate to
the setting manger for accessing the preferences of the user,
wherein the users can change verbosity levels and speech
speed, or to activate different route an navigation update sub-
modules like the breadcrumb and trusted user interface while
navigating. The different set of gesture can customized as per
users preference. An example of accessible gesture is shown
in the Fig.7, where the user draws from left to right, which
the system interprets as a positive response.

D. Selecting the Transport and Contact Destination Principle

NavPal Outdoor app allows users to select from three
mode of transportation, namely a)Walking, b) Taking a Bus
and c) Taking a car/cab. The users are able to select the
modes of transport via the accessible gesture interface shown
in the Fig.7. One by one each option is spoken to the
user and correspondingly the user gives his/her input via
accessible gesture. Ones the transport type is set the NavPal
wrapper shifts the control to the contact destination interface.
Contact destination principle is a method in which the user
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must store the possible or intended destinations in the contact
fields along with their respective address. Ones this component
is initiated, it calls in the speech recognition module, reference
section III-C, and instructs the users to speak the desired
contact name for extracting the destination address. Upon
analyzing the speech of the user the system compares the
best possible results with respect to the contact list and
correspondingly returns a list of possible, higher probable,
destinations, here contact name. Now this list is spoken to
the user, and correspondingly the user indicates its choice
via accessible gesture. As soon as the first positive result is
acquired the module parses the contact destination from the
list and stores it under the destination variable.

E. Localization, Routing and Path Extractor

Ones the destination has been set and the user is all set
for navigation, the Localization, Routing and Path Extractor
sub-modules of the NavPal Outdoor app become active. The
aim of the Localization interface is to find user’s current
location. The localizer pings the GPS receiver and the
Network manager to update the device with best possible
location estimation. Coordinates received have some inherent
noise and thus filtering of the user’s location is required. The
filtering of the data is done with help from the inertial sensors
after an initial position estimation. The representation of the
inertial navigation data generated by the sensor is given by the
Fig.8 where the data from each sensor is marked in the X-Y
domain. To reduce the noise, the GPS receiver and Network

Fig. 8. Representation of the Inertial Data

manager is pinged several times for current user location
estimation. It may be noted that the noise from GPS is lesser
than that from the Network manager. As the data received are
being stacked the accuracy of the data is being monitored with
respect to the previous data estimation. A pool of such data is

collected and averaged weighted sum of the accuracy is taken
to filter the coordinates received. Upon reaching an acceptable
accuracy, the coordinates got are set as origin variable. Now
the next step is to convert the destination address into
geo-coordinates. Thus sub-module Geo Coder interface is
launched and it pings the Google server with the address
of the destination and correspondingly receive the geo-
coordinates (latitude and longitude) of the destination. Now
the app is ready to extract the route and navigation instructions.

Thus the Routing and Path Extractor sub-module comes
into plays. This module first pings the Google server via
HTTP request to return a number of routes from origin to
destination. The Google service accepts the HTTP request
along with the geo-coordinates of origin and destination,
compass heading and mode of transportation data. Upon
processing the request the Google server send a JSON
object over the a HTTP request back to the NavPal Outdoor
application. The JSON object contains a array of routes,
possible set instructions and way-point coordinates. Upon
receiving the JSON object, the NavPal wrapper executes the
JSON parser interface. This interface decodes the JSON
data received into list of way-points, navigation instruction
and routes information. The Path Extractor interface also
refer additional server like Wiki for getting information
about the surrounding and adjacent street names, for better
localizing and orienting the user with direction. Now a

Fig. 9. Working of the Route and Path Extractor interface

route is prepared and this route is augmented with the data
from previously stored breadcrumbs and trusted sources
contribution. The Path Extractor interface first pings the
breadcrumb interface for any previously recorded data.
If there is any previous records, those breadcrumbs are
returned in the form of way-points onto the map. It must
be noted that the breadcrumb data is unique to each user.

After breadcrumb interface the Trusted user interface is
called in by the Path Extractor sub-module. The trusted user
interface looks for the possible zip-code regions, where the

73



user will be navigating by pinging the zip-codes of the origin
and the destination location. All the data associated with these
zip-codes contributed by the selected trusted sources, from
the trusted user interface is returned to the Path Extractor.The
Fig.9 shows the above process in general. Ones all the data
from the different contributing interfaces are parsed, the app
starts to make an optimal final route from all the data obtained
along with the different navigation instructions associated.
With this the Route and Path Extractor interface transfers

Fig. 10. Route and Navigation Instruction Mapped

the control flow of the application back to NavPal wrapper.
The example of the working of the Route and Path extractor
mapping information has been shown in the Fig.10 where
the information about the route is shown by the underlying
navigation instructions.

F. Breadcrumb Interface

The notion of breadcrumbs is one of the major concepts of
the NavPal outdoor application that help users add additional
information to the navigation and route for familiar paths.
There are many keynote instruction or orientation tips that
the users develop while frequently traveling over the same
route. The breadcrumb interface gives user the ability to add
new way-points data as voice memos for each respective data
points, so that when they travel next through the vicinity
of these way-points, the recorded data will be played back
to the user. This gives user the ability to add additional
information in the route by recording critical localization
and orientation information as per the user’s experience.

The breadcrumb interface has two different calls in the
NavPal Outdoor app’s architecture. The first call is made
by the system, during the Path Extractor interface [reference
Section III-E]. Here the breadcrumb interface, forwards

all the prerecorded data to the path extractor interface for
planning of the route. The Second call is made by the
user, for adding new breadcrumb data points. This call is
made during the navigation stage, and the user can call the
breadcrumb interface multiple times. When the breadcrumb
interface is called, the user’s most current position is recorded
as the way-point or breadcrumb. Upon launching the interface
the app instructs the user to record their message, for the
particular breadcrumb. After the recording is complete the
system plays back the recorded message to the user, and gives
the option to record again if the user is not satisfied. Upon
user’s approval, then the audio recorded is passed to the data
point along with the way-point and the compass location
with respect to the way-point added, which is stored in a
shared preference android data structure. After the addition
of the new way-point the breadcrumb interface transfers
the control back to the NavPal wrapper along with a new
breadcrumb data added. Fig.11 shows an example of adding

Fig. 11. Breadcrumb added to the map

the breadcrumb data to the map. The NavPal wrapper adds
that way-point immediately on the map with the recorded
data as an pointer instruction to that breadcrumb.

