Learning System Dynamics For Wind Resistant MAV Flight

Sam Zeng
Advisors: Drew Bagnell and Martial Hebert

Motivation
- Follows trajectory well in static testing environment.
 - No wind
 - No initial velocity
- Control failure accounts for >80% of our crashes during tests in forests.[1]
 - Most caused by wind
 - Dynamic initial conditions amplify problem.

Platform

PID Control
- Follows trajectory well in static testing environment.
 - No wind
 - No initial velocity

System Modeling
- For a linear time invariant system:
 \[x(t+1) = A*x(t) + B*u(t) \]
- Minimize quadratic cost function:
 \[c(x,u) = x^TQx + u^TRu \]
 - \(Q \) determines cost of state errors
 - \(R \) determines cost of control inputs

LQR Control
- Model learning requires accurate state estimation.
- Piksi RTK GPS used for ground truth.
- ~5% error/distance traveled

Model Evaluation
- Trajectory Estimation
 - Real Trajectory
 - Estimated Trajectory

State Estimation
- Motion due to wind or dynamic initial conditions

Future Work
- Move from wind detection to active with control correction with online learning.
- Generate dynamically feasible trajectories based on current state estimate.

References