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Introduction
Source detection is the problem of determining the
presence or absence of certain radioactive materials,
usually with gamma-ray spectroscopic data. It has
applications in
•medicine
• industrial safety
• national security
The source detection problem, especially in busy and
dynamic urban environments, a likely target for radi-
ological dispersion devices, presents challenges:
• variation in background radiation
• uncertain sensor position due to GPS error
• dynamic gamma-ray occlusions
•moving sources
• nuisance sources, such as medical isotopes
• anisotropic shielding
This work focuses on adapting the Bayesian Aggrega-
tion (BA) framework [1] to overcome uncertainty
in background, position, and occlusion. Future
work will focus on moving sources, nuisance sources,
and anisotropic shielding.

Gamma-ray Spectroscopic Data
A gamma-ray sensor measurement is a vector of pho-
ton counts at several energy bins over a fixed time in-
terval. These observations are the input to our model.
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A typical spectroscopic measurement, with and
without source injected.

Bayesian Aggregation Framework
Bayesian Aggregation is a framework for leveraging
evidence from multiple observations {xi}ni=1. For
source detection, it is defined as

BA({xi}ni=1) =
n∏
i=1

P (xi|source)
P (xi|no source).

We define a vector ζ that captures uncertain physical
factors of interest such as source intensity, distance to
source, and gamma-ray attenuation due to occlusion.
With the assumption that the components of ζ are
independent given source intensity I , we propose
two novel variations of the BA score: one that
maximizes over ζ and one that marginalizes over ζ.

BAmax(X) = max
I∈R

P (I)
n∏
i=1

max
ζi∈Ω

P (ζi|I)P (xi|source, ζi)
P (xi|no source, ζi)

BAmarg(X) =
∫
R
P (I)

n∏
i=1

∫
Ω

P (ζi|I)P (xi|source, ζi)
P (xi|no source, ζi)

dζi dI

Matched Filter Likelihood Model
We use matched filter [2], the linear model that max-
imizes signal to noise ratio for known source tem-
plates, as the basis of our likelihood model. It is de-
fined as MF (x) = sTΣ−1x, where s is the source
spectrum and Σ the background covariance from
training data. Since this is a weighted sum of Pois-
son random variables, it is approximately normally
distributed; we thus define a likelihood model
P (x|source, ζ)
P (x|no source, ζ)

=√√√√√ σ2
b

σ2
b + ζσ2

s

exp
(x− µb − ζµs)2

2(σ2
b + ζσ2

s)
− (x− µb)2

2σ2
b

 ,
where

µs = w · s σ2
s = (w ◦ w) · s

µb = w ·B σ2
b = (w ◦ w) ·B

with w = Σ−1s and B the background rate vector.

Priors
We let P (I) be a very weak L1 regularization cen-
tered at 0, and we let P (ζi|I) be a L1 regularization
centered at some estimate ζ̂ based on a noisy esti-
mate of sensor position, e.g. a GPS reading. There
is much flexibility in altering P (ζi|I) to suit the avail-
able auxiliary data.

Boundary of Improvement
We derive a first order asymptotic approximation of
the maximum difference between the true positive
rates of the oracle (fully informed model) and baseline
BA at a false positive rate F0. It is given as

max T − T̂ = erf
erf−1(1− 2F0)

1− cos θ
1 + cos θ

 ,
where θ is a measure of
the difference between the
true and estimated param-
eters of the scene and
is approximately the angle
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Results
The following plots show improvement over the base-
line at a false positive rate of 10−3 for various scenes
and source and background specifications.
Each model with several regularization penalties:

The oracle, the maximization model with penalty
512, and the marginalization model with penalty 256:

With a tuned regularization, both models have in-
creased performance over the baseline under various
levels of uncertainty, and even demonstrate true pos-
itive rates close to the oracle.

The difference between the two models:

Conclusion
We find that our models are very effective in over-
coming targeted sources of uncertainty; both show
improvement over baseline BA and come close to the
performance of the oracle. We recommend the
marginalization approach, since it shows com-
paratively better performance and is less sen-
sitive to regularization tuning, with the caveat
that it is more computationally expensive than max-
imization. Future work will integrate with video and
computer vision techniques to reduce uncertainty and
provide a narrower hypothesis space.
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