G. Trusted User Interface

The Trusted User interface is one of the core concepts for
adding realtime data about the environment and the path to
the user’s navigation map. Trusted user interface facilitates
the users to stay updated about the changes happening in their
route and corresponding effects it has on their navigation.
With the trusted user interface other or secondary sighted or
visually impaired users can record their observation about the
change in the environment and route as per their experience.
This data can be utilized by the primary blind or visually
impaired traveler when navigating on the same route. For
example, if a street is under renovation, and if a trusted
source traveling via this route notice this change then he/she
can add this data for the use of blind and visually impaired
travelers. The data added by the traveler can be utilized by the
NavPal Outdoor app to effectively route the blind and visually
impaired users such that they do not encounter this street

74



under renovation or if there exist no parallel route, atleast the
users can be alarmed about the scenario when reaching in the
proximity of this street. This approach helps the user to have
an additional realtime information about the environment and
the routes.The addition of data and its access via the trusted
user interface is maintained and controlled on an external
server maintained by TechBridgeWorld organization. The
data contributed has certain attributes, that must be specified
by the users during their respective contributions. These
attributes help the Path Extractor and the NavPal wrapper
understand the dynamics of the contributed data. The main
attributes for the data points are, a) Is way-point a blocking
obstacle, second any text/audio associated with the data point
explaining its dynamics. Third the proximity associated with
the data point, fourth the life-span of this data-point.Along
with these attributes the system also attaches few attributes
to the data set, that are,one the time-stamp or the time
of origin of this data point and two the identification of
the trusted source via referencing the cell-phone number.

The trusted user interface is integrated within the NavPal
application for the blind and visually impaired user for
contributing as trusted sources. The users can access the
trusted user interface in the NavPal application via accessible
gestures. Ones the trusted user interface starts, the users are
given two options, one to use current position or two use a
new location to contribute. The blind and visually impaired
users input the value of each attribute via accessible gestures
and audio recording interfaces. The users can define a life
time in hours and minutes or can leave this attribute as an
unknown life-time value. The app compiles all this data into
a JSON object and includes a time-stamp of origin and an
identify (Cell phone number) of the trusted source. This JSON
data is sent and stored over the external server. A similar but

Fig. 12. Trusted User Interface for sighted users

independent (of NavPal Outdoor app) interface is available
for the sighted user to contribute data as trusted sources. The

Fig.12 shows the trusted user interface for the sighted user
wherein the users have a full Google map environment and
they can navigate to different places via entering the address
or scrolling to the data point address. Ones the sighted user
have identified the data-point, they can simply tap near that
point on the map and a way-point will appear. After the
way-point has been generated the sighted users will be asked
to provide the values to the different attributes of the data
point. A JSON object is created ones all the attributes values
have been set and the resultant JSON is stored over the
external server via an HTTP link between the app and the
server. The server stores this data point associated with the
user’s identification number in a form of a table. This is how
the data from a trusted sources is stored onto the server.The
trusted sources data is retrieved by the NavPal Outdoor app
for those trusted sources that have been selected by the user.
The interface allows the users to select a list of people as
trusted sources from their contact list. This list is stored in
the android’s internal memory and can be edited by going in
the setting manager interface. The data from each source is
called first during the NavPal Outdoor app’s initializing, that
is when the Path Extractor interface starts the trusted sources
data is queried via a HTTP request to the external server for
list of trusted sources selected and data required for desired
zip-code extensions. The resultant data is sent as JSON object
back to NavPal Outdoor app which is further, decoded to add
new way-points and their respective information on the map.

H. Re-routing and Path Divergence

The NavPal Outdoor app also accounts for the cases of path
divergence. When the user diverges from the path then the
NavPal Outdoor app warns the user about the discourse and
repeats corrected navigation instruction, such that, if followed,
gets the user back to the initial course. The amount of deviation
is predicted by estimating the distance between user’s current
location to next desired way-point and the distance between
the user’s current location to the last visited way-point. The
distance is subtracted in order to find the magnitude of the
deviation. After a certain magnitude of deviation the app
instructs the user to stop, and the app re-calibrates the route
with respect to the user’s current location and to the desired
destination.

IV. EXPERIMENT AND USER TESTING

The NavPal Outdoor app was tested in Pittsburgh USA,
by the TechBridgeWorld team to evaluate the performance of
the app in a realtime outdoor navigation scenario. The aim of
the experiment was to test various components of the NavPal
Outdoor app and evaluate how they performed in different
situations while navigating. The experiment was conducted by
physically navigating with the help of the NavPal Outdoor app
from the Robotics Institute, Carnegie Mellon University to
Carnegie Natural History Museum. During the navigation the
team tested various components of the NavPal Outdoor app,
like adding breadcrumbs, checking the speech recognition
and haptic interface, checking the apps performance while
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deviating from the route and finally testing the navigation
instructions provided by the application. The destination
Carnegie Museum of Natural History was stored as contact
name Natural History Museum in the team’s android device.
As the system started the navigation, it instructed the team
firstly about the duration and distance to the destination and
subsequently instructed the user with the first navigation
instruction. As the team follows the navigation instructions
the system waits for the user to approach the next way-point
and then subsequently instructs the user about the next
navigation instruction. To test the concept of breadcrumbs the
team halted at a spot and starts the breadcrumb interface. The
breadcrumb interface started and asked the user to record the
message for this breadcrumb. The team recorded a message
and upon a short tap on the screen the user finalized the
message and a new way-point wad added to the map. This
demonstrated the concept of adding breadcrumb in the map.

While navigating the team intentionally diverged near
the destination way-point to test for the app performance
in such scenarios. The system reacted immediately and
informed the team about the discourse and the wrong
direction warning was played to the user, with instruction
to return to the previous course. The team continued to
move in the wrong direction and in reaction, the app started
to re-calibrate a new route and navigation instructions to
help the team reach the desired destination. Upon reaching
the destination, the team retracted its path back to the
starting point. During the return the team re-encountered the
breadcrumb stored previously and as the team approached
the breadcrumb, the recorded data associated with that
breadcrumb was played back to the team during navigation.
Thus exhibiting the concept behind the breadcrumbs interface.

The NavPal outdoor app was also tested with a focused
group comprising of blind and visually impaired user who
volunteered to test the accessibility and ease of use of the
NavPal Outdoor app. A total of 4 users visited Newell-Simon
Hall on 25th July 2014. During the testing the participants
were asked to set-up the NavPal Outdoor app, with respect
to 1) adding a contact, 2) open the app, 3) selecting mode of
transport,4) selected a contact name via speech recognition
interface and 5) setting up the data on the map to start the
navigation. The users performance was rated by the system,
where each positive step towards a certain desired flow was
marked +1 while a wrong step was marked as -1. Finally
the users rated the application according to their experience
and gave their respective feedback. The result of the user
testing came out to be positive. The users as well as the
internal system highly rated the apps performance and the
corresponding user ability to work on the app. The Fig.13
shows the aggregated results from the user testing, where the
system that is the apps internal marker rated the users on a
scale of 0 to 5 in the Red color graph while the users rated
the app’s performance with respect to accessibility and ease
of use on the scale of 0 to 10 in the Blue colored graph. The

Fig. 13. Result form the User Testing

results show that the app was found highly accessible and
ease to use by the focus group.

