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At the core of the program are incredibly talented and dedicated faculty, 
graduate students, staff, and RISS alumni.  

We are incredibly thankful for their support, participation, leadership, and 
vision that make this one of the best research experiences in robotics and 
intelligent systems in the world.
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As an RI summer scholar you will be given the opportunity to work on cutting 
edge robotic research. Some of you will be familiar with your lab or the work you 
are doing, for others, this will be a new experience entirely. 

All scholars will work on an individual project and learn how to conduct research 
at the level of a graduate student. More excitingly, scholars will have a chance to 
work with and learn from some of the leading experts in robotics. The program 
ends with a poster session and chance to submit to the RISS Working Papers 
Journal, where you will also learn how to effectively communicate the work that 
you’ve done.

The program is unique in that as long as you have a passion for robotics, all 
applicants will be equally considered. The program will fund students in most 
cases, and it is also one of the few robotics programs that accepts international 
students. Students from smaller schools and schools that don’t have robotics 
programs are considered just as much as students from larger research 
universities.

Why Join RISS ?
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When you are applying, it’s okay if you don’t have extensive experience in 
robotics many of us did not. It’s more important to show that you have a good 
idea of what kind of research you would be interested in and why you are 
passionate about it.

The Robotics Institute offers unparalleled resources that you are expected to 
take advantage of. For any possible topic in robotics that you can think of, it’s 
very likely that you will be able to find someone who is working on it at the RI. 
The program also tries its best to supply any piece of equipment or technology 
you might need in completing your project. 

However, remember to immerse yourself not only in your research, but your 
cohort and the research community. Get to know the projects of your fellow 
scholars, visits labs, and talk to graduate students and professors about their 
work. Learn as much as you can about what it means to be a 
roboticist. 

Furthermore, the small size of the RISS cohort will allow for 
you to get a lot of individual attention and support from the 
program organizers, research mentors, and fellow cohort 
members. 

When conducting research, we encourage you to delve deep and make it your 
own. Take initiative and be sure to remember that research is a collaborative 
process and that you are not alone in your endeavors. Things often take three 
times longer than you expect, so it is important to be disciplined and schedule 
your time. How much you can accomplish and gain from RISS will be dependent 
on this. 
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The RISS program is selective and if accepted, you will be a part of a cohort with 
multi-talented individuals. Take advantage of this and get to know the other 
amazing scholars. They will enrich you greatly as you do the same. We 
encourage you to have fun together! Explore Pittsburgh, attend social events, 
organize sports games. For us, one of the best parts of the RISS program was 
the community and we hope that it will be the same for you too.

Sincerely 
Akanimoh Adeleye Simon Bloch Minae Kwon
RISS Cohort 2016



About the Robotics Institute 
Summer Scholars Program
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Carnegie Mellon’s Robotics Institute Summer Scholars (RISS) program (http://riss.
ri.cmu.edu/) is an eleven-week summer undergraduate research program that 
immerses a diverse cohort of scholars in cutting-edge robotics projects that drive 
innovative and have real-world impact. Launched in 2006, RISS is among the best 
and most comprehensive robotics research 
programs for undergraduates in the world.

The quality and breadth of research, 
high-level of institute and university 
engagement, extensive professional 
development curriculum, graduate school 
application counseling, and alumni network 
create transformative experiences and 
remarkable postprogram trajectories.

The RI Summer Scholars Program: 

1. Immerses a highly motivated and diverse cohort of students (hereafter re-
ferred to as “scholars”) in a guided research process; 

2. Challenges scholars to build an understanding of research philosophy that 
serves as a basis for creative problem-solving that transcends the summer re-
search experience; 

3. Introduces scholars to the highly interdisciplinary nature of robotics and the 
vast potential to impact and improve the world’s quality of life; 

4. Provides professional development components that prepare students for 
successful transitions to graduate school and research careers;
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5. Engages scholars in reflective service learning experience that imparts the 
value of broadening participation and engagement in STEM fields;

6. Inspires scholars to pursue careers in robotics and related fields, such as 
graduate programs, and equips them with new skills and knowledge;

7. Helps scholars to build collaboration and lifelong connections with a 
dynamic global community of robotics researchers and entrepreneurs.

The Robotics Institute at Carnegie Mellon University is the largest university 
affiliated robotics research group in the world. It offers a remarkably diverse 
breadth of research with an extensive range of applications. With hundreds of 
active research projects, together with both graduate and undergraduate 
programs, the Institute is a global leader in robotics research, education, and 
innovation. The Institute has the nationally recognized research capacity, 
educational programming, and student development experience to provide, 
through the RISS  program, high-quality research experiences and a 
developmentally appropriate professional development curriculum to a diverse 
cohort of undergraduate students.

RISS Core Research Areas: 

1.Intelligence: core AI technologies, motion planning, control theory, planning 
under uncertainty, POMDPS, game theory, data mining, and machine learning 

2.Perception: computer vision, stereo processing, understanding ladar and 3D 
sensing, state-estimation, and pattern recognition 

3.Action: work mechanisms, actuators, their design and control
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Recent sample scholar projects have included:
•3D Manufacturing of a Liquid Metal Microchannel for Soft Sensing  
•Autocalibration and Hybrid Position Control for the Cerberus Cardiac Robot  
•Autonomous Object Recovery in Manipulation Experiments  
•Design and Characterization of Map Based Lunar Rover Localization  
•Generating Spatial Paths to Express Attentional Attitudes  
•Highly Flexible and Stretchable Sensor Using Soft Optical Waveguides

•Improving Power and Vision Systems on Autonomous Quadrotors 
•Monocular Visual Features for Fast Flight Through Forests  
•New Visual Programmer Converter that Allows the Hummingbird  
•Persistent Deployment of Micro-Aerial Vehicles  
•Pothole Detection with Cell Phone Data 
•Trajectory Following in GPS Denied Environments for UAVs  
•Using Receding Horizon Control  
•Visual Programmer and New Efficient File System

The RISS program also has a remarkable mentor and alumni community with 
wide participation and support from across the university. In 2016, over 31
researchers and professionals contributed to the RISS curriculum - presenting 
workshops, laboratory tours, and other programming elements. Over 50 
members of the Robotics Institute (RI) community participated as research 
mentors in the same period.
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Unique partnerships with robotics intelligent systems, and data science compa-
nies extend the scholars exposure from the robotics lab to product development, 
commercialization, and technology transfer.

Scholars benefit from RI’s institutional experience from hosting undergraduate 
research programs for over nine years and an alumni network of over 200 previ-
ous undergraduate researchers now in graduate programs, academia, and indus-
try both domestically and globally. 

In the fall of 2016, 33 RISS Program alumni will be attending CMU graduate pro-
grams in both Masters and PhD programs (29 within the School of Computer 
Science) or will be working as technical staff at the Robotics Institute. Also in the 
fall of 2016, a core group of RISS alumni are launching Pittsburgh-based alumni 
programming. This extensive community helps scholars successfully prepare for 
graduate school and maximize the summer experience. 

One of the program’s strategic priorities is to extend access to robotics research 
opportunities to students from underrepresented groups and those from higher 
education institutions with fewer research opportunities. Human capital is one of 
the most important resources driving today’s knowledge economy. 

RISS connects a diverse group of talented undergraduate students from around 
the world to the Carnegie Mellon University community. The valuable contribu-
tions and connections that summer scholars make continue beyond this eleven 
week summer program.



A Note From The 2016 Cohort
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The Robotics Institute Summer Scholars program over the summer 2016 has been 
an intense 11 weeks of robotics research, packed with a schedule 
comprising of various technical events and social activities. The large diversity of 
students groups from across the world, gives an opportunity for the scholars to 
interact with each other and share their culture and background. 

The RISS programming comprised of the weekly lunch seminars where 
professors and scientists working at RI were invited to present their research with 
the scholars. The seminar followed by engaging discussions were quite helpful 
and provided the exposure to the wide variety of robotics research being carried 
out at RI. The scholars got a chance to interact with the best minds in robotics 
and discover newer areas of research beyond their domain.

An interesting part about this year’s cohort was the active involvement of all the 
scholars in organizing and planning program events. Some highlights of this in-
clude scholars  presenting their research to local students from Pittsburgh, host-
ing a delegation of high school students from Mexico. We also witnessed few 
scholars taking initiative for improving the program structure, holding 
brainstorming  sessions for a revised RISS journal format and the RISS website.

As part of broader impact and social outreach, we had members of the cohort 
planning a visit to meet Mayor of Pittsburgh, Mr Bill Peduto. Key social issues like 
legal reforms and impact of robotics on jobs were raised.
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The students lead discussions on how public policy would be framed public policy 
with the advent of robotics technology, and how is Pittsburgh as a city is taking 
steps for the future and adapt to the changes in industry.
 
We also are proud that many of the scholars were able to push through with their 
research and submit their work at top tier conferences for publications. 
Summarizing this journey, we can conclude that the cohort of RISS 2016, collec-
tively and individually were able to contribute towards the success of this pro-
gram. As put in the words of RISS’14 alumnus Shushman Choudhury, “We have 
raised the bar higher for the future scholars”.



RISS Cohort Gallery 2016
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Estimating Size of Traffic Signs from GPS-tagged Images using a
Smartphone-Based System

Akanimoh Adeleye and Jahdiel Alvarez
Robotics Institute, School of Computer Science

Carnegie Mellon University

Abstract— The United States Federal Department of Trans-
portation (DOT) regulates traffic sign sizes as a way to ensure
the general public’s safety. Compliance of such regulations
requires manual inspection, a tedious and costly process. In
this paper, we present a solution to estimate the size of
traffic signs using a smartphone-based system. Our process
takes advantage of the Pinhole Camera Model’s mathematical
relationship between a 3D world point and a corresponding
2D image plane. Our formulated Dual-image Pinhole Model
includes a second pinhole camera which provides additional
information, allowing us to relate one 3D world point to two
corresponding 2D image planes. The Dual-image Pinhole Model
relies on the measured distance between the two image planes.
To obtain this distance we implemented Visual Odometry(VO)
and sensor fusion of IMU and GPS data. No markers, specific
lighting conditions, or expensive stereo cameras are needed in
the scene. The system presented is extremely cost-effective and
generalized, which makes it accessible for a larger scale use,
such as the one needed by the DOT.

Keywords-Visual Odometry, Sensor Fusion, Structure from
Motion, Monocular Vision

I. INTRODUCTION

In the United States, the Federal Department of Trans-
portation(DOT) is responsible for ensuring safe, fast and
efficient transportation systems that contribute to the nation's
safety and economic growth. The DOT monitors all types
of roadways as well as their associated components, such
as traffic signs. It is the responsibility of the State and City
Departments to meet regulations set by the Federal DOT and
individual standards set internally. Meeting these regulations
requires constant inspection of a city’s transportation infras-
tructure. This monitoring is currently conducted by human
inspectors, which is an expensive and labor-intensive process.
One of the tasks done by such inspectors is ensuring that
traffic signs meet certain standards such as their size. We
formulated a smartphone-based system which is capable of
estimating the sizes of traffic signs using image sequences
from a vehicle traversing through the city. Our system used
the model we present in the following sections for these es-
timations. We implement computer vision and sensor fusion

*This research was supported by National Science Foundation, grant
number CNS-1446601.

IAkanimoh Adeleye, University of Oklahoma, Norman, OK, 73019 USA
akanimoh.adeleye@ou.edu

II Jahdiel Alvarez, University of Puerto Rico at Mayagez, 259,
Avenida Alfonso Valds Cobin, Mayagez, 00681, Puerto Rico
jahdiel.alvarez@upr.edu

algorithms to provide a efficient way of verifying traffic sign
regulations are met, without the need of specialized manual
work. Our ultimate goal is the integration of this system with
a larger transportation infrastructure project described in [1].

II. RELATED WORK

In their simplest form, computer vision size detection
algorithms find a real world measurement that relates to
a cameras intrinsic parameters. A scale factor can then be
derived to relate image pixels to real world measurements.
This concept is shown best when an object of known
measurement is placed within an image then later used to
scale other objects. While this method is simple, its use is
limited to cases where a reference object can be placed or
detected within an image.

The true problem for other size detection methods lies
in finding useful real world measurements. In this regard,
identifying the distance from the camera to an object is vital.
The importance of this distance and the information it can
provide is seen throughout the field of computer vision. Once
this real world distance is known, it can be used to scale an
object to its real world size. In [2] Shahdib and Bhuiyan
find the distance to an object from their camera by using an
ultrasonic sensor. A more common method uses stereo vision
to find depth information [3]. In both cases, a second device
is needed in order to acquire a useful world measurement.
This creates an extra expense and increased complexity in
the initial system set up.

Monocular vision based approaches, shown in both [4]
and [5], overcome the need for multiple devices. In [4]
a polynomial curve derived from sample data is used to
approximate the depth and lateral distance to an object.
They then use this information to find the actual distance
to the object. Their proposed system accurately determines
the distance to an object but is limited to only a few basic
shaped objects.

The system used in [5] is the most similar to our own.
They use a signal camera, placed at the front or side of the
vehicle, to capture and determine real-time depth information
from two image frames. Their system computes the distance
between the image frames based on the time. Using this
distance and the disparity values between their two images,
much like with stereo vision, they determine the distance to
their object. The accuracy of this system fluctuates with the
speed of the vehicle, thereby limiting its use.
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The novelty of our system is first shown in the mounting of
our smartphone camera within our vehicle. This reduces cost
and complexity by eliminating the need to weatherproof our
camera. We use an approach independent of time to calculate
the distance between the two sequential images we capture.
Our formulated Dual-image model then relates this distance
to our camera’s intrinsic parameters, finding the distance to
our object for the necessary scaling.

III. DATA COLLECTION

Fig. 1. Image capturing system.

The Samsung Galaxy Camera was our main device in data
collection [1]. Our system is mounted on the windshield (Fig.
1) of the vehicle. A mobile app is used for the collection of
the information. Eventually, this setup can be placed on city
vehicles, which traverse through the city, providing up-to-
date information about the status of the infrastructure.

IV. TECHNICAL APPROACH

Fig. 2. Dual-image model.

Our Dual-Image Pinhole model is shown in Figure 2. It
is the geometric model used to detect the size of an object
from two images once ∆D, the distance between successive
images, is known.

A. Dual-Image Pinhole Model

The model assumes that the focal length (f ) is known and
is constant throughout the processed images. The images
are also assumed to be taken sequential with a change in
the position of where the images were taken. Based on the
Pinhole-camera model [1] (Fig. 3) the size of an object in
an image can be determined by the use of similar triangles,

S = hd
f . The two parameters, h and f are known in our

model meanwhile, d is unknown; h, f, d being the size of
the cropped traffic sign, the focal length of the images, and
the distance from the camera to the traffic sign, respectively.

Fig. 3. Pinhole-Camera Model.

Given that the distance from the camera to the sign is
an unknown we resorted to utilize two consecutive images,
resulting in a new geometrical model shown in Fig 2. Solving
for D1 is possible using only the aforementioned parameters
and ∆D, the physical distance between where the images
were taken. Following the mathematical steps taken from
Figure 2 results in:

S1 =
H1D1

f
=

H2D2

f
(1)

D2 = D1
H1

H2

Because we were able to write D2 in terms of D1 we
could solve for D1 :

∆D = D1 −D2

∆D = D1 −D1
H1

H2

D1 =
∆D

1− H1

H2

(2)

Once we solve for D1 we can solve for S1 using similar
triangles, which would result in the estimated size of the
object, in this case the traffic signs. The accurateness of our
model relied, mainly, on the accurateness of the measurement
of ∆D,therefore the main effort was focused on obtaining
an accurate estimation of the distance between the positions
of the images.

To gauge the accuracy of our dual-image model, we first
conducted a simple ground truth test. In both the controlled
environment of our lab and the unstructured environment
of the outdoors, we took two sets of pictures. Each picture
captured a stop-sign of known size, which was used as
ground truth and later compared to our estimates. We got ∆D
by using a measuring tape to measure the distance between
where we took the images. We then manually cropped these
images to fit the size of the stop-signs, since it is the object
we want to scale. We chose to do this manually in order to
make our initial experimental test as controlled as possible.
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We determined the height H1 and H2 by the pixel height of
our cropped images. Providing these images and the known
parameters into our algorithm, we received estimated values
within 0.027 meters of the true size of our stop-signs. A
percentage error of 3.54%.

Thus, the heart of our work became accurately determining
the distance between any two images we wished to use for
our model.

B. Global Positioning System (GPS)

To determine the distance between our two images, we
first tried to simply use the smart-phone's GPS coordinates
and the Haversine formula to calculate distance. We soon
found this method unreliable due to the GPS system within
our smart-phone. Standard receivers in smart-phones have
an accuracy within 7.8 meters of a true location [6]. While
this is useful for most general applications, it is not nearly
precise enough for our system.

C. VisualSFM

Fig. 4. VSFM sparse reconstruction.

The methods described in this sections and ones below
were tested and implemented as a way to fix this inaccuracy
within our GPS. VisualSFM stands for Visual Structure from
Motion [7]. It is a free software for 3D reconstruct through
Structure from Motion. As a part of the reconstruction
procedure, VSFM determines the location and orientation of
all photos used relative to one another (see figure 4). The goal
of our first approach was to extract and use the calculated
distance between our images that VSFM provides. To do this,
we first had to scale VSFM’s arbitrary coordinate system to
a real world measurable distance.

To understand of the capabilities of VSFM we first took
pictures of stop signs outside of our vehicle setup, simply
to see how well they would reconstruct. Our pictures were
taken on a linear track, as if our camera was inside our
vehicle driving towards a stop sign. We took care to ensure
the orientation of our camera was about the same as within
our vehicle. As expected, our pictures produced minimal
reconstructions. Feature matching is intrinsic to SFM and
pictures taken linearly only have one projection view. A good
reconstruction requires two or more projections of the same
3D point [9] [8].This however did not impact our objectives.
As long as we could accurately reconstruct a part of our
scene using images containing the stop sign, then no matter

the quality of the reconstruction, we would gain calculated
distances between our images.

These calculated distances were the direct product of SFM
and as a result, were based on an arbitrary scale. To scale
these distances to real world measurements, we created a
scale factor using the distance between the furthest apart
VSFM reconstructed images and their corresponding GPS
distance. To reduce complexity, we transformed our GPS
coordinate system to Universal Transverse Mercator (UTM)
coordinates and calculated the euclidean distance between
our two points. By using the furthest apart possible GPS
tagged images for our reconstruction, we had the smallest
relative error in our GPS distance. We applied this scale
factor to our VSFM coordinate system then chose a different
set of images and their newly scaled distance, for our model.
Figures 5 through 8 show this process.

We found that VSFM was able to accurately determine
the distance between our images, within a meter and a half
of the true distance. Although this was still not the accuracy
we wanted, it was enough for us to effectively cluster the
size of an estimated stop sign to the true sign size. When
testing this method using images collected from within our
vehicle, we found that our results were not as accurate as
our test set.

Due to variables inherent to our vehicle setup, such as
cases where excessive vegetation was visible or a rolling
shutter effect was seen, images extracted from within our ve-
hicle failed to reconstruct more often than our test sets. These
variables also corrupted the feature matching capabilities of
VSFM, causing successful reconstructions to inaccurately
determine the location and orientation of our images, thereby
increasing the distance error rather than minimizing it. Large
moving objects such as other vehicles on the road also
contributed to corrupting the feature matching of VSFM.

There were a few methods we thought of to eliminate
these limitations, such as minimizing the rolling shutter effect
through stabilization techniques or filtering vegetation and
larger moving objects. Due to the time constants of our work,
we ultimately decided not to purse either of these methods
and instead shift our effort to both the Visual Odometry and
sensor fusion methods described below.

D. Monocular Visual Odometry (VO)

The designed monocular visual odometry system imple-
mented the basic VO 2-D-to-2-D correspondences algorithm
presented in [10]. The system processed image sequences
captured from a moving ground vehicle, in our experiments
from a sedan car. The implemented algorithm is composed
of seven steps.

1) Capturing Frames: A Samsung Galaxy Camera was
calibrated for the purposes of this project. The frames in use
are the ones we obtain from the data collection, the resolution
of each frame was of 1920x1080 px. The algorithm iterated
through the dataset and processed each frame individually.
The camera intrinsic matrix was obtained for the camera
calibration process and therefore we used it for the camera’s
pose estimation.
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Fig. 5. Sample input image taken from vehicle set up. For this run we
used 12 gps-tagged images for reconstruction

Fig. 6. Plot of images'location by GPS distance.

2) Feature Detection and Feature Matching: Scale In-
variant Feature Transform (SIFT) [11] was the adopted
feature detector because of its robustness and precision to
outperform the other detectors in a visual odometry appli-
cation, as shown in [9]. The Kanade-Lucas-Tomasi (KLT)
tracker [12] was used for feature matching, given its great
performance in optical flow and visual odometry scenarios,
due to its efficiency with consecutive image samples. The
features captured by SIFT are tracked along a window of
images until the number of tracked features is less than a
certain threshold, where new SIFT features are computed.
The feature correspondence provided by the KLT tracker is
taken for the estimation of the essential matrix.

3) Essential Matrix Estimation: Every image has a pro-
jective matrix which maps a point in the 3-D world space to a
2-D image plane, x = PX ′. This matrix is described as P =
K[R|t], where K is the Camera Intrinsic Matrix, obtained
by calibrating the camera, and [R|t] the essential matrix,
which is composed of a rotation matrix and translation
vector. Through feature correspondence and the following
constraint, (y′)TEy = 0 , E can be calculated, y′ and y
being image coordinates which correspond to the same 3-D
point in the world scene. We calculate the essential matrix
for each subsequent image pair, Ik−1and Ik.

