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SUMMER SCHOLAR PROGRAM 

 

At the core of the program are incredibly talented 

and dedicated faculty, graduate students, staff, and 

RISS alumni.  

We are incredibly thankful for their support, 

participation, leadership, and vision that make this 

one of the best research experiences in robotics and 

intelligent systems in the world. 
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To prospective and accepted scholars alike, we welcome you on your journey towards the 
Robotics Institute Summer Scholars (RISS) program. RISS is a phenomenal platform 
through which students can accelerate their undergraduate research experience in robotics. 
For many of the summer scholars, this was their firs texperience in a facility like the 
Robotics Institute.  
 

 
Throughout the summer you will be surrounded by some of the world’s leading roboticists, 
innovative research, and invaluable guidance and support. At the end of the summer, you 
will know much more than just how to conduct research. You will be a step ahead of your 
peers, having seen first-hand what cutting edge robotics requires. 

 
The RISS program focuses on your individual research, 
which you will pursue under the guidance of your mentor 
and their graduate students. For many of you, this will be 
your first contribution to an active research project and first 
opportunity to make a tangible impact on the robotics 
community.  

 
Research experience helps your graduate school 
application stand out so work diligently to make the most 
of your time here. To that end, you should strive to make 
substantial progress early on. Take it upon yourself to 
define milestones towards a final paper. Ultimately, the 
paper is a result of careful planning and foresight.  

To Future Summer Scholars 
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Your individual research project is not the only 
element of RISS, however. Throughout the summer 
you will be immersed in a community of exceptional 
students. This community will be nurtured through 
more formal events ranging from lab visits, guest 
speakers and graduate school application seminars 
to less formal cookie hours, frisbee games, and 
wakeboarding on the Allegheny River.  

 
In RISS, the social aspects come hand in hand with your research. This diverse community 
of scholars from all over the world will nurture creativity and will help you explore a world 
beyond Carnegie Mellon University. You will share your experiences, your struggles, and 
your successes with the other RISS scholars. The summer flies by quickly, and you will be 
sad to part with your new friends.  
 
 

Being one of the few REUs that accept international students, the RISS 
program is highly competitive. However, we encourage everyone to apply! You 
can’t be accepted without sending in an application. Here is one small piece of 
advice – familiarize yourself with labs that interest and their research 

directions. When you put in this effort, it really shows genuine interest that the review 
committee is looking for. We wish you the best of luck!  
 
In closing we say this to you: enjoy your time in CMU, meet as many people as you can, go 
to as many events as you can, see as much of Pittsburgh as possible; fully immerse 
yourself in the summer and you will not be disappointed. RISS provides the opportunity, but 
you must take the first step.  
 
Sincerely, 
 
            
 
Tess Hellebrekers   Mike Lee  Cormac O'Meadhra 

 
RISS Scholars 2015 
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Carnegie Mellon’s Robotics Institute Summer Scholars (RISS) program 

(http://riss.ri.cmu.edu/) is an eleven-week summer undergraduate research program that 

immerses a diverse cohort of scholars in cutting-edge robotics projects that drive innovative 

and have real-world impact. Launched in 2006, RISS is 

among the best and most comprehensive robotics 

research programs for undergraduates in the world. 

The quality and breadth of research, high-level of 

institute and university engagement, extensive 

professional development curriculum, graduate school 

application counseling, and alumni network create 

transformative experiences and remarkable post-

program trajectories.  

 

The RI Summer Scholars Program: 

1) Immerses a highly motivated and diverse cohort of students (hereafter referred to as 

“scholars”) in a guided research process; 

2) Challenges scholars to build an understanding of research philosophy that serves as 

a basis for creative problem-solving that transcends the summer research experience; 

3) Introduces scholars to the highly interdisciplinary nature of robotics and the vast 

potential to impact and improve the world’s quality of life;  

4) Provides professional development components that prepare students for successful 

transitions to graduate school and research careers; 

Robotics Institute Summer Scholars Program  
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5) Engages scholars in reflective service learning experience that imparts the value of 

broadening participation and engagement in STEM fields;  

6) Inspires scholars to pursue careers in robotics and related fields, such as graduate 

programs, and equips them with new skills and knowledge; and 

7) Helps scholars to build collaboration and lifelong connections with a dynamic global 

community of robotics researchers and entrepreneurs. 

 

The Robotics Institute at Carnegie Mellon University is the largest university-affiliated 

robotics research group in the world. It offers a remarkably diverse breadth of research with 

an extensive range of applications. With hundreds of active research projects, together with 

both graduate and undergraduate programs, the Institute is a 

global leader in robotics research, education, and innovation. The 

Institute has the nationally recognized research capacity, 

educational programming, and student development experience to 

provide, through the RISS program, high-quality research 

experiences and a developmentally appropriate professional 

development curriculum to a diverse cohort of undergraduate 

students. 

 

RISS Core Research Areas:  

1)  Intelligence: core AI technologies, motion planning, control theory, planning under 

uncertainty, POMDPS, game theory, data mining, and machine learning 

2)   Perception: computer vision, stereo processing, understanding ladar and 3D 

sensing, state-estimation, and pattern recognition 

3)   Action: work mechanisms, actuators, their design and control 
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Recent sample scholar projects have included:  

• 3D Manufacturing of a Liquid Metal Microchannel for Soft Sensing and Actuation 

• Auto-calibration and Hybrid Force/Position Control for the Cerberus Cardiac Robot 

• Autonomous Object Recovery in Manipulation Experiments  

• Design and Characterization of Map Based Lunar Rover Localization 

• Generating Spatial Paths to Express Attentional Attitudes  

• Highly Flexible and Stretchable Sensor Using Soft Optical Waveguides 

• Improving Power and Vision Systems on Autonomous Quadrotors 

• Monocular Visual Features for Fast Flight Through Forests 

• New Visual Programmer Converter that Allows the Hummingbird Duo to Run      

         Untethered 

• Persistent Deployment of Micro-Aerial Vehicles 

• Pothole Detection with Cell Phone Data 

• Trajectory Following in GPS Denied Environments for UAVs 

• Using Receding Horizon Control 

• Visual Programmer and New Efficient File System 

 

The RISS program also has a remarkable mentor and 

alumni community with wide participation and support 

from across the university. In 2015, over 35 

researchers and professionals contributed to the 

RISS curriculum - presenting workshops, laboratory 

tours, and other programming elements. Over 50 

members of the Robotics Institute (RI) community 

participated as research mentors in the same period. Unique partnerships with robotics, 
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intelligent systems, and data science companies extend the scholars exposure from the 

robotics lab to product development, commercialization, and technology transfer.  

 

Scholars benefit from RI’s institutional experience from hosting undergraduate research 

programs for over nine years and an alumni network of over 200 previous undergraduate 

researchers now in graduate programs, academia, and industry both domestically and 

globally. In the fall of 2015, 33 RISS Program alumni will be attending CMU graduate 

programs in both Masters and PhD programs (29 within the School of Computer Science) or 

will be working as technical staff at the Robotics Institute. Also in the fall of 2015, a core 

group of RISS alumni are launching Pittsburgh-based alumni programming. This extensive 

community helps scholars successfully prepare for graduate school and maximize the 

summer experience. One of the program’s strategic priorities is to extend access to robotics 

research opportunities to students from underrepresented groups and those from higher 

education institutions with fewer research opportunities. 

 

Human capital is one of the most important resources driving today’s knowledge economy. 

RISS connects a diverse group of talented undergraduate students from around the world to 

the Carnegie Mellon University community. The valuable contributions and connections that 

summer scholars make continue beyond this eleven week summer program.  
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Visualizing Air Quality: The Environmental Sensor
Data Repository Explorer

Sufyan Abbasi
Mentor: Randy Sargent

CREATE Lab, Carnegie Mellon Robotics Institute
Carnegie Mellon University

Abstract—Clean air is a basic human right and governments,
from county to federal, as well as citizens possess public sensors
that stream real time air quality and environmental data.
However, this data is often inaccessible and lost over time.
The Environmental Sensor Data Repository, developed by the
CREATE Lab, is a server that collects, archives, and presents
environmental sensor data. We developed a visualization tool
in which users can explore ESDR temporally and spatially,
specifically real-time, dynamic air quality data.

The ESDR tool empowers people to take their air quality
back into their hands by presenting a story about air quality.
This paper outlines the features of the ESDR Explorer website,
how each feature is implemented, and future applications of the
tool.

Index Terms—data visualization, air quality, ESDR

I. INTRODUCTION

PEOPLE are becoming more concerned about their air.
Communities based around particularly noxious polluters

collect environmental data such as air or water quality that
community members utilize as evidence of violations of en-
vironmental guidelines. Although this data may be archived
locally, it is susceptible to being lost over time or not diffuse
to larger audiences who might be able to mobilize for the
community.

Established by the CREATE Lab at the Carnegie Mellon
Robotics Institute, the Environmental Sensor Data Repository
seeks to collect, archive, and present this data such that it
is made available to the public around the world, as well
as effectively gauge trends in environmental data on scales
of weeks, months, and years. However, the original ESDR
explorer tool was a simple website that only contained the
list of all the sensor channels and when turned on, displayed
graphs of the sensor data.

It was necessary to include a channel search and filter,a map
of the sensor locations, and a method to visualize overall air
quality on the map so that users of the website could easily
access the trove of data relevant to them. The ESDR Explorer
allows users to gauge their air quality now and over time while
comparing it to other places around the nation. A map allows
users to quickly find the nearest air quality sensors in their
locale. In order to gauge air quality in context to the rest of
the United States, nodes on the map color based on the EPA
Air Quality Index and users may view trends in air quality
between the many sensors.

Fig. 1. ESDR Explorer website

This paper provides an overview of the website, outlines
the implementation of each of the components, and provides
insight into how such tools can be created for other such
websites.

II. METHODS

A. Website Overview

The ESDR Explorer tool may be visited at
esdr.cmucreatelab.org/browse, shown in Figure 1, which is a
public link that is hosted by the CREATE Lab servers. The
website is laid out into three section. A search and filter tool
bar on the left side of the screen allows users to search for
a particular channel based on keywords or filter for certain
channels based on what the sensor data is reporting. A map of
the sensor feeds (a collection of channels at the same location)
displays nodes that can access the channels of a particular feed.
Below that, a timeline and graphs open up when a channel is
turned on to display the sensor data. Superimposed on the map
is a tool bar which can be used to color the nodes based on
values and toggle playback options.

During the page onload, the website requests the server for
all current feeds in ESDR to load them into the “Results”
section. Once all the feeds have been loaded, the browser
initializes WebGL and the Google Maps API to render the
nodes and the map onscreen respectively. At 30 MB/s, the
website takes roughly five seconds to initialize a little under
9,500 channels (and counting). When idle, the website utilizes
little CPU time despite running in WebGL.
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Fig. 2. Search and filter bar on ESDR Explorer website

In order to have a sensor display a user’s environmental
data, a user can create an account at esdr.cmucreatelab.org
and follow the ESDR protocol from the terminal to stream
the data in real time. Because the website pulls data from the
server at every page reload, a node will appear on the map
and their data accessible to the website. By either toggling the
check box next to a channel name or clicking on the node on
the map and selecting the check box from there, a graph is
loaded underneath the map to display the data graphically that
can be manipulated to show different time intervals.

B. Search and Filter Tool Bar

The first feature implemented was a search bar that allows
users to find specific names of sensor channels. The search
bar, shown in Figure 2, is case insensitive and can find partial
matches of key words. Furthermore, spaces in the query act as
key word separators with a conditional “and.” The search bar
shows the results of the query in the list of channel names as
well as on the nodes of the map dynamically as the user types,
foregoing the use of a search button. For example, the search
“PM25 Avalon” would result in channel names that contain
“PM25” and “Avalon” and show only the nodes on the map
that satisfy those results.

In order to implement the search feature, jQuery selectors
were appended in series with each key word between spaces
and targets the input divs (check boxes) containing those key
words. After selecting those input divs, all rest were hidden
and only those shown. To hide the nodes on the map, a
function was written in order to change the WebGL buffer
for those resultant feed numbers to enabled, which will be
discussed further in the map implementation.

Next, filters allow for shortening the large list of channel
names to only display feeds and channels that contain a

Fig. 3. Google Maps with WebGL implementation of nodes on ESDR
Explorer

certain environmental data type, for example carbon monoxide
or sulfur dioxide sensors. Although the ESDR server does
not provide metadata for what kind of information is being
displayed in each sensor; each feed is given a feed ID number
which can be referenced and a channel name which contains
keywords like “PM2.5” for particulate matter less than 2.5
microns or “S02” for sulfur dioxide. At the initial page
load, the channel name is categorized based on the naming
conventions of the source of the data. For example, the EPA’s
AirNow categorizes all PM2.5 data as PM2 5, so their feed
IDs are appended to an array for “PM2.5.” When a filter check
box is engaged, all feed IDs and channels within that category
are displayed in the channel names and all other nodes are
removed from the map. When subsequent filters are checked,
the resultant channels include the other types checked.

Implementation of this works the same way as the search,
where a jQuery selector for divs containing the data attribute
for that channel type is concatenated together and the results
of the search are shown and rest hidden.

C. Map

In order to render the map on screen, shown in Figure 3,
the Google Maps API was employed and to draw the nodes
on the map, a modified Canvas Layer was used in conjunction
with WebGL. A WebGL buffer is generated on the initial page
load that contains: the xy coordinates of the nodes to draw, a
binary flag to indicate whether the node should be enabled or
not after a search, the node’s color in rgba, and the node’s
opacity when hovered, among other things.

When the map is zoomed or dragged, Google Maps returns
an edited transformation matrix that the Canvas Layer uses to
redraw the points at the new pixel locations. The node sizes
are recalculated at each map zoom based on what level the
map is zoomed at.

To implement the hover behavior of the nodes, the Google
Maps API allows for a method to return the xy pixel coordinate
of the cursor. The distances between this coordinate and every
xy coordinate of the nodes are computed and the nodes with
the smallest distances are recorded. If the node distance to
the cursor is below a certain threshold (the radius of the
node circle), that node’s opacity value is increased in the
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Fig. 4. Node coloration for July 4th, 2015 at 9:00pm EDT and July 5th, 2015
12:00am

WebGL buffer. Due to the fragment shader in WebGL, if two
or more nodes are overlapping at this point, the opacity of
each node is increased. For clicking on the node, the same
distance calculations are made, but instead, a Google Maps
information window is opened at the closest xy coordinate
containing the input divs of the found feeds. If two or more
nodes are overlapping at this point, the input divs of each feed
is separated by a line.

D. Timeline

The most graphically and CPU intensive feature of the
website is the timeline that recolors the nodes on the map
based on EPA Air Quality Index colors as a user scrubs on
the timeline, demonstrated in Figure 4. When a user clicks
on, for example, “PM2.5” on the map tool bar, the timeline
loads and a red cursor on the timeline appears which may be
dragged. The nodes color for that specific time range.

The ESDR server can aggregate data together for many
channels called multifeeds which returns a large JSON contain-
ing a list of timestamps and a comma separated list of values at
that time. The website requests multiple multifeed data sets and
processes them into an array of function calls may be iterated
and executed to change the color of each node at a particular
timestamp. The color is interpolated so that a gradient change
in values can be shown based on the EPA Air Quality Index
values for PM2.5 or PM10. Next, the timeline, implemented by

the CREATE Lab, contains a method that returns the position
of the red cursor on the timeline. By determining the time
position of the cursor as it is being dragged or played, a binary
search is utilized to find the closest timestamp in the array and
call the color changing functions at that time.

In order to make the colors more stand alone, all other nodes
are reduced in opacity and turned gray.

E. Graphs

When a user checks a channel name, a plot opens up under
the timeline displaying the data graphically. The graph, known
as Grapher, was produced by the CREATE Lab to display real
time data and has APIs that allow it to be easily customizable
and accessible. Because this was originally implemented at the
start of the project and not of my own, the implementation of
this will not be elaborated upon in this paper.

III. FUTURE WORK

Although the website is in acceptable, working condition,
there are still many features which could be implemented in
order to increase the efficacy of the website. We are interested
in adding an export button which allows users to export .csv
files for opened channels to allow for statistical analyzation
of the data. To see trends in air quality, visualizing the wind
speed and direction as vectors would give new meaning to
the data. Finally, to be able to select any channel and define
color parameters to interpolate would be an effective feature
for users customize what kinds of data they want to visualize
with color.

IV. CONCLUSION

In its current state, the ESDR Explorer tool visualizes trends
in air quality that may not have been seen before. When, for
example, a spike in air quality occurs, from fires to the Fourth
of July, the map showcases how the pollutants in the air shift
over time. By archiving the data and making it available to
the public, people from community members, to scientists, to
politicians have access to data that can be used as evidence to
make lasting impacts.

We created this tool in order to tell stories with data, specif-
ically environmental sensor data which directly correlates
to people’s healths and wellbeing. By empowering people’s
stories with data, or vice versa, we seek to change the world
one sensor at a time.
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Abstract—The teaching and use of robotics have come a long 

way in recent years, starting from university engineering 
departments developing their own robots to the introduction of 
simple consumer-based robots to universities down to the 
primary school level. With these developments, an important 
issue came into focus: what is the most effective way to approach 
teaching robotics to students? To address this issue, we propose 
the development of an online learning platform for an 
undergraduate course, Robot Kinematics and Dynamics. This 
platform will be based on the use of Robotics Toolbox for 
MATLAB, a tool that has been gaining popularity in education. 
This has allowed us to supplement traditional paper-and-pencil 
problems with educational programming problems on Toolbox, 
covering topics such as homogeneous transformations, forward 
and inverse kinematics, differential kinematics, and dynamics. In 
additional to programming assignments, our platform includes 
the development of various form of media such as video-based 
lectures, which enable the students to better understand the 
theoretical concepts behind introductory robotics through 
simulation and visualization.  
 

Index Terms— Introductory robotics, online learning 
platform, robotics course, robot simulation, robot kinematics, 
robot dynamics, Robotics Toolbox for MATLAB, video-based 
lecture, undergraduate course.  
 

I. INTRODUCTION 
OBOTICS is an essential topic in the current 
technological world, and consequently the teaching of 

robotics has seen growth in recent years. This ranges from 
university engineering departments developing their own 
robots, such as LEGO Mindstorms, to universities down to the 
primary school level. From a broad perspective, robotics is a 
multidisciplinary subject that requires knowledge of a 
numbers of disciplines such as kinematics, dynamics, control,  
mechanics, and electronics engineering. Traditional classroom 
methodologies are often inadequate in helping students 
understand the complex theoretical concepts underlying  
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robotics. The main challenge in teaching robotics to students 
has been in effectively coming up with the appropriate content 
and complexity to improve learning. 

In the current engineering education paradigm, the use of 
simulation tools has being fundamental for students’ 
motivation and understanding of the course content through 
programming and simulation. The work realized by the 
Department of Computer Science and Systems Engineering at 
University of Zaragoza, Spain, presents a remarkable success 
of courses based on simulation tools with Control and 
Programming of Robots, as well as Industrial Robotics. The 
results of this research show that the final grades covering 
from year 2003 to 2009 were improved and the percentage of 
students who fail to pass was reduced [1]. Moreover, research 
conducted by the Electrical Engineering and Computer 
Science Department at the United States Military Academy 
about teaching problem solving with robots found that the 
learning with simulation is much easier and faster for an 
introductory course, while maintaining cost and convenience 
advantages [2]. 
 Robotics Toolbox is a software package for MATLAB 
extensively used in universities for teaching and research in 
the robotics field through interactive simulation [3]. The 
Mechanical and Aerospace Engineering Department at 
Princeton University has used Robotics Toolbox in their 
undergraduate course, Robotics and Intelligent Systems [4]. 
Another university that has used Robotics Toolbox for 
teaching Introductory Robotics is the Engineering Department 
at the University of FEI in Brazil. 

With the development of web-based technologies, 
universities have been exploring Internet resources to 
communicate and collaborate in an educational context. These 
technological resources represent a new method of 
transmitting university education, and complement traditional 
teaching approaches for undergraduate students [5]. MOOCs, 
or massive open online courses, are part of this group of 
resources because they allow anyone with an Internet 
connection to enroll in a course, are credit-less, and are 
usually free [6]. Supplementing a classroom course with 
online tools provides increased opportunities for students to 
view and review course materials and therefore offers them 
better retention of the learned content. Online learning 
platforms make a significant impact in higher education today 
and, as technology evolves, promise to deliver even greater 
benefits in the future. 

In this context, we propose the development of an online 
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learning platform for introductory robotics, which includes the 
development of multiple forms of media, including video-
based lectures, programming and simulation assignments, and 
assessment methods in the form of review and quiz questions. 
In this paper, we will focus mainly on presenting a new 
method of design and implementation of educational 
assignments in a junior- and senior-level undergraduate 
course, 16-384: Robot Kinematics and Dynamics, at the 
Robotics Institute at Carnegie Mellon University (CMU). We 
propose the implementation of programming problems based 
on Robotics Toolbox for MATLAB that explore classical 
topics in robotics, such as homogeneous transformations, 
forward and inverse kinematics, differential kinematics, and 
dynamics. Some simulation problems using the robotics 
toolbox are presented here. The simulation tool, used in this 
course, is essential for the students to better understand the 
theoretical concepts behind introductory robotics. 

The paper is organized as follows. The second section, 
named “Methodology”, describes the processes used during 
the development of the research. The third section, named 
“Results”, is the main section of this paper and presents some 
examples of Robotics Toolbox assignments proposed for our 
kinematics course. The video-based lectures are also presented 
in the third section, which describes the primary pedagogical 
benefits of the videos for our introductory robotics course. 
Conclusions and future work are discussed in the fourth 
section. 

II. METHODOLOGY 
The current robot kinematics and dynamics course consists 

of lectures, which are taught using PowerPoint slides and 
videos, paper-and-pencil homework problems, and two short 
labs with actual robots. We propose the development of an 
online learning platform with video-based lectures and 
programming assignments based on simulation tools. 

A. Studying the course content 
The robot kinematics and dynamics course focuses on 

kinematics, dynamics, and programming of robotic 
mechanisms. Arms are the primary application and classical 
robots such as the Denso and Puma 560 are studied during the 
classes. This course assumes that the students have a prior 
knowledge, acquired in prerequisite courses, about calculus, 
basic programming, and algebra, like linear matrix. 

The course has a weekly schedule in order to cover a 
particular set of topics along with learning goals. The main 
effort prior to starting the development of programming 
assignments was to study the video and slide content week by 
week as well as to work through some of the current paper-
and-pencil homework problems.  

The contents studied per week are presented in Table I.  
 

TABLE I 
CONTENTS STUDIED PER WEEK 

Week Content 
Week 1 Degrees of freedom; concepts of joints and linkages; 

rotation matrices for 2D and 3D rotations. 
Week 2 Matrix composition; parameterization of rotation 

matrices, covering the Euler angle, yaw-pitch-roll, and 
the angle-axis formulations. 

Week 3 Homogeneous transformation. 
Week 4 Denavit-Hartenberg (DH) convention; examples of DH 

for different arm robots; forward kinematics. 
Week 5 Inverse kinematics; numerical inverse kinematics. 
Week 6 Derived and examples of the Jacobian; differential 

kinematics. 
Week 7 Inverse differential kinematics; singularities. 
Week 8 Skew-symmetric matrices; angular and linear velocities. 
Week 9 Manipulability for mechanical systems; dynamics of 

rigid bodies; standard form of the equations of motion. 
Week 10 Coriolis terms of the equations of motion; state space 

form; and rigid bodies dynamics with friction.  
 

B. Comparing Robot Simulators 
Simulators are an important tool in robotics research and 

teaching. Considering the increasing number of open-source 
robotic simulation tools, we compared the most efficient 
robotic software for teaching based on the research developed 
by the ASTRA Robotics Lab at the University of Texas, 
Arlington [7]. Their survey paper presents a detailed overview 
among the most recent and popular open-source robotic 
software for simulation. 

After analyzing the features offered by all software studied 
by the above on the paper, the robotics simulator software 
presented in Table II were further investigated. The main 
criteria used to select these four robot simulators were to be 1) 
open-source; 2) available for Mac, Linux, and Windows; 3) 
easy to install; and 4) appropriate for robotics related 
education.   

 
TABLE II 

COMPARISON AMONG ROBOT SIMULATORS FOR TEACHING 
Simulator Description 

V-Rep Robot simulator with integrated development 
environment. It offers an educational license, V-Rep pro 
edu. 

Gazebo 3D simulator for populations of robots in complex 
indoor and outdoor environments. 

Robotics 
Toolbox for 
MATLAB 

Software package that allows a MATLAB user to 
develop datatypes fundamental to robotics. 

Player/Stage Player is a robot device interface to a variety of robot 
and sensor hardware. Stage is a multiple robot simulator 
for robots moving in and sensing a two-dimensional 
bitmapped environment. 

 
Robotics Toolbox for MATLAB was developed to enable 

teachers and students to better understand the theoretical 
concepts behind introductory robotics through easy 
simulation. This software package has been extensively used 
in universities for teaching and research in the robotics field 
[8]. Based on that, we chose Robotics Toolbox as the tool to 
develop programming assignments in the robot kinematics and 
dynamics course.  

C. Robotics Toolbox homework problems 
The programming problems based on Toolbox explore 

classical topics in robotics, such as homogeneous 
transformation, inverse and forward kinematics, differential 
kinematics, and dynamics. We did some of the current 
homework problems and labs, but instead of using paper and 
pencil, the solutions were found using robotics toolbox 
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through programming and simulation. In addition to that, new 
assignment problems based on robotics toolbox were 
developed. The Robotics Toolbox examples enable the 
students to visualize the problems, as opposed to the previous 
method of solving on paper.  

D. Surveys with students 
The robot kinematics and dynamics course is offered to 

CMU students every fall semester. Surveys conducted with 
these students during the semester 2014 were analyzed in 
order to learn some of the issues that students had about the 
course and improve the course material and organization 
based on that. In that time, the surveys were carried out 
weekly, which enabled us to see the common questions among 
the students for particular topics. We plan to create new 
assessment method in form of review material or quiz 
questions, and redo the PowerPoint slides as well, to cover the 
topics that cause most questions in the current course format. 

The students provided some suggestions for the 
improvement of the video-based lectures such as dividing a 
long video into short video segments, while still upload the 
slides as a PDF or PowerPoint presentation on the online 
platform. They also opined for the possibility of covering 
examples, derivations and proofs, and prerequisite material 
using videos. Because some weekly materials are harder than 
others, an additional suggestion was made to reorganize them 
by level of difficulty. In addition to that, the students used the 
video-based lectures as review for working on the homework 
and studying for the exams. In order to solve the students’ 
issues, their suggestions will be considered for the new video 
recording session. 

E. Video-based Lectures 
The current videos are available via Panopto Video 

Platform Software, which enables simple video editing and, 
more essentially, allows for PowerPoint slides to be shown 
adjacent to the video. It enables the students to have a clear 
outline of the lectures, take notes on individual slides, and 
search keywords. 

While studying the video and slides, we noted the quality, 
length, and method of videos in order to improve the video-
based lectures and improve their pedagogical effectiveness. 
Some videos had bad lighting, which can be a problem 
because the viewer may have difficulty reading the slides 
presented in the video and loses interactivity with the 
professor who is talking in a dark place. Another issue was the 
timing of the videos. Some individual videos of each week are 
longer than others. For example, the smallest video is about 
two minutes, whereas the longest one is about thirty minutes. 
For the subsequent versions of these videos, the timing will be 
pared down in a maximum of fifteen minutes each. Also, the 
quality of the video will be a major consideration.  

III. RESULTS 
The online learning platform, currently in progress, will 

offer the course’s syllabus and schedule, Robotics Toolbox 
homework problems, weekly video-based lectures, and a form 
for video feedback. 

A. Simulation tool and Robotics Toolbox homework problems 

Robotics Toolbox for MATLAB provides many functions 
that are required in robotics and address the kinematics and 
dynamics areas. The Toolbox is useful for simulation and 
analysis of robotics problems. Two main Robotics Toolbox 
classes were explored to develop the assignments problems, 
Link and SerialLink. The class SerialLink represents the 
kinematics and dynamics of serial-link manipulators by 
description matrices. The DH parameters of the robot can be 
created for any serial-link manipulator [9].  

In the online learning platform, two main learning aspects 
can be benefited from the use of simulation tools in the 
context of robot kinematics related subject: visualizations of 
robot configurations and the acquisition of robot programming 
skills. The main learning improvements provided by the use of 
Robotics Toolbox homework problems are the in-depth 
understanding of the homogenous transformations and 
Denavit Hartenberg (DH) convention, and the better 
comprehension of the inverse and forward kinematics 
problems and the Jacobian problem. 

The Robotics Toolbox homework problems are presented to 
the students as programming scripts. For example, given the 
arm link length and joint limits, find the workspace of the 
robot. To achieve this, students follow the DH notation, which 
is an input of the algorithm together with the joint limits. The 
DH convention [10] defines a coordinate system attached to 
each link of a chain, allowing determination of the forward 
kinematics of the complete chain in a systematic way. The 
solution for this problem is based on programming rather than 
inspection and has as output the plotting of the robot 
workspace, as shown in the Figure 1 and 2. 

