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Method Gaussian Mixture Model

Factor Graph Design
p g * Intention | IS a continuous random variable with a range of [0,1]- 2-COmponentS Means [[17.59 17.58][43.51 43.50]] Means [[44.03 44.02][17.87 17.87]]
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P(It_|_1 ‘It, Vt_n, - Vt) It+1 — argmaxlf(1t+1; It; Vt—n; . Vt) Covariance [[ 64.04 64.01][106.53 106.77]] Covariance
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Intention over time.

Experiment & Result

Factorization: F = f(I;44, I, Vi_yy, ... Vi)
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Forgetting Factor: assign self- -
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. Forgetting Factor decreases the collision rate

State (speed) effects: g'(S;+1) = [[w (@) f(V;, ViZ1)
. | — IE *  Gaussian Mixture Model greatly improves the accuracy of intention estimation
Last Intention effect: m(l;) = exp(— - ) *  Gaussian Mixture Model helps reduce the computation time
“Blurring function”, make the discrete intention Future Work
as a continuous value ranging from 0 to 1 ' More tests on 180, US101 and other datasets ~
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