Perceptual Modeling of Icy Surfaces: A Probabilistic Approach to Visualizing Challenging Environments

Introduction
- In space exploration, it is important to create robust 3D maps.
- Icy moons of Jupiter and Saturn might contain water.
- Ice is difficult to model due to light absorption and internal reflection.

Solution: Perceptual model
- High resolution occupancy map with robust sensor model.
- Shows ice/non-ice probabilities.
- Uses data from a stereo depth sensor.
- Adapt existing occupancy mapping software to accommodate model.

Methods
- Episcan3D:
 - Stereo depth sensor.
 - Direction sensitive light-capturing method.
 - Different modes register only direct reflected light, "global" or indirect light, or full-intensity light.
- Octomap:
 - Open-source occupancy grid modeling software.
 - Base OcTree class used as foundation for perceptual model.

Stereo Sensor Model
- We want to address sensor error and remove incorrect depth values.
- Sensor model relates distance measurements to occupancy probabilities.
- Andert’s inverse stereo sensor model:
 - Error scales proportionally to measurement distance.
 - Tunable constants useful for implementation in perceptual model.

Results
- 8 mm resolution 3D Occupancy map, with each voxel (3D pixel) colored by the probability that ice lies at that spot (red is low probability, blue is high probability).

Ice Probability
- The global light image contains indirect light from internal reflection.
- Direct light visible in “current” projected pixel rows.
- Global light visible in non-current pixel rows.
- Ice probability approximated by taking a ratio of the global light to the full-intensity light in each pixel.

Tools

Future Work
- Machine learning algorithms can be applied to improve ice probability estimation algorithm.
- Outdoor trials in a non-control environment.
- Alternate modeling applications:
 - Thermal data.
 - Radiation.

Acknowledgments
- Shantanu Vyas - Sensor calibration and infrastructural support for Episcan software.

References