 

 
 Fig. 1. Workspace of a two-link robot, where the length of the 

two link is the same. 
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In the problem of finding the robot workspace we use the 
Robotics Toolbox classes Link and SerialLink, in addition to 
the method plot3, which was used to plot the robot arm. 

Forward kinematics is a problem of determining the 
position and orientation of the end effector given the values 
for the joint variables of the robot. The inverse kinematics 
problem is to determine the values of the joint variables given 
the end effector’s position and orientation. One example 
extension of this latter problem is to find multiple solutions for 
the inverse kinematics problem through visualization, where 
the input is the DH matrix and the joints angle configuration, 
and the output the plotting of at least two different solutions 
for this problem, as shown in the Figures 3 and 4.  For this 
problem, the Robotics Toolbox class SerialLink and the 
methods fkine, ikine, and plot were used. “fkine” is a forward 
kinematics method to determine the pose of the robot end-
effector. “ikine” is a numerical inverse kinematics method that 
presents the joint coordinates corresponding to the robot end-
effector pose. Finally, “plot” is a method used to plot the robot 
arm. 

 

 

 

 
 A learning goal of the Jacobian concept is to understand the 
columns of the Jacobian through small changes, for example 
𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒  10!!, in particular joint coordinates, which then 
affect the pose of the end-effector. The Jacobians are vector 
versions of derivatives that are written as ∂f/∂x and ∂f/∂y, 
where f is a function of a vector f:  ℝ → ℝ. In this problem, the 
input is the DH matrix and the joints angle configuration, and 
the output is the plotting of the robot arm in the initial joint 
configuration and after small changes in joint coordinates. In 
this problem, we use the Robotics Toolbox methods J 
(Jacobian), jocob0, and plot. 

 
 
 

B. Video-based lectures 
For our video-based lectures, some of our pedagogical goals 

are to reduce the amount of time students spend working 
through the content, because of the extra workload of 
watching videos, and avoid making videos redundant with the 
class sessions. In order to achieve these goals, the video-based 
lectures are recorded outside of the student-occupied 
classroom in a quiet setting, in which the professor explains 
the PowerPoint presentation. These videos are shorter than the 
past videos recorded inside the classroom because the focus is 

Fig. 2. Workspace of a two-link robot, where the length of the first 
link is smaller than the second link. 

Fig. 3. Left-handed solution for the inverse kinematics problem. 

Fig. 4. Right-handed solution for the inverse kinematics problem. 

Fig. 5. Jacobian problem with the initial joint coordinates.  
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the slide content, without student-initiated pauses to answer 
questions or give examples on the blackboard. In the past, the 
video recording of the blackboard presented many issues for 
the user such as illegible writing and mistakes that were 
difficult to fix in post-processing.  

 

 

The new videos are 43% shorter, in terms of average length, 
than the old videos of the blackboard inside the classroom 
with the students. The Figure 7 shows a comparison between 
the average length of the new and old videos per week. The 
course has a total of 13 weeks and each week has a different 
number of video-based lectures. For example, week 2 is about 
rotation matrices and has one video, whereas week 5 presents 
the topic Denavit Hartenberg convention and has five videos. 
Organizing the weekly videos in parts enables the students to 
take a short break before watching the subsequent video and 
also helps them to find specific class topics. If a student has 
questions about an example of a specific weekly content, he 
can go through the content of one small video only, instead of 
reviewing the whole weekly content recorded in a big video.    
 

 

IV. CONCLUSION 
In this work, we describe an online learning platform for an 

introductory robotics course that takes advantage of a 
simulation tool, Robotics Toolbox for MATLAB. The 
programming problems using Toolbox together with the 
video-based lectures will be important aspects in building the 
online learning platform for the robot kinematics course. The 
course with the Toolbox homework problems will be applied 
in the next fall semester, which will enable us to analyze the 
students’ performance in learning based on simulation tools 

and compare it with the traditional teaching method. 
In order to perform the course and guarantee success, new 

Robotics Toolbox problems will be elaborated to better 
understand the theoretical concepts behind the introductory 
robotics. A future goal is to connect the Robotics Toolbox 
scripts with a 3D simulator such as V-Rep Pro Edu, which 
enables the visualization of the problems in a real robot and 
also allows the development of more advanced problems.  

When the video-based lectures and Robotics Toolbox 
problems are ready, we plan to develop a public online course 
in a platform offered worldwide.  
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ABSTRACT - We analyze three different depth sensors, 
Kinect 1, Kinect 2 and structure.io, to figure out which one 
is the best to estimate object pose. The method is design to 
have three main points: accuracy, types of material and the 
angles that the sensor can recognize. The test requires a 
linear stage with a planar surface moved in different 
distances and in different angles then take the point clouds. 
After recording point clouds, we use RANSAC to fit a plane. 
In our experiments, structure.io shows the best accuracy in 
different types of materials and angles.  
Index terms - Kinect, 3D sensing, depth camera,  
RGB-D camera  
  

  
1. INTRODUCTION  

  
Since its invention, Microsoft Kinect has 

become popular in the scientific community, mainly in 
computer vision community. Besides Microsoft Kinect 
there are other sensors, such as Structure.io, that have 
been becoming popular in this field. The primarily 
reason to create the Microsoft Kinect and the others 
was to use it to electronics games and human interface, 
and 3D reconstruction.  However because their low 
cost and satisfactory accuracy they have been used in 
other fields such as robot manipulation and navigation, 
and general 3D sensing.  

In some fields of application the required 
accuracy has to be stronger, because even it being good 
sometime it isn’t satisfactory. As examples of these 
fields that need a better accuracy one can cite robotics 
and similar areas which have been investigating how to 
improve the sensors accuracy and which one has the 
best accuracy.  

In order to improve the calibration we tested 
three different sensors (Kinect 360, Kinect One and 
Structure.io) and figured out which is the best to 
estimate a pose object in a range 1.5 meters.   
  

2. SENSOR COMPONENTS  
  

The sensors have similar hardware. All of 
them have a depth cameras that allow them get depth 

data and do depth measurements. Kinect 360 (fig. 1) 
consist of a RGB camera, an infra-red sensor and an 
infra-red projector. The Kinect One has a HD RGB 
camera and an infra-red camera.   

  
  

  
  

Figure 1: Kinect 360 and its components  
  
  

  
3. CALIBRATION METHOD  

  
The first step before collect data is calibrate 

the sensors in order to improve the manufactory 
calibration. The used method to do so in some of our 
sensor was the Checkerboard Method since it has a 
pattern that the sensor can recognize easily. This 
method consist of positioning a checkerboard in front 
a sensor and move it around the frame corners as is 
showed in figure 2. However we didn’t calibrate the 
Structure.io since its default calibration showed us 
results good enough. We used thereabout five frames 
for each corner to calibrate Kinect 360 [1] and 30 for 
Kinect one.  

     

  
  

Figure 2: IR images from Kinect One  
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4. USING  A  LINEAR 
 STAGE  TO COLLECT DATA  

  
In order to compare the sensors we used a 

linear stage to move a flat surface and get images in 
three different distances (30cm, 60cm and 90cm). To 
operate we used ROS (Robot Operating System). 
Besides changing the distances we also changed the 
type of material and the camera angle in order to 
make sure to know which sensor   is the widest sensor, 
since for our goal not only the accuracy matters but 
also how it works in different situations. We got 
twelve point clouds for each type of material in each 
sensor, totalizing sixty points per sensor and one 
hundred eighty total.  

  
  
  

  

 
   
Figure 3: Plane in different distances and angles  
  
  
  
  

5. USING RANSAC TO COMPARE 
THE DATA  

  
After collecting all our data, we had to find 

a way to compare the data obtained from each sensor. 
The method used to compare the data was RANSAC 
(Random Sample Consensus). This method takes two 
points then draw a line and see which points are 
inliers of the two first points as is demonstrated in 
figure 4.      

  
Figure 4: How RANSAC works  

  
  

We put our data into a RANSAC code [3] and 
it return the distance between the planes. However we 
set up the distance that one random point should be 
from the line to be considered inliers. We set 0.007 
meters when the plane was moved 30 cm, and 0.001 
meters when the plane was moved 60 cm and 90cm. 
This difference between the first distance and the 
others is because these values returned more reliable 
data.  
  

  
  

Figure 4: Planes plot  
  
  

6. RESULTS  
  

To demonstrate the results we decided use the 
data obtained from wood and metal, since the sensors 
recognize the wood easily and the metal is the hardest 
type of material recognized for our sensors. Based on 
the figure 5 one can assume that Structure.io is the best 
choice.   
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The results were surprising since the 
Microsoft Kinect One had the worst results. It was 
supposed to be the sensor with the best accuracy 
because its RGB camera is HD and it’s a Kinect 360 
upgrade. Its results are unstable and not reliable. As 
showed in table 1 the error variation is too large and 
one cannot trust it. The Kinect 360 had stable results 
but the error was bigger than the Structure.io. And 
Structure.io is the most promisor sensor for our goal, 
because it showed the smallest error margin. Moreover, 
its calibration can be improved even more since was 
used its default calibration.    

  
  
   

   
Figure 5: Trials  

  

  
Table 1: error range for each sensor  

  

 
Table 2: error range for each sensor  

   
7. CONCLUSION  

  
This paper has demonstrated that Structure.io 

is the best depth sensor for estimate the object pose 
within a range of 1.5 meters. In addition, the sensor 
recognized all the materials used in our tests. Then one 
can assume that it will work for our purpose.   
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Abstract—Humans intuitively pick up on body language and 

infer the internal states of those around them. If robots could use 
human-readable motions to express their internal states and 
attitudes toward goals, humans would interact more seamlessly 
with them. Our goal is to express humanlike attitudes in non-
anthropomorphic robots with limited degrees of freedom. In order 
to achieve this, we create gestures using the Laban Effort System, 
a set of principles from theater that define and help reproduce 
movement. In this experiment, we specifically focus on the Time 
Effort. In order to get an understanding of how humans read 
temporal gestures in robots, we conducted a study asking 
participants to judge the internal state of a CoBot based on its 
approach path to an attentional goal. A pilot study found that 
participants had strong reactions to hesitations and noted 
differences in expression between slowing (sustained) and stopping 
(sudden) hesitations. A formal study is pending in which we will 
explore the impact slowing and stopping hesitations in 
combination with varied hesitation duration, proxemics, type of 
relational object, and motion of relational object using videos of 
CoBot posted on Amazon Mechanical Turk. Based on our 
preliminary results, we expect the types of hesitations to express 
different attitudes and interact with the other variables 
introduced. 
 

Index Terms—expressive motion, Laban Effort System, 
temporal gestures. 
 

I. INTRODUCTION 
T is becoming more common for people to interact with 
robots in everyday environments, therefore it is important to 

facilitate seamless interactions so that people will be able to 
understand robots’ states as intuitively as they understand 
human states.  

Our research focuses on generating expressive motion for 
robots. We define expressive motion as a robot’s ability to 
communicate mental state, social context, and task state via 
body movements [1]. Expressive motion is one way of helping 
humans become aware of the internal state of a robot. 

Humans use expressive motion naturally, often involuntarily. 
Humans also pick up on expressive motion of others and can 
infer the internal states of those around them. For robots, 
expressive motion is important to express humanlike attitudes 
without human motion. If robots could use human-readable 
motion to express their internal states, both social and 
functional interaction would benefit. People would be able to 
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detect when a robot is lost, is concerned about a collision, or 
needs to recalculate its path. Expressive motion can also 
improve social interaction with robots. If robots could be 
consistently expressive enough to have personality, people may 
bond with robots based on their personality or choose a favorite 
robot based on its personality. 

The Laban Effort System is used in dance and theater to 
reproduce motion [2]; we use it to create gestures for robots. In 
non-anthropomorphic robots, it is not possible to simply copy 
human movements to the robot. The Laban System helps us 
generate gestures that express human-like attitudes rather than 
copy human-like movements using human-like robots. 

 
 

Time Effort Fighting Polarity Inducing Polarity 

Time: attitude toward 
time Sudden (abrupt) Sustained (gradual) 

Weight: force or 
apparent inertia Strong (powerful) Light (delicate) 

Space: attitude toward 
target Direct (single-focus) Indirect (multi-focus) 

Flow: sense of 
restriction Bound (constrained) Free (unconstrained) 

 
To create and evaluate these gestures, we use the CoBot 

robots, 1.3m tall robots with omnidirectional bases which are 
used in the Gates-Hillman Center at Carnegie Mellon to 
complete tasks such as delivering messages or showing a person 
to a location in the building. This platform helps us to isolate 
the specific Effort we are studying because the CoBots do not 
have other expressive features. 

The present study focuses on the Time Effort. We referred to 
the Laban Effort system to create velocity settings along a scale 
from sudden (abrupt) to sustained (gradual), as well as 
accelerating, decelerating, and hesitation gestures. Both 
stopping (sudden) and slowing (sustained) hesitations were 
created. See Table I for complete descriptions of the Laban 
Efforts. 

In a pilot study, participants reacted strongly to hesitations. 
Both survey and interview questions revealed that participants 
found the robot to express different things based on the type of 
hesitation and these findings motivate further work to explore 
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TABLE I 
LABAN EFFORT SYSTEM 
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exactly what kinds of hesitations express specific attitudes. 
In a pending video study, we manipulate type of hesitation as 

well as hesitation duration, spatial distance of relation to goal, 
type of attentional goal (human or other CoBot), and movement 
of attentional goal. 

II. RELATED WORK 
A growing body of research links movement with the ability 

to express emotions and intentions. As early as 1944, Heider 
and Simmel showed that people have a tendency to attribute 
social and emotional qualities to the most basic forms given 
patterns of motion [3]. In fact, previous work shows that 
people find gestures in inanimate objects to be expressive. Ju 
and Takayama demonstrated that people found automatic 
doors with only one physical degree of freedom to express 
different attitudes depending on their trajectory [4]. 

Other work suggests that across different platforms and 
embodiments of motion trajectories, expression remains the 
same [5]. It follows that creating low-level gestures with 
CoBot will help construct a theoretical basis for more complex 
gestures for many different types of robots. 

We hope to use the Laban Effort System to understand how 
to create expressive motion from the most basic elements of 
robot movement. The Laban Effort System has been shown to 
aid in computationally describing motion [1]. While research 
exists which applies the Laban Effort System to 
anthropomorphic robots [6] [7], limited research has applied it 
to non-anthropomorphic robots. 

The Laban Effort System has been successfully applied to a 
flying mobile robot with consistent ratings of valence and 
arousal based on manipulations of the Efforts [8]. We plan to 
focus only on the Time Effort in order to isolate and fully 
understand its implications for expression. 

Previous work demonstrates that temporal gestures 
including speed and acceleration play an important role in 
perceived attitude of robots [5] [8] [9] [10] [11].  

It has been verified that hesitations can be recognized in a 
robotic arm and likely communicate the same nonverbal 
message as human hesitations [13]. Hesitations in robotic arms 
have been found to be readable by humans and in some cases 
improve the human’s rating of the robot’s anthropomorphism 
[14]. 
 While a significant amount of work has been done to 
understand how hesitations affect collaborative interaction 
with robotic arms [13] [14] [15] [16], we are interested in 
integrating hesitations into the basic behavior of a mobile 
robot with limited degrees of freedom. Some work in the early 
stages of exploring hesitations in mobile non-anthropomorphic 
robots suggests that robot hesitations while approaching a 
human allow the human to continue to be more efficient [17]. 

One study created the expression of forethought in an 
animated robot by manipulating the timing of motion, which 
made the robot seem more appealing and approachable to 
participants [12]. The manipulation of timing is similar to our 
hesitation gestures. 

More work is needed to fully understand the features of 
robot hesitations are how they are interpreted by humans. For 
example, it has been hypothesized but not proven that smooth 
hesitations are more functionally useful than abrupt ones [15] 

[16]. We hope to use the Laban Time Effort to gain this 
understanding and find parameters for controlling expression. 

III. PILOT STUDY 

A. Participants 
Seven participants (4 male, 3 female) volunteered to take 

part in our pilot study. All were undergraduates in the fields of 
computer science, robotics, and/or engineering asked to 
participate by the researchers. There were no other eligibility 
or exclusion criteria and participants were not compensated. 

 

B. Design 
Participants were seated in an atrium in the Gates Center for 

Computer Science at CMU for the duration of the study. From 
there, they viewed the CoBot travel in a hallway toward an 
attentional goal (Fig. 1). We chose to use an inflatable cactus 
as the attentional goal because it would be easily distinguished 
from any other possible attentional goal in the hallway. 
 

 
Participants observed the CoBot complete 10 different 

approaches, each a straight line path with the same start and 
end points. Temporal features of each path were varied: 
 Constant velocity: Four paths were at constant velocities of 
0.2 m/s (CoBot’s minimum speed), 0.5 m/s, 0.75 m/s, and 1 
m/s.  

Acceleration: In two paths, velocity increased or decreased. 
In one path, the robot accelerated from 0.2 m/s to 1 m/s and in 
another it decelerated from 1 m/s to 0.2 m/s.  
 Hesitations: Finally, four hesitation paths were included. 
Two types of hesitations were included: sudden (stopping) 
hesitations and sustained (slowing) hesitations. Sudden 
hesitations involve the robot travelling at a constant velocity, 
coming to a full stop, then continuing at its original velocity. 
Sustained hesitations involve the robot travelling at a constant 
velocity, slowing to its minimum speed, then continuing at its 
original velocity. Each type of hesitation was completed with 
a starting velocity of each 0.5 m/s and 1 m/s. In all cases, 
hesitations occurred at the same location in the middle of the 
path. Fig. 2 shows the velocity over time of hesitation 
gestures. 
 

Fig. 1.  A participant observes the CoBot during pilot study. 
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Participants were given a tablet at the start of the 
experiment and after viewing each approach path, they 
completed a 6 item questionnaire. All items were statements 
and participants rated how much they agreed with each on a 5 
point Likert scale. The purpose of the first four questions was 
to determine the legibility of the Laban Efforts of Time and 
Weight. Weight was included because acceleration introduces 
possible force behind movements. The final two items were 
meant to measure expressiveness. They read “The robot's 
motion is tentative, unsure, wavering” and “The robot's 
motion is urgent, overexcitable, hasty.” These final two items 
were added to the survey after the first two participants had 
completed the study, therefore they were only answered by 5 
participants (3 male, 2 female). 

An interview session followed the viewing of all approach 
paths. We spoke with participants for about 10 minutes in 
order to understand any of their perceptions that may not have 
been captured in the questionnaire. We began by asking a very 
open-ended question about any motions or approaches that 
may have stood out to them. This was followed by 
conversation and questions about which paths looked most 
humanlike or artificial, when the robot appeared to be paying 
attention or not paying attention to the goal, when it seemed 
hurried or not hurried, whether they noticed the difference 
between hesitations, and any storytelling or narrative they 
imagined to explain or describe the robot’s motion. 
 

C. Results 
Means and standard errors for all questionnaire items can be 

seen in Fig. 4. 
 

1) Constant velocities: 
Survey results showed a trend in which participants tended 

to perceive the maximum velocity as sudden and all slower 

velocities as sustained, see Fig. 3. In the interview session, 
many participants mentioned this. 

Participant 6 summarized the feeling that most participants 
expressed in some way about velocities slower than 1 m/s by 
sharing their thought, “Why would it go slower than max 
speed?” 
 

2) Accelerations: 
Participants’ ratings showed a trend that accelerations 

mapped more to the strong pole of the Weight Effort while 
decelerations mapped more to the light pole of the Weight 
Effort, however these associations were not very strong. 
Multiple participants commented that these paths would 
express something more clearly if there was a segment of 
constant velocity and then acceleration or deceleration toward 
the goal. Several participants commented that the decelerating 
path made the robot seem like it knew what its goal was and 
that it was paying attention to it. Others said that it was 
becoming less sure of its goal as it slowed down. Some 
participants said that acceleration made the robot look hurried, 
while one participant said the opposite because it started out 
so slowly. An accelerating segment at the end of a constant 
velocity path may elicit more consistent attributions of 
expression. 
 
3) Hesitations: 

Participants did find hesitations to be quite expressive. In 
particular, there was a notable difference between the 
perceived attitude of the robot between sudden and sustained 
hesitation. Generally, the sudden hesitation was associated 
with attributions of surprise or excitement, while the sustained 
hesitation was associated with attributions of uncertainty. Fig. 
5 shows that participants rated the sustained hesitations more 
“tentative, unsure, wavering” than sudden hesitations. The  

 

Constant Velocity Acceleration Hesitation 

0.2 m/s accelerate to 1.0m/s Vmax = 0.5m/s, 
sudden 

0.5 m/s decelerate to 0.2m/s Vmax = 1.0m/s, 
sudden 

0.75 m/s  Vmax = 0.5m/s, 
sustained 

1.0 m/s  Vmax = 1.0m/s, 
sustained 

TABLE II 
TEMPORAL APPROACH PATHS 

 

Fig. 2.  Velocity over time is shown for hesitation gestures. The 
blue lines represent paths with starting velocities of 1 m/s while the 
orange lines represent paths with starting velocities of 0.5 m/s. 

Fig. 3.  This chart shows mean participant ratings of survey items for 
legibility of the Laban Time Effort. A score of 0 corresponds to “disagree,” 
2 corresponds to “neutral,” and 4 corresponds to “agree.” Error bars 
represent standard error. 
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Fig. 4.  This set of charts shows mean participant ratings of survey items for each question. A score of 0 corresponds to “disagree,” 2 corresponds to 
“neutral,” and 4 corresponds to “agree.” Error bars represent standard error. The first four bars in green represent constant velocity paths, while the next 
two bars in yellow represent accelerations and the final four blue bars represent hesitations. 
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following are several quotes from participants describing the 
hesitations in an interview: 
 “Full stop was less unsure–it meant to do that–compared 

to when it just slowed down.” 
 “Slow down could be a decision-making moment, the 

robot hesitates to take in its environment.” 
 “The slowing down was more along the lines of timid. 

The stopping motion was more surprise, ‘oh sh*t!’ ”  

IV. VIDEO STUDY 
 Given the strong reactions that participants had to hesitation 
gestures, we plan to further our research by exploring the 
impact of various features of hesitations. 

A. Variables 
 Type of hesitation: We will continue to explore the 
impacts of sudden and sustained hesitations. 
 Spatial distance: Proxemics is a field that enumerates 
normal social distances. We will manipulate the location of 
the hesitation to be in either the personal zone of the relational 
object (1.2 meters) or public zone or the relational object (4 
meters) [18]. 
 Hesitation duration: Based on hesitations acted out by 
people, we have implemented brief (1.5 s) and long (3 s) 
hesitations. 
 Type of relational object: There will be two conditions for 
attentional goal in this study. The attentional goal will be 
either a person or a second CoBot. 
 Movement of relational object: The relational object 
(human or CoBot) will either remain stationary or will rotate 
from facing the wall to facing the moving CoBot as it hesitates 
(see Fig. 6). 

B. Procedure 
 Videos of all combinations of these variables will be created 
in the same hallway in the Gates Center as the pilot study took 
place. These videos will be posted to Amazon Mechanical 
Turk with survey questions. The survey questions will include 
items that assess the legibility of the Laban Efforts, 
storytelling that occurred based on robot movement, and the 
relationship between the moving CoBot and its attentional 
goal. 
 

 

C. Hypotheses 
1. Hesitations will be interpreted as a reaction to relational 

object in the public zone when the relational object 
rotates and in either case when hesitation occurs in the 
personal zone. 

2. Sudden hesitations will prompt attributions of surprise 
while sustained hesitations will prompt attributions of 
tentativeness. 

3. People will attribute more expressiveness to brief 
hesitations as compared to long ones. 

V. FUTURE WORK 
 Based on the results of our pending video study, we plan to 
integrate hesitation gestures into the behavior of the CoBots. 
We hope to make it easier for people to pick up on a CoBot’s 
inner state as it navigates hallways in the Gates-Hillman 
Center. For example, we plan to make the CoBot express 
when it is in a rush or confused so that people will know 
whether it is a good time to give CoBot another task or if it 
needs re-localization or other assistance. 

VI. CONCLUSIONS 
The results of our pilot study help us to get a sense of how 

people interpret temporal gestures in robots. We have found 
promising methods for expressing a non-anthropomorphic 
robot’s internal state. 

Our pilot results suggest that up to 1 m/s, people do not find 
the robot to be rushed when moving at a constant velocity. 
Participants did not understand why the robot would ever 
travel below its maximum speed. 

Participants found accelerating/decelerating paths to be a bit 
confusing because there was no section of constant velocity 
before accelerations. Some consistency in ratings showed a 
trend for decelerations to be perceived as light, while 
accelerations were perceived as strong. 

Fig. 6.  Setup for future study. The CoBot on the left approaches the 
other CoBot, which rotates toward the first as it hesitates. 
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Hesitations elicited interesting responses from participants. 
Depending on the type of hesitation, the perceived expression 
of the robot changed. Sudden hesitations were associated with 
surprise or excitement while sustained hesitations were 
associated with uncertainty. 

Understanding the effects of creating gestures with the 
Laban Time Effort is one step in being able to generate fully 
controllable expressive motion for robots. This could aid in 
creating seamless interaction between humans and robots, as 
humans would be able to quickly pick up on a robot’s internal 
states—whether it is rushed, lost, surprised, in need of 
assistance, etc. Generating perceivable attitudes for robots 
may also help create personalities for robots. If people can 
relate to a robot via its personality, they may work better with 
the robot or be less likely to become frustrated with it. 

In order to continue improving expressive motion for 
robots, this work is being continued. Fully understanding the 
effects of temporal gestures, then layering them with other 
Laban features will help generate expressive motion for robots 
of all kinds. 
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Differentiating Singularity and Multiplicity in Web
Images
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Abstract—Learning to visually count is a strategy that has been
recently proposed and utilized to assist in estimating the number
of objects in an image. We propose a new counting framework
to enrich object recognition databases. Our goal is to be capable
of differentiating between images with single or multiple objects.
However, we do not attempt the task of learning object detection
and counting the various localizations of these objects. Rather
we pursue the phenomenon of subitizing, which is the scenario
where humans can instantaneously recognize whether an image
contains one or more objects. For this problem, we use a new
image dataset composed of web images with different numbered
objects. In order to learn the representations of singular and
multiple objects, we train a Convolutional Neural Network. We
are able to show that our network obtains a 55.79% accuracy
in predicting if an image contains one or more objects. We also
use this network to predict whether the resulting dataset from
an object recognition neural net contains undesired images of
multiple object instances.

I. INTRODUCTION

While visual knowledge bases, such as the NEIL database
[1], are able to establish relationships to label images from
a big scale of visual data from the web, the database labels
multiple instances of an object as a single instance instead.
These web images with multiple occurrences of the same
object do not contribute additional information to a labeled
cluster. In an attempt to enrich these visual knowledge bases,
we pursue the task of differentiating between singular and
multiple instances in web images, a counting problem.

The counting problem is the estimation of the number
of instances of an object in an image. In an image with
a cluttered background, the most important aspects of the
image are the salient objects, those that quickly draw viewers’
attentions. One approach is training an object detector and an
object localization counter, which is computationally intensive.
Thus, we implement a phenomenon known as ”subitizing”,
named by E.L. Kaufman et al [2]. Subitizing the inherent
human capability to rapidly and accurately determining 1, 2,
3, or 4 salient objects easily with a quick glance. Beyond 4
objects, it has been shown that human response time increases
and accuracy decreases. A quantitative model of real time
versus numerosity function has been proposed: the function
is separated into two regions [7][10][14]. The first region has
a small slope with a 50ms linear increase from 1 to 4 objects,
corresponding to subitizing. The second region has a larger
slope with approximately 250ms linear increase from 4 to 7
objects, corresponding to counting. With physical enumeration
taking a longer response time and having a lower accuracy,
our proposal for identifying multiple objects is constrained

to the set of 1, 2, 3, or 4 objects in subitizing. Furthermore,
with a steady linear increase between every additional objects,
precise estimation of instances is eliminated from our learning
algorithm. Instead, we use a simple approach using subitizing
to distinguish images with a single object from images with
more than one object.

II. RELATED WORKS

Recently there have been a number of methods used to ad-
dress counting problems. However, many of these approaches
need object localization or previous knowledge of the type
of object to count. A method of approaching the counting
problem is to count objects with visual detection. This method
requires a visual object detector that can localize all instances
of an object in an image [13]. Once the localizations are
completed, counting is simply a matter of the number of
localizations. The method is highly dependent on accurate
object detection followed by localization. However, object
recognition is still a nontrivial task given occluding objects
and cluttered backgrounds. Some methods augment detection
with assumptions regarding interleaved relationships between
objects and instances [8]. Others constrain counting to a
specific set of objects such as cells and pedestrians [11][12],
where the approaches segment objects, extract the features,
and deduce the number of objects with supervised learning.
While these methods provide accurate results, the assumptions
prevent them from being reliable for more complicated and
diverse images, such as those found in Google Image Search.

