Constructing a Map and a Human Driving Dataset from Birds-Eye View Video

Yesus Becerril, Zhiqian Qiao, John M. Dolan
Monterrey Tech, Carnegie Mellon University, Carnegie Mellon University

Introduction

Machine learning approaches can generate better autonomous driving models and behaviors, but they need data.

Problem:

- NGSIM dataset is the only suitable public dataset for this purpose. However its size/time period and scope are limited.
- Recent approaches to replicate this dataset need mounting fixed infrastructure, which requires permission, can be expensive, and is not portable.

Solution:

- Using a drone as our only infrastructure.
- Design a portable and easily repeatable flow work.
- Create or own flexible dataset.

Method

1. Extraction of the road

We use Semantic Segmentation, by using CNNs to achieve the mask of the image.

- The model: UNET, with VGG16 pre-trained on imagenet, as its encoder.
- Classes: 0 background, 1 Road

2. Global Coordinate Road Geometry

- Construction of the map, by identifying the lanemarks as reference points, to build the global coordinates.
- This was achieved by using diverse methods of computer vision, such as Canny Edge Detection, Color

3. Transition to local lane geometry

- Translation from pixel space to meters space.

Results

- We were able to represent a map and a dataset, that contains the data of:
 - Local X and Y
 - Vehicle Size
 - Section ID
 - Lane ID

Conclusions

- We developed a process capable of building a map, to obtain diverse values of the location of the driver about the street, in an x-y plane.
- Scalable and easy to repeat.

References

Acknowledgments

- Thanks to Dr. John Dolan and Zhiqian Qiao, for this opportunity and guidance.
- Thanks to Dr. Sergio Camacho and ITESM.
- An special thanks to Rachel Burcin, Ziqi Guo, Dr. John Dolan and all the entire cohort.