V. CONCLUSION
In conclusion the Navpal Outdoor app’s basic architecture

was developed and tested with blind and visually impaired
users for accessibility. The app’s performance with respect to
the blind and visually impaired user testing, showed that the
app was highly accessible and easy to use. Some of the future
work for NavPal Outdoor app, is to remove the dependence
on the Google servers, and to make and plan custom routes
based on user’s preference. Other future works would include
integration of the app with robots to facilitate the users to have
higher accessibility and navigation capabilities.
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Abstract—this paper addresses the application of Electronic 
Speed Control (ESC) Vapor Pro using a Platypus Cooperative 
Robotic Watercraft (CRW), and a robotic algorithm designed for 
automatic control used on the watercraft. An offline system will 
enable the airboat to self-navigate without any extra help. An 
Android App was developed based on this algorithm in order to 
transfer users order into mechanical order thereby controlling 
the boat’s hardware directly. A failsafe system was also designed 
to make sure the boat would come back home in unexpected 
circumstances. An automatic data feedback system was designed 
to automatically grab the log file and send an email with 
attachment to the users. These algorithms will make the airboat 
more reliable. 

Keywords—platypus; CRW; ESC; Vapor Pro; offline; failsafe 
system; automatic navigation; automatic data feedback; 

I. INTRODUCTION  

The Platypus Cooperative Robotic Watercraft (CRW) 
platform is made of several small robotic boats. These vessels 
are used to monitor water environment automatically and 
cooperatively. The goal is to build a fleet of boats that work 
together to monitor a large area of an aquatic environment. In 
order to have lots of these boat, we need to keep each of the 
boats low cost. 

 The brains of these boats are Android phones. The boats 
use the GPS and WIFI of the phone for communication with 
other boats and the computer. Also, with the help of the low 
power sensors and processor on the phone, the boat can work 
very efficiently. 

Here are two generations of the watercraft: 

 Lutra 1 series are using a fan placed above the water 
surface as propulsion, which make the boat run in low speed, 
but without interference from the aquatic plant. 

Lutra 2 series are driven by two motors with propellers 
below the water. Electronic Speed Control (ESC) is an 
electronic circuit used to change the speed of an electric motor. 
Using ESCs on the airboat enables the motor to work at 
different speeds. This enables the vessels to turn quickly and 
waste less energy while working. So the boats can work more 
efficient than Lutra 1 series. But the disadvantage of this 
generation is that the propeller can get stuck on waterweeds. 
Thus we still employ the Lutra 1 in certain environments. 

The problem we were facing with the Lutra 2 series is that 
sometimes the boat will get stuck in the bush in the river, and 
the old version ESC can only make the motor rotate positively. 
We need a new kind of ESC that can make the watercraft 
reverse. The Vapor Pro is a waterproof ESC with a fan cooling 
system that can make the motors spin bidirectional, which 
meets our desire. After adopting the new ESCs in the Lutra 2 
series, the boats turn more quickly and are even able to reverse 
after going aground. 

This paper describes the work we have done to make the 
ESC Vapor Pro work on the boat, and new functions: Offline 
System and Failsafe System.  

II. ROBOTIC BOATS 

A. Structure of a Boat 

The boat (Fig. 1) is made of ABS plastic. ABS plastic was 
chosen because of its low cost. There is a cap with a rubber 
waterproof seal for the cabin to keep the water away from the 
electronic devices in the cabin. 

In the cabin (Fig. 2), we place the crucial part of the boat 
inside: the brain (an Android phone), a battery, an Arduino 
board, an Electronic board, a pump, two ESCs and two motors. 
All of these things are linked by wire and cable.  

There are two propellers attached to the two motors placed 
under the boat for propulsion. 

 

Fig. 1 3D Model of Lutra 2.0 
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Fig. 2 3D Model of the Cabin in Lutra 2.0 

B. Software Structure 

One of the design considerations is to make the boats able 
to be operated by people who are not experts in robotics [1]. 
Therefore, they must be made as simple as possible. All that is 
needed to operate a boat is a laptop or tablet, an Android 
Phone, and the boat (Fig. 3).  

  

Fig. 3 the Original Interactive Mechanism 
 

We need to link the laptop or tablet and the Android to the 
same Local Area Network. Then we assign an area that the 
boats need to test by computer or tablet. At the meantime, the 
Android phone on a boat will get the waypoints it needs to go 
to from the laptop or tablet. With these points, the Android 
phone will calculate the speed and the direction the boat needs 
to reach each point by Proportion Integration Differentiation 
(PID) control method, and then send Pulse Width Modulation 
(PWM) signal to the Arduino board. Meanwhile the Arduino 
board will translate the signal to the ESCs and make the motor 
work. 

To communicate with the phone, sensors, ESCs, and 
motors, we used Arduino due to control the external sensors 
and motor (Fig. 4). The Arduino board gets the data from the 
phone via USB cable. The ESCs are directly connected to the 
Arduino and controlled by the board. Depending on the sensor, 
external sensors are all plugged directly into the Arduino I/O 
port. 

 

Fig. 4 System Architecture Diagram 

III. ELECTRONIC SPEED CONTROL 

A. How to Calibrate the Vapor Pro ESC 

In order to make the boat work better, we need to control 
the speed of each motor. The principle is that the Arduino 
outputs PWM (pulse width modulation) signal, a series of 
repeating pulses of variable width to the ESCs, and the ESCs 
make the motors turning at different speeds. 

To calibrate an ESC is to set the maximum and minimum 
speeds of the motor in relation to the max and min width of the 
PWM signal sent by the Arduino.  A PWM signal is simply a 
square wave signal consisting of high and low (5v and 0v) 
signals of a certain duration.   

The old ESCs, could only spin the motor in one direction 
under the PWM signal range of 1500us to 2100us. This means 
while the boats needs to turn, one of the motors will stop and 
the other one keep pushing the boat. 

After calibration, the new ESCs can work on the PWM 
signal range of 1000-2000 microseconds, and 1500 
microseconds is the middle status of the range. Thus, the motor 
will spin negatively with the PWM signal from 1000 to 1500 
microseconds, and positively with the PWM signal from 1500 
to 2000 microseconds. With these new ESCs, turning will be 
faster than before as the two motors rotate in different 
directions. In that case, the turning radius will be smaller than 
before. Also with the updates to the software and the help of 
the cellphone, the boat will know it is stuck and go reverse 
when it cannot move forward. 

At the default setting, the ESC increase and decrease speed 
is linear (Fig. 5). 

 

Fig. 5 Default Velocity – PWM Diagram 
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Unlike the manufacturer’s calibration process, we need to 
calibrate the ESC with an Arduino. The objective of the 
calibration program is:  

1) Keep the input at the maximum pulse-width l (2000 us) 
with the ESC connected to the battery, until hearing a short 
series of tones followed by a two second pause, followed by a 
long series of tones. 