Additionally, there are existing approaches that specifically
deal with salient objects [9]. Salient object detection localizes
objects with foreground masks or bounding boxes. However,
these methods are often trained for single salient objects and
are unreliable as a detector for counting objects. In [3], they
attempt to use Convolutional Neural Networks to learn deep
features for 1, 2, 3, or 4 salient objects. However, while the ap-
proach implements subitizing, the results are not favorable past
1 object. Multiple objects are often confused with neighboring
counts (i.e. 2 for 3 and 2 for 1). Thus, to reduce complications,
we suggest to be indiscriminate regarding multiple objects.
Our interests lie with the simple differentiation between single
and multiple objects.

III. TECHNICAL APPROACH

With our goal to utilize the concept of subitizing to learn the
difference between single and multiple instances of an object
in web images, we implement a method to detect the number
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salient objects without using any counting or object detection
algorithms.

A. Database

Our image database is shown in Figure 1. In order to
introduce a variety of objects in web images, we collected
images from a list of 2000 categories. The categories are
objects in singular form, such as ”car” and ”apple”. To ensure
that images have 2, 3, or 4 instances of objects in the images,
the queries are pluralized and augmented with the words
”two”, ”three”, and ”four”. We use Google Image Search
to download up to one thousand images from each of the
categories. Then, our method iteratively cleans the images to
the correct format. In total, we downloaded approximately 2.5
million images to use as our image dataset.

Fig. 1. Examples of images downloaded from Google Image Search.

B. Caffe

Recently there have been numerous successes and progres-
sions made by Convolutional Neural Networks [5][16]. Thus,
with the large amount of data, we fine-tune a pre-trained CNN
model which is proven to be an effective method. We fine-
tune the CNN model from [5] because the model is trained
on a variety of images from ImageNet, as eclectic as our
downloaded images. The final layer is changed to a total of
2 outputs for a binary classification: 0 for multiple objects
and 1 for single object. We use Caffe for fine-tuning the pre-
trained model. All images are automatically re-sized to 256
by 256 without using aspect ratios of each individual image.
Furthermore, four 227 by 227 crops of each image from its
bottom-right, bottom-left, top-left, and top-right areas are used
to add to the training data of the model. Learning rate is altered
to 0.001, and batch sizes are decreased to 128. Because the
model is fine-tuned and not trained from scratch, the max
number of training iterations and learning rate step size are
decreased by a factor of 10 to 45000 and 10000 respectively.

C. Pipeline

To improve knowledge bases such as NEIL, we create a
pipeline that takes in the images in these bases and outputs

whether these images contain single or multiple salient objects.
In the case of NEIL, most images are in clusters under
categories. We take these clusters and run them with the
Alexnet model [5] in order to extract fc7 features. These
features are then clustered using k-means, and finally we run
the clustered features through our trained model. Thus, we are
able to determine if clusters in knowledge bases have images
with multiple objects. Further, to supplement knowledge bases,
we gather random sub-samples of an image using Selective
Search [15] to put through the Alexnet model and extract fc7
features. Doing so informs if an image patch could potentially
contain useful single instances of an object. The patch can
then be added a cluster.

IV. EXPERIMENTAL RESULTS

The model is trained on downloaded images from Google
Image Search, but the entirety of the set is not used. Due to
the 3 to 1 ratio for images with many objects to one object, a
quarter of images are randomly sub-sampled from each ”two”,
”three”, and ”four” queries. Thus, the model is trained on a
total of approximately 1 million images. For initial testing
purposes we randomly select 100 images from the downloaded
images, and the model achieves a 71% accuracy. For 1000
randomly sampled images from the downloaded images, the
model achieves a 65.8% accuracy. Finally testing on the SOS
data set from [3], the model achieves a 55.79% accuracy. All
testing returns an accuracy greater than 50%, which is better
than chance for binary classfication. It is unsurprising the SOS
data set lowers the accuracy because the images in the data
set have occluding objects and complex backgrounds, creating
a difficult subitizing problem.

In Figure 2 and 3, there are the top 10 rankings for each
class, 0 and 1, from testing done with 100 images. The highest
probability for an image to be classified as 0 (multiple) and 1
(single) are respectively 93% and 84%. The disparity between
the probabilities may be related to the fact that most web
images are not clean images with simple background and an
obvious salient object. Observing Figure 2, one can see that the
images have fairly clean backgrounds compared to the more
cluttered backgrounds in Figure 3.

Fig. 2. Top 10 probabilities for class 1 (single object).

V. FUTURE WORK

While the pipeline is tested on a few categories, intensive
experimentation is still needed. Furthermore, more baseline
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Fig. 3. Top 10 probabilities for class 0 (multiple objects).

testing needs to be made to conclude the accuracy of our
fine-tuned model. This involves testing with hand labeled
images and setting thresholds of the Softmax probability,
which determines the class of an image. We hypothesize that
an inclusion of background images could potentially assist the
model with noisy images.
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Abstract— The inverse kinematics of a 6-DOF robot arm is 
solved analytically in this paper. The Chiara Mantis robot is used 
as a real world platform. The methodology consists of using the 
OpenRAVE ikFast module, which receives a XML format file as 
input, and generates a C++ code file containing the complete 6-
DOF inverse kinematics solution. The analytical solution is 
successfully obtained through this approach, and among other 
advantages, the same method can be applied to a variety of 
different robot configurations. As an addition, a scheme is 
proposed for classifying the multiple inverse kinematics solutions 
based on choosing the posture, which enables the Chiara Mantis 
robot to support its own weight efficiently. In conclusion, obtained 
results show the robot is able to perform accurate trajectories, and 
the static joints load is computed for each of the solutions in order 
to classify the best solution. 
 

Index Terms— Chiara Mantis, IkFast, Inverse Kinematics, 
Robot 
 

I. INTRODUCTION 

HE term inverse kinematics stands for computing the 
position of the each joint, which place the end-effector at a 

desired position. The Chiara Mantis is a robot based on the 
praying mantis insect, it can use its front legs to both walk and 
handle objects. Therefore computing the joint angles, which 
enables the robot to perform accurate trajectories is 
unavoidable. 

Generally, the solution for the 6-DOF inverse kinematics 
problem is obtained by numerical methods as the Jacobian 
Transpose [3], the Cyclic Coordinate Descent (CCD) algorithm 
[4], Triangulation [5]. Nonetheless, the numerical methods 
have their limitations as it converges just to one answer out of 
a bigger range of possible solutions. Preview research shows 
the analytical solution was determined for some commercial 
highly articulated robots as the NAO humanoid robot [6].  
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However, the analytical inverse kinematics solution for robots 
with many degrees of freedom is extraordinarily time 
consuming, mainly because several trigonometric substitutions 
are needed. Another drawback is that these trigonometric 
substitutions are specific to one robot configuration.  

The complete inverse kinematics solution of a highly 
articulated robot leads to a set of multiple answers, therefore 
choosing the most appropriate solution also becomes a problem 
to be solved. 
 Determining a proper solution depends on many factors, 
starting with the purpose of the movement performed by the 
end-effector. Thinking about the task of walking, the robot has 
be in equilibrium while rising and landing its legs when 
performing a step, then one feasible strategy can be choosing 
the solution, which requires the minimum joints angle rotation 
in comparison to the preview posture. 

A more appropriate strategy for controlling equilibrium is 
checking if the Center of Mass of the robot is inside the Support 
Polygon [7], and computing the Zero Moment Point (ZMP) [8] 
to ensure the robot is statically and dynamically stable.    

Hardware limitations also have to be considered when 
solving the inverse kinematics. Servomotors are commonly 
used in robotics applications, and they have torque limitations. 
Consequently, the robot cannot be in a posture the static torque 
required to each servomotor overshoots the manufacturer 
specifications. 

The goal of this work is to describe the application of the 
OpenRAVE ikFast module [1], developed by Rosen Diankov, 
which analytically solves inverse kinematics equations for a 
variety of robot configurations and generates optimized C++ 
code files. 

Furthermore, we also discuss about a method for classifying 
the multiple inverse kinematics solutions based on choosing the 
posture, which enables the Chiara Mantis robot to support its 
own weight efficiently. 
 

Analytical Inverse Kinematics of a 6-DOF 
Mantis Robot Arm and Modeling for Minimum 

Joints Load 
Feliphe G. Galiza, David S. Touretzky 
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(a)           (b) 

Fig. 1. a) The praying Mantis insect. b) The Chiara Mantis robot. 

II. METHODOLOGY 
The method consists of creating an OpenRAVE ikFast model 

to describe the relative position of each link and joint of the 
robot. This is done by writing a XML file with the information 
about the translation and rotation relative to each component. 

The next step is to run a command at the Linux Ubuntu 
terminal, which generates a c++ code file with the complete 
inverse kinematics solution for the specified robot 
configuration. 

In part B, an approach for computing the joints static torque 
is shown, and it can be used as a parameter for choosing the 
most appropriate inverse kinematics solution. 
 

A. The OpenRAVE ikFast robot model 
 

The OpenRAVE ikFast module requires as an input a XML 
file format, containing information about the robot 
configuration, which can be represented by using the Denavit-
Hartenberg convention, also called D-H parameters [9]. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. D-H parameters convention 
 

Fig. 2. The Denavit-Hartenberg Convention. 
 

𝐴𝑖 = [

cos(𝜃𝑖) −sin(𝜃𝑖) ⋅ cos(𝛼𝑖)     sin(𝜃𝑖) ⋅ sin(𝛼𝑖) 𝑎𝑖 ⋅ cos(𝜃𝑖)

sin(𝜃𝑖)    cos(𝜃𝑖) ⋅ cos(𝛼𝑖) −cos(𝜃𝑖) ⋅ sin(𝛼𝑖) 𝑎𝑖 ⋅ sin(𝜃𝑖)

0         sin(𝛼𝑖)        cos(𝛼𝑖) 𝑑𝑖

0 0 0 1

]       (1) 

 
After defining the D-H parameters, each transformation 

matrix Ai can be used to build the robot model. An example of 
how to write the XML file is shown below: 
 
 

 
Robot name="RobotName"> 
 
  <KinBody> 
 
    <Body name="BaseFrame" type="dynamic">  
       

<Translation>0.0 0.0 0.0</Translation> 
       <RotationMat>1 0 0 0 1 0 0 0 1</RotationMat> 
     
</Body> 
 
 <Body name="FirstLinkFrame" type="dynamic"> 
       
<offsetfrom>BaseFrame</offsetfrom> 
       

<Translation> 𝐴𝑖(3,1)   𝐴𝑖(3,2)  𝐴𝑖(3,3) </Translation>       
<RotationMat> 𝐴𝑖(0,0) 𝐴𝑖(0,1)  𝐴𝑖(0,2) 𝐴𝑖(1,0) 𝐴𝑖(1,1)  𝐴𝑖(1,2) 
𝐴𝑖(2,0)   𝐴𝑖(2,1)  𝐴𝑖(2,2) </RotationMat> 
 
</Body> 
 
<!--. 
… Repeat the same structure for all robot links 
--> 
 

<Joint circular="true" name="FirstJointFrame"  
 
type="hinge"> 

      <Body>FirstLinkFrame</Body> 
      <Body>SecondLinkFrame</Body> 
      <offsetfrom>FirstLinkFrame</offsetfrom> 
      <axis>0 0 1</axis> 
     <limits>-180 180</limits> 
      <resolution>1</resolution> 

 
</Joint> 

<!--. 
… Repeat the same structure for all robot joints  
--> 
 
<Manipulator name="ManipulatorName"> 
 
    <effector>LastLinkFrame</effector>   <!-- last link --> 
    <base>BaseFrame</base>           <!-- base link--> 
 
 </Manipulator> 

 
</Robot> 
 
After defining the model and writing the XML file, the 
OpenRAVE ikFast module is ready to be used. An Linux 
Ubuntu terminal command example, executed at the same 
directory where the “robotfilename.xml” is located, is show 
below. 

 
python `openrave-config --python-
dir`/openravepy/_openravepy_/ikfast.py –
robot=robotfilename.xml --baselink=0 --eelink=7 --
savefile=filename.cpp  
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The “filename.cpp” will be generated. The file has a function 
named ComputeIk that can be used for any application which 
requires solving the inverse kinematics for the specified robot 
configuration. 

B. Modeling for Minimum Joints Static Torque 
 

The solution of a 6-DOF analytical inverse kinematics 
problem leads to a set of multiple robot postures. In this case 
the target is constrained to maintain the foot frame 
perpendicular to the floor. If we make an analogy with a 
common robot manipulator, the foot frame is being considered 
as the base frame. The thorax-head assembly is treated as the 
end-effector, and its Center of Mass is the point at which forces 
are applied. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. The Chiara Mantis Right Front Foot Frame. 
 
The movement of the Chiara Mantis joints can be represented 

by the rotation matrix Ri, which represents a rotation about the 
local joint z-axis by an angle qi. 

 

𝑅𝑖 = [

cos(𝑞𝑖) −sin(𝑞𝑖) 0 0

sin(𝑞𝑖) cos(𝑞𝑖) 0 0
0 0 0 0
0 0 0 1

]            (2)  

 
The transformation matrix from the 6th joint frame to the foot 

frame is given by Tfoot. From the 1st joint to the thorax-plus-head 
Center of Mass frame, the transformation matrix is given by 
TCOM. Therefore the full transformation is represented by  𝑇COM

foot . 
 

𝑇COM
foot = [(∏ 𝐴𝑖

i=6
i=1 ⋅ 𝑅𝑖) ⋅ 𝑇foot]

−1 ⋅ 𝑇COM           (3) 
 
The Jacobian matrix can be obtained from 𝑇COM

foot , by using the 
following definition: 

  

 
 

Fig. 4. The Jacobian matrix deduction. 
 

 
Finally, we can define the torque required by each joint to 

keep the robot in static equilibrium as the vector τ. 
                                            𝜏=J𝑇 ⋅ �⃗�                                  (4) 
 

Where: 
 τ = [τ1 τ2 τ3 τ4 τ5 τ6 ]T  and F = [ Fx Fy Fz Tx Ty Tz ]T. 

III. RESULTS 
At this section we introduce the results of the experiments 

done by the Chiara Mantis robot simulation model, the software 
package Tekkotsu [11] and the Mirage simulation environment. 
Section A shows an experiment with inverse kinematics and 
section B shows focus on joint static torque analysis. 

As stated before in the methodology section, all we need in 
order to compute the inverse kinematics is the D-H parameters 
of the robot. The D-H parameters of the Chiara Mantis Right 
Front Leg are used as the input for the experiments in this 
section. 
 

  

A. ikFast Analytical Inverse Kinematics Solution Analysis 
 

The OpenRave IkFast module was applied at the Chiara 
Mantis 6-DOF front legs. A sample of several points forming a 
cylinder was used as a trajectory the leg should be able to 

TABLE I 
D-H PARAMETERS FOR THE CHIARA MANTIS RIGHT FRONT LEG 

Link 𝑑𝑖 𝜃𝑖 𝛼𝑖 𝑎𝑖 

Base -25.394 0 90 420.0337 
1 -121.65 0 -180 129.09 
2 0 0 90 29.0373 
3 0 -90 -90 0 
4 170.4535 90 90 0 
5 0 -90 -90 0 
6 134.4633 -90 -90 0 

Dummy 0 0 90 152.5614 
Foot -206.5242 9 144.626 0 

Linear measurement units are in mm, and angular are in degrees. 
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follow. At the end of the experiment, the OpenRAVE IkFast 
function returned from four to eight solutions for each trajectory 
point. On each iteration the first solution was taken, and the 
angle vector q = [q1 q2 q3 q4 q5 q6] was updated at the forward 
kinematics equation. The result representing the foot frame 

positions after each forward kinematics iteration is shown in 
Fig. 5. 

 

B. Joints Static Torque Analysis 
 
In this experiment, the target point used for the robot foot 

frame was constrained to be perpendicular to the floor. The 
force input vector was composed just by the gravitational force 
acting at the thorax-plus-head COM. For each solution, the 
results of the computed absolute static torque at each joint are 
shown below. 

 

 
Fig. 5. Joints Static Torque Analysis. 

 

IV. DISCUSSION 
The results show the robot could perform accurate 

trajectories using the OpenRAVE ikFast module, therefore it is 
a valid approach to solve the 6-DOF Inverse Kinematics 
problem. In the second experiment, solutions 4 and 5 can be 
selected as the best solutions since they require the least torque 

at four of the six leg joints. 
 

ACKNOWLEDGMENT 
 
Feliphe G. Galiza Author thanks all people who contributed 

for his experience as a Robotics Institute Summer Scholar, 
especially Dr. David S. Touretzky for advising him during all 
course of this project. 
 

REFERENCES 
[1] Rosen Diankov. The analytical Inverse Kinematics Generator. Available: 

http://openrave.programmingvision.com/en/main/openravepy/databases.i
nversekinematics.html. 

[2] Robert L. Williams. Robot Mechanics. NotesBook Supplement for ME 
4290/5290 Mechanics and Control of Robotic Manipulators. Available: 
http://www.ohio.edu/people/williar4/html/PDF/Supplement4290.pdf 

[3] Samuel R. Buss and Jin-Su Kim. "Selectively Damped Least Squares for 
Inverse Kinematics." In Journal of Graphics Tools, vol. 10, no. 3 (2005) 
37-49. 

[4] Jeff Lander. “Oh My God, I Inverted Kine!.”  In Game Developer. 
September 1998. 

[5] R. M¨uller-Cajar, R. Mukundan, ‘Triangulation: A New Algorithm for 
Inverse Kinematics’, Proceedings of Image and Vision Computing New 
Zealand 2007, pp. 181–186, Hamilton, New Zealand, December 2007. 

[6] N. Kofinas, "Forward and inverse kinematics for the NAO humanoid 
robot," Diploma Thesis, Technical University of Crete, Greece, 2012, 
available at: www.intelligence.tuc.gr/lib/downloadfile.php?id=430. 

[7] C. Queiroz, N. Gonçalves, P. Menezes, A Study on Static Gaits for a Four 
Legged Robot, International Conference CONTROL'2000, 2000, 
Cambridge, UK 

[8] M. Vukobratovic, B. Borovac, Zero Moment Point – Thirty five years of 
its life, International Journal of Humanoid Robotics vol. 1, pp. 157–173, 
2004 

[9] Denavit, Jacques; Hartenberg, Richard Scheunemann (1955). "A 
kinematic notation for lower-pair mechanisms based on matrices". Trans 
ASME J. Appl. Mech 23: 215–221. 

[10] M. B. Leahy Jr, L. M. Nugent, G. N Saridis and K. P. Valavanis, “Efficient 
puma manipulator jacobian calculation and inversion.” Journal of 
Robotics Systems, 4(4), 185-197. 1987. 

[11] Ethan Tira-Thompsom, David S. Touretzky. “Tekkotsu: A Rapid 
Development Framework for Robotics”. Carnegie Mellon University, 
Robotics Institute. May 2004. 

 

 
Fig. 5. Inverse Kinematics Experiment 

50



 
 

 

Jonathan Joo 
RISS 2015 

51
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Abstract

Solar-powered robots will be the first to discover and
characterize ices that exist at the poles of some moons
and planets. These distinctive regions have extensive,
grazing, time-varying shadows that raise significant
time and energy constraints for solar-powered robots. In
order to maximize the science-value of missions in such
environments, rovers must plan to visit as many science
targets as possible while taking into consideration the
limitations imposed by time-varying shadows. This pa-
per presents two approximation algorithms for select-
ing and sequencing science waypoints in this environ-
ment: a genetic algorithm and a greedy algorithm. Both
greatly outperform a brute force approach in calcula-
tion time. Furthermore, for large numbers of waypoints,
the genetic algorithm shows significant improvements
in plan value compared to the greedy algorithm. This
research demonstrates that a genetic approach could be
utilized to effectively plan future missions for solar-
powered rovers in dynamic, shadowed environments.

Introduction
Rover missions to the lunar poles will be shorter and faster-
paced than current and previous Mars missions. Due to tem-
perature extremes on the Moon, a lunar rover will not last for
years; indeed, missions may even be confined to a two-week
lunar sunlight period (George et al. 2012). This contrast
in mission lengths necessitates varied approaches to mis-
sion planning. Tactical planning for the Mars rovers involves
planning out a day or more of operations, waiting for the
rover to execute those operations, and then planning future
operations based on data the rover returns (Mishkin et al.
2006). Here, strategic planning, which happens on a longer
time scale, is decoupled from tactical planning (Barrett et
al. 2009). On the Moon however, available communications
and abundant solar power enable nearly 24-7 operation with
seconds of latency for the mission duration (George et al.
2012; Otten et al. 2015). Tactical decisions can and must be
made quickly, but must also carefully consider how a given
action might impact subsequent mission goals. For example,
stopping for hours to drill in one location could prevent a
rover from traveling to another interesting region, as drilling

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Day 0 (0°) Day 7 (90°) Day 14 (180°) Day 21 (270°)

Figure 1: An example of time-varying light conditions on
Shackleton Crater, located at the Lunar South Pole.

time coincides with the short time window when the con-
necting path is illuminated. Thus, the lack of constant sun-
light availability can make some regions unreachable with
the rover’s limited battery capacity. See Figure 1 for an ex-
ample of time-varying illumination at the lunar poles.

In an ideal scenario, all regions of interest could be vis-
ited in a single mission. However, this is clearly not possible
with both the time and energy restraints in such a dynamic
environment. Thus, planetary rover missions maximize their
utility by achieving as many high-value science objectives
as possible within their mission lifetimes. These science ob-
jectives are associated with spatially distributed waypoints.
As the number of waypoints increases, an exact solution be-
comes impractical (Keller 1989), so the goal of this work
is to develop an approximation algorithm that can plan ef-
fective waypoint sequences for large numbers of waypoints
(∼100) within a reasonable time frame.

This paper presents and compares two different algo-
rithms – a greedy algorithm, and a genetic algorithm which
builds from the greedy solution. These algorithms maximize
the science value of visited locations while remaining within
energy and time constraints. The planning problem is parti-
tioned into two components. The first is point-to-point plan-
ning, which optimizes a path to get from one location to
another subject to rover energy constraints. The second is
waypoint sequencing, which seeks to determine the optimal
subset and sequence of waypoints to visit that maximizes an
objective function. Point-to-point planning is used to find the
paths and costs between waypoints, which are not known a
priori. The genetic and greedy algorithms call the point-to-
point planner and use the calculated costs to find high-value
sequences of waypoints.

The paper is organized as follows. First, related work and
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the exact specification of the waypoint sequencing prob-
lem is given. Next, the point-to-point planning algorithm
and waypoint sequencing algorithms are presented and ex-
plained. Experiments are described and analyzed in the Ex-
periment and Results section. The Conclusions section dis-
cusses conclusions and directions for future research.

Related Work
The problem of waypoint sequencing is similar to, but dis-
tinct from, several variants of the Orienteering Problem (OP)
(Vansteenwegen, Souffriau, and Van Oudheusden 2011).
The OP is similar to the well-known Traveling Salesman
Problem (TSP), but the agent does not have to visit every
goal position, and each goal position provides some reward
(Keller 1989). The agent seeks to maximize reward while
minimizing path length. Smith addresses the rover mission
activity planning problem for Mars rovers (Smith 2004). He
describes it as an over-subscription planning problem, where
there are too many goals for the time or resources available,
and he solves the OP as an intermediate step in planning.

The problem addressed in this research is more similar to
variants of the OP: the Time-Dependent Orienteering Prob-
lem (TDOP) (Fomin and Lingas 2002), the Orienteering
Problem with Time Windows (OPTW) (Kantor and Rosen-
wein 1992), or the Time-Dependent Orienteering Problem
with Time Windows (TD-OPTW) (Garcia et al. 2010). In
the TDOP variant, the edge costs between two waypoints
are dependent on the time at which the path is begun from
one waypoint to another. In the OPTW variant, each way-
point also contains a start time and end time, which specify
when the waypoint may be visited. The TD-OPTW variant
is a combination of TDOP and OPTW.

The distinction of this work is the the incorporation of
rover energy as a non-monotonic resource. With the addi-
tional energy constraint, the cost of a path between way-
points not only depends on the time that it is taken, but also
the sequence of waypoints and actions taken in the past. The
times at which waypoints are available are also controlled by
the energy constraints. If, for a period of time, a waypoint re-
quires too much shadowed travel to reach or too much time
in shadow to complete an action at the waypoint, energy con-
straints will prevent travel to that waypoint during that pe-
riod. Edge costs and waypoints are not known a priori and
are sequence dependent, unlike in the OP variants discussed
above. However, the sequence affects the edge costs instead
of the value gained from waypoints, as in the Sequence De-
pendent Team Orienteering Problem (SDTOP) introduced
by Mennell (Mennell 2009).

Saha et al. investigate the problem of finding a tour of
waypoints, (similar to TSP) and finding collision-free paths
between waypoints in high-dimensional space (Saha et al.
2006). Like the problem addressed in this work, these paths
between waypoints are more expensive to compute than an
approximate TSP solution, given the number of waypoints.
However, Saha et al. do not deal with time windows or re-
source constraints.

Researchers have proposed numerous approaches to solv-
ing the OP and its variants. Gunawan et. al. (Gunawan, Lau,

and Yuan 2014) pose the TDOP as an integer linear pro-
gramming model and utilize greedy construction, iterated
local search, and variable neighborhood descent as meta-
heuristics for a solution. Duque, Lozano, and Medaglia solve
the OPTW with the pulse framework, which uses recursive
depth-first search with a set of effective pruning methods
(Duque, Lozano, and Medaglia 2015), though these pruning
approaches require knowing many edge costs that would not
otherwise be needed. Wang et. al. (Wang, Golden, and Wasil
2008) and Karbowska et. al. (Karbowska-Chilinska and Za-
bielski 2014) both utilize a genetic approach to solve the
Generalized Orienteering Problem and OPTW, respectively.

Despite the fact that this problem cannot be directly cast
as one of the OP variants listed above, some of the algo-
rithms can still be applied. In particular, this paper draws its
inspiration from genetic algorithms applied to OPTW due
to its ability to start from a population of solutions and iter-
atively improve upon them. In addition, the implementation
of the genetic algorithm does not rely on knowing edge costs
and time windows a priori, which is important since they are
sequence dependent in this work.

Problem Definition
The problem addressed in this work is waypoint sequencing
under time-varying illumination subject to non-monotonic
energy constraints. Rover energy dissipates while operating
and is recharged during illumination.

Let G be a graph with n vertices (waypoints). Pi denotes
the value of a vertex i and Ti represents the amount of time
the rover must stay at this vertex before the waypoint can
be marked as visited. The rover must remain within the en-
ergy constraints during travel between vertices and for the
duration of Ti at each vertex. An edge between two vertices
contains time, distance, and energy costs. These costs are de-
termined by the point-to-point planner and are a function of
starting energy and starting time. Thus, the edge costs and
implicit time windows are determined by the energy con-
straints and preceding actions.

In addition to the graph, start and end vertices are spec-
ified (denoted by Vs and Ve). The goal is to find a route
through G that begins at Vs and ends at Ve, while maximiz-
ing the total value of waypoints visited and staying within
the specified energy and total time constraints.

Point-to-Point Planning
Point-to-point planning for solar-powered rovers under
time-varying illumination has been addressed both by
Tompkins (Tompkins 2005) and more recently Cunning-
ham et al. (Cunningham et al. 2014). Both developed plan-
ners that considered energy and time constraints while us-
ing deterministic A*-based planning. Otten et al. also ad-
dressed long-duration point-to-point path planning on the
lunar poles but did not explicitly address energy constraints
(Otten et al. 2015). None of these planners addressed the
waypoint ordering problem.

This research directly follows the approach of Cunning-
ham et al. to compute time, distance, and energy costs as-
sociated with traveling from one waypoint to another at a
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given point in time (Cunningham et al. 2014). The planner
utilizes an A*-based search algorithm that minimizes time,
while ensuring that the rover remains within predefined en-
ergy constraints. This planner is used to compute waypoint-
to-waypoint travel costs.

In order to represent the dynamic nature of the environ-
ment at the lunar poles, the world is discretized into a time
series of shadow maps. Each shadow map represents the
state of the world for a discrete time interval, τ . A graph
is used to encode the world in a representation that a plan-
ner can easily interpret. A node of the graph, N = (x, y, τ),
corresponds to a position, (x, y), at a specific time interval,
τ . Edges are created using directed edges in an 8-connected
grid. Nodes are connected to other nodes at the same time
interval, τ , and at the next time interval, τ + 1. For each
pair of connected nodes, there is a set of different velocities
that the rover can use that allows different energy and time
transitions. Energy and time costs for each edge are calcu-
lated using solar power derived from the shadow maps and
physics-based rover models.

The point-to-point planner’s A*-based search algorithm
minimizes time while keeping all nodes in the path within
predefined energy bounds derived from the battery capacity.
Energy, E, and time, t, are continuous variables also con-
sidered as part of the search state and must stay within pre-
defined constraints. The relevant energy and time values for
a state are computed during the search and are not known a
priori. Consequently, the planner does not plan directly over
the graph nodes. Instead, it dynamically creates a new state
S = (x, y, τ, t, E) every time it adds to the open list. Mul-
tiple (x, y, τ, t, E) states correspond to the same (x, y, τ)
node in the graph but with different energy and time val-
ues. State dominance is used to prevent this method from
creating an unbounded number of states.

