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Motivation and Objectives
• Problems with current methods:

• Inflexible, parametric models
• Strong, often Gaussian, assumptions
• Simplistic approximations of tracking distribution

• Objectives:
• Data-driven, model-free method
• Offline computation to encode tracking distribution, and 

online observation reasoning
• No assumptions on tracking distribution

Introduction
• UAVs operating in populated areas require safe contingency 

planners in forced landing situations

• Most planners operate by scoring the risk of a proposed 
reference path
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• A fundamental measure of 
risk is the tracking 
distribution – the 
distribution of trajectories a 
UAV would realize by 
following a reference path

Approach
• In a Sequence-to-Sequence model, an encoder RNN inputs a 

sequence of real-time observations of the UAV relative to the 
current path
• Encoder builds an indirect notion of the current dynamics 

of the UAV

• Then, a decoder RNN uses the internal state to predict the 
tracking distribution, relative to a candidate reference path

Experiments and Results
• Data Generation

• Full 12-state, 6-degrees-of-freedom nonlinear model with Gaussian distributed 
constant wind in a random direction, and Dryden modeled turbulence

• Conditions are a combination of Low Wind or High Wind and Low Turbulence or 
High Turbulence: (LWLT, LWHT, HWLT, HWHT)

• 4000 reference paths, 200 simulated paths each, using a custom UAV simulator

• Tracking distribution discretized as a sequence of histograms

• Unscented Kalman Filter (UKF) Baseline
• Provided observations of the half current trajectory, then relies on dynamics model

to predict the rest
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• Only provided observations
of the half current trajectory
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Sampled distributions of UKF 
predictions (red) and true tracking 

distributions (blue)

Average KL-Divergence (bits)
LWLT LWHT HWLT HWHT

UKF 21.260 22.437 24.950 25.029
Seq-to-Seq 10.120 11.585 12.055 13.558

Conclusion and Future Work
• The Sequence-to-Sequence model produces a lower 

difference in distribution 

• Better prediction without an explicitly defined model

• For the future:
• Compare to Gaussian Processes
• Evaluation with Wasserstein metric
• Spline fitting instead of histograms
• Test on data with control failures
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(Above) sampled distributions of Sequence-to-Sequence predictions (red) 
and true tracking distributions (blue). 
(Left) Comparison of average KL-Divergence between predicted and true 
distributions