2) Keep sending the minimum pulse-width (1000 us) after 
step 1, until hearing a  long series of tones. 

3) Keeping sending the middle pulse-width (1500 us) after 
step 2, until hearing a long series of tones followed by a two 
second pause, then followed by a short series of tones. 

B. Change the Android Program Setting 

The Arduino works under the Android Phone’s signal. 
Compared with the old version ESC, the new version one has 
a totally different reaction in the same situation: the motor will 
only work with the full input, for example, and the ESCs will 
activate its own over-current protection system while it is 
running in the water, to disable the ESC for a few seconds. 

To troubleshoot these problems, we changed the safety-
thrust number, a factor that restrict the output of the PWM and 
some related code in the Android program. 

After trial and error, we found that 0.14 to be the best 
safety-thrust for the boat, it makes the boat work sustainably 
in the water without a too low speed. 

C. Program the ESC 

Because of these problems, the default setting of the ESC 
did not meet our demand, and also the Vapor Pro is 
programmable with the Castle Link Program Kit, which 
requires a Windows system we needed to change the setting to 
maximize the efficiency of the ESC. 

For example, in default setting, the reverse type is “With 
Reverse” which requires the controller must be set to neutral 
throttle for two seconds before it allows reverse operation. So 
we need to change it to “Crawler Reverse”. 

Furthermore, the “Throttle Dead Band” setting, which sets 
the width of the neutral or idle zone, and the default setting is 
medium. Since the safety-thrust in the Android program is 
0.14, so the full speed of the boat is just 0.14 of its full power 
by restrict the output PWM from the Arduino board. In other 
words, the changing of the input to the ESC is very small. 
Thus, we need the width of the neutral or idle zone as small as 
possible. 
Following are the steps of how to program the ESC (Fig. 6): 

1) Link an ESC with the PC, and run the Castle Link 
software. It will load the setting of the ESC automatically.  

2) Set it to the default setting if it is a brand new one. 
3) Update the firmware of the ESC, if there is an update. 
4) Change the Reverse Type to Crawler Reverse.  
5) Change the Drag Break to 20%. 
6) Change the Punch Control to 80%.  
7) Change the Throttle Dead Band to Very Small 

0.0250ms.  
8) Change the Throttle Curve and Break Curve. 

 

 
Fig. 6 Vapor Pro Setting Report 

IV. FAILSAFE SYSTEM 

A failsafe system is a system that runs when the boat 
cannot connect to the laptop. Mostly it is because the boat is 
out of range. The Failsafe system will help the boat find it way 
back home or to some spot where it will get a connection. 

 
Fig. 7 Failsafe System mechanism 

 
The mechanism of the failsafe system (Fig. 7) and 

programing thought (Fig. 8) is below. When the failsafe 
system turns on, the boat will save current location’s waypoint 
before sailing out. After sailing out, the boat turns the GPS 
sensor on and records the waypoint while the connection is 
still reachable.  Once the connection has been unreachable for 
10 seconds and the boat has no path to follow, boats will 
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immediate go to the last recorded waypoint (which is called 
the save point) where the boat was able to get the prior 
connection. After waiting at the save point for 10 seconds (in 
some circumstances it still is not connected), the boat will 
head to the original home point directly. 

 
Fig. 8 Failsafe System Flow chart 

 
After several tests, we are sure that this system will make 

boat more reliable in the water. We do not need to face the 
risk that we will lose boats because of lost signals.  

V. OFFLINE SYSTEM 

An offline system (Fig. 9) is an android app that is used to 
pre-store a sequence of commands in a text file in the 
cellphone located on the boat. This enables the boat to 
navigate by itself. 

 
Fig. 9 Offline System Mechanism 

 
In this case, airboats can do self-driving without the 

limitation of the local network’s range. 
The boat follows a saved sequence of commands and it can 

navigate based only on GPS without the help of computers. 
One of the main challenges is how to initially turn the 

system on. The cell phone is inside of boats so it is impossible 
to add a button to start up. And it is hard to calculate how long 
it takes to start up the whole airboat firmware thus we cannot 
add a timer. 

The solution is that we use the orientation sensor inside the 
cell phone and write an algorithm that makes airboats auto-
start after manually spin boats around three times. 

VI. AUTO DATA FEEDBACK SYSTEM 

An auto data feedback system is embedded into the 
existing Android App. This system helps us avoid the onerous 
labor of manually transfer the log files to computer by USB.  

 During each water field test, a log file is created to store 
data from all the working sensors. It is stored in a specific 
folder on the phone which path is known. The function of this 
system is to grab the latest log files base, and when the tester 
quits the app, it can automatically send an email with the log 
file attachment to the users’ emails. Also a report button is 
created to allow the tester to report the log file manually. 

Data in the log file is what customers care about most, so 
that is why auto data feedback is critical. The sending email 
function in this system applies to different email types 
including Gmail, Hotmail, and so on. 

This system can not only give feedback of log files, but 
also can be used to transfer control commands from the laptop 
or tablet to the Android phone. So it can later be further 
applied to the auto interaction between the computer and the 
Android phone on the boat. 
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Fig. 10 Auto Data Feedback System 

VII. RESULT 

A. Electronic Speed Control 

After adjusting the ESCs, they are ready to use in real test. 
We have conducted field testing at Panther Hollow Lake, 
Pittsburgh, PA. The ESC was able to run in the lake and 
support all the critical software functions. 

 

B. Failsafe System 

The airboat runs smoothly with the failsafe system. The 
failsafe system increases the reliability of the voyage. 

In field testing (Fig.11), once a boat loses its signal, it will 
come back to the save point in 30 seconds. Disconnections 
may be caused by the boat running out of range or network 
errors. 

However, because of the poor accuracy of the cell phone’s 
GPS sensor, sometimes the boat may not be able to get to the 
precise. Accuracy is usually within 5 meters. Thus the boat 
may stay at the position that is 5 meters off the shoal or just 
violently hit the river’s bank. It should be a focus of future 
work.  

 
Fig. 11 Failsafe System Result 

C. Offline System 

The offline system enables the boat to navigate by itself. 
This worked well in field test. It performed with the same 
level of accuracy as a laptop to send commands. It is very 
useful to do some routine tasks like patrolling around a lake 
for weekly to do some water quality monitoring. In addition, 
we don't need to carry a heavy tool kit, laptop and network 
router every time which makes the test much easier than 
before. 

However, we do not yet have an obstacle avoidance 
algorithm. In some cases the propellers may get stuck in some 
water weeds or lily pads and stop working, which cause a lot 
of problems. To make things worse, because it is an offline 
system, we are not able to control boats manually. Adding 
some obstacle avoidance algorithm will make it better in the 
future. 

What’s more, the boat cannot distinguish whether a 
command is reachable. For example, the boat might try to get 
to a destination hundreds of miles away because of a typo or 
mistake. Thus it will be a great help if it can detect and send 
warning signal when errors occur. 

