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A-Faster R-CNN: Generating Hard Positive 
Examples via Adversary for Traffic Sign Detection

Stephanie Milani and Christoph Mertz

PROBLEM

• Traffic signs must be well-maintained to keep roads safe. 

• Road infrastructure inventory and assessment systems that 
assist with traffic sign maintenance must be able to detect 
occluded traffic signs.

• Problem: How do we robustly model invariances to rare 
occlusion events?

• Gather more data? – No, too tedious and time-consuming.

• Generate all possible occlusions? – No, impossible! 

• Combine the Faster R-CNN [3] architecture with the 
Adversarial Spatial Dropout Network proposed by Wang et al. 
[4] to create A-Faster R-CNN.

• Train and test A-Faster R-CNN on the LISA dataset [5].

• Test A-Faster R-CNN on the Navlab dataset – specifically on 
occluded stop signs that were initially missed by the detector. 

• Evaluate the performance of the new network: Which cases is 
it still unable to classify? Which cases is it now able to classify?

Network Design: The architecture of Faster R-CNN integrated with the Adversarial Spatial Dropout Network (ASDN). Given the input of region-based convolutional features 
proposed by the Region Proposal Network (RPN), the ASDN generates an occlusion mask to indicate which parts of the features to dropout. 
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• Train and test method on more traffic sign datasets.

• Increase network robustness to sign discoloration and 
distortion by allowing adversary to further manipulate input.

• Incorporate top-down methods, such as prior knowledge of 
sign locations.

• Extend to real-time traffic sign detection.
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SOLUTION

• We do not have to generate all possible occlusions, just 
difficult ones [1] [2].

• Proposed Solution: Generate hard positive examples of 
occlusions using an adversary.
• Goal of the detector: Accurately classify the sign in the 

image.
• Goal of the adversary: Create examples of occluded signs 

that are good enough to trick the object detector into 
misclassifying the sign.

• Integrate with network used by Navlab (Faster R-CNN) for 
their road infrastructure inventory and assessment system.
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