

Summary

This work addresses the robustness of robot stair climbing using the Minitaur quadruped. Our approach combines leg observers for obstacle detection with reactive behavior algorithms.

Figure 1: Minitaur robot on the stairs in Hamerschlag Hall, CMU

Motivation

• Most of the existing stair climbing solutions for legged robots assume that the stairs are in regular shapes and free of obstacles.

Figure 2: Outdoor stairs at Schenley Park, Pittsburgh, PA

- This requires the robot to **detect** the obstacles and react quickly to prevent locomotive failure.
- Each of the legs on Minitaur is lightweight and driven by two brushless DC motor with no gearbox. This direct-drive design results in high mechanical transparency, which enables high leg acceleration and contact impulse detection in minimal delay.

Toward Robust Stair Climbing of the Quadruped using Proprioceptive Sensing

Zhiyi Ren and Aaron Johnson Carnegie Mellon University, Department of Mechanical Engineering

Proprioceptive Sensing

- Meanwhile,
- outdoor stairs are
- much more
- rugged, and
- they may be
- littered with
- obstacles.

Leg Dynamics

 $M(\theta)\ddot{\theta} + C(\theta,\dot{\theta})\dot{\theta} + N(\theta,\dot{\theta}) = \tau$

- Each of the four linkages on a leg is treated as individual masses.
- The torque, τ , is determined with the ideal motor model and the proportional-derivative (PD) controller.
- Nelder-Mead method was applied to estimate selected model parameters.

Offline Simulation

- Due to onboard computation limit, we simulated the motion of the leg in a triangular trajectory in Matlab offline.
- The results are compared to the actual achieved leg states to form the observer residuals.

Figure 3: Observer position and velocity residuals (red) vs. PD controller tracking errors (black). Green regions are the expected stance phases.

- The observer residuals are much lower than the tracking errors during the flight phases.
- If the leg hits the stair in the air, the observer residual increases and signals the start of stair climbing.

Online Observer

- Stair Climbing involves sequenced maneuvers and openloop control, causing offline simulation residuals to accumulate.
- An online, memoryless observer is thus necessary.
- A reduced dynamics model is adopted to maximize computation speed.

Carnegie Mellon University Robomechanics Lab

Trotting on the ground

- Given the geometry limit of the legs and stairs, the robot is incapable of walking up the stairs quasi-statically.
- We developed a stair climbing behavior that incorporates a few sequenced, dynamic maneuvers.
- Trotting towards the stair and detect it.
- Front and rear legs bound upwards alternatively.
- Disturbance recovery by fast leg circulation.
- Trotting on the stair to self-align.

- distances.
- Currently In Progress
- Detecting obstacles on the stairs
- Robust stair climbing

- Develop a stair climbing behavioral model with force control.
- Install an inertial or aerodynamics tail to improve stability and dynamic maneuverability.
- Add extra onboard computer for online, full dynamics disturbance detection and contact force sensing.
- Use motor current sensing to skirt the ideal motor model.

Acknowledgements

We would like to thank Joseph Norby, Nathan Kong, and Barrett Werner for the guidance and helpful discussions.

Stair Climbing Behavior

Figure 4: High-speed image sequence of the rear legs bounding upwards in 0.5 second.

Results

 The robot was able to detect the stair and ground obstacle consistently as it trotted from different

Future Work