D. Auto Data Feedback System 

Auto data feedback system worked well after field testing. 
In the tester’s Gmail, all the latest log files from the boats after 
experiments were received. 

Gmail and QQ email were used as two different types of 
customers email types. The initial code ran well to send an 
email with an attachment to the QQ email but failed in the 
case of Gmail. Revisions were made on the original so that it 
can work on Gmail through a stricter security verification. See 
Fig.10. 

Also clicking the report button produces the same result. 
But in this case, it can report the latest log file not only soon 
after the test, but also anytime you want after the test. 

ACKNOWLEDGMENT  

Specially thanks to our supervisor Dor. Paul Scerri for his 
guidance. Thanks to John Scerri and Nathan Brooks for their 
valuable suggestions. Thanks to Rachel Brucin and the RISS 
Program. 

REFERENCES 
[1] Paul Scerri, Prasanna Velagapudi, Balajee Kannan, Abhinav 

Valada, Christopher Tomaszewski, John M. Dolan, Adrian 
Scerri,,Kumar Shaurya Shankar, Luis Lorenzo Bill-Clark, and George 
A. Kantor, "Real-World Testing of a Multi-Robot Team, "Proceedings 
of the 11th International Conference on Autonomous Agents and 
Multiagent Systems (AAMAS 2012), June, 2012. 

 

82

https://www.ri.cmu.edu/person.html?person_id=1250
https://www.ri.cmu.edu/person.html?person_id=1751
https://www.ri.cmu.edu/person.html?person_id=1824
https://www.ri.cmu.edu/person.html?person_id=2347
https://www.ri.cmu.edu/person.html?person_id=2347
https://www.ri.cmu.edu/person.html?person_id=3052
https://www.ri.cmu.edu/person.html?person_id=69
https://www.ri.cmu.edu/person.html?person_id=3040
https://www.ri.cmu.edu/person.html?person_id=2665
https://www.ri.cmu.edu/person.html?person_id=717
https://www.ri.cmu.edu/person.html?person_id=717


 

Andy Zeng 

RISS 2014  

83



Face Alignment Refinement

Andy Zeng Vishnu Naresh Boddeti Kris M. Kitani Takeo Kanade
Robotics Institute, Carnegie Mellon University

andyzeng@berkeley.edu naresh@cmu.edu {kkitani,tk}@cs.cmu.edu

Abstract

Achieving sub-pixel accuracy with face alignment algo-
rithms is a difficult task given the diversity of appearance in
real world facial profiles. To capture variations in perspec-
tive, occlusion, and illumination with adequate precision,
current face alignment approaches rely on detecting facial
landmarks and iteratively adjusting deformable models that
encode prior knowledge of facial structure. However, these
methods involve optimization in latent sub-spaces, where
user-specific face shape information is easily lost after di-
mensionality reduction. Attempting to retain this informa-
tion to capture this wide range of variation requires a large
training distribution, which is difficult to obtain without
high computational complexity. Subsequently, many face
alignment methods lack the pixel-level accuracy necessary
to satisfy the aesthetic requirements of tasks such as face de-
identification, face swapping, and face modeling. In many
such applications, the primary source of aesthetic inade-
quacy is a misaligned jawline or facial contour. In this
work, we explore the idea of an image-based refinement
method to fix the landmark points of a misaligned facial
contour. We propose an efficient two stage process - an
intuitively constructed edge detection based algorithm to
actively adjust facial contour landmark points, and a data-
driven validation system to filter out erroneous adjustments.
Experimental results show that state-of-the-art face align-
ment combined with our proposed post-processing method
yields improved overall performance over multiple face im-
age datasets.

1. Introduction
Given an estimated facial contour returned from face

alignment, our objective is to refine the contour such that
it is closer to the true facial boundary. Accurately detect-
ing facial boundaries is a challenging problem because the
contours of facial profiles in the real world are subject to a
broad range of variation in illumination, occlusion, noise,
and individual differences. A facial contour in an image
may be partially occluded by hair, faded into the wrinkles,

Figure 1: Alignment refinement result. Initial facial contour
(red) and refinement result (green).

or hidden by shadows. The challenge presented by these
problems is further compounded by having to consider the
variations in jawline structure and individual facial features
that may cause irregularities in the facial outline. Handling
such variation at a high level of detail is the key to designing
a robust face alignment contour refinement algorithm.

With the explosive increase in personal photos across the
Internet nowadays, the popularity of face alignment in mod-
ern applications is rapidly growing. For many of these ap-
plications, e.g., face de-identification, face swapping, and
face modeling, the aesthetic quality of the aligned facial
boundary is quite sensitive to slight misalignment. In the
case of face swapping, an estimated facial contour extend-
ing past the true facial boundary will introduce background
artifacts onto the output face. The main motivation behind
the work is an application-side demand for more accurate
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face alignment results.
Despite the abundance of research on face alignment,

many state-of-the-art methods are not able to align an esti-
mated facial shape to the true facial boundary with sub-pixel
accuracy. Face alignment typically involves an optimization
problem where the goal is to match some deformable face
model to the true face shape as closely as possible using
detected facial features as anchor points. During this op-
timization, the face shape model is often parametrized or
constrained, resulting in the loss of the fine detailed infor-
mation about the facial contour. In this paper, we propose a
flexible facial contour refinement method to correct the fa-
cial contour inaccuracies of generic face alignment methods
using a data-driven post-processing technique.

Based on observations over various state-of-the-art face
alignment results [4, 12, 15, 13], we propose a two-step ap-
proach for fixing facial contour misalignment. In the first
step, we introduce the active adjustment algorithm respon-
sible for shifting individual landmark points that constitute
the facial contour. The shifting is performed heuristically
based on edge response, the distance from the initial con-
tour estimate returned from alignment, and edge direction.
In the second step, we introduce a data-driven validation
process that reinforces the overall performance of the ac-
tive adjustment algorithm by training a classifier to deter
the refinement process from making potentially erroneous
adjustments.

2. Related Works
Face alignment is a very challenging and well-studied

problem. Active Shape Models [6] and Active Appearance
Models [5] are the most well known and widely used mod-
els for shape-fitting. Constrained Local Models [13, 17, 7]
are another class of approaches for face alignment that are
largely focused on global spatial models built on top of local
landmark detectors. Recently many discriminative shape-
based regression approaches [4, 16] have been proposed in
the literature. Instead of relying on parametrized appear-
ance and shape models, these approaches leverage large
amounts of training data to learn a cascade of regressors,
mapping image features to the final facial shape.

