This work addresses the robustness of robot stair climbing using the Minitaur quadruped. Our approach combines leg observers for obstacle detection with reactive behavior algorithms.

Motivation

- Most of the existing stair climbing solutions for legged robots assume that the stairs are in regular shapes and free of obstacles.
- Meanwhile, outdoor stairs are much more rugged, and they may be littered with obstacles.

- This requires the robot to **detect** the obstacles and **react** quickly to prevent locomotive failure.
- Each of the legs on Minitaur is lightweight and driven by two brushless DC motor with no gearbox. This direct-drive design results in high mechanical transparency, which enables high leg acceleration and contact impulse detection in minimal delay.

Proprioceptive Sensing

Leg Dynamics

\[
M(\theta)\ddot{\theta} + C(\theta, \dot{\theta})\dot{\theta} + N(\theta, \dot{\theta}) = \tau
\]

- Each of the four linkages on a leg is treated as individual masses.
- The torque, \(\tau\), is determined with the ideal motor model and the proportional-derivative (PD) controller.
- Nelder-Mead method was applied to estimate selected model parameters.

Offline Simulation

- Due to onboard computation limit, we simulated the motion of the leg in a triangular trajectory in Matlab offline.
- The results are compared to the actual achieved leg states to form the observer residuals.

Online Observer

- Stair Climbing involves sequenced maneuvers and open-loop control, causing offline simulation residuals to accumulate.
- An online, memoryless observer is thus necessary.
- A reduced dynamics model is adopted to maximize computation speed.

- The observer residuals are much lower than the tracking errors during the flight phases.
- If the leg hits the stair in the air, the observer residual increases and signals the start of stair climbing.

Stair Climbing Behavior

- Given the geometry limit of the legs and stairs, the robot is incapable of walking up the stairs quasi-statically.
- We developed a stair climbing behavior that incorporates a few sequenced, dynamic maneuvers.
 - Trotting towards the stair and detect it.
 - Front and rear legs bound upwards alternatively.
 - Disturbance recovery by fast leg circulation.
 - Trotting on the stair to self-align.

Results

- The robot was able to detect the stair and ground obstacle consistently as it trotted from different distances.
- Currently In Progress
 - Detecting obstacles on the stairs
 - Robust stair climbing

Future Work

- Develop a stair climbing behavioral model with force control.
- Install an inertial or aerodynamics tail to improve stability and dynamic maneuverability.
- Add extra onboard computer for online, full dynamics disturbance detection and contact force sensing.
- Use motor current sensing to skirt the ideal motor model.

Acknowledgements

We would like to thank Joseph Norby, Nathan Kong, and Barrett Werner for the guidance and helpful discussions.