Fig. 7. Plot of images'location by VSFM distance.

Fig. 8. Plot of images'location by scaled VSFM distance.

4) Rotation and Translation from Essential Matrix: The
essential matrix is decomposed into the rotation matrix, Rk

and the translation vector, tk. The translation vector tk, gives
the relative movement of the camera from one image to
another, producing the trajectory seen in our visual odometry
implementation.

5) Relative and Absolute Scale: Because the implemented
system is monocular, the translations are up to scale, there-
fore it is only possible to calculate a relative scale from
one image to another. We used GPS data in order to obtain
an absolute scalar for which we could scale the trajectories
provided by the concatenation of the translation vectors.

6) Absolute Pose and Repetition: By concatenating the
scaled transformation matrices we are able to calculate the
whole trajectory of the vehicle. The absolute scalar was used
to approximate the distance between images. The algorithm
is repeated from 1, as new images are processed.

The OpenCV library was utilized for the implementation
of the algorithm using Python. The resulting system produces
clearer trajectories when the lens distortion in the images is
removed. KITTI Vision Benchmark Suites odometry dataset
was used to test our monocular VO implementation along
with data obtained by driving through Pittsburgh. Figure
9 shows the performance of the py-MVO, name of our
implementation, in comparison to the GPS data, taken from
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Fig. 9. Monocular VO compared to GPS trajectories

a data set of the city Pittsburgh, PA.

E. Sensor Fusion: Extended Kalman Filter

Using an Extended Kalman Filter (EKF) [13] [14] we
fused the gyroscope and accelerator Inertial Measurement
Unit (IMU) sensor data received from our smart-phone, with
our GPS data; reducing the error in localization. This allowed
us to plot the path of our vehicle and match our GPS-
tagged images to specific approximated points along our
path. We could then calculate the distance between these
new approximated points and use them within our model.

We decided to use the Kalman Filter based on the type
of sensor data we were receiving [15]. We implemented and
modified the EKF from a previous project in NavLab, de-
noted in [16]. Figure 10 shows a basic diagram representation
of the filter.

Fig. 10. Extended Kalman Filter Model.

V. RESULTS

The standard sizes of stop signs in the Pittsburgh area
are 0.610 meters (in width and height), 0.762 meters, and
0.914 meters. 0.914 meters are the new regulatory standard
size that the city is required to meet. We tested our EKF
method on 15 sets of image data, all containing a stop-sign
of .762 meters. We tested this size specifically because it was
in between the other two standard sizes. The case shown in
Figure 11 is an example of the EKF Estimated GPS and
Raw GPS paths of our vehicle plotted simultaneously. We
compared the accuracy of our EKF estimated distances to
that of our GPS coordinates. Figure 12 shows a histogram
of our results.

Fig. 11. Sample of a plotted path of our vehicle. Each ”+” represents a
point where a picture was extracted

Using our EKF values, the average size estimated was
.768 with a standard deviation of .108. Using our GPS
coordinates, we received an average size estimation of .763
and a standard deviation of .102. We noticed that two data
points within our EKF estimated sign sizes and one data
point within our GPS values fell outside of two standard
deviations. Due to the error in GPS, this one data point was
unsurprising. The two in our EKF were unexpected.

We traced these two data points back to anomalies within
our Kalman Filter. Following the plot in figure 11 from the
y-axis of the graph, we see the EKF Estimated GPS plots
shift from slightly under the Raw GPS plots to slightly above.
We recognize this as an anomaly because at the point of the
shift, our EKF Estimated GPS behaves almost independent
on of our Raw GPS. Given the error of the Raw GPS plots,
our EKF Estimated GPS plot should not have shifted up
unless our IMU data changed noticeably. When reviewing
the outputs in our filter surrounding this point, we did not
find anything to indicate such a change.

Fig. 12. Plot of images location by GPS distance.

VI. FUTURE WORK

Based on our results, it is clear that our EKF needs
to be optimized. We want to be able to detect when an
anomaly occurs and better account for it. After this we plan
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to infuse the data from our VO into our EKF, making our
size estimations more accurate. Lastly, we plan to continue
exploring our efforts using VSFM. We believe minimizing
the rolling shutter effect seen will increase its ability to
correctly determine distance between our images.

VII. CONCLUSION

Our Dual-image model demonstrated that given the dis-
tance between two sequential images, we could correctly
estimate the distance from the camera to the object and then
determine the size of the object. Our efforts to correctly
determine the distance between our images using sensor
fusion of GPS and IMU sensor data, as well as monocular
VO proved the concept viable. However, our findings yielded
a substantially large standard deviation.
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Abstract— Clustering is a method of finding groups of similar 
objects in data. Real world data, however, is inherently 
complex. Although many clustering techniques work well on 
low dimensional data, they fail in higher dimensions. 
Clustering in higher dimensions is not only computationally 
intensive, but also takes a toll on the effectiveness of the 
clusters. The presence of noise makes the task all the more 
tedious. Hence, we developed a new clustering technique 
called Split Clustering to cluster high dimensional data with 
low dimensional structures. In this paper, we focus on 
comparing the complexity and effectiveness of Split 
Clustering algorithm against existing clustering techniques. 
We take a close look at OptiGrid, a grid partitioning technique 
which resembles the Split Clustering algorithm. This paper 
does not cover the details and discussion of the Split 
Clustering algorithm. 
 

Keywords- clustering; high-dimensionality; grid partitioning; 

I.  INTRODUCTION 
Cluster analysis divides data into meaningful groups 

(clusters) [2]. Clustering finds its application in a wide range 
of fields spanning from medicine to psychology. It serves as a 
means to an end as in the case of data compression and 
efficient finding of nearest neighbors of points or an end in 
itself as in the case of document similarity, genes similarity 
and drug prediction for patients with similar symptoms. With 
the rapid increase in the amount of data being made available, 
the advancement of data manipulation is of prime importance. 
Image and video datasets, along with traditional datasets, are 
of growing complexity and dimension due to the improved 
technology with which the data is being captured and the 
precision with which we want to make predictions [1].  As a 
result, data often contains hundreds to thousands of features.  

While clustering has a long history and a large 
number of clustering techniques have been developed in 
statistics, pattern recognition, data mining and other fields, 
significant changes still remain [2]. A number of present 
clustering techniques are either applicable only to low 
dimensional data or take too much time in high dimensions. 
We developed a simple yet non-trivial technique that scales 
well for high dimensional data having low dimensional 
structures. We report through our experimental study that our 
algorithm is able to perform better than the other algorithms 
we compared it with.  

The rest of the paper is structured as follows: Section II 
introduces the various notions behind the goodness of a 
cluster. Section III describes the OptiGrid algorithm and 
Section IV introduces the Split algorithm. Section V presents 
the results of comparison of time and efficiency of various 
clustering techniques.  

II. GOODNDESS OF A CLUSTER 
Since clustering is usually unsupervised, there is no 

established notion of what constitutes a good cluster [2]. 
Different algorithms use different definitions to form clusters. 
The metric chosen determines the shape and boundary of the 
clusters. K-means and PAM (Partitioning Around Medoids) 
consider distance of points from a prototype to decide what 
data points should belong to a cluster. These distances based 
methods perform poorly on high dimensional data as distance 
does not always make sense in higher dimensions due to the 
sparsity of points in that space. Connectivity based clustering 
techniques, like hierarchical clustering, use the concept that 
closely lying data points are more related to each other than 
their farther counterparts, which relates back to the distance 
method. Density based clustering techniques, like DBSCAN 
and OPTICS, define cluster regions to have higher density 
than the surrounding regions. Low density regions are said to 
contain noise or outliers. A region of low density separates 
any two clusters. Grid partitioning techniques like OptiGrid 
use projections of the data to determine optimal cuts that 
separate the data. The limitation of this algorithm is that the 
data needs to be linearly separable. Split clustering is similar 
to OptiGrid in the sense that it uses margins to separate 
clusters. It can however handle data which is not linearly 
separable by means of feature transformations. 
 

III. OPTIGRID 
OptiGrid algorithm is a grid partitioning clustering 

algorithm which recursively finds optimal cutting planes that 
separate the dataset into meaningful clusters. The algorithm 
cuts the dataset into grids and recursively finds more cuts (if 
possible) within each of the dense grids. The cuts are 
identified based on the density curve of each dimension of the 
dataset independently. The top q cuts along all dimensions are 
chosen based on the density score.  

Hinneburg et al. describe the OptiGrid algorithm as 
follows:                [1] 
OptiGrid (dataset D, q, max_cut_score, noise_level, cells, k)  
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1. Determine the projections of points from each of the 
axes. 

2. For I = 0 to n do: 
 Cut <- Determine best_local_cuts  
 CutScore <- Score best_local_cuts 
 Insert all cuts <= max_cut_score into 

BEST_CUT 
3. If BEST_CUT = None and length(D) > cells then 

return D as a cluster 
4. Determine the top q cutting planes with the least 

score from BEST_CUT and delete the rest 
5. Construct a multidimensional grid G defined by the 

cutting planes in BEST_CUT and insert all data 
points within the boundaries into G 

6. Distinguish grids with population > cells as highly 
populated and add them to the recursion list 

7. For each grid in recursion list, do: 
OptiGrid (grid dataset, q, max_cut_score, noise_level, cells, k)  

 
q – Maximum number of cutting planes  
k – Number of clusters 
n – Number of dimensions   
 

In step 2 of the algorithm, the local best cutting planes are 
determined for each dimension independently using the 
density plots of the projections of the dataset. We first 
determine the leftmost and rightmost maxima (peaks of the 
curve) that are above a certain threshold value called the 
noise_level. This is to avoid detecting cutting planes on the 
edges of the dataset that have negligible density. We then 
identify q-1 maxima in between the leftmost and rightmost 
maxima‘s and their respective points with minimal density 
(valleys of the curve). The position of the minima gives the 
cutting plane and the density at that point serves as the score 
of the cutting plane. The valleys chosen to determine 
BEST_CUT should also satisfy the condition that their score 
should be less than a defined maximum (max_cut_score). The 
various parameters of the algorithm are highly sensitive and 
need to be tuned based on the dataset at hand through 
experimentation and analysis of the density plots. After the 
cuts are obtained, data points are placed in the grids formed by 
the cuts. The population of each of the grids is computed and 
only those with a minimum number of points defined by the 
parameter ‗cells‘ are explored further recursively for distinct 
clusters. The recursion stops when ‗k‘ number of clusters have 
been found or no good cuts can be found or when the grid 
becomes sparsely populated, indicating that the grid contains 
only outliers.  

To exactly find ‗k‘ number of clusters, we define two lists- 
waiting and selected. Waiting contains grids that are waiting to 
be cut further and selected contains the grids that have been 
explored. At every recursion, the grid with the maximum 
number of points from the waiting list is given as input to the 
OptiGrid function. Another list called result contains the 
clusters returned in step 3. At any point of the algorithm, if 
length(waiting + result) > k, the recursion is stopped. The 

grids in waiting and result at the end of the recursion contain 
the final clusters. 

―Fig.1‖ shows the visualization of optiGrid on a synthetic 
dataset with 6 clusters and 1046 data points. The lines in the 
figure indicate the cuts and the shaded regions indicate the 
clusters. The blue lines indicate primary cuts, the red lines 
indicate secondary cuts and the black lines indicate the tertiary 
cuts. 

 

      
       Figure 1. OptiGrid on synthetic dataset with q = 1 

IV. SPLIT CLUSTERING 
Split Clustering algorithm is similar to OptiGrid in concept. 

Like OptiGrid, it tries to find an optimal curve that separates 
clusters by using dimensional projections of the data. The cut 
is chosen in such a way that it does not pierce through a large 
cluster. Split clustering algorithm however, generalizes better 
to clusters with different density and differently shaped 
clusters. It can also detect non-convex and linearly inseparable 
clusters. The algorithm achieves this by means of transforming 
the features into a pseudo kernel space in which the data is 
possibly linearly separable and by finding an optimal cut in the 
transformed space. We achieve non axis aligned cuts by using 
Hough transformation  of the points. This is yet another major 
distinction from the OptiGrid algorithm. We have however 
tested for only axis aligned cuts and two dimensional rotation 
cuts (planes that are non axis aligned in two dimensions). Fig. 
2 shows two dimensional rotation hyperplanes. We use a 
greedy recursive approach to make binary partitions of the 
data at each stage. Further details of the algorithm and the 
pseudocode will be discussed in an upcoming publication. 
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Figure 2. Split Clustering on a dataset with 31 clusters 

V. RESULTS 
The first three rows of Table I and Table II indicate times 

and efficiencies of three versions our algorithm. Split 1D 
makes one dimensional cuts, that is, the plane separating the 
clusters is axis aligned. Split 2D makes two dimensional cuts 
that are axis aligned to n – 2 dimensions (as shown in Fig. 2). 
The Split GRB version uses a transformation into a different 
space to make non-linear cuts. The numbers in bold indicate 
the best values in each column. 

A. Comparison of Time 
The time taken by the algorithms to finish clustering was 

recorded in seconds. The reading and writing times of the data 
were ignored to keep it fair for all algorithms. One-
dimensional version of Split Clustering takes 0.04 seconds on 
averaging over the datasets which is the least amount of time 
among the algorithms compared. The two-dimensional version 
takes 0.14 seconds, which is longer than one-dimensional 
version due to the Hough transformation evaluations. The 
kernel version takes longer than one-dimensional version due 
to increased number of features in the transformed space. 
 

B. Comparison of Efficiency 
We ran the experiments on classification datasets, each of 

which had truth values. We provided the number of clusters as 
an input parameter for each of the algorithms. We measured 
efficiency as the ratio of the number of correctly clustered 
points to the total number of points in the dataset. Split 
Clustering shows the best average efficiency among the 
algorithms compared.  

VI. CONCLUSION 
In this paper, we have compared Split clustering, a new 

technique, with eleven other existing algorithms. We 
described the metrics used by different clustering techniques. 
We then described OptiGrid in detail and briefly described 
Split Clustering and brought out the differences between the 
two. We then presented the comparison of time and efficiency 
of various algorithms and found that Split Clustering performs 
better both in terms of time taken for clustering and the 
efficiency of the clusters. Our aim for the future is to refine the 
algorithm and explore its application in real world scenarios. 
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TABLE I. Table of time taken by different algorithms 
 

 
 
 

TABLE II. Table of efficiency of different algorithms 
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Abstract—Often times a robot's task is to manipulate objects 
whether it be grabbing a drink from the fridge or sorting through 
a pile of objects in a warehouse. In these tasks it's critical for the 
robot to understand the poses of multiple objects in the 
environment. Certain pose estimation algorithms such as PERCH 
and D2P accomplish this task by searching through a vast 
number generated scene renderings in order to find the 
rendering that best explains the observed scene from sensor data. 
However, this process is extremely time consuming especially for 
6DoF on each object. In order to reduce computation time and 
prune the search space required for finding the 6 DoF poses for 
each object, we use a physics simulator to eliminate hypothesized 
scenes that are inconsistent with the physical world. This reduces 
some of the algorithm’s search space by removing proposed 
object scenes that would never exist in real life, everything from a 
scene where a cup is “floating” in air to subtler scenarios.   We 
show that this method is as fast with the ability to invalidate a 
scene in as little as a millisecond.  Additionally, we demonstrate 
its use and speed in an example reward function maximization 
search. 

 

Keywords-pose estimation; physics; search; perception 

I.  INTRODUCTION 
From industrial robots picking through items in warehouses 

to a home robot grabbing a drink from the fridge, perception is 
a critical part in robotic manipulation.  An important 
perception task can be identifying and localizing objects from 
sensor data where 3D models of the objects are known ahead 
of time.  One effective way to accomplish this task is to use an 
algorithm like PERCH [3] that seeks to find the best 
explanation of the observed sensor data by hypothesizing 
possible multi-object scenes in a generative fashion.  While 
this method has proved its merit on accuracy and on dealing 
with heavily occluded observation scenes, the scene 
generation search space can be quite large leading to a time 
consuming localization process.  Furthermore, algorithms of 
this fashion have only localized 3DoF object poses. In real life 
objects contain 6DoF, but the search space becomes enormous 
and computation time is a problem.   

 We introduce a physics based solution to cut down the 
large search space involved in 6DoF pose estimation for a 
generative search algorithm.  The solution, Scene Validator, 
exploits properties of physics in order to invalidate and 
eliminate hypothesized scenes that normally would waste 
computation time.   

 

II. PROBLEM FORMULATION 
 
In a PERCH-like algorithm, hypothesized multi-object 

scenes are rendered using 3-D models and then used in a search 
to find the rendering which best explains the observed scene 
from sensor data.  The number of hypothesized scenes is vast 
because they are generated combinatorial fashion.  With 6DoF 
for each object in the scene, this means that some hypothesized 
scenes will result in object configurations that do not make 
sense in the physical world.  For example, since the z axis can 
vary, a hypothesized scene may place a cup floating in the air 
above the other objects.  This scene is not going to match any 
permanent real life observed scene since objects do not float in 
mid air.  It is our goal to quickly decide that a hypothesized 
scene like this would not exist in the real world and should be 
eliminated.  Otherwise we would have to take the expensive 
step of rendering it and adding it to the search space.  The 
previous example of a floating object invalid scene is a simple 
one, but one can imagine that much subtler and complex 
situations can arise such as tilted, leaning or unbalanced multi-
object configurations.  

The problem we consider is that of taking in some number 
of 3-D models along with their 6DoF poses and determining if 
this multi-object configuration is in static equilibrium or not.  In 
other words, could this hypothesized scene exist under the laws 
of physics?   Additionally, we wish to complete this validation 
as fast as possible.   

 
 

III. METHODS 

A. Physics Engine 
The crux of our scene validation relies on exploiting 

physical laws to determine if the scene is in static equilibrium.  
We used a physics engine to simulate real world behavior.  
With a physics engine one may simulate physics by stepping 
through the simulator in an iterative fashion.  One iteration is 
referred to as a step and calculations and forces are applied to 
the objects during this time. Several physics engines were 
considered such as DART, Bullet, PhysX, and ODE [1].  
Because of the physics engine comparison results from [1] and 
[2], we chose ODE (Open Dynamics Engine) for its speed and 
accuracy relating to our specific application which mainly 
involves contact forces between distinct mesh models, and the 
effect of gravity in a simulated world.  

The Robotics Institute, Carnegie Mellon University, Pittsburgh, USA  
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B. Scene Validation 
The process of validating a scene first involves loading the 

mesh models (.obj files) and their 6DoF poses into the physics 
simulation world.  Then, some number of simulation steps are 
run.  The initial x,y,z positions of the objects are compared to 
their final positions and if the difference between the positions 
is greater than some threshold, the scene is considered invalid. 
If the scene is still valid at this point, more simulation steps are 
run, and delta positions are checked again.  This process is 
repeated a number of times (in our implementation four times) 
until a simulation step limit is reached, and at this point if the 
delta positions are still below the threshold, the scene is 
considered valid.   

Additionally, rather than merely returning true or false as to 
a scene’s validity, one can stop the cycle early and return a 
probabilistic estimate of whether the scene is valid or not.  This 
probabilistic estimate is returned when a lazy step limit, or early 
termination is reached.  For example, after a short amount of 
simulation steps, the objects may have moved, but are still below 
the threshold.  In this case, comparing how close the delta 
positions are to the threshold number can provide information 
about the probability of the scene’s validity if more simulation 
steps were to be taken. 

 
Figure 1.   Scene validation flow chart 

 

 

 

 

IV. RESULTS 

A. Simulator Speed 
To evaluate the performance of the scene validator, 

measurements were taken to determine the speed.  Fig. 1 shows 
that a scene can be determined as false in as little as 1 
millisecond.  A series of checks indicates areas where early 
termination could take place.  The step limit is at check 4, and 
it takes 50 ms to reach that limit at which point the the scene 
can be labeled valid.  Additionally, fig. 2 shows that as more 
and more 3-D models are placed in the simulator, computation 
time increases proportionally.  

 

B. Height Maximization 
The PERCH-like search algorithm that would benefit from 

the scene validator will be maximizing some reward function as 
it searches for the best hypothesized scene.  To demonstrate the 
scene validator’s use in a reward function maximization search, 
we used it in a simple search to find the highest stable pile of 
objects.  Three models were given along with an order, and the 
models’ z positions were varied until height and stability were 
maximized. Fig. 3 shows the initial and final result.  This search 
process involved many possible object configurations that 
could be quickly discarded by completing stability validation 
until the best one was found.  The process took 0.3 seconds. 
This demonstration serves as a proof of concept of scene 
validation used in a simple reward function maximization 
search.  In a pose estimation algorithm, all 6DoF variables will 
be altered instead of just the z position.     

 

 

 
 

Figure 2. Number of simulation steps and how long 
the program takes to execute them.  Tests are run on a 
scene of four 3-D models. Shows series of checks 
which allow early termination. 

 



36

 
 

Figure 3. Number of 3-D models and how long the 
program takes to execute scene validation with a step 
limit of 30. 

 
 

 
Figure 4. Height maximization search  

 

 

 

 

V.       Conclusions 

We present a tool that can cut down the search space 
involved in generative pose estimation algorithms.  The 
program achieves fast scene validation, in as little as 1 
millisecond.  We demonstrated the program’s merit in a simple 
reward function maximization search.  This program can be 
used to speed up pose estimation algorithms like PERCH [3] or 
D2P [4] which search for 6DoF poses.  Additionally, rather than 
merely returning true or false as to a scene’s validity, a 
probabilistic estimate can be made after only running the 
simulation for a short amount of time.  This allows for the 
development of algorithms which can exploit a probabilistic 
estimate thus speeding up the perception process even more. 
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Abstract—Real-time keypoints detection of textured objects is
emerging as a fundamental problem in robotics. Among all exist-
ing detection algorithms, convolutional neural networks(CNNs)
has been proved as the most effective one. However, traditional
CNN suffers from insufficient training data when it comes to
articulate object. We introduce a toolbox in Unreal Engine 4
which can automatically create a large amount of training images
from different viewport for specific object. In this paper, we
explore how to generate high quality training images and refine
the original pose machine to achieve higher detection accuracy
for various objects. Our empirical results show the promise of
such a direction is substantial.

