Predicting orientations under manipulative actions
Carnegie
Mellon
Ratnesh Madaan, Erol Sahin, Robert Paolini, Matthew T. Mason

Introduction

$>$ What is the final orientation of an object when a robotic gripper does an action on it?
$>$ How can we represent uncertainty over the space of rotations - $S O(3)$?

Consider a cube dropped by a gripper Predict the face on which it falls - Classification Predict the angular displacement - Regression

The Bingham Distribution

> Antipodally symmetric probability distribution over a hypersphere.
$>$ Derived from a zero mean Gaussian on R^{d+1} constrained to lie on $S^{d} \subset R^{d+1}$

Bingham pdfs over S^{1} and S^{2} with varying concentration parameters

$(0,0,0)$

$-900,-900,-20) \quad(-900,-900,-900)$
For visualizing a quaternion Bingham distribution (over s^{3}), we can rotate a reference point (yellow) around the origin of a sphere by
corresponding to sampled quaternions.
The final position of the reference point is shown by the various points. The concentration parameters are corresponding to eigen-quaternions, which are
equivalent to zero rotation about X, Y and Z axes.

Reduced problem for parallel grippers

Simulation Results

> Dropping with random orientations (GPML) Classification accuracy $=90.53 \%$

	1-nearest neighbour	SLERP (quaternion interpolation)	Gaussian Process
Mean	13.29°	15.79°	0.61°
Std Dev	17.51°	41.72°	2.69°
Max	132.99°	179.98°	7.22°

> Parallel jaw gripper (NPCirc)

Angle of plane with horizontal	Face $\left(0^{\circ}\right)$	Edge($\left.45^{\circ}\right)$	Edge $\left(30^{\circ}\right)$
Classification	100%	56.72%	81.09%
Mean	$2.24599-04^{\circ}$	1.21°	0.29°
Std Dev	0.0033°	2.87°	1.39°
Max	0.0111°	10.85°	5.09°

Future Work

$>$ Regression in SE(3).
$>$ Improving classification accuracy.
References

[^0]
[^0]: MIIJ. Glover, "The Quaternion Bingham Distribution, 3D Object Detection, and Dynamic Manipulation," PhD Thesis, Massachusetts Institute of Technology, 2014
 22 M. Langs, O. Dunkley, and S. Hirche, "Gaussian processs kernels for rotations and $6 d$ rigid body motions," in IEEE 31 Guerrero, P. "Circular Regression Base Automation (ICRA), 2014
 ${ }^{31}$ Guerrero, P, "Circular Regression Based on Gaussian Processes", ICPR, 2014.
 ARedel, , Sebastian, "Bayesian Orientation Estimation and Local Surface Informativeness for Active Object Pose
 5J Oliveira, Marra, Rosa M. Crujeiras, and Alberto Rodriguez-Casal. "NPCirc: An R Package for Nonparametric Circular

