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About RISS

Robotics-related technologies are becoming ubiquitous and are dominating  

national headlines due to innovations such as driverless cars, service robots, 

surgical robots, and aerial vehicles. Robots and the knowledge required to create, 

operate, and interact with them will become increasingly important to society.

Launched in 2006, the Robotics Institute Summer Scholars (RISS) program is  

among the best and most comprehensive robotics research programs for  

undergraduates in the world. The RISS program immerses students in the world 

of robotics. Through RISS, students perform research under the mentorship of 

top scientists in robotics and intelligent systems at Carnegie Mellon University’s 

Robotics Institute. The 50-plus participating mentors draw from a broad range of 

robotics research (e.g. field robotics, computer vision, machine learning, artificial 

intelligence, autonomy, graphics, human-robot interaction, and space robotics).  

The RISS-guided research experience is coupled with powerful professional  

development in a nurturing global community and culminates in August with an 

annual research poster session and the publication of this RISS Working Papers 

Journal. The quality and breadth of research, high level of institute and university 

engagement, extensive professional development curriculum, graduate school 

application counseling, and alumni network create transformative experiences  

and remarkable post-program trajectories, with many students continuing to  

collaborate with CMU faculty members and the RI community.
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This journal is a forum for the member of the Robotics Institute Summer Scholars (RISS) 
program to share the results of their ten weeks of diverse robotics research with the 
broader community. To the best of our knowledge, it is the only journal for undergraduate 
students to document and publish their summer research in robotics. Preparing for and 
submitting to the journal adds significant value to the RISS program; over the course of 
the summer, developing their working papers journal submission helps Scholars focus 
on clearly-defined research questions. Developing this paper has also served as a starting 
point for conference and journal submissions: Scholars have a track record of acceptances 
at major venues for the work that they began during the RISS program.  

Many people in the Carnegie Mellon Robotics Institute are responsible for the success  
of the Scholars. Throughout the program, the Scholars receive guidance and feedback 
from their faculty mentors, who are leaders in their respective fields. Most Scholars also 
are guided by graduate student mentors who assist them more with day-to-day tasks.  
In addition to helping them with the research, the faculty researchers and graduate  
mentors are often able to give highly targeted suggestions about the paper, given their 
deep knowledge of the field. 

Much of the work that makes this journal possible is undertaken by the members of 
the RISS program. Scholars participate as peer reviewers, which improves the quality of 
papers and gives the students early hands-on experience with the review process. We 
would like to thank Yesus Yahel Becerril, Maggie Collier, Emily Duan, William Edwards, 
Kyuto Furutachi, Max Gordon, Mononito Goswami, Tessa Guengerich, Adarsh Karnati, 
Tushar Kusnur, Yiwei Lyu, Shiven Mian, Stephanie Milani, Viraj Parimi, David Russell,  
Scott Sussex and Brandon Trabucco for their contributions as peer reviewers.  
Max Gordon and Tushar Kusnur also deserve special recognition for assisting with  
edits, organization, and design. 

Additionally, we deeply appreciate Emily Ferris, Alex Hall, Dr. Juliann Reineke, and  
Dr. Joanna Wolfe from the Global Communications Center for reserving a significant 
number of appointments specifically for the journal, as well as holding events throughout 
the summer to help the scholars with the sometimes-daunting writing process. These 
critiques and workshops helped make the papers useful to researchers while still being 
relevant and accessible to the broader public. 

Finally, we would like to thank Global Programs Manager Rachel Burcin and Principal 
Systems Scientist Dr. John M. Dolan for their tireless dedication to the RISS program and 
their guidance and support at every step of preparing the journal. In summary, this work 
would not have been possible without the effort and expertise of many people, and we 
are extremely grateful to each of them for their contributions. 

Stephanie Milani & David Russell 
Assistant Managing Editors

Letter from the Editors
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CMU Go Research Program

CMU Office of the Vice Provost for Graduate Education

TOBITATE!

Government of Saudi Arabia 

At the core of the Robotics Institute Summer Scholars’ program are incredibly talented and dedicated 
faculty, graduate students, staff, and RISS alumni. Their support, participation, leadership, and vision 

make this one of the best research experiences in robotics and intelligent systems in the world.

Thank you 



An End-to-End Framework for Landslide Erosion Analysis

Hameed Abdul and Christoph Mertz

Abstract— We present a unified framework comprising nu-
merous state of the art algorithms which improve both respond
times to landslide events as well as intervention efficacy.
This results in improved outcomes following landslide events
including reduced property damage and saved lives. We discuss
numerous code libraries and show that our system combines
this information in a way which is intuitive to domain experts.
Furthermore, we show that our framework can be implemented
using inexpensive and accessible hardware, including a cell
phone camera as well as a general purpose laptop.

I. INTRODUCTION
Landslides are natural phenomena characterized by the

downward slope movement of soil and rock, resulting in
millions of dollars of damage including loss of property
and loss of life. The frequency of landslides is increasing
in Pittsburgh, due in part to record rainfall as well as
a confluence of geological features which make the city
susceptible to such seismic activity. The Landslide risk
assessment and response process is accompanied by time-
consuming multifaceted inspection. This includes drilling,
geophysical studies, aerial reconnaissance, lab-based testing
of earth materials and so forth [3]. Given that landslide site’s
are dynamic landscapes, traditional inspection methods are
unable to quickly capture crucial land measurements that
depict erosion or gradual change in the landscape.

Fig. 1. US Route 30 Landslide in Greater Pittsburgh Area

The Geospatial research community has made many con-
tributions to solve this problem, the use of LIDAR or laser
scanners and GPS markers to track the landslide site’s
kinematic displacement has achieved the best results in terms
of accuracy [5, 4, 12].

However, LIDAR scanners and the accompanying equip-
ment needed to capture both terrestrial and air-based scans
in this method is inaccessibly expensive.

To reduce cost, studies on 3D reconstruction of landslide
sites with high quality dslr camera equipped drones has been
done with notable results [9, 14, 8, 6]. Although this method
is far cheaper and only marginally less accurate than LIDAR
based approaches, it is still costly and time consuming to
systematically coordinate flight and image capture.

Furthermore, the image collection process is just the first
step in the entire point cloud comparison procedure: images
must be aggregated accordingly, an application must preform
the 3D sparse then dense reconstruction (often different
applications), a separate program must be used to visualize
the results, numerous software applications must be used
to align and segment point clouds for comparison and then
finally point cloud distance can be computed. This method
is inaccessible due to the technical knowledge and copious
amounts of software needed to handle each step.

We aim to solve such problem, by creating an end-to-
end framework that handles every step of 3D reconstruction
and Geometric Change Detection with the only requirements
being a camera equipped smart phone and a general purpose
laptop. The following sections will give a brief overview of
the each step in the pipeline and open-source software and
algorithms used.

II. 3D RECONSTRUCTION

A. Structure From Motion

Structure From Motion(SFM) is a technique for estimating
3D scenes from a sequence of static 2D scene images coupled
with local motion and is classically preformed in three
general steps.

(1) Features are detected and extracted from each image
by algorithms such as SIFT [2]. (2) Features are matched
between images pairs, correlating features are saved while
non-matching features are disregarded. If images are ordered
(e.g. consecutive frames of a video) features only need
to be matched with frames in close proximity. However,
if images are unordered this process is exhaustive for it
checks each image pair for scene overlap. (3) Geometric
verification validates pairs after the feature matching process.
Scene overlapping projective geometry is used to estimate
transformations and 3D composition of detected features.

B. Multi-View Stereo

The output from SFM is used to compute depth and
the surface normal information for every pixel in an image
with overlapping pair. Overlapping images normal and depth
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Fig. 2. 3D Reconstruction Process

maps are then fused to form a dense reconstruction. Poisson
Surface Reconstruction and similar algorithms can reproduce
3D geometry of the scene.

III. POINT CLOUD PREPARATION

During the reconstruction process, the estimated camera
position and orientation determine the initial transform of
models. To properly compare models, the initially distance
between clouds must be minimized. Methods of registration
are used to reduce distance between transforms and align
point clouds.

A. Local Registration

Given an initial transform and two point clouds, Iterative
Closest Point Registration(ICP) roughly aligns the points
[1]. However, ICP is local registration method and does

not preform well if initialized transform do not converge.
Colored Point Cloud Registration uses both point cloud
geometry and color information and runs ICP iteratively with
a joint optimization objective.

B. Global Registration

Local registration methods are not robust enough to handle
point clouds with large initial distances or in congruent trans-
forms. More sophisticated methods such as Fast Global[11]
and Multiway[7] Registration handle initialization of trans-
forms for non-converging point clouds rather well. Once
global registrations provides an initialized transform, iterative
local registration methods are once again applicable.

Fig. 3. Registration and Segmentation on two similar point clouds

IV. CALCULATED POINT CLOUD DISTANCE AND
CHANGE

Once the alignment of two point clouds are reduced,
then the geometric comparison of two similarly structured
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point clouds can be used to detect change that occurred.
The Hausdorff distance is a straightforward solution for
calculating the difference between aligned point clouds. This
algorithm calculates the furthest corresponding point for each
individual point and the resulting scalar values are then used
to construct a heatmap to help visualize the change detected
during comparison (see Fig. 4).

dH(X,Y) = max
{
d(A,B), d(Y,X)

}

Fig. 4. Hausdorff Formula and Algorithm Heatmap

V. FRAMEWORK PIPELINE

(1) Image Collection. Images are captured from smart
phone camera and scaled down to a 1/4 the resolution.
(2) COLMAP 3D Reconstruction. The open-source tool
COLMAP is used for the 3D reconstruction process [10].
It provides incremental reconstruction and bundle adjust-
ment methods which provides state of the art performance
compared to other implementations of SFM. (3) Registration
and Segmentation. The Open3D library provides implemen-
tations state of the art registration algorithms as well as
segmentation[13]. (4) Change Detection. Cloud Compare is
used to turn the calculated scalar Hausdorff distance for each
point cloud into a heatmap.

A. Limitations and Future Work
3D Reconstruction requires a well lit static scene. Veg-

etation, shaded areas, moving clouds, etc are obstructions

and result in lost geometry in the reconstruction process.
Therefor, this framework should only be used for sites with
isolated or few areas of vegetation.

Currently, the use of the Hausdorff distance is straightfor-
ward and requires accurate elimination of outlier points in
the segmentation process. Our next steps are to implement
a method that better handles distance calculation between
aligned point clouds with the presence of outliers.

Improving user interface, making use of Open3D’s C++
interface to improve performance and further simplify the
framework pipeline are areas we look to explore.

VI. ACKNOWLEDGMENT

This work was generously supported by Traffic21. Hameed
would like to personally thank Tejas Khot and Wentao Yuan
as well as the rest of the Navlab group for their advice,
guidance and support.

VII. CONCLUSION

Our framework utilizes recent advances in open source
libraries and algorithms to provide landslide responders
with a single application that handles every step in the 3D
reconstruction and change detection process.
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Design and Modeling of a Custom Unmanned Aerial Manipulator for
Bridge Inspection

Nawaf Alotaibi1 and Sebastian Scherer2

Abstract— Contact measurements are one of the key tasks
performed during inspection of transportation infrastructure.
Currently, these tasks require inspectors to manually climb
onto the structure and record the measurements. In addition
to the large cost of manual human inspection, these tasks
introduce the risk of injuries to the inspectors due to working at
high altitude. Current implementations for aerial manipulators
inspection exist. However, these implementations lack stability
and positioning accuracy for the end effector due to the external
forces and the modification of the center of mass when the arm
is carrying out a manipulation task. We propose to improve
the efficiency of these measurements by developing an arm
capable of contact attached to a custom tilted propeller UAV
(Unmanned Aerial Vehicle). This paper introduces the technical
details of the UAV and the arm design. We expect the arm to be
a lightweight with weight distribution centered to the center of
gravity to enable contact inspection and keep the system stable
while performing its tasks. Moreover, this arm will facilitate the
collection of coating thickness, structural integrity other data
from the UAV using different contact sensors with modular
implementation for the end effector.

I. INTRODUCTION

Pennsylvania has 25000 public bridges. To conserve re-
sources, a given bridge is only inspected once every two
years, and inspectors rank the damage out of ten to gauge
how much repair is needed [1]. While not highly common,
there are documented instances of bridge inspectors being in-
jured and/or killed on the job. These instances are particularly
common during processes that require close proximity to the
underside and support beams of a bridge [2][3]. This type of
inspection entails an engineer climbing a bridge and using
an ultrasonic sensor to detect the thickness of the gusset
plates of a steel bridge [4]. The low frequency of inspection
reduces the state governments ability to perform preventative
maintenance on bridges that could save money in the long
run and save the bridges from structural damage that results
from the infrequent inspection.

One emerging field to deal with this problem is utilizing
an Unmanned Aerial Vehicles (UAV) combined with the
manipulation capabilities of robotic manipulators to achieve
many different varieties of inspection, including contact
bridge inspection. This combination of a UAV and a robotic
manipulator forms an Unmanned Aerial manipulator (UAM).
By using a UAM to complete inspection tasks, the process
can be done in a way that is safer, cheaper, and more frequent

1N. Alotaibi is with the Department of Mechanical Engineer-
ing at Georgia Institute of Technology Atlanta, GA 30332, USA
nalotaibi8@gatech.edu

2S. Sherer is with the Faculty of the Robotics Institute, Department of
Computer Science at Carnegie Mellon University, Pittsburgh, PA 15213,
USA basti@andrew.cmu.edu

than the current standard. Some Implementations of UAM for
bridge inspection exist; however, they introduce a common
trade-off of large size for the UAV to carry the weight of
the manipulator, resulting in fewer areas to reach with the
UAM. In addition, many UAVs implemented in current UAM
have the known 4 Degrees of Freedom (Roll, Pitch, Yaw, and
Altitude); however, these degrees of freedom are not enough
to stabilize vehicle and the manipulator since any forces in
lateral direction will result changing of the orientation of
the UAM and shifting the manipulators from the point of
inspection.

This paper proposes a solution to these issues by intro-
ducing a smaller UAM that is lightweight, able to carry
similar payload compared to current UAVs implemented in
this field, and complaint to forces in the lateral directions.
The UAM consist of a custom tilted 6 Degrees of Freedom
(DoF) multirotor UAV and a parallel linkage 3 DoF robotic
arm. The tilted rotors UAV, shown in Fig. 1, generates forces
in lateral directions, allowing the vehicle to move laterally
without changing its orientation. This results in more stability
to the arm and compensation for errors in roll and pitch. The
diameter of the UAV is 690mm which is smaller than current
UAV in this field. The arm design, shown in Fig. 2, is a
parallelogram arm where the heavy components of the arm
are at the base. This results in less shift for the center of mass
of the UAM when the arm extends to do the inspection which
adds more stability due to the lower moment from the arm
when it is extended. The arm is powered using Dynamixel
motors [5] that provide high torque and speed. Finally, rather
than adding redundant motors for added maneuverability, the
end effector, the part of the manipulator that interacts with
the surface of the bridge, was outfitted with a passive 2 DoF
using springs to allow it to flush to the surface of the bridge
without adding excessive weight.

The UAM weights 4.5 kg with an additional payload of
2.5 kg. The vehicle was customized for large payloads so
that no weight constraints will be limiting the design of the
arm in worst case scenario or in case of adding more sensors
to make other types of inspection. The combination of tilted
multirotor small frame UAV and weight-centered robotic arm
results in stable positioning for taking measurements and
more reach for the UAM to collect data in hard to reach
spots.

II. RELATED WORKS

Currently, contact inspection is performed by technicians
who get readings from an ultrasonic thickness sensor [2].
Because this requires the sensor to contact the surface of the
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Fig. 1: Custom tilted hexarotor UAV with 6 DoF

Fig. 2: Custom tilted hexarotor UAV with 6 DoF

bridge to collect data, a technician must climb the bridge or
else use a cherry picker to access hard to reach areas. This
can be a slow and dangerous process easily improved by
making use of a UAV equipped with an ultrasonic sensor.

