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We want to use teams of quadrotors as characters in a theatrical piece to convey a story. The e — i
robot teams need to fly in formations and transition between different formations. Therefore our 5 =~ T f RObOtICS |r\StltUte f

goal is to:
Plan dynamically feasible transitions between different formations.

Fig 1: A quadrotor vehicle. Fig 2 : A quadrotor team flying in the Vicon Motion Capture Arena.

Approach
Trajectory Generation Shape Transitions
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4. Our control loop runs at a frequency | Z* |
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Formation Control

Goals: Formation Flight : '5 2 A . L E R [ i
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Approach:

Fig 7: Snapshots of formation flight for three robots at different times.

1. We define the N robot formation to
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formation. Figure 8 shows the collective i Fig 11: Feasible transition achieved in minimal time within the line search resolution.
shape error for the formation over the Fig 8: Collective shape error for a simulated formation flight.
length of the trajectory shown in Figure ACknOWIEdgmentS
7 Shape error vs. Aggressiveness
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the leader and follower trajectories. . Future Work : Extend implementation to hardware; add time scaling for collision avoidance.
4. Shape error increases as the Equation 1 References
aggresiveness of the trajectory Increases. e; (t) = E Ci,j (xi(t) — X (t) — Si.j (t)) 1. Charles Richter, Adam Bry, and Nicholas Roy. Polynomial Trajectory Planning for Aggressive Quadrotor Flight in Dense Indoor Environments. ISSR
4 — jEN».-_ 2013.
[Ag gressiveness ThI’USt/ Max ThI’USt] . ., 2. Matthew Turpin, Nathan Michael, and Vijay Kumar. Decentralized Formation Control with Variable Shapes for Aerial Robots. ICRA 2012.
Figure 9 shows the baseline performance x;(t) : state of i"th robot : 3. Abbas Chamseddine, Youmin Zhang, Camille Alain Rabbath, Cedric Join, and Didier Theilliol. Flatness-based trajectory planning/replanning for a
5 P (t) f the j’th rob
: : : x;(t) : state of the j'th robot drot d aerial vehicle. A d Electronic Systems, IEEE Transacti 2012
J : quadarotor unmanneaq aerial venicie. Aerospace an ectronic systems, ransactions on, .
of our shape tracking for increasingly s,.(t) : shape vector for the robots | and j .
aggressive f|lghtS. ¢;; : I'throbot’s confidence in the relative _ . . .
estimate of the state of the j’th robot Arjav Ashesh Desai | RISS Cohort - 2015 | Email : arjavd@andrew.cmu.edu



mailto:arjavd@andrew.cmu.edu

