A-Faster R-CNN: Generating Hard Positive Examples via Adversary for Traffic Sign Detection
Stephanie Milani and Christoph Mertz

PROBLEM
- Traffic signs must be well-maintained to keep roads safe.
- Road infrastructure inventory and assessment systems that assist with traffic sign maintenance must be able to detect occluded traffic signs.
- **Problem:** How do we robustly model invariances to rare occlusion events?
- Gather more data? – No, too tedious and time-consuming.
- Generate all possible occlusions? – No, impossible.

SOLUTION
- We do not have to generate all possible occlusions, just difficult ones [1] [2].
- **Proposed Solution:** Generate hard positive examples of occlusions using an adversary.
- Goal of the detector: Accurately classify the sign in the image.
- Goal of the adversary: Create examples of occluded signs that are good enough to trick the object detector into misclassifying the sign.
- Integrate with network used by Navlab (Faster R-CNN) for their road infrastructure inventory and assessment system.

WORKS CITED

METHODS
- Train and test A-Faster R-CNN on the LISA dataset [5].
- Test A-Faster R-CNN on the Navlab dataset – specifically on occluded stop signs that were initially missed by the detector.
- Evaluate the performance of the new network: Which cases is it still unable to classify? Which cases is it now able to classify?

FUTURE WORK
- Train and test method on more traffic sign datasets.
- Increase network robustness to sign discoloration and distortion by allowing adversary to further manipulate input.
- Incorporate top-down methods, such as prior knowledge of sign locations.
- Extend to real-time traffic sign detection.

ACKNOWLEDGMENTS
Thank you to Jina Wang, Dat Nguyen, the rest of the Navlab, and Nicholay Topin for their support. Special thanks to Traffic21 for sponsoring this work through the Women in Transportation Fellowship.