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Background

The quest to build smaller, more agile micro
aerial vehicles has led to addressing cameras
and IMUs as the primary sensors for state
estimation. It is called visual-inertial state
estimation. The minimum sensor suite only
consists a single camera and IMU.
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Problem Prerequisite

State estimation with Visual Odometry cannot consistently achieve
high performance due to[1]: e

= Features’ different properties’

= Changingillumination conditions

= Various moving accelerated speed

= Combination of far and near objects
Solutions i
Analyze exact factors affecting the accuracy of estimation results
and the relationship between them.

Increase the robustness of monocular visual-inertial state
estimation using adaptive technigues.

Methods
Apparatus

L & 4
*  ARM computer e i
+  Calibrated IMU
+  Calibrated fish-eye monocular
Simulation i
*  Make synthetic datasets with diverse scene sizes
+  Find relationship between feature depth and vehicle position
estimated errors
Experiment
+  Improve the algorithm
+ Compare the robustness between original and adaptive
programs

State Estimation Model

*  Separately make models of IMU data and camera image to
calculate the location of the feature
¢+ Sliding window:

A A A A o Achieve baseline estimation

o Decrease computing cost

' ' ' o Refine its solution from multi
Figure 4. sliding window madel

different observations

Whether the camera position should be added to the sliding window
for calculation is
displacement in the apparent position of an object viewed along two
different lines of sight. And the value of threshold € is 30.

determined by parallax, which means the
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Uncertainty

For a definite depth, location uncertainty
is inversely proportional with baseline.

Experiments

Set 11 scenes with size from 10m to 60m, which means the depths
are ranging

Let the features distributed in margins of the environment.
Analyze the situations in which the menocular state estimation will
fail

Figure 6. Estimation results( scene sizes are 10m, 30m, 50m)
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Figure 7. Errors with different depth
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Adaptive Innovation Gating for Monocular Visual-Inertial State Estimation
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= Solve for the maximum likelihood estimation by minimizing the Adaptation

Improve the algorithm

*  Compute the mean parallax of all features

« Ifthe parallax of I, feature is less than mean, then add it to the
list of far features

*  Unless the number of far feature is more than 30% of number
of all features, then eliminate them

Innovat Gate Comparison

+ Evaluate both algorithms on an environment with both far
and close features

Figure 8. 2D & 30 trajectory(adaptive, original and truth)
+ Calculate the errors with trajectory accumulated of both
algorithms
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¢ Redo the previous test based on adaptive program in 11
different scenes
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Figure 9. Cumulative errors of
both algorithms
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Figure 10. Errors of both
olgorithms in various scenes