Several labs that specialize in UAV application have begun
to explore the possibilities of UAMs. One such example
is the aerial manipulator designed by T. Bartelds et al
[6]. The UAV used in this design is a quadrotor with a
1 DoF prismatic arm. This particular model was designed
primarily for the purpose of cushioning the impact between
the UAV upon which it is mounted and a wall. The task
is managed using an elastic in combination with a locking
mechanism. The problem with this approach is that without
the locking mechanism, the kinetic energy absorbed by the
elastic results in oscillations that slow the process down
and threaten to destabilize the UAV. When the locking
mechanism is in place, the issue lies in the fact that after
a single impact, the UAV must land so that the mechanism
can be reset. In either event, time is wasted from one impact
to the next. To avoid this, this manipulator is articulated, to
allow for shock absorbency without undesirable oscillation.
Rather than incorporating a locking mechanism that requires
the drone to land and be reset manually, the manipulators
articulated design allows it to cushion impacts repeatedly
without stopping.

Another recent example is a UAM being developed is
a human-size highly dexterous dual arm system introduced
in [7][8]. Each arm is 5 DoF UAV mounted manipulator

used for complex aerial maneuvers. Unlike the manipulator
designed, this design is purposed to work in pairs. The weight
of each arm is 1.8 kg, which requires a pair to be mounted
on a hexarotor for additional power. The UAV used to carry
this design is DJI Matrice 600 [9]. The complexity of this
design is unnecessary for the task of bridge inspection. In
addition, the UAV size for this task introduces a limitation
of fewer areas to do the inspection task. As a result, this
particular model is incompatible with the objectives of this
project. Given that weight is the largest concern in drone
flying, adding more than what is necessary is inadvisable.
To allow for longer flight times with fewer battery changes,
the manipulator is designed to be as light as possible.

Some UAMs are parallel manipulators, rather than serial
manipulators, such as the Dexterous Aerial Manipulator
designed by Mina Kamel et al [10]. A parallel manipulator
is made of multiple actuated manipulators that connect to
a single end effector, which allows for high rigidity and
precision of movement [11].

The Aerobi project is a final example of a manipulator
designed to be mounted onto a UAV [8][12]. In this case,
there are a few different ideas utilized specifically for the
purpose of bridge inspection. One model simply uses a phe-
nomenon called the ceiling effect. This allows a UAV with a
sensor mounted on the top of it to cling to the underside of
the bridge and complete contact inspection that way. There
are a few problems with this technique. One issue is that
there is too much time between each instance of contact due
to the UAV needing to align itself properly with the surface
it must cling to. Another glaring issue is that this particular
technique only works with flat, horizontal surfaces. The UAV
is unable to inspect support beams or areas of the bridge that
lie at an angle. This leaves a large portion of the bridge
unattended to. Aerobi has also produced several different
articulated manipulators to complete inspection tasks, but
these also have their disadvantages. These manipulators have
between 3 and 7 DoF. The models that have 5-7 DoF have
actuated end effectors, which adds both excess weight and
complexity to the system. Meanwhile, the Aerobi UAM that
has only 3 DoF lacks the passive 2 DoF that is included in
the manipulator designed and analyzed in this paper. Table
I summarizes the design choices made in each work.

III. UAV PARAMETERS AND BUILD

To carry a big payload, there are many factors that can
be controlled in building the UAV. The Main factor for
the UAV to carry more payload is the thrust vector. Thrust
vector in standard UAV can be increased by increasing the
diameter of the propellers, increasing the KV rating of the
motor, or by increasing the number rotors or propellers. The
approach in this field for lower power consumption is by
increasing the number of rotors to six or eight rotors to get
a hexarotor or an octarotor. Standard multirotor platforms
are underactuated due to all the thrusters being aligned.
For a multirotor to move from one position to another, the
vehicle has to command a torque to change the orientation
of the overall thrust vector as seen in Fig. 3. As the vehicle
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TABLE I: SUMMARY OF THE UAM IN THE REFERENCES USED IN THIS PAPER

Reference Manipulator mechanism Manipulator’s DoF UAV’s number of rotors
[7] prismatic 1 4

[8][9] revolute links 5 8
[11] parallel 1 4
[12] - - 4

gets larger, the ability to precisely control position and
tracking trajectories decreases because of the coupling of
position control to altitude control. This results in larger
offset from the target point set for the vehicle when it follows
a trajectory and stops at a specific waypoint. Another issue
with Standard planer multirotor is the ability to hold position
and orientation which are essential for bridge inspection task.
Planar multirotor needs to fly at a non-level attitude to com-
pensate for disturbances. For having the ability to interact
with the environment, especially in the wind, conventional
multirotors may not perform satisfactorily. Another issue
with underactuated designs is that if they are to manipulate
objects, the vehicle will not be able to counter many of
the resulting reaction forces. A third design that has been
researched is fixed rotors that have been rotated to point in
such a way that produce some horizontal force components
[13]. This provides added functionality in flying level in
wind and hovering in a non-level orientation while not
increasing complexity or additional parts. There is some loss
in efficiency but the added tracking ability could outweigh
this. For this task error compensation for roll and pitch were
necessary abilities that the system should have.

The UAV that was built to carry the UAM is a 6 DoF
tilted hexarotor. The requirements for the design is for the
vehicle to have an endurance of 30 minutes and an additional
payload of up to 2 kg. The build parameters of the UAV is
shown in Table II. One of the goals in building the UAV is to
get higher hover time in order to have more time for mutltiple
inspections and doing other tests. The weight of the UAV is
4.5 kg. Using eCalc to estimate the hover time, The UAV
can hover for 30 minutes and carry an additional payload of
2 kg for 5 minutes (with a depth of discharge of 100%). The
large payload is used to decrease the weight limitations on
the design of the arm. The UAV uses Tarot 680 frame with
a diameter of 685mm. The motors used are Tiger Motors
U3-700 KV. The battery picked was the 6S (22.2 V) 16000
mAh 15C Tattu. The control and perception in the vehicle
are done with a Jetson TX1 offboard computer [14] and the
force commands were sent from the computer to a pixhawk
4 autopilot where the pixhawk only does the mixing for the

Fig. 3: Comparison between tilted multirotor and planer
multirotor UAV going to point xdes

TABLE II: THE BUILD PARAMETERS OF THE UAV

Parameter Value
Battery configuration 6S

Battery capacity 16000 mAh
Propeller diameter 13”

Propeller pitch 4.4”
Kv rating 700 RPM/V

motors. The pixhawk also sends IMU (100 Hz), barometer
(25 Hz), magnetometer (25 Hz), and switch (25 Hz) data over
USB. The camera used in the UAV is pointgrey blackfly that
is facing forward. The camera outputs 320x240 images at
30 Hz. A laser rangefinder is also positioned at the front
of the UAV. Using those two sensors, the distance from the
walls can be obtained and the orientation of the UAV can
be estimated from the visual data of the wall passed by the
camera.

The motor tilt angle was set for the UAV to maintain its
orientation with the external wind in consideration. Work
was done to optimize the angles of motors to maximize the
horizontal acceleration limits [13]. The maximum force used
for calculating the tilt angle was based on a wind speed
around 38 kph. Equation (1) shows the forces acting on the
vehicle in the horizontal plane. Keeping the vehicle steady
means to counteract the wind drag forces. Using (2) with
an estimated area (S), drag parameter (CD), and the speed
mentioned, the needed motor tilt angle was found to be
approximately 30 degrees.

mẍ = Fd +D (1)

Fd =
ρv2windSCD

2
(2)

Fig. 4: CAD model of the manipulator
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Fig. 5: The manipulator with dimensions and attached coor-
dinate frames

TABLE III: DH parameters for the manipulator

Link ai αi di θi
LinkO0O1 −L1 900 L0 θ1
LinkO1O2 L2 0 0 θ2
LinkO2O3 L3 0 0 θ3 − θ2
LinkO3O4 L2 0 0 180− θ3 + θ2
LinkO1O4 L3 0 0 θ3
LinkO4O56 L4 0 0 0

IV. MANIPULATOR DESIGN

The robotic manipulator used in the UAM is a 3 DoF
parallelogram multi-linkage arm, shown in Fig. 4, based on
the hobby robot arm uArm [15], an open source robotic desk
arm and the ABB IRB460 robotic arm. The arm consists of
links driven mainly by two motors at the base and a third
motor that is used to rotate the whole arm. As a result, the
center of mass is closer to the base of this. This is needed for
the manipulator since a huge shift in the center of mass of
the arm will cause a moment on the system that the UAV will
have to compensate for. Another benefit of the parallelogram
structure is the locked orientation of the end effector. The
angle of the link driving the end effector is always equal
to the link connected to the end effector. As a result, the
end effectors orientation is always the same and the angle
between the end effectors plane and the base plane is 90
degrees at any position the end effector is at. This property
guarantees that the sensor will contact the wall at a normal
angle without any change in the angle of contact that may
result in the inability to take measurements.

A. Forward Kinematics

The manipulator system consists of a closed chain mech-
anism. The closed chain has only one loop in the shape of
a parallelogram with two links connecting the loop the base
and the other to the end effector. The forward kinematics
model of the manipulator was calculated using the Denavit-
Hartenberg (DH) convention. The coordinate systems and the
geometric parameters used for calculating the DH parameters
are shown in Fig. 5.

The DH parameters are presented in Table III. The cut
joint that was used for the calculation is at O4. Matrices of

the homogenous transformations, according to the defined
DH parameters are given by

A0
1 =


cθ1 0 sθ1 −L1cθ1
sθ1 0 −cθ1 −L1sθ1
0 1 0 0
0 0 0 1

 (3)

A1
4 =


−cθ2 sθ2 0 L3cθ3
−sθ2 −cθ2 0 L3sθ3
0 0 1 0
0 0 0 1

 (4)

A4
5 =


1 0 0 L4

0 1 0 0
0 0 1 0
0 0 0 1

 (5)

The Frame O6 is attached to link 2 whose orientation does
not change during the motion. Its orientation is defined by
the angle θ2 regarding to frame O5 according to

A5
6


cθ2 sθ2 0 0
−sθ2 cθ2 0 0
0 0 1 0
0 0 0 1

 (6)

Matrix A0
6 is

A0
6 = A0

1A
1
4A

4
5A

5
6 =

−cθ1 0 sθ1 L3cθ1cθ3 − L4cθ1cθ2 − L1cθ1
−sθ1 0 −cθ2 L3sθ1cθ3 − L4sθ1cθ2 − L1sθ1
0 −1 0 L0 + L3sθ3 − L4sθ2
0 0 0 1

 (7)

The position taken into consideration was the origin O56
so the position of this point from the base is given according
to the following

xpos = L3cθ1cθ3 − L4cθ1cθ2 − L1cθ1 (8)

ypos = L3sθ1cθ3 − L4sθ1cθ2 − L1sθ1 (9)

zpos = L0 + L3sθ3 − L4sθ2 (10)

Equations 9,10, and 11 were implemented in MATLAB
to plot the planer workspace at angle θ1 equals 0 degrees.
The planer workspace of the manipulator is shown in Fig.
6. According to the equations, the arm has a max reach in
the x-direction of around 640mm. This provides an offset of
approximately 200mm from the edge of the propellers to the
origin O56.

B. Compliant end effector

The design of the end effector is shown in Fig. 7. The end
effector provides compliance by using spring to compensate
for small perturbations in two DoF passive compliance. The
end effector is also equipped with Force Sensing Resistors
(FSRs) to give force feedback.

The Arm model weights around 700 g. Which is less than
half of the payload of the UAV used in this system.
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Fig. 6: Workspace of the manipulator

V. RESULTS

An experiment was set up to confirm if the UAV can re-
spond to specific roll, pitch, and yaw command and passed on
that follow these Command. The experiment was conducted
by flying the UAV in altitude mode and sending roll, pitch,
and yaw commands and based on that the error between
the setpoints estimated by the drone and the commands sent
can be estimated to check if the drone can fly accurately.
Figure 8 shows the measurements taken from the flight test
performed on the UAV. The UAV was able to follow the
setpoints sent by the RC controller with a small margin of
error with the maximum relative error in the roll and pitch
around 6 degrees.

The vehicle was tested to maintain its orientation while
moving laterally by implementing position control. The
results of the test run is shown in Fig 9. The result shows
that the vehicle can maintain its pitch and roll angles while
moving in the lateral directions by producing forces in these
direcitons. This result is important since it shows that the
vehicle is able to maintain its orientation against external
forces which increases the stability of the arm while doing
the task. The shift of position was occurring because of the
use of GPS which caused the vehicle to move a bit.

VI. CONCLUSIONS

This work demonstrated the design and modeling of a
UAM that can be used for bridge inspection tasks using a
6 DoF tilted multirotor and a 3 DoF robotic arm with 2
additional passive DoF.

The UAV currently is able to fly like a planer UAV even
with the tilted setup. The UAV can produce lateral forces to
resist external forces and maintain its position. In the future,
a controller will be implemented to give a robust position
control. The controller should also be able to stabilize the
UAV to a point which is possible using the lateral forces. For
the arm, a control that depends on the state or the mission is
needed for using different kinds of sensors or even different
tasks like gripping or collecting samples. In addition, position

Fig. 7: passive compliance end effector

Fig. 8: roll, pitch , and yaw of the UAV sent by an RC

estimation will be implemented using a FLIR camera and
optical flow point laser to give more accuracy instead of
GPS.

From a design perspective, the manipulator in this work
provides a large workspace and sufficient reach for the walls
of the bridges. However, the end effector is not suitable for
some parts of the bridge the surface is not flat but curved.
A pulley-belt mechanism driven by a motor at the base can
be used to control the angle of the plane of the end effector.
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Abstract— Machine learning approaches can generate better
autonomous driving models and behaviors, but they need data.
The only suitable public dataset for this purpose is the NGSIM
dataset. However its size/time period and scope are limited.
We therefore want to create our own datasets. Mounting fixed
infrastructure requires permission, can be expensive, and is not
portable. Using a drone gets around these problems. Creating
such datasets requires creating a map that coupled with the
recording and identification of the vehicles, allows us to obtain
map and movement information. In this paper we introduce
a method for obtaining such map information from aerial
imagery.

I. INTRODUCTION

Building machine learning models of drivers interactions
with the environment, the road network and other traffic
participants is a complex problem. To solve this problem
it’s needed trajectory data of vehicles as close as possible
to reality which can also be a complex problem. For this
reason, over the years the NGSIM program has been building
datasets with information on the trajectory of the vehicles.
These datasets has two main advantages. The first one is
its high resolution, which allows researchers to investigate
very detailed driving behaviors and to calibrate or estimate
microscopic behavioral parameters and variables. The sec-
ond one is its completeness in reflecting traffic conditions,
which provides researchers with 100 percent and ground-
truth traffic during the collection period and at the collection
locations. Nevertheless, these datasets also has limitations:

• Limitation-1 The time-space scope of the NGSIM
trajectories is limited. For the freeway (US-101 and I-
80) datasets, the time coverages are 45 min, and the
space coverages are approximately 640 m and 500 m,
respectively. For the arterial (Peachtree and Lankershim)
datasets, the time coverages are 30 min, and the space
coverages are approximately 640 m (five intersections)
and 488 m (four intersections), respectively.

• Limitation-2 The traffic conditions contained in the
NGSIM datasets are limited. The traffic conditions
contained in the freeway datasets are congested traffic
conditions with oscillating features, except some pieces
of high flow traffic exhibited by the exiting traffic in
the US-101 dataset and the HOV-lane traffic in the I-80
dataset.

• Limitation-3 The variety of data-collection roads is
limited. The NGSIM datasets were collected only from
freeways and arterials in U.S., making impossible to

investigate the traffic on other level or type of roads, or
on the roads in other countries.