The task of refining the contour of a face shape is sim-
ilar to the problem of contour fitting. Contour fitting gen-
erally requires some form of boundary detection, followed
by an optimization step, where the fitting of a deformable
contour model over the boundaries of interest is performed.
Some methods iteratively re-sample adaptive spline models
[9, 14] while other methods apply dynamic programming
to energy-minimizing deformable contours [1]. The task of
facial contour refinement however, differs from the task of
contour fitting in that facial contour refinement is given a
close initial alignment. Assuming that the results from face
alignment return a reasonable estimate of the facial contour,

refinement needs to actively work with this information in
order to accurately adjust the contour under a wide range
of image variation. Furthermore, because the results from
boundary detection can sometimes be noisy or misleading,
refinement also needs to be conservative in order to mini-
mize the number of erroneous adjustments. In this work,
our goal is to construct a refinement algorithm that maxi-
mally improves the accuracy of an estimated facial contour
only for those images that are problematic.

3. Problem
In a two-dimensional digital face image I , a face shape

S = {pi ∈ R2}Ni=1 consists of N facial landmark points
pi = (xi, yi). The goal of face alignment is to estimate a
shape S as close as possible to the true shape Ŝ, e.g. to
minimize

||S − Ŝ||2 (1)

Among theN points that constitute a face shape S, there are
M < N points that make up the facial contour C = {pi ∈
S}Mi=1. Given S, our objective is to fine-tune alignment con-
tour C to be closer to the true contour Ĉ = {p̂i ∈ Ŝ}Mi=1

after refinement, e.g. to maximize

Error(Cbefore, Ĉ,mp)− Error(Cafter, Ĉ,mp) (2)

where mp is the performance metric, Cbefore and Cafter are
the alignment contours before and after refinement respec-
tively. Equation 2 semantically represents contour improve-
ment, and will be used to guide training and evaluate the
performance of our post-processing approach. As part of
our objective, we want this value to be as consistently posi-
tive as possible.

4. Facial Contour Refinement
In this section, we first introduce our active observation-

based adjustment process. Conceptually, the algorithm in-
dividually adjusts each landmark point pi of a given align-
ment facial contour C ⊂ S by shifting it to the nearest,
strongest edge that is closely parallel to the facial outline
originally generated by alignment contour C. But since this
method is constructed on the basis of human intuition, it
remains incapable of performing robustly under the wide
range of misalignment variations in illumination, noise, oc-
clusions, etc. Hence, if used without proper discretion,
this algorithm is susceptible to performing ”bad” adjust-
ments. Therefore, we present a compatible data-driven val-
idation framework, in which we conditionally perform the
active adjustments based on prior post-refinement observa-
tions. Given that each facial contour consists of M land-
mark points, we train M distinct SVMs over a large col-
lection of training faces in order to be able to determine,
per contour at test time, which alignment landmark points
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should undergo active adjustments and which points should
be left alone in order to maximize the overall contour im-
provement. As we shall see later, this form of preemptive
filtering is necessary in our refinement approach in order to
conceivably maintain positive contour improvement as con-
sistently as possible.

4.1. Active Refinement

Our active adjustment algorithm is based on three ma-
jor observations. The first observation is that a true facial
boundary is more likely to be located on an edge than any-
where else. Given a landmark point pi in facial contour
C, a naı̈ve adjustment algorithm reflecting this observation
would shift pi to the point with the strongest edge response
within some small search radius r, e.g.

P = {s ∈ R2 : ||pi − s||2 < r}

fh(p) = Edge(p)

Refine(pi) = {p ∈ P s.t. fh(p) = max
s∈P

fh(s)} (3)

where Edge(x) ∈ [0, 1] returns the edge response for a point
x. Our second observation is that the pre-refined alignment
facial contour serves as an adequate estimate for the true fa-
cial boundary. To incorporate this into the first observation
reflected in Eq. 3, we add a distance factor to the heuristic
function fh(p), e.g.

fh(p) = w1Edge(p) + w2

(
1− ||pi − p||2

r

)
Refine(pi) = {p ∈ P s.t. fh(p) = max

s∈P
fh(s)} (4)

where w1 and w2 are weights. The refinement algorithm in
Eq. 4 using the new heuristic function, as it currently stands,
may adjust landmark points to edges that do not retain the
innate facial structure estimated from alignment. In other
words, the variation in edge direction is not properly con-
strained, i.e. erroneously shifting a landmark point around
the chin to the edge of a collar directionally perpendicular to
the outline generated by the true facial contour. So our final
observation, conceptually derived from our second observa-
tion, is that the outline generated by pre-refined alignment
facial contour should be near parallel to the outline gener-
ated by the true facial boundary.

Under all three observations, the ultimate goal of our ac-
tive refinement algorithm is to move each landmark point to
the nearest, strongest edge segment that is near parallel to
the outline generated by the alignment facial contour. See
Figure 2. More specifically, for each alignment landmark
point pi in facial contour C, we generate a series of cas-
cading line segments parallel to the outline generated by C,
where each line segment is explicitly defined as a collection
of points in a single direction e.g.

vic = pi+1 − pi−1 vip = (−vicy , vicx )

Figure 2: Active adjustment. The landmark point (red) is
updated to a new location (green) by searching along a line
perpendicular to the tangent line (dashed cyan line).
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(
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||vip ||

)
+
r

σ
j

(
vic
||vic ||

)
L = {Lk}σk=1 Lk = {pkj}σj=1 (5)

where pi+1 and pi−1 are neighboring alignment contour
points of pi, and σ is a saturation value. A score is computed
for each line segment in L based on the heuristic function
fh(p) in Eq. 4

score(Lk) =
σ∑
j=1

fh(pkj )

σ
(6)

and pi is shifted to the midpoint of the line segment with the
highest computed score from Eq. 6, e.g.

Lbest = {Lk ∈ L s.t. score(Lk) = max
l∈L

score(l)}

Lbest = {pbestj}σj=1

Refine(pi) = pbestdσ
2

e (7)

4.2. Data-Driven Validation

An observation-based edge detection approach to refine-
ment is sufficient to fix the easy misalignment cases. How-
ever, a large percentage of misaligned landmark points is
still difficult to assess and fix, even to the human eye. We
address this problem by adopting a data-driven approach to
recognize and preemptively avoid such difficult cases. For
each of theM landmark points that make up a facial contour
C, we train a binary SVM to classify each corresponding
landmark as an easy or difficult case. In order to minimize
the total number of erroneous adjustments, these classifiers
are used to limit the refinement algorithm from adjusting
the difficult cases.

Contrast normalized pixel values extracted from a small
region around each point serve as the features used to train
the classifiers. These patches are rotated with respect to the
outline generated by the alignment facial contour such that
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Figure 3: Refinement pipeline: (1) select landmark patches to be updated (green boxes), (2) adjust landmark positions, (3)
return updated landmarks.

the right side of the patch is further away from the face than
the left side. At test time, prior to running the active adjust-
ment algorithm for each landmark point, we generate a fea-
ture vector reflecting the small rotated square region around
the point. If the SVM classifies the region as likely to facil-
itate negative improvement after refinement, then we skip
active adjustment for that particular landmark point. This is
done before the adjustment of each landmark point of every
test facial contour. Since our objective for face alignment
post-processing is to maintain positive improvement as con-
sistently as possible, this validation framework essentially
reinforces the dependability of the active adjustment algo-
rithm by learning and avoiding potential erroneous adjust-
ments. Figure 3 illustrates the role of the validation frame-
work within the refinement approach.

