MOTIVATION

- Path planning for **coverage** is integral to numerous applications in AI and Robotics.
- With improvements in computing power and sensing systems, it is common for multiple agents to **cooperate** and achieve a goal.
- We present the problem of **persistent coverage** for multiple energy-constrained UAVs in a discrete environment where each target cell has a **different visitation frequency**.

PROBLEM DEFINITION

- Consider \(m \times n \) grid cells that need to be efficiently monitored by \(N \) UAVs. A visitation frequency \(f_{i,j} \) implies that cell \((i, j)\) should be revisited after every \(f_{i,j} \) time steps.
- Each UAV must travel to a cell via an optimal path while maintaining a minimum number of bad cells at any time. A cell is bad if it has been neglected by all UAVs.

CONTRIBUTIONS

- Presenting the problem of multi-agent persistent coverage for multiple target visitation frequencies.
- An algorithm to generate feasible plans.
- A **custom visualization framework/GUI** built using Qt Graphics.

REFERENCES

ACKNOWLEDGEMENTS

This summer research project was supported by the Federation of Indian Chambers of Commerce and Industry (FICCI). Special thanks to all members of the Search Based Planning Lab at RI, the RISS 2018 cohort, and to Rachel Burcin, Dr. John Dolan, and Ziqi Guo.