• Limitation-4 The variety of traffic components is lim-
ited. The NGISM datasets contain very limited trucks;
for example, in the I-80 dataset, more than 80% vehicles
are passenger vehicles with lengths smaller than 7 m.
[4], Therefore, it is difficult to explicitly study on trucks
behavior and impact by using the NGSIM datasets. [5]

Fig. 1: A digital video camera mounted on top of a building
that overlooks a highway is recording vehicle trajectory data.
[6]

In the other hand, there are previous works who search
to solve these limitations, but have the following problems
in the context of our application: they are time-consuming
and costly, because some of them require expensive field
surveying and labor-intensive post-processing.

Taking these limitations of the dataset and previous works
into account, we decided to create a method that could
achieve data collection with: Larger time-space scopes,
various traffic conditions, different scenarios of roads and
diverse vehicles types. Furthermore, a method that is cheaper,
scalable, portable and easily repeatable, thus allowing to
obtain more flexible datasets.

Creating such datasets requires the creation of a map.
The flow of work is as follows, we first collect raw data
from a drone, using a drone gets around several problems
because of its low cost, hight flight altitude, stability and
is ability to stay in the sky a long time. Then we process
the video to get the vehicle detection. The result allows us
to construct the map, in which by tracking the vehicle, we
obtain map information such as movement information. We
then perform trajectory smoothing, and finally, we will have
our own dataset in NGSIM format.
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This paper focuses on the construction of the map and the
dataset. We have divided the process into 3 sequential stages:

• Extraction of the road from the image.
• Global Coordinate Road Geometry
• Transition to Local Lane Geometry
Through this discussion, we will show the process and

evaluate the results of the construction of the map.

Fig. 2: Flow work of the entire method. Process covered in
this paper, is highlight in color.

II. EXTRACTION OF THE ROAD FROM THE IMAGE

The first step in the creation of the map is to extract only
the area of interest, which in our case is the road network.
We need to get rid of everything which is not road, because
buildings, parks, trees, etc. Could represent noise.

To solve this problem, experiments were carried out on
several recognized Convolutional Neural Network models for
Semantic Segmentation, like fcn8, fcn32, [7] and segnet, [8],
but in the end, we took advantage of the image segmentation
network ”U-net”, described in Ronneberger et al. [1], with
adjustments based on the work of Iglovikov et al, A. Buslaev
and D. Gupta. [2] [9]

Fig. 3: Encoder-decoder neural network architecture, pre-
sented on Iglovikov et al. VGG11 without a fully connected
layer is the encoder, and U-Net as the decoder.

Fig. 2 shows the model described in A. Buslaev in
Iglovikov et al. There are many models based on VGG
architecture, such as 11,13,16,19, depending on the number
of layers in the model. In our work we decided to use VGG16
instead, as it’s suggested on the words of the author. VGG16
(also called OxfordNet) is a convolutional neural network

architecture named after the Visual Geometry Group from
Oxford, who developed it. It was used to win the ILSVR
(ImageNet) competition in 2014, with a localization error of
only 0.25. [10],

We preserve the decoder section of the network, because
by adding a large number of feature channels, it allows
the network to propagate context information to higher-
resolution layers. In addition to the concatenations added
after each up-sampling, this improves the localization and
context.

Due to our small dataset, we couldn’t train the network
from scratch, for this reason the main change was in the
encoder section, which was replaced by the down-sampling
elements of the VGG16 in order to take advantage of the pre-
trained weights on ”ImageNet”, which is an image database
that contains almost 14,200,00 images. This allows us to
have a base of features in our network.

TABLE I: Comparison between models, mean IoU

VGG-Unet Original .65
VGG-Unet Reconstructed .87

Unet without VGG16 weights .42

The network was trained on a small dataset of 10 repre-
sentative aerial road images, labeled in two classes. 0 for
backgrounds and 1 for roads. The segmentation results are
measured with its mean IoU, using a K-fold cross validation
technique, the comparison of the different networks mean
IoU results can be seen in table I. The results are divided into
two parts. The first is based on the original result images.
The second is based on the ”reconstructed result” images,
due to the fact that the results are not perfect and may
have imperfections in them. The reconstruction consists of
morphological techniques in which a structuring element
or kernel, is slided through the image, similar to a 2D
convolution, and depending on the neighboring pixels it will
decide if that pixel is black or white. The technique is used
to fill in the gaps in the image. This technique could give
up to 20 percent of improvement, as it can be seen on figure
4 by using a small kernel of 5x5 for the erosion of the few
incorrect pixels and a big kernel of 25x25 for the closing of
the holes.

Fig. 4: Example of the improvement on the results. Original
image (left), reconstructed (right)
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III. GLOBAL COORDINATE ROAD GEOMETRY

A. Lines’ Coordinates

Once we’ve get rid of the noise on the image (everything
that is outside the road, such as buildings, trees, grass, etc.),
we proceed to the identification of the several lane marks
on the picture, from where we will build the map and obtain
the reference points to build the global coordinates. This was
achieved by using diverse methods of computer vision, such
as Canny Edge Detection, Color Selection, Hough Transform
Line Detection, Contours, etc.

Due to the different values needed in the multiple param-
eters to be used, we design a GUI to simplify the selection
of values and increase the ease of repeatability. Where the
algorithm is:

1) We apply a Gaussian Blur for the reduction of noise.
2) Depending on the color, we use HSV space color

(Yellow tones), or HSL color space (White tones).
3) Then we have several morphological transformations

where we can play with the structuring elements and
the kernel size, to generate diverse alterations on the
image that support our color detection.

4) Once we have the detected color, we apply another
Gaussian filter to smooth out rough edges.

5) Finally, applying the method of Hough Lines or con-
tours, we find the coordinate in pixels of the color on
the image.

Fig. 5: We were capable of clearly distinguish each of the
lane-marks on the road. Yellow line, White lines, Zebra
crossing and the stop line.

B. Vehicles’ Coordinates

Based on the locations of the Bounding Box achieved
with RetinaNet, we identify the center location of the car at
every frame of the video. But the obtained bounding boxes
doesn’t have the same orientation that the car has. As it can
be seen on the image, the original bounding box, doesn’t
align respecting to the car, thus, in order to obtain better
information of the width and length of the car in a future,
we corrected the size of the bounding box, based on the
angle of the street. With this information we will be able to
calculate later more information about its position.

IV. TRANSITION TO LOCAL LANE GEOMETRY

A. Longitude and latitude coordinate of vehicles

Recapitulating, what we have until now are the coordinates
of the lane marks and the center coordinates of the vehicles.

So, based on those values, we proceed to obtain the
latitude and longitude from the center position of the car
to the zero coordinate on the image, following the path of
the yellow lane mark, which will be our axis X and Y.

At the end, we translate from pixel coordinate system
to meters coordinate system by just multiplying our linear
values with a constant value that represents the conversion
of ”pixels to meters”. And finally, we are able to represent
a map and a dataset, which contains the data of:

• Local X and Y
• Vehicle Size
• Section ID
• Lane ID

Fig. 6: Using the angle of the street, we determine the head
angle of the car. At the end, we have the height and with of
its center position.

V. CONCLUSIONS

Finally, we obtained a process capable of building a map,
to obtain diverse values of the location of the driver about
the street, in an x-y plane. One of the purpose of this method
is to be scalable and easy to repeat, where our network has
the ability to be trained on multiple scenarios, and the GUI
makes the task of lanemarker identification easier. However,
one next step could be to automatize the detection of the
lanemarks as well as the road extraction, this could be
made by using CNN for semantic segmentation. Moreover,
working on create a bigger dataset of aerial road images,
in order to increase the accuracy of our predictions. But,
the most important next step for now, will be to tune this
method on several scenarios in order to generate a more
comprehensive dataset for modeling driver behavior.
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Fig. 7: Given an aerial video of an intersection, our method gets the mask of the road. Next, it locates the lane marks.
Finally, we export the driver location values about those lane marks in an x-y plane.
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Homotopy-Based Footstep Planning for Humanoid Robots Operating in
Complex 3D Spaces

Sahit Chintalapudi1, Vinitha Ranganeni2, Maxim Likhachev3

Abstract— Humanoid robots can be effective in a variety
of domains from interacting with humans in the home to
performing rescue operations. However, humanoid robots have
many degrees of freedom which leads to a high dimensional
state space that is computationally expensive to plan through.
Previous work has studied how user-provided homotopy classes
can be used to generate heuristic functions which guide footstep
planning and alleviate this computational bottleneck. This
approach, known as Homotopy-Based Shorted Path (HBSP) is
limited in that it requires the 3D workspace to be projected into
a 2D workspace before generating heuristic functions. Often
robots need to be able to reason about stairs, ladders, ramps,
and other features of the environment which a 2D projection
cannot represent. In this work we propose an extension of
HBSP that allows robots to generate heuristics from guidance
given through higher dimensional workspaces. This is done by
modifiying the traditional beam-graph approach to modeling
topological constraintsto also capture movement between sur-
faces in the environment. We show that this approach allows
us to extend HBSP to a variety of complex 3 dimensional
environments.

I. INTRODUCTION

Humanoid robots have been shown as an effective platform
for performing a multitude of tasks in human-structured en-
vironments [1]. However, planning the motion of humanoid
robots is a computationally-complex task due to the high
dimensionality of the system. Thus, a common approach to
efficiently compute paths in this high-dimensional space is to
guide the search using footstep motions which induce a lower
dimensional search space [2], [3]. This lower dimensional
search space is a six-dimensional configuration space of
a humanoid robot’s feet consisting of x, y positions and
orientation for each foot.

One approach that has been successful in footstep planning
is using search-based planners such as A* [4], [5] and
its anytime variants [3], [6]. To effectively plan footstep
motions, these planners require heuristics to guide the search.

The Homotopy-Based Shortest Path (HBSP) algorithm
automatically generates heuristic functions given a set of
user-defined homotopy classes which are significantly easier
to provide than hand crafted heuristics. [7] For each user-
defined homotopy-class in the workspace, the algorithm
generates a heuristic function by running a search from the
goal to the start configuration while restricting the search to
expand only vertices within the specified homotopy-classes.

These heuristics are then used in Multi-Heuristic A*
(MHA*) [8] which is a recently-proposed method that at-

1 Georgia Institute of Technology schintalapudi@gatech.edu
2 University of Washington vinitha@cs.uw.edu
3 Carnegie Mellon University maxim@cs.cmu.edu

(a)

Fig. 1: an example heuristic generated by HBSP in a
complex 3D environment

tempts to leverage information from multiple heuristics.
Roughly speaking, MHA* simultaneously runs multiple A*-
like searches, one for each heuristic, and combines their
different guiding powers in different stages of the search. Our
work makes the assumption that there also exists a simple-
to-define heuristic which is admissible and consistent.

HBSP leverages a pessimistic projection of the environ-
ment from a 3D workspace to the 2D workspace. This pes-
simistic approach projects a cell (x, y, z) in a 3D workspace
into a 2D workpace as an obstacle cell (x, y) if there is at
least one z-value for which (x, y, z) is occupied. However,
this approach does not work in an environment such as a
multi-floored house because a pessimistic projection would
no longer provide useful information. In this work, we
investigate how to extend HBSP for such an environment (i.e
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a world that cannot be represented in a single 2D workspace).
Our work solves this problem by introducing what we call

gates to our representation of the environment. Put simply,
the introduction of gates allows multiple workspaces and
records how a trajectory moves between them. Now, HBSP
can guide the search in the direction of the transitions be-
tween workspaces demonstrated in the provided homotopies.

II. RELATED WORKS

A. Motion Planning Using Homotopy Classes
Homotopy classes have been frequently used to model the

motion of a robot tethered to a fixed base point [9], [10],
[11], [12]. The presence of obstacles introduces geometric
and topological constrains for these robots. The constraints
can create scenarios where the goal can only be reached if
the cable configuration lies within a specific homotopy class,
thereby making homotopy-based motion planning incredibly
useful.

Homotopy classes have also been used in the context of
human-robot interaction where a human wishes to restrict a
robot’s motion to specific homotopy classes [13]. For general
approaches to explore and compute shortest paths in different
homotopy classes, see [14], [15], [9].

B. Multi-Heuristic A* (MHA*)
The performance of heuristic search-based planners, such

as A*, depends heavily on the quality of the heuristic
function. For many domains, it is difficult to produce a
single heuristic function that captures all the complexities
of the environment. Furthermore, it is difficult to produce
an admissible heuristic which is a necessary condition for
providing guarantees on solution quality and completeness.

One approach to cope with these challenges is by using
multiple heuristic functions. MHA* [16], [8] is one such
approach that takes in a single admissible heuristic called
the anchor heuristic, as well as multiple (possibly) inadmis-
sible heuristics. It then simultaneously runs multiple A*-like
searches, one associated with each heuristic, which allows
to automatically combine the guiding powers of the different
heuristics in different stages of the search.

Aine et al. [16], [8] describe two variants of MHA*,
Independent Multi-Heuristic A* (IMHA*) and Shared Multi-
Heuristic A* (SMHA*). Both of these variants gurantee com-
pleteness and provide bounds on suboptimality. In IMHA*
each individual search runs independently of the other
searches while in SMHA*, the best path to reach each state
in the search space is shared among all searches. This allows
each individual search to benefit from progress made by other
searches. This also allows SMHA* to combine partial paths
found by different searches which, in many cases, makes
SMHA* more powerful than IMHA*. Therefore in this work
we will use SMHA*. For brevity we will refer to SMHA* as
MHA*.

III. PROBLEM DEFINITION

A. Notation
In order to extend HBSP to more complex environments,

we begin by defining notation that allows us to capture these

complexities. Let the robot’s workspace be written W3. We
assume thatW3 can be represented as a series of flat surfaces
P; the i-th such surface is Pi.

In the 3D environment there also exist obstacles given by
the obstacle set O = {O1,O2, ...Om} ⊆ W3. For the sake
of examining homotopy classes, we define a subset of the
obstacles as homotopy obstacles Oh ⊆. Considering only Oh

in the planning process prevents us from over-constraining
the heuristic around obstacles that aren’t relevant to the final
trajectory. The obstacles corresponding to plane Pi are given
by Oi ⊆ O. We construct a family of 2D workspaces W
by project the obstacles Oi onto Pi to generate the 2D
workspace W2D

i . Fig. 2.

IV. HOMOTOPY CLASSES OF CURVES

A. Homotopy Classes in a single 2D workspace

Informally, two continuous functions are called homotopic
if one can be “continuously deformed” into the other. In
general, uniquely identifying the homotopy class of a curve
is non-trivial; however, if both curves are embedded in the
plane, there exists a homotopy-invariant characteristic of the
curve that can be computed.

In order to identify if two curves γ1, γ2 ∈ W2D
i \ Oh

that share the same endpoints are homotopic we use the
notion of h-signature (see [10], [9], [11]). The h-signature
uniquely identifies the homotopy class of a curve. That is,
γ1 and γ2 have identical reduced words if and only if they
are homotopic.

In order to define the h-signature, we choose a point pk ∈
Ok in each obstacle corresponding to that plane such that no
two points share the same x-coordinate. We then extend a
vertical ray or “beam” bk towards y = +∞ from pk. Finally,
we associate a letter tk with beam bk (See Fig. 3).

Now, given γ, let bk1 , . . . , bkm be the sequence of m
beams crossed when tracing γ from start to end. The sig-
nature of γ, denoted by s(γ), is a sequence of m letters.
If γ is intersected by the beam bk, by crossing it from
left to right (right to left), then the i’th letter is tk (t̄k,
respectively). The reduced word, denoted by r(s(γ)), is
constructed by eliminating a pair of consecutive letters in
the form of tk t̄k or t̄ktk. The reduced word r(s(γ)) is a
homotopy invariant for curves with fixed endpoints. It will
be denoted as h(γ) = r(s(γ)) and called the h-signature of
γ.

HBSP constructs paths which will be in the same
homotopy class as a given reference path [7]. Thus, it will
be useful to understand how the h-signature of a curve γ,
which is a concatenation of two curves γ1, γ2 can be easily
constructed. This reduced signature of γ = γ1 · γ2 is simply
the reduced signature of the concatenation of two curves’
signatures h(γ) = r(s(γ1) · s(γ2)).