Energy is a non-monotonic resource cost. It can either in-
crease or decrease over an edge. It has a lower limit that
causes states to be pruned and an upper limit (corresponding
to maximum battery capacity) after which no more energy
can be added.

When the point-to-point planner is asked to plan from a
starting state to a waypoint, it plans to a set of goal nodes
at that (x, y) location using Euclidean distance divided by
maximum speed as the heuristic. Each waypoint has a speci-
fied time cost associated with it that models a rover complet-
ing its science objective at that location. When the planner
opens a state at the goal location, it tests to see whether it
can complete its objective at that location and still remain
within energy and time constraints before determining that
it has completed the search.

Waypoint Sequencing Algorithms
Greedy and genetic algorithms were developed and tested.
As a baseline for comparison of results, an exact brute force
algorithm was also implemented. These algorithms are out-
lined below.

Brute Force
The brute force algorithm simply generates all possible se-
quences of waypoints that have the specified starting and

ending waypoints, and chooses the best sequence. The best
sequence is defined as that which has the maximal total sum
of the values of waypoints visited. In the case of a tie in max-
imal values, the sequence with the shortest travel distance is
chosen, since minimizing travel distances reduces the risk
of rover failure or entrapment. Because the brute force algo-
rithm checks every possible subset and permutation of way-
points, it has a time complexity of O(n!).

Greedy
The greedy algorithm works iteratively, beginning with the
specified start waypoint and time. At each step, the greedy
algorithm checks if the end can be reached from the current
waypoint, and then uses a heuristic function to measure the
cost to visit each remaining waypoint. If the end cannot be
reached within the time constraint, then the current waypoint
is removed and replaced with the final waypoint, ending the
sequence. Otherwise, the greedy algorithm chooses the way-
point with the best heuristic value, adds it to a running list of
waypoints, and updates the current waypoint to be the new
waypoint. The heuristic value function (Hi→j) for traveling
from waypoint i to waypoint j is:

Hi→j =
Pj

Ci→j
− log (Pj)

Pj + Ci→j
(1)

Pj is the value of waypoint j and Ci→j is the cost to get
from i to j. The heuristic function prioritizes higher value lo-
cations. In the worst case, the greedy algorithm examines ev-
ery waypoint and at every step evaluates the path to each re-
maining waypoint, resulting in a time complexity of O(n2).

Genetic
The genetic algorithm functions in a way that models bi-
ological processes. First, an initial population of waypoint
sequences is generated. Next, a subset of this initial pop-
ulation, called the mating population, is chosen for repro-
duction. The sequences in this mating population undergo a
mating step, generating children that share characteristics of
each of the two parent sequences, but perhaps have certain
mutations which differentiate them from either parent. These
children become the new initial population for the next gen-
eration, and the cycle loops until the best sequence in the
population is the same as the previous best sequence a to-
tal of Gnum times. This ensures that sequences that have
stopped evolving do not take up too much computation time,
while more volatile sequences are allowed to run for greater
numbers of generations.

Initialization The initialization of the genetic algorithm’s
population is accomplished in three steps.

1. Random Generation: ρsize unique sequences are ran-
domly generated. Waypoints are randomly added between
the start and end waypoints until there is no longer a valid
path through the sequence.

2. Deterministic Greedy Generation: The greedy algorithm
(as described above) is used to generate a sequence which
is added to the initial population.
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3. Probabilistic Greedy Generation: A probabilistic greedy
algorithm is also used to generate γsize sequences for the
initial population. The probabilistic greedy algorithm is
the same as the greedy algorithm described above, but in-
stead of always choosing the best waypoint to add next, it
probabilistically chooses among the best three. The prob-
ability of choosing the best waypoint is set to 65%, the
second-best waypoint at 20%, and the third-best waypoint
at 15%. This is done to encourage diversity among gener-
ated sequences in the population.

Thus, the initial population consists of a combination of
both randomly and greedily generated waypoint sequences,
with a total size of ρsize + γsize + 1.

Fitness Selection In order for evolution to occur, down-
selection of the population must happen before mating. A
subset of size σsize is chosen from the population to un-
dergo mating, using tournament grouping selection. In tour-
nament grouping selection the sample population is divided
into σsize groups of equal size. From each of these groups,
the best sequence is added to the mating pool. Tournament
grouping selection is shown to result “in individuals after
selection that are more diverse” than ordinary tournament
selection (Zabielski et al. 2015). Best fit selection, where
the algorithm simply chooses the best σsize sequences, was
also evaluated but had a greater tendency to get stuck in local
minima.

Evolution The evolution step turns a mating pool into a
new generation. It consists of three parts: crossover, muta-
tion, and cleaning.

Crossover: The crossover phase utilizes queen-bee se-
lection and Edge-Recombination Crossover (ERC) (Wang,
Golden, and Wasil 2008). In queen-bee selection, the best
waypoint sequence in the mating pool undergoes crossover
with each of the remaining σsize−1 sequences in the mating
pool. Edge-Recombination Crossover works as follows:

Suppose two waypoint sequences, I and J , are undergo-
ing crossover. Let A be defined as an adjacency matrix of
size (|I ∪J |−1)×4. Rows inA correspond to waypoints in
the union of I and J , excluding the end waypoint. For each
waypoint α in I ∪ J , the corresponding row in A consists
of the preceding and following waypoints of α in I followed
by the preceding and following waypoints of α in J . Ele-
ments in A are left empty if no such neighbor exists or if the
neighbor already exists in that row. For example, suppose I
= {a, c, d, b, e, f} and J = {a, b, e, g, f}. Table 1 shows the
adjacency matrix for I and J .

Once the adjacency matrix is generated, a sequence is
generated. Starting with the start waypoint, Vs, (Vs = a in
the example), the algorithm calculates the heuristic value for
the paths from Vs to all other waypoints in row Vs, (Ha→c

and Ha→b in the example above). Then it probabilistically
selects the next waypoint, α, from the set of waypoints in
row Vs with probability weighted by their heuristic values.
α is then added to the current sequence and it is removed
from all other entries in A to prevent cycles. Then the al-
gorithm goes to row α and repeats until it reaches the final
waypoint or there are no remaining waypoints in the current

Table 1: Example Adjacency Matrix for sequences I = {a, c,
d, b, e, f} and J = {a, b, e, g, f}

α I− I+ J− J+

a - c - b
b d e a -
c a d - -
d c b - -
e b f - g
g - - e f

row. In the latter case, the end waypoint is simply appended
onto the existing waypoint sequence. ERC was chosen as the
preferred method of crossover, as it offers the advantage of
maintaining valid path segments of parents, which are then
inherited by children sequences (Wang, Golden, and Wasil
2008). For each pairing of parents, two new children are gen-
erated.

Mutation: The mutation step modifies child sequences
generated in the crossover step to encourage varied explo-
ration. Each child from the evolution step is copied, and the
copy is mutated. The original children stay unchanged. Mu-
tation occurs in three ways:

1. Addition: a random waypoint not currently in the se-
quence is selected and inserted before the waypoint in the
sequence with the lowest Euclidean distance from the se-
lected waypoint.

2. Reversal: a random subsequence within the waypoint se-
quence is reversed.

3. Swap: two randomly selected waypoints within the se-
quence switch places in the ordering.

These mutations are all set to occur with a 90% probabil-
ity. However, one of each pair of children is set to have a
10% chance of a swap mutation rather than a 90% chance,
since the swap mutation is more random in nature and is
less likely to produce improvements in sequences compared
to the other two forms of mutations.

Cleaning: Because some generated children may not be
viable paths, the cleaning phase ensures that each waypoint
sequence is valid. The cleaning step randomly removes way-
points from a sequence (excluding the beginning and end
waypoints) until a viable path exists through the sequence
that satisfies all constraints.

After cleaning, the best sequence in the previous genera-
tion is also added to the new generation at each iteration to
ensure that the quality of the best sequence in the population
does not decline. Thus, the final new population size after
the entire evolution step is (4 ∗ (σsize − 1)) + 1.

Experiments and Results
Experiments were run to test both the computational effi-
ciency and the quality of paths returned for each waypoint
sequencing algorithm. All experiments were run using 35
synthetically-generated shadow maps of Shackleton Crater
on the lunar south pole, corresponding to approximately 11
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(a) Sequence values from genetic and greedy algorithms as a per-
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Figure 2: Results from running each algorithm on five randomly generated cases for each number of waypoints

Earth days. A set of (x, y, τ) node locations and edge costs
for the graph used in point-to-point planning were precom-
puted and not taken into account in runtime comparisons.
All waypoint locations were selected from the set of node
locations in this graph.

The number of waypoints and the locations
of the waypoints were varied between tests. The
following numbers of waypoints were tested:
{2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.
For each number of waypoints, five different test cases were
generated with random waypoint locations and values.

For the graphs containing between 2 and 10 waypoints,
inclusive, all three different algorithms (brute, greedy, and
genetic) were run on each of the sets of waypoints. How-
ever, for sets with more than 10 waypoints, only genetic and
greedy were tested due to the O(n!) time complexity of the
brute force search. The parameters used for the genetic al-
gorithm are listed in Table 2.

The point-to-point planner and all waypoint sequencing
algorithms were implemented in Java. Tests were run re-

Table 2: Genetic Algorithm Parameters

Variable Name and Explanation Value

ρsize, initial random generation population size (n/2)1.5, max of 200
γsize, initial probabilistic greedy generation population size σsize

σsize, mating subpopulation size n− 2, max of 20
Gnum number of generations of no change 10

motely on three M4.2xlarge computers by Amazon Web Ser-
vices. These computers have 2.4 GHz Intel Xeon R© E5-
2676 v3 (Haswell) processors, 32 GiB of memory, and 8
vCPUs.

For each waypoint sequencing run, the total number of
point-to-point planner calls was used as a measurement of
computational complexity. Because the point-to-point plan-
ner is called each time a waypoint sequencing algorithm re-
quests an edge-cost, it offers a viable metric to evaluate com-
putational complexity. In addition, for each returned way-
point sequence, the total path distance, total path time, and
sum of the value of all visited waypoints is extracted to
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evaluate the efficacy of each algorithm. Better waypoint se-
quences have higher total value, shorter mission times, and
shorter travel distances.

Figure 2a shows the total value of waypoint sequences (as
a percentage of the total possible value in paths) returned by
the greedy and genetic waypoint sequencing algorithms. The
total possible value is determined by running the brute force
algorithm which guarantees the most optimal result. How-
ever, because the brute force algorithm is not practical for
more than ∼10 waypoints, Figure 2b compares only the ge-
netic and greedy algorithms. Here, the graph shows the total
value of waypoint sequences returned by the genetic algo-
rithm divided by the total value of waypoint sequences re-
turned by the greedy algorithm. There are five test cases for
each number of nodes despite some overlap of data points.
For small numbers of waypoints, the path efficiency gained
from the greedy to genetic is small. However, as the number
of waypoints increases, the improvement of the genetic over
greedy is more apparent.

For a given test case, one waypoint sequence is defined as
better than another if it has a higher total waypoint value or
equal value but takes less time. Figure 2c shows the percent-
age of test cases improved when comparing the determinis-
tic greedy algorithm to the probabilistic greedy algorithm,
used to populate the initial population of the genetic algo-
rithm. It also shows the percentage of test cases improved
from the genetic initial population to the genetic final pop-
ulation. Test cases with fewer than six waypoints were not
considered. The probabilistic greedy population was better
than deterministic greedy in 67% of test cases, and the ge-
netic algorithm improved upon the initial population in 44%
of test cases. It is clear that even before further improvement
by the genetic algorithm, including the probabilistically cho-
sen waypoint sequences into the genetic algorithm for initial
population creation makes a better path than a deterministic
greedy algorithm most of the time.

Finally, Figure 2d shows the total number of planner calls
for each algorithm as a function of the number of waypoints.
Both the genetic and greedy algorithms demonstrate polyno-
mial time complexity (they grow more slowly than Cn2 for
some C, as shown) and the brute force solution grows at
least exponentially. The genetic algorithm also requires sig-
nificantly more computation than the greedy. These results
support expected trends.

Conclusions
This work has demonstrated the usage of approximation
algorithms to generate feasible waypoint sequences for an
energy-constrained rover in the lunar poles, where time-
varying shadows greatly affect the science mission en-
vironment. While guaranteeing optimal solutions in such
a scenario would require an algorithm with greater-than-
polynomial worst-case complexity, the approximation algo-
rithms tested in this research run in polynomial time. For ten
waypoints or fewer, both the deterministic greedy and the
genetic approximation algorithms achieved 80% or better of
the optimal route value in all cases tested, and the genetic
algorithm achieved 100% of the optimal value in all but one
case. For 20 to 100 waypoints, this work did not compute

the optimal value, but demonstrated that both deterministic
greedy and genetic algorithms could find effective solutions.
Here, the genetic algorithm improved the route value over
the deterministic greedy algorithm in a majority of cases.

On closer examination, improvements in route value over
the deterministic greedy solution were found for two-thirds
of the test cases just by executing the initialization process
for the genetic algorithm, which runs a probabilistic version
of the greedy algorithm. From there, the genetic algorithm
improved over its initial conditions in 44% of the test cases.
It is possible that the deterministic or probabilistic greedy al-
gorithms found the optimal solution in some cases, making
it impossible to improve further. This would be especially
prevalent for smaller numbers of waypoints. However, for
larger cases, it is more likely that this lack of improvement
indicates that the genetic algorithm, as implemented here,
may find itself caught in local minima based on the initial-
ization phase. Several options for each of the steps in a ge-
netic algorithm have been presented in prior work; this re-
search examined a few of them. Future work could find a
set of existing (or new) genetic algorithm options that would
better explore the search space and be less likely to become
fixed in a local minima. Particularly, different methods of
crossover and mating may help diversify the gene pool and
find more optimal solutions.

Other future work could include modification of the
heuristic function used in the greedy algorithm to more ac-
curately model a specific mission’s parameters. Also, while
time windows were not handled explicitly in the cases tested
in this work, the software was developed with the ability
to handle explicit time windows. This could be useful if,
for example, a mission objective involved taking images un-
der certain illumination conditions, but more testing would
be needed to determine how effectively the algorithms pre-
sented here handle explicit time windows.

The algorithms explained in this paper offer a strong
baseline for further studies regarding efficient multi-goal
path-planning on planetary surfaces with time-varying shad-
ows. Genetic algorithm approaches offer particular promise.
Since a mission’s destination will be determined far in ad-
vance, an initial mission plan can be computed by a genetic
algorithm with parameters similar to those tested here. Re-
planning during a mission will have to occur quickly, but
due to the generational nature of a genetic algorithm, it can
be stopped at any point after initialization with a feasible
solution. Thus, a genetic algorithm approach offers a good
balance between optimization and computation time.
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Abstract—Robotic manipulators often drop the objects they 
are working with, requiring human intervention and recovery.  
The problem requires a mechanical solution that will help the 
robot to recover a dropped object without any human 
intervention.  The mechanism needs to be quick, reliable, and 
able to accommodate multiple kinds of objects and 
experiments.  The chosen solution is designed to be mounted 
under a platform the robot can use for experiments.  It has 
sloped aluminum walls to direct a falling object to a conveyor 
belt.  The robot can recover the object from the conveyor end.  
This should allow a robot to perform autonomous experiments 
for extended periods of time with no human input. 

I. INTRODUCTION 

Robotic manipulators sometimes need to attempt risky 
maneuvers to determine what will work and what will not.  A 
failed attempt is useful as a data point; however, often a robot 
cannot recover a dropped object, requiring human 
intervention to reset the experimental workspace before the 
robot can continue.  This human interaction with the robot 
undermines the autonomy of the learning system, and can 
make machine learning experiments, which require thousands 
of data points, difficult to finish.  

 
Figure 1: SolidWorks model of complete solution 

This paper presents a mechanical solution to the object 
reset problem (Figure 1).  The solution consists of a conveyor 
belt surrounded by four sloped aluminum walls.  When an 
object falls, it is directed by the walls onto the conveyor 
where it travels to an area easily accessible by the robot.  This 
solution has few moving parts, allowing for simplicity and 
taking advantage of the mobility of the robot.  In addition, the 
small size of the solution increases its versatility. 
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II. RELATED WORK 

There are several manipulation-based labs that use 
various methods to reset failed experiments.  In the 
Manipulation Lab at Carnegie Mellon University, an 
aluminum ramp has been used to redirect falling highlighter 
pens into a hopper; in addition, for experiments in which the 
robot manipulates (and frequently drops) a block, eleven 
extra blocks are lined up in a known location for the robot to 
use once it drops its previous block (Figure 2).  The 
aluminum ramp worked well but does not provide a recovery 
option, and the multiple-block solution only allows for 
around two hours of continuous experimentation.  At Yale, 
objects used in manipulation experiments are attached to 
strings; these strings are looped through a hole in the 
manipulator and attached to weights which pull dropped 
objects back into the manipulator [6].  This is a robust 
solution; however, it does not allow for the desired level of 
mobility. 

 
Figure 2: Multiple block solution 

Another source of inspiration for this solution was Hoops 
the Basketball Robot, on display at the Carnegie Science 
Center of Pittsburgh [5].  Hoops is an industrial arm which is 
programmed to throw basketballs through a hoop.  It then 
must recover the ball autonomously in order to continue.  
Hoops uses a preprogrammed motion to sweep the floor 
around it, pushing the ball toward the back of its workspace.  
Once the ball falls into a divot in the floor, Hoops can pick it 
back up and throw it again.  The design space presented in 
this paper is similar to that of Hoops: both are required to 
recover a single object in a robust and efficient manner.  
However, Hoops will only ever recover a single kind of 
object, and has a large workspace around it, whereas our 
solution space has little area around the robot and must be 
able to handle a variety of objects.  In addition, all of the 
motions of the Hoops robot are preprogrammed, while the 
robot used for this project is capable of sensing the location 
and orientation of the object. 

The problem of automated object reset is similar to the 
problem of relocating and orienting parts in industry. 
Automated assemblies use parts feeders to move objects 
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from an initial location, often a hopper, to an assembly 
location.  There are many kinds of parts feeders, most of 
which are optimized for the location and orientation of a 
single kind of object in a particular assembly environment.  
The most common parts feeders are vibratory parts feeders, 
which use vibratory motion to propel parts along the path 
from the hopper to the robot, and centrifugal parts feeders, 
which use centripetal force to propel objects up a ramp [2].  
While both of these methods are widely used, parts feeders 
of this sort are often designed specifically to locate and 
orient a single kind of object, and can take a long time to 
optimize.  In addition, these parts feeders excel at moving 
many objects at once; however, for the given application 
only a single part is being relocated at any one time.  Even 
when these feeders are designed to be versatile, they can 
only accommodate "families" of parts, and still require a fair 
amount of design and optimization to get even that low level 
of versatility [1]. 

More recently, manufacturers have prioritized parts 
feeders that can handle a variety of objects with minimal 
redesign.  In particular, agile manufacturing processes and 
flexible parts feeders have been the subject of a lot of recent 
industrial automation research.  These versatile parts feeders 
often use conveyor belts as transport options for parts 
because they can accommodate a wide variety of differing 
sizes and features.  These feeders also use vision systems to 
identify the location and orientation of objects for a mobile 
robot to grasp.  However, many do not attempt to orient or 
locate objects on a conveyor prior to grasping, likely due to 
the large number of objects being moved at a time.  Also, 
many involve multiple-conveyor systems to lift the parts, 
carry them to the robot, and return parts that are in an 
undesirable location or orientation to the start point.  Our 
system requires the part to succeed on its first go around, 
and the initial location for the object is broad and 
encompasses the whole conveyor system. [3] 

The use of magnets, as in [4], was considered as a method 
to catch, hold, or relocate objects; this idea was ultimately 
rejected due to a desire to handle objects made of many 
different materials without modification.  However, the 
design is notable in that it is robust, can be relatively small, 
and is capable of handling a variety of objects that are below 
a certain weight and have ferrous elements. 

III. SOLUTION 

We designed solutions to the above problem using an 
IRB-140 mounted on a large table; however, many of the 
solutions below are applicable or adaptable to various 
workspaces. 

A. Design Criteria 
The problem presented several solution requirements.  

The first and most important requirement is versatility: 
accommodating multiple kinds of objects in different 
experiments.  The solution must also be small and 
inconspicuous to maximize robot workspace.  In addition, in 
order to maximize time spent experimenting, the device was 
desired to be fast, with the full cycle of the solution occurring 
within twenty seconds of failure recognition.  The solution 

must also be reliable.  This put some priority on solutions 
with few moving parts, little power input, and low sensing 
requirements. 

B.  Potential Solutions 
Six alternative solutions developed over the course of the 

project are detailed below and compared against the problem 
criteria. 

Vacuum 

 
Figure 3: Vacuum solution 

The vacuum solution consists of a hose vacuum 
suspended above the robot workspace and held out of the 
way by a spring or other elastic structure.  When the robot 
misplaces its object, it uses the vacuum to pull the object 
back to a recoverable location.  This can involve a uniform, 
whole-area sweeping solution or a camera-driven pinpoint 
operation.  This solution is particularly useful for issues with 
an object in close proximity to another object or a wall; 
however, in the case of general object recovery, the solution 
may not be as efficient or reliable as desired.  In addition, 
the vacuum nozzle would need significant modification to be 
able to handle various kinds of objects.  This solution would 
work well in a cluttered workspace where proximity more 
than obstruction is an obstacle to object retrieval, and where 
objects are large and flat. 

Movable Walls 

 
Figure 4: Translational walls solution 

 A movable walls solution would involve two sets of 
opposite walls moving in tandem along tracks to push a lost 
object back to a designated location on the robot workspace.  
This solution is efficient and reliable; however, its versatility 
is hampered by the linear motion of the walls, which would 
restrict the ability to place stationary testing elements in the 
center of the workspace.  This could be alleviated by 
designing the experiments to have suspended elements 
instead of mounted ones.  In addition, it could be difficult to 
design the walls to handle small objects, which could be 
easily wedged underneath the moving structures.  
Nonetheless, this solution is significant in that it requires no 
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sensing at all to locate the object, and is very useful in terms 
of clear workspaces and larger objects. 

Magnets 
 This solution involves an elevated platform with a line of 
magnets ringing the edge.  When the robot fails, the object 
will adhere to the nearby magnets, preventing the object 
from falling from the robot workspace.  This solution was 
outstanding in terms of its small size and efficiency; 
however, its versatility and reliability were questionable at 
best, and all objects would need to be modified in some way 
such that the magnets could catch them if they fell.  This 
solution would work well with a robot that was working 
exclusively with ferrous materials. 

 
Figure 5: Magnets solution 

Air Jets 
 A solution involving air jets would function in a similar 
manner to an air hockey table.  In this solution, an air tube 
wraps around the robot workspace with valves at calculated 
intervals on the inside wall.  Implementation can happen in 
two ways: either a vision system can determine which valves 
need to open in order to move the object, or the valves can 
be opened in a set pattern to ensure object relocation if 
minimal sensing is desired.  This solution is unobtrusive, and 
could work very well for smaller objects, but may be 
unreliable and inefficient.  An air jets solution would be best 
implemented on smaller setups, with limited workspaces and 
light objects, and would be most efficient when implemented 
with a vision system.  

 
Figure 6: Air jets solution 

Cloth Walls 
 This solution involves an elevated platform with loose 
cloth walls attached on all sides.  When the robot fails and 
the object falls off the platform, the object is caught by the 
cloth walls and can be retrieved by lifting the top of the 
walls, tautening the cloth and forcing the object back onto 
the platform.  This solution would be efficient and versatile; 
however, it would take a lot of careful design to ensure that 

an object would not get tangled in the walls, and there would 
be an issue with walls around the area of the robot, since the 
robot is an arm.  Cloth walls would work well for a robot 
which is mounted directly above the workspace, and would 
be most easily implemented for a round workspace. 

 
Figure 7: Cloth walls solution 

Collection Area 
 A collection area solution involves a raised platform 
mounted over a bin with sloped walls.  The bottom of the bin 
is a small area where the object location is relatively known.  
The object can be retrieved from the collection area in 
several different ways: for an area directly under the 
platform, a cart can be used to bring the object back up to 
the platform, while with an offset area the robot can fetch 
the object directly.  The appeal of this solution is that it has 
few moving parts and can accommodate a wide variety of 
different objects.  However, because the object must slide 
down the walls, there is a minimum height requirement for 
gravity to overcome the coefficient of friction.  This solution 
would work best in experimental setups where the height of 
the platform is not an issue, or where the solution can be 
mounted underneath the workspace. 

 
Figure 8: Offset collection area solution 

 Potential Solution Analysis 
 An evaluation of the potential solutions against the design 
criteria is shown in Table 1.  A plus indicates that the 
solution fulfills the requirement, while a minus indicates that 
the solution does not fill the requirement.  A zero indicates 
that the solution fulfills the requirement, but does not do it 
well.  The pluses and minuses are summed for a final value.  
When compared with the various design criteria, the two 
solutions that stood out were the movable walls and 
collection area solutions.  The collection area solution was 
chosen due to its lack of moving parts.  Several designs were 
considered, with an offset collection area ultimately 
prototyped and tested.  Due to the height requirement of the 
solution, the design was later scrapped in favor of a 
combination collection area and conveyor belt solution. 
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Table 1: Evaluation of potential solutions against design criteria 

C.  Chosen Solution 
The final solution design (Figure 1) uses sloped 

aluminum walls and a conveyor belt to relocate wayward 
objects.  The conveyor sits low to the ground and is mounted 
in front of the robot.  The conveyor has 80/20 framing, which 
is used to mount the sloped aluminum walls.  The walls form 
a trapezoidal shape to catch objects on a variety of 
trajectories and direct them to the conveyor.  Additional 
80/20 framing wraps around the top of the walls both to 
mount and support the walls and to allow for mounting of test 
elements above the solution.  This provides a reconfigurable 
workspace that will suit many different kinds of experiments.  
In addition, taller vertical walls can be mounted along the top 
outside of the solution in the case of experiments involving 
greater amounts of force. 

At the end of the conveyor belt, there is an inverse wedge 
mounted to assist with location and partial orientation of an 
object.  This wedge can be moved or replaced to 
accommodate different objects or to allow for a greater level 
of orientation depending on the needs of the experimenter 
and the particular scenario.  In addition, the back wall of the 
solution is detachable to allow for further versatility.  The 
ability to locate and orient objects allows for a simple vision 
sensor to give the robot enough data to collect a fallen object. 

When the robot is experimenting and drops its object, it 
first determines whether the object is somewhere retrievable.  
If it is not visible, the robot signals the conveyor to turn on.  
The conveyor remains on for a length of time equivalent to 
the amount of time the belt needs to cross half the conveyor.  
At the end of this length of time, the conveyor belt turns off, 
and a camera mounted above the orientor takes a picture of 
the end of the conveyor.  The robot uses this image and the 
known solution configuration to find the exact location and 
orientation of the object, and can then retrieve the object to 
continue experimentation. 

IV. RESULTS 

A prototype was used to evaluate the solution.  In order to 
test the ability of the solution to relocate objects, a 50 mm 
wooden cube was dropped off of an experimental setup 50 
times (Figure 9).  Of these 50 trials, 4 trials were failures, 
with the block falling outside the workspace.  In addition, 3 
trials resulted in the block falling on the orienting wedge 
(Figure 10).  In certain cases, the robot may be able to 
retrieve objects from on top of the wedge; however, it is a 
problem which will need to be addressed.  These results are 
quantified in Table 2. 

Table 2: Results of trials for 50 mm wooden cube 

 

 
Figure 9: Prototype solution successfully relocating a block  

 
Figure 10: Trial in which the block landed on the orienting wedge 

 To test the versatility of the solution, a variety of objects 
(Figure 11) were dropped off of the same experimental setup 
on average five times each.  The results were similar to those 
of the wooden block, with most trials resulting in a 
successful relocation of the object.  A few objects, such as 
the largest triangle and the allen wrench, were large enough 
to get stuck in between the platform and the wall of the 
solution.  The ball ended up on the orienting wedge four out 
of five trials.  For all other objects, the majority of the trials 
resulted in successes.  A summation of these results is 
presented in Table 3. 

 
Figure 11: A variety of objects used to test the versatility of the solution 

 

 

 Fast Reliable Versatile Small 

Vacuum - + + + 

Moveable Walls + 0 + + 

Magnets + - - + 

Air Jets 0 - 0 + 

Cloth Walls + - + - 

Collection Area + + + + 

Trials Successes Failures On Wedge 

50 43 4 3 
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Table 3: Results of trials for various objects 

 Trials Successes Failures On Wedge 

Small Cube 4 3 1 0 

Tall Square 5 5 0 0 

Rectangle 4 4 0 0 

Big 
Triangle 

5 4 1 0 

Small 
Triangle 

4 4 0 0 

Triangle 
with Hole 

6 6 0 0 

Cylinder 6 6 0 0 

Bridge 4 4 0 0 

Nail Polish 
Remover 

6 6 0 0 

Die 5 4 0 1 

Clamp 5 5 0 0 

Allen 
Wrench 

6 5 1 0 

Marker 6 6 0 0 

Tape 5 3 0 2 

Ball 6 1 0 5 
 

 The results of the tests with the prototype revealed a 
number of issues that will need to be resolved for the final 
implementation.  The issue of the size of objects can be 
resolved by designing experimental workspaces to allow for 
the required amount of clearance between the workspace and 
the aluminum walls.  A larger version of the solution could 
be made to accommodate still larger objects.  In addition, the 
likelihood of an object falling outside of the solution is 
small, and can be easily prevented by raising the height of 
the walls.   

