A modular tactile sensor demonstrated during object grasping

Quintessa Guengerich, Dr. Eric Markvicka, and Dr. Carmel Majidi

MOTIVATION

As robots enter the social environment, their ability to process their environment must be expanded. One novel solution, being explored on the NASA Robonaut 2 glove, is tactile sensing.

Current tactile sensors often face the following challenges:

- Limited data during object manipulation
- Bulk, high computational and power costs

SOLUTION & METHOD

Our tactile sensor provides:

- Rich data during object manipulation
- Low computational and power costs

The sensor is also:

- Small and flexible
- Easily integrated without rewiring
- Surface mountable

Sensor Components

The tactile sensor contains:

1. Time-of-flight sensor
2. Barometer
3. Pulse oximeter
4. Accelerometer

Object Gripping for Sensor Characterization

We used the sensor during object grasping tasks to demonstrate the applicability of the sensor.

We built a two-finger gripper modeled after the UC Softhand[3]:

1. Flexible scaffold printed from Tough material on the Form2 3D printer
2. The scaffold was cast in Vytaflex 30, a polyurethane elastomer
3. Fingers mounted with a 1501 Power HD Servo to actuate pulleys

RESULTS

Two-Finger Gripper used in Object Grasping

![Two-Finger Gripper](image)

Object Grasping Experiments

<table>
<thead>
<tr>
<th>Object</th>
<th>Unique Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black cloth</td>
<td>Soft and non-reflective</td>
</tr>
<tr>
<td>Sponge</td>
<td>Soft, elastic, porous</td>
</tr>
<tr>
<td>Cardboard</td>
<td>Non-reflective, pliable, flat, large</td>
</tr>
<tr>
<td>Shiny coin</td>
<td>Small, reflective, hard</td>
</tr>
<tr>
<td>Apple</td>
<td>Reflective, soft, firm, large</td>
</tr>
<tr>
<td>Blueberry</td>
<td>Dull, small, soft, round</td>
</tr>
<tr>
<td>Marshmallow</td>
<td>Soft, elastic, round</td>
</tr>
<tr>
<td>Gummybear</td>
<td>Soft, elastic, translucent, small</td>
</tr>
</tbody>
</table>

Sensor Responses during Grasping

<table>
<thead>
<tr>
<th>Object</th>
<th>Pressure</th>
<th>ToF</th>
<th>Pulse Ox.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardboard</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Sponge</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Black cloth</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Marshmallow</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Gummybear</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Apple</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Shiny coin</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Blueberry</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

DISCUSSION

Pressure readings during manipulation behaved unexpectedly in two ways:

- Decreased upon contact with an object—possible indication of bending
- Amplitude of pressure differential was not correlated with hardness or size of the object

Time-of-flight proximity data behaved as expected:

- Approaching an object, range decreased
- Upon contact, range remained constant
- Releasing an object, range increased

Pulse-oximetry data rendered three signals:

- IR light reflected from every object, with the highest change occurring on the marshmallow
- Red light bounced off of every object to a varying degree, except the black cloth
- Green light did not comparably react on any object, except the gummybear, where all signals were relatively low

REFERENCES

ACKNOWLEDGEMENTS

Quintessa would like to thank:

- the Robotics Institute, as well as the Robotics Institute Summer Scholars Program.
- Dr. Carmel Majidi and Dr. Eric Markvicka
- Rachel Burcin and Dr. John Dolan
- The National Science Foundation and the Office of Naval Research for funding supplies