I. INTRODUCTION

Keypoint detection and pose estimation are used widely
in related applications, such as vision system and robotic
applications. Both problems have been studied extensively in
past decades. However, for articulate object, which has joints
or jointed segments, traditional keypoint detection methods
like SIFT, can easily generate a lot of outliers regarding the
large appearance variation. For training based methods, there
is insufficient data for those objects. Typically, it’s impossible
to have well-annotated image for each articulate object. In
robotics, robotic manipulation techniques are already stable
and effective. Robots are expected to take charge of more
and more sophisticated tasks like grab object or manipulate
scissors in the future.
Our core idea is to use articulate object model to synthesize
a large amount of training image. One strength of synthetic
images is sufficient data and pixel-level annotation. By in-
troducing a render plugin in game development engine, we
can easily generate sufficient training images with rich context
information. We summarize our contributions as:
1. Introduce UE4Render and algorithms to generate various
images
2. Derive a general pose machine algorithms from latest
research progress
3. Prove that synthetic training images, to some extent, can
replace the heavily hand-crafted real images if generated
properly

II. RELATED WORK

Our work relates to image synthesizing and pose estimation.
We briefly review related work in both areas.

A. Image synthesizing

Beyond simply generating 2D images, existing studies pro-
vide more intelligent ways to synthesize high quality images.
Researchers have looked at generating a large number of
images from 3D models [8]. Beyond that, recent research
tends to exploit pixel-wise image annotation from commercial
game development engine-Unity [1] and treat these images
as groundtruth of urban and indoor scenes segmentation. Ros
et al [7] showed promising result by boosting synthetic data
in CNN models. Ankur et al [3] has provided high quality
synthetic indoor segmentation data, which has comparable
performance with state-of-the-art indoor scene understanding
systems trained on real images. Though useful, previous
studies on synthesized image dataset can obtain pixel level
label, they didn’t dig into other delicate tasks, e.g. keypoint
detection and object tracking. This paper extends previous
research in terms of using solely synthetic data for to estimate
keypoint and 3D pose, and in particular articulate objects.

B. Pose estimation

Basically, keypoint detection problem can be viewed as 2D
version of pose estimation. Existing works have looked at
different ways to facilitate keypoint detection, especially hu-
man pose estimation. In human pose estimation, distinguishing
similar part of human body can be tricky. Ramakrishna et
al propose a sequential prediction structure that incorporates
context information and perform quite well in human pose
estimation. With the trend of deep learning, recently, convolu-
tional neural networks are claimed to achieve higher prediction
accuracy that any other existing works [6]. We realize the
challenge in articulate object keypoint detection is similar to
human pose. Our work is based on latest convolutional neural
network architectures-Covolutional Pose Machines [9].

III. METHOD

To issue the problem of insufficient training data, we follow
the below steps.

A. Synthesizing training data

Previous research [8] [3] has explored using synthesized
images to viewport estimation and image segmentation tasks.
To learn fine-grained features, we use Unreal Engine(Epic
Games, 2015) [2], a widely used platform to develop 3D
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game. It has excellent lighting and physics simulations, which
highly resemble real images. UETorch [5] is an open-source
combination of the Unreal game engine and the Torch deep
learning environment. UETorch scripts can be embedded into
any blueprint file and dynamically change the attribute of the
objects with a few lines of code.

1) UE4Renderer: Platform and philosophy: UE4Renderer
is a package that embeds image rendering and groundtruth
output into Unreal Engine 4 game loop based on UE4Torch.
UE4Render is written by Lua and Python, Lua is the original
script language for UE4. UETorch provides interfaces for
capture screenshots, segmentation, and set up game loop
parameters. On top of that, UE4Renderer has several basic
functions: articulate object animation, game loop simulation
and data cube output. It can both do physics simulations and
per-frame pre-defined simulation. To address different type of
articulation relations, UE4Renderer doesn’t embed articulation
in the game loop, e.g. when joint angle of scissors changes.
Instead keypoint location in object coordinate is designated by
model configuration script. In UE4Renderer, we try to reduce
the calculation amount in simulation stage as mush as possible.

2) Image rendering and data processing: To rendering
satisfied images, basically, there are several steps:
1. Set up UE4 scene and standard blueprint
2. Create configuration files for scene, articulate object model
and object animation
3. Evaluate scene rendering intervals and set up screen-
shots/segmentation intervals
4. Run UE4 and wait for high resolution synthesized data

The most important component in UE4Renderer is the simu-
lation module. Given all configuration files, simulation module
fetch keypoint data in object coordinate, object rotation and
translation and camera viewport location and then manipulate
articulate object with precise 2D and 3D keypoint output in
camera coordinate. Specifically, as mentioned above, every
mode of articulate object is treated as different models. First,
UE4Renderer transform object keypoint Xo into world coor-
dination with translation and rotation {Tw, Rw}. Specifically,
Ro encodes the mode of articulate object:

Xw = Rw(RoXo) + Tw (1)

According to different scene center and camera viewport in
world coordinate, UE4Renderer transform all the 3D keypoint
into camera coordinate. The rotation matrix Rc can be derived
from camera location in configuration file. Specifically, each
camera must orient at scene center and camera’s y axis is
parallel with xy plane (in UE4, xzy Cartesian coordinate is
used and camera’s optical axis is X axis). With these two
constraints, {Rc, Tc} is unique.

Xc = Rc(Rw(RoXo) + Tw) + Tc (2)

To get 2D keypoint groundtruth data, all the 3D keypoints
are projected onto camera plane. Unfortunately, we don’t know
the intrinsic parameters of UE4 cameras. We employed camera
calibration in UE4, that is, using segmentation functions to

Fig. 1. A toy example that illustrates how our UE4Renderer can generate
sufficient data from different viewport.

Fig. 2. Using dynamic backgound, our training data shows more diversity

get pixel distance of known standard objects. With intrinsic
parameter matrix Kproj , 2D keypoint can be represented as:

X2d = Kproj(Rc(Rw(RoXo) + Tw) + Tc) (3)

3) Data sufficiency: One promising feature of
UE4Renderer is, theoretically, people can generate sufficient
data for any object. In our experiment settings, we uniformly
pick up 41 viewports in a semi-sphere that center at scene
center. In each viewport, we play the same animation
sequence. In other words, in world coordinate, the same
animation sequence is executed 41 times to promise data
sufficiency. Fig. 1 shows synthetic examples with keypoint
annotation from four different viewport.

4) Data variance: Different with previous tasks, synthe-
sized images easily suffers from the problem of overfitting in
training stage. To alleviate this issue, we first randomly place
the background objects in animation sequence. However, our
learning algorithms - pose machines [9] [6] only take a small
image patch around object as training data. Random placement
results an sparse distribution in space, which lead to similar
image patch. Thus, we create various ”micro” backgrounds”,
i.e. context objects around object of study, and dynamically
change the materials and light conditions, i.e. place other
objects around object of study.Fig. 2 shows synthetic examples
adding dynamic micro background
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Fig. 3. Architecture and receptive fields of CPMs

B. Keypoint detection: Convolutional Pose Machine

1) CPM characteristics: Convolutional Pose Machine
[9] is one derivation of traditional pose machines, which
consists of a sequence of multi-class predictors. In each stage
t ∈ {1..T}, the classifiers gt predict belief maps for every
part based on feature extracted from specific location and
context information in previous stage. When t = 1, classifier
g1 produces below belief values:

gt(xz) → {bp1(Yp = z)}p∈{0..P}, (4)

where bp1(Yp = z) represents belief scores for part p at image
location z. For stages t > 1, the classifier predicts belief values
by both features and contextual information:

gt(X
′

z,Φt(z, bt−1)) → {bpt (Yp = z)}p∈{0...P+1}, (5)

Here P parts plus one for backgound and Φt>1 map from belief
maps bt−1 to feature space. In each stage, the computed beliefs
refine location of each part. CPM has shown these consecutive
pattern can by enhanced by deep convolutional architecture.
Basically, we follow their deep architecture for keypoint
detection. Articulate object shares a lot of similarities with
human pose, for example, scissors also have large appearance
variation and symmetric structure. Thus, context information
is crucial in articulate object keypoint detection.

2) CPM architecture: Like pose machines, CPM use only
local image evidence. Fig. 3 shows per-layer structure of CPM.
In the first stage, only small image patches are considered. In
pratice, we crop an 368×368 pixels window as input, and the
receptive field of the first stage network is 160×160 pixels.

For the following stages, convolutional pose machines in-
corporate previous belief maps and new local features from
a larger receptive field. From Stage 2, the receptive field is
400×400 pixels in original image, which approximately covers
any bi-part relations. In this paper, we use scissors in Fig. 3
as one typical articulate object, we found that 3-stage network
can capture every part precisely.

3) Keypoint detection: Using UE4Renderer, we focus on
scissors. We generate 20000 images with various background
and different pose. Besides, we give out scissors mask in each
image and scissors center, which helps crop the image into
small batch. We feed these synthetic data into convolutional
pose machine and store the model. To evaluate the training
result and look into overfitting issues, we generate 3000

Fig. 4. Qualitative and quantitive of scissors keypoint detection

Fig. 5. Perspective n point problem illustration

images containing scissors with a totally different environment
as synthetic testing data and capture several videos of real
scissors. In Fig. 4 , we explore both qualitative and quantitive
performance with our novel keypoint detector. We can see
that keypoint detection accuracy rise with number of training
iterations, which indicates our synthetic data don’t suffer from
overfitting too much.

C. Pose estimation: Perspective-n-point problem

In Fig. 5, traditional PnP algorithms take feature point as
input to estimate the camera viewport, and they introduced
RANSAC algorithms to exclude outliers. EPnP [4] algorithm
is a non-iterative solution with O(n). It expresses the n 3D
points as a weighted sum of four control points by solving a
small scale eigenvector problems. EPnP has been widely used
in rigid object pose estimation. However, when it comes to
articulate object, e.g. scissors, feature points are not represen-
tative for all different joint angles. Pre-defined feature points
can not indicate structure deformation clearly. So we pick
keypoint described above as input of PnP algorithm. Given
synthetic testing data, we are able to evaluate the performance
of PnP algodrithms. The other question is, how we can get
joint angle between different part, here we simply treat every
part as an single object and estimate angle via rotation matrix
difference. In Fig. 6, we present PnP result in synthetic image.

IV. CONCLUSION

We provide a thorough pipeline to create synthetic dataset
and train both a keypoint detector and a pose estimator.
With UE4Renderer, we suppose to overcome technical bot-
tleneck, i.e. insufficient training for those tasks. Experimen-
tal results are promising. Our algorithm shows promising
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Fig. 6. 3D pose estimation result on synthetic image

result in scissors. Compared with other keypoint detection
or pose estimation algorithms, we are using only synthetic
data. Interestingly, renderer can dynamically relate with CNN
architecture. Exploring how to build an open-loop system is
left to future work.
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Abstract—This document describes the approach to optimize 
navigation through sorghum bicolor field rows with a crop-
phenotyping robot. Navigation through  fields of crops can be 
difficult because of the dense growth of plants that engulf the 
space. Accuracy and precision are crucial for navigating through 
crops because a key constraint is the amount of damage done to 
the rows of sorghum. The main approach taken is to use a very 
accurate RTK GPS system and automated ideal path detection. 
This paper will focus more on the latter. A simple  algorithm and 
system was created, with the use of robotic  operating system 
(ROS), point cloud libraries (PCL), and random sample 
consensus (RANSAC) methodology, to autonomously detect rows 
within the robot’s proximity and to provide information on the 
offset of the robot’s heading and position from the calculated 
ideal path. The offset information is successfully produced, and 
the system can be easily adaptable to other robots/platforms. 

Keywords-component; Autonomous; Navigation; LIDAR; 
Agriculture; Robotics; RANSAC; Sorghum 

I.  INTRODUCTION 
Sorghum bicolor is a crop that is approximately 20 feet tall 

when fully grown. This crop also does not require a lot of water 
[7], so they are generally grown in large amounts and are 
planted very densely into the area. The crop can be utilized as a  

Fig. 1. Sorghum bicolor plants that express the density between the rows of 
crops. 

biofuel source. With the rapidly increasing population, 
increasing the biomass yield of sorghum is vital to keep up 
with the population’s demands of the future generations. 
Breeders are able to identify the strongest and most optimal 
sorghum plants; however when choosing from acres of plants, 
it’s difficult to manually collect large amounts of data. Despite 
the fact that the plants are genetically identical within a single 
plot, there are external factors that may have impacted certain 
plant’s growth, and capturing averages instead of having one 
plant represent its plot will better represent that plot’s actual 
growth.  

Fig. 2. The developed robot driving between the sorghum bicolor plant rows. 
There is approximately 0.1 m of space on both sides of the robot.  These 
sorghum plants are located in Florence, SC and are approximately 1.5 months 
since planting. 
Automated data collection would be very useful with large 
pools of plants to help identify the strongest plants. Research in 
this area has been applied to vineyards, and orchards, but there 
has not been much research on navigation through sorghum. 
This is part of the challenge since sorghum is so densely 
packed, leaving many constraints for the robot itself. 
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II. RELATED WORKS 
The application of robots in agriculture have been done to 

certain scales. There have been works on citrus groves,  maize, 
orchards, roses and generic fields. LIDAR was used in all of 
these approaches.  

A full-sized tractor was used when navigating through 
citrus groves. It  depends highly on real time kinematics global 
positioning system, RTK GPS, and differential global 
positioning system, DGPS; however the trees overhead the 
system interrupt the signals. Laser radar, LADAR/LIDAR, was 
used for obstacle avoidance. Additional visual data is captured 
by a color camera to discern the ground from the plants 
surrounding it. Information is then passed to a proportional 
integral derivative controller, PID, for steering control. The 
actual paths followed by the tractor allows room for 
approximately a meter of error on both sides of the vehicle, but 
when testing a narrower path was simulated using hay bales 
[6]. This research project and the following projects emphasize  
and reiterate the value in using RTK GPS.  

Another full-sized tractor was the medium for navigating 
through an orchard. A LIDAR is attached to the front of the 
tractor and used single, planar laser scans to capture the 
orchard rows. RTK GPS is also used here for general 
navigation. A controller is used to adjust the tractor’s path 
based off of the heading offset of the tractor. An ideal speed is 
found for the tractor, then the heading is adjusted as it drives 
[1]. The controller used is similar to the controller that will be 
implemented with the algorithm developed. The speed of the 
robot will not be as fast as the tractor due to the limited space 
allotted by the sorghum rows. It’s heading will be adjusted 
carefully as data is read from the fields. The following project 
describes how a ground robot will interact with maize, a crop 
similar to sorghum. 

In the maize row detection project, RANSAC and LIDAR 
is used to navigate a land robot through maize fields. The 
purpose of this was to see how row detection handled the crops 
when they have grown at different heights. An ideal height 
found was 0.268m for best heading detection [5]. Though this 
information is not directly related to the work in this document, 
their implementation of RANSAC can also be used for this 
project; the scale of this project is very similar, which provides 
information that will be beneficial to consider when designing 
algorithms for this project’s ground robot, like how to handle 
attachments used for gathering input from the environment. 

A four-wheeled, ground robot, developed by another lab at 
the Field Robotics Center, is applied to navigate through an 
orchard. This lab uses methodology that will be very close to 
the methodology applied to the robot described in this 
document. This lab implements certain features that may not be 
implemented in this iteration of the robot’s development; 
however, these features may be useful in the future to capture 
different phenotype data, for example: motorized, rotating 
LIDAR for capturing multiple plane layers [8]. The point 
clouds and photographs of the canopies shown look similar to 
the data sets that are processed in this project so many 
similarities are clear in the two research projects. 

All the projects described have successfully used a 
combination of GPS and LIDAR to have a robot navigate 
through some agricultural field. Due to the accessibility to the 
point cloud library, RANSAC became a possible approach for 

processing the laser scans. At this point in development, the 
RTK GPS has already been implemented and tested in a field. 
An issue that arose was that due to the swaying of the mast the 
GPS is attached to, the detected location of the robot  

III. METHODS 
The robot already is based off of ROS , and has a LIDAR 

attached.  The use of LIDAR was approached in two ways: 
using single-planar laser scans that are parallel to the ground 
plane and aggregating many angled laser scans into one point 
cloud. 

Fig. 3. The  phenotyping robot’s navigation relies solely on the RTK GPS and 
the LIDAR, which are circled and labeled in the figure. 

A. Single Plane Laser Scan 
The LIDAR is aimed so that the laser scan captured is 

parallel to the ground plane, which is shown in Figure 4.  This 
method has been tested with a simulated environment where 
there were only two rows of crops that the robot had to drive 
between. This approach was briefly tested with data taken from 
a sorghum field in Clemson, South Carolina. The scans taken 
from the simulated environment looked very similar to the 
scans taken in the field.  The most significant and only relevant 
difference is that the rows are much narrower than the ones in 
the simulated environment. Despite that fact, this means that 
the robot should be able to detect paths in this environment. 
This method requires that the rows not adjacent to the robot 
must be removed from the scan. Unfortunately, the method is 
not very versatile and can only be used to detect nearby rows. 
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Fig. 4. The  point cloud and path detected when using data from the simulated 
environment. The solid lines in between the points is the path found. 

B. Aggregated Laser Scans 
  The method selected is to take a LIDAR that is angled 30° 
below the xy-plane, defined by the base_link coordinate frame, 
and aggregate multiple laser scans into a point cloud and repeat 
this aggregation over time, replacing old scans with more 
recent scans. 

Fig. 5. The aggregated laser scans captured during a specified time frame. For 
example, if Tc is the current time, n is the amount of time that multiple scans 
are taken, and ds/dt is the rate at which scans are being taken, the total  point 
cloud should have scans captured between the time frame (Tc - n) until Tc, and 
the total number of laser scans captured during that time can be found by 
multiplying ds/dt and (Tc - n). 
Unfortunately, six rows not adjacent to the robot are captured 
by the LIDAR, shown in Figure 5. Also, since the ground plane 
is captured, due to the downward-directed angle, many more 
points must be done to isolate the adjacent rows into a point 
cloud of interest, shown in Figure 6. To avoid using leaves that 
hung over the pathway and to focus more on the points 
encompassing the stems of the sorghum, the points above a 
certain height from the ground plane were also removed. This 
point cloud’s points are then all translated into the xy-plane so 
that a point cloud similar to the first method was attained, then 
similar RANSAC algorithms were used for identifying rows. 
When points are translated onto the xy-plane, there is some 
error that must be accounted for or can be declared negligible, 
and declaring negligibility is explained in Figure 7. The error 
will not be significant enough for the robot to collide with the 
crops since it is assumed that the sorghum fields will not be 
angled more or less than 10°. Data used to test these algorithms 
was taken from the sorghum bicolor fields in Clemson, South 
Carolina. 

Fig. 6. The point cloud of interest is the white points among the colorful 
points. The colorful points represent the total aggregated point cloud explained 
in Figure 5. The point cloud of interest only represents the sorghum bicolor 
crops within the rows adjacent to the robot’s current location. 

Fig. 7. When the points captured by the LIDAR are projected onto the z-
plane of the base_link coordinate frame, data points may not be perfectly 
translated downward due to slope of the field. It was found that the field must 
not be sloped more than approximately 11°. The method of just projecting 
points onto the xy-plane is valid because the fields will not be sloped so much 
and since the reference coordinate frame will be the base_link coordinate 
frame, which follows the robot, as long as the robot is on a slope identical to 
the plants’ ground plane slope, error in point translation is negligible.  

Distance thresholds are determined by knowing the diameter of 
a sorghum plant. This method was selected because it is more 
versatile with the potential to be used for 3d imaging and 
mapping. 

IV. RESULTS 
The product of this research is a ROS executable that only 

requires a robot with defined transforms, and a laser range 
finder, LIDAR. The robot is able to aggregate many laser scans 
and, from that, be able to identify potential rows that are 
around the robot. The system only works if the robot is within 
the rows already. Once rows are identified, if the rows are 
relatively parallel, then the robot will be able to identify a line 
that represents the ideal path that the robot should be on, shown 
in Figure 8. The perpendicular distance of the robot’s base_link 
coordinate frame to the path and the heading offset, the angle 
between the path found and the base_link coordinate frame’s y-
axis, is communicated to a line-following controller that will 
correct the robot’s trajectory. If the angle between the two 
potential rows found is not parallel enough, the offset data will 
not be calculated, because there is not enough certainty that the 
path found would be the correct path to follow, which is shown 
in Figure 9. 
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Fig. 8. The RANSAC algorithm has found two of the most prominent rows 
on both sides of the robot. The blue and green dots indicate the path. The path 
is expressed as the vector on the xy-plane, drawn from the blue dot to the green 
dot. The blue dot is always along the x-axis of the base_link coordinate frame. 

Fig 9. No path is able to be detected with certainty. The black dot represents 
the origin of the base_link coordinate frame. The yellow and orange colors are 
the most prominent rows, which do not line up well with the actual rows in the 
point cloud. 