B. Homotopy Classes across a series of 2D Workspaces

Our methodology is similar to the single workspace case
when considering the family of workspaces W. Beams allow
us to record which obstacles a trajectory crosses and in what
direction. We introduce a variation of beams called gates to
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(a) (b) (c)

Fig. 2: (a) A 3D environment. (b) The set of flat planes where an obstacle will be projected on a surface. Circles show where
on the surface an obstacle will be projected. (c) Visualization of W2D

1 ,W2D
2 ,W2D

3 The dashed magenta lines represent the
gates.

(a)

Fig. 3: The signature for this curve is t2t3t4t̄4t̄5. The
homotopy invariant of h-signature of curve γ is t2t3t̄5

record crossings between workspaces. A gate connecting Pi

and Pj is given by Gij =W2D
i ∩W2D

j (i.e. the intersection
between two 2D planes). We refer to the family of gates in
the environment as G. As is the case with beams, each gate
has a corresponding letter tk. Let the trajectory γ cross from
W2D

i to W 2D
j . If i > j assign letter tk. If j < i, assign letter

t̄k.

V. HOMOTOPY-BASED SHORTEST PATH

A. HBSP in a Single 2D workpace

We now describe the algorithm for computing homotopy-
based shortest paths, or HBSP. Given a goal configura-
tion qgoal and the graph GW2

, HBSP incrementally constructs
the augmented graph GhW2

by running a variant of Dijkstra’s
algorithm from the vertex (qgoal,∧). Here, ∧ denotes the
empty signature. For all vertices in Vh

W2
that were con-

structed, the algorithm maintains a map dist : Vh
W2
→ R≥0

which captures the cost of the shortest path to reach vertices
in Vh

W2
from the vertex (qgoal,∧). Given a vertex (qu, su) ∈

GhW2
and some user-defined signature s, this map dist is used

to compute the mapping ds (which, in turn, is required to
compute the heuristic function Hs). Specifically,

ds(qu, su) = dist[qu, h(s · su)]. (1)

Note that s corresponds to a signature of the path defined
from the vertex (qgoal,∧) towards the vertex (qstart, s), where

Algorithm 1 Homotopy-Based Shortest Path Algorithm
1: function HBSP(Q, GW2

, qg , u, S) . u = (qu, su)
2: if Q = ∅ and dist[(qg,∧)] = NIL then
3: dist[(qg,∧)]← 0
4: Q.add with priority((qg,∧), 0)

5: while Q 6= ∅ do
6: v ← Q.extract min() . v = (qv, sv)
7: if v = u then
8: return (Q, dist[u])

9: Vsucc ← succ(v,S,GW2
)

10: for v′ ∈ Vsucc do . v′ = (q′v, sv)
11: alt← dist[v] + length(v,v′)
12: if dist[v′] = NIL then
13: dist[v′]← alt
14: Q.add with priority(v′, dist[v′])
15: else if alt < dist[v′] then
16: dist[v′]← alt
17: Q.decrease priority(v, dist[v′])

18: return (Q,∞)

qstart is a projection of the robot’s start configuration. How-
ever, su is computed by the search as it progresses from
(qstart,∧) to (qgoal, s). Therefore h(s · su) corresponds to the
remaining portion of the homotopy-based path specified by
s after we remove its prefix that corresponds to su. For
example, let s = t̄3t̄2t̄1 and su = t1t2, then h(s · su) =
h(t̄3t̄2t̄1t1t2) = t̄3. Here, t̄3 is the signature of remaining
portion of the path to the goal specified by s.

As the graph GhW2
contains an infinite number of ver-

tices, two immediate questions come to mind regarding this
Dijkstra’s-like search:

Q.1 When should the search be terminated?

Q.2 Should the search attempt to explore all of GhW2
?

We address Q.1 by only executing the search if it is
queried for a value of ds which has not been computed. Thus,
the algorithm is also given a vertex u and runs the search
only until ds(u) is computed. This approach turns HBSP
to an on-demand algorithm that produces results in a just-
in-time fashion. It is important to note that when the search
is terminated, its current state (namely its priority queue) is
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Algorithm 2 HBSP Successor Function
1: function succ(u, S, GW2 ) . u = (qu, su)
2: Vnbr ← neighbors(u)
3: if S 6= ∅ then
4: S← suffixes(S)
5: for v ∈ Vnbr do . v = (qv, su,v)
6: if valid(v) then
7: if h(su · su,v) /∈ S then
8: Vnbr.remove(v)
9: else

10: v = (qv, su · su,v)

11: else
12: Vnbr.remove(v)

13: return Vnbr

stored. When the algorithm continues its search, it is simply
done from the last state encountered before it was previously
terminated.

We address Q.2 when computing the successors of a vertex
described in Alg. 2 by restricting the vertices we expand.
During the search, when we expand a vertex u ∈ Vh

W2
in

our Dijkstra-like search, we prune away all its neighbors
v ∈ Vh

W2
that have invalid signatures h(su · su,v) (Alg. 2,

lines 7-10). We define a valid signature h(su · su,v) as one
that is a suffix of a signature s ∈ S. Let S be the collection of
all such signatures. That is, any signature h(su · su,v), such
that s could potentially be reached as the search progresses.
More specifically, these suffixes identify the order in which
certain beams can be crossed to reach a signature s ∈ S.
For example, in Fig. 3, S = {t2t3t̄5} and S of S is
{t2t3t̄5, t2t3, t2,∧}. Here, t1 /∈ S as this beam does not need
to be crossed to reach t2t3t̄5. Additionally, t3t2 /∈ S as the
beams need to be crossed in the opposite order to obtain the
signature t2t3t̄5.

The high-level description of our algorithm is captured in
Alg. 1. The algorithm is identical to Dijkstra’s algorithm1

except that (i) when the cost dist[u] is returned, the priority
queue Q is also returned (Lines 7-8, 18) and (ii) the way
the successors of an edge are computed (Line 9). Returning
the queue Q allows the algorithm to be called in the future
with Q in order to continue the search from the same state.

B. HBSP across a series of Workspaces

In this work we will need to construct a graph, GW
embedded in the family of workspaces the robot operates
in W. Let every workpace W2D

i ⊆W have a corresponding
graph GW2D

i
= (VW2D

i
, EW2D

i
). Then the vertex set is given

by VW =
⋃n

i=1 VW2D
i

. Similarly, the edge set is given by
EW =

⋃n
i=1E

2D
Wi

Let B(O) be the set of beams associated with the obstacles
in O. Each of the beams in B(O) have a unique letter
associated with them. Each of the gates in G is also assigned
a unique letter. Then the countably infinite signature set

1The only places where HBSP differs from Dijkstra’s algorithm are the
lines highlighted in blue.

is given by S(O) and it is defined as all the different h-
signatures that can be constructed using the letters associated
with B(O) and G. Now that we are equipped with the graph
GW = (VW, EW), we augment the graph with the signature
set S which defines GhW. With this framework, we can call
Alg. 1 with no modification.
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Eye Gaze Behavior during Teleoperation of a Robot in a Multi-stage
Task

Maggie Collier1, Reuben Aronson2, and Henny Admoni3

Abstract— Individuals with motor disabilities can use as-
sistive robotics to independently perform activities of daily
living. Many of these activities, such as food preparation
and dressing, are complex and contain numerous subtasks
which can often be performed in a variety of sequences to
successfully achieve a person’s overall goal. Because different
kinds of tasks require different types or levels of assistance,
the variety of subtask sequences which the user can choose
makes robotic assistance challenging to implement. However,
a system that can anticipate the user’s next intended subtask
can optimize the assistance provided during a multi-stage task.
Psychology research indicates that non-verbal communication,
such as eye gaze, can provide clues about people’s strategies
and goals while they manipulate objects. In this preliminary
work, we investigate the potential of using eye gaze for user goal
anticipation during the teleoperation of a robot in a multi-stage
task. We test our hypotheses by collecting eye gaze data during
a user study in which participants teleoperate a 6-DOF robot
arm to perform a food preparation task. Finally, we discuss our
preliminary observations, such as the anticipatory gaze patterns
which can be used for subtask anticipation.

I. INTRODUCTION

A goal of assistive robotics is to enable individuals with
disabilities to independently accomplish activities of daily
living (ADLs). Many commercially available assistive robots,
such as wheelchair-mounted robot arms [1], [2], are able to
achieve that goal by taking direct input from the user through
a controller interface (see Fig. 1). However, controlling a
robot with numerous DOFs is extremely challenging because
it requires a user interface that divides the DOFs into
different lower-DOF modes. For example, the Kinova MICO
arm’s 6 DOFs can be separated into the following modes
for a 2-DOF joystick: x-y mode, z-yaw mode, and pitch-
roll mode. In this configuration, the user must press a button
(located on top of the joystick in our experimental setup) to
switch between modes while controlling the robot. Mode
switching is a commonly used strategy for controlling a
high-DOF assistive robot, but users of these commercially
available systems express discontent with the strategy, citing
the excess time and effort it takes to switch through modes
[3]. To address this challenge, researchers have explored
ways to add automation to these systems. An example of
such a strategy is shared autonomy, in which an algorithm
attempts to infer a user’s goals from joystick inputs and assist
in achieving them [4], [5].

1M. Collier is a Biomedical Engineering and Electrical En-
gineering student at the University of Alabama at Birmingham.
maggieannecol@gmail.com

2R. Aronson is a Ph.D. student in Carnegie Mellon’s Robotics Institute.
3H. Admoni is an Assistant Professor in Carnegie Mellon’s Robotics

Institute and leads the Human and Robot Partners (HARP) lab.

Fig. 1. Person wearing eye gaze tracker controls robot with joystick.

Shared autonomy has made improvements in the teleoper-
ation of assistive robots. However, its success has only been
demonstrated in simple tasks involving a single manipulation
with an object [4], [5]. ADLs often do not resemble simple
tasks: they are usually complex, representing multi-stage
tasks with subtasks that require different interactions with
different objects. One of many examples of an ADL that
exhibits these characteristics is microwaving leftovers.

A person attempting to microwave leftovers might decom-
pose the activity into the following subtasks: grasping the
refrigerator door handle, opening the refrigerator door, re-
trieving a container with leftovers, transferring the container
to a kitchen counter, taking the lid off the container, opening
the microwave, transferring the container to the microwave,
closing the microwave door, and starting the microwave.
Imagine the difficulty trying to perform those subtasks with
a teleoperated robot arm. Many of these subtasks require
different manipulations from the end effector (grasp the door
handle, push the button to open the microwave, move the
container to the kitchen counter). This complexity is present
in the teleoperation of many other ADLs and suggests that
subtask-specific information is useful to assistive algorithms.
Furthermore, enabling an assistive system to distinguish the
current subtask and anticipate the next subtask during a
multi-stage task would make it robust enough to switch to
the appropriate assistance modes throughout any ADL.

While current assistive algorithms for teleoperated robots
can predict a user’s immediate goals, they are not equipped
to anticipate a future goal [6] and, in effect, the next
subtask during a multi-stage task. Psychology research in
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hand-eye coordination indicates that eye gaze can provide
insight into a person’s strategies and future goals during
object manipulation tasks. For example, Johansson et al.
[7] reported that gaze precedes movement of the hand, and
Pelz et al. [8] discovered occasional fixations to objects
several seconds prior to people reaching for them during
a hand-washing task. These behaviors provide information
about future events, suggesting that gaze can be a power-
ful source of data for subtask anticipation. Aronson et al.
[9] sought to determine if these same gaze behaviors are
present when people attempt to manipulate objects with a
teleoperated robot. In the study, participants were asked to
spear a marshmallow with a fork that was secured in the
robot’s end effector. The results deviated from the findings
in hand-eye coordination studies: most fixations that occurred
during teleoperation were directed on the end effector of the
robot, with very few fixations on the target object. These
fixations on the end effector were used to track its location
throughout the task. This monitoring is not present in hand-
eye coordination studies because of human’s proprioception:
people know where their hands are without having to look
at them.

Although the results in [9] indicate that gaze during
teleoperation is largely used to monitor the end effector, we
hypothesized that increasing the complexity of the task will
cause more anticipatory gaze behavior to emerge. This hy-
pothesis is based on Pelz et al.’s [8] work which suggests that
complex, multi-stage tasks, such as ADLs, require people
to strategize, making anticipatory gaze patterns more likely
to occur. Thus, we aim to extend the work done in [9] by
evaluating gaze behavior that results from the teleoperation
of a robot in a multi-stage task.

In this work, we design a multi-stage task based on food
preparation that has several subtask sequences which can lead
to task completion, involves numerous objects, and requires
several forms of object manipulation. We then develop a
data collection study in which we collect eye gaze data as
users attempt to perform the task with a teleoperated robot
arm. Lastly, we discuss the preliminary observations from
our study and the future directions of the work.

II. RELATED WORK
A. Hand-Eye Coordination in Psychology

An extensive body of work on hand-eye coordination
exists in the field of psychology. Some early work on this
subject focused on characterizing gaze behavior while people
performed natural daily tasks, such as making tea [10],
washing their hands [8], making a sandwich [11], [12],
or driving [13]. This early work identified different gaze
behaviors that provide insight into people’s strategies while
they perform natural tasks. For example, Pelz et al.’s [8]
work, in which gaze was collected during a hand-washing
task, identified “perceptual strategies,” defined by the authors
as behavior that seeks to optimize an overall task without
aiding the immediate action in the task. As previously alluded
to, the major perceptual strategy that their work defined
is look-ahead fixations. Although not always referred to

as such, gaze that preceded movement of the hand to an
object within several seconds was reported by numerous
other hand-eye coordination studies [7], [10]–[12], [14].
Hayhoe et al. [12] delved into the purposes of these planning
behaviors and found that spatial orientations of task-relevant
objects in a scene are stored in memory through multiple
fixations, suggesting that look-ahead fixations are meant to
more precisely locate an object to be manipulated in the near
future.

While eye gaze reveals people’s planning behavior, studies
have shown that the fixations that occur while a person is
performing a task are largely task-specific, meaning that
people fixate primarily on objects that are related to the
task at hand [10], [12], [15]–[18]. Because gaze tends to
not deviate from features relevant to a task, our aim to use
gaze to anticipate the progression of a multi-stage task seems
feasible.

B. Eye Gaze in Human Robot Interaction

While eye gaze is commonly used in social robotics [19],
less research has been conducted on using human eye gaze
to predict human intent while a person performs a task.
Of those studies, eye gaze is primarily studied in or used
for a human-robot collaboration task [20]–[22]. Some of
this work even uses eye gaze to determine an immediate
subtask or anticipate a future subtask during a multi-stage
task [20], [21], [23]. All of these studies differ from our
work in that the users performed tasks with their hands
rather than teleoperating a robot to perform the task. In
this sense, our work is more focused on using eye gaze for
assistive robotics, in which teleoperation is widely used in
commercially available systems.

In the context of teleoperated robots, Admoni et al. [6]
first described the potential of incorporating eye gaze into the
state-of-the-art shared autonomy system described in [4] and
[5]. The work in [6] inspired Aronson et al. [9] to explore eye
gaze behavior during teleoperation of an assistive robot—the
study that this work is extending. A recent follow-up paper
from that work discussed the potential of using eye gaze for
error detection during teleoperation [24].

Another notable study on eye gaze for assistive robotics
is [25], in which an anticipatory control algorithm that uses
gaze was presented and evaluated. Similar to [9] and this
work, Huang et al. [25] was inspired by the look-ahead
fixations reported in psychology research [8], [14]. In the
study, a list of smoothie ingredients with their pictures
was set before participants, and participants were asked
to verbally express a desired ingredient to a robot. The
anticipatory control algorithm aimed to use the participants’
look-ahead fixations to anticipate their desired ingredient
before receiving the verbal request. Our work differs from
[25] in that it evaluates gaze behavior while a robot is
teleoperated, since teleoperation is a more commonly used
control method in commercially available assistive robots
than verbal cues. Additionally, Aronson et al. [9] found
that people’s gaze patterns are significantly different when
watching a robot move autonomously vs. via teleoperation:
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behavior like monitoring glances are much more frequent in
the case of teleoperation.