The largest and most pressing issue is the tendency of 
objects to land on the orienting wedge.  While these objects 
may be recoverable in some cases, this recoverability will 
depend on the end effector on the robot and the size and 
position of the object.  One possible solution to this issue is 
to allow the robot to grasp a flat piece which it can use to 
sweep the object off of the orientor and back onto the 
conveyor.  Another is to redesign the orienting wedge to 
accommodate an object: for example, a taller wedge would 
prevent a ball from rolling down the conveyor and onto the 
orientor.  In any case, a large amount of force is required to 
propel an object onto the wedge or outside the solution, so 
many experiments can be run while this problem is under 
consideration. 

V. CONCLUSION 
This paper presents a robust mechanical solution to the 

object reset problem.  This solution will allow for extended 

periods of autonomous manipulation experiments and 
machine learning. 

Some further work is required to finalize elements of the 
design.  The orienting wedge at the end of the conveyor 
must be optimized for a variety of objects.  Implementation 
of backwards motion in the conveyor could allow for better 
orientation of objects, as explored in [7].  In addition, fences 
mounted above or along the conveyor, as in [8] and [9], 
could be used to help orient or locate objects. 
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Abstract—State estimation using a monocular camera is a
very popular topic of research in robotics. Some of the common
methods involve fusing pose from two sources using a kalman
filter or a lie algebraic representation for solving the global
motion constraints. Some systems even use visual inertial systems
to estimate robust pose by taking into consideration the pose from
a inertial measurement system (IMU). This work extends the idea
of a tightly coupled visual inertial system to a photometric error
based method of semi dense visual odometry. With extensive
experimentation we prove our visual inertial system for semi
dense visual odometry is better than using visual odometry
alone. We also show robustness of our method and compare our
performance to the existing state of the art tightly coupled visual
inertial systems that exist in an outdoor environment.

Keywords—Semi Dense Visual Odometry, Monocular Flight, .

I. INTRODUCTION

Pose estimation is a diverse problem in robotics that has
been addressed several times. The problem of estimating three
dimensional pose has become relatively more important due to
the recent advances in simultaneous localization and mapping
leading to higher degree of autonomy in robots. The challenge
with pose estimation arises due to its vastly different settings in
different scenarios. Estimating pose of an object for a robotic
arm manipulator is significantly different from estimating pose
of an unmanned aerial vehicle. Within this paper we develop
a system to efficiently estimate pose of an unmanned aerial
vehicle using a visual inertial using only a monocular camera
and an on board inertial measurement unit (IMU).

II. IMU COUPLED SEMI DENSE DEPTH MAP ESTIMATION

In this section we describe our approach for state estimation
and describe the problems that arise from our approach. We
take this further and apply some of the standard practices for
robust state estimation and show how these do not improve the
net results by a significant amount. Using this as motivation,
we develop a system for robust pose estimation using the on
board inertial measurement unit while at the same time provide
accurate semi dense depth maps.

A. Pose Estimation

In our current system we use a downward facing camera
for state estimation using the famous Lucas-Kanade optical
flow (flow tracker) algorithm [1]. The front facing camera is
primarily used for depth propagation. However, since we use
semi dense visual odometry, it can also be used for estimating

pose. Using optical flow on a downward facing camera tends
to be tricky. Previous studies on the performance of the optical
flow algorithm for different textures and scenarios have shown
the performance to vary hugely under varied scenarios [2]. If
the texture of the ground is good, results obtained are generally
very close to ground truth. But if the texture on the ground is
bad as is the case for a lot of forest environments, state esti-
mates from optical flow are noisy. For sake of brevity we shall
use the term pose estimate and state estimate interchangeably.
To resolve the problems arising from noisy optical flow data,
we propose using the pose from the front facing camera too.
We try two of the most standard approaches to fuse the poses
from both the camera’s. The first approach uses lie algebraic
averaging to produce globally consistent motion as is described
in the work of Govindu et. al [3]. To summarize this approach,
consider the 4x4 euclidean motion matrix M ∈ SE3 defined
as

M =

[
R t
0 1

]
(1)

where R ∈ SO3 and t ∈ R3 This M is converted to lie space
by using the log operator. The result is another 4x4 matrix

m =

[
Ω u
0 0

]
(2)

where m ∈ se(3). Algebraic averaging is then performed on
this lie algebraic representation of motion. Now consider two
motions matrices M1 and M2 with M1 being estimated from
the projections of the downward facing camera and M2 being
estimated from the projections of front facing camera. M2 is
rotationally aligned and scaled to the same world as M1. These
are then converted to lie space and then averaged out according
to the algorithm described in [3]. However, we observe that the
results are only marginally better (see Fig 2). These results are
attributed to the fact that semi dense visual odometry does not
work well if there is a huge rotation between two consecutive
frames. More specifically this problem arises due to the fact
that if there is a large enough rotation between two consecutive
frames, the points that are being tracked from for which the
inverse depth maps are generated are lost. This problem can
be specifically seen in Fig. 1. It must be noted that orientation
of SDVO must be realigned to that of the flow tracker every
time tracking is lost to minimize drift.

To offset the reset problem, a standard variance weighted
input averaging technique (a Kalman Filter based fusion) was
also tried [4]. Treating the flow tracker as a known prior
distribution N (dp, σ

2
i ) and the SDVO as a noisy observation
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Fig. 1. Loss of tracking in SDVO causes huge jumps in the pose which is
also reflected in the lie algebraically averaged pose. This can be clearly seen
at instances A and B

N (dq, σ
2
j ), the posterior is given by

N

(
σ2
i dq + σ2

jdp

σ2
i + σ2

j

,
σ2
i σ

2
j

σ2
i + σ2

j

)
(3)

However, even with Kalman Filtering our results tend to be
only marginally better. Evaluation of pose estimates was done
by bench marking with a real time kinematic (RTK) GPS [5]
with an accuracy up to 5 cm.

Fig. 2. Pose benchmarking using a RTK GPS over a distance of 45 meters.

It is also noticed that at points where tracking is lost for
the entire frame, there is a loss in depth map propagation. At
such instances the entire SDVO pipeline needs to be reset and
this is highly undesirable for fast monocular flight through a
cluttered environment. Using this as motivation, in the next
section we describe a mechanism where we couple our IMU
with the SDVO to ensure robust pose and depth estimates.

B. IMU coupling for semi dense depth map estimation

We build on the work of Engel et. al [6]. To summarize
their approach, given a semi-dense inverse depth map for
the current image, the camera pose of the new frames is
estimated using direct image alignment: given the current map
{IM , DM , VM}, the relative pose ξ ∈ SE(3) of a new frame
I is obtained by directly minimizing the photometric error

E(ξ) :=
∑

x∈ΩDM

‖IM (x)− I(w(x,Dm(x), ξ))‖δ (4)

where w : ΩDM
× R× SE(3)→ ω projects a point from the

reference frame image into the new frame. D and V denote
mean and variance of the inverse depth, and ‖·‖δ is the Huber
norm to account for outliers. The minimum is computed using
iteratively re-weighted Levenberg-Marquardt minimization [7].
The warp function w(x, T ) as desccribed in [8] is defined as

w(x, T ) = π(Tπ−1(x, Z(x))). (5)

where π−1(x, Z) represents the inverse projection function and
T represents the transformation matrix, for a rigid body motion
g

T =

[
R3,3 t3,1

0 1

]
(6)

Since T is over parametrized representation of g and has twelve
parameters while g has only six degrees of freedom, we use
ξ, the twist coordinate representation for T where

(ξ) = logSE(3)(T ) (7)

The photometric error is minimized iteratively and the pose
update step can be represented as

(ξ)n+1 = δ(ξ)n ◦ (ξ)n (8)

where δ(ξ)n is calculated by solving for the minimum of a
Gauss Newton second order approximation of E. However,
as seen from our previous experimentation, the projection
function fails to map a point from one image I1 to another I2
if the rotation is very large. An alternate method for solving
this problem can be to consider a very high frame rate of
the camera. But this has its own limitations in terms of
power and computational complexity. Thus, we propose a IMU
injection to overcome this limitation. The traditional approach
for coupling an IMU with a visual system is to add a term
for the IMU in the energy function [9]. While this works
well when the error in state measurement is minimized, it is
relatively more complex to incorporate an IMU term within
the SDVO’s photometric error minimization. Our approach
involves putting the injection term inside the optimizer instead.
The update step has been modified to not accept rotations
calculated from the previous keyframe. Instead the rotations
from the IMU are fed into the optimizer for depth propagation.
Therefore to summarize, the rotations that are needed to
represent rigid body motion in Eqn. (6) are directly taken from
the IMU instead of taking the pose estimate from the previous
iteration of the optimizer. Also to ensure that the error is not
propagated, we change the way optimization is done. This is
better illustrated in Fig. 3

With the IMU injection into the optimizer, the pose drift
is considerably lesser. In addition to this, the instances where
SDVO would crash are reduced to by 55% over a distance of 1
km. This is seen in Fig. 4 The inverse depth map is propagated
from frame to frame, once the pose of the frame has been
determined and refined with new stereo depth measurements.
Based on the inverse depth estimate d0 for the pixel, the
corresponding 3D point is calculated and projected into the
new frame and assigned to the closest integer pixel position
providing the new inverse depth estimate d1. In the original
work it is assumed that the camera rotation is small, and the
new inverse depth map can be approximated by

d1(d0) = (d−1
0 − tz)−1 (9)
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Fig. 3. A comparison of the original SDVO pipeline and our version modified
for monocular flight.

where tz is the camera translation along the optical axis.
Now, for each frame, after the depth map has been updated,
a regularization step is performed by assigning each inverse
depth value the average of the surrounding inverse depths,
weighted by their respective inverse variance.

Fig. 4. Trajectory comparison using SDVO with and without injection. The
blue line represents ground truth, orange line represents SDVO without pose
injection and the grey line represents SDVO with pose injection.

III. DISCUSSION AND FUTURE WORK

It is evident from the results that our proposed method
of injecting IMU rotations into the optimizer results in fewer
instances where tracking is lost thereby leading to fewer
instances where the depth map crashed and the whole pipeline
must be restarted. However, even with our pose injection there
are instances where the system still crashes. Most of these
instances are when the autonomous mode is just switched on
or off. Further, the pipeline fails to provide reasonable depth
when the environment is not cluttered, such as small clearings
in the woods. One might agree that in such situations it is
redundant to track depth. However, the depth tracked is only
in the field of view of the monocular camera and it is possible
that obstacles could be present in the environment just outside
the field of view of the vehicle and could contribute to a crash.
In our future work we wish to address this problem by utilizing
stored information from previous depth maps.
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Predicting orientations under manipulation actions

Ratnesh Madaan1, Robert Paolini1, Erol Sahin2, Matthew T. Mason1

Abstract— We present a method for predicting the resulting
orientation of an object when a manipulative action is per-
formed on it. We represent orientations using unit quaternions
and model uncertainty via Bingham distributions on the unit
quaternion hypersphere. Assuming that the object is stabilized
at the beginning and the end of manipulation either because it is
gripped or because it rests on a surface, we use prior interaction
data to regress the final orientation from its initial orientation.
We validate the approach by predicting the outcome of a cube
dice throw in simulation. The problem of SO(3) regression is
broken down into two parts - first classification is performed
via a maximum likelihood method to predict the face on which
the dice will fall on, which is followed by a Gaussian Process
regression from the initial quaternion(Q) to find the predicted
final angle(S1). Further, the simplified case of a two finger, rigid,
parallel jaw gripper is discussed, where the initial orientation
can be reduced to an angle(S1), and the Nadaraya-Watson
estimator is used for non-parametric circular regression in
order to predict the final orientation.

I. INTRODUCTION

Manipulation can be considered as changing the pose of
the object in the inertial coordinate frame. Modeling the
effects of a manipulative action using kinematic and dynamic
models in an analytic way usually fails to fully capture the
nonlinear interactions between the object, the manipulator,
and the environment. Such physics based simulations require
precise definition of the three entities, their possible inter-
actions, the constraints involved, and repeating everything
for a different scenario. We argue that modeling a robotic
manipulation action can be best achieved by learning a map
from the initial pose of an object to its final pose using data
collected from actual interactions and present a statistical
inference based approach.

The full 6D pose of a rigid object is represented with
a position and an orientation, and lies in SE(3) which
is defined as R3 × SO(3), where SO(3) is the special
Orthogonal group in which rotations reside. Learning a
mapping from the initial pose of an object to its final pose
requires the use of a parametric or nonparametric regression
method SE(3) 7→ SE(3). However such a method has not
been developed yet, thanks to the peculiarities of SO(3).

In this study, we propose a regression method for predict-
ing the orientation of an object given its initial orientation,
without solving the full SO(3) 7→ SO(3) problem using
assumptions that typically hold in robotic manipulation.
Specifically, we assume that the object is at rest and its
orientation is constrained by its shape as well the plane on

1Robotics Institute at Carnegie Mellon University, Pittsburgh, PA, USA
2Kovan Research Lab, Dept. of Computer Eng., Middle East Technical

University, Ankara, Turkey

which the object rests or which is defined by contact patches
of the gripper holding it.

For instance, consider the final orientations of a cube
dice dropped on a table with a random initial orientation
and for the sake of simplicity, from a constant height. The
possible resulting orientations of the dice forms 6 clusters,
each corresponding to the cube lying on one of its face. For
each of these clusters, the orientation of the cube can be
specified with only one rotational degree of freedom. The
cluster can be seen as a submanifold of SO(3) and we use
Bingham distributions over quaternions to define the same.
Similarly, there will be 6 clusters of initial orientations as
well, each defined by the criteria that the corresponding final
orientations belong to the same cluster or ‘lie’ on the same
face. In this sense, a mapping from the initial rotation of the
dice to its final orientation can be split into two problems:
a classification problem that maps the initial rotation to one
of the resulting orientations’ clusters (outcome of the dice
throw) and a mapping from the initial orientation of the
dice to the final 1-D orientation of the dice, defined as
SO(3) 7→ F f × S1 where F f is the finite set of different
clusters in the final orientation space, and S1 is the 1-D
circular variable.

Moreover, if the dice was being held by a two-fingered,
rigid, parallel jaw robotic gripper, its initial orientations
would be subject to the same characteristics as well1. In such
a case, the the problem is reduced to F i × S1 7→ F f × S1,
where F i is the finite set of different clusters in the initial
orientation space.

Generally, we propose to fit a Bingham Mixture Model
to each class of initial orientations of the object which
share a trait in their final orientations. The shared trait
of a class of initial orientations could be as simple as
a common face in the final orientation in the case of a
dice or something more complex for a different action and
object shape. We use a maximum likelihood approach to
classify the test sample, i.e. predicting the face on which
the dice will land on if it is dropped with the orientation
corresponding to the test quaternion, which is followed by
Gaussian Process regression (Q 7→ S1) with a kernel that
utilizes the quaternion arc distance to evaluate the similarity
metric. For the case of the two-fingered jaw gripper, we
use circular regression (S1 7→ S1) by utilizing the NPCirc
library, which implements nonparameteric kernel density
estimation via the adaptation of the Nadaraya-Watson and
local linear estimators.

1We neglect cases such as jamming where the faces of the dice are not
aligned by the inner surfaces of the gripper.
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This paper is organized as follows. Section II presents
a quick review of quaternions, the Bingham distribution
and mixture models (BMM), and various ways to visualize
them. Section III explains our classification-cum-regression
approach to predict the final orientation of a cube when it is
dropped in a simulator. Section IV tackles the case of two-
fingered gripper, and circular regression. Section V discusses
how the data was gathered, and presents results. Section
VI explores related work. Finally, section VI presents the
conclusion, discussion, and future work.

II. QUATERNIONS, BINGHAM DISTRIBUTION, AND
VISUALIZATIONS

There are various ways to represent SO(3) including
Euler angles, rotation matrices, axis-angle representation and
unit quaternions, and all of them have their pros and cons.
However, we choose quaternions as they are: (a) not as
ambiguous as Euler Angles apart from antipodal symmetry,
(b) do not suffer from the Gimbal lock problem, (c) easier
to compose as compared to the axis-angle representation,
(d) allow for relatively simple interpolation using SLERP,
and (e) allow for faster computation. For our case, an even
stronger motivation for using quaternions is that the Bingham
distribution captures the antipodal topology of the quaternion
space perfectly. To top that, the Bingham is a member of the
exponential family and is the maximum entropy distribution
on the hypersphere [1]. There has been a recent surge of
interest in and the revival of Binghams due to the Glover's
work [2] and they provide a promising model for rotational
uncertainty.

The Bingham distribution is derived from a multivariate
Gaussian constrained to lie on a hypersphere. It is antipodally
symmetric, and taking into account the facts that the mapping
from quaternion to the rotation space is two to one and
that antipodal quaternions (q,−q) represent the same 3-D
rotation/orientation, it is intuitive to use it to represent un-
certainty over the rotation space along with unit quaternions.
One could also consider a hemisphere of S3 and use another
distribution like Von Mises-Fisher, for instance, to model
the rotation space; however it is convenient to consider the
whole hypersphere coupled with a Bingham and not bother
with the discontinuities at the equator. Here, it is worth
mentioning that the VMF distribution is also a maximum
entropy distribution over a hypersphere, and it could be a
viable avenue for modeling rotations [1]. Mathematically, the
Bingham distribution is represented as:

f(x; Λ, V ) =
1

F (Λ)
exp{

d∑
i=1

λi(viT x)2} (1)

=
1

F (Λ)
exp{xTV ΛV T x} (2)

where x is a unit vector on the hypersphere Sd, Λ is a d×d
diagonal matrix of concentration parameters λ1 ≤ λ2 ≤ ... ≤
λd(≤ 0), V is the matrix of the eigenvectors(v1, v2, ..., vd)
of the distribution, and F is the normalization constant.
As explained in [2], the (d + 1)th eigenvalue λd+1(and

(a)

(b) Λ = (-100,-100) (c) Λ = (-100,-5) (d) Λ = (-100,0)

(e) Λ = (0,0,0) (f) Λ=(-900,-900,0) (g) Λ=(-900,-900,20)(h) Λ=(-900,-900,-900)

Fig. 1: Example Bingham distributions on S1 [14], S2 [2]
and S3, with varying concentration parameters.

its corresponding eigenvector vd+1) are omitted by adding
−λd+1 to all eigenvalues, without affecting the distribution.

Fig. 1 shows some example Bingham distributions : (a)
over a circle, (b)-(d) over a sphere, with varying concentra-
tion parameters; (e)-(h) are visualizations of the quaternion
Bingham distribution (referred to as qBingham, and whose
eigenvectors will be referred to as eigenquaternions in the
remaining text) inspired by the heat plots of [7] as explained
later. Intuitively visualizing a qBingham is not that easy as
quaternions reside on a 4D-hypersphere. We now explore
various ways to visualize a qBingham (or quaternions them-
selves) by taking samples from it and plotting them. When
visualizing a 4D object in 3D, there is always an inherent
loss of 1 degree of freedom of information. Hence, we need
to add information to the 3D visualization as explained in
the upcoming paragraphs.

Consider a cube (Fig. 2(a) and (b)), whose faces are
colored for easy reference. Imagine the possible orientations
of the cube when it’s lying on one of its faces, say with the
black face on top, and then with the pink face on top.

Fig. 2(c) and (d) shows the axis-angle representation, with
the line segment being parallel to the axis of rotation and
the length being proportional to the angle of rotation about
the axis, with the cases of the black and pink faces on top
respectively. Here we are adding information by encoding the
length of the segment to be proportional to the magnitude
of the angle of rotation about it. For negative rotations, we
reverse the direction of axis. Generally, this representation
is not intuitive as one has to imagine a complex rotational
transform from the identity orientation (Fig. 2(a)) in just
one step, as compared to three transformations in the Euler
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 2: Visualizing quaternions and qBinghams.

angle representation. However, Fig. 2(c) and (d) are easier to
understand; in the former the axis is the same but the angle
is changing, in the latter it’s vice-versa. If we think of the
analogous transformations when the cube is lying on one of
the other four face, things become complex as both the axis
and angle will change.

Fig. 2(e) and (f) are similar to Fig. 2(c) and (d), but here
information is added via color coded points on a sphere - red
represents the maximum angle, and blue the minimum. Fig.
2(e) plots the same data as (d) where all the samples have
the same angle, but different axis. The analogue for Fig. 2(c)
will be just a couple of dots at the poles of the sphere and
hence we omit it. Fig. 2(f) is the representation of all possible
orientations when the cube is lying on one of its faces. These
6 clusters are submanifolds in the SO(3) space. For the
remaining four faces, the axis-angle duo form a pattern as
shown. The angle of rotations changes gradually as the axis
changes. These plots were made by modifying a function
of [3], which also visualizes the Hopf fibrations of the 4D-
sphere. In [4], Glover refers to a similar visualization(without

the sphere) of orientated local features as Q-Images.
One could also simply view the final coordinate axes

corresponding to a quaternion relative to the reference frame
via an animation. Fig. 2(g) shows a snapshot of the same. It
plots the endpoints of the coordinate axes for each quater-
nion while showing the axis corresponding to the current
quaternion in the animation iteratively. This is obtained using
the Matlab quaternion class [5], which we also use for
dealing with quaternions to obtain the results presented in the
later sections. Fig. 2(h) is the same visualization using the
Robotics Toolbox [6], but this time instead of their endpoints,
the axes themselves are retained after each animation.

Fig. 2(i)-(j), and Fig. 1(e)-(h) are inspired from Reidels
heat plot visualization of the qBingham [7]. A reference point
on a sphere, shown by the big yellow marker, is repeatedly
rotated about its center by many sampled quaternions (here
1000 in number), and the final positions of the reference
point, which are bound to lie on the sphere itself, are
visualized as the dotted markers. The eigenquaternions of
the Bingham in Fig. 1(e)-(h) are (0,1,0,0; 0,0,1,0; 0,0,0,1)
and their respective concentration parameters can be seen
in the captions. -900 is a computational limit in [3], which
corresponds to zero uncertainty about a particular eigen-
quaternion. The final position dots are randomly colored, and
the color doesn’t carry any meaning in Fig. 1. Fig. 2(i) shows
various orientations of the cube when it’s lying on a face and
plots the same data as in Fig. 2(f). Fig. 2(j) shows samples
from a Bingham Mixture Model fitted to the quaternions of
(i) and (f), and is discussed in the coming paragraphs. It
should be noted that Fig. 2(i) or (j) are not equivalent to
the cases where qBingham of Fig. 1 would have Λ = (0,
-900, -900) or (-900, 0, -900) and so on, which represent
uncertainty about X and Y axis respectively. The catch is
that the cube is lying on a face and not freely rotating in
air. Hence, we have horizontal rings of Fig. 2(i), instead of
analogous vertical rings.

An implicit caveat of this visualization is that if the axis
of rotation passes through the reference point itself, then
those rotations can’t be visualized as the reference point will
stay at its initial position no matter what the angle is. To
circumvent this issue, we use two or more reference points,
each lying on a different sphere. This visualization, is the
most intuitive and quickest way to interpret a qBingham
or quaternions themselves. It also helps to look at the
animations corresponding to Fig. 2(g) and (h) along with
this visualization.

As the complexity of a set of quaternions increases, we
need a more flexible distribution. Akin to Gaussian Mixture
Models, we use finite Bingham Mixture Models which are
a weighted sum of component qBinghams mathematically
represented as [4]

f(x; B,α) =
k∑
i=1

αif(x;Bi) (3)

To fit a BMM, one needs to find the number of clusters,
the weight of each component and the parameters of the
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(a) (b)

Fig. 3: Labeling the data. (a) Left and right show the initial
orientations of the cube with which it fell on the magenta
and the black faces respectively, and hence belong the same
class (b) The final orientations of the cube when it is dropped
with initial orientations plotted in (a).

Bingham components. We use the Bingham Statistics Library
for this (and all other Bingham distribution related purposes)
[3], which implements the BMM-SAC algorithm, a fast,
greedy, sample consensus based approach, to fit a BMM to
a given dataset [4]. Another modified-EM based approach
is explained in [8]. To visualize a BMM, we use the Fig.
1 qBingham visualization, but now color the samples to
indicate samples from the same Bingham component, as
shown in Fig. 2(j).

III. APPROACH

Consider a cube being dropped with a random initial
orientation. We sample 6000 quaternions from a uniform
Bingham distribution (Fig. 1(e)), drop the cube in a simulator
with a random sample, note the final orientation of the
cube and label all the initial quaternions corresponding to
which the cube fell on a single face as belonging to the
same class (Fig. 3). Labeling is done by fitting a BMM
to the final orientations. One can identify each face by the
eigenquaternions of the qBingham components. Then we fit
a BMM to each class of initial quaternions. This helps us
to define a sub-manifold of SO(3) for which the cube is
likely to fall on the same face. For classification, we take a
maximum likelihood approach, assigning classes to the test
sample based on which set it is most likely to belong to, or
in our case, which face it is most likely to fall on.

The next step is regression, or predicting the cubes final
orientation, given which face it is predicted to be lying on.
We need to regress from the quaternion corresponding to
the initial orientation qi to the quaternion corresponding to
the final orientation qf . But as all the final quaternions are
actually various orientations of the cube when its lying on
one of its faces, instead of regressing from Q to Q, we can
regress from Q to S1. The next section describes in detail
how we extract the response (training target) angle from
Bingham distribution (by using one of its eigenquaternion).
We use Gaussian Processes regression to achieve the same
and utilize the quaternion arc kernel, which uses the arc
length distance between quaternions to calculate the distance
metric [15].

k(q, q′) = σ2
f exp(−

(arccos2(〈q, q′〉))
2λ2

) (4)

(a) (b)

Fig. 4: (a) Qtilt: set of orientations in a tilted ‘plane’, and
(b) Qz , which is Qtilt after multiplying each element with
qtrans

The training output is an angle θ ∈ R, which has a
discontinuity at θ = 2π, or in other words 1◦ is quite close
to 359◦ while they are far apart on the number line. To avoid
this problem, we train two GPs - one with the training targets
being the sine of the angle, and the other being trained the
cosine of the angle, or what [9] refers to as the SinCos-GP.
Hence, two sets of independent hyperparameters are learned.
Once we have the predicted values of the sine (θ∗sin) and
cosines (θ∗cos), we use the four-quadrant tangent inverse to
evaluate the predicted angle.

E(θ) = arctan(θ∗sin, θ
∗
cos) (5)

IV. CIRCULAR REGRESSION FOR PARALLEL JAW
GRIPPER

Consider a two-finger, rigid, parallel jaw gripper holding
a cube. In this case, all the possible orientations of the
cube are in a ‘plane’ relative to the gripper (Fig. 4(a)).
Let’s call this set Qtilt. This is akin to the case of cube
lying on the floor, and the orientation can be reduced to
an angle from a full quaternion here as well. To reduce
these orientations to a single angle θ, we can change the
frame of reference such that the normal vector to the ‘plane’
of orientations is now the positive Z axis, and hence the
corresponding quaternions (denoted by the set Qz) are of the
form [cos(θ/2), 0, 0, sin(θ/2)]T as shown in Fig. 4(b). Once
this is done we can easily find the ‘predictor’ angle(training
input) and similarly, the ‘response’ angle(training target) by
taking cos or sin inverse of the first or the fourth component.

It is a one to one mapping, and the same rotational
transformation (qtrans) is needed to be multiplied for each
elements from Qtilt to get the corresponding element in
Qz . If we fit a BMM to Qtilt, it will have just a single
component due to the ‘plane’ of rotation, whose concentra-
tion parameters will be (-900, -900, 0). The eigenquaternion
corresponding to the third, zero-valued parameter of the
component Bingham is then the inverse of the required
qtrans. Hence, we multiply all qtilt ∈ Qtilt by qtrans =
{qeigen,λ=0}−1 to get the corresponding qz ∈ Qz , thereby
changing the frame of reference.

qtilt ∗ {qeigen,λ=0}−1 = qz,∀ qtilt ∈ Qtilt and qz ∈ Qz
(6)
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Finally, we use the NPCirc library, which implements
circular kernel density estimation, using the local linear
smoothing estimator for non-parametric circular regression
in order to predict the final orientation [10].

V. SIMULATION EXPERIMENTS AND RESULTS

A. Random initial orientation

To verify the model, we drop a cube with random initial
orientations (6000 samples from a uniform qBingham) from
a constant height in the V-REP simulator and note the final
orientations. The confusion matrix is shown the Table I and
we can predict with 90.53% accuracy which face the cube
will fall on. As evident from the Table I, the algorithm
does not predict the cube to land on the opposite face in
all cases. (The trace is 5990 as 10 samples could not be
labeled properly due to simulation or labeling error.)