The general algorithm is as follows: 

1. Have laser scans be collected for a certain amount of 
time, then aggregate laser scans into one point cloud 

2. Remove ground plane 

3. Remove points past 30 inches to left and right because 
the robot is assumed to always be inside the row and a row is 
no wider than 30 inches. 
4. Fit the remaining points to a RANSAC line model 

5. If that line was found to the left of the robot, fit another 
RANSAC line model to the points to the right of the robot, 
or vise versa. 
6. If these lines form an angle no greater than π/6 radians, 

then it is safe to assume that a decent path can be found. 
7. Using the equations of the lines that represent the rows, 

find an equation of a line of the path whose angle is the 
average angle of the two rows and a point is found by 
finding the middle point between the two rows at the x-axis. 

8. Relative to the path line found, publish the perpendicular 
distance of the robot’s base_link frame and the heading 
offset of the robot. 

9. Update point cloud very quickly so that points captured 
closer to present time are represented in the cloud and 
perform steps 1-8 on every point cloud generated. 

V. CONCLUSION & FUTURE WORK 
A four-wheeled ground robot has been developed to 

autonomously phenotype sorghum bicolor plants. Its navigation 
is based solely on RTK GPS and algorithms relying on LIDAR 
laser scans. The base is ROS and any robot using ROS can 
apply this system easily. Further testing of the RTK GPS and 
LIDAR algorithms navigation combination must be done to 
identify what the robot is capable of in a real field setting. 
Additional future work includes creating a RANSAC model 
that is used for the sole purpose of finding two sorghum bicolor 
crop rows, and also implementing mapping for more robust 
navigation. Overall development of the robot includes testing 
of phenotyping features which includes a robotic arm 
attachment that uses a stereo camera to identify sorghum stalks 
and servos to the identified stalk and a vineyard camera 
developed by Dr. Stephen  Nuske [4] calibrated to work with 
sorghum stalks. To sensors will be placed along the robot’s 
mast to be sense temperature, relative humidity, ambient light 
and CO2 levels.  
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Abstract—Existing methods for planning shortest routes
around obstacles pertain to Euclidean space. They not directly
support finding routes on the surface of a sphere. We map the
sphere surface to a plane using Gnomonic projection. In it, the
shortest paths on the sphere is projected as a straight line in the
plane. We then create a visibility graph in the plane. Finally we
search it using the distance on the sphere. Our proof shows that
we are able to determine the shortest path between points on a
sphere, around obstacles, with this method.

Keywords—path finding, visibility graph, computational geom-
etry.

I. INTRODUCTION

Developing a global high level plan for a military airstrike
requires calculating many possible flight paths. These paths
must take into account threat regions and stay some distance
away from them. Each set of threats will have many paths
generated on it.

We chose to approximate the Earth as a sphere. It would
be more accurate to model it as an oblate ellipsoid or a
geoid, but it would also be more complex. The radius of the
Earth deviates by less than 0.5% from the mean, which is an
acceptable margin of error for us.

Our previous method for calculating the paths was a gen-
erative approach that approximated each threat as a rectangle:

1) Draw a direct path from the source to the destination
2) Determine the first obstacle this path will hit, and try

going to the left or right of it. Repeat until it hits no
more obstacles.

3) Smooth the path to minimize it’s length.

This method, however, did not give any global guarantees
that we had found the shortest path. It was also limited
to approximating the threats as rectangles, instead of higher
degree polygons.

We present a general method here to find the shortest
path between two points on the surface of a sphere that does
not intersect a set of spherical polygons. We then extend
this method to support staying some margin away from all
polygons and circles by approximating them with n-degree
polynomials.

II. RELATED WORK

A. Shortest Path

A popular method for path planning among a set of fixed
obstacles is the Visibility Graph [1]. It was first described to

navigate the robot SHAKEY [2]. It was then formally proven
with line segments as obstacles [3] and extended to polygonal
obstacles [4]. It is based on the fact that “Any shortest path
between pstart and pgoal among a set S of disjoint polygonal
obstacles is a polygonal path whose inner vertexes are vertexes
of S” [5]. See Fig. 1 for a visual example of this property.

Figure 1: All the inner vertexes in the shortest path between
p and q are vertexes of the obstacles [6].

The visibility graph is the set of all line segments between
vertexes that can see each other. Since all the inner vertexes
of the shortest path must be obstacle vertexes, this graph must
contain the shortest path. All that remains is to search this
graph for the path, using a weighted graph search algorithm
(like A* [7]), from the source to the destination, with the cost
equal to the euclidean distance between each vertex.

The most naive implementation for creating the visibility
graph takes O(N3) time where N is the total number of
obstacles vertexes:

function CREATE VISIBILITY GRAPH(os, s, d)
g ← NEW GRAPH
for o ← all vertexes in os, s, and d do

for a ← all vertexes in os, s, and d do
for b ← all other vertexes in os do

if IS VISIBLE(os, a, b) then
add ab to g

return g

function IS VISIBLE(os, a, b)
for cd ← all edges in os do

if INTERSECTS(ab, cd) then
return false

return true
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There have been a variety of other algorithms proposed that
achieve faster algorithmic complexity, while trading simplicity
or by constraints [5]. Many of these require non overlapping
obstacles.

The ”Virtual Stretched String” method is a more recent
attempt to plan a path around obstacles, that only requires
looking at the obstacles near the direct path, instead of all
obstacles in the space [8]. It is also possible to combine the
Voronoi diagram with the visibility graph to plan a natural
looking path that stays some margin away from all surfaces
[9].

B. Sphere Surfaces

In our method, we treat the obstacles a spherical polygons.
These are defined as a list of points on a sphere, connected
by shortest paths [10] similar to Euclidean polygons. The
difference is that the shortest path between two points on a
sphere is a great circle arc. A great circle is a ”section of a
sphere that contains a diameter of the sphere” [11]. Great circle
arcs are one type of geodesic, which is a shorest path between
two points on a surface [12]. Any two non antipodal points on
a sphere have a unique great circle arc between them. If we
restrict ourselves to a portion of the sphere without antipodal
points (i.e. less than one hemisphere), then we can say that two
points are mutually visible if the great circle arc between them
is unobstructed [13]. Any set of points on a sphere that are
contained in a hemisphere are in Euclidean position. Points on
any surface are in Euclidean position, if they can be translated
to a surface and retain some key geometric behaviors [14].
This concept can be understood intuitively [15] [sic]:

Most people along the human history have believed
in a flat earth. Even nowadays there exit persons
that still hold the flatness of the world. This is
because most of our daily experience takes place
in a restricted region of a sphere-like surface, so
that there are no significant errors if it is considered
as a plane. This idea can be easily extended to the
Computational Geometry context, where in multiple
applications it is assumed that if a given data set is
constrained to a small portion of a surface, it presents
a planar behavior.

C. Geometric Projection

The Gnomonic Projection is a method for translating points
on Euclidean position on a sphere to a plane that maintains
some geometric behaviors. It is unique amoung all projects
in that “all great circle paths — the shortest routes between
points on a sphere — are shown as straight lines” [16]. Since
it can only transform a set of points in Euclidean position, it
requires choosing a center point parameter. All other points
must be within π

2 away from this center point, so that they lie
in a hemisphere. Fig. 2 shows as example of this projection.

To transform a point with latitude φ and longitude λ, given
a center point of latitude φ1 and longitude λ0 [17]:

Figure 2: The Gnomonic projection centered on 0 latitude and
0 longitude [17].

x =
cosφ sin(λ− λ0)

cos c

y =
cosφ1 sinφ− sinφ1 cosφ cos(λ− λ0

cos c
cos c = sinφ1 sinφ+ cosφ1 cosφ cos(λ− λ0)

We can also do the inverse transform, from a euclidean
point and a center on the sphere to a spherical point.

III. METHODS

First we will look at the method we developed, in the
abstract and a proof for it’s validity. Then we will consider
our usage of this method in our larger pipeline.

A. Abstract Solution

We present a method to find the globally shortest path
between two points that is not obstructed by a set of spherical
polygons. All of the vertexes of the polygons and the points
need to be on one hemisphere.

1) Choose a center point, where the great circle distance
between it and all of the points lie on the hemisphere
centered here.

2) Project all of the points onto a plane, using the
gnomonic projection with the chosen center point.

3) Create a visibility graph with the projected points,
using any euclidean visibility graph algorithm.

4) Search the graph using A* from the source to the
destination, using the great circle distance between
the spherical versions of each vertex, as the path cost
and heuristic.
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B. Proof

We are interested in a method to search for the shortest
from points S to G on the surface of a sphere. Let O be a set
of spherical polygons that the path should not intersect. The
edges of a spherical polygon are great circle arcs between their
vertexes. Let C be S, G, and all vertexes of O. We restrict
ourselves to the case where there exists some center point R
where the great circle distance between R and all members of
C is < π

2 (i.e. all points lie on one hemisphere). Let P (p) =
be the gnomonic projection of p, with center R, given that
p ∈ C. P is a bijective function. All great circle arcs between
members of C are projected as lines, because that is a property
of the gnomonic projection.

Lemma 1. The shortest path between S and G is a polygonal
path whose inner vertexes are the vertexes of O.

Proof: Lemme 15.1 of [5] states
“Any shortest path between pstart and
pgoal among a set S of disjoint polyg-
onal obstacles is a polygonal path
whose inner vertexes are vertexes of
S.” Their proof will hold if we let
pstart = P (S), pgoal = P (G), S =
P (O), and substitute spherical dis-
tance between the inverse projection of
points for euclidean distance. They use
the fact that the straight line from two points a and b on the
edge of a circle with center p is shorter than or equal to the
length of a line from a to b that intersects p. This is also true
for the spherical distance between the inverse projection of a
and b, because a straight line is inversely projected as a great
circle arc, which is the shortest path between two points on a
sphere, so it has to be the shortest path on the sphere between
P−1(a) and P−1(b).

Lemma 2. The shortest path between S and G will consist
entirely of edges from a visibility graph V G where the vertexes
are C and an edge exists between two vertexes iff they have
a shortest path between them that is not obstructed by any
polygons from O.

Proof: We prove this by contradiction. Let an edge E
be in the shortest path but not in the visibility graph. The
endpoints of E must either be vertexes of O, if they are inner
vertexes of the shortest path because of the previous lemma,
or be S or G because the outer vertexes of the path must be
the start and end points. So the endpoints of E must be in C.
Since the shortest path cannot intersect any polygons from O,
E also cannot intersect any polygons in O. Since E is does
not intersect any polygons from O and its endpoints are in C,
it must be an edge in the visibility graph.

Lemma 3. Creating a visibility graph V G′ from P (S), P (G),
and P (O) and taking the inverse projection of its nodes, will
give us a visibility graph V G that is equal to the definition in
the previous lemma.

Proof: We know that the vertexes of V G will be C,
because the vertexes of V G′ are P (S), P (G), and P (O)
and we apply P−1 to these to get V G and P−1(P (a)) = a,
because P is bijective. Now we need to prove an edge will
exist in V G iff it exists in V G′. In V G, an edge between

two points a and b exists iff the great circle arc ab does not
intersect any edges in O.

We first consider the case where ab does intersect an edge
de and so should not appear in V G. It will cross at some point
f , which is on the great circle arcs ab and de. P (a)P (b) and
P (d)P (e) will be projected as straight line that must intersect
because they both contain point P (f). So P (a)P (b) must not
exist in V G′, so ab will not exist in V G.

Now let us consider the other case where ab does not inter-
sect an edge and so should appear in V G. Let us prove this by
contradiction, by starting with the premise ab does not intersect
an edge and does not appear in V G. Therefore P (a)P (b) must
not exist in V G′. So then there must exist some edge de and
some point f which intersects with P (a)P (b) on the plane. If
we inversely project this edge, onto the sphere, then it must
contain the point P−1(f) and the great circle ab must also
contain this point, since straight lines are inversely projected
as great circles. So ab does intersect an edge.

Lemma 4. We can use the A* algorithm to find the shortest
path between S and G on V G, using great circle distance as
the edge cost and heuristic.

Proof: Great circle distance is a valid heuristic because
there is no shorter distance than the great circle minor arc
between two points on a sphere, so it is a valid lower bound
on the cost.

C. Concrete Implementation

We use the above method as part of a pipeline to compute
possible flights paths in our airstrike planner.

We separate this into two different stages. First we create
the visibility graph (VG) for a set of unique obstacles. Then
for every path we want to generate with those obstacles, we
use that augment the visibility graph and search it. This allows
us to reuse it for many paths. This saves some time, because
the runtime cost of adding and removing the endpoints is much
less than that of recreating the whole visibility graph. For one
scenario, we also compute many different visibility graphs,
with different unique sets of threats.

We found that creating and updating the visibility graph
accounted for 90% of the runtime of the whole pipeline. In
order to make this approach viable, we used a simple visibility
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Figure 3: Overlapping ob-
stacles

Figure 4: Expanded obsta-
cles

graph algorithm and optimized it heavily. By making sure to
check each edge of the graph once, instead of twice, we can
halve the visibility graph creation time [18]. Since we have
overlapping polygons, we also precomputed whether every
vertex is inside a different polygon. If it was, we didn’t both to
check if any other points could see it. When iterating through
the list of obstacles, we also added the edge from each vertex
to it’s neighbors directly. Then we could skip checking a vertex
of an obstacle against all other vertexes of that obstacle.

IV. RESULTS

We first tested this method on manually created edge case
problems. We verified that it worked correctly with overlapping
polygons (Figure 3) and that it correctly expanded polygons
by some margin (Figure 4).

We then benchmarked the performance of finding paths as a
factor of the number of polygons. We created a set of normal
polygons, within a subsection of the sphere surface (Figure
5). We randomly varied their size and position. We varied the
number of polygons (n = 0 to 100) and the number of sides
per polygon (n = 3 to 20). We found that the total time to
create the visibility graph and find the path increased with the
number of sides and number of polygons (Figure 6).

We then integrated this new process into our codebase and
compared it against the previous iterative approach. We choose
one representative scenario (Figure 7) and ran both versions
on it multiple times (n = 100). In this scenario, 8 different sets
of threats were used and approximately 2k paths were found.
We compare the time spent only in the path finding step.

The mean total time decreased by 20% (Figure 8). Also,
when we did not have to generate a new visibility graph, the
runtime increased as the path length increased, for both the old
and the new method, but was significantly lower in the new
¡insert graph¿.

Figure 5: Visualization of randomly created benchmark, with
100 polygons, each with 20 sides

Figure 6: The total time (to create the visibility graph and
find the shortest path between two points) increased with the
number of circles (obstacles, approximated by polygons) and
the number of sides per circle, i.e. the total number of obstacle
vertexes.

V. CONCLUSIONS

We succeeded in creating a method to find paths across a
sphere, around obstacles, that could deal with high resolution
polygons and was fast enough. It is possible to use the method
with any algorithm to create a visibility graph. It is also
a conceptually simple method that can be implemented in
multiple discrete modules.

However, it is limited to points on one hemisphere of the
sphere. The runtime is also highly dependent on the visibility
graph implementation and the number of obstacle vertexes.

VI. FUTURE WORK

This work could be expanded to any points in Euclidean
position on any surface. The key is to find a way to map those
points to a euclidean plane that maintains visibility.

It would also be possible to compute the visibility graph di-
rectly on the sphere, without projecting the points. This would
allow us to find paths between points across hemispheres,
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Figure 7: Overlay of some of the paths and visibility graphs
created for our scenario we used for benchmarking.

Figure 8: Total runtime spent finding paths (including creation
of visibility graph) decreased when we switched to the method
described in this paper.

by looking at both the great circle minor and major arcs to
check visibility. However, this would require implementing
more spherical trigonometry and entangles the visibility graph
creation code with the spherical geometry.
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Monocular Visual Odometry for Indoor
Environment with Initial Map Building with LIDAR

Input
Sha Yi, Chaohui Gong, Howie Choset

Abstract—Visual Odometry is widely used for mobile robot
localization because of its relatively low cost compared with
high precision sensor system, such as LIDAR. However, pure
visual odometry is usually of low accuracy, which is caused
by accumulated drift, inaccurate feature matching, inaccurate
scaling factor, and unstable environment. In this work, we
propose a system of combining the pose from LOAM (LIDAR
odometry and mapping) and visual feature points (ORB) to build
an initial map of the environment, then localize a mobile robot
with only a monocular camera onboard and build a denser map
with reference to the initial map to enhance accuracy compared
with pure monocular visual odometry. In this way, the localization
accuracy of a mobile robot in indoor environment could be
significantly improved with a single LIDAR, of which the one-
time cost is ignorable for a large amount of robots and for a
long term.

Index Terms—Monocular Vision, Localization, Visual Odome-
try.

I. INTRODUCTION

Pose estimation is one of the most vital parts in robotics.
Some of the key tasks for robots: path planning, object
avoidance etc. all rely on the localizing the robot and do
computation based on it.

There are multiple ways to do localization. Lidar has
become popular these years for localization. It makes use of
laser to obtain point cloud of the environment and compare
adjacent point cloud to localize the robot. It is general of
high accuracy, but the cost for Lidar system is much higher
than most of the visual localization system so that industrial
applications tend not to use Lidar on every robot. Some low
cost solutions are built with visual systems. For example,
Apriltag [5] is a popular approach to get the pose of camera.
They are special features encoded for pose detection. Apriltag
approach is relatively cheap [5], fast, and very accurate in
short distance. However, it is difficult to maintain tags in
industrial environment and the accuracy is not high for long
distance [5]. Visual Odometry is another visual localization
solution that reduces cost. However, it is not as accurate as
the previous solutions since it accumulates drift during the
process of localization.

Visual odometry localizes the robot from Structure from
Motion [1]. The process of doing structure from motion is:

S. Yi is with the Department of Electronic and Information En-
gineering, The Hong Kong Polytechnic Unverisity, Hong Kong email:
12132054d@connect.polyu.hk

C. Gong and H. Choset are with the Robotics Institute at Carnegie Mellon
University, Pittsburgh, PA, 15213, USA. emails: chaohuig@andrew.cmu.edu,
choset@cs.cmu.edu

- Read the image frame from the camera sensor
- Detect visual feature points from the image frame
- Extract feature descriptors from the visual feature points
- Search between the features points of consecutive frames

for feature matching
- Calculate Essential Matrix/Fundamental Matrix
- Get pose (rotation and translation matrix) from the Es-

sential Matrix/Fundamental Matrix

We may additionally do triangulation to get the 3D location
of the matched feature points, so that it is possible to use those
3D points for mapping. However, the pure visual odometry is
not of high accuracy.

In this work, we propose an indoor mapping and localization
system for factory or office scenario, which consists of one-
time mapping and long-term visual localization. To build an
accurate visual feature map of the environment, a mobile robot
equipped with Lidar and cameras will explore the environment
and log the pose from LOAM [8] and corresponding visual
feature points in camera image. The map is stored for fur-
ther visual localization untill the environment has significant
change, when a re-mapping is required. With the visual feature
map, a mobile robot with only a low cost camera on board can
accurately localize itself with no accumulated drift effect.. In
this case, several companies may share the cost of one Lidar
system and they may only need it again when the company
change their environment. Therefore, the cost of localization
could be greatly reduced. The system operates in the following
process:

- Do the first four steps as in the previous structure from
motion procedure

- Read the Lidar pose
- Do triangulation on the matched feature points based on

the input Lidar pose
- Get the 3D location of the visual feature points

With those feature points, it is possible to build and save a
3D map of the environment and the robot could localize itself
later in the tracking process.

In this work, we used the commercialized LIDAR system
Stencil from Real Earth [8] for pose estimation, and ROS
(Robot Operating System) [6] for hardware interface and
communication.
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II. RELATED WORK

A. Project Tango

Google developed the Project Tango [2] system to do visual
odometry for localization. The Tango system fuses the visual
estimation with the pose information of inertial measurement
unit (IMU). The system operates by creating an initial map
of the environment. However, the Tango system is not open
source, thus there is little flexibility to build and modify with
industrial specifications. Our goal is to develop a system to
replace the dependency on Project Tango on the current robot.

B. ORB-SLAM

Mur-Artal et al. [3] proposed the ORB-SLAM system that
can be used for monocular vision. It is a pure vision approach
so that it is impossible to get the scaling factor of the odometry.
The system structure is shown in Fig. 1:

Fig. 1: ORB-SLAM System [3]

The ORB-SLAM system combines most of the popular
visual odometry approaches including bundle adjustment [7],
loop closing, key frame culling, etc. The monocular system
runs with an initialization process with structure from motion
first, then assumes a constant velocity motion model and only
do least square optimization on this model. Therefore, it is
relatively robust and fast enough. Thus, we build our system
on the ORB-SLAM and since it is open source, we do our
modification on the code it provides.

III. METHODOLOGY

A. Triangulation

The 3D location of feature points are computed using
triangulation [1]. We could obtain the previous pose gl0 =
{Rl0 | tl0 } and the current pose gl1 = {Rl1 | tl1 } from
LIDAR odometry. We can then get the camera pose:

gc = gcl gl (1)

where gcl is the transform from LIDAR to camera. Therefore
the Projection matrix could be obtained:

Pc = K [Rc|tc] (2)

Fig. 2: Epipolar Geometry [1]

where K is the 3-by-3 intrinsic matrix of the camera.
As shown in the Fig. 2, c0 and c1 are camera centers which

could be obtained from

tj = −Rjcj (3)

Then the direction of rays v̂j as shown in the Fig. 2 could be
obtained [1]:

v̂j = R−1
j K−1

j xj (4)

where xj is the homogenous coordinate of each 2D feature
point. Then the optimal point p, as proven in [1], could be
computed with:

p =


∑

j

(I − v̂j v̂
T
j )



−1 

∑
j

(I − v̂j v̂
T
j )cj


 (5)

Then all the triangulated feature points will be saved as the
map of the environment.

B. Map Building

With the pose input from LIDAR [8], it is not necessary to
do the initialization process for the monocular tracking. In this
case, we replace the initialization process with map building.
The detailed process is shown in Fig. 3.