III. DATA COLLECTION STUDY

To investigate eye gaze behavior during the teleoperation
of a robot in an ADL, we conducted a user study in which
participants teleoperated a robot arm to perform a multi-stage
task involving food preparation.

A. Design

To maximize the possibility of anticipatory eye gaze
behavior, we created a multi-stage task that met the following
criteria:

• More than one form of object manipulation is required
to complete the task.

• More than one possible sequence of subtasks can lead
to overall task completion.

Because food preparation is an ADL that often involves a
variety of interactions with numerous objects, we designed
a multi-stage task that required participants to serve a snack
from objects in an open cabinet using a Kinova JACO robot
arm. The task involved scooping spoonfuls of food from a
snack container onto a plate. Fig. 2 shows the experimental
environment and a zoomed-in image of the cabinet, in which
the plate and spoon gripper were placed on the top shelf and
the snacks on the bottom shelf. The position of each snack
remained the same across trials and participants, but the
position of the plate and spoon gripper were counterbalanced
across participants. (The spoon gripper was placed to the left
of the plate for some of the participants.)

Fig. 2. The experimental environment and the open cabinet.

As shown in Fig. 3 and Fig. 4, grippers for the end
effector were manufactured and glued to the dishes and
snack containers to make grasping the objects easier. Al-
though grasping the objects and scooping the food were
two manipulations already required to complete the task, we
added another required manipulation by purchasing snack
containers that are opened by pushing on the lid, which
presses down a button to disengage a vacuum seal (see
Fig. 4). These containers are designed for individuals with
disabilities.

In summary, we had 3 different required manipulations
(grasp, push, and scoop) and 5 different objects. Because

Fig. 3. The spoon gripper and
assistive plate.

Fig. 4. Opening the snack con-
tainers.

each trial only required scooping one snack, a minimum of
3 different objects had to be manipulated for task completion.

Subtask sequence variation was introduced by allowing the
participants to retrieve and manipulate objects in whatever
order they desired. As an example, one participant might
retrieve the plate, retrieve the snack container, retrieve the
spoon gripper, and open the container before attempting to
scoop the food, but another participant might retrieve the
spoon gripper, retrieve the snack container, open the snack
container, and retrieve the plate before scooping.

Throughout trials, gaze was collected using Pupil Labs
Pupil [26], a wearable eye tracker with an egocentric (world
view) camera and two cameras to record the individual
eyes. The cameras tracking the eyes and the egocentric
camera collected data at 120 Hz and 30 Hz, respectively.
Fig. 1 shows a participant wearing the gaze tracker and the
participant’s position with respect to the robot’s workspace.

B. Procedure

Each participant was given 5 minutes to acclimate to
the experimental setup. During this period, we encouraged
participants to look at the plate and spoon gripper and to
open a snack container with their hands. Participants were
then given 10 minutes to practice controlling the robot with
the joystick and manipulating some of the objects in the
experimental environment. We encouraged participants to
practice manipulating the snack container since we assumed
that it would be the most challenging object to manipulate.
The eye tracker was then adjusted for the participant and
calibrated before trials.

Prior to beginning the trials, participants were informed
of the 3 possible outcomes which would end a trial:

1) The participant met all the criteria for task completion.
2) The plate, spoon gripper, or the container with the

required snack were no longer in the robot’s workspace
(out of reach).

3) The participant wanted to end the trial early.
The instructions given to the participants before each trial

consisted of the task’s completion criteria:
• Three scoops of the specified snack must be transferred

to the plate.
• The plate containing the food must be on the counter.
• A scoop consists of at least one piece of the food.

The only portion of the instructions that changed between
trials was the specified snack, a condition which was ran-
domized across trials.
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Because of the complexity of the task, mistakes by partici-
pants that left objects in challenging positions were common.
In cases of these mistake, participants were allowed to
attempt to overcome the mistake. In one case, the participant
broke the snack container, and the broken container was
replaced with a different snack container rather than ending
the trial. Additionally, participants often collided the robot
into objects in the environment, including the counter and the
cabinet. To prevent damage to the robot, a low-volume beep
would set off if the torque on the robot’s joints surpassed a
certain threshold, and the robot would stop taking commands
from the joystick if the torque surpassed a higher threshold.
In this event, the trial was paused, and the robot was reset
to its initial position. If the robot’s end effector was gripping
an object at the time of collision, the object was placed back
into the end effector after reset.

C. Participants

Through initial pilot testing, we found that this task took
about 20 minutes to complete, even for users familiar with
the robot’s operation. Due to the difficulty of the task we
designed, we chose to recruit 9 able-bodied participants (3
female, 6 male) who are familiar with robotics in order to
mitigate some of the challenges associated with the novice
user experience. We wanted our participant pool to be more
likely to quickly adapt to teleoperating a robot with a
joystick and to overcoming challenging robot configurations.
Additionally, because the cabinet and counter make robot
collisions highly possible, we wanted our participants to be
especially mindful of the possibility of damage to the robot.

IV. PRELIMINARY RESULTS AND DISCUSSION

At this stage in the study, we are still in the process of
analyzing the data. While the ultimate goal of this project is
to characterize eye gaze behavior during the teleoperation of
a robot in a multi-stage task, we can only discuss interesting
features we have seen across participants. As such, this
section describes some of those interesting features and the
future directions of the project.

A. Initial Analysis

Of the 9 participants, we excluded 4 participants’ data
from further analysis because they experienced difficulty
performing the task without glasses. Another participant’s
data was excluded from analysis because of poor gaze tracker
calibration. From the remaining 4 participants, we collected
around 1.5 hours of usable data. This data represents 7 trials,
3 of which include task completion. In the other 4 trials, 2
failed due to an object dropping out of the robot’s workspace.
The other 2 failed because the participant opted to end the
trial and because of a software malfunction, respectively. The
duration of the failed trials ranged from 3 minutes to 26
minutes, and the successful trials ranged from 12 minutes to
23 minutes.

B. Preliminary Observations

Aronson et al.’s [9] previous work involving eye gaze
behavior during the teleoperation of a robot in a single task
(spearing a marshmallow with a fork) showed that most
fixations during the task were on the robot’s end effector.
These fixations, coined “monitoring glances” by the authors,
were used by participants to keep track of the position of the
end effector throughout the task. From a qualitative review
of the data, we also found that most fixations were on
the robot’s end effector during teleoperation in our study’s
multi-stage task. However, we also found more distinct gaze
patterns in our study than in [9]. This outcome was what
we hypothesized since the task we designed is significantly
more difficult to complete than spearing a marshmallow.
This hypothesis was largely influenced by psychology studies
into hand-eye coordination which found unique gaze patterns
during complex tasks, suggesting that eye gaze provides
insight into people’s strategies for task completion [12], [14],
[18], [27].

One feature that we expected to see across participants is
look-ahead fixations, a gaze behavior first defined by Pelz
et al. [8] as a fixation on an object several seconds prior to
a person reaching for the object. To bring this concept into
the context of robot teleoperation, Aronson et al. [9] coined
this behavior a “planning glance.” During the trials, we
found many instances of planning glances during transitions
between subtasks. However, we also found many cases of
planning glances while participants were in the middle of the
subtask. Fig. 5 provides an example of this kind of planning
glance. As shown, the participant fixated on the the gripper
of the candy container, the Aruco tag above it, and the actual
container, all while the participant was attempting to set
the spoon gripper down and release it. After releasing the
spoon gripper, the participant transitioned to the subtask of
retrieving the candy container. While we originally expected
planning glances during transitions, we were surprised to see
planning glances occur even earlier than the transition period.

Another noteworthy instance of planning glances occurred
while the participants transferred food from the snack con-
tainer to the plate. These glances were often to the object
that the participant intended to move the spoon to next (i.e.
to the container to obtain a spoonful of food or to the plate
to dump the food). All of these planning glances can be
powerful sources of data for anticipating the next subtask in
an ADL.

Although a primary eye gaze behavior discussed in hand-
eye coordination literature about strategy inference is look-
ahead fixations, we also expected to see eye gaze behavior
specific to teleoperating a robot. A major challenge of
teleoperation is maneuvering a robot through difficult joint
configurations to achieve a goal, whether that be to reach a
certain point in the robot’s workspace or to move the robot
into an ideal configuration for object manipulation. These
difficult joint configurations are often caused by reaching
any of the robot’s joint limits, its workspace limit, or an
internal collision (when one part of the robot collides with
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Fig. 5. Planning glance to candy while participant places and releases spoon gripper.

another part). Fig. 6 shows some examples of difficult robot
configurations encountered by a participant (during our initial
pilot study) while attempting to place the plate on the
counter.

Fig. 6. Challenging robot configurations during plate placement.

Overcoming challenging robot configurations is a key
aspect of this study’s multi-stage task since the cabinet
and counter obstruct portions of the robot’s workspace.
To accomplish a goal despite difficult configurations, the
participants in this study glanced at the robot’s joints, a
finding also reported in [9]. Fig. 7 shows an example of this
behavior as the participant (from our pilot study) attempted
to adjust the position of the robot’s joints in order to set the
plate down on the counter. In the study, we found that many
participants faced these configuration issues when placing
objects on the counter or retrieving objects on the bottom
right or top left of the cabinet. In all of these scenarios,
glances to the joints of the robot were present.

Fig. 7. Glances to robot’s joints to overcome challenging robot configu-
ration.

Although gaze is the primary focus of this study, the
relationship between eye gaze and head movements is an

interesting factor in object manipulation studies in psychol-
ogy [27]. Because the robot visually occluded some objects
during manipulation, we saw participants tilt their heads to
overcome that occlusion to monitor the position of the end
effector in relation to an object. Fig. 8 shows a participant
tilt their head to see the gripper on the snack container which
was previously occluded from the field of view by the end
effector.

Fig. 8. Head movements to overcome visual occlusion.

In summary, we found that the majority of eye gaze behav-
ior was monitoring glances, in which the participants tracked
the position of the end effector, but that planning glances
emerged that provided insight into participants’ next intended
subtask during the trial. We also saw a high frequency of
glances to the robot’s joints as participants attempted to grasp
objects or transfer objects to different locations, particularly
between the cabinet and the counter. Finally, participants
often tilted their heads when the end effector was about to
interact with an object.

C. Future Work

Once we have finished analyzing the data from this study,
we intend to use features such as planning glances to build a
classifier that can anticipate the next subtask during an ADL.
After training and testing the classifier, we intend to test that
classifier in a user study to evaluate its implementation in
the real world. Then, we want to explore the potential for
implementing the classifier into the state-of-the-art shared
autonomy framework described in [4].

V. CONCLUSION

In this preliminary work, we began to investigate the
potential use of eye gaze for anticipating the progression
of an ADL. We described the design of a data collection
study in which participants perform a food preparation task
with a joystick-controlled robot arm while eye gaze data is
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collected. Then, we discussed our preliminary observations
from the study. Ultimately, we look forward to identifying
strategies to make algorithms in assistive robotics robust to
ADLs through the use of natural gaze patterns.
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Efficient Redistribution of Heterogeneous Swarm Robots for Building
Security

Emily Duan1, Sha Yi2 and Katia Sycara3

Abstract— Swarm robotics is the coordination of multi-robot
systems that was first inspired by natural swarms. Although
each individual robot may have limited capabilities, a collec-
tive number of these robots can display great flexibility and
robustness in groups, which is valuable for complex behaviors.
In a community of heterogeneous swarm robots, each type of
robot has its own unique capabilities. Given these different
capabilities, the need to adapt to specific needs of the desired
task and the ability to allocate these robots efficiently based on
their strengths is of interest. Current literature only addresses a
method to optimize the redistribution of heterogeneous swarm
robots based on the presence or absence of these capabilities.
However, the ability to quantify swarm robot capabilities can
increase the efficiency of the redistribution of robots. To combat
this deficit, we are utilizing an existing method to redistribute
heterogeneous swarm robots by quantifying the capabilities
present in the swarm.

I. INTRODUCTION

Advancements in embedded systems are enabling the use
of large-scale robot systems, i.e. swarm robots, to accom-
plish laborious tasks. However, as we encounter increasingly
complex tasks, homogeneous robot systems are unable to
accommodate all facets of the problem and the inadequacy
of the capabilities on these large-scale robot systems are
revealed. This has led to a shift in focus on the formulation
of robot systems with multiple types of robots, for example
Unmanned Ground Vehicles (UGVs) and Unmanned Aerial
Vehicles (UAVs). [2,3] Current methods of task allocation
of heterogeneous swarm robots can identify the presence
or absence of capabilities in the swarm, which is a step
toward efficiently utilizing these multi-agent systems. How-
ever, knowledge of the presence or absence of capabilities
may be insufficient to distribute robots efficiently. With more
complex behaviors for heterogeneous swarm robots, robot
swarms may need to know the quantity of capabilities present
to reallocate themselves optimally.

In this work, our objective is to find an optimal policy to
distribute a swarm of heterogeneous robots as quickly and
efficiently based on the quantity of the capabilities present
in the swarm. An example could be if an Unmanned Ground
Vehicle (UGV) has three cameras, one Lidar and two infrared
while an Unmanned Aerial Vehicle (UAV) only has one
camera. Depending on the requirements of the specified
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ing and Information Technology at the University of Maryland, Baltimore
County.

2S. Yi is a Masters of Science in Robotics student in the Robotics Institute
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task, the allocation of these robots will differ based on the
desired needs of the task. This problem formulation was
inspired by the tactic for establishing a perimeter around
a building for the DARPA Sprint project. In the case with
monitoring a building, the doors and windows are identified
as locations of higher interest, where the capabilities of
Unmanned Ground Vehicles (UGVs) and Unmanned Aerial
Vehicles (UAVs) would be able to monitor these regions
respectively. However,the perimeter formulation around the
entire building may be unnecessary if certain sides of the
building do not have doors or windows. Furthermore, there
may be sides of the building where there are multiple doors
and windows that need to be monitored.

Our problem is a case of the MT-MR-TA: Multi-Task
Robots, Multi-Robot Tasks problem [4], which is described as
a strong NP hard task allocation problem [5] that divides the
robots in a multi-robot system into subsets of robots and pairs
the subset of robots to tasks. Previous algorithms have been
shown to be unsuitable for large number of robots. The work
presented in [1] takes the scalability and capabilities of the
robots into consideration for the robots to adapt to changes in
the swarm. The current work focuses on optimal transition
rates for the heterogeneous swarm robots to quickly reach
the desired trait distribution configuration. [6,7,8]

The work presented in [1] focuses on the optimization
of transition rates that permit a heterogeneous robot swarm
to converge quickly to a configuration that satisfies a de-
sired trait distribution. The improvement from the previous
work[2,6,8] is that we modified the species matrix to depict
the quantity of the capabilities present in the swarm instead
of solely identifying if the capability is present or absent to
effectively distribute the robots. Contrary to previous work
[4, 6] on optimization methods for this formulation, the final
robot distribution is not used or in other words, the user will
simply specify how much of a given capability is needed
for a given task. We will utilize the optimization methods
for transition rates and convergence times shown in [1] to
reallocate the robots based on the quantity of capabilities
present in the swarm.

