

MOTIVATION

Figure 1. NASA Robonaut 2 [1]

As robots enter the social environment, their ability to process their environment must be expanded. One novel solution, being explored on the NASA Robonaut 2 glove, is **tactile sensing**.

Current tactile sensors often face the following challenges:[3]

Limited data during object manipulation

 \succ Bulk, high computational and power costs

SOLUTION & METHOD

Our tactile sensor provides:

- \succ Rich data during object manipulation
- Low computational and power costs
- The sensor is also
 - \succ Small and flexible
 - \succ Easily integrated without rewiring
 - \succ Surface mountable

Sensor Components

The tactile sensor

contains:

- 1. Time-of-flight sensor
- 2. Barometer
- 3. Pulse oximeter
- 4. Accelerometer

Figure 2. The tactile sensor pictured here. A quarter is included for scale. Credit to Dr. Eric Markvicka for fabrication of the tactile

Object Gripping for Sensor Characerization

We used the sensor during object grasping tasks to demonstrate the applicability of the sensor.

We built a two-finger gripper modeled after the UC Softhand[3]:

- 1. Flexible scaffold printed from Tough material on the Form2 3D printer
- 2. The scaffold was cast in Vytaflex 30, a polyurethane elastomer
- 3. Fingers mounted with a 1501 Power HD Servo to actuate pulleys

A modular tactile sensor demonstrated during object grasping

Quintessa Guengerich, Dr. Eric Markvicka, and Dr. Carmel Majidi

RESULTS

Two-Finger Gripper used in Object Grasping

Figure 3. Nitrile gloves were used to aid the adhesion of the tactile sensor to the fingers of the anthropomorphic two-finger gripper.

Object Grasping Experiments

Grasping Experiment Characteristics

Object	Unique Properties	
Black cloth	Soft and non-reflective	
Sponge	Soft, elastic, porous	
Cardboard	Non-reflective, plyable, flat, large	
Shiny coin	Small, reflective, hard	
Apple	Reflective, soft, firm, large	
Blueberry	Dull, small, soft, round	
Marshmallow	Soft, elastic, round	
Gummybear	Soft, elastic, translucent, small	

Table 1. Each object was tested to determine the sensor response to
 different material properties

Figure 5. Pressure change during manipulation of different objects

- **Pressure readings** during manipulation behaved unexpectedly in two ways:
- \succ Decreased upon contact with an object--possible indication of bending
- \succ Amplitude of pressure differential was not
 - correlated with hardness or size of the object

- testing
- 195-220, 2015.

Figure 4. Tactile sensor in action during object grasping. Cop-left: cardboard. Top-right: marshmallow. Bottom-left: blueberry. Bottom-right: quarter.

Sensor Responses during Grasping

ect	Pressure	ToF	Pulse Ox.
oard	*	\checkmark	
nge	*	\checkmark	
cloth	*		
nallow	?		
ybear	*		
ole	*		
coin	?		
berry	?		

Table 2. The time-of-flight sensor and pulse oximeter rendered predictable
 and repeatabe results. The pressure sensor response did not follow the predicted trend of increased pressure upon contact with harder objects.

SOFT MACHINES LAB integrated soft materials for human-compatible machines and electronics

DISCUSSION

Time-of-flight proximity data behaved as expected: > Approaching an object, range decreased Upon contact, range remaned constant Releasing an object, range increased

Pulse-oximetry data rendered three signals:

> IR light reflected from every object, with the highest change occurring on the marshamallow \succ Red light bounced off of every object to a varying degree, except the black cloth

 \succ Green light did not comparably react on any object, except the gummybear, where all signals were relatively low

FUTURE WORK

 \succ Analysis of accelerometer data during slip condition

 \succ Integration with a closed-loop algorithm

 \succ Demonstration of the sensors used with a dexterous 5-fingered robot hand

REFERENCES

[1] "NASA - Robonaut", Nasa.gov, 2018. [Online]. Available:

https://www.nasa.gov/mission_pages/station/research/experiments/760.html. [Accessed: 03- Aug- 2018].

[2] Z. Kappassov, J. Corrales and V. Perdereau, "Tactile sensing in dexterous robot hands — Review", Robotics and Autonomous Systems, vol. 74, pp.

[3] M. Tavakoli, R. Batista and L. Sgrigna, "The UC Softhand: Light Weight Adaptive Bionic Hand with a Compact Twisted String Actuation System", Actuators, vol. 5, no. 1, p. 1, 2015.

ACKNOWLEDGEMENTS

Quintessa would like to thank:

the Robotics Institute, as well as the Robotics Institute Summer Scholars Program.

> Dr. Carmel Majidi and Dr. Eric Markvicka

Rachel Burcin and Dr. John Dolan

The National Science Foundation and the Office of Naval Research for funding supplies