The reprojection process is done by triangulation mentioned
in the previous section.

Then Least-square method Levenberg-Marquardt algorithm
[7] is used to optimize the reconstructed map points, with
pose fixed. The reason for this is that the pose output from
Stencil LIDAR system is accurate enough, within 2 cm, to act
as ground truth for the measurement.

The loop closing thread will keep detecting loop throughout
the map building process. When a loop is detected, global
bundle adjustment will start to avoid the drift generated from
the visual odometry and optimize the 3D map points once
again.

Thoughout the entire map building process, all the original
key frame culling algorithm and reference frame tracking
is kept. Therefore, it is more convenient for later tracking
process since it preserves optimal information of the initial
environment and odometry information.

When all the above process is done correctly, the map, map
points, essential graph, key frames, key frame database are
saved to the file system for future use.
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Fig. 3: Map Building Process

C. Tracking

During the tracking process, most of the original ORB-
SLAM is kept for the system. The major difference is that the
new system has a comprehensive ROS wrapper that broadcast
topics on its current pose, initialization stage, number of
features points so that it is easier to record data.

There are still three threads, tracking, loop closing and local
mapping. The local mapping thread will be called once 3
seconds to relocate the robot with reference to the initial map
built in the previous process.

D. Bag of Words

Nister and Stewenius [4] suggest the use of indexing feature
descriptors to build a vocabulary tree for scalable recognition.
In our case, vocabulary tree is built before hand and we
make use of this for search on feature matching. As the
ORB-SLAM [3] system suggested, the vocabulary tree is built
on the detection of comprehensive dataset of indoor office
environment, thus it fits our need in this case.

The bag of words matching will assign different clusters to
feature point descriptor and only those that lie in the same
cluster will be matched. This improves the searching speed
to a great extent compared with brute force searching and
matching of all feature points.

E. Constant Velocity Model

To speed up tracking process, the system is assuming a
constant velocity model [4]. It makes assumption that when
the camera frame rate is fast enough, the speed is more or less
constant between adjacent frames.

Then when a new frame comes into the system, it first
predicts its camera pose by multiplying constant velocity to

the previous frame pose. The previous velocity v between pose
g0 and g1 could be represented as:

v = g−1
0 g1 (6)

Therefore, by assuming constant velocity, the next pose g2
could be predicted:

g2 = g1v (7)

Then least-square method is made on the current frame pose
g2. It takes the visible 3D map points and projects onto the
current frame and minimize the projection error on the frame.

IV. TESTS AND RESULTS

All the tests are done with the default ORB-SLAM param-
eters [3]. LIDAR is running with the Localization mode [8].
The robot we are using is shown below in Fig. 4:

Fig. 4: Intelligent Mobile Robot (IMR)

A. Constant Velocity Model

The result is shown in Fig. 5 with a 10 Hz monocular
camera, taking LIDAR [8] as ground truth.

Fig. 5: Constant Velocity Model Test Result

However, as seen in the graph, speed is not always constant
and it performs extremely bad when doing sharp turns. Though
it might be better with a high frame rate camera, it is still
necessary to have a better motion model to speed up the
matching and optimizing process.
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B. Joy Stick Twist Input

Since the constant velocity model is not accurate, we tried
to use joy stick twist command information as motion model
for prediction and do optimization on the predicted pose, i.e.
replace the velocity v from the previous pose with the velocity
input from the joy stick twist command. The result is in Fig. 6.

Fig. 6: Joy Stick Input Test Result

However, the joy stick twist information is far more inac-
curate than the desired result.

V. DISCUSSION

A. Image Processing

During the tracking process, it is very easy to lose track,
especially when encountering challenging environment. These
challenging environments include feature-less environment
like walls and floor, and scenes that only have high contract
and simple pattern.

To enhance the robustness, image filter is added to the
camera frame before inputting to the visual odometry system.
The current filter is a sharpen filter that deducts the original
image with a Gaussian blurred image and this reduces the
number of track lost on the snake robot when watching the
floor.

B. Data Security

Another concern of using initial map instead of mapping
every time when localizing is for the security reason.

LIDAR operates by collecting and comparing dense point
cloud for mapping and localization, which means the detailed
shape of surrounding object could be reconstructed from the
LIDAR point cloud. It is possible that some of the factories or
industries are high concerned about privacy so that they do not
want their entire environment to be reconstructed by LIDAR
point cloud so that people might hack into their system and
get all the details of their environment.

The map-based visual odometry only store map point and
is mapped offline every time after building the map. This is
a much more secure and stable way if the environment does
not change regularly.

VI. FUTURE WORK

A. Multiple Camera Pose Fusion

During our tests, we found that cameras on different position
have various accuracy for the movement. For instance, when
doing a left turn, the camera on the right side gives more
accurate result than the left one, since it has longer trajectory
and the features points move more obviously than those on
the left. In another case when moving straight forward, the
front camera might not provide as good pose result as the
side cameras, since pin hole camera is better for rotation than
translation or scaling.

If we could fuse multiple odometries together dynamically
by taking the body twist as reference, we may obtain much
better result than the result from only one camera.

B. Shaky Vision

In some cases, when the motion is very noisy, like on snake
robot, the system is more likely to lose track because of blurred
image or the drawback of constant velocity model.

One way to enhance the robustness during shaky motions
is to change the camera with a better camera that has higher
frame rate. Another way is to replace the constant velocity
model with other models. For instance, if the snake robot is
moving in a circular motion, we may input the circular motion
as a reference so that it might make optimization easier.

C. Information Gain Evaluation

Since the visual odometry is usually connected with path
planning or related decisions, it is possible to evaluate the
environment and do better planning on this. For example, when
the robot is about to turn to a clean wall or feature-less ground,
by calculating the information gain we might be able to tell
the upcoming scene is good or bad for the visual system. If
the result is bad, we might need to avoid those scenes so that
we get a more robust automation system.
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Abstract—In space exploration the launching cost is propor-
tional to its payload mass; therefore it is desirable to miniaturize
space robots. However, there is a minimum size requirement
of lunar rovers due to the harshness of the environment. The
purpose of this research was to find the minimum size of lunar
rovers and investigate the effect of their size and coating on their
mission time. To solve these problems, we used a scaling analysis
to determine the size, mass, and power consumption of small
lunar rovers, then we analyzed their temperature profile using
finite element analysis. It was found that the minimum mass
of lunar rovers was 1.95 kg and their operation time could be
controlled by their size and coating. These results reflect a basic
model and will help design small lunar rovers in the near future.

I. INTRODUCTION

Caves and pits on the moon are possible places for humans
to inhabit because they are not strongly affected by space
radiation and their temperatures are relatively comfortable
for humans. Expense has been a major barrier in achieving
the goal of lunar habitation, and payload mass is a critical
component of cost. Therefore, it is necessary to make small
lunar rovers. To design small lunar rovers, there are many
engineering hardships and one of the most difficult problems
is thermal regulation.

On the moon there is no air, and as a result there is no
heat convection, so heat is only conveyed by heat conduction
and radiation. Therefore, the moon’s surface temperature is
significantly affected by the sun angle and its temperature
range is between 120 ◦C and −170 ◦C. [1] Principally, lunar
missions are conducted when the sun is over the horizon, so
we only need to care about the overheating. Lunar rovers use
their radiators to dissipate heat from the sun and its avionics,
but small lunar rovers have smaller radiators, so it is hard for
them to emit heat efficiently. Furthermore, it is known that
there is a minimum size requirement of small lunar rover to
keep their temperature within the allowable operation range.
The main purpose of this project was to find the minimum
size of small lunar rovers. We also investigated the effects of
size and coating on operating time.

To conduct these investigations a scaling analysis was used
for an existing lunar rover to determine the size, mass, and
power consumption of small lunar rovers. Their temperature
profiles were simulated by finite element analysis using AN-

SYS simulator. The effects of size and coating could also be
solved by using the simulation results.

II. RELATED WORK

This research on thermal analysis of small lunar rovers was
conducted using a scaling model and finite element analysis.
This section will introduce two ideas used in the research.

A. Scaling analysis and a basic lunar rover

Highly accurate results could be obtained if each possible
size of a small lunar rover was manufactured and tested.
However, this procedure is time and cost consuming and
therefore impractical, so a scaling analysis was instead used.
This idea is based on Galileos Square-Cube Law. For example,
if one were to make a rover that was half the size, the length of
each dimensions would be halved, the area would be quartered,
and the mass of the half-sized rover would be one-eighth. The
Andy Rover[2] was used as an original rover. Figure 1 shows
an image of a scaling of Andy.

Fig. 1. A scaling analysis image of Andy Rover

It is important to clarify not only the size and mass but
also the power consumption of scaled small lunar rovers.
Therefore, the GLXP Mobility Milestone Prize Risk Reduction
Compilation[3] was used as a reference to determine the
efficiency of a motor under a vacuum environment. Figure
2[3] shows the efficiency of a RSF-5B motor which is going
to be used is around one-third. Therefore, two-thirds of the
electrical power was transferred into heat and was taken into
consideration for thermal analysis because of the first law of
thermodynamics.



55

Fig. 2. Mechanical power efficiency of RSF-5B motor in vacuum

B. Thermal margin of the rover

In thermal design, it is necessary to include a thermal
margin in the results because thermal design always includes
several unknown factors, so the values fluctuate. To know
how much of a thermal margin should be included in our
models, the Margin Determination in the Design and Devel-
opment of a Thermal Control System[4] was used from the
Jet Propulsion Laboratory. This document introduced thermal
margin in several ways, such as thermal uncertainty margin,
qualification thermal margin, and protoqualification thermal
margin. In our case, it was hard to calculate the specific
view factors, surface environment, and joint and interface
conduction, so a thermal uncertainty margin was chosen. This
document mentioned that when we had a calibrated data
set, we could use an 11 ◦C thermal margin. In a study of
twenty Earth-orbiting satellite programs in the early 1970s,
this margin was applied because their thermal systems was
correlated to thermal-balance test data. When we do not have
these correlated data set, we use a 17 ◦C thermal margin. As
previously mentioned, manufacturing all the possible size of
lunar rovers is impractical, so a 17 ◦C thermal margin was
used.

III. METHODS

A scaling analysis was used to see the size effect of a target.
It would be cost and time consuming if each sized rover would
be manufactured from scratch. Therefore, a scaling analysis
was beneficial to determine a good estimation. A solar panel
and a radiator are the target of the scaling analysis in this
research. Heat from the body to the radiator can be ignored
when the cool coating was used on the surface of the body and
insulators were located on the junction between the body and
the radiator. Therefore, only heat from the sun, the solar panel,
and avionics were needed to be considered in this analysis.

A. A scaling analysis of a basic lunar rover

In this research, Andy Rover was used as a model of
the scaling analysis. The dimension of its radiator and solar
panel were 60cm*25cm*0.8cm* and 100cm*50cm*1.27cm,
respectively. Therefore, theoretically the dimension of the half
size radiator and solar panel were 30cm*12.5cm*0.4cm and
50cm*25cm*0.635cm, respectively. The dimensions of other
sized rovers could be similarly determined.

B. Solar radiation

There is no air on the moon, so the moon’s surface tem-
perature is significantly affected by the solar radiation which
is based on the sun angle from the horizon. Furthermore,
because there is no air, heat can only be conveyed by heat
conduction and radiation. Mainly lunar rovers emit heat from
their radiators to the black space, however it is difficult for
small lunar rovers to do that because of smaller radiators.
Hence, to emit heat effectively, white coating which has low
absorptivity and high emissivity was applied on the surface of
the radiator. In this research, AZW/LA-II Inorganic Low Alpha
White, nonspecular thermal control coating[5] which has 0.09
absorptivity and 0.91 emissivity was used. It is known that
heat flux from the sun to the moon is around 1369 W/m2 ,
so the heat which is absorbed by the unit area with the coolest
coating could be expressed

Thesolarradiation[W/m2] = 1369 ∗ 0.09 ∗ sinθ (1)

In this equation, θ is the sun angle from the horizon.

C. Heat effect from the solar panel

In this rover, because of the mounting angle between the
solar panel and radiator, the solar panel also provides heat to
the radiator by heat radiation. So the temperature distribution
of the solar panel and its effect for the radiator were needed
to be considered.

1) Temperature distribution of a solar panel: The sun is the
only heat source for lunar rovers, so they cannot operate when
the sun is under the horizon unless lunar rovers contain some
radioactive heat source inside them. So, a solar panel should
receive the solar radiation. In order to collect as much as it can,
the angle of a solar panel against the sun was adjusted for each
lunar mission. In this mission, small lunar rovers were going
to be launched on the Lacus Mortis[6] which is at 45 latitude
on the moon and the sun rises until it is at 45 degrees from
the horizon. Hence, the angle between the vertical line and
the solar panel was determined as 22.5 degrees. The electrical
transfer efficiency of this solar panel is around 25 %[7] and
this means that 75 % of the solar radiation is wasted heat.
Because of this high quality, if the solar cells are spread all
over the solar panel, the wasted heat cannot emit effectively
and the temperature of the panel would be very high. This
high temperature might cause the solar panel to breakdown
or affect the temperature of its radiator. Therefore, in order
to prevent overheating of the solar panel, room was made on
the solar panel and this was coated with the cool coating.
Also, a multi-layer insulator which has 0.025 emissivity[8]
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was attached to the back of the solar panel and this prevented
the heat transferring from the hot ground. Regarding the body
of the panel, although the aluminum honeycomb which has a
low thermal conductivity was used, this effect could be ignored
because the solar panel was thin. Considering these ideas, the
solar panel’s temperature distribution at each sun angle was
analyzed to give a temperature profile shown in figure 3.

Fig. 3. Temperature diffusion of the solar panel:The sun angle is at 15°

Fig. 4. Temperature profile of the solar panel

2) Heat from the solar panel to the radiator: Heat radiation
between the surfaces is dependent on the configuration of the
surfaces relative to each other and is independent of the surface
properties and temperature. The effects of the orientation on
heat radiation between the surfaces is called the view factor.
As mentioned above, the angle between the solar panel and the
radiator was 112.5 degrees and this view factor was estimated
to be around 0.15 by referring a catalog of radiation heat
transfer configuration factors. [9] Given these, the heat from
the solar panel to the radiator was calculated to be

Sph[W/m2] =

V f ∗ σ ∗ {(Spt)4 − (Rt)4}
(2)

In the above expression, Sph, Vf, Spt, and Rt stand for
”Solar Panel Heat”, ”View Factor”, ”Solar Panel Tempera-
ture”, and ”Radiation Temperature”, respectively. Also, σ is
the Stephan-Boltzmann constant.

D. Avionics heat generation

The solar radiation has the most significant effect for the
temperature of the radiator, so this heat is needed to be
decreased first. In addition, the internal heat also needs to
be considered when we make small lunar rovers because they
have smaller radiators. This means the effect of avionics heat
for the radiator is higher than the one when the larger rover
has.

1) A scaling analysis of power consumption: The diagram
below shows the electrical power of major electrical compo-
nents of a 4.0 kg rover.

TABLE I
ELECTRICAL POWER DISTRIBUTION OF 4 KG LUNAR ROVER

Components Power(W)
CPU 2

FPGA 1.5
Flash memory 0.25
Dynamic ram 0.5

Camera 0.5
IMU 0.1

Batteries 0.86
Battery management 0.3
Power management 0.5

Motors 9.6
Radio 1
Total 17.11

In this diagram, electrical power consumption of motors
is the only variable for different size of lunar rovers. So, it
was necessary to find out how to calculate the motor’s power.
Motors provide a mechanical power for movement and the
relationship between the a mechanical power and rover’s mass
was acquired by Bekker’s Derived Terramechanic Model [10].

F [N ] = W ∗ Cr (3)

In this equation, F is the force needed to move a lunar rover,
W stands for the weight and Cr is the resistant efficiency of
the ground. The mechanical power is expressed shown below.

P [W ] = E/t = (F ∗ d)/t = F ∗ v (4)

In this expression, E is the work, d is the distance, t is the
time, and v is the velocity. By combining the equation 3 and
4, the mechanical power can be expressed shown below.

P [W ] = W ∗ Cr ∗ v = m ∗ g ∗ Cr ∗ v (5)

In this expression, m is the mass of a lunar rover and
g is the gravitational acceleration. We had already known
concrete except (We need to modify this sentence) the resistant
efficiency of the ground, so by substituting the known values
into the above equation, the resistance efficiency of the lunar
ground was determined as 1.521. Once we found the value,
we can solve the mechanical power of other size rovers by
substituting the mass into the equation 5. Although so far
we assumed that the rovers move constantly, there is a time
gap because of the communication from earth and a time lag
because of large obstacles, so lunar rovers do not always move.
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In this research, the duty cycle was set as 60 %. After we found
the mechanical power of motors, if we used the efficiency
of motors, we can find the heat from the motors like below
because heat from the motor is 1.5 times mechanical power.

Heat[W ] = 0.6 ∗ P ∗ (3/2) = 0.9 ∗ P (6)

E. ANSYS simulation

From the procedures described above, the external and
internal heat related to the radiator were calculated. In this
research, ANSYS simulator was used for determining the
minimum size of lunar rovers and finding the effects of size
and coating for operating time.

1) The minimum size of lunar rover: In this mission,
small lunar rovers were going to be launched at 45 latitude,
so when the sun is at 45 degrees, the temperature of the
radiator is the highest. Therefore, the minimum sized rover
was defined as the rover which radiators temperature is not
over critical temperature, and the critical temperature is 45 ◦C
from charging batteries.

2) The effects of size and coating for operating time: To
determine the minimum size of lunar rovers, we just focused
on the highest temperature of the radiator. However, it was
also interesting to know how the size and coating could affect
the operation time. Therefore, we simulated the temperature
profiles for each rover between the sun angle at 15 degrees to
45 degrees and from 45 degrees to the sunset and saw when
the radiator’s temperature was lower than the critical minimum
temperature depending on the size. In addition, regarding 3.0,
3.5 and 4.0 kg rovers, we also changed the absorptivity of the
coating on the radiator and investigate how the coating change
affected the operation time.

IV. RESULTS

A. The result of the minimum size of lunar rover

Fig. 5. The minimum size of small lunar rovers

Figure 5 shows the relationship between the maximum
temperature and the mass of lunar rovers. The horizontal and
vertical axes express the mass and the maximum temperature,
respectively. The green line shows the maximum temperature
including an 11 ◦C margin and the red line shows the

maximum temperature including a 17 ◦C margin. Finally, the
black and gray lines show the maximum and minimum critical
temperatures of avionics from charging batteries. Therefore,
where the black line and red is crossed shows the minimum
size of lunar rovers when a 17 ◦C thermal margin was applied
and the value is 1.95 kg, similarly where the black and green
lines are crossed shows the minimum size of lunar rovers when
an 11◦C thermal margins was applied and the value is 1.6 kg.

B. The size and coating effect for the operation time

Fig. 6. 4 kg profile Fig. 7. 1.5 kg profile

Figures 6 and 7 show the size effect for the temperature
profile. As it can be seen, smaller rovers have a higher tem-
perature profile than the larger one. Regarding the maximum
temperature, the maximum temperature of 4.0 kg is higher
than the 1.5 kg one by around 30 centigrade.

Fig. 8. α=0.09 profile Fig. 9. α=0.15 profile

Next, these temperature profile shows that by changing the
surface coating on the radiator, the operation time could be
extended. When 0.09 absorptivity coating was used on the
surface, a 4.0 kg rover can work until the sun angle is at 28
degrees, however when 0.15 absorptivity coating was used on
the surface, the rover could work until the sun angle is at 17.5
degrees.

V. CONCLUSION

From this research, the minimum size of lunar rovers was
determined to be 1.95 kg from only thermal perspectives.
Regarding the effect of the size, we found that the temperature
profile of smaller rovers was higher than larger one. We can
conclude that this is because smaller rovers have smaller
thermal inertia, so smaller rovers are affected by heat easily.
Finally, as for the coating effect for operating time, the
operation time could be extended by using a warmer coating
on the radiator. However, we also need to be careful when
we decide the coating because the coating affects not only the
operation time but also the maximum temperature.
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VI. FUTURE WORK

In this research, heat radiation from the lunar surface to the
body and heat from the body to the radiator were ignored.
So, we will need to incorporate these heat in order to get
a better estimate of thermal constraints on rover size. It is
also necessary to manufacture different sizes of small lunar
rovers, set up the Moons environment and conduct thermal
experiments to calibrate this analysis. Finally, we need to
integrate thermal results with mechanical requirement to make
the flight prototype.
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Abstract—Knowledge of the kinematic state of rovers is critical
to navigation, path reconstruction and exploration, especially
on rugged terrain like planetary surfaces. Existing methods
employ many encoders, potentiometers and hall sensors. These
add components and wiring to moving parts. The components
are susceptible to mechanical and electronic failures, add mass,
and some require thermal regulation. In addition, the sensor
wires are susceptible to bending, flexing and wear. Where
miniaturization counts, the limitations on mass, size and power
encourage elimination of sensors wherever possible. This paper
presents a method to estimate the kinematic state of rovers using
only a downward-facing fisheye camera. This novel approach
implements a vision algorithm to obtain kinematic state infor-
mation in planetary rovers. The two additional benefits of the
technique are (1) redundancy to proprioceptive measurements,
(2) means for perceptive visual odometry. The method uses a
single camera to estimate 10 degrees-of-freedom (associated with
steering, driving and suspension) on the AutoKrawler, a rover
test platform for planetary exploration. Motions are estimated
by self-perception - combining fiducial marker tracking, optical
flow techniques and the kinematic constraints of rover mechanics.
Experimental results, obtained from the rover operating in an
environment analogous to the lunar surface, are presented. The
results obtained are compared with ground truth data to validate
the approach.

