
A norm consists of:

• A condition function, which is a propositional function 

that determines whether or not a norm has been violated:

• Modifications that will occur if  the norm is violated:

• A transition modification that is applied to s ∈ S:

• A reward modification:

• An associated penalty flag, p.
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• Our representation:

(MDP components with N, an ordered set of  norms).

• Can either:

• Precompute norm-modified MDP or 

• Calculate effect of  norms with each transition.

• To determine transition, including effects of  norms:

1.  Compute transition using original transition function

(penalty flags can be stripped to produce state in original 

state space since flags are only used by norms).

2.  For next state, evaluate all norms in fixed order.

3.  For each violated norm, apply modifications.

• Application of  norms  modified MDP which can be solved 

with standard RL methods. 

Goal:

• Enable agents to learn to act in complex environments with 

many norms, prescriptions of  desired behavior.

• Develop a scalable framework for norm-rich environments.

Solution:

• Create a modified MDP that compactly represents norms 

with propositional functions to determine when they have 

been violated.

• Apply associated modifications for norm violations (reward 

penalties or transition changes) when they occur.
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Conclusion
• Our framework:

• Can modify transitions, as well as rewards.

• Has number of  states that depends on number of  

penalty flags, not on number of  norms (p ≤ n).

• Has computed worst-case bound on number of  states of  

the same order as the average cases for MNMDPs.

• Avoids redundant states, adding no more states than are 

in the naïve case.
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• Time to compute effects of  norms on a single transition is 

linear in number of  norms, regardless of  interactions.

• Learning time scales with number of  states. Norms create at 

least polynomial more states, so is limiting factor.

• Our method:

• Results in no more states than that created by NMDP.

• If  number of  interactions is at most d, only some subsets 

of  p possible penalties can be applied simultaneously. 
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where |P| = number of  possible penalty combinations.  

Background
• Markov decision process (MDP) - one of  the standard 

problem representations in reinforcement learning (RL), 

consisting of:

(states, actions, transition probability function, rewards, and 

discount factor)

• Existing frameworks for normative reasoning:

• Normative MDPs (NMDPs) [1] – construct an MDP 

that considers states with all possible norm violations.

• Modular Normative MDPs (MNMDPs) [2] – construct 

a new MDP for each norm and norm interaction (avoid 

using full set of  norm-modified states).

Future Work
• Our complexity bounds are not tight. Actual performance 

will likely be better. We will empirically evaluate our method 

to better estimate actual performance.

• We will conduct this evaluation on scenarios from previous 

work [2] to provide a better comparison to existing 

frameworks.

• Domestic service robots are a promising application of  

normative reasoning, so we will extend this work to a 

domain of  this type.

Approach Number of States 
(order of)

Note

NMDP 2n [2]

MNMDP nd [2] If d >n/lg(n), more states 
created than NMDP.

Our method 2p, 𝑝𝑑 p ≤ n

Table 1: Here is the state space analysis for each of  the three methods. The naïve approach, 

NMDP, is exponential in n, where n is the number of  norms that can be either on or off. The 

MNMDP approach is polynomial in d, where d is the maximum number of  interactions 

between norms. In our method, only penalty flags increase the number of  states and each 

norm sets at most one penalty flag, p, so p ≤ n. Results in no more states than that created by 

NMDP.
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