For the correctly classified orientations, we proceed with
regression, and the errors are showed in Table II. We compare
GP regression with two other methods as shown. 1-nearest
neighbour is a naive way to do regression, where the pre-
dicted output is the final orientation when the cube is dropped
with the orientation corresponding to the closest quaternion
in the training sample to the test sample (using distance
metric d = 1− |q1.q2|, where ‘.’ refers to the quaternion dot
product). SLERP (spherical linear interpolation) is similar,
but tries to interpolate the resultant orientation of the two
closest quaternions. The last column shows the result by the
suggested Gaussian Process regression method. It is clear to
see that GP outperforms the other two by a large margin.

Face 1 Face 2 Face 3 Face 4 Face 5 Face 6 Total

Face 1 936 0 17 25 14 41 1033

Face 2 0 884 40 54 37 15 1030

Face 3 18 8 900 0 16 14 956

Face 4 25 15 0 896 25 18 979

Face 5 43 18 19 19 933 0 1032

Face 6 10 28 27 21 0 874 960

Total 1032 953 1003 1015 1025 962 5990

TABLE I: Confusion matrix for the case of random initial
orientations

B. Parallel jaw gripper

Table III shows the results by dropping a cube from
random initial orientations, which are constrained to lie in
a ‘plane’, hence simulating the scenario when a cube is
dropped by a two finger, parallel jaw gripper. We analyze

1-nearest neighbour SLERP Gaussian Process

Mean 13.29 15.79 0.61

Std Deviation 17.51 41.72 2.69

Maximum 132.99 179.98 7.22

TABLE II: Errors (in degrees) with random initial orientation

(Angle with horizontal) Face(0◦) Edge(45◦) Edge(30◦)

Classification 100% 56.72% 81.09%

Mean 2.2459e-04 1.21 0.29

Std Deviation 0.0033 2.87 1.39

Maximum 0.0111 10.85 5.09

TABLE III: Errors (in degrees) for the case of parallel jaw
gripper

this case for three different situations - the first case is where
the normal to the ‘plane’ of orientations is the positive Z
axis and hence the cube is generally landing on a face, the
second case is where the cube is always landing on an edge
but the angle with the horizontal is 45◦, and the third case is
where the angle is 30◦. For the initial orientations where one
of the faces is parallel to the floor, we get 100% accuracy
in prediction as edge collisions are minimal. The accuracy
is close to 50% if the angle of the ‘plane’ of rotations
with the horizontal is 45◦ and the cube always falls on its
edge. In this case, collisions are aplenty and accuracy is low.
Finally, if we decrease the angle with the horizontal to 30◦,
the classification accuracy increases. In all three cases, GP
regression performs fairly well as can be seen from the mean,
standard deviation and maximum error, which are evaluated
using a Matlab circular statistics toolbox [11].

VI. RELATED WORK

The closest work to ours in terms of the ideology and
the framework presented is [12], which presents a statistical
framework using two distributions (to combine local and
global information) in order to predict the motion of a body
after it comes in contact with another body, and is able to
demonstrate generalization to a new shape for which the
model wasn’t trained. The philosophy of [12] resonates with
ours in that simulators can not generalize to new scenarios
without explicitly adding information about the new ob-
ject and the environment. [13] uses Mixture of Projected
Gaussians, along with dual quaternions to model 6D pose
uncertainty, while tackling the pose estimation problem.
[2] explains the quaternion Bingham distribution and its
properties in detail, along with filters for 3D-orientations,
and validates the theory on a ping pong playing bot based
on an object detection system presented in the thesis. The
results in the thesis provide evidence of Binghams being a
suitable choice for depicting rotational uncertainty.

VII. CONCLUSION

A method for predicting orientations under manipulative
actions is described. It is proposed that a physical action on
an object can be modeled probabilistically using the Bingham
distribution, given a lot of data - preferably with random
initial orientations, or those encompassing the relevant do-
main of testing data for the particular action - in order to
incorporate all possible resulting orientations of the object.
The case of a two finger parallel jaw gripper is analyzed
as well. Experiments are carried out in a simulator and the
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regression errors are calculated using circular statistics. It
is proposed that simple actions like dropping, pushing, and
throwing an object could be seen as building blocks of a
library of more complex grasping behaviour. Future work
includes looking at ways to extend our approach to predict
6D poses. One avenue could be using GMMs for predicting
positions while retaining BMMs for orientations, and another
points towards the unexplored territory of using Bingham
distributions along with dual quaternions.
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Abstract—Human trafficking is a challenging law enforcement
problem, with a large amount of such activity taking place online.
Given the large, hetrogenous and noisy structure of this data,
the problem becomes even more challenging. In this paper we
propose and entity resolution pipeline using a notion of proxy
labels, inorder to extract clusters from this data with prior
history of human trafficking activity. We apply this pipeline to
5M records from backpage.com and report on the performance
of this approach, challenges in terms of scalability, and some
significant domain specific characteristics of our resolved entities.

Index Terms—human trafficking, machine learning, entity
resolution.

I. INTRODUCTION

OVER the years human trafficking has grown to be a
challenging law enforcement problem. The advent of

the internet has brought the problem in the public domain
making it an ever greater societal concern. Prior studies
[5] have leveraged computational techniques to this data to
detect spatio-temporal patterns, by utilising certain features
of the ads. Certain studies [4] have utilised machine learning
approaches to identify if ads could be possibly involved in
human trafficking activity. Significant work has also been
carried out in building large distributed systems, to store and
process such data, and carry out entity resolution to establish
ontological relationships between various entities. [7]

In this paper we explore the possibility of leveraging this
information to identify sources of these advertisements, isolate
such clusters and identify potential sources of human traffick-
ing from this data using prior domain knowledge.

In case of ordinary Entity Resolution schemes, each record
is considered to represent a single entity. A popular approach
in such scenarios is a ‘merge and purge’ strategy whereas
records are compared and matched, they are merged into a
single more informative record, and the individual records are
deleted from the dataset. [2]

While our problem can be considered a case of Entity Reso-
lution, however, escort advertisements are a challenging, noisy
and unstructured dataset. In case of escort advertisements, a
single advertisement, may represent one or a group of entities.
The advertisments hence might contain features belonging to
more than one individual or group.

The advertisements are also associated with multiple fea-
tures, including Text, Hyperlinks, Images, Timestamps, Loca-
tions etc. In order to featurize characteristics from text we use
the regex based information extractor described in [4], based
on the GATE framework [3]. (The reader is directed to [4] for

a complete description of the fields extracted and performance
measures thereof.) This allows us to generate certain domain
specific features from our dataset, including, the aliases, cost,
location, phone numbers, specific URLs, etc of the entities
advertised. We use these features, along with other generic
text, the images, etc as features for our classifier. The high
reuse of similar features makes it difficult to use exact match
over a single feature in order to perform entity resolution.

We proceed to leverage machine learning approaches to
learn a function that can predict if two advertisements are
from the same source. The challenge with this is that we
have no prior knowledge of the source of advertisements.
We thus depend upon a strong feature, in this case Phone
Numbers, which can be used as proxy evidence for the source
of the advertisements and can help us generate labels for the
Training and Test data for a classifier. We can therefore use
such strong evidence as to learn another function, which can
help us generate labels for our dataset, this semi-supervised
approach is described as ‘surrogate learning’ in [8]. Pairwise
comparisons result in an extremely high number of compar-
isons over the entire dataset. In order to reduce this, we use a
blocking scheme using certain features.

The resulting clusters are isolated for human trafficking
using prior expert knowledge and featurised. Rule learning
is used to establish differences between these and other
components. The entire pipeline is shown in Figure 1.

II. ENTITY RESOLUTION

A. Definition

We approach the problem of extracting connected compo-
nents from our dataset using pairwise entity resolution. The
similarity or connection between two nodes is treated as a
learning problem, with training data for the problem generated
by using ‘proxy’ labels from existing evidence of connectivity
from strong features.

More formally the problem can be considerd to be to
sample all connected components Hi(V,E) from a graph
G(V,E). Here, V , the set of vertices ({v1, v2, ..., vn}) can
be considered to be the set of advertisements and E,
{(vi, vj), (vj , vk), ..., (vk, vl)} is the set of edges between
individual records.

We need to learn a function M(vi, vj) such that
M(vi, vj) = Pr((vi, vj) ∈ E(Hi),∀Hi ∈ H)

The set of strong features present in a given record can be
considered to be the function ‘a’. Thus, in our problem, a(v)
represents all the phone numbers associated with v.
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Fig. 1: Entity Resolution Pipeline

The union of the set of strong features for all records is ‘A’.
Thus A =

⋃
a(vj),∀vj ∈ V . Here, n(A) << n(V )

Let us consider a graph G∗(V,E) defined on the set of
vertices V , such that (vi, vj) ∈ E(G∗) if n(a(vi)∩a(vj)) > 0

Let us consider the set, H∗ of all the of connected com-
ponents {H∗1 (V,E), H∗2 (V,E), ...,H∗n(V,E)} defined on the
graph G∗(V,E)

Now, function P is such that for any pi ∈ A
P (pi) = V (H∗k), iff pi ∈

⋃
a(vj), ∀vj ∈ (V (H∗k))

1
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4
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(a) Connected Components
before ER

1

32
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(b) Connected Components
after ER

Fig. 2: On applying our match function, weak links are
generated for classifier scores above a certain match threshold.
The strong links between nodes are represented by Solid
Lines. Dashed lines represent the weak links generated by our
classifier.

B. Sampling Scheme
For our classifier we need to generate a set of training

examples ‘T ’,
Tpos is the set of positive training examples and Tneg is the
set of negative training examples.
Tpos = {F (vi, vj) | vi ∈ P (pi), vj ∈ P (pi),∀pi ∈ A}
Tneg = {F (vi, vj) | vi ∈ P (pi), vj 6∈ P (pi),∀pi ∈ A}

In order to ensure that the sampling scheme does not end
up sampling near duplicate pairs, we introduce a sampling
bias such that for every feature vector F (vi, vj) ∈ Tpos,
a(vi) ∩ a(vj) = φ
This reduces the likelihood of sampling near-duplicates as
evidenced in Figure 3, which is a histogram of the jaccards
similarity between the set of the unigrams of the text contained
in the pair of ads.
JS(vi, vj) =

n(unigrams(vi)∩unigrams(vj))
n(unigrams(vi)∪unigrams(vj))

We observe that although we do still end with some near du-
plicates (JS > 0.9), we have high number of non duplicates.
(0.1 < JS < 0.3) which ensures robust training data for our
classifier.

C. Training
To train our classifier we use a Random Forest classifier

using Scikit.[6] Table I shows the most informative features

Fig. 3: Text Similarity for our Sampling Scheme. We use
Jaccards Similarity between the ad unigrams as a measure of
text similarity. The histogram shows that the sampling scheme
results in both, a large number of near duplicates and non
duplicates. Such a behaviour is desired to ensure a robust
match function.

learnt by the classifier. It is interesting to note that the most
informative features include, the spatial (Location), Tempo-
ral (Time Difference, Posting Date) and also the Linguistic
(Number of Special Characters, Longest Common Substring)
features. We also find that the domain specific features,
extracted using regexs, prove to be informative.

TABLE I: Most Informative Features

Top 10 Features
1 Location (State)
2 Number of Special Characters
3 Longest Common Substring
4 Number of Unique Tokens
5 Time Difference
6 If Posted on Same Day
7 Presence of Ethnicity
8 Presence of Rate
9 Presence of Restrictions
10 Presence of Names

The ROC curve for the classifier is presented in Figure
4. The classifier performs well, with an extremely low false
positive rate. Such a behaviour is desirable for the classifier to
act as a match function, in order to generate sensible results.
High False Positive rates, increase the number of links between
our records, leading to a ‘snowball effect’ which results in a
break-down of the Enitity Resolution process.

In order to minimise this breakdown, we need to heuresti-
cally learn an appropriate confidence value for our classifier.
This is done by carrying out the ER process on 10,000
randomly selected records from our dataset. The value of
size of the largest extracted connected component and the
number of such connected components isolated is calculated
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Fig. 4: ROC Curve for Match Function. (Log Scale) The ROC
curve shows reasonably large True Positive rates for extremely
low False Positive rates, which is a desirable behaviour of the
match function.

for different confidence values of our classifier. This allows us
to come up with a sensible heurestic for the confidence value.

Fig. 5: The plot represents the size of largest connected
component versus the value of the match threshold. Lower
thresholds result in more granular clusters.

Fig. 6: The plot represents the number of connected compo-
nents versus the match threshold. Lower thresholds result in a
larger number of clusters.

D. Blocking Scheme

Our dataset consists of 5 million records. Naive pairwise
comparisons across the dataset, makes this problem com-
putationally intractable. In order to reduce the number of
comparisons, we introduce a blocking scheme. The blocking
scheme allows us to reduce the number of comparisons.
We block the dataset on features like Rare Unigrams, Rare
Bigrams and Rare Images. We then resolve the dataset across
blocks.

(a) This pair of ads have extremely similar textual content including
use of non-latin and special characters. The ad also advertises the same
individual, as strongly evidenced by the common alias, ‘Paris’.

(b) The first ad here does not include any specific names of individuals.
However, The strong textual similarity with the second ad and the same
advertised cost, helps to match them and discover the individuals being
advertised as ‘Nick’ and ‘Victoria’.

(c) While this pair is not extremely similar in terms of language, how-
ever the existence of the rare alias ‘SierraDayna’ in both advertisemets
helps the classifier in matching them. This match can also easily be
verified by the similar language structure of the pair.

(d) The first advertisement represents entities ‘Black China’ and ‘Star
Quality’, while the second advertisement, reveals that the pictures used
in the first advertisement are not original and belong to the author of
the second ad. This example pair shows the robustness of our match
function. It also reveals how complicated relationships between various
ads can be.

Fig. 7: Representative results of advertisment pairs matched
by our classifier. In all the four cases the advertisement pairs
had no phone number information (strong feature) in order
to detect connections. Note that sensitive elements have been
intentionally obfuscated.
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TABLE II: Results Of Rule Learning

Rule Support Ratio Lift
Xminchars<=250, 120000<Xmaximgfrq, 3<Xmnweeks<=3.4, 4<Xmnmonths<=6.5 11 90.9% 2.67

Xminchars<=250, 120000<Xmaximgfrq 4<Xmnmonths<=6.5, 16 81.25% 2.4
Xstatesnorm<=0.03, 3.6<Xuniqimgsnorm<=5.2, 3.2<Xstdmonths 17 100.0% 2.5
Xstatesnorm<=0.03, 1.95<Xstdweeks<=2.2, 3.2<Xstdmonths 19 94.74% 2.37

Fig. 8: Representative Entity isolated by our pipeline, believed
to be involved in human trafficking. The nodes represent
advertisements, while the edges represent links between ad-
vertisements. This entity has 802 nodes and 39,383 edges.
This visualisation is generated using Gephi. [1]

III. RULE LEARNING

We extract clusters and identify records that are associated
with human trafficking using domain knowledge from experts.
We featurise the extracted components, using features like
size of the cluster, the spatio-temporal characteristics, and the
connectivity of the clusters. For our analysis, we consider only
components with more than 300 advertisements. we then train
a random forest to predict if the clusters is linked to human
trafficking. In order to establish statistical significance, we
compare the ROC results of our classifier in 4 cross validation
for 100 random connected components versus the positive set.
Table III lists the performance of the classifier in terms of
False Positive and True Positive Rate while Table IV lists the
most informative features for this classifier.

We then proceed to learn rules from our featureset. Some
of the rules with corresponding Ratios and Lift are given
in Table II. It can be observed that the features used by
the rule learning to learn rules with maximum support and
ratios, correspond to the ones labelled by the random forest as
informative. This also serves as validation for the use of rule
learning.

Fig. 9: ROC for the Connected Component classifier. The
Black line is the ROC for the positive set, while the Red line
is the average ROC for 100 randomly guessed predictors. The
higher area under the curve for the positive test sets establishes
statistical significance for our classifier.

TABLE III: Metrics for the Connected Component classifier

AUC TPR@FPR=1% FPR@TPR=50%
90.38% 66.6% 0.6%

TABLE IV: Most Informative Features

Top 5 Features
1 Posting Months
2 Posting Weeks
3 Standard Deviation of Image Frequency
4 Normalised Number of Names
5 Normalised Number of Unique Images

IV. CONCLUSION

In this paper we approached the problem of isolating sources
of human trafficking from online escort advertisements with
a pairwise Entity Resoltuion approach. We trained a classifier
able to predict if two advertisements are from the same source
using phone numbers as a strong feature, to generate training
data for our classifier. The resultant classifier, proved to be
robust, as evidenced from extremely low false positive rates.
The DIG proposed by Szekely et. al. aims to build similar
knowledge graphs using similarity score between each feature.
This has some limitations. Firstly, we need labelled training
data inorder to train match functions to detect ontological
relations. The challenge is aggravated since this approach
considers each feature independently making generation of
enough labelled training data for training multiple match
functions an extremely complicated task.

Since we utilise existing features as proxy evidence, our
approach can generate a large amount of training data without
the need of any human annotation. Our approach requires just
learning a single function over the entire featureset, hence
our classifier can learn multiple complicated relations between
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features to predict a match, instead of the naive feature
independence approach of DIG.

We then proceeded to use this classifier, in order to per-
form entity resolution using a heurestically learned value for
the score of classifier, as the match threshold The resultant
connected components were again featurised, and a classifier
model was fit before subjecting to rule learning. On compar-
ison with [4], the connected component classifier performs a
little better with higher values of the area under the ROC curve
and the TPR@FPR=1% indicating a steeper, ROC curve. This
may be due to the fact that we are able to generate larger
amount of training data for our classifier, due to the entity
resolution process. The learnt rules show high ratios and lift,
for reasonably high supports as evidenced from Table II.

V. FUTURE WORK

While our blocking scheme performs well to reduce the
number of comparisons, however since our approach involves
naive pairwise comparisons, scalability is a significant chal-
lenge. One approach could be to design such a pipeline in
a distributed environment. Another approach could be to use
a computationally inexpensive technique to de-duplicate the
dataset of the near duplicate ads, which would greatly help
with regard to scalability.

In our approach, the ER process depends upon the heuresti-
cally learnt match threshold. Lower threshold values can
significantly degrade the performance, with extremely large
connected components. The possibility of treating this attribute
as a learning task, would help making this approach more
generic, and non domain specific.

Images associated with ads were also utilised as a feature
for the match function. However, simple features like number
of unique and common images etc., did not prove to be very
informative. Further research is required in order to make
better use of such features.
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Generating Spatial Paths to Express Attentional Attitudes

Ravenna Thielstrom (Swarthmore College), Heather Knight and Reid Simmons (Carnegie Mellon Robotics Institute)

Abstract— Through observation of human body movement,
we instinctively understand other humans’ attitudes and inten-
tions, allowing us to interact with them more comfortably and
productively. Robotic behavior, on the other hand, can seem
hard to understand without direct communication, making
interaction with robots less intuitive or comfortable. In the
field of human-robot interaction, much focus has been put
into creating legible motion that will help people understand
a robot’s intentions. Creating expressive motion, however, can
help people understand a robot’s attitudes, resulting in more
empathy, acceptance, and fluid interaction. We used theatrical
concepts of movement to map different characteristics of spatial
trajectories to the different attentional attitudes that a human
perceives in a robot. Approach paths to an object of interest
were generated according to our deconstruction of a path into
several combinable elements such as shape and orientation. A
preliminary pilot was conducted to assess the directness of the
different path characteristics, in which observers watched the
robot execute different paths towards an object. Indirect ratings
were highest for sine paths with path-orientations, and direct
ratings were highest for linear paths and goal-orientations.
Participants described the robot’s attitudes in similar ways
for specific types of directness. Our pending study focuses
on compound combinations of path segments to explore how
successive contrasting paths might change how the robot’s
attitudes are perceived. Overall, this research demonstrates the
feasibility of using simple translations and rotations in space
to convey humanlike attitudes in non-anthropomorphic robots
with limited degrees of freedom.

I. INTRODUCTION
As mobile robots become more frequently used in daily

life, the study of human-robot interaction becomes increas-
ingly important in order to raise the ease and efficiency
with which humans can collaborate and coexist with robots
in the same environment. While a large part of human
interaction stems from non- verbal cues in body language,
the absence of such cues in robots means that humans can
not as easily understand or feel comfortable with a robot’s
actions. By replicating the types of motion that humans
instinctively associate with specific mental states, we can
generate familiar and easily interpreted behavior in robots.
Such behavior specific to expressing the internal state of a
robot, known as ’expressive motion’, can convey the robot’s
intentions and attitudes to humans without having to directly
communicate with them. In addition, displaying humanlike
movement, even in a distinctly unhumanlike robot, increases
its acceptance by people in a social environment and the
development of emotional bonds.

Our goal is not to copy human gestures, but rather to
break down robot movement into aspects that are interpreted
by humans as expressive of a humanlike inner state. This
specifically focuses not on the body language of humanoid

Effort Vector Fighting Polarity Inducing Polarity
Space Direct Indirect
Time Sudden Sustained
Weight Strong Light
Flow Bound Free

TABLE I
THE LABAN EFFORT SYSTEM.

robots, but rather on the basics of movement: translation
and rotation of the body of a non-anthropomorphic robot.
The robot used in this study for this purpose is Carnegie
Mellon’s CoBot, a mobile robot with an omnidirectional base
with the ability to autonomously traverse Carnegie Mellon’s
Computer Science building and complete travel-related tasks
such as delivering a message from one office to another.
Adding expressive motion to CoBot’s general autonomous
movement would allow human observers to intuitively tell
at a glance if CoBot is anxious to complete a current
task, uncertain about its ability to complete a task, or idly
wandering and available for task scheduling. A preliminary
pilot was conducted to assess the perceived expressiveness of
different path shapes and orientations towards an attentional
goal, which were generated with the Indirect and Direct
polarities of the Laban Space Effort in mind.

The generation of approach paths, and the methods by
which we ran our pilot study will be detailed following
a discussion of related work below. We found that the
participants did observe CoBot’s behavior to align along
Laban Effort vectors, thus confirming the usability of the
Laban Effort system for robotic motion. In accordance with
our hypothesis, Indirect ratings were highest for sine paths
with path-orientations, and Direct ratings were highest for
linear paths and goal-orientations. Additionally, participants
consistently interpreted specific generated paths as expressive
of specific attitudes. Finally, our preparation for a formal
study will discussed as well as our expectations of those
pending results.

II. RELATED WORK

Humans have been shown to naturally anthropomorphize
non-living animated objects based on their patterns of mo-
tion, as found in the well-known ”Do Triangles Play Tricks?”
study [1]. Based on this fact, past research in the area of robot
motion has sought to define the parameters of motion which
may result in perceived expressiveness, one such method
being the categorization of movement according to the Laban
Effort System.
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Fig. 1. A participant observes CoBot’s path towards its object of interest.

The Laban Effort System, created by R. Laban in 1963,
is a means by which to discuss different types of motion,
which is widely used in dance and theatre [4]. There are
four main Laban Effort Vectors within this system, listed
as Space, Time, Weight, and Flow, and motion can be
categorized along a range between Fighting and Inducing
polarities within each vector, listed in Table 1. This study
concentrates only on Space and the respective polarities of
Direct and Indirect along that vector. Direct movement is
associated with a single focus and high attention, whereas
Indirect movement is associated with multiple foci and low
attention. The Laban Effort System is part of a larger overall
method for studying motion known as Laban Movement
Analysis, which has previously been successfully applied to
movement studies with humanoid and flying robots [5] [6].
Our use of Laban Efforts builds off of previous work looking
at the possibility of applying the system to simple mobile
robots with low degrees of freedom [3].

This study also bears a similarity to research done on
creating legible approach paths to objects of interest /citedra-
gan. These paths were generated for a robotic arm to follow
towards one of two adjacent objects on a table, and were
evaluated for the legibility and predictability of the robot’s
action (which of the objects it intended to pick up). Our
study differentiates itself by focusing not on human ability to
understand the robot’s intent, but rather on human ability to
understand the robot’s expressed attitude towards its intended
task.

III. APPROACH

Four different path shapes were generated, based on
variations on a sinusoidal path (plus a completely straight
line from the starting point to the goal). These were the
shapes designated in fig:paths as Line, Hook, Curve, and
Sine. CoBot’s omnidirectional base allows it to be oriented
in a different direction than the direction it is moving in, so
we also generated three different orientations for it to display
on the path: along the path, towards the goal, or (not pictured
in fig:angles) towards a point at a fixed offset from the goal.

Each participant was shown all possible combinations of
the path features, and after each survey they were prompted

Fig. 2. Four different basic paths were conceived to test human perception
of path shape.

Fig. 3. Basic path orientations included in the experiment.

to fill out a survey on how well the path matched to
direct and indirect attributes. Specifically, they were asked
to rate on a five-point Likert scale how accurately each path
corresponded to the following descriptors:

• pinpointed, single-focused, laser-like
• expansive, flexible, meandering
• deviating, avoiding, evading

Additionally, after viewing all the paths, each participant
was interviewed about what interpretations they made about
CoBot’s behavior, with questions such as:

• When did the robot seem most humanlike?
• When did the robot seem most artificial?
• When did the robot seem most or least attentive to the

goal?
• Did you associate a narrative or storyline with any of

the paths?
• Was the robot avoiding the goal at any point?
• Were there any points at which CoBot seemed like it

was making decisions?
• Were there any paths that seemed unusual/inexplicable

to you? Any paths which seemed exceptionally expres-
sive?

These questions were designed to prompt the participant to
discuss their observations, first impressions, and storytelling
instincts regarding CoBot’s movement. Storytelling was en-
couraged in order to let the participants think about possible
reasons for the CoBot to move in whatever path it was
traveling.

IV. RESULTS

Seeing as most participants of the pilot study were
Robotics Institute Summer Scholars, the data may not be
representative of an ordinary sample of the human popu-
lation. For example, a few participants noted during their
interview that they may be biased towards thinking that
irregular movement from CoBot is more likely to originate
from programming error rather than emotions. Furthermore,
as this was a pilot study, only 7 participants were used.
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Fig. 4. Ratings of CoBot’s focus

The most significant result of our pilot study was the
high consensus that the straight-line path for path and
goal orientations (which is in fact the same path) deserved
large positive ratings for focus and large negative ratings
for both evasiveness and expansiveness. Thus the linear
path corresponds as expected to the Laban conception of
Direct movement. Assessments of this path as discussed by
participants in the interview portion of the study included
some impressions that CoBot seemed most humanlike and
was paying the most attention to the goal on this path than
on any other.

It should be noted that the linear path with an orientation
slightly offset from the goal orientation did not receive the
same ratings and in fact received ratings of the opposite
sign for focus and evasiveness, along with the impressions
that it was behaving artificially. A few participants stated
they couldn’t think conceive of a reason why CoBot would
behave that way, ”except as a joke, since it clearly knows
where the goal is.” Others associated the behavior with
deception or avoidance. This contrast from demonstrates
the importance of exact orientation in generating expressive
motion– path shape alone is not enough to consistently
convey an expressive state, and orientation must be taken
into account.

Most nonlinear paths, in contrast to the non-offset linear
paths, were rated as unfocused, evasive, and expansive. The
sine curve obtained the most extreme ratings for both the
focus question and the evasiveness question, being perceived
as highly unfocused and highly expansive.

CoBot’s behavior for paths along the sine curve were de-
scribed more than once as ”drunk”, ”confused”, or ”lost”, and
was generally determined to be the most artificial behavior.

Overall, the majority of participants agreed that orienta-
tion was the most important part of determining CoBot’s
attentional attitudes, and that looking at the goal made
CoBot seem more attentive. One participant even mentioned,
”When it wasnt looking at the goal, it looked less hurried”
while another said moving while not looking at the goal
made CoBot seem ”aloof”. While most participants had the
impression that the linear path was the most humanlike and
the sine curve the most artificial, one participant strongly

Fig. 5. Ratings of CoBot’s expansiveness

Fig. 6. Ratings of CoBot’s evasiveness

expressed the opposite view with the reasoning that ”Most
humans look around, so the focused path felt more robotic.”

The results of the survey demonstrated that the Laban
Effort System is able to be applied to robotic motion as well
as human motion, since our participants generally agreed
upon ratings for each path in accordance with descriptors
related to Laban Indirect and Direct categorization.

V. CONCLUSIONS

Humans observe other people’s body language in order
to get an understanding of their thoughts, feelings, and
intentions without having to communicate directly with them.
This makes human interaction more comfortable and coop-
erative. While efforts have been made to make human-robot
interaction easier by copying human movement to humanoid
robots, not all robots are humanoid and have the ability
to replicate gestures specic to humanlike body parts. This
research is therefore isolating simple x-y-theta movement for
non- anthropomorphic robots in order to identify aspects of
motion that are inherently expressive. We’re using concepts
of motion from theatre to evaluate robot movement into
identifiable characteristics, starting with the Indirect-Direct
scale of movement in the domain of Space, with the goal
of being able to map these characteristics in a path to
specific types of attentional attitudes. To determine these
characteristics we generated varying approach paths to an
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object of interest, according to our deconstruction of a
path into several combinable elements, such as shape and
orientation. Participants described the robot’s attitudes in
similar ways for specific types of directness, and were more
likely to engage in storytelling when describing the robot’s
inner state if the path was more indirect.