I. INTRODUCTION

Planetary rovers have locomotive capabilities designed for
traversing highly uneven terrain. A rover’s axles or suspension
act as passive hinges, allowing the wheels to make contact
with uneven surfaces. Steering is critical to negotiating ter-
rain. Understanding the real-time kinematic state of a rover
provides timely information about abnormal motion and sup-
ports operational decisions. Such knowledge proves useful for
rover guidance, navigation and safeguard. This information is
also fundamental to modeling rover odometry. Proprioceptive
sensing has for long been the modus operandi to obtain the
aforementioned data, providing accurate estimates of position,
orientation and motion of links and joints.

Space technology typically employs a large number of
sensors to obtain kinematic state information. For example,
the states of the Mars Rover prototypes are determined by six

Figure 1: The AutoKrawler traversing uneven terrain in a lunar
analogue site.

wheel encoders, three accelerometers, joint potentiometers for
bogey angles and a sun sensor [1]. The problems with such a
system are manifold, and of significant interest in the domain
of space robotics. Optical encoders have rotating mechanical
disks that reduce system reliability. Atmospheric dust, similar
to that of Mars, may hinder optical wheel encoders [2]. A
pressing concern with encoders is the numerous electrical
conductors required. The Sojourner rover comprised of ten
motors, each with an optical encoder. The motors required
two conductors each to drive, but the encoders required six
wires each to moving parts- translating to 80 conductors fed
from the body of the rover [3]. In an articulated rover, special
care must be taken in routing cables to prevent wear of wire
harnesses. In addition to flexing and bending with suspension,
when exposed to the frigid environment, the wires can stiffen
and break [3]. Sensing elements with electronic components
may require thermal protection and this additional insulation
can compromise total system mass. 50% of a typical rovers
mass distribution is generally dedicated to its subsystems [4],
and the myriad sensors reduce the viable scientific payload
limit.
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In the past, vision algorithms were used sparingly on plan-
etary missions, primarily due to the on-board computational
constraints. A major leap in this direction was the NASA/JPL
Mars Exploration Rover (MER) mission, where algorithms
performed tasks such as visual odometry, stereo vision and
feature tracking [5]. All processing was performed off-board,
either on Earth or the lander. Subsequent FPGA implemen-
tation of the same algorithms have shown performance im-
provements of three orders of magnitude and are now utilized
on-board large rovers [6]. These encouraging results point to
full-fledged vision systems in future missions with minimum
latency, to perform rover odometry and safeguarding, even on
small, simple rovers.

This research conceives and demonstrates a novel method of
optical kinematic state estimation of planetary rovers using a
downward-facing monocular fisheye camera. In this paper, 10
degrees-of-freedom of a planetary rover are estimated. Fiducial
marker tracking is used to obtain pixels of interest from the
camera image. Using a spherical camera model, 2-D image
coordinates are projected to 3-D points on a unit sphere around
the camera’s focal point. These are subsequently mapped to
real-world coordinates using planes defined by the rover’s
kinematic constraints. 8 defined positions are tracked and a
geometric approach is developed to determine the axle roll
and steering angles. Odometry is performed for all four wheels
by using an optical flow algorithm directly on the treads, as
opposed to traditional egomotion estimation. The methodology
is exhibited and evaluated by application to the AutoKrawler
(see Figure 1), a highly-versatile, double-Ackermann rover test
platform for planetary exploration.

The aforementioned system was evaluated on datasets gen-
erated from field experiments conducted in a lunar analogue
site. The rover was tele-operated in conditions that mimic risk-
prone traversals, where knowledge of kinematic state can aid
control decisions. Results show close agreement between data
from our technique and ground truth data from proprioceptive
sensors onboard.

II. RELATED WORK

The kinematic study of complex rocker-bogey mobility
systems have been a prominent research problem. [7] and
[8] describe a body of work surrounding the Rocky-7 Mars
Rover that estimates position, velocities, contact angles and
orientation of the robot. Systems inputs are generally ac-
celerometer, gyroscope and encoder data, without involving
visual observation. Lamon and Seigwart demonstrate the ben-
efit of kinematic knowledge by performing 3-D odometry,
showing a significant improvement in results on rough terrain.
A controller that minimizes slip based on state information
is also developed [9]. Visual self-perception (or the strategy
of observing oneself), has been used to generate kinematic
models of robotic manipulators [10]. Its joint configuration
however, is determined solely by its own actuation and not by
the environment.

Optical flow methods using pyramidal Lucas-Kanade [11]
have been previously explored using a downward-facing fish-
eye by Seegmiller [12] to perform robust visual odometry.
The algorithms employ RANSAC outlier rejection, which
has been incorporated in this body of work. Fang’s work
also highlights the importance of a minimally obstructing,
robust camera support structure for the selected configuration
[13]. Fiducial markers have been used, albeit sparingly, in
planetary robotics for accurate instrument positioning and as
calibration targets [14]. Scaramuzza obtained a generalized
omnidirectional camera model for fisheye and catadioptric
systems, that has been used here [15].

III. KINEMATIC MODEL

A. Rover Overview

The AutoKrawler is a four-wheel, double-Ackermann
steered rover specialized to traverse adverse terrain. A passive
body-axle suspension system allows the rover to maintain
compliance with uneven, rugged terrain. For an illustration of
the Cartesian coordinate conventions and degrees-of-freedom,
refer to Figure 2. Each articulated axle of the dual-axle
configuration can perform roll about the y-axis and translation
about the z-axis. The steering swivel joints can rotate in the
range of [-30◦, 30◦] about the axle frame’s z-axis.

Figure 2: Depiction of (i) The coordinate frames of the camera, axle
and wheels, illustrated with XYZ (RGB) axes. (ii) The permitted
rotational and translational motions of the robot about their respective
axes.

In conceptualizing the state estimation, several reasonable
assumptions on rover kinematics are made:

• Angular movement of wheels on a common axle are
assumed to be identical - giving each axle a single
steering angle.

• The mechanical connection between the axle and body
of the AutoKrawler comprises of a plurality of links and
joints. However, for all practical purposes, the axles are
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assumed to only exhibit one rotational degree-of-freedom
(about y-axis).

• It is assumed that there is no relative translation in the
x-direction between the axle and the body frame. This
allows us to approximate the motion of each axle to be
on a vertical plane perpendicular to the y-axis.

• The wheels of the rover are modelled as cylinders (of
radius r = 11.5cm) that rotate with the wheel frame,
centered at its origin.

B. Coordinate Frames and Variables

The translational and rotational displacements of rover joints
and linkages are expressed via homogeneous transformation
matrices. Examples of coordinate frame locations are provided
in Figure 2. With transformation matrices, a kinematic chain
of coordinate frames can be represented. Below, an equation
is used to transform the center of the wheel (P) from the
swivel joint frame to the camera frame. To do so, the 4 × 1
vector [x y z 1]ᵀ is successively pre-multiplied with A

ST
(transform from swivel joint to axle frame) and C

AT (transform
from axle to camera frame):

CP =C
A TA

S TP (1)

In (1) CP represents the real-world coordinates of a wheel
center, with the reference frame being the camera focal point.
The degrees-of-freedom estimated are 10 in total:

(i) Two rotational (Axle roll angles) - ψF , ψR

(ii) Two translational (Axle-Body vertical distances) - dF , dR
(iii) Two steering - λF , λR

(iv) Four rotational - θFL, θFR, θRL, θRR

IV. SYSTEM DESCRIPTION

A. Camera Model

The research problem necessitates that all motions (axle
roll, steering and wheel rotation) of the rover be detected

Figure 3: Fisheye lens’s field-of-view with minimally occluding
camera mount. The four thin plates in the image constitute the mount
structure.

with a single camera. The best way to achieve this is with
a downward-facing omnidirectional camera. The choice of a
fisheye lens over a catadioptric lens is inconsequential, as a
unified camera model [15] is applicable to both. The body
frame is fit with a mount to house the downward-facing fisheye
camera. The mount minimally occludes field-of-view, with
four orthogonal plates along planes that intersect the camera
center (as seen in Figure 3). Color images are acquired with a
resolution of 640× 480 at 30 frames per second. The chosen
resolution provides adequate pixels to work with, while at the
same time remaining computationally feasible.

The MATLAB toolbox developed by Scaramuzza et al. [16]
is used to calibrate the camera with a planar checkerboard
pattern. The model uses affine transforms to handle misalign-
ment between the camera’s optic center and the focus point
of the lens. A 4th order polynomial is utilized to account
for the camera’s radial distortion. Any real-world point can
be accurately projected to a point on a unit sphere, with the
camera’s focal point as its center.

B. Fiducial Markers

Passive, mono-colored square markers are used, and the
paper does not attempt to validate tracking robustness. In our
application, magenta is chosen due to its hue value being
distinct to that of the rover’s surrounding. Eight markers are
placed on the rover - two collinear pairs on the front and rear
axle plates, and two pairs on the Ackermann tie rods.

Figure 4: Mono-color markers visible on the front and rear axles.
Pairs A and C track front and rear axle roll respectively, while pairs
B and D track front and rear steering angles. Also seen are the white
correction markers present on the wheels.

The process pipeline first performs color-based image seg-
mentation in the HSV (Hue, Saturation, Value) color space.
After noise-removal by erosion and dilation, pixel positions
of the contour centers are obtained. These pixel positions
are transformed to world coordinates based on the geometric
constraints, as described in subsections V-A and V-B. Each
wheel tread consists of a white marker, referred to henceforth
as a correction marker. It is tracked via thresholding to correct
wheel angular rotation, as described in subsection V-C.
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C. System Design

A compositional view of the required variables is taken and
the resulting system is simple and modular (see Figure 5). Axle
roll, axle-body vertical distance and steering angles (ψF , ψR,
dF , dR, λF , λR) are computed at once, requiring fisheye image
data. Wheel angular rotations (θFL, θFR, θRL, θRR) require all
the aforementioned variables and fisheye image data. This is
because optical flow is performed only on dynamic observation
windows, as described in V-C. If these variables are not
present, due to momentary loss of marker tracking, flow
operations are performed using the prior state of the rover. In
the absence of computational overhead, the system operates at
the frame rate of the camera. All vision tasks are optimized
to defined regions-of-interest based on kinematic constraints,
instead of being performed on the entire image.

Figure 5: ROS Nodes and Topics and their relationship in the system.
tf indicates transform matrices of the rover.

V. ESTIMATION METHODS

The following subsections describe how the degrees-of-
freedom are obtained. All the estimation methods use world
coordinates as inputs, and not pixel positions.

A. Estimation of Axle Configuration

The kinematic state estimation begins by calculating axle
roll (ψF , ψR). By making the assumption that the axle has
only one rotational and one translational degree-of-freedom
(refer to Section III-A), markers are constrained to a plane.
This is defined by:

y =

{
+c, front axle
−c, rear axle

(2)

where c ∈ R>0.

As explained in section IV-A, the omnidirectional camera
projects a pixel to a point on a unit sphere - (a, b, c). The
world coordinates of the marker centers are computed by
finding the intersection point between the ray through the
points {(0, 0, 0), (a, b, c)} with the plane defined in equation 2.
The two marker coordinates are subtracted to obtain a vector
that represents axle orientation, �v = xî + yĵ + zk̂. Finally,
ψ is computed as the directed angle between �v and vector

�u = î (unit vector on x-axis). The midpoint of the two marker
coordinates is the rotational center of the axle, and its vertical
distance from the camera frame is the axle-body distance (d).

B. Estimation of Steering Angle
In steering angle estimation, a plane that rotates about the

y-axis (similar to axle rotation) is considered. In the absence
of axle excursion, the normal to the plane is [0 0 1]ᵀ.
However, the axle roll must be accounted for by computing a
new normal:

�n′ = Ry(θ)




0
0
1


 =




cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ





0
0
1


 =



sin θ
0

cos θ


 (3)

where θ is the angle of roll and Ry(θ) is an elemental
rotation about the y-axis. The position vector of the axle’s
rotational center is represented by �ro.

Thus, the plane considered is defined as:
�n′ · (�r − �ro) = 0 (4)

Similar to section V-A, the ray-plane intersection is com-
puted to get centers of the steering markers in world coordi-
nates. Euclidean distance between marker pairs is calculated
and the given ratio is defined :

x =




d(B[1],A[1])
d(B[2],A[2]) , front axle

d(D[1],C[1])
d(D[2],C[2]) , rear axle

(5)

where marker labels (A,B,C,D; 1, 2) are assigned as per
Figure 4. The geometric arrangement of the tie rod ensures
that the ratio is ≈ 1 when the wheels aren’t steered. The ratio
is greater than 1 if steered in one direction, and less than 1
is steered in the other. To obtain a relation between the ratio
x and wheel alignment, manual calibration is performed. x
vs. steering angles is tabulated, where steering angle is set to
values in the range of [-30◦, 30◦]. The calibration equation
is a second-order polynomial f(x) fit to the data, such that
λ = f(x) (see Figure 6).

Figure 6: 2nd degree polynomial regression for steering angle vs.
distance ratio. The red points indicate tabulated readings and the
cyan curve is the polynomial fit.
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C. Estimation of Wheel Angular Rotation

Optical flow provides vital knowledge of the arrangement
of features in an image, and change in this arrangement over
a sequence of frames. Egomotion estimates can be obtained
from analysis of image sequences, as performed in [2], [12]
and [13]. It has computational advantages over structure from
motion algorithms, making it ideal to run online.

Lucas-Kanade optical flow is chosen, an established algo-
rithm for correlated feature tracking [11]. Sparse feature sets
are identified by the Shi-Tomasi corner detection algorithm
[17]. Pyramidal implementation of Lucas-Kanade [18] relaxes
the small displacement constraints of the algorithm and works
with coarse variations. In our image sequences, flow is com-
puted in the forward and backward direction with respect to
time. All feature vectors that are inconsistent between frames
are discarded.

Figure 7: Lucas-Kanade feature tracking over three consecutive
frames. The red dots indicate feature positions and the green trails
show the direction of motion. There is a shift in features towards the
left, and features may disappear and appear between frames.

The technique is applied on an unrectified fisheye image
sequence to give 2-D displacement vectors. As highlighted in
III-A, the rover’s wheels are modelled as finite cylinders. It is
defined by:

(i) A fixed radius of r = 11.5cm
(ii) Cylinder axis vector �v = �a −�b, where �a and �b are the

base center position vectors in world coordinates. These
points are obtained with knowledge of ψ and λ, along
with the position of the swivel joints in the axle frame
and the wheel centers in the swivel joint frame.

Similar to ray-plane intersection computed in V-A, the ray-
cylinder intersection point is computed. The intersection point
represents the world coordinate position of a point on the
wheel’s surface.

Feature search is performed in a dynamic observa-
tion window of fixed area, so as to only focus on the
wheel tread (as seen in Figure 7). The position w60 =
[0 ±r cos 60 r sin 60] with respect to the wheel coordinate
frame is mapped back to a 2-D pixel coordinate and treated as
the window center. This ensures that the flow is invariant to
axle roll/translation and steering angle. Between frames, the
arc-length travelled in world measurements is computed. To
get angular displacement α(i) of a feature i, given its position
on the circle’s edge in consecutive frames (p1 and p2):

α(i) = cos−1

(
2r2 − |p1 − p2|2

2r2

)
(6)

α is a 1 × n size matrix, where n is the number of
features tracked. Rather than computing the mean angular
displacement directly, Random sample consensus (RANSAC)
is used to reject outliers. These outliers may appear as a
result of self-shadowing or occlusion. The RANSAC algorithm
begins by selecting random angular displacements from the
matrix α. The randomly selected value is compared with
rest of the set, and all those that are approximately equal
(within a tolerance range t) are treated as inliers for the
selected model. After a defined number of iterations, the model
with the maximum number of inliers is considered and its
outliers are discarded. The mean of this set is taken to be
the final angular displacement between the frames. The angle
of rotation is incremented every frame, and the derivative of
angular displacement with respect to time gives wheel angular
velocity.

The demerit of a sparse feature set is the loss of tracking due
to a lack of interesting features, or if there is image blur. When
incremental angular rotation is observed, these inaccuracies
accumulate. This can lead to θ drifting far from its ground truth
over long traverses. Correction markers on the wheels (visible
in Figure 4) clearly indicate each complete rotation. They are
used to prevent this drift in angular rotation. The marker is
segmented out by thresholding, and once every rotation, theta
is corrected:

m = (θ − co) div 2π

θcorrected = 2mπ + co
(7)

where m ∈ Z and co is the value of θ when the first
correction marker was encountered.

VI. RESULTS

The performance of the method was evaluated on datasets
acquired in an outdoor field experiment (see Figure 8). The
rover was tele-operated at a location where the terrain charac-
teristics and features served as an excellent analogue to lunar
conditions.

Figure 8: Optical kinematic state estimation field test.
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(a) Front Axle

(b) Rear Axle

Figure 9: Estimated axle roll vs. Ground truth IMU data

(a) Front Axle

(b) Rear Axle

Figure 10: Estimated steering angle vs. Ground truth potentiometer data
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(a) Front Axle (b) Rear Axle

Figure 11: Estimated axle roll error with respect to Ground truth

(a) Front Axle (b) Rear Axle

Figure 12: Estimated axle roll error with respect to Ground truth

Figure 13: Estimated wheel rotation angle vs. Ground truth motor encoder data

Figure 14: Drift in Estimated wheel rotation with respect to Ground truth data
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Dataset Duration
(secs)

Axle Roll MAE Steering Angle MAE Maximum
wheel rotation
drift (rad)Front Rear Front Rear

Dataset 1 82 1.65◦ 1.51◦ 2.49◦ 1.98◦ 0.86

Dataset 2 170 1.41◦ 1.32◦ 2.40◦ 2.49◦ 3.70

Dataset 3 257 2.41◦ 1.97◦ 1.86◦ 2.55◦ 1.78

TABLE I: Mean Absolute Error (MAE) and Wheel rotation drift
computed for three independent datasets

Ground truth data was recorded via three inertial mea-
surement units for axle roll, two steering potentiometers for
steering angle and a motor encoder for wheel angular rotation.
The image sequences of three independent datasets, each
traversing the span of the test-site, were used as inputs to
estimate the 10 degrees-of-freedom.

Figures 9 to 14 are all plotted using dataset 2. Figure 9
and 10 illustrate the variations in ψF , ψR and λF , λR over
time. The difference between the ground truth data and the
estimated data is represented by Figure 11 and 12. The 2
methods correspond significantly well over all datasets, as seen
in Table I, which shows the method’s mean absolute error.
Figure 13 plots the average of θRL and θRR compared against
the rotations output from the rear motor encoder. Figure 14
shows the estimation error of the aforementioned graph.

The results are found to be highly satisfactory, and convey
overall agreement between optical and conventional methods.
Nevertheless, certain sources of error have been identified as
below-

(i) Drop in frame rate results in the loss of continuous data.
Frame rate is critical in the case of optical flow, where
features are lost.

(ii) Excessive camera mount vibration results in noisy out-
put.

(iii) Loss of marker positions due to self-shadowing causes
gaps in kinematic state data.

(iv) Self-shadowing on wheels alter direction of optical flow
vectors, giving erroneous angular rotation.

VII. CONCLUSION AND FUTURE WORK

This paper introduces a novel approach to kinematic state
estimation, and the results demonstrate high confidence in a
single camera system. The method successfully precludes nine
proprioceptive sensors, to achieve comparable kinematic state
estimation with a single camera. As rovers minimalize and as
reliability call for redundancy, state estimation via vision will
be incorporated into planetary rovers. This is well-supported
by the predicted increase in computational power in space
robotics.

The method sets a precedent and provides a foundation
for further work in vision-based kinematic state estimation.
Future work would include developing an optimized version
of the algorithm, capable of running on-board a planetary
rover. Self-shadowing and abrupt changes in lighting affect
the system adversely, and robustness to self-shadowing [12]

and illumination-invariant tracking are rewarding avenues for
further research. In addition, kinematic state estimation has
no theoretical dependence on fiducial markers, and future
work could focus on tracking inherent features of the robot.
A downward-facing fisheye camera can also perform visual
odometry, that tracks terrain features to give motion estimate.
Future work will have visual odometry and optical kinematic
estimation in conjunction to achieve unprecedented odometry
with utmost simplicity. With two independent representations
of motion, rover slip can also be detected.
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Abstract— In this work, we present an anytime planner
for creating open-loop trajectories that solve rearrangement
planning problems under uncertainty using nonprehensile ma-
nipulation. We first extend the Monte Carlo Tree Search
algorithm to the unobservable domain. We then propose two
default policies that allow us to quickly determine the potential
to achieve the goal while accounting for the contact that is
critical to rearrangement planning. The first policy uses a
learned model generated from a set of user demonstrations.
This model can be quickly queried for a sequence of actions that
attempts to create contact with objects and achieve the goal. The
second policy uses a heuristically guided planner in a subspace
of the full state space. Using these goal informed policies, we
are able to find initial solutions to the problem quickly, then
continuously refine the solutions as time allows. We demonstrate
our algorithm on a 7 degree-of-freedom manipulator moving
objects on a table.

I. INTRODUCTION

In this work we generate open-loop trajectories that solve
the rearrangement planning problem [1]–[4] using nonpre-
hensile manipulation. In these problems, a robot must plan
in a cluttered environment, reasoning about moving multiple
objects in order to achieve a goal.

Nonprehensile interactions have proven to be a powerful
strategy for pregrasp manipulation [5]–[7], manipulating
large or heavy objects [1] and manipulating in clutter [8]–
[10]. However, open-loop execution of trajectories that in-
corporate nonprehensile actions are prone to failure due to
uncertainties in object and robot pose and in the physical
modeling of the interactions.