II. RELATED WORKS

Our problem formulation was heavily based on the work
presented in [1] with the exception to the binary instanti-
ations of traits that correspond to the presence or absence
of given traits in the species. The authors of [1] modeled
the swarm of heterogeneous robots as a community, where
each species in this community is a different type of robot.
A unique set of traits are defined for each species of robots.
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A. Notation

We have utilized the same notation as presented in [1]
to set up the problem. The community of S robot species
contains a total number of robots N, where there are N(s)

robots per species and
∑S
s=1N

(s) = N . A set of U traits
is defined for the community and each robot species owns a
subset of these traits. A species is defined by a vector q(s) = [
q1

(s), q2
(s), ..., q U

(s)]. The matrix Q is defined by S x U, where
q(s) are the rows. The interconnection topology of the M
tasks was modeled by a directed graph, G = (E ,V), where V,
represents tasks {1,...,M} and the set of edges, E , represents
the ordered pairs (i,j) where (i,j) ∈ V × V. The edges indicate
the possibility to switch between the two adjacent tasks. The
graph G is assumed to be a strongly connected graph and
the robots have knowledge of this graph. Every edge E is
assigned a transition rate, ki,j

(s), which defines the transition
probability per unit time for one robot of species s at task i to
switch to task j. This transition rate is defined where kij

(s) >
0 and a limitation is imposed on the maximum rate of each
edge with kij

(s) <kij, max
(s). System identification methods on

the actual setup can be applied to the determination of these
values as well as observable factors. The distribution of the
robots in a species s at time t is depicted as a vector x(s)

= [ x1
(s)(t) ,..., xM

(s)(t)]T], where x(s) are the columns of
X(t) matrix. The distribution of traits among the tasks Y
is depicted by the M × U matrix. This relationship with
respect to time t is given by

Y(t) = X(t) ·Q (1)

B. Problem Statement

Initial state of the robot system and the initial distribution
of traits among the tasks is described by X(0) and Y(0)
respectively.

dxt
(s)

dt
=

∑
∀j|(i,j)∈E

kjixt
(s)(t)−

∑
∀j|(i,j)∈E

kijxt
(s)(t) (2)

The base model for all species is given by

dx(s)

dt
= K(s)x(s) ∀s ∈ 1, ..., S (3)

where K(s) ∈ R M × M is a rate matrix with the following
properties

K(s)T1 = 0 (4)

Kij
(s) ≥ 0 ∀(i, j) ∈ E (5)

The result of these two properties is the following definition:

Kij
(s) =


kji

(s), if i 6= j, (i, j) ∈ E
0, if i 6= j, (i, j) 3 E
−
∑M
t=1,(i,j)∈E kij

(s) ifi = j

The total number of robots and the number of robots per
species is conserved and there Eq. 3 is subject to the
following constraints

XT · 1 = [N (1), N (2), ..., N (S)]T (6)

with X � 0, (7)

where � is an element-wise greater-than-or-equal-to oper-

ator. Given a target distribution
−
Y, the goal is to find an

optimal rate matrix K(s)* for each species s so that
−
Y =

−
X ·Q (8)

The objective is to redistribute the robots of each species
configured based to the initial distribution of the robots, X(0)

to reach a desired trait configuration
−
Y. In this process, a

robot configuration
−
X that satisfies Eq. 1 will be reached. It

is noted that there may be several
−
X.

III. METHODOLOGY

Our methodology follows the methodology discussed in
detail in [1] for acquiring an optimal transition matrix K(s)*

for each species to reach a desired trait distribution. The
binary instantiations of traits that correspond to the presence
or absence of given traits in the species is replaced with a
quantity of the number of capabilities or traits that are present
in the species. The species matrix Q is given as

Q =

u1,1 · · · u1,U
...

. . .
...

us,1 · · · us,U

 (9)

where u is the quantity of a certain capability in the species,
s is the number of species in the swarm and U is the
number of capabilities present in the species. As presented
in [1], a differentiable objective function can be efficiently
minimized through gradient descent techniques and this
method explicitly minimizes the convergence time of K(s).

A. Optimal Transition Rates

To obtain the values of K(s)*, the error, E, is considered
and given by

E =
−
Y − Y(t) (10)

where Y(t) is the solution of the linear ordinary differential
equations, Eq. 3 and Eq. 8, and given by

Y(t) =
S∑
s=1

eK(s)*τx0
(s) · q(s) (11)

where τ is defined as the time when the desired distribution
is reached. The optimization transition rates problem is
formulated as

minimize J (1) = ||E||F2 (12)

such that kij
(s) < kij,max

(s). A minimum cost is found when
the final trait distribution coincides with the desired trait
distribution that contingent to the maximum transition rates
kij, max

(s). The operator ‖ · ‖ F is the Frobenius norm of a
matrix. The gradient descent of the cost function is given as

∂J 1

∂K(s)
= V -1T[

V
T ∂J (1)

∂eK(s)
τ
�W(τ)

]
V Tτ (13)
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where � is the Hadamard product, K(s) = VDV-1 is the
eigendecomposition of K(s). V is the M × M matrix with the
jth column as a right eigenvector corresponding to eigenvalue
d and D = diag(d1, ..., dM). The derivative of the cost function
with respect to the expression eK(s)τ is given as

∂J (1)

∂eK(s)
τ
= −2E ·

[
x0

(s) · q(s)]T (14)

Further details on the gradient descent of the cost function
can be found in [1].

B. Optimal Convergence Time

The optimal convergence time problem is formulated as
follows

K(s)*, t* = argmin
K(s),τ

J (3), (15)

The cost function from Eq. 9 is modified to consider the
convergence time τ as a variable and is given by

minimize J (2) = J (1) + ατ 2 (16)

such that kij
(s) < kij, max

(s), τ > 0 and α > 0. The importance
of th convergence time can be increased by increasing α. The
optimization of Eq. 12 will result in the transition rates that
would lead to the desired trait distribution quickly but the
steady state of K(s) is not guaranteed. If we strive to compute
the transition rates and ensure the constant state reached at
the optimal time t*, the cost function in Eq. 12 is modified
as follows.

min J 3 = J 2 + β
S∑
s=1

‖ eK(s)(τ)x0
(s) − eK(s)(τ+ν)x0

(s) ‖ 2
2

(17)
such that kij

(s) < kij, max
(s), τ > 0 and β > 0. The additional

term included in the cost function permits the state reached
after applying K(s)* remains steady for an arbitrarily long
time interval ν. As the value of β increases, the difference in
robot distributions at τ and τ + ν decreases, which indicates
that as β increases, the trait distribution corresponding to
the steady state of K(s) reaches close to the desired trait

distribution
−
Y . Further details on the gradient descent of the

cost function can be found in [1].

C. Implementation

For a community of 10 heterogeneous swarm robots (N
= 10), there are two species (S = 2) (N(s) = 5), 2 traits (U
= 2) and 5 tasks (M = 5) present. The initial distribution of
robots, X0, is set as

X0 =


5 5
0 0
0 0
0 0
0 0

 (18)

and the desired trait distribution,
−
Y, is as follows

−
Y =


1 2
1 0
1 2
1 0
1 1

 (19)

Q equations We are currently trying to implement the code
in Python using NumPy and SciPy libraries.

IV. RESULTS

Once we obtain results from our implementation, we hope
to compare our results and evaluate our performance with the
results presented in [1]. We will update this paper with the
results after the implementation is completed.

V. CONCLUSION

We present an optimal policy for redistributing hetero-
geneous swarm robots among a set of tasks based on the
quantity of capabilities present in the swarm to reach the
desired distribution of capabilities among the tasks. We
utilize the optimization problem and solution based on an
analytical gradient presented in [1] to efficiently compute the
transition rates and convergence times for distribution. We
believe that this method will be well-suited for applications
that require additional knowledge of the capabilities present
in the control and coordination of large-scale team of robots
to quickly reach the desired configuration. This objective
is only a piece of a larger vision to develop control and
coordination strategies for teams of heterogeneous robots
with specific capabilities given that the capabilities of each
individual robot may vary in performance. Variations of this
problem can also be applied to disaster relief missions or for
building security.
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Abstract— State lattice-based planning has been used for
motion planning in a wide variety of robots, including
ground, water, and air vehicles. The State Lattice with
Controllers (SLC) framework expands upon traditional
methods by allowing planning with controllers, such as
wall-following or visual servoing, in addition to metric
motion primitives. This allows SLC to plan in environments
where execution of metric motion primitives is unreliable,
such as GPS-denied areas. However, the SLC framework
assumes that each controller reliably navigates the robot
to a single end state. In practice, it may be useful to
reason about controllers which are unreliable (i.e. the robot
may end up in one of many states after executing the
controller). This work proposes an algorithm for planning
with arbitrarily unreliable controllers. Preliminary exper-
imental results evaluate the performance of the algorithm
in simulation.

I. INTRODUCTION

Traditional search-based planning methods for
robotics depend on the ability of the robot to execute
metric motion primitives. Unfortunately, there are many
situations in which metric motion primitives cannot be
executed reliably. For example, a robot operating in a
GPS-denied environment might not be able to perform
state estimation with the accuracy needed for reliable
execution of metric motion primitives. One method
proposed to solve this issue is the State Lattice with
Controllers (SLC) [1]. The SLC framework attempts to
solve this problem by permitting the planner to choose
between metric motion primitives and controllers such
as wall-following or visual servoing. These controllers
may be able to operate in regions where metric motion
primitives cannot be executed reliably.

One limitation of SLC is that it requires controllers
which can reliably guide the robot to a particular state.
However, it is sometimes desirable to execute an unreli-
able controller, that is, a controller which may guide the
robot to one of many states from the same starting state.
In some situations, executing an unreliable controller
could allow for a more direct path.

A. Motivating Example

Consider the scenario depicted in Figure 1. A flying
robot must navigate from the start to the goal, but
there is a variable wind blowing across the middle of

Fig. 1: Traveling from the start to the goal can be done either by
following the wall around the boundary or by flying across the room
until a wall is detected, and then following the wall into the goal
region. In the latter case, the variable wind (blue) will cause the robot
to end up in different positions along the top wall, but the robot is still
able to reach the goal. Our method permits this temporary uncertainty.

the room. The robot could reach the goal region by
executing a series of wall-following controllers around
the boundary of the environment, but this is not the
shortest path. Alternatively, the robot could execute a
simple proximity controller, flying in the same direction
until it senses an object ahead. If the robot executes a
proximity controller in the north direction, it could end
up in many states since the wind is variable and the
proximity controller does not use feedback to stabilize
the trajectory. However, so long as the robot ends up
somewhere along the top wall, it can then execute
a wall-following controller to reach the goal region.
Executing the unreliable proximity controller followed
by the reliable wall-following controller gives a path
which is shorter than executing a series of reliable wall-
following controllers.
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Fig. 2: The space of controller/trigger sequences is represented
by a tree, with each edge corresponding to a controller/trigger pair,
and each node corresponding to a sequence of controllers and triggers
applied in order.

B. Overview

In this work, we present a novel algorithm which
allows for planning with unreliable controllers and pro-
vides a probabilistic guarantee on the optimality and
correctness of the solution. In Section II, we provide
an overview of the relevant literature. In Section III,
we formally define the problem, and in Section IV, we
provide a detailed description of the algorithm. Experi-
mental results are given in Section V and discussion is
provided in Section VI.

II. RELATED WORK

There is a large, existing body of work on planning
under motion and sensing uncertainties. The LQR-Trees
algorithm [2] approaches the problem of motion uncer-
tainty by constructing a series of feedback controllers
which guide the robot toward a feasible trajectory from
any state in the region. One limitation of this approach
is that it requires an estimate of the full state in order
to provide controller feedback. The LQG-MP (Linear
Quadratic Gaussian - Motion Planning) [3] is an algo-
rithm which can explicitly account for both motion and
sensing uncertainties, but is limited to handling Gaussian
noise.

There is also some existing literature on planning for
unreliable robots with very limited sensing capabilities.
[4] solves the problem of active and passive localization
with a robot which only has a clock and a contact sensor.
[5] extends the work to create provably correct plans for
a blind robot with bounded uncertainty. However, both
of these methods are limited to a specific model.

III. PROBLEM

A. Definitions

Let S denote the set of possible states a robot can take,
and let C denote the set of available controllers. Each
controller terminates either upon its natural completion
(e.g. a wall-following controller reaching the end of a
wall) or upon the detection of some perceptual trigger
(e.g. a wall-following controller detects a window or
opening in the wall). We use T to denote the total set
of perceptual triggers and define the mapping T (c) :
C → P (T ) which gives the set of triggers available
for controller c.

Applying a controller c and trigger t to some
state s ∈ S results in a new state and associated
cost, which may vary based on noise in the environ-
ment, and which is given by the stochastic function
φ(s, c, t) : S × C × T → S × R. Furthermore, let
φ′(s, (c1, . . . , cn), (t1, . . . , tn)) → S × R represent the
extended stochastic transition function corresponding to
the application of (c1, . . . , cn) and (t1, . . . , tn) in order.
Given a goal region G ⊂ S, define δ such that

δ(s, (c1, . . . , cn), (t1, . . . , tn)) ={
Cost of φ′(s, (c1, . . . , cn), (t1, . . . , tn)) if in G
∞ o.w.

B. Problem Statement

The problem is, given S, a start state s ∈ S, a goal
region G ⊂ S, as well as C , T , T , φ, and p, to find a
sequence (c1, . . . , cn) and (t1, . . . , tn) which minimizes
the pth quantile of δ(s, (c1, . . . , cn), (t1, . . . , tn)). Mini-
mizing the pth quantile, rather than another statistic such
as the mean, allows us to account for possibly infinite
values of δ and ensures that the probability that the plan
guides the robot to the goal region G is at least p.

IV. ALGORITHM

Algorithm 1 Node Expansion
1: procedure EXPANDNODE(n)
2: succs ← ∅
3: for c ∈ C do
4: for t ∈ T (c) do
5: succ ← node which applies (c, t) to n
6: Compute LCBbest(succ)
7: succ ← succs ∪ succ
8: end for
9: end for

10: return succs
11: end procedure

In addition to the planning problem, the algorithm
accepts ε, and α, and utilizes an admissible heuristic h.
It guarantees that the solution returned is ε-optimal at
least 1−α of the time. At a high level, our approach is a
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Algorithm 2 Main Loop
1: procedure MAIN
2: Open ← {ns} . ns is start node
3: current solution← Fast solution with inflated heuristic
4: LCBbest(ns)← h(s)
5: while not HasCompleted() do
6: n← node with minimum LCBbest from Open
7: Test if pth quantile of n is finite
8: if finite then
9: Compute UCBδ(n)

10: Do comparison test to current solution
11: if n is better than current solution then
12: current solution ← n
13: end if
14: else
15: succs ← ExpandNode(n)
16: Add succs to Open
17: end if
18: end while
19: return ReconstructPath(current solution)
20: end procedure

Algorithm 3 Termination Condition
1: procedure HASCOMPLETED
2: if ∀n ∈ Open LCBbest(n) ≤ 1

ε
UCBδ(current solution)

then
3: return true
4: else
5: return false
6: end if
7: end procedure

branch-and-bound algorithm. Possible controller/trigger
sequences are represented as a tree (Figure 2) with each
edge representing a controller/trigger pair and each node
representing a series of controller/trigger applications.

The algorithm proceeds by expanding the leaf nodes
of the tree (Algorithm 1). At each expansion, a successor
is selected for each available controller/trigger pair.
Then, for each successor, the full sequence of controllers
is simulated multiple times to obtain a sample of trajec-
tories. For each of these trajectories, a cost and heuristic
value is calculated, which is then used to establish a
lower confidence bound on the best possible sequence
which contains that successor (denoted LCBbest). The
exact number of simulations per node depends on the
confidence specified by the user.

In the main function (Algorithm 2), an initial, sub-
optimal solution is first found by searching with an
inflated heuristic. An upper bound on the cost of this
solution (denoted UCBδ) is established by running mul-
tiple simulations. Next, leaf nodes are expanded in order
of increasing LCBbest. This process continues until the
minimum LCBbest value of a leaf node is at least 1

ε times
UCBδ for the current best solution (Algorithm 3). This
guarantees (with respect to the given confidence level)

(a) (b)

(c) (d)

Fig. 3: (a) In the small environment (17 x 20 m), the optimal
solution without noise is to execute a proximity controller followed
by a wall-following controller. (b) With a low amount of noise (wind),
the optimal solution is unchanged. (c) With high noise, the optimal
solution is to execute a series of wall-following controllers around
the boundary. (d) For the large environment (30 x 85 m), the optimal
solution is a series of wall-following controllers. Note that for all
examples, only the endpoints (red) of each controller are drawn, so
the path may appear to cut corners.

that the solution returned is no more than ε times the
optimal solution.