Our pending study focuses on compound combinations of
path segments to explore how successive contrasting paths
might change how the robot’s attitudes are perceived. Over-
all, this research demonstrates the feasibility of using simple
translations and rotations in space to convey humanlike
attitudes in non-anthropomorphic robots with limited degrees
of freedom.

ACKNOWLEDGMENT

We gratefully acknowledge the support of the National
Science Foundation through the Research Experience for
Undergraduates (REU) program (Grant # CNS 1263266).
RISS is an NSF CISE REU site.

REFERENCES

[1] F. Abella, F. Happb and U. Fritha. Do triangles play tricks? Attribution
of mental states to animated shapes in normal and abnormal develop-
ment. Cognitive Development, Vol. 15:1, pp. 116, JanuaryMarch 2000.

[2] A.D. Dragan, K.T. Lee, and S.S. Srinivasa, ”Legibility and Predictability
of Robot Motion”. International Conference on Human-Robot Interac-
tion (HRI), 2013.

[3] H. Knight and R. Simmons, ”Expressive Motion with X, Y and Theta:
Laban Effort Features for Mobile Robots,” in Proceedings of Inter-
national Symposium Robot and Human Interactive Communication,
Edinburgh Scot- land, August 2014.

[4] R. Laban. Modern Educational Dance. Macdonald & Evans, 1963
[5] M. Masuda, S. Kato and H. Itoh. Laban-Based Motion Rendering for

Emotional Expression of Human Form Robots. Chapter in Knowledge
Management and Acquisition for Smart Systems and Services Lecture
Notes in Computer Science, Volume 6232: 49-60, 2010.

[6] M. Sharma, et al. Communicating affect via flight path: exploring use
of the laban effort system for designing affective locomotion paths. In
Proceedings Int’l Conference on Human-Robot Interaction, 2013

86



 
 

 

Hadi Salman (1/2) 
RISS 2015 

87



A Novel Skidding Model
for a Snakeboard

Hadi Salman, Tony Dear, and Howie Choset

Abstract—The Snakeboard is a well-studied example
for mechanical systems analysis, largely because of its
simultaneous richness in behavior and simplicity in design.
However, few Snakeboard models incorporate skidding
as a violation of the rigid nonholonomic constraints. In
this paper, we present a novel Snakeboard model that
accounts for skidding by adding an extra variable to the
configuration space of the Snakeboard. It relates the force
that actuates this variable to the skidding angle using
Pacejka’s magic formula, an experimentally verified model
that relates the traction forces on the wheel to the skidding
angle. We compare our model to the Rayleigh dissipation
function model and present some correlation between the
parameters of the two models. This helps figuring out what
physical meaning the simple Rayleigh dissipation function
model’s coefficient signifies.

Keywords—Nonholonomic Constraints, Dynamics,
Kinematics, Skidding.

I. INTRODUCTION

THE Snakeboard is a canonical example of a
mixed nonholonomic mechanical system, one

whose motion is governed by both kinematic con-
straints and dynamics [1], [2]. The Snakeboard
shown in Fig. 1 consists of two sets of wheels that
can rotate about the center point of the axle. To
ride the Snakeboard, one alternates between rotating
one’s torso with one’s ankles to move the wheelsets.
The mechanical model (Fig. 2) has a rotor situated
at the center of the longitudinal axis to simulate the
human rider’s torso. The rotor and wheel axle angles
are actuated, and the latter are nonholonomically
constrained, allowing the Snakeboard to locomote
due to input joint actuation.

Skidding is a common phenomenon that occurs
when the wheels of a system slip sideways, i.e.
the nonholonomic constraints imposed on a wheel

H. Salman is with the Department of Mechanical Engineer-
ing, American University of Beirut, Beirut, Lebanon e-mail:
hcs03@mail.aub.edu

T. Dear and H. Choset are with the Robotics Institute at Carnegie
Mellon University, Pittsburgh, PA, 15213, USA. emails: tony-
dear@cmu.edu, choset@cs.cmu.edu

Fig. 1. A Snakeboard, composed of a rigid axis and two footrests
on rotating wheelsets.

are violated. In an idealized mechanical system,
models often ignore the effects of skidding, whereas
in actual physical systems, the effects of skidding
can be considerable, especially for systems such
as a Snakeboard whose motions rely basically on
rotating the axes of the wheels.

Early approaches in modeling skidding used cor-
rective control strategies by the aid of sensor mea-
surements[3]–[5]. Different approaches were then
developed in order to include skidding in the dy-
namics of the system, and to eliminate any sort of
dependency on GPS or measurements from sensors
in order to quantize the skidding that is happening
and control the system accordingly.

Sidek and Sarkar [6] included skidding in the
dynamics of a 2-wheeled mobile robot by relaxing
the nonholonomic constraints, adding an additional
linear variable to the generalized coordinates of
the system and relating the skid angle to the lat-
eral traction force on the wheel that arises due to
skidding. Bazzi et al. [7] then proposed two other
methods that include the skidding effects in the
kinematic model of vertical rolling disk; one which
relates skidding to the Lagrange multipliers of the
kinematic constraints, and another which relates
skidding to the generalized velocities of the actuated
degrees of freedom of the vertical rolling disk.

Dear et al. [8] then proposed a novel skidding
model that is based on the addition of Rayleigh dis-
sipation functions, and it was the first time skidding
effects have been incorporated into a mixed system
such as a Snakeboard.
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Fig. 2. The configuration variables of the Snakeboard. We will
assume in this paper that the angles the wheelset sets make with
the axis of the snakeboard are coupled such that φf = φb = φ.

Based on what Sidek and Sarkar [8] did to model
skidding for a 2-wheeled mobile robot, we present
in this paper a novel method to model skidding for a
more complex and hybrid system: the Snakeboard.
We show how we can account for skidding in the
dynamics of the Snakeboard by adding an extra
”rotational” variable to the configuration space and
relating the lateral dissipative force, that actuates
this variable, to the skidding angle through Pacejka’s
magic formula. We simulate this new model under
different conditions and compare the results with
Rayleigh dissipation function model. Finally, we
discuss some correlations between the parameters
of the two models. This helps us find out what the
Rayleigh model’s coefficient physically signifies,
and what conditions that affect skidding does it
capture.

II. MOTIVATION OF THE NEW MODEL

In this section, we present some background
material on the nature of skidding, and we show how
skidding appears in a nonholonomic system, such as
the Snakeboard, and how it gives the inspiration for
the new model.

A. Wheel Skidding
Skidding occurs due to the lateral, cornering

force, generated when negotiating a turn [7]. Due
to skidding, the wheel traverses a path along a
direction that is deviated from the direction in which
the wheel is oriented in the ideal case. This is all
illustrated in Fig.3.

B. Skidding in a Snakeboard
For a Snakeboard, skidding can be noticed when

the nonholonomic constraints along the wheelsets’

Fig. 3. The lateral force F on the wheel due to skidding. Notice the
deviation of the direction of travel from the ideal direction by a skid
angle δ.

axes are violated. This leads to a velocity v1
that relaxes the nonholonomic constraint along the
wheelset axes as shown in Fig. 4. This happens at
each of the two wheelsets but in opposite directions
due to the coupling of the rotation of the front
and back wheelsets which will be discussed in
the next section and will be assumed hereafter.
This leads to a net rotation of the whole system.
It is then meaningful to add an extra variable to
the configuration space of the Snakeboard which
captures the rotation that is caused by skidding.

C. Rayleigh Dissipation Function Model

We will use this Rayleigh dissipation function
model in order to verify the results of the simulation.
We present here a brief overview of this model that
was proposed by Dear et al.[8] This model is based
on replacing the ”hard” nonholonomic constraints
with soft dissipative forces modeled by a skidding
Rayleigh dissipation function.

Rskid(q) =
1

2
ksv

2 (1)

where ks is the skidding coefficient, and v is the
velocity in the skid direction.

This dissipative function is then augmented into
the Euler-Lagrange equations in order to derive the
equations of motion of the system.

III. MATHEMATICAL MODEL

The Snakeboard is a multi-bodied mechanical
system with two nonholonomic constraints acting
on its wheel sets. We derive the equations of
motion of the Snakeboard using the Lagrangian
approach. Similar to what Sidek and Sarkar [6] did
for a 2-wheeled nonholonomic mobile robot, we
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added an extra variable β to the vector of general-
ized coordinates of the Snakeboard which becomes
q = {x, y, θ, ψ, φ, β} where x, y and θ denote the
position and orientation of the Snakeboard in the
inertial coordinate frame while ψ and φ denote the
rotor angle and the coupled angle of the wheelsets
respectively as shown in Fig. 3. The new variable β
denotes an extra rotational angle of the whole body
of the Snakeboard due to skidding.

The actuated variables are the rotor angle ψ,
in addition to the coupled wheelset angle φ. The
mass of the whole Snakeboard is M centered in the
middle of the rotor. J , Jr, and Jw are the moments
of inertia of the Snakeboard, the rotor, and the
wheelsets respectively. We will assume as in [8]
that ML2 = J + Jr + 2Jw is the total inertia of the
system, where the total length of the Snakeboard is
2L.

A. Equations of Motion
We use the Euler-Lagrange dynamics formulation

to derive the equations of motion of our modified
system. The general form of these equations is
∂

∂t

∂L(q, q̇)

∂q̇
− ∂L(q, q̇)

∂q
= τ + A(q)T (λ− T ) (2)

where L(q, q̇) is the Lagrangian of the system, τ =
{0, 0, 0, τr, τw, 0} is the vector of generalized forces
(input torques), A(q) is a 2x6 matrix representing
the nonholonomic constraints satisfying A(q)q̇ = 0,
λ ∈ R2 is the vector of Lagrange multipliers, and T
= {F1, F2} represents dissipative traction forces that
relax the nonholonomic constraints due to skidding.
We will assume that the skidding that occurs on the
front and back wheelsets is the same i.e. F1 = F2 =
F .

The Lagrangian of the Snakeboard is simply
the kinetic energy of the system and is given by
L(q, q̇) = 1

2
q̇TDq̇, where D is the mass matrix

associated with our system and is given by
m 0 0 0 0 0
0 m 0 0 0 0
0 0 J + Jr + 2Jw Jr 0 J + Jr + 2Jw
0 0 Jr Jr 0 Jr
0 0 0 0 2Jw 0
0 0 J + Jr + 2Jw Jr 0 J + Jr + 2Jw

 (3)

The nonholonomic constraints satisfying A(q)q̇ =
0 matrix is represented by the matrix A(q) given by(
− sin(θ + φ) cos(θ + φ) L cos(φ) 0 0 −L cos(φ)
− sin(θ − φ) cos(θ − φ) −L cos(φ) 0 0 L cos(φ)

)

Fig. 4. Skidding velocities in a Snakeboard. Notice that the two linear
velocities v1 along the 2 wheelsets lead to a net angular velocity β̇
of the snakeboard.

The constraints equations along with the Euler-
Lagrange equations make up 8 equations, but we
have nine variables: six configuration variables, the
lateral dissipative traction force F , and the two
lagrange multipliers associated with the two non-
holonomic constraints. Thus in order to render our
system of equations solvable, we will eliminate the
traction force F by relating it to the skidding angle.

B. Traction Force Model
In order to model the lateral traction force on the

wheels, we will use what Sidek and Sarker [6] used
in their 2-wheeled mobile robot model: Pacejka’s
Magic formula [9]. This is an elegant formula based
on curve fitting and commonly used when modeling
tires. It relates the lateral force on a wheel to the
angle of skid in the following manner:

F = D sin(C arctan(Bη)) + ∆Sv (4)

where

η = (1− E)(δ + ∆Sh) +
E

B
arctan(B(δ + ∆Sh))

δ is the skidding angle and the coefficients B,
C, D, E, ∆Sh, ∆Sv are fitting parameters that are
dependent on the following factors:

• The load on the wheel
• The conditions of the surface of contact
• The camber angle of the wheel
The relations between the above coefficients and

the 3 factors can be found in the literature [9].

C. Relating Traction Force to Configuration vari-
ables in a Snakeboard

We will assume for a Snakeboard that the distance
that separates the two wheels of the same wheelset
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is very small so that we can model the wheelset as
a single wheel that is allowed to roll and is actuated
by rotating it around a vertical axis perpendicular to
the X-Y plane. This allows us to express the lateral
traction force at the center of the wheelset to the
skidding angle δ as shown in Fig. 4.

We now relate the skid angle to the variables of
our system. The skidding angle δ can be defined, as
shown in Fig. 4, as

δ = arctan

(
v1
v2

)
(5)

where v1 is the velocity due to skidding along the
wheelset axis, and v2 is the velocity of the wheelset
perpendicular to its axis (its velocity in the ideal
case). These two velocities can be related to the
configuration velocities and variables through

v1 = Lβ̇ cosφ (6)

v2 = ẋ cos(θ + φ) + ẏ sin(θ + φ) + L(β̇ + θ̇) cos(φ)
(7)

Now we have related the lateral traction force
on the wheels to the configuration variables and
velocities, and we end up with eight equations
in eight unknowns system which can be solved
numerically.

IV. SIMULATION AND RESULTS

In order to analyze the new dynamics model that
is presented by our model, we will simulate its
response under certain inputs and compare it with
the Rayleigh dissipation function model.

We numerically solve the equations of motion
where the torques of the actuated degrees of free-
dom are equated to the following PD controller

τr = Kp(ψd − ψ) +Kd(ψ̇d − ψ̇) (8)

τw = Kp(φd − φ) +Kd(φ̇d − φ̇) (9)

where τ is the generalized torque input, ψd and
φd are the desired trajectories of the controlled
variables, and Kp and Kd are the proportional
and derivative gains of the controller respectively.
Throughout the simulations, we keep the following
parameters constant: Jr = 4, Jw = 1, L = 4,
Kd = 25, and Kp = 4.5.

We will vary the mass M of the Snakeboard in
order to study the effect of changing the load on the

Fig. 5. The trajectory followed by the Snakeboard for two different
skidding models on a dry asphalt road. Gait1, Load = 2.54N, Camber
angle = 0.52rad, duration: 35sec

Fig. 6. The trajectory followed by the Snakeboard for two different
skidding models on a dry asphalt road. Gait1, Load = 5.08N, Camber
angle = 0.3rad, duration: 35sec

Fig. 7. The trajectory followed by the Snakeboard for two different
skidding models on a dry asphalt road. Gait2, Load = 5.08N, Camber
angle = 0.3rad, duration: 35sec

wheels on skidding. J is changed as well using the
relation

J = ML2 − Jr − 2Jw (10)

Three different simulations are conducted; Fig. 5
shows the trajectory followed by the Snakeboard,
subjected to gait 1, on a dry asphalt road with a
load of 2.54 N (the weight of the Snakeboard) and
a camber angle of 0.52 rad using the new skidding
model and Rayleigh dissipation function model. Fig.
6 shows the results of another simulation where we
kept the same gait as the simulation 1 but changed
the load (5.08 N) and the camber angle (0.3 rad)
of the wheels. Fig. 7 shows the trajectory followed
by the Snakeboard under the same conditions of
simulation 2 but with changing the gait.

The results of the three simulations shows a great
agreement between the new model and the Rayleigh
dissipation function model.
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TABLE I
TABLE OF INPUTS USED FOR EACH GAIT

Gait φ(t) ψ(t)

1 0.3sin(t) 0.5 sin(t)
2 0.2 0.5 cos(t)

V. DISCUSSION

It is evident from the simulation results that the
new skidding model for the Snakeboard success-
fully accounts for skidding as it gives almost the
same behaviour as the Rayleigh dissipation function
model. The advantages of this new model is that
the coefficients of Pacejka’s magic formula, the key
relationship of this model, are empirical. Thus for
each condition of the system and the environment
around the system, the coefficients that reflect these
conditions can be experimentally derived. [9]

Another advantage is that this new model allows
for more freedom to account for different physi-
cal conditions since the coefficients we mentioned
above are sensitive to various physical conditions,
such as the load on the wheels and the conditions
of the ground in addition to the camber angle of the
wheels.

A. Correlations between the new model and
Rayleigh dissipation function model

In an attempt to correlate the skidding coefficient
of the Rayleigh function ks with the parameters used
in this new model, we varied the parameters of the
new model and get some results for the simulation,
then we tried to find the value of ks which gives
the same response when using Rayleigh dissipation
function model. This allows us to figure out what the
ks coefficient physically reflect. We found out that
Rayleigh model is unable to reproduce simulation
results for certain values of the load, no matter what
the camber angle is. This confirms the extended
flexibility of Pacejka’s parameters.

On the other hand, we noticed that by fixing all
the parameters of the new model and changing only
the D parameter, we were able to reproduce the
same results using the Rayleigh model by varying
the value of Ks. This signifies that Rayleigh model
corresponds directly to road conditions since the
only justification of the constant values of the other
parameters that remained fixed during these testings

Fig. 8. 4th order polynomial curve fitting for the ks as a function
of the parameter D of the new model.

is the change in the coefficients inside these param-
eters [9] which correspond to changes in the road
conditions.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we analyzed the effects of skidding
on a Snakeboard. Based on a previous simple model
for modeling skidding for a 2-wheeled mobile
robot[Sidek cite], we presented a novel skidding
model that accounts for skidding in a mixed system
by adding a rotational variable to the configuration
space and incorporating lateral traction dissipative
forces into the equations of motion using Pacejka’s
magic formula. We simulated the system under
different conditions and for different gaits and com-
pared the results to those of the Rayleigh dissipation
function model. Finally, we discussed how the two
model correlate and compare to each other.

In future work, we envision investigating more
the correlations between the Rayleigh model pa-
rameter and the parameters of Pacejka’s magic
formula. We will also analyze motion planning for
Snakeboards incorporating this model.
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Shape Based Geometric Motion Planning for an
Underactuated Highly-Articulated System

Hadi Salman, Chaohui Gong, and Howie Choset

Abstract—Mechanical systems that use their internal shape
changes to control their movements have always interested the
geometric control community. Snake robots are such systems that
have many internal degrees of freedom and use these internal
degrees of freedom to control their movements. However, the
high dimensionality of these systems makes it very difficult to
control them. We present a geometric solution to control highly
articulated systems using “Shape Basis”. We show how we can
benefit from the Shape Basis technique in order to generate gaits
that move a mechanical system in a desired direction. We apply
these techniques to a snake robot floating in space in order to
generate gaits that reorient this snake in any direction.

Index Terms—Geometric Mechanics, Geometric Control, Lie
Group.

I. INTRODUCTION

THE geometric mechanics community have always
showed interest in studying flying inertial systems that

use their internal degrees of freedom to reorient themselves.
Classical examples include the falling cat system [1], [2] and
satellite in orbit [3]–[6]. In this paper, we are interested in
studying the motion of a highly articulated flying system: the
Unified snake.

Inertial control of systems in the three-dimensional rota-
tional space is difficult due to the global nonlinearity of this
space, in addition to the noncommutivity of the structure of
rotation group i.e. the order in which rotations occur cannot
be interchanged. These systems are also usually underactued
which makes planning their motions difficult, especially for
systems with high dimensional internal degrees of freedom.

Previous reorientation control for inertial systems in free
flight has largely focused on either computational or geometric
methods. Computational approaches, which directly integrate
a system’s equations of motion, succeeded in generating
controllers over a large range of motions. The drawback of
these methods is that they are often black-box procedures
which can potentially return poor solutions without incurring
additional computational complexity. On the other hand, geo-
metric approaches uses structure contained within the system
to provide valuable insight into local control design. For
systems in free flight, this structure is contained within a linear
relationship, derived from conservation of angular momentum,
that maps shape changes to resulting orientation changes
through what is called “the reconstruction equation”[7]. Hatton

H. Salman is with the Department of Mechanical Engineering, American
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C. Gong and H. Choset are with the Robotics Institute at Carnegie Mellon
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Fig. 1. An example of a Highly-Articulated System: the Unified Snake.

and Choset [8], [9] then addressed some local nonlinearity
limitations, faced by previous geometric methods, by deriving
a set of coordinates referred to as “minimum perturbation
coordinates”. Recently, Travers et al. [7] brought the derivation
of minimum perturbation coordinates to the space of three-
dimensional rotations and were able to derive visual tools
that provide the control designer intuition into selecting cyclic
controllers for inertial systems in free flight.

Most of prior work analyzed underactuated systems with
at most 2 internal degrees of freedom. Higher internal DOF’s
systems are usually very difficult to control. In this paper, we
introduce a new technique that uses what is called “Shape
Basis” and benefits from prior grometric methods in order
to control highly articulated systems i.e. systems with high
dimensional shape space. We show how we can generate gaits
that are capable of moving such a mechanical system in any
desired direction. Finally, we apply these technique to a flying
snake robot in order to generate gaits that reorient this snake
robot in any direction

II. BACKGROUND

In this section we very briefly review some basic ideas
and concepts from Lagrangian mechanics and mechanics of
locomotion thorougly covered in [10], [11].

A. The Reconstruction Equation

When analyzing highly-articulated locomoting systems, it is
convenient to separate its configuration space Q into a fiber
space G which represents the position of the system in space,
and a base space M which represents the internal degrees of
freedom of the system i.e. the shape of the system. This allows
us to study how changing the shape of the system affects its
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position. Thus, a configuration variable can be written as q
= (g, r) ∈ Q where g is the fiber variable and r is the base
variable. The configuration velocity is then defined as q̇ =
(ġ, ṙ) ∈ TqQ, the tangent space of the manifold Q at the
configuration q.

For mechanical systems we can define the Lagrangian as a
map from the tangent space of the configuration manifold to
the reals. It is usually defined as the kinetic energy minus the
potential energy of the system. But in this paper, we neglect
the potential energy (since we are analyzing a floating snake
system whose potential energy is zero) and thus we equate the
Lagrangian of the system to its kinetic energy as follows:

L(q, q̇) =
1

2
q̇TM(q)q̇ (1)

where M(q) is the mass matrix. Moreover, in this paper, we
are dealing with systems that don’t have any nonholonomic
kinematic constraints i.e. the equation w(q)q̇ = 0 is trivially
satisfied with w(q), the matrix representing the kinematic
constraints, being zero.

The independence of the location of the inertial frame
when computing the Lagrangian leads to the invariance of
the Lagrangian which allows us to compute the Lagrangian
anywhere along the fiber space. The group identity was chosen
in particular that is,

L((g−1g, r), (TgLg−1 ġ, ṙ)) = L(q, q̇) (2)

where TgLg−1 is a lifted action (a linear map acting on
velocities) as defined in Shammas et al. [10]. Thus we can
define the body representation of a fiber velocity ġ to be
ξ = TgLg−1 ġ.

This allows us to compute the reduced Lagrangian, l(ξ, r, ṙ),
which, according to Ostrowski (1995) [12], will have the
following form

l(ξ, r, ṙ) =
1

2
(ξ ṙ)M̃

(
ξ
ṙ

)
(3)

where M̃ is the reduced mass matrix and will have the form(
I(r) I(r)A(r)

AT (r)IT (r) m(r)

)
(4)

where A(r) is the local connection matrix, I(r) is the local
Inertia Tensor, and m(r) is a matrix that depends only on the
base variables. The importance of the reduced mass matrix is
that it allows us to extract the local connection matrix (which
will help us relate the body velocity ξ to the shape velocity
ṙ) by manipulating sub-matrices of the reduced mass matrix.

The geometric mechanics community has addressed the
question of relating the body velocity of the system ξ to
the shape velocity ṙ). They developed what is called the
reconstruction equation which is of the form

ξ = −A(r)ṙ + Γ(r)p (5)

where A(r) is as before the local connection matrix, Γ(r) is
the momentum distribution function, and p is the generalized
nonholonomic momentum.

Shammas et al. [10] classified mechanical systems into three
categories: (1) Purely Mechanical Systems, (2) Kinematic

Fig. 2. A model of the floating snake that we are analyzing.

Systems and (3) Mixed Nonholonomic Systems while deriving
the corresponding form of the reconstruction equation for
each. In this paper, we are interested in analyzing a purely
mechanical system whose reconstruction equation turns out to
be of the form

ξ = −A(r)ṙ (6)

Thus, for purely mechanical systems, the body velocity of
the system is totally determined by the shape velocity of
the system. This encourages us to study how manipulating
the shape of the system affects its position and how motion
planning in the fiber space can be accomplished by planning
in the base space.

B. Stokes’ Theorem and Height Functions

Stokes’ theorem equates the line integral along a closed
curve on a vector on a space U to the integral of the of the
vector field over a surface bounded by the curve,∮

δΩ

V (u). du =

∫∫
Ω

curl V (u) du (7)

where Ω is a surface on U bounded by δΩ [9]
For the planer case where U ∈ R2, this theorem reduces to

what is called Green’s Theorem, and the curl of a vector field
V on U is defined as:

curl V (u) =
∂v2

∂u1
− ∂v1

∂u2
(8)

Based on this theorem, Shammas et al. [10] defines what is
called a Height Function F(u) on the shape space to be equal
to curl V (u). By plotting and analyzing the height functions
associated with our system, we are able to identify gaits that
produce desired displacements based on some rules of thumb
that are presented in [10]

III. MATHEMATICAL MODEL

In this paper, we will be analyzing a highly articulated
system, the Unified Snake floating in space. This system is
basically made up of modules that are linked using alternating
dorsal and lateral joints as shown in Fig. 1. We are interested
in controlling the 3-Dimensional orientation of this snake in
space since its center of mass will remain fixed under any
change in the shape of the snake. This is due to the fact that
no external forces act on the snake in the outer space.
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In order to find the reconstruction equation and then start
analyzing the effect of the shape of the snake on its orientation
in space, we first model the snake and find its reduced mass
matrix from which we can extract the local connection matrix
as mentioned in Section II.

We will define the orientation of the snake as being the
orientation of the body reference frame attached to one of the
middle links as shown in Fig. 2. The configuration of this body
frame with respect to an inertial frame is represented by the
rigid body transformation g ∈ SE(3). To represent this rigid
transformation, we use 6 parameters: (x, y, z) representing the
position of the body frame, and (α, β, γ) representing the
three rotations along the three frame axes (pitch, roll, yaw)
respectively. These variables constitutes the 6-dimensional
fiber space of the system. The joint angles represent the
internal degrees of freedom of the snake which are responsible
for giving the snake its shape.

Hence, if the snake has n joints, the system has an (n+ 6)
- dimensional configuration space Q = G×M where the fiber
space G is the special euclidean group SE(3) representing the
pose of the body reference frame attached to the snake. The
base space M = S×S× ...×S (n-times) denotes the internal
degrees of freedom of the snake.

The Lagrangian of this system, which is basically the
Kinetic energy of the system, is invariant under group action
as was discussed in Section II. So we choose to calculate the
kinetic energy of the system using the body velocities of the
links. We define the body velocity of the middle link, to which
the body reference frame is attached, as ξ̂0 := g−1ġ where .̂ is
the wedge operator which takes a vector in R6 into the Special
Euclidean space, se(3), and g ∈SE(3) is as defined earlier and
shown in Fig. 2. Also we define ξi ∈R6, i ∈{1, 2, ..., n}, to
be the body velocity of the other links.

Thus, the Lagrangian is defined as

L =
∑

ξi
T

Miξ
i, (9)

i ∈ {0, 1, 2, ..., n}, where Mi is the inertia matrix of the
ith link. Using the rules for the transformation of velocities
between reference frames,as defined in [13], we can express
the body velocity of each of the links in terms of ξ0 and the
joint angles θj as follows:

ξi = Adf−1
i
ξ0 + f−1ḟ , (10)

where fi ∈ SE(3) is the rigid body transformation between
the ith link and the body reference frame attached to the snake.
Also note that f−1ḟ can be written as

f−1ḟ = Jθ̇, (11)

where J is a 6×n jacobian matrix and θ̇ ∈ Rn represents joint
velocities.

Using (9), (10), and (11), we can derive the Lagrangian in
the reduced form, l(ξ0, θ, θ̇), in terms of the fiber and the base
variables. Then as discussed in section II, we can derive the
local connection matrix, A(θ), that relates the body velocity of
the snake to its joint velocities according to the reconstruction
equation in its simplified form:

ξ0 = −A(θ)θ̇ (12)

As we mentioned earlier, we are interested in the controlling
only the reorientation of the snake in space, so we will only
take the last three equations of the system described in (12),
which relate the body rotational velocities of the snake to
the shape velocities, and we ignore the first three equations
which relate the body translational velocities of the snake to its
shape velocities. Hereafter, when we refer to (12), we consider
a three-dimensional body velocity ξ0, related to the shape
velocities θ̇ through a 3×n local connection matrix A(θ).

IV. SHAPE BASED GAIT GENERATION

In order to control the reorientation of the snake through
changing its shape, we define a gait G to be a closed curve
in the shape space, M, of the snake. These gaits are set to be
cyclic in order for the snake to retain its original shape after
each period of time.

To see how shape changes reorient the snake, we integrate
(12) with respect to time. For each row, the left hand side
yields a change in the rotational body coordinates of the snake
(body velocity integral), and the integrand of the right-hand
side becomes a one-form [10]. Unfortunately, the one-form
for the snake system does not simplify to the simple case
of Green’s theorem as discussed in section II. Thus we are
not able to use the height functions techniques to generate
gaits as shammas et al. [10] proposed. This is basically due
to the high dimensionality of the shape space of the snake (n-
dimensional). This paves the way for what is called ”Shape
Bases” in order to reduce the high dimensionality of the shape
space and allow us to use the Height Functions techniques for
motion planning.