Prior work has shown that nonprehensile interactions such
as the push-grasp [1], [11] can be inherently uncertainty re-
ducing and successfully executed open-loop if the uncertain-
ties in pose and interaction are considered when generating
the motion. This analysis of pushing under uncertainty has
been limited to short simple motions such as a straight line
push. In this work we consider the following question: How
do we generalize this analysis to create robust open-loop
pushing trajectories for use in rearrangement tasks?

This generalization to full rearrangement trajectories in-
troduces three inherent challenges.

First, rearrangement planning occurs in a continuous high
dimensional state space that describes the state of the robot
and movable objects. This requires our planner search across
an infinite dimensional belief space in order to account for
state uncertainties.

tree policy tree extension back propagationdefault policy

Informed

Computational Complexity

random learned planned

Fig. 1. Unobservable Monte Carlo Planning based on Monte Carlo Tree
Search. The planner relies on a default policy to compute the potential for
goal achievement from a node in the tree. We propose two policies: learned
and planned. These policies trade-off additional computational complexity
for better informed decision making that improves the efficiency of tree
growth.

Second, contact between robot and objects causes physics
to evolve in complex, non-linear ways and quickly leads
to multimodal and non-smooth distributions. This makes
methods that rely on closed form representation of the
stochastic dynamics inapplicable [12].

Third, most actions in the continuous action space fail
to make and, importantly, sustain meaningful contact with
objects. Unlike grasping, the motion of a pushed object can-
not be modeled as rigidly attached to the robot. Instead, the
motion is directly governed by the physics of the interaction
between robot and object. Once contact is made, only a small
subset of the continuous action space will sustain this contact
and move the object.

In this work, we propose an Unobservable Monte Carlo
Planner (UMCP) that extends Monte Carlo Tree Search
(MCTS) methods into unobservable domains. MCTS meth-
ods naturally deal with the first two challenges. The algo-
rithm focuses the search to beliefs reachable from a known
initial belief state and uses Monte Carlo simulations to
approximate the unknown stochastic dynamics.

Central to MCTS algorithms is the use of a default policy
to guide a simulation, or rollout, that quickly evaluates the
potential value from a state. The simplest default policies
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Tree policy Default policy

Random

Learned

Planned

Fig. 2. An example path computed with the random default policy, learned default policy and planned default policy after t = 45 s of planning time. The
portion of the paths extracted using the tree policy look similar. However, the random policy quickly breaks contact with objects and is unable to move
any portion of the belief to the goal. The learned and planned policies are able to use knowledge of the problem to maintain contact and achieve the goal.

perform random rollouts, drawing action sequences from a
distribution over the control space defined for the robot. In
rearrangement planning, random rollouts will rarely be in-
formative, as most action sequences fail to make meaningful
contact with objects. Relying on this default policy restricts
the amount of information the planner can use to guide tree
growth.

Our insight is that by carefully selecting a goal informed
default policy that generates actions with the goals of rear-
rangement planning and nonprehensile interaction in mind,
we can extract useful trajectories from the planner much
earlier to better guide the search. We propose two such
policies. The first uses user demonstrated trajectories to learn
a mapping from state to control space. This mapping can then
be used in place of random selection to generate rollouts.
The second uses a planner that can solve rearrangement
planning in the lower dimensional subspace containing only
objects critical for goal achievement. The sequence of actions
generated by the planner is then used to perform a rollout in
the full state space.

These policies trade-off addition computational complex-
ity for more informed decision making to guide tree growth
(Fig.1). We test both policies on a manipulation task requir-
ing a robot to push objects on a table. Our results show the
learned default policy is useful when working in low clutter
(Fig.2) while the planned default policy better guides the
search through high clutter.

The remainder of this paper is structured in the following
way. In Sec.II we formalize the rearrangement planning
problem. In Sec.III we outline the UMCP planner and our
proposed default policies. We demonstrate the effectiveness
of the algorithm in Sec.V. Finally, we discuss limitations and
areas for future work in Sec.VI.

II. THE REARRANGEMENT PLANNING PROBLEM

A. Terminology

Our environment contains a robot R, a set, M, of objects
that the robot is allowed to manipulate and a set, O, of
obstacles which the robot is forbidden to contact. We define
the state space of the planner X as the Cartesian product
of the state spaces of the robot and all objects in M:
X = XR ×X1 × · · · ×Xm. We define the free state space
Xfree ⊆ X as the set of states where the robot and objects
are not contacting the obstacles and are not penetrating
themselves or each other. Note that this definition specifically
allows contact between robot and movable objects, which is
critical for manipulation.

We consider pushing interactions. Thus, the motion of
the movable objects is governed by the physics of the
environment and the contact between the objects and the
robot. As a result, the state x evolves non-linearly based on
the physics of the manipulation. We describe this evolution
as a non-holonomic constraint:

ẋ = f(x, u) (1)

where u ∈ U is an instantaneous control input to the robot.
The task of rearrangement planning is to find a feasible

trajectory ξ : R≥0 → Xfree from an initial state x0 ∈ Xfree

to any state in a goal region XG ⊆ Xfree. A path is feasible
if there exists a mapping π : R≥0 → U such that Eq.(1)
holds throughout the duration T of the trajectory: ξ̇(t) =
f(ξ(t), π(t)) for all t = [0, . . . , T ].

B. Uncertainty

We wish to generate open-loop plans robust to the un-
certainties prevalent when executing trajectories in the real
world. In general, open-loop plans are susceptible to failure
due to uncertainty in initial state and poor modeling of
both the motion of the manipulator and the physics of the
interaction (Fig.3).
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Fig. 3. Three sources of uncertainty in rearrangement planning with
nonprehensile interaction: (left) Initial state. (center) Manipulator motion.
(right) Physical interaction.

We represent initial state uncertainty as a belief b0 = p(x0)
that describes a probability distribution over possible initial
states x0 ∈ Xfree. We represent modeling errors by assum-
ing our state evolves as a stochastic non-holonomic system.
This induces a distribution p(ξ|π, x) over the trajectories that
result from executing a control sequence π from a state x
under the stochastic transition dynamics.

We represent the rearrangement problem as an instance
of conformant probabilistic planning [13] where the goal is
to maximize the probability that executing a sequence of
actions π results in goal achievement. We can express this
probability as an expectation:

pπ(x) =

∫

Ξ

1G(ξ)p(ξ|π, x)dξ (2)

where Ξ is the set of all trajectories from a state x and
1G : ξ → {0, 1} is the indicator function that returns 1 if
the endpoint of ξ is in XG. Our goal is to generate a control
sequence π∗ ∈ Π that maximizes the probability of success
given all uncertainties:

π∗ = argmax
π∈Π

pπ (3)

= argmax
π∈Π

∫

x∈X

b0(x)pπ(x)dx (4)

In this work, we consider mappings π instantiated as a
sequence of discrete actions π = {a1, . . . , aj} where each
action ai = (ui,∆t) represents a control input to the robot
and a duration to apply the control.

III. MONTE CARLO TREE SEARCH

In our domain, the evolution of the uncertainty when using
nonprehensile interactions is non-smooth and non-Gaussian.
These characteristics make closed form representation of the
system dynamics difficult. As a result, exact computation
of Eq.(2) is not possible.

Monte Carlo methods have been used widely when the
exact dynamics are unknown or difficult to model [14]–[18].
These methods use a generative model, G, or black-box
simulator, to sample successor states given a current state
and an action: x′ ∼ G(x, a).

Monte Carlo Tree Search [17], [19] (MCTS) is one such
algorithm that uses this paradigm. The MCTS algorithm
iteratively builds a tree using Monte Carlo simulations. The
tree estimates the value of action sequences by tracking the
mean reward obtained from simulations of the sequences.

MCTS is a good fit for our problem. We can use a physics
model to perform the black-box simulations. These physics
simulations have some computational expense. The MCTS

Algorithm 1 Unobservable Monte Carlo Planning
1: s0 ← GenerateInitialSamples()
2: while not timeout do
3: x ← SampleState(s0)
4: Simulate(x, {}, 0)
5: function Simulate(x, h, d)
6: if γd < ε then return 0

7: if NotVisited(h) then
8: InitializeHistory(h)
9: return DefaultPolicy(x)

10: a ← TreePolicy(h)
11: x′ ← G(x, a)
12: r ← R(x, a)+
13: γ· Simulate(x′, h ∪ {a}, d+ 1)
14: B̂(h) ← B̂(h) ∪ {x}
15: N(h) ← N(h) + 1
16: Q̂(h, a) ← Q̂(h, a) + r
17: return r

framework efficiently focuses computational resources to
relevant regions of state space. In addition, the algorithm
is anytime and highly parallelizable.

IV. UNOBSERVABLE MONTE CARLO PLANNING (UMCP)

The POMCP [17] algorithm applies the MCTS framework
to partially observable environments. We use a similar ap-
proach to plan in our unobservable environment. We build
a tree such that each node represents a unique history, h =
{a1, . . . at}. Three values are stored for each node: N(h) -
the number of times the history, or action sequence, has been
explored, Q̂(h, a) - an estimate of the value of taking action
a after applying history h, and B̂(h) - an estimate of the true
belief achieved when applying the actions in h from known
initial belief b0.

Alg.1 shows the MCTS algorithm applied to our UMDP.
The tree is rooted with an initial belief state s0 that contains
a set of states drawn from an initial distribution defined
on the state space. Then, during the search an initial state
x ∼ s0 is drawn from the belief state (Line 3). This state
is propagated through the tree by using the tree policy to
select actions (Line 10) and using a noisy physics model
to forward propagate the state under the selected actions
(Line 11). After applying the physics model, the new state is
added to the belief state of the history (Line 14). The search
recurses through the tree, propagating a single state through
the noisy transition dynamics. Over time, the belief states
represented at the nodes of the tree grow to represent the
true belief distribution.

Once the search reaches a previously unvisited history, a
default policy is used to rollout the remainder of a simulation
and accumulate reward (Line 9). This reward is propagated
back through the tree to update the value function estimate
stored for each history.
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A. Reward model

As stated in Sec.II, our goal is to generate paths that
maximize the probability of successful execution. We encode
this goal in our reward model:

R(x, a) = 1G(x) (5)

Here the indicator function returns 1 if x ∈ XG.

B. Action set

MCTS-based planners search across a discrete action set.
The naive method for generating a discrete action set from
our continuous space U is to divide the space into partitions,
or bins, and select a single representative control from each
bin and create an action that applies this control for a fixed
duration: a = (u,∆t). These basic actions are context
agnostic: they ignore the goal of the planning instance.

We know contact is critical for goal achievement in rear-
rangement problems. We augment the action set to account
for this by generating specific contact actions aimed at main-
taining contact with objects important to goal achievement.

These contact actions are state dependent and must be
dynamically generated for each node, or history, in the tree.
We instantiate contact actions using the first state in the
estimated belief x ∈ B̂(h) for each history. A contact action
is generated by solving the two-point BVP in the robot’s
state space that moves the robot to a pose in contact with an
object based on the object’s pose in x. We create one contact
action for each object in x defined in the goal.

The result is a discrete action set Ah = Abasic ∪ Acont

for each history h composed of a set Abasic of basic actions
that move the robot without the explicit intent of creating
contact with objects and a set Acont of contact actions that
explicitly contact important objects in the scene.

C. Tree Policy

The tree policy is used to select actions, or edges, in the
UMCP tree to traverse. On the first visit to a given node
in the tree corresponding to history h, the method from the
previous section is used to generate a discrete set of actions
Ah. On subsequent visits, we follow the UCT algorithm [15]
and use UCB1 [20] to select a single action from this set to
traverse as follows:

at = argmax
a∈Ah

Q̂(h, a)

N(h ∪ {a})
+ c

√
logN(h)

N(h ∪ {a})
(6)

where c > 0 is an exploration constant. Note that this
selection method requires all actions are tried at least once.

The use of such a method is ideal because it provides a
formal method for trading between exploration and exploita-
tion.

D. Default policy

Each time the search reaches a leaf in the tree, the default
policy is used to estimate the reward that will be obtained
if we follow a path that leads through this leaf. The most
common default policy is to randomly select a sequence of
actions to apply. For our rearrangement planning problem,

(a) (b) (c)

Fig. 4. An example of MCTS applied to rearrangement planning using the
planned default policy. (a) A tree policy is used to select initial actions. (b)
The default policy plans in the lower dimensional space containing only
objects important to goal achievement. (c) The resulting path is propagated
through the full space to generate a reward.

this policy will rarely be informative: most action sequences
fail to create and maintain the contact with objects that is
critical to goal achievement.

Instead, we define two informed default policies that are
capable of evaluating the potential to achieve the goal. The
first uses a model learned from user demonstrated trajectories
to generate a rollout. The second uses a heuristically guided
planner in a subspace of the full state space. In the following
sections we outline these policies.

Learned default policy
Our intuition is that we can use human judgment to learn
a good default policy. Our goal is to learn a mapping: ρ :
X → U from a state x ∈ X to a control u ∈ U from a
set of human demonstrations. We can use any method for
collecting these demonstrations and learning the mapping.
We discuss a specific choice in the experiments.

Once we have learned a mapping ρ, we can use it as a
default policy by creating a fixed length rollout. To do this
we repeatedly use ρ to generate a control and G to forward
propagate the control for a fixed duration ∆t:

xt+1 = G(xt, (ρ(xt),∆t))

We compute the reward achieved by the rollout using the
final state of the rollout.

Planned default policy
The learned default policy attempts to generalize demonstra-
tions to solve an instance of rearrangement planning. In this
section we explore an alternative approach: we apply a state
space planner to quickly search for a solution to the specific
rearrangement problem.

We perform the search in the lower dimensional subspace
containing only the elements of the full state space that are
defined in the goal.

After generating a sequence of actions that solve the
problem in the lower dimensional subspace, the actions are
then forward simulated through the full state space using G
and reward is calculated from the final reached state. Fig.4
illustrates this method.

By reducing the dimensionality of the state space in
the default policy search, we allow for the possibility of
using fast planners or exact solvers that provide much more
information than random action sequences. We discuss a
specific example in the experiments.
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E. Path extraction

We use our tree to create an anytime algorithm for
extracting paths. Upon request, a path π is extracted from the
tree as follows. First, we extract πtree by repeatedly picking
the action at such that:

at = argmax
a∈Ah

Q̂(h, a)

Once a leaf is encountered, we query the belief represented
by the history B̂(h) to obtain an estimated probability of
success p̂πtree =

∑
x∈B̂(h) 1G(x). If this probability is lower

than the estimated probability of success of the best path
found so far, p̂π∗ , we randomly select a state from the belief
x ∈ B̂(h) and use the default policy to generate a path πdef

from x to the goal. If successful, all remaining samples in
B̂(h) are forward propagated through this path to get an
updated probability of success p̂π of the combined path π
formed from appending πdef to πtree. If p̂π > p̂π∗ the path
is returned. Otherwise, the previous best path π∗ is returned.

The use of a goal informed default policy means we can
often find path segments πdef that achieve the goal with
non-zero probability. Our insight is that these path segments
can be particularly useful when there is not enough planning
time to deeply grow the tree, i.e. p̂πtree

= 0.

V. EXPERIMENTS AND RESULTS

To test the capabilities of the UMCP algorithm, we task
our robot HERB [21] with pushing a box on a table to a
goal region of radius 0.1m using the 7-DOF right arm. We
test three hypothesis:

H.1 Using explicit contact actions allows the UMCP
planner to generate paths with higher probability than
a planner that uses a basic action set formed by
discretization of each dimension of the control space.

H.2 The UMCP planner using the goal informed
learned or planned default policy generates paths with
higher probability of success than the UMCP planner
with a random default policy.

H.3 The UMCP planner that uses contact actions and
the goal informed default policy is able to produce
paths that exhibit higher probability of success com-
pared to baseline state space planners.

H.1 tests the need for actions that explicitly try to create
contact with goal critical objects. H.2 verifies our intuition
that using a goal informed default policy will guide tree
growth better than a random default policy. Finally, H.3
verifies the need to track the evolution of uncertainty through
sequences of actions during planning.

In the following sections we detail our planning setup and
provide results for each hypothesis.

Fig. 5. An example interface used to collect user demonstrated rearrange-
ment trajectories

A. Test setup

We run each version of the UMCP planner 50 times
on a scene with only one movable object (denoted low
clutter in all results) and a scene with six movable ob-
jects (denoted high clutter in all results). The scenes are
depicted in Fig.6-top. In each scene, we generate the initial
belief s0 by sampling noise into the initial pose of each
object from a Gaussian with distribution µ = 0,Σ1/2 =
diag{2cm, 2cm, 0.1rad}. We allow the UMCP planner to
run for 300 s. We request and record a path every 15 s.

Following [10] we constrain the end-effector to move in
the xy-plane parallel to the table in order to create motions
likely to pushing objects. This allows us to define our control
space U as the set of feasible velocities for the end-effector.
We convert these end-effector velocities to full arm velocities
using the Jacobian psuedo-inverse:

q̇ = J†(q)u+ h(q)

where q is the current arm configuration, u is the end-effector
velocity and h : R7 → R7 is a function that samples the
nullspace.

B. Learned default policy

We collect workspace trajectories from 97 users using
Amazon Mechananical Turk. To collect these trajectories, we
generate a set of seven scenes that require a robot to push
an object on a table to a goal region. Each user is asked
to solve each scene twice, for a total of 14 demonstrations
from each user. For each demonstration, we record and save
the sequence of state/action pairs, (xt, at) used to solve the
scene.

We provide users with an interface that allows them to
apply discrete actions using keyboard input. Fig.5 shows an
example interface. To simplify the user task, we render only
the end-effector of the robot. In the example shown, the user
must guide the robot hand to push the green box into the
green circle. The action corresponding to the keyboard input
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from the user is pushed through a physics model to generate
an updated pose of the robot and objects.

We identify and extract a set of relevant features Φ of a
state x ∈ X . Example features are the number of objects
blocking a direct path to the goal or the distance to the
goal. Then, for each of the 112,928 state/action pairs (xi, ai)
collected from users, we create feature vectors φi from state
xi labeled by the action ai to use as training data for a multi-
class classifier. We train a random forest classifier using the
scikit-learn python package [22]. This classifier serves as the
mapping ρ needed to perform rollouts.

C. Planned default policy

We use a weighted A* search [23] with w = 5.0 for our
planned default policy. The search uses the same discrete
action set used to build the UMCP tree, including the contact
actions critical to achieving success.

The search runs in the lower dimensional subspace con-
taining only the robot and the box the robot must push
to the goal. To guide the search, we compute the cost of
an action a as the distance in workspace the robot moves
during the action. Then we define an admissible heuristic,
h(x) = dcont(x) + dmove(x), where dcont is the minimum
workspace distance the robot must move to make contact
with the box and dmove is the minimum workspace distance
the box must move to achieve the goal.

The planner is allowed 1 s to search. The result of the
search is a sequence of actions {a1, . . . , ak} that describe
robot motions to achieve the goal in the lower dimensional
subspace (or an empty sequence if no solution is found).
The action sequence is then applied in the full state space to
check for validity and compute reward.

D. Baseline planners

We compare the estimated success rate of the paths
generated by the UMCP algorithm to an anytime version of
the B-RRT from [24]. Briefly, the B-RRT planner generates
rearrangement plans by using a Rapidly-exploring Random
Tree (RRT) [25] to search through state space. During
tree growth, each action is evaluated for its robustness to
uncertainties and this evaluation is used to bias tree growth–
robust actions are more likely to be selected for extensions.
Importantly, the planner does not track uncertainty through
sequences of actions. Instead it makes local decisions about
the robustness of each action. We test against two versions
of the algorithm. First, we set b = 0.0 to eliminate all bias.
This reduces the planner to a search over state space that
does not consider uncertainty. Second, we set b = 2.0. This
biases the search to prefer uncertainty reducing actions.

To create an anytime version of the planner, we make as
many repeated calls to the planner as possible within 300 s.
When a call completes we perform a set of 100 noisy rollouts
on the resulting control sequence π to generate an estimate
p̂π of the probability of success. We generate these noisy
rollouts using the same noise parameters used to create the
initial belief s0 in the UMCP planner. We keep π only if
it has higher estimated success probability than all previous
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Fig. 6. Using contact actions ( ) allows for finding better paths sooner
than using only basic action ( ) on both a low clutter scene (left) and a
high clutter scene (right).

paths generated by the planner. This is a similar algorithm to
the AMD-RRT described in [24] though we use probability
of success rather than performance of the path under a
divergence metric.

E. Effect of contact actions

We first examine the effect of the contact actions in the
action set. We compare the UMCP planner with contact
actions to the UMCP planner with only the basic actions
formed from discretization of the control space. Both version
of the planner use the planned default policy.

Fig.6 compares the probability of success p̂π∗ of the path
returned by the planner at each time step. In low clutter
scenes, the usefulness of the contact actions is limited (Fig.6-
left). The UMCP planner with the contact actions finds paths
only slightly faster. This is due to the use of the planned
default policy to complete paths extracted from the tree.
Examination of the generated paths shows that the default
policy is heavily relied upon to generate the contact needed
for success when using only the basic action set.

The benefit of these actions is much more prevalent in
high clutter scenes (Fig.6-right). Here, the planned default
policy fails to be applied without first moving either the bowl
or bottle. The basic action set is not rich enough to create
useful contact. In contrast, the contact action easily moves
both objects out of the way in order to make contact with
the box. Then the planned default policy can be applied to
achieve the goal. Fig.9 depicts an example path found by the
UMCP planner with contact actions.

These results support H.1: Using explicit contact actions
allows the planner to generate paths with higher probability
than a planner that uses a basic action set formed by
discretization of each dimension of the control space.