5. Experiments
In this section, we provide some experimental analysis

which highlights the advantages of our proposed facial con-
tour refinement approach. The experiments are designed to
demonstrate the validity of our active adjustment method,
illustrate the intuition behind the validation framework, and
evaluate the quantitative and qualitative performance of our
refinement approach as a whole.
Face Alignment For our experiments, we use a face align-
ment method, based upon [13, 3], that is robust to occlu-
sions and approximates face shape S and returns N bi-
nary labels corresponding to the estimated state of occlu-
sion for each individual landmark point in S. Since our
approach was not designed to be robust for occluded land-
mark points, during refinement we limit our adjustments to
the non-occluded points in order to minimize the number of
misalignment cases attributed to occlusions.
Datasets We demonstrate the efficacy of our contour re-
finement approach, by evaluating it on three different face
datasets namely, HELEN [11], “Labeled Face Parts in the
Wild” (LFPW) [2] and “Annotated Faces in the Wild”

Figure 4: A conceptual visualization of the error metric in-
troduced in Equation 9. The accuracy of some point pk ∈ C
is measured by its distance to the facial outline generated by
the true contour Ĉ (blue).

(AFW) [17]. For consistent cross-database annotations,
we used the generated annotations provided by IBUG [10].
Each dataset presents a different challenge due to varying
degrees of image quality and facial variation. The HELEN
dataset contains 2,000 training and 330 testing high reso-
lution face images obtained from Flickr. The LFPW face
image dataset features 811 training and 224 testing images
pulled from the Internet using simple search queries. The
facial images in both of these datasets exhibit a wide range
of appearance variations including pose, lighting, facial ex-
pressions, occlusion, and individual differences. The AFW
dataset consists of 337 face images out of which we isolate
100 images for testing, and use the rest for training. Most of
the faces from this dataset have poor image quality and/or
low resolution and consist of faces captured under uncon-
strained conditions. For all datasets, images where the pri-
mary face is undetected using [13] are excluded from our
experiments.
Edge Detection In our experiments, we use the fast edge
detection method proposed by Dollár and Zitnick [8]. Ca-
pable of multi-scale edge detection, this edge detector fea-
tures superior run-time complexity while maintaining state-
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of-the-art edge detection performance.
Error Metric If we derive from the metric in Equation 1,
then the facial contour error is computed as

Error(C, Ĉ) = ||C − Ĉ||2 (8)

The relative position of each estimated landmark point pi
on the alignment facial contour C is likely to differ from
the relative position of its ground truth counterpart p̂i in Ĉ.
Unfortunately, the error metric in Eq. 8 does not capture
this variation. So we adopt a new error metric mp that con-
ceptually reflects the perpendicular distance between each
landmark point of C to the outline generated by the true
contour Ĉ (see Fig. 4), e.g.

Error(pk,mp) =
|(p̂n − p̂m)× (p̂k − p̂m)|

ϕ̂||p̂n − p̂m||2
(9)

Error(C, Ĉ,mp) =
M∑
i=1

Error(pi,mp) (10)

where p̂n, p̂m ∈ R2 denote the two landmark points in Ĉ
closest to pk via Euclidean distance and ϕ̂ represents the
true inter-pupillary distance. We use the per-point error
metric in Equation 9 to guide validation training, and the
relative accuracy improvement metric (semantically defined
as the % error reduced after refinement)

Error(Cbefore, Ĉ,mp)− Error(Cafter, Ĉ,mp)

Error(Cbefore, Ĉ,mp)
(11)

and the absolute accuracy improvement metric

Error(Cbefore, Ĉ,mp)− Error(Cafter, Ĉ,mp) (12)

in conjunction with Eq. 11 to evaluate the performance of
our post-processing approach.

5.1. Performance of observation-based refinement

In section 4.1, we described the three major observa-
tions around which our active adjustment algorithm is struc-
tured. Recall that with each major observation, we in-
tuitively modified our adjustment algorithm to reflect that
observation. In this experiment, we demonstrate how the
integration of each modification works to boost the over-
all performance of our refinement approach. We train and
test the complete refinement approach three times while
swapping out the adjustment algorithm each time; once us-
ing Eq. 3 (one incorporated observation), once using Eq.
4 (two incorporated observations), and once using Eq. 7
(all three incorporated observations). Since the training of
the data-driven validation framework learns from the pre-
filtered performance of the active adjustment algorithm over
the training image dataset, the adjustments algorithms are

Figure 5: Comparison of different active adjustment algo-
rithms in Equation 3, Equation 4, and Equation 7. Relative
accuracy improvement is based on Equation 11.

changed before each training session to reflect the swapped
adjustment equations used respectively during testing. Ad-
ditionally, it is important to note that even though we used
the Helen dataset to generate the results of this experiment
in Fig. 5, the results generated by the LFPW and AFW
datasets were consistently similar. For this experiment, as
well as the following experiments, we empirically chose the
active adjustment parameters to be σ = 5, r = ϕ/4 (where
ϕ is the detected inter-pupillary distance) for a good trade-
off between accuracy and computational cost.

Figure 5 illustrates the relative accuracy improvement
(Eq. 11 with Eq. 10) of every test face (sorted by improve-
ment). We see that incorporating the second observation
made in section 4.1 to formulate Eq. 4 worked very well in
reducing the number of cases where the naive implementa-
tion using Eq. 3 would have inaccurately shifted a landmark
point to an outlier edge. Reducing the search space effec-
tively reduced the possibility of misalignment. Addition-
ally, we see that the active adjustment algorithm using Eq.
7 was able to further reduce some of the outlier misalign-
ment cases attributed to the edge direction variation. Note
that incorporating all three observations made in section 4.1
yields the best overall performance.

5.2. Verifying the data-driven validation framework

For this experiment, we verify the effectiveness of the
data-driven validation framework used to reinforce the over-
all performance of the active adjustment algorithm.
Parameter Settings In our experiments, the C-SVC SVM
was trained with the polynomial kernelK(u, v) = (γuT v+
c)d where the parameters were empirically chosen as γ = 2,
c = 1, d = 3 for consistent cross-dataset performance. For
both training and testing, given detected face shape width
w, the size of the localized square patches around each land-
mark point were set at l × l pixels where l = w

10 .
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Figure 6: Comparison of refinement with and without the
data-driven validation framework described in section 4.2.
Relative accuracy improvement is based on Eq. 11.