V. RESULTS

The algorithm was evaluated on the 17 x 20 meter
environment depicted in Figure 1 with no wind, low
wind, and high wind. For these tests, we used p = 0.9,
α = 0.2, and ε = 1 (optimal solution), as well as a
reverse Dijkstra’s search as the heuristic. With no wind,
the optimal solution was to execute the proximity con-
troller followed by the wall-following controller (Figure
3a). For a low amount of wind, the optimal solution was
found to be the same (Figure 3b). However, for a high
amount of wind, the planner determined that executing
the proximity controller would be too unreliable, instead
returning a sequence of wall-following controllers which
guide the robot around the boundary of the environment
(Figure 3c). In each of these tests, the planning time was
less than 10 seconds (Table I).

The algorithm was also tested on a larger environment
(30 x 85 meters) without noise. An optimal solution
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Environment Planning Time (s) Cost (90th percentile)
LCB UCB

Small (No Noise) 2.47 22.43 22.43
Small (Low Noise) 2.55 25.28 26.28
Small (High Noise) 7.15 33.15 33.52

Large 609.68 125.61 125.61

TABLE I: The planning times and solution costs for four environments are given. Since the cost can only be approximated, a lower and
upper confidence bound are given.
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Fig. 4: The ratio, over the course of planning, between the lower
bound on the cost of the optimal solution and the upper bound on
the cost of the current solution. This ratio represents a bound on the
sub-optimality of the best known solution. These results are for the
large environment.

was found (Figure 3d), but at approximately 10 minutes
(Table I), the planning time required was much larger
than for the smaller examples. Figure 4 shows the ratio
between the minimum LCBbest and the UCBδ of the best
known solution over time. This ratio represents a bound
on the sub-optimality of the solution as the algorithm
progresses.

VI. DISCUSSION

The algorithm as it stands is a work-in-progress and
the experimental results presented here are very limited.
It is promising that the algorithm is able to find optimal
solutions, although the planning time which is currently
required for large environments may be prohibitive in
some applications. The authors are exploring ideas to
improve the algorithm’s performance. More tests on a
variety of environments under different conditions are
also planned.
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Feedback Acquisition From Falling Cat Robot And Its Evaluaction

Kyuto Furutachi1 and Steven Crews2

Abstract— Inertial reorientation is an interesting problem,
particularly for the application of robots which require midair
changes in attitude. Cats reorientation phenomena, which is
known as the cat-righting reflex, is said it is one of the
best biological models in this field. While theoretical analysis
of this phenomenon has been done by many physicists and
researchers, few researchers have attempt to replicate this
process in a physical robot. We assume that cat’s start falling
from at rest, then calculate ideal theoretical trajectory following
simplified dynamics. Our current robot is following this motion
on an open-loop trajectory, i.e. without getting any orientation
feedback. However, the state of beginning of its fall might vary
on some situations, and some external influence may happen
while it’s falling. Therefore, the actual trajectory is subject to
change due to these influences. In order to enable the robot
to correct for differences in initial pose and disturbances, we
need to get feedback of its state during free fall.

I. INTRODUCTION

Cat is able to reorientate its state mid-air when it is
falling. This biological phenomena is called as cat-righting
reflex. Our basic purpose of this project is replicating this
phonomena by creating phisical robot. We apply only two
degree actuators as inputs on current robot we have although
real cat has more degrees when considering cat-righting
reflex. On previous project, we already created phisical robot
and calculate ideal trajectory by following dynamix around
cat-righting reflex. We assume that a cat is lereased from rest
and holizontally. What our current model does is only follow-
ing calculated trajectory, paticulary stating following angle
of actuator which we already calculated earlier. However,
cat is not definitely follow our calculated trajectory since
something happend in real-world when falling. Therefore, a
cat has to be able to modify its trajecotry while it is falling
mid-air. Since a cat is falling in less than second which is
really fast, the robot has to take an information enough fast
to recognize its state every cycle and calculate next behavior
which the robot has to follow next cycle.

II. MATERIALS

In this section, we mention the equipment we use for this
project and the reason why we chose those staffs. As stated
earlier section, we had ”planned” trajectory which is already
calculated followed theoretical analysis. However, we try to
get a feedback from our robot while it’s falling every cycle
and correct their trajectory so it’s able to follow the planned

1H. Kyuto Furutatchi is with Faculty of Marine System Engi-
neering. Kyushu University, 744 Motooka Nishi-ku, Fukuoka, Japan
1TE15532W@s.kyushu-u.ac.jp

2Steve Crews is with the Department of Mechanical Engineering,
Carnegie Mellon University, Pittsburgh, PA 15289, USA
screws@andrew.cmu.edu

Fig. 1. cat robot model

trajectory as close as possible if it’s going away from it. In
order to do that, the on-board computer should have ability to
high-rate calculation for getting feedback with high sample
rate and calculate new motion. Also, the actuator should have
a big enough torque speed for moving quickly while it’s
falling. In addition, the IMU sensor should be able to get
its orientation while it’s falling. Some of the staff we using
as an previous model is not good enough for new model.
Therefore, we upgrade them so the robot’s specification is
well above its requirement.

A. Hardware

As mentioned in introduction, we consider 2 DOF robot
for mimicking the cat-righting reflex phenomenon. For actu-
ators, we use Dynamixel servo motor, AX-18A. This servo
has nice torque speed which is well above our requirement
to move quickly for correcting their behavior. The robot has
two black box indicating front and back body of cat, and each
box is for a battery or a designed circuit board. These two
black boxes are fixed by screw and there are two actuators
at the center part of the robot. The figure of our hardware
design is shown as Fig. 1 below.

B. Electronics

In the earlier version of this robot, the electric parts we
used has several limitations. Therefore we upgrade some of
them for getting better performance. First, we mention about
limitation of earlier model. Next, we state how we upgrade
these pieces.

1) Current limitation:
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Computer: Also, we used an Arduino Nano for on-
board computer because of its reasonable cost and usability.
However, the Nano’s 16 MHz clock speed is not fast enough
for calculating the next motion referred by feedback.

IMU sensor: In the earlier version of this robot, we used
the MPU6050 as a 6-DOF IMU sensor the sample rate of
which was 200-300 KHz when we apply DMP library to get
quaternions calculated on sensor. DMP stands for ”Digital
Motion Processor.” This is internal calculation library built
in MPU 6050 which indicates that MPU6050 becomes to be
able to calculate an orientation using sensed information.

2) Improvement:
Computer: As mentioned earlier subsection, Arduino

Nano has slow clock rate for our cat robot since cat is falling
in quite small amount of time. Therefore, we changed the
micro-controller to the much faster and more capable Teensy
3.6. Teensy 3.6 has 180 MHz as a clock speed, which is fast
enough for updating the trajectory.

IMU sensor: Also, we get new IMU sensor named as
Three Space Sensor Embedded from Yost Lab which is much
better than MPU6050 in terms with sample speed, accuracy,
facility, and so on. There are couple of built-in filter inside
sensor so we have a choice to activate one of the filter or
deactivate any filters to get raw values from sensor.

III. METHODOLOGY

A. Getting current state

We need to get 2 kind of state of itself from our falling cat
robot. First, we get the sensed orientation of the electronics
box while it is falling. Second, the Dynamixels give us the
rotation angles of the center joints Since physical relationship
among control board, actuators and two black boxes are
constant, we can calculate overall system behavior easily.

We estimate the orientation from accelerometer and gyro
data with a complementary filter.

The complementary filter is a common filter for estimating
an object’s orientation using in robotics, aerospace engi-
neering, and similar applications. Simply stating about the
definition of complementary filter is that ”The complemen-
tary filter consists of both low and high pass filter and as
it is easier to implement this filter was implemented for
getting precise data.[1]” To avoid the prime limitations of
Euler Angles (i.e. Gimbal Lock), we use quaternions as the
basis for representing oriention. Since we need to predict
the next state along the trajectory correctly, we should be
able to get an accurate and timely feedback from each IMU
sensor and actuators. This will allow us to characterize
the real-world behavior in real time. In order to validate
our sensed orientation, we used motion capturing system
called Optitrack. Optitrack, the brand’s software application,
provides us with position and orientation information. Data
from Optitrack can be considered as ground-based data

and our estimation of orientation get from IMU sensor
should be close to it as much as possible. To make sure that
our estimation is close enough to ground-based orientation,
we use quaternions and compare in terms of it.

IV. RESULTS

On this section, we mainly about how better data the robot
could get compared to previous model in terms of couple of
points.

A. Sensed IMU v.s. Optitrack

We moved circuite board and made IMU sensor getting
quaternion while it is moving. Moreover, we used Optitrack
at the same time and getting Optitrack quaternion while it
is moving. Fig. 2 shows comparison of quaternion between
from IMU sensor and from Optitrack. According to this
figure, these two figures are almost same while moving,
which indicates that our sensed information can be trusted
enough since it is closed to Optitrack’s quaternion.

Fig. 2. Quaternion of Sensed v.s. Optitrack

B. Sample rate

Since the time length while our robot is falling is quick
which is at least less than 1 seconds, we have to recognize
its current state quite fast as well. In order to do that, we
really have to care about sample rate which means here is
how fast IMU sensor can get next data after getting current
data. Also, we should consider so much about how fast micro
controller can communicate with actuators and get its current
state from them. As Table 1 indicates, we improve the sample
rate for getting current state from each of two very much,
which seems to be fast enough for our prediction of next
behavior while it’s falling.

TABLE I
SAMPLE RATE IN MICRO SECONDS

Process Previous New
Get quaternion <7000 <1200
Get raw IMU data <5000 <1000

V. CONCLUSION

We could make cat robot got an accurate sensed informa-
tion while it is falling. Also, the sample rate of both IMU
information and angle of rotation of actuator is quite fast
compared to previous model. Therefore, we are now ready
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to tackle applying mathematical algorithm into our model.
Then, we will be able to get feedback from cat while it is
falling.

ACKNOWLEDGMENT

We thank Dr. Howie Choset, Dr. John Dolan, Ms. Rachel
Burcin, the others who support Robotics Institute Summer
Scholars for providing Kyuto Furutachi the opportunities
to work at Carnegie Mellon University. We also appre-
ciate Japanese government for financial support. We are
immensely grateful to Dr. Juliann Reineke and Alex H for
their comments on earlier version of manuscript, although
any error are own and should not tarnish reputation of these
esteemed persons.

REFERENCES

[1] Tariqul Islam, Md. Saiful Islam, Md. Shajid-Ul-Mahmud, and Md
Hossam-E-Haider Comparison of complementary and Kalman filter
based data fusion for attitude heading reference system. Proceedings
of the 1st International Conference on Mechanical Engineering and
Applied Science (ICMEAS 2017).

[2] Yost Labs, 3-Space Sensor Miniature Attitude and Heading Reference
System User Manual.

42



Robust Bayesian Aggregation for Radioactive Source Detection in
Urban Scenes

Jack H. Good, Ian Fawaz, Kyle Miller, and Artur Dubrawski Member, IEEE

Abstract— Detection of potentially hazardous radioactive ma-
terials is an important part of the prevention of radiological
dispersal devices and accidental exposure to harmful levels of
radiation. There are widespread systems in place for detecting
such materials passing through stationary radiation portal
monitors [23]; these environments are stable and controlled.
However, urban environments, in which there is potential for
great harm due to dense population, are dynamic, crowded, and
widely varied in physical structure and radioactive background,
making the source detection problem difficult, especially when
mobile sensors are desirable. We propose two models built
on the Bayesian Aggregation (BA) framework: one that max-
imizes, and one that marginalizes, over uncertain variables.
These show improved robustness over baseline BA to urban
detection challenges such as background radiation variability,
positional uncertainty, and dynamic occlusion. These methods
can be applied with small gamma-ray sensors mounted on
law enforcement and public service vehicles for low-cost and
widespread integration.

I. INTRODUCTION

Source detection is determining the presence or absence
of radioactive materials of interest, often using gamma-
ray spectroscopic data. This problem has applications in
medicine [14], industrial safety [8] [15], and national security
[7] [32]. This work focuses on the security application of
source detection in urban environments, a likely target for
attacks with radiological dispersal devices where the cost
of failing to detect threats is potentially tremendous. Many
detection challenges, including variation in background radi-
ation, uncertain sensor position, dynamic occlusions, moving
sources, anisotropic shielding, and nuisance sources, are
more pronounced in this busy and dynamic environment.
In addition, methods that operate with, small, inexpensive,
and mobile sensors are desirable to facilitate the monitoring
of large areas and the integration of detection systems with
existing infrastructure. It is thus of interest to develop source
detection algorithms that support small, mobile sensors and
are robust to detection challenges.

We design such algorithms using Bayesian Aggregation
(BA), a framework for leveraging evidence from multiple
observations [27] that has a history of application in source
detection. We build upon this framework to present two novel
source detection techniques that show improved robustness to
uncertainty: one that maximizes the BA score over uncertain
variables, and one that marginalizes over uncertain variables.

Our analysis focuses specifically on our methods’ potential
to perform under variable background, uncertain position,

J. Good, I. Fawaz, K. Miller, and A. Dubrawski were with the Auton Lab,
The Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, PA, USA

and dynamic occlusion. We compare against a vanilla BA
baseline and an oracle (fully informed) model to gauge
performance. We also provide an asymptotic approximation
of the maximum improvement of the oracle over a partially
aware model, and show empirically that our approaches come
close to meeting this bound. Our results generally favor
marginalization as the more effective and flexible approach,
with the caveat that it is significantly more computationally
demanding than the maximization approach.

II. RELATED WORKS

This section will outline relevant work in source detection,
including both simulations and methods used to further the
robustness of detection. We also cover work in Bayesian
Aggregation and its use in source detection and elsewhere.

Simulations are a common tool for testing source detection
techniques. Urban environments in particular have been the
focus of several: the Half Life 2 game engine was used
to explore anisotropic shielding and attenuation through
various common urban materials [17], while another project
studies the detection of sources on the surface of common
urban materials at large standoff distance [6]. The real-time
detection of nuclear threats with distributed networks of
mobile sensors, e.g. sensors mounted on taxi cabs, has also
been simulated [11].

The techniques proposed to improve source detection have
been varied. Multiple small, mobile sensors working in
conjunction can offer better performance in certain environ-
ments than stationary sensors or a single large sensor, while
covering a larger area [17] [19] [33]. A Poisson-Clutter Split
algorithm was deployed to model background clutter and
perform a Generalized Likelihood Ration Test for detection
[4]. The problem of low photon count sources, meanwhile,
has been addressed using Poisson modeling and Bayesian
estimation [28], as well as the G-P detection method for use
with large sensors and the List Mode Regression method
for use with small sensors [13]. Neutron-based detection
methods, in which neutron interaction with various mate-
rials causes characteristic gamma-ray emissions, have been
deployed extensively [26] [9] [10] [25]. Radiation threats
have been detected at long distance using lidar [2] and laser-
induced breakdown spectroscopy [6]. Directional detection
has been performed with coded-aperture masks [18] [20].
Principle component analysis has been commonly used with
spectroscopic data [3] [17] [24] [30] [33]. Censored energy
windowing is another common tool [16] [19] [20] [27]. This
was extended with Canonical Correction Analysis, and the
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background tracked with a Kalman filter rather than using
global background [16].

Bayesian aggregation has been applied extensively in
source detection to leverage evidence from multiple sensors
or observations [20] [27]. It has also been used to building
a model of background data, which is then injected with
synthetic sources in order to learn models of radiation threats
[29]. Outside source detection, BA has been used in the
aggregation of ranking functions [5] and of first nonatomic
probabilities and second Savagean orderings [21].

III. METHODS

A gamma-ray spectroscopic measurement is represented
as a vector x ∈ Nm of positive integers representing the
number of photons collected by the sensor at m different
energy levels over a period of time. We can view x as a vector
of independent Poisson random variables with parameters
λ = B + S, where B and S are the background and source
rate vectors, respectively. The source rate vector is given as
S = I

d2 a◦s, where I is the source intensity, d is the distance
between the sensor and source, a is a vector of energy-
specific attenuation factors resulting from occlusion, and s
is the source spectrum with

∑
j sj = 1. For our purposes,

we define I to be the expected total photon count when the
distance from the sensor to the source is 1.