F. Effect of default policy

1) Low clutter scene: Next we examine the effect of
our choice of default policy. Fig.7-left shows the estimated
probability of success of the path output by the UMCP
planner, p̂π∗ , as a function of planning time for a low clutter
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Fig. 7. Use of goal informed default policies such as the planned ( ) and
learned ( ) result in overall better paths when compared to using a policy
that randomly selects actions ( ) for both low clutter (left) scenes and high
clutter scenes (right).

scene. As can be seen, the use of the planned default policy
allows us to generate path with high probability of success
faster than the planner with the random default policy. This is
despite the planned default policy taking almost 10x longer
to compute than the random default policy (mean time 0.5 s
and 0.06 s respectively). The learned default policy also
outperforms the random default policy on this scene, finding
solutions nearly as good as the planned policy.

Perhaps more interesting are the qualitative aspects of the
results. Fig.2 shows an example path at t = 45 s for the
UMCP planner with each version of the default policy. The
left column shows the portion of the path πtree extracted
from the tree. The right column shows the portion of the
path πdef extracted using the default policy.

The tree paths for the planned and random default
policies are similar, though the UMCP planner that uses the
planned default policy finds a more robust sequence (Fig.2-
top). This is because the default policy is more informative
and allows better estimates of Q̂(h, a) early in the tree.

The main difference in the two results comes from the
portion of the path extracted using the default policy. The
planned default policy maintains contact with the goal object
and eventually moves the full belief either into or near the
goal region. The random default policy loses contact with
the object quickly and fails to move any of the belief to
the goal. Interestingly, the learned default policy is fast and
informative enough that the tree is able to grow almost all
the way to the goal within the 45 s.

2) High clutter scene: Fig.7-right shows results for a high
clutter scene. Again, the planned default policy performs
well, returning paths with higher probability of success
than the planner using the random policy. Interestingly, the
learned default policy struggles to find solutions to this scene
and performs worse than the random policy. This scene is
difficult. The bottle blocks direct access of the box. It must
be moved or avoided. The random policy fails to find any
valid sequences of actions that achieve the goal for most of
the search. As a result, no reward is propagated through the
tree, and the tree fails to grow deep. Similarly, the learned
policy fails to find good solutions, resulting again in a tree
with almost no reward. Conversely, the planned policy is
able to explicitly search for and find valid solutions for this
problem. As a result, the tree contains sufficient reward to
properly guide the search and find robust paths. Fig.9 depicts
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Fig. 8. On simple scenes (top), the B-RRT (b=2.0) from ( ) is able to find
better paths quickly. The UMCP algorithm ( ) is able to find better paths
more quickly than the B-RRT (b=0.0) ( ). On difficult scenes (bottom), the
UMCP outperforms the B-RRT.

a solution found by the planner.common failure by
Our results partially support H.2: The goal informed

planned default policy is useful in low and high-clutter
scenes.

G. Comparison to baseline planners

Finally, we compare the UMCP planner using contact
actions in the action set and the planned rollout policy to
the baseline planners described in Sec.V-D. Fig.8 shows the
estimated probability of success p̂π∗ of each planner as a
function of planning time.

For the low clutter scene both versions of the B-RRT are
easily able to find solutions (Fig.8-left). The B-RRT with
b = 2.0 performs exceptionally well here because there exists
a solution comprised almost entirely of uncertainty reducing,
or low divergence, actions. These solutions are also found by
the UMCP planner (Fig.2-top).

The advantage of the UMCP algorithm can be seen for the
high clutter scene (Fig.8-right). Here, the B-RRT performs
poorly because the actions that reduce uncertainty in the box
increase uncertainty in the pose of other objects, such as the
bottle or bowl (Fig.9). Such actions perform poorly under
the divergence metrics used to bias the B-RRT. As a result,
the B-RRT is slow to explore and find solutions. The UMCP
allows for increasing uncertainty along dimensions that are
not important for goal achievement. This allows the planner
to find solutions more easily.

Overall, for planning time budgets greater than 30 s the
UMCP algorithm finds solutions as good as the solutions
found by the B-RRT algorithms in the low clutter scene. The
UMCP algorithm outperforms both baseline planners in the
high clutter scene. This supports H.3: Our UMCP planner
that uses contact actions and the planned default policy
is able to produce paths that exhibit higher probability of
success compared to anytime versions of baseline planners.

VI. DISCUSSION

In this work we propose an Unobservable Monte Carlo
Planner. This algorithm extends MCTS to the unobservable
domain. We show that by carefully selecting an informative
default policy and an action set capable of generating contact
with important objects in the scene, we are able to plan
solutions that are robust to uncertainty. The result is an
anytime algorithm that quickly returns good solutions in the
example scenarios.
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(a) Tree policy (b) Planned rollout policy

Fig. 9. In high clutter scenes, the UMCP algorithm with contact actions performs well. The algorithm allows for increasing uncertainty in the pose of
the bowl, as long as it does not inhibit goal achievement.

Our experiments show that the planned default policy
performed exceptionally well on the rearrangement tasks we
consider. We concede that this task is particularly well suited
for the planned default policy: only a single movable object
is described in the goal, making the reduced state space
containing only this object easy to search using a heuristic
planner. More complicated rearrangement tasks that contain
several objects defined in the goal, such as those in [26],
may benefit less from this approach as the lower dimensional
planning problem will be quite difficult to solve. We believe
the learned default policy, trained with a sufficiently large
and representative data set, may be more effective in these
tasks.

This algorithm represents a step toward planning rear-
rangement tasks using nonprehensile manipulation in be-
lief space. We believe there are two promising directions
that may improve the quality of the planner. First, we
can expand the set of actions considered by the planner
by using gradient free methods to make local adjustments
to the action set [27]. Second, we believe this algorithm
could be extended to closed-loop planning by incorporating
feedback as observations in a full POMDP formulation.
Careful thought must be applied to allow us to maintain
tractability under the exponential increase in histories due
to the introduction of observations. However, recent work in
using contact sensing [28] during push-grasping shows this
may be possible.
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Abstract—Traffic detection and inventory has recently raised
public interest because a highly accurate traffic detection system
is essential to road inventory. The Navlab group has conducted
research in stop sign, pedestrian and vehicle detection project
in the past. However, in order to form a whole traffic sign
detection system, it is necessary to build a detector that could
detect varieties of traffic signs efficiently, which is most of our
work. First, we compare different kinds of traffic signs in the US
and put them into several categories, forming a sign database. For
this process, a program labels and crops the interest areas of the
picture. Second, aiming to obtain a best parameter, we use some of
these samples to train several classifiers by applying an OpenCV
algorithm based on Haar-like feature. Afterwards, we utilize some
synthetic images to create training samples by altering their color
property and conduct large-sample-based trials. A bootstrapping
method is introduced to improve the classifiers performance in
the training process. Finally, we evaluate the method and the final
results indicate that a classifier based on Haar-like feature and
AdaBoost algorithm could work well for common traffic signs.

Index Terms—Traffic signs detection, Haar-like feature, Ad-
aBoost, classifier training,

I. INTRODUCTION

Over recent years, much attention has shifted to recog-
nizing object classes in the field of machine vision. Among
them, Traffic Sign Recognition(TSR) is one of the areas where
many challenges exist. Much progress has been made both in
theoretical and commercial aspect in the past few years. But
the research is still far from enough. Important problems have
been solved with German Traffic Sign Recognition Bench-
mark(GTSRB) published in 2011[1] and the paper states that
their system could work well in recognizing European traffic
signs. Similar methods could be applied to detect USs traffic
signs, however, there is far fewer publicly available data for
US signs.
In order to obtain a proper traffic sign classifier and evaluate
its performance in recognizing signs, the first thing we need to
do is to obtain a large dataset of traffic sign. The appearances
of the US traffic signs are significantly different from the
other parts of the world. Hence, We need to build the dataset
of US traffic signs. In theory, one could take thousands of
photos of one standard traffic sign from different angles and
use these images to train a classifier. But the results are
usually disappointing due to the fact that neither the images
are different from images in real environment nor are there
many useful and distinguished features could be extracted
from these images. Like mainstream field of large-scale data
collection progress,our images are captured from a camera
mounted in vehicles that traverse the road network on a regular
basis[2]. Fortunately, we also found a North America dataset
called LISA dataset on the internet, referred to its category
organization and added some of images into our dataset. Owing
to the fact that the camera recorded the images on a continuous
basis, we have multiple similar images of the same traffic sign.

Hence,we could just pick out only part of them into dataset
for the purpose of decreasing sample training time.
More and more different object detection algorithms are
emerging. One method was built upon the image thresholding
followed by SVM classification[3]. But problems arised when
setting the proper threshold for each image. Ruta introduced
image color thresholding combined with shape detection[4].
Integral Channel Features offered good results on European
signs[1]. We employed haar-like feature-based adaboost al-
gorithma popular open source algorithm in the OpenCV. To
guarantee the good performance of a classifier, false negative
rate has to be slow and false positive rate should be reasonable.
For the requirement of detection, taking into consideration that
most of our work is related to road inventory, it is comparably
not necessary for our TSR to work in a real-time condition than
any other one which works in a autonomous driving system.
On the other hand, to train a classifier in our system, we could
discard some images which are not qualitied and utilize those
with good quality. Comparably, an haar-like feature based
algorithm would meet most of our requirement perfectly in
a short time and high accuracy.
The primary goal of this article is to attempt to build a classifier
which could detect common traffic signs. On the other hand,
many traffic signs would be detected through the detection
process, which could be added into dataset and form a larger
sets. In the promising future, we would use a “HOG+SVM”
method to conduct rigorous trials and compare the results with
Haar+Adaboost method.

II. DETECTION METHOD

Detection Method In 2001, Paul Viola and Michael Jones
published their new image representation called “Integal Im-
age” to compute the features and brought about Adaboost,
a learning algorithm used in the training process in their
article[5]. A term called “cascade” was also discussed to find
promising object efficiently. Later on, It has been proved that
this algorithm could be utilized to detect objects in a much
faster speed and higher classification precision. Since then,
this method has been applied frequently in object recognition
applications. Nowadays ,based on OpenCV, people can use
an application called “opencv traincascade” to train a classi-
fier[6]. We employed this efficient utility in most of our work.

A. Haar-like feature and its computation

Haar-like features (Figure 1) are image features constructed
on a framework for robust and extremely rapid object detec-
tion[5]. Typically it can be defined as the difference of the
sum of pixels of areas inside the rectangles with any size. In
the Figure 1, A, B, C, D are four different kinds of rectangle
selection methods. In order to improve computing speed, Viola
and Jones introduced integral images. In this algorithm,the
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Fig. 1: Haar like features

Fig. 2: sum of rectangular area

value at any point(x,y) can be defined as as sum of all the
pixels above and to the left of (x,y).

Hence,the sum of particular region could be calculated by
the equation below:
sum = I(C) + I(A)− I(B)− I(D)

B. AdaBoost

AdaBoost learning algorithm was proposed by Yoav and
Robert as a general method for generating a strong classifier
out of a set of weak classifier[7].The output of each weak
classifier is assigned a weight and combined into a sum. It is
adaptive in the sense that misclassified samples from previous
classifiers would be focused more in the next classifier.

III. DATA COLLECTION

In order to train a classifier properly, it is indispensable to
have a large number of different traffic sign samples. However,
there are limited traffic sign dataset online and most of them
are European traffic sign dataset. American traffic signs are
very different from those in Europe. Take prohibitory signs as
an example (Figure 2). In contrast to the circular European
prohibitory signs, American signs have a rectangular shape
and express numerals and lettering on a white ground with a
black border. Hence, we have to create a traffic sign dataset
by ourselves. A vehicle mounting a camera drove around
Pittsburgh to capture different kinds of traffic signs. Within 2
years, 7 million pictures are collected. We use some of these
pictures to create our own dataset.

Fig. 3: Differences of traffic signs between EU and US

Fig. 4: image collection process

IV. PREPARATION FOR THE TRAINING

After dataset was built, another thing we should do before
stepping into training process is creating positive samples.
Based on OpenCV, an application called “opencv createsam-
ples” could realize the function. This application can be used
to create many positive samples (traffic sign samples) from
one image or several images as long as the original image and
the annotation which tells the size and location of the traffic
signs in the image are provided[8].Also, to obtain the samples,
some pths and parameters like -img, -bg and -info keys should
be specified.

OpenCV also provides an application called “opencv -
traincascade.exe”, which can generate a classifier from Haar-
like feature extraction and AdaBoost learning algorithm. We
just need to call the function by Command Prompt. When
using this application, some parameters should be customized
according to different goals. Below are some important ones:

V. TRIALS AND ANALYSIS

To find out the best parameters that could feed the traffic
sign training, we use small number (47) of speed limit signs
to have a test. In contrast,there is only one variable between
two tests. The results are shown below.

Fig. 5: improtant training parameters
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Fig. 6: 16*16 speed limit sign Fig. 7: 16*20 speed limit sign

Fig. 8: speed limit sign trial 1

A.

Changing the size of positive samples by altering the
training parameters w and h in OpenCV traincascade while
keeping minHitRate and maxFalseAlarmRate constant at the
same time (usually we alter the w, which means the width of
positive samples, and h, which means the height of positive
samples)
When setting of positive samples 16*20 , the most signs could

be detected. In fact, the ratio of 16 to 20 is similar to the
actual ratio of a speed limit sign. Consequently, when we resize
the positive samples, the actual size of the samples should be
considered.

B.

altering minHitRate or maxFalseAlarmRate while keeping
the ratio of w to h constant

The minHitRate and maxFalseAlarm Rate have great
influence on the test results. And we find when we set
minHitRate with maxFalseAlarmRate to 0.998 with 0.6, the
most samples can be detected.

When keeping minHitRate the same and changing
maxFalseAlarmRate(data1, data2, data3), the result
indicates that the more signs could be recognized if we
set maxFalseAlarmRate as 0.6.Higher or lower value does not
necessarily ensure a better or worse result.
When keeping maxFalseAlarmRate the same and changing

minHitRate(data2, data4, data5), the result indicates that the
higher minHitRate is, more signs could be detected. In all,
0.998 for minHitRate and 0.6 for maxFalseAlarmRate is

Fig. 9: speed limit sign trial 2

Fig. 10: results from different parameters

Fig. 11: altering maxFalseAlarmRate

recommended if you want more signs to be detected.
The samples we use for training above share similar features.

However, traffic signs in America are very different in size,
shape and color. We are not sure whether the classifier trained
by different signs could perform well. Hence, to verify the
performance, we conducted a trial in which training samples
are selected both from speed limit signs and stop signs. We
choose 1315 speed limit sign samples and 1315 stop signs

Fig. 12: altering minHitRate
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Fig. 13: different signs in the US

Fig. 14: speed limit sign and stop sign mixed trial

and train them separately and together. Below is the result:
Considering speed limit signs and stop signs have different

width-to-height ratio, we use 16*16 and 16*20 in our test,
which are more similar to that of stop signs and speed limit
signs separately. When we set the ratio of samples as 16 to 16,
the result of speed limit sign is not very good, but it improved
when the ratio is set as 16 to 20, which is similar to the actual
shape of a speed limit sign. A classifier with different kinds
of samples could have a reasonable performance toward two
different signs. However, we did not conducted more rigorous
trial to see if the performance of classifier would be worse
if more different feature-based samples are selected into the
training set.

VI. CREATING SAMPLES FROM SYNTHETIC IMAGES

Some traffic signs are very rare, so we cannot find enough
samples. In this case, we should create samples on our own.
. We start from an ideal synthetic image of the traffic sign.
From this image many more images are created by random
roation around all three axes. Then, white noise is added
to the intensities of the foreground. Finally, the obtained
images are placed onto a randomly selected background from
the background description file, resized to the desired size
specified by -w and -h and stored to a data base. (the vec-
file, specified by the -vec command line option).

A. alter the color property of images

In an image processing context, the histogram of an image
normally refers to a histogram of the pixel intensity values.
This histogram is a graph showing the number of pixels

Fig. 15: piexl intensity histogram

in an image at each different intensity value found in that
image. Histograms can also be taken of color images — either
individual histograms of red, green and blue channels can be
taken.
By adjusting its properties like exposure, contrast and sat-

uration, we create more images and they look like those in
different environment. These can be observed in the histogram
of the images. We can achieve this with photoshop, to make
more images, you can also use openCV to create your own
program.

B. trials and results

The picture below showed ten different image samples
created from one synthetic image by employing the method
mentioned above.
In our test, we choose five kinds of synthetic images: “no

right turn”, “signal ahead”, “do not enter”, “added lane”
and “speed limit 25” as positive samples. In the test1, we
create 5000 positive samples only from 5 original synthetic
images by employing opencv createsamples. In contrast, we
also conducted tset2. By changing the color property of each
original image, we create 10 pictures for one kind. Then 1000
positive samples are generated from every category. Combine
samples in five categories into one dataset, we could obtain
positive samples whose amount number could be up to 5000.
The trial result indicates that, after applying color property-

altering method, basically detection rate for each kind of
traffic sign has been improved more or less. Considering
another fact that testing dataset contains some images in
which traffic signs are somewhat tiny and vague, the real
detection result could be better than the statistics given above.
Hence, we can use synthetic images to solve the problem of
lack of samples.

VII. BOOTSTRAP TRAINING

In order to further improve the performance of the classi-
fier, more real samples need to be added to the training set.
By comparing the intensity histogram of synthetic images and
real images, we can find that most value of synthetic image
intensity count is zero, while most of real images are not. Since
“Haar-like” feature is based on the sum of pixels in a certain
area, we can conclude that the features of synthetic images
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Fig. 16: original

Fig. 17: altering saturation

Fig. 18: altering contrast

Fig. 19: altering sharpness

Fig. 20: altering exposure

are limited, while real images contain more. So if we add
some real pictures to the training dataset created with synthetic
images, more information will the classifier contains. We use
synthetic images with boost training in the following series of
test. Firstly, 3000 samples are created from 3 synthetic speed
limit signs to train a classifier. Then, we use the classifier to
detect 3213 speed limit sign testing samples. Afterwards, we
crop out all testing results and classify them into true positive
samples(traffic signs which are detected by the classifier) and
false positive samples(samples which are considered traffic
signs by classifier even though they are not. Finally, we added
these samples to the training set separatly and retrain a new
classifier. The training process will be stopped If the result
could meet our requirement, or we will repeat this process.

Fig. 21: orgiginal image

Fig. 22: 5 images creating by changing color property

Fig. 23: 5 images creating by changing color property

Fig. 24: samples on the negative background

Fig. 25: cropped samples

The types and parameters of each test are listed below:
When we use synthetic images only, the recall rate is 93.088%

while precision rate is 46.785%. After we add all true positive
samples to the positive training dataset, the recall rate increased
to 98.973% while precision rate decreased to 26.452%.
Since the precision rate is too low, which means there are
many mistakes when we test an image. So we add some false
positive samples to lower the number of mistakes. Considering
the value of minHitRate has a great influence on precision rate
based on our prior test. We set it 0.5 and 0.6 while keep other
conditions the same to have a test. In test3, precision rate rise to
97.85%, which is very high. And recall rate is 93.50%, which
does not improve too much. And in test4, when minHitRate is
set 0.6, we find that the recall rate rise to 97.14%, but precision
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Fig. 26: synthetic image test1

Fig. 27: synthetic image test2

Fig. 28: bootstrapping block diagram

Fig. 29: test exmple

Fig. 30: test example

Fig. 31: bootstrapping trial result

rate is 39.12%, lower compared with that in test1.
In conclusion, we can improve the performance of the classifier
by boost training. In detail, more true positive samples added
to the training dataset, higher will recall rate be. And with
more false positive samples added to negative samples, some
mistakes in detection will be reduced. And by adjusting the
value of minHitRate between 0.5 and 0.6, we can get a result
which get a balance between precision rate and recall rate as
we want.

VIII. YELLOW SIGN DETECTION

Besides, we also conducted yellow sign detection based
on the similar method applied in speed limit sign detection.
In these trials, we select 6 kinds of yellow signs and utilize
color property alternation strategy to generate original positive
samples. Then 2400 positive samples are created, together with
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Fig. 32: parameters of bootstrapping trial

Fig. 33: the results of yellow sign before bootstrapping

training and bootstrapping. In the bootstrapping process, we
both select true positive signs and false positive signs into
positive sample and negative sample training sets. In order to
decrease calculation time and avoid overfitting, we try to select
some of signs which are different and contain more features(no
matter positive or negative).
This time we use the famous “Pascal VOC challenge” to
evaluate our test results instead of calculating manually. The
results before and after bootstrapping are shown as P-R curve
plot.
P means precision,which is the ratio of true positive samples
to all the positive samples detected by the classifier.
R means recall,which is the ratio of true positive samples to
all the positive samples in the test.
The results show that before bootstrapping, the highest recall

rate is nearly 80 percent, and precision rate can be up to 75
percent. After bootstrapping, the highest recall rate rise up to
over 90 percent, while the highest precision rate arrived at 1.
Both overall and the highest recall rate are both improved. It
can be deduced that bootstrapping could improve the recall

Fig. 34: the results of yellow sign after bootstrapping

rate of a classifier in an efficient way as long as the signs,
which are added into the training set, are representative to the
samples.

IX. CONCLUSION

The classifier’s performance depends on the shape of
test object, sample quality, training parameters. Based on
“Haar-like” feature extraction and AdaBoost algorithm, an
open source application, provided on openCV platform, could
be utilized to train a classifier to detect particular objects.
Upon small number trial, “Haar+AdaBoost” method could
work properly toward traffic sign recognition. By altering
the color property of samples and applying boost training,
the performance of the classifier could be improved. A
method that a huge classifier generated by different small
well-performed classifier is gradually formed. For the future
work, several more rigorous trials would be conducted through
“HOG+SVM” method to verify the further performance of the
classifier.
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