Figure 6 presents a comparison between the refinement
results with and without the data-driven validation frame-
work. We see that although the accuracy improvement of
some of the face shapes were not as high with the validation
process as they were without it, nonetheless the total num-
ber of erroneous adjustments was significantly reduced with
the validation process. The results of the refinement with
the validation framework are much more desirable since our
objective is to improve alignment accuracy through active
adjustment while reducing the total number of erroneous
adjustments as much as possible.

Visualizing the validation framework

Figure 7 illustrates the localized patches around land-
mark points with the lowest and highest decision values
from the SVM, and their weighted averages. From the vi-
sualization of the averages, we see that the SVM learns
to avoid adjusting landmark points that are already located
near a strong gradient (presumed to be the true facial con-
tour). On the other hand, the SVM also learns to favor ad-
justments to be made for points that are only slightly off
from a strong gradient, since the active adjustment algo-
rithm is more likely to successfully improve the accuracy of
a smaller case of misalignment.

It is also interesting to note that since the patches are lo-
calized such that the right side of the patch is further away
from the face than the left side, the average patches over
the highest decision values seem to imply that better ad-
justments are made for points that located away from the
face, as opposed to points that lie directly on the face. This
makes sense, because an edge detection based adjustment
algorithm is much more likely to fail due to wrinkles, fa-
cial hair, or other similar edge-like facial features. This is
why the validation framework is important and necessary to
minimize the possibility of erroneous adjustments.

Helen Dataset

AFW Dataset

LFPW Dataset

Figure 7: For each dataset, the left mosaic presents the top
100 patches around the landmark points with the lowest de-
cision values from the SVM. The patch highlighted in red is
the weighted average over the pixel intensities of all patches
in the left mosaic. Similarly, the right mosaic presents the
top 100 patches around the landmark points with the highest
decision values, and the patch highlighted in green is their
weighted average over pixel intensities.

5.3. Quantitative Evaluation

In this experiment, we directly evaluate the absolute con-
tour accuracy improvement of the refinement method over
all three datasets. Fig. 8 illustrates the average absolute
accuracy improvement for each individual landmark point
for every face in each dataset after refinement. Landmark
points skipped by the validation framework (and hence have
no accuracy improvement) are excluded from these bar
graphs. Note that refinement does reasonably well in the
Helen dataset where image quality and ground truth anno-
tation accuracy are both high. Refinement performs quite
consistently with the LFPW dataset. And finally, as ex-
pected, refinement did not do so well in the AFW dataset,
where ground truth annotations lacked sub-pixel accuracy,
and image quality was sometimes very low (featuring some
faces with widths < 200 pixels). Relative differences in
accuracy improvement between landmark point indices can
reflect the structural weaknesses of the deformable facial
models being optimized during face alignment. Overall, the
refinement process generally does well to improve the accu-
racy of face alignment [13]. Table 1 summarizes the com-
puted average contour error (Eq. 12) over every face for
each dataset before and after refinement.
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Figure 8: Comprehensive quantative results over the Helen[11], LFPW [2], and AFW [17] datasets. One the left we show
the 17 landmark points from alignment [13]) used to describe the facial contour and the graphs display the average absolute
accuracy improvement (Equation 9) for each landmark point over all test images in each dataset.

Table 1: Mean Contour Error of [13] (in %)

Dataset Before Refinement After Refinement
Helen [11] 3.6639 3.4587
LFPW [2] 3.4083 3.2720
AFW [17] 4.9339 4.8610

5.4. Qualitative Evaluation

It is important to keep in mind though that the quanti-
tative experiments may not be completely representative of
the true performance of the refinement approach. The main
motivation behind the construction of this method was, after
all, to improve upon the aesthetic quality of state-of-the-art
face alignment results. Furthermore, the ground truth an-
notations provided by the datasets that we used were built
for the purpose of evaluating face alignment performance,
where sub-pixel accuracy for each and every landmark point
is typically not to be expected, especially for very high res-
olution images. Therefore, our experiments require a quali-
tative evaluation to give a better picture of overall aesthetic
improvement in face alignment results after refinement. For
each test face image across all datasets, we generate a copy
of the face image where the face alignment contour points
before refinement are highlighted in red and the shifted con-
tour points after refinement are highlighted in green. See
Figure 9. Table 2 summarizes the average results of our
questionnaire, where 3 subjects are asked to step through
all test face images of each dataset, and judge whether or
not the contour improved after refinement. If no contour
change was observed, or if there was some difficulty in dis-
cerning the state of contour improvement, the subjects were
asked to mark ‘uncertain’ on the questionnaire.

We see that for most test face images from the Helen
and LFPW datasets, the subjects noticed an improvement in
the accuracy of the facial contour. However, for the AFW
dataset, the subjects had some difficulty in judging whether
or not there was improvement - this is likely due to the fact
that this dataset contains many images with faces that have

Figure 9: Sample refinement visualization (image from
LFPW with the original alignment (red) and refined align-
ment (green)) shown to subjects during qualitative evalua-
tion.

Table 2: Contour Improvement: Qualitative Evaluation (%)

Dataset Yes No Uncertain
Helen [11] 90.2516 5.3459 4.4025
AFW [17] 59.6667 6.3333 34.0000
LFPW [2] 95.8333 2.7778 1.3889

a low resolution. Overall, the qualitative tests overwhelm-
ingly suggest that our refinement approach facilitates an im-
provement in the aesthetic quality of face alignment results.

Finally, to gauge some of the potential improvements
that our post-processing method can bring to certain face
alignment applications, we constructed a naı̈ve automatic
face swapping algorithm and compared the results using
the original face alignment points to the results using the
refined face alignment points. A sample result is provided
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(a) (b) (c)

(d) (e) (f)

Figure 10: A face swapping example where the sample face
and its contour refinement result from Figure 1 (a) is warped
into background face (b) using face alignment point without
refinement (c) and with refinement (d), followed by Poisson
blending over the face replacement results using face align-
ment without refinement (e) and with refinement (f).

in Figure 10. Note the differences in facial illumination be-
tween image (e) and image (f). The dark regions of the
background captured by the misaligned facial contour force
the bottom half of the warped face to be discolored after
Poisson blending. Using refinement to reduce facial con-
tour misalignment effectively reduces the facial boundary
noise that can affect face swapping results.

6. Discussion
We proposed an observation-based active adjustment al-

gorithm to fix the inaccurate landmark points of a given con-
tour from a face shape returned from face alignment. To
reinforce the performance of this algorithm, we introduced
a data-driven validation framework to learn the weaknesses
of the algorithm and to minimize the number of erroneous
adjustments from refinement. Our evaluation demonstrates
that our approach is capable of consistently improving the
sub-pixel accuracy as well as the aesthetic quality of a given
facial contour. The active adjustment algorithm can also
be applied to other problems like object contour refinement
and structure segmentation boundary refinement.
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