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Research Objective and Challenges

Objective: Leverage past experiences to reduce the
computation needed to generate new control commands in
a Nonlinear Model Predictive Control (NMPC) formulation
and implementing this controller on severely
computationally constrained platform.

Challenges:

Evaluation on a computationally constrained platform of
Pixhawk autopilot microcontroller, having 32bit STM32F427
Cortex M4 core with FPU/ 168 Mhz/256 KB RAM/2 MB

Flash and 32 bit STM32F103 failsafe co-processor.
Approach

Experience-driven Predictive Control (EPC) approach that
constructs online an experience database consisting of
parametrized feedback controllers and dynamic models.
[1,2]
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(a) MAV operates away from constraint boundaries
enabling it to apply a controller in database while the
dynamics model continues to be updated.

(b) A new controller is added to the experience database
as the MAV transitions to a more aggressive flight and
the updated dynamics model predicts that the system
state is approaching a constraint boundary.

(c) The MAV reuses controllers in the database based on
state evolution predicted by current estimate of its
dynamics model.

(d), (e) and (f): Controller database transferred to
computationally constrained platform and on-board
control runs.

Experience-driven Predictive Control Algorithm
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- while control 1s enabled do

I <— current system state
r < current reference sequence

A, B, ¢ < current dynamics model from LWPR

for each element m; € M do
Compute u, A

if «, r satisfy parameterized KKT criteria then
importance, < current time, sort M

solution found < true

Apply atfine control law — from m;

end if

end for

if solution found i1s false then
Use Existing PD Controller

u : Control Input
A\ : Set of active constraints
M : Controller Database
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Send the trajectory references and robot state from simulation
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System Overview
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environment to Pixhawk controller.

Calculate final rom commands using on-board control (PD or
EPC) on computationally constrained platform (Pixhawk) and

Motor Controller
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receive the rom commands back on ground-station.
Visualise the trajectory in simulated environment.
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Implementation of Experience-driven Predictive Control on
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Preliminary Controller Performance Evaluation

Preliminary results of EPC Controller Implementation at
the embedded level for a basic desired state in a specific
direction is displayed below: (Horizon Length = 10)

EPC Position Response to a Step Input
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Conclusion and Future Work

EPC Controller formulated on Pixhawk comprises a
controller database with gains similar to PD Control. After
the controller database is populated, efficient control results
are leveraged via on-board control.

Leverage Controller database generated by an external
computer and extend the present formulation to Robust
Experience Predictive Control using tightened constraints [2]
and Markov Chain based Controller Selection [3].
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