A. Shape Basis
To reduce the high dimensional shape space of the snake,

we choose to control the snake by giving it certain shapes
i.e. we use a time variant function that depends on only two
parameters two control the whole joint space. Thus by varying
these two parameters, we control all the joints of the snake
giving the snake a certain shape. The general form of such a
function is:

r(n, t) = θ(n, t) = σ1(t)β1(n) + σ2(t)β2(n), (13)

where n is the joint index, t is the time, r(n,t) is a base
variables, σ1 and σ2 are two functions depending on time
(together defines a parametrization of a gait in the base space),
and B={β1, β2}, which consists of two functions depending
on the joint index n only, represents the ”shape basis”. For
every gait, the shape basis remains the same, giving the U-
snake some shape, whereas the two parameters σ1 and σ2

change with time in order to reorient the U-snake in a certain
direction.

B. Example: Serpenoid Curve
As an example of a function that constitute of a shape basis,

consider the serpenoid curve, which is widely used to control
the U-snake and enable it to mimic the biological snakes’
movements. One form of the serpenoid curve is given by:

θ(n, t) = sin(ωt+ Ωn), (14)
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(a)

(b)

(c)

Fig. 3. The orientation of the snake at three different instants of times for
a certain shape basis and a specific gait. Notice the same kind of shape that
the snake takes at the three instants of time; that is how a shape basis works.

where ω is the temporal frequency, which depicts how much
time the U-snake needs to repeat its shape, and Ω is the spacial
frequency, which depicts after how many joints the U-snake
repeats its shape. Using simple trigonometric relations, we can
derive the following relation:

θ(n, t) = cos(ωt) sin(Ωn) + sin(ωt) cos(Ωn). (15)

Comparing (13) and (15), we see that the shape basis in
this example is {sin(Ωn), cos(Ωn)}, and the controlling
parameters σ1 and σ2 are cos(ωt) and sin(ωt) respectively.

To have an idea of what a shape basis yield to, consider
a U-snake consisting of 8 links. We control the snake by
using the shape basis B = {sin(Ωn), cos(Ωn)} with Ω = π

3 ,
and consider the gait defined by the parametrization {σ1 =

π
8 (2 sin(t) + sin(2t)), σ2 = π

8 (2 sin(t) − sin(2t))}. Three
different snapshots at three different time instants are taken
for this simulation and are shown in Fig. 3. Notice that the
snake takes a certain shape during the simulation which is
directly a result of the shape basis choice.

C. Height Functions

The most important advantage of a shape basis is that
it enables us to regain the ease of using height functions
techniques to generate gaits that drives the system in a desired
direction. This is due to the fact that the shape basis technique
maps the n-dimensional base space to a two-dimensional base
space. By using the chain rule, we can reformulate the integral
of the reconstruction equation as follows:∫ t1

t0

ξ0 dt = −
∮
G

[
A(θ)

∂θ

∂σ

]3×2

dσ, (16)

where theta is as defined in (13) and σ = (σ1, σ2) ∈ R2 is
the new base controlled shape space. Notice that the quantity
inside the brackets is a 3×2 matrix. Thus, the use of a shape
basis converts the hard problem of solving the integral in
(16) using Stokes’ Theorem to an easy problem that is solved
using Green’s theorem as discussed in Section II. The Height
functions in this case are defined as the curl of each of the
rows of the matrix inside the brackets. Thus each shape basis
leads to three height functions. After that, we analyze these
height functions and generate gaits that will lead to desired
motions similar to what Shammas et al. [10] did.

V. GAITS FOR REORIENTING THE FLOATING SNAKE

As an application of the above techniques, we choose to
simulate an eight link U-snake floating in space. We are
interested in rotating the snake in the pitch, roll, and yaw
directions, so we generate three different gaits (G1, G2, G3)
that fulfill these motions.

We choose to use the shape basis that is used in a serpenoid
curve {sin(Ωn), cos(Ωn)}, but we vary the spacial frequency
until we get nice height functions that allow us to build the
appropriate gait for the appropriate motion. For example, in
order to rotate the snake in the pitch direction, we choose
the spatial frequency Ω= π

3 , and we generate the gait G1

represented by a parametrization {σ1 = π
8 (2 sin(t) + sin(2t)),

σ2 = π
8 (2 sin(t) − sin(2t))} in a way so that it envelops

a nonzero volume only under the first height function cor-
responding to the first row of the 3×2 in (16). The three
height functions, corresponding to this case, are shown in
Fig. 4 as the first three rows of the first column. The green
color reflects positive regions whereas the blue color reflects
negative regions.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Fig. 4. Three sample gaits, (G1, G2, G3) that were designed to rotate the U-snake along each of the three rotation axes. The first column depicts a gait
that rotates the U-snake around the x-axis(pitch), while the second and third rows depict gaits that rotate the U-snake around the y-(roll) and z-(yaw) axes,
respectively. The first three rows of each column depicts the three height functions associated with the snake for each of the gaits. The forth row of each
column depicts a time simulation of each gait where the rotations around each axis are plotted versus time. The last row of each column shows the initial
and final orientations of the U-snake for each gait represented by the transparent and opaque graphics respectively.
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The forth row represents the evolution of the fiber variables
as a function of time. Notice the nonzero change in α (pitch)
and the zeros net change in β (roll) and γ (yaw) at the end of
the simulation. Similarly we generate gaits to rotate the snake
in the roll an yaw direction. The corresponding characteristics
if the three gaits listed in Table 1.

TABLE I
TABLE OF INPUTS USED FOR EACH GAIT. THE SHAPE BASIS USED IS

B={sin(Ωn), cos(Ωn)}

Gait Ω σ1(t) σ2(t)

G1 π/3 π
8

(2 sin(t) + sin(2t)) π
8

(2 sin(t)− sin(2t))
G2 π/16 0.7(sin(2t)) −0.7(cos(2t))
G3 π/2.6 0.85 sin(4t) sin(2t)

Therefore, we are able to reorient the snake in any desired
direction as depicted in Fig. 4.

VI. CONCLUSION

In this paper, we presented a new way to deal with the
high dimensionality of the shape space of highly articulated
systems. We defined what is called a Shape Basis and showed
how this basis can reduce the base space from its high
dimension to a two-dimension base space for which it becomes
easy to apply the Height functions techniques for motion
planning proposed by Shammas et al. [10]. We applied this
new technique on a Unified snake floating in space in order
to reorient it in any direction we want. Finally we built three
gaits that rotates this snake in the pitch, roll and yaw directions
simply by looking at the height functions associated with the
system.
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Abstract: the Navlab group has developed a smartphone-based 

system for infrastructure inventory and assessment. The system 
collects images from a vehicle and analyzes the images to find 
road distress and other infrastructure problems. One issue with 
the collected images is that they often contain vehicles. These 
vehicles not only obstruct the view, but there are also privacy 
concerns. It is desirable to either discard images with vehicles or 
to black out the corresponding areas in the images. 
In this work we implement and train a vehicle detector using 
standard computer vision tools to solve that issue. The detector is 
reasonably fast and performs comparable to the state-of-the-art. 
We also determined how many training examples we need to use 
to train a classifier with good performance. 

Index Terms—vehicle detection, Haar, Adaboost, smartphone, 
OpenCV 
 

I. INTRODUCTION 
T is a tedious and error-prone work to assess road damage. 
This is currently done by human inspectors.  By developing a 

machine vision algorithm based on smartphone-collected video 
to replace this work for human inspectors, we can monitor city 
road conditions automatically with a much lower cost. An 
algorithm using that method has been developed by Navlab [1]. 
However, vehicles on road tend to obstruct the view as well as 
raise privacy concerns. The location of the vehicle at a given 
time is personal information. When we build our road dataset 
we do not want to include that information in it. To address this 
issue, we can use another machine vision algorithm to detect 
vehicles and then black out the regions covered by vehicles or 
simply delete those images with vehicles. In this way we can 
not only improve the accuracy, but also the privacy of other 
drivers is respected. 

Vehicle detection by itself is an important issue of computer 
vision. Besides vision, other ways such as radar and lidar [2] for 
vehicle detection have also been studied in literature. Though 
radar sensing works well for detecting and tracking preceding 
vehicles in the ego lane, it cannot provide wide field-of-view. 
As we want to detect all the vehicles in the view, radar is not 
suitable for our application. Lidar sensing provides a much 
wider field-of-view than radar and is not sensitive to noise  
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Science and Technology in Jiangsu Province, China. His major is Computer 
Science and Technology. Email: minghanwei19@gmail.com. 

This research was conducted at Carnegie Mellon University under the 
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except precipitation. The influence of precipitation can be 
solved by collecting data at different time and weather, but the 
cost remains a problem. Though the price of lidar sensing 
continues to drop these years, it will still be too expensive to 
install lidar sensing on all vehicles described in [1] to collect 
road information data. So the choice of lidar is rejected as well. 
As the Navlab project uses a machine vision algorithm to detect 
road distress automatically, we will focus on the detectors 
based on vision.  
  There have been several well-designed algorithms to detect 
vehicles. The performance of ‘HOG+SVM’ and ‘Haar + 
Adaboost’ in detecting vehicles is examined in [3]. [4] shows 
combining integral channel features with a standard boosting 
algorithm to detect pedestrians can outperform other existing 
algorithms, from which we can expect ICF could also have 
better performance when dealing with vehicles. [5] described 
an object detection system based on mixtures of multiscale 
deformable part models. It gets good performance on PASCAL 
2006 database. 
  As mentioned, our primary goal is to black out regions in an 
image covered by vehicles or to discard images with vehicles in 
them as a pre-processing step for road distress analysis. In this 
application, high recall rate is important as we want to black out 
all the regions of vehicle or to discard all images with vehicles. 
We get road data from the same stretch of road many times and 
these images have overlapped areas. We can disregard many 
images so that higher false positive are acceptable. The speed of 
processing images should be less than one second on each 
image. We use OpenCV, a free open source library, as our 
computer vision tools to implement the algorithm. 
Precision-Recall curves are drawn to evaluate the performance. 
We compare it with the performance of [3]. In the evaluation 
we also note how many training samples we used, as an 
indication of how many samples are needed to come out with a 
practical detector.  

II. FEATURE AND LEARNING ALGORITHM 
The method to detect objects is to extract Harr features of a 

certain class and then use Adaboost learning algorithm.   

A. Haar Wavelet 
Research in computer vision has shown that Haar feature is 

powerful for object recognition [6].  We do a brief review of 
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Haar feature here. 
A Haar-like feature can be defined as the difference of the 

sum of pixels of areas, which can be at any position and scale 
within the original image. The relative position of areas is 
shown as Figure 1. The values indicate certain characteristics of 
a particular area of the object of a certain class. Then these 
values can used to represent an object class and learned by a 
machine learning algorithm. 

When the edges of the rectangles used to calculate Haar 
features are parallel to the edges of the boundary of the image, 
(such as 1(a), (b) in Figure 1), Haar features can be quickly 
calculated using integral image [7]. Let I be the original image. 
Then the integral image, II, at x, y contains the sum of pixels 
above and to the left of x, y. 

 
                        ),(),(
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   Figure 1: the relative position of two areas which are used to calculate Haar    
                  feature. 
 
With integral image, we can calculate the sum of a region 

rapidly. Take Figure 2 as an example: 
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           Figure 2: An example of rectangles used to calculate Haar features.  

 

B. Adaboost 
Adaboost algorithm trains a cascade classifier consisting of 

subsequent weak classifier. Each weak classifier can be seen as 
a stage. A window will be rejected immediately when it fails in 
one stage, which will speed up the detection because not all 
windows need to be calculated in all stages. Only windows 
which pass all the stages will be regarded as a target. More 
details for Adaboost can be learned in [9]. 

 

III. PREPARING TRAINING SAMPLES 
  To use OpenCV function to train a classifier, we need to 
prepare samples and make description files in a certain format. 
A detailed instructions for how to prepare can be found online 
at [10]. Here we provide some additional details for our case.  
  Figure 3 shows four positive samples we collected. Our 
positive samples are mainly from the KITTY database which is 
available at [8]. We crop out vehicles using the ground truth in 
the database. We do this because not all vehicles in the dataset 
is suitable as training samples. Some vehicles in Kitty database 
are too small. Some others look too dark due to the shadow. 
After we have cropped all vehicles and chosen those suitable as 
positive samples, it is easy to generate the text file which 
describe the information of these vehicles using C code.  

 

 
Figure 3: four positive samples. We collect samples from front, back and side 
views from a vehicle.  
  
  All the positive samples will be resized to a user-specified size 
before extracting Haar features.  Complete Haar features can be 
saved if we extract Haar features at the original size and in that 
case the features we get are the most representative. However, 
the size of Haar features to be extracted from the image will 
increase exponentially with the increase of the size of the 
image. If we choose original size or the average of the original 
size of all positive samples, the training process will take too 
long. On the other hand, different vehicles tend to have 
different appearance. If we compute Harr features at a lower 
resolution, it is easier to get some common features of different 
vehicles. Our experiment shows that 24*18 pixels (width* 
height) is a good choice 

IV. TRAINING AND DETECTING 
 Detailed instructions of how to use this function can also be 

found at check [10]. The number of negative and positive 
samples used in each stage should be a little less than the total 
number we collected. In the evaluation part, we will discuss 
how to optimize these parameters used in the training function 
to generate a better classifier.  

The following diagram shows the flow chart of the detection 
work. We implemented it in C code. 
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Figure 4: The flow chart of the program 
 
When detecting vehicles, a sliding window will move across 

the image of different scales. We amended the original 
detection codes of OpenCV so that the detection result could be 
more accurate. A sample result is shown in Figure 4. 

   

 
Figure 4: Green, thick bounding boxes indicate a detection with high 
confidence. Other boxes’ confidences are lower. A precision-recall curve could 
be draw by adjusting the threshold for detection. 

V. EVALUATION OF THE PERFORMANCE 
We trained a few classifiers with different parameters. We do 

this because we want to examine by experiment how to get 
better classifiers with OpenCV. Our test set is from a publicly 
available dataset which can be found online at: [10]. This is a 
relatively challenging dataset. It is captured in rush hour. There 
are many vehicles to be detected and the shadow may cause 
false detection. It takes 0.6s to process a 704*480 image. Figure 
6 shows the performance of the classifiers we trained. We 
tested on this database to see if our algorithm could get good 
results when applying to a different environment. 

 

 
       Figure 6: the performance of the classifiers we trained. We will explain           
                        why we choose ‘1-precision’ as x-axis later. 

 
We use PASCAL criteria [12] to evaluate our results. That is: 

a detection is regarded as correct if: 
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         (3) 

 
The following table shows the differences between these 

classifiers. 
 
Sequence 
number 

Positive 
samples 
used in 
each stage 

Negative 
samples 
used in 
each stage 

Number 
of stages 

Total 
samples 
(positive+ 
negative) 

1 3000 7000 15 19139 
2 3000 7000 20 19139 
3 3000 7000 25 19139 
4 3000 7000 20 18381 
5 2000 6000 20 18381 
6 3000  7000 20 10600 
               Table 1: the differences between the classifiers in Figure 6 
 

From these curves we can conclude: 
a. Number of samples used in each stage will make a big 

difference. More samples used in each stage, better the 
performance will be (compare curve 4 and 5.). 

b. More training stages does not guarantee better results 
(compare curve 1, 2, 3). In our application, 20 stages is 
preferred due to its higher recall. 

c. On the one hand, compared with number of samples 
used in each stage, the total number of samples plays a 
less significant role (compare curve 2, 4). On the other, 
our positive samples should be representative (not too 
dark, even sunlight) for vehicles. We delete some 
positive samples which are labeled as vehicle in the 
original database but either too dark or truncated from 
the training set from a total of 19139 to 18381. Overall 
the training set of 18381 have better performance. 

  To make a comparison between our curves and the 
start-of-the-art Haar + Adaboost classifier and examine if 
OpenCV can make the best of Haar + Adaboost, we put 
together our best curve with curves from the literature [3].  
Figure 7 shows the comparison. Because in [3] the x-axis is 
‘1-precision’ and we want to put the original curve from [3] 
into our figure, we also use ‘1-precision’ as our axis here.  
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Figure 7: The best curve we with the performance from a   literature.   Another    
curve from [5] using DPM and tested on another database is also   provided. 
 

The ‘QBC’ and ‘QBM’ are different strategies to query 
samples for retraining. In [3], an initial classifier is trained and 
then adds more samples to the training set to retrain the 
classifier. One way to get more samples is called ‘query by 
confidence (QBC)’. Windows with a confidence near the 
deciding boundary are usually the most informative. The initial 
classifier was tested on a database and those windows with a 
confidence close to deciding boundary was add to the training 
set. The other strategy, ‘QBM’, which stands for ‘query by 
misclassification’, also tests the initial classifier on a new 
database but needs human labor to pick out those windows 
which are classified wrongly. Those false detections will then 
be added to the training set. The process of querying samples 
using ‘QBC’ takes less time than ‘QBM’, cause ‘QBM’ usually 
needs human monitors to decide if a window is classified 
wrongly. 
  Our classifier in Figure 7 is an initial one which does not take 
advantage of retraining.  The performance of our classifier is 
better than the black and purple curve in Figure 7, comparable 
to the black one. Though it is not as good as the green one, we 
can expect that the classifier we trained using OpenCV function 
could gain performance as good as state-of-the-art Haar + 
Adaboost classifier by retraining. We also include the 
performance of a classifier trained with deformable parts model 
algorithm [5]. It is tested on another database. 
  Figure 8 and 9 shows the typical failure cases of our classifier.  
We discuss these failure cases here to see if these false 
detection will significantly undermine our application.  
 

   
Figure 8: The example of false positive 

 
Figure 9: The example of false negative 

   
  False detection are usually caused by vegetation along the 
road. The area interested in [1] is road. So the false positive 
outside the road area will not affect the analysis. Meanwhile, 
we found that in a video the false positive in a frame will not 
appear in the next frame. By relating the detection results of 
adjacent frames this kind of false could be solved. The other 
kind of fault is false negative. For example, in Figure 9 two 
vehicles are missed. Most vehicles are missed because they are 
far away from the view and look too small.  By limiting road 
distress analysis to areas close to the view, those missed 
vehicles will not matter much. Since the vehicle which is 
described in [1] to collect data will drive along the road, 
limiting the analysis area will not miss any place on the road.  

VI. CONCLUSION & FUTURE WORK 
     By experiment we found that OpenCV is an effective tool to 
do detection work. The feature OpenCV used is Haar and it is 
learned using Adaboost learning algorithm. The performance is 
comparable to state-of-the-art Haar+Adaboost classifier and 
satisfies our application. 
  We still want to get better performance. One way we can do 
this is to take advantage of the retraining process. Using 
querying by confidence or querying by misclassification, we 
are able to collect more training samples to train better 
classifiers. 
  Another way we can do this is to seek other methods to detect. 
DPM [5] has the potential to outperform Haar + Adaboost 
classifier. It is not implemented in OpenCV. But another 
computer vision library which can be found online [11] has 
implemented them. We will try to prove that. 
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Abstract—This paper addresses the development and methods 
of pedestrian detection we used, and couple of experiments based 
on these methodologies. Pedestrian detection is a key problem in 
computer vision, with several applications that have the potential 
to positively impact quality of life and pedestrian detection was 
developed rapidly during last decades. HAAR feature and HOG 
feature are two important features for object detection. INRIA 
and CVC are two of outstanding pedestrian databases which used 
in many famous experiments of pedestrian detection. We utilize 
these two features and these databases to train our pedestrian 
classifiers and analyze images under OpenCV. We evaluate 
results using miss rate and false positive per image. Our study 
provides a framework for gauging future efforts. Our 
experiments show that performance still has much room for 
improvement. In particular, detection is disappointing at low 
resolutions and for partially occluded pedestrians. 

 

Keywords—pedestrian detection; computer vision; HAAR; 
HOG; classifier; OpenCV; miss rate; false positive per image; 

 

I. INTRODUCTION 
edestrian detection is defined as: check pedestrians in the 
input images (or video frames), if there is, give location 
information. It is the first step of vehicle auxiliary driving, 

intelligent video surveillance and human behavior analysis. In 
recent years, pedestrian detection is also used in the emerging 
fields, such as aerial images, victim rescue. Pedestrians have 
both rigid and flexible object characteristics, and the 
appearance is easy to be influenced by wearing, scale, 
shielding, attitude and angle of view, which makes it difficult 
and hot spot to develop pedestrian detection[1].   

The topic of this RISS project is pedestrian detection in 
images. There are many machine vision approaches for 
detecting pedestrians. We want to use OpenCV tools to 
implement, train, and evaluate detectors using Haar and Hog 
features. Under the environment of opencv, we need to collect 
positive and negative images, train cascade classifier, detect  

 

 

and localize upright people in static images. 

Challenges of pedestrian detection:  

a. Wide variety of articulated poses  

b. Variable appearance/clothing 

c. Complex backgrounds 

d. Unconstrained illumination 

e. Occlusions, different scales 

Applications of pedestrian detection: 

a. Pedestrian detection for smart cars 

b. Film & media analysis  

    c. Visual surveillance 

II. DATASETS 
    We trained our classifier with three different positive 
datasets. And we collected large number of negative samples 
from Internet. 

A. INRIA pedestrian database 
The first is the well-established INRIA pedestrian database, 

containing 3506 64×128 images of humans cropped from a 
varied set of personal photos.  It contains various views with a 
relatively large range of poses. Fig. 1 shows some samples. The 
people are usually standing, but appear in any orientation and 
against a wide variety of background image including crowds. 
Many are bystanders taken from the image backgrounds, so 
there is no particular bias on their pose.  
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Fig. 1.  Positive samples, which are 64×128 images of humans cropped from a 
varied set of personal photos. 

B. CVC02 pedestrian database 
CVC-02 consists of 2054 images of humans. The imagery 

has been recorded in urban scenarios around Barcelona (Spain), 
using a Bumblebee color stereo camera with resolution 
640x480 pixels and 6mm focal length. The annotated 
pedestrians are in the range from 0 to 50 m from the camera, 
which corresponds to a smallest pedestrian of 12x24 pixels. 

C. CVC07 pedestrian database  
This dataset contains 4824 pedestrian images. The pedestrian 

images have frontal view and left view, which are annotated as 
‘M’ and ‘L’. You may flip the pedestrians to get right view 
examples. Part annotations are also provided. 

III. METHODS 

A. Training the classifier 
At first, we need to use enough positive and negative images 

we collected before. We put them into separate folders. For 
convenience, we should use numbers to name these images in 
order properly. Secondly, for each folder, we need to create a 
txt file to describe images in it. Each line of the contents in 
'pos.txt' (the txt to describe positive images) should be like this: 
whole image’s name, number of targets x position(left top) and 
y position(left top), width, height. The number of lines of the 
file should correspond to the number of images. The txt file to 
describe negative images is simpler. We only need to include 
name of the images in each line. Then we need to use openCV 
function ‘opencv_createsamples’ utility to create positive 
samples. At last, we train the cascade classifier. The function to 
train classifier is called ‘opencv_traincascade’. The basic 
parameters are explained here: 

-data: the path to store the output classifier.   

-vec: the path off the positive description file we get from 
last step. 

-bg: the path of the txt describing negative samples.        

-numStages: number of cascade stages to be trained.    

-w -h : should be the same as last step. 

-numPos: number of positive samples in each stage. It should 
be smaller than the whole quantity of positive samples. 

-numNeg: similar to numPos. 

numPos, numNeg, numStages will affect the time of training 
and performance of the classifier. 

Usually, the larger of these parameters, the longer time 
consumed to train, and the better performance we get.  

Now we can get a classifier named 'cascade.xml'. 

B. Haar-like feature 
     Haar-like Feature are the difference of the sum of pixels of 
areas inside the rectangle, which can be at any position and 
scale within the original image. 

Haar-like features are divided into three categories: edge 
features, linear features, central features and diagonal features, 
which are composed of feature templates. Fig. 2 shows these 
three categories. The feature template has two rectangles：white 
and black. Haar eigenvalues reflect the gray level of the image. 
Such as facial features can described by a simple rectangle 
features, such as: The color of eyes is darker than the color of 
the cheek, the color of both sides of the nose is darker than the 
color of nose, the mouth is darker than the surrounding color. 
But the rectangular feature is sensitive to some simple graphics, 
such as edges and line segments, so it can only describe the 
structure of a specific trend (horizontal , vertical, diagonal).  

One of the commonly used techniques is the integral image. 
Integral image is a matrix of the same size as the original image, 
and the value of each element is the sum of all the pixels in the 
upper left corner of the image.  

sum = pt4 - pt3 - pt2 + pt1 

 

Fig. 2.  Three categories of Haar-like feature. 

C. Hog feature 
The full name of Hog is histogram of oriented gradient 

which is a feature descriptor used for target detection. This 
technique counts the number of times of the image local 
orientation gradient. The method is similar to the edge direction 
histogram and scale-invariant feature transform, but the 
difference is that the hog is based on the consistent space of the 
density matrix to improve the accuracy. Navneet Dalal and Bill 
Triggs proposed HOG in 2005 CVPR for the first time, in order 
to use it in static image or video of pedestrian detection[2]. 

The core idea of HOG is that the shape of the detected object 
can be described by the intensity gradient or the edge direction. 

109



The whole image is divided into small connected regions (cells), 
each cell generating an orientation gradient histogram or the 
edge direction of pixel in cell. The combination of these 
histograms can express descriptors. In order to improve the 
accuracy, the local histogram can be standardized by 
calculating the intensity of a large area (block) in the image as 
measure. And use this value (measure) to normalize all cells in 
this block. Fig. 3 shows the processing chain of hog-svm 
classifier training and Fig. 4 shows the processing of hog 
feature extracting. 

 
Fig. 3.  Processing chain of hog-svm classifier training. 

 

Fig. 4.  Processing of hog feature extracting. 

IV. EXPERIMENTS 

A. Overview of experiments 
Based on Haar-like feature, we tested the dependency of the 

classifiers on the number of training samples and the number of 
stages. We did four experiments and got their results. And we 
used miss rate and false positive per image to express the 
detection results. We also compared our results with the results 
in the paper[1]. In the paper, they evaluated different methods to 
detect pedestrians. The average analysis time per image is 
300ms. 

In the first and second test, we used the same database 
consisted of INRIA and CVC02, and the number of stage in 
these two tests both are 20. We used 1000 positive images and 
8089 negative images in the first test and we took advantage of 
800 positive images and 2400 negative images per stage. In the 
second test, we used 5560 positive images and 16552 negative 
images, and the numbers of positive and negative images per 
stage are 4000 and 12000. In the third and fourth test, we chose 
a different database. It is made up of INRIA and CVC07. We 
used 8330 positive images, 29552 negative images, 7000 
positive and 21000 negative images per stage in third and 
fourth test. The number of stage in the third test is 20, but in the 
fourth test, we used 25 stages. 

TABLE I 

DATA OF TESTS  

Test Database Total  Pos 
Num 

Pos  Num 
per Stage 

Total 
Neg Num 

Neg Num 
per Stage 

1 INRIA&CVC02 1000 800 8089 2400 

2 INRIA&CVC02 5560 4000 16552 12000 

3 INRIA&CVC07 8330 7000 29552 21000 

4 INRIA&CVC07 8330 7000 29552 21000 

Test Training Time Stage Curve 
Color 

1 12 hours 20 red 

2 42 hours  20 green 

3 73 hours 20 blue 

4 95 hours 25 orange 

 

Additionally, we used an OpenCV pre-trained classifier 
called ‘hogcascade_pedestrians.xml’ to test the hog feature. 
The results of all experiments are showed in the next part. 

We tried to extract hog feature from images and trained an 
hog-svm classifier. However we did not get a satisfactory result 
for some reasons, such as time, algorithm, etc.  

B. Results of experiments 
Fig. 5-Fig. 9 shows the examples of result of our five tests. 

The green rectangles express the detected pedestrians. 
Pedestrians without green rectangles are false positive which 
we lost in the detections. 

 
Fig. 5.  First test example. 
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Fig. 6. Second test example. 

 
Fig. 7. Third test example. 

 
Fig. 8. Fourth test example. 

 
Fig. 9. Pre-trained classifier test example. 

C. Detection Results Curves 
The curves in Fig. 10 show results of our five experiments, 

the curves in Fig. 11 show the comparison of our best result and 
the results in the paper[1]. The results in the paper are better than 
our experimental results, we also need to consider some other 
effects, such as the difference of test samples.  

 
Fig. 10. Per image results of our five results. 
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Fig. 11. The comparison of our best result and the results in the paper. 

 

V. CONCLUSION 
This paper describes our work of pedestrian detection from 

database, methods and experiments. In recent 10 years, 
pedestrian detection and computer vision developed rapidly, 
various methods had been proposed to improve the results. We 
used several easiest methods to detect pedestrian in the 
complex environment. 

After study, we got some results in computer pedestrian 
detection. During this process, we did lots of experiments and 
trained couple of classifiers. More samples, better results. 
Actually, the accuracy of experiments still has enough space for 
further improvement.  
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