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Introduction 
 

•  The dependence structure among random variables (RVs) plays 
an instrumental role on how  we compute joint density functions. 
Studying these underlying dependencies has gained popularity in 
finance, insurance, hydrology and medical studies. The boundary 
conditions for these dependencies can be classified as: 

 

•  Comonotonic {if RVs have strong positive dependencies 
•  Countermonotonic {if RVs have strong negative 

dependencies} 
•   Independent {if RVs follow  iid} 

 
•   Existing statistical methods provide guidance on how to 

compute joint for the boundary conditions. In this research we 
show the effectiveness of computational statistical methods in 
synthesizing joint density functions.  

•   Synthesizing travel time density functions in urban 
transportation networks is used as a specific example. 

Results 
•  Without a method that accounts for negative 

correlations, we were still able to generate CDFs that 
display the results relatively well, but not nearly as well as 
routes that did not have negative correlations present.  

•  Adding in the boundary condition for negative 
correlations, and using Monte-Carlo simulation to sample 
from the boundary conditions CDFs (Countermonotonic, 
Comonotonic, and Convolution), the percentiles of the 
composite CDF within 5% of the actual travel time CDF 
went from around 60% to 80%. 

 

Composite CDF Using Countermonotonic 
Boundary Condition 

Composite CDF without using  
Countermonotonic Boundary Condition 

Figure 3) The left figure shows the CDFs formed using the Comontonic Boundary Condition, 
Convolution Boundary Condition, and Countermonotonic Boundary Condition, as well as 

the Composite CDFs of all three, and the actual CDF. The right figure shows the same 
without the Countermonotonic Condition.  
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Methodology Continued 

•  Three CDFs are created assuming each boundary 
condition, and then sampled using proportionality 
constants α, β, and γ to create the composite CDF. 

•  It had already been discovered that for a road segment 
with no negatively correlated links, such as stretch of 
highway, the composite CDF of the Comontonic Boundary 
Condition and the Uncorrelated Boundary Condition 
produces a CDF in which around 80% of the percentiles 
are within 5% of the actual trip time CDF. 

•  In order to model all scenarios, a technique for generating 
composite CDFs for distributions with negative correlations 
had to be developed. 

•   To do this, we combine two link CDFs by adding the CDFs 
according to the relation: 

(X1,…, XN)= d(Fx1
-1(U), Fx2

-1(1-U), Fx3
-1(U),…, FxN

-1(VN)) 

•  After all three boundary condition CDFs were created, the 
composite CDF was created by combining ni random 
percentiles from each CDF using constants α, β, and γ. 

•  n1 =  α * N (Independent CDF ) 

•  n2 =  β* N (Comonotonic CDF) 

•  n3 =  (1 - α – β)* N (Countermonotonic CDF) 
 

•  Clustering of the data by the R-values of the link-pairs was 
used to analyze the effect of this method. 

•  This allowed us to find more trips of similar 
dependencies than simply grouping by time, as 
the R-values can change very quickly with 
different conditions throughout the day. 

 

 

	-----		Link	1		------ 

	-	Link	2	- 
	--------	Link	3	-------- 	------		Link	4		------ 	-----------------	Link	5	

----------------- 

	R12	=	-.37 
	R23	=	.45 

	R34	=	-.14 	R45	=	.78 

	Example	Route Figure 1: On one route 
(in blue), link-pairs can 
have very different R-
values, and are rarely 
-1, 0 or 1.  Therefore, 
traditional stochastic 
methods cannot be 
used 

Figure 2: This diagram 
shows the clustering of 
a three segment trip on 
Penn Avenue. Each dot 
represents a group of 20 
trips organized by time 
of day, with the R-
values given by the X 
and Y axes 
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Conclusions 

•  A combination of statistical and computational methods 
allows  accurate prediction of events that are not feasible to 
predict using either method on its own.  

•  Assuming Countermonotonicity, boundary conditions can be 
created for processes that contain negative correlations.  

Further Research 

•  Our next steps will include finding a way to use the α and β 
conditions to automate the prediction process using real time 
events.  

•  A further step to expand our sampling techniques to deal with 
CDFs that do not follow the traditional mono-modal shape. 
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Cluster	 Composite S-Score using 
-1 Boundary Condition	

Composite S-Score not 
using -1 Boundary 

Condition	

Comontonic 
 S-Score	

Convolution 
S-Score	

Countermonotonic  
S-Score	

1	 78	 61 28 7 7 
2	 71 65 6 15 11 
3	 72 65 10 40 19 
4	 81 79 17 13 18 
5	 79 51 10 16 17 

Table 1) This table shows the S-Scores, or the number of percentiles within 5 percent of the 
corresponding Actual percentile, of the composite CDF using Countermonotonic Boundary 

Condition, the Composite CDF not using the Countermonotonic Condition, the 
Comonotonic CDF, the Convolution CDF, and the Countermontonic CDF. 

Methodology 

•  A network of 43 sensors in Pittsburgh was used to record 
trip times of automobiles, whose individual segment times 
had correlations that ranged from completely negatively 
correlated, to completely positively correlated.  

•  Statistical methods allow one to find the joint density 
function of two random variables if the random variables 
have a correlation coefficient, or R value, of 0 
(uncorrelated), 1 (positively correlated), or -1 (negatively 
correlated). However, R-values of the times of two links on 
a route showed correlation coefficients ranging from -1 to 
1, and were very rarely exactly -1, 0, or 1. 

•  It is also important to note that the correlations can be 
non-linear 

 

•  The boundary conditions (R-values of 1, 0, and -1) can be 
used to create a composite CDF (Cumulative Density 
Function).  

•  Boundary Conditions: The following classifications can be 
made of our system, assuming respective correlations: 

•  If the R-value of two links  is 1, the pair can be 
classified as Comonotonic, and hence the percentiles 
of two CDFs can be added to find the composite 
CDF. 

•  If the R-value of two links  is 0, the system can be 
classified as Independent, and hence a composite 
CDF can be found using Monte-Carlo sampling 
(Convolution) of both link CDFs. 

•  If the R-value of the two links is -1, the system can be 
classified as Countermonotonic. Finding a way to 
combine two CDFs of a Countermonotonic system 
was an aim of this project. 
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