A. Bayesian Aggregation

The BA score function combines evidence from a set
X = {xi}ni=1 of observations and is given as

BA(X) =
n∏
i=1

P (xi|source)

P (xi|no source)
.

This score is compared to a decision threshold τ to
predict the presence or absence of a source. To compute
the score, we must define a likelihood model P (xi|·).
Previous work [19] has defined P (xi|·, I) in terms of I ,
the source intensity, so that this unknown value can be
integrated out. We extend this approach by defining a
vector ζ ∈ Ωn of values that capture not only the intensity,
but also the distance between the sensor and source and
the attenuation due to occlusion at each observation. This
allows us to account for these additional uncertainties
by defining two aggregate score functions: one that
maximizes score over ζ, and one that marginalizes over ζ.

BAmax(X) = max
ζ∈Ωn

P (ζ)
n∏
i=1

P (xi|source, ζi)
P (xi|no source, ζi)

BAmarg(X) =

∫
· · ·
∫

Ωn

P (ζ)
n∏
i=1

P (xi|source, ζi)
P (xi|no source, ζi)

dζ1 . . . dζn

In order to make the score computable for many
observations, we assume that the ζi are independent

given I . This allows us to write the score as

BAmax(X) = max
I∈R

P (I)
n∏
i=1

max
ζi∈Ω

P (ζi|I)P (xi|source, ζi)
P (xi|no source, ζi)

BAmarg(X) =

∫
R

P (I)
n∏
i=1

∫
Ω

P (ζi|I)P (xi|source, ζi)
P (xi|no source, ζi)

dζi dI

We now require an intensity prior P (I); a prior P (ζi|I),
in which we encode any knowledge about the environment
gleaned from auxiliary data; and a conditional likelihood
model P (xi|·, ζi).

B. Matched Filter Likelihood Model

Matched filter [31] is the linear model that maximizes
the signal to noise ratio for given source template and
background. For background covariance Σ computed from
training data, it is given as MF(x) = sTΣ−1x. We define
a weight vector w = Σ−1s such that MF(x) = w · x to
simplify the notation.

Recall that a single observation x is a vector of inde-
pendent Poisson random variables with parameters λ =
B + I

d2 a ◦ s. Since the matched filter score is a weighted
sum of Poisson random variables, it is approximated by
MF (x) ∼ N(w · λ, (w ◦ w) · λ). We define ζ =

I
∑

j wjajsj

d2
∑

j wjsj

so that w · λ = µb + ζµs and (w ◦w) · λ is approximated by
σ2
b + ζσ2

s , where

µb = w ·B σ2
b = (w ◦ w) ·B

µs = w · s σ2
s = (w ◦ w) · s

This allows us to construct a likelihood model for a
single observation x and corresponding scalar ζ as

P (x|source, ζ)

P (x|no source, ζ)
=√

σ2
b

σ2
b + ζσ2

s

exp

(
(MF (x)− µb − ζµs)2

2(σ2
b + ζσ2

s)
− (MF (x)− µb)2

2σ2
b

)

C. Priors

Assuming there is no knowledge about the intensity of the
source, the prior P (I) is really just necessary for the integral
to converge; it need not be used at all when maximizing. As
for marginalizing, in keeping with previous work [19], we
select an upper bound on source intensities we realistically
expect to exist and allow P (I) to be uniform from zero to
this upper bound.

There is a large degree of flexibility in defining P (ζ|I)
depending on the auxiliary data available. We assume that we
have a noisy estimate of the sensor position, as provided by
a GPS, from which we compute an estimate d̂ of the distance
between the sensor and hypothesized fixed-position source.
Since we have no evidence regarding occlusion, we estimate
âij = 1 for all i, j. We now compute ζ̂i =

I
∑

j wj âijsj

d̂2i
∑

j wjsj
= I

d̂2i
and apply L1 regularization to the score by letting P (ζi|I) =
exp(−λI |ζi − ζ̂i|) for some regularization strength λ. We
divide by I to effectively exclude it from the regularization,
since it is given, and prevent it from changing the strength of
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Fig. 1. Upper bound in the improvement of the true positive rate of the
oracle over that of the baseline at several fixed false positive rates.

regularization on the estimated terms. We also set a minimum
value on the distance estimates d̂i to prevent extremely large
ζ̂i, which cause very poor detection if the true distance is
not actually so small.

D. Asymptotic Approximation of Boundary in Improvement

In examining the efficacy of these models, it is of interest
to determine a boundary in the improvement in decision
performance that is possible, given perfect information about
the data generating process, over an imperfect baseline
model. The fully informed model, which we refer to as the
oracle, determines the presence of the source optimally with
the Bayes’ decision rule `(x) > τ , where τ is a decision
threshold and `(x) = −I +

∑
j xj ln(1 + Isj/Bj) is the

log-likelihood ratio of source presence over source absence.
Previous work [19] derives an approximation for the true
positive rate of the oracle; we repeat this analysis in terms
of S = {Si}ni=1, the set of true source rate vectors used
in the data generating process, Ŝ = {Ŝi}ni=1, the set of
estimated source rate vectors used by the model, and B, the
background rate vector, which we fix across observations.
The approximation is given as

T ≈ 1

2
− 1

2
erf

γ −
∑
ij

Sij Ŝij

Bj√
2
∑
ij

Ŝ2
ij

Bj

 ,

where γ = erf−1(1 − 2F0), with F0 the desired false
positive rate. For the oracle model, where Ŝ = S, we
have T ≈ 1

2 − 1
2 erf(γ − 1√

2
||α||), with α the vector defined

by αi =
∑
j Sij/

√
Bj . For the model that estimates the

rate vectors, we have T̂ ≈ 1
2 − 1

2 erf(γ − 1√
2

α·β
||β|| ), with β

the vector defined by βi =
∑
j Ŝij/

√
Bj . We define θ as

the angle between α and β; this provides a measure of the
difference between the actual and estimated parameters of
the data generating process. By rewriting T̂ in terms of

θ and ||α|| and maximizing T − T̂ over ||α||, we obtain
the maximum possible improvement of the oracle over the
baseline as

max
||α||

T − T̂ ≈ erf
(
γ

1− cos θ

1 + cos θ

)
.

It is unsurprising to find that the boundary increases with
θ; the less accurate our parameter estimates, the greater the
possibility for improvement by correcting them. A more
noteworthy trend is that, as the desired false positive rate
decreases, the potential for improvement grows large (see
Fig. 1).

IV. SCENE SIMULATION

Fig. 2. A top-down, simplified visu-
alization of one frame from our scene
simulation. The large rhombus is the
sensor, while the many small rhombi
are sources.

In order to generate suit-
ably realistic inputs for
testing our models, we
built a simple simulation
of a busy two-lane ur-
ban road with parking on
both sides. Somewhere on
the roadside we place a
source near the ground,
and on the roof of a
car we place a sensor.
This car makes several
passes while the simu-
lation produces exposure
vectors from distance and
attenuation information in-
tegrated over one-second
intervals. These are later
paired with a background
rate vector, source spec-
trum, and intensity to gen-
erate spectroscopic sam-
ples.

We include two solids in the scene: pedestrians (green in
Fig. 2), each of which is a single cuboid of human size; and
cars (blue in Fig. 2), each of which consists of two cuboids
for the body, one for the engine block, and one to four for
the occupants, of which there is always one in the driver
position. We use ray tracing from the sensor to the source
to identify the gamma rays’ interaction with each object. We
thus compute the exposure vector η ∈ [0, 1]m according to
the inverse square law and exponential attenuation law as

ηj =
1

d2
exp

(
−
∑
k

µkjzk

)
,

where µkj is the attenuation coefficient at the jth energy
level for, and zk the distance passed through, the kth cuboid.
We compute the µk vector by interpolating mass attenuation
coefficients from NIST Physical Measurement Laboratory
databases [12] to match the energy levels in our background
and spectral data; we treat pedestrians and vehicle occupants
as solid water, car bodies as a hollow surface of iron, and
engine blocks as solid iron.
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To introduce variety, we randomize the parked cars and
idle pedestrians at the initialization of each scene. For each
sensor pass, we randomly select a speed for each road lane
and parameters that determine how densely the road is filled
with passing cars and the sidewalk with passing pedestrians.

We add additional sources and attach them to objects,
as if they were in a pedestrian’s backpack or in the back
seat of a car. We place two on randomly selected stationary
objects when the scene is initialized and assign a probability
that, when an object is spawned, it will have a source
attached. These additional exposure data are generated with
the intention to analyze the effect of nuisance sources;
however, this analysis has not yet been performed.

V. RESULTS

In our analysis we present several scatterplots showing
improvement over baseline BA versus θ. Each point was
generated by selecting a single set of exposure values from
the scene simulation, a background rate vector drawn at
random from empirical data, a random source intensity, and a
source spectrum. The background data is from the RadMAP
Project [1] [22] and was collected by a detection vehicle
on the roads of West Berkeley, Downtown Berkeley, South
Side, and Solano, California on May 1, 2012. The source
spectrum is shielded SNM provided by our collaborators
at Lawrence Livermore National Laboratory. When consid-
ering positional uncertainty, we apply Gaussian noise to
the horizontal coordinates of the sensor with a mean of
zero and standard deviation of three meters, in order to
approximate GPS error in urban scenes. With all these scene
parameters fixed, we sample several thousand matched filter
scores from a normal distribution1, with and without source
injected, and apply each model2 to obtain BA scores. We
then determine the decision threshold for each point that
produces the desired false positive rate and use it to obtain
the relevant true positive rate. Since the practical application
of source detection requires extremely low false positive rate,
we perform all our analyses at a target FPR of 10−3. Unless
otherwise stated, all results were obtained under all three of
the target sources of uncertainty.

A. Evaluation of Boundary in Improvement

Our derivation of the maximum improvement over base-
line BA assumes that the background rate vector is perfectly
known; however, by showing empirically the improvement of
the oracle over the baseline with both certain and uncertain
background (Fig. 3), we see that the bound still holds. Thus,
in several of the following figures, we show the theoretical
bound in lieu of the oracle results.

1We sample matched filter scores instead of spectroscopic observations
to allow completion of many thousands of tests in reasonable time. See
section III-B for details of this approximation.

2Also in the interest of simulation time, we approximate the integrals
in the marginalization model with the trapezoid rule on the range [0, 2ζ̂].
This is why we are able to show regularization penalty 0 in Fig. 4 for
an integral that would not converge if evaluated over its full domain. In
addition, we allow all models, including the baseline, to know the true
source intensity so that we need not evaluate the expensive double integral
in the marginalization model.
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Fig. 3. Oracle improvement over the baseline with certain (left) and
uncertain (right) background radiation.

B. Regularization Strength

In examining the effect of L1 regularization prior
P (ζ|I) ∝ exp(−λI |ζ−ζ̂|), we provide results for each model
under several values for the regularization penalty λ (Fig.
4). The general trend is that increasing the penalty largely
recovers losses when θ is small, i.e., the estimated param-
eterization of reality is close to ground truth; meanwhile it
slightly decreases gains when θ is large, i.e., the estimated
parameterization of reality is far from the ground truth. The
losses are significantly more pronounced in the maximization
model and occur at all but the largest θ, making it more
sensitive to regularization tuning.

In all results following, we use penalties 512 and 256 for
maximization and marginalization, respectively. These were
selected for being the lowest penalties from Fig. 4 that show
little apparent loss compared to the baseline.

C. Isolated Sources of Uncertainty

Fig. 5 shows performance of both models when all but a
single source of uncertainty are fully known. Uncertainty in
background is not shown because, in its isolation, we find
no difference between the performance of the our models
and of the baseline. This is unsurprising, since θ is always
very close to zero when only the background is uncertain.
The reduced impact of background variation can likely be
credited to the fact that both our theoretical analysis and
our experiments allow the decision threshold to be selected
individually for each scene.

When positional uncertainty is isolated, we see that both
models perform particularly well; the frequency and magni-
tude of losses versus the baseline are small, and performance
comes close to the theoretical bound.

When occlusions are isolated, since our estimation ζ̂
assumes there is no occlusion present, it is not possible that
ζ > ζ̂, so we adjust our priors accordingly. The outcome of
these tests is more nuanced. The θ from our simulated scenes
tend to cluster on the low end, likely because the relatively
fast-moving sensor causes occlusions to be fleeting and thus
more uniform across observations; in these clusters we see
that there is notable potential for loss versus the baseline
for both models. However, when θ is not so small, we do
see greater gains and less significant losses, though the exact
behavior is hard to characterize due to the scarcity of such
cases. It is clear, however, that these models handle occlusion
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Fig. 4. Performance of maximization (left) and marginalization (right) approaches under various L1 regularization strengths.
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Fig. 5. Performance of each model with sources of uncertainty in isolation. Note the difference in scale.

in isolation less effectively than positional uncertainty with
the selected regularization.

D. Comparison of the Two Models

While both models show true positive rates close to the the
theoretical bound, and thus are capable of near-oracle perfor-
mance, each has comparative advantages and disadvantages.
Marginalization offers greater robustness to regularization
tuning (see section V-B); with the selected penalties, it
also frequently shows significantly better performance on
individual scenes than maximization (Fig. 6). This may be a
result of the lower penalty needed to avoid losses over the
baseline; a lower penalty leads to greater flexibility to adapt
to uncertainty when θ is large. Maximization, however, offers
fast computation, since it is possible to derive an expression

for the maximum score over ζi, whereas it is necessary
to approximate integrals for the marginalization approach.
Fast computation offers a significant advantage when the
hypothesis space is large, a common problem when one
wishes to consider several combinations of source position,
composition, and shielding.

VI. CONCLUSION

Both our models demonstrate improved robustness to
uncertainty over baseline Bayesian Aggregation. In many
cases they demonstrate near-oracle performance and, with a
tuned L1 regularization, avoid losses at low levels of uncer-
tainty. Additionally, they offer the flexibility to incorporate
auxiliary data with minimal alteration to the model, simply
by adjusting the prior P (ζi|I).
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Fig. 6. Both models compared against the baseline (left) and directly against each other (right).

However, our models suffer from the restrictive assump-
tion that the ζi are independent given I . This complicates
any kind of regularization across observations, which could
be used to model occlusions3 [27] and account for noise
in sequential position estimates. Additionally, the marginal-
ization approach can be slow to execute depending on how
the integrals are approximated. Because of the large number
of trials required to compute true positive rates at a low
false positive rate with high confidence, we approximated
integrals on a finite domain with the trapezoid rule; however,
we expect that in practical application, adaptive methods can
be used to approximate integrals over the entire domain in
reasonable time, unless the hypothesis space is exception-
ally large (which may be the case when considering many
combinations of source position, composition, and shield-
ing). Maximization, likewise, is vulnerable to more complex
priors, which can can cause it to be difficult or impossible to
solve for the maximized score, thus necessitating a numerical
maximization and sacrificing the speed of this approach.

If speed is not an obstacle, marginalization is the prefer-
able approach due to its lesser potential for loss over the
baseline, its reduced sensitivity to regularization tuning, and
its capacity to yield a comparatively higher true positive rate
in many cases where θ is large.

A. Limitations and Future Work

Perhaps the greatest limitation of this work is its reliance
on simulated data for the evaluation of our models. Though
we attempt to adhere to the relevant physics and important
aspects of urban source detection, our simulation is ulti-
mately quite simple, and the analysis would benefit from
testing involving real sensors and sources in an urban setting.
Additionally, due to our focus on urban source detection with
vehicle-mounted sensors, we consider only one scenario,

3In our simulation we see that occlusion is indeed largely independent
across observations, likely because of the speed of the sensor causes
occlusions to be fleeting; however, the case may be different for slow-
moving or stationary sensors.

i.e., a vehicle-mounted sensor making several passes by a
stationary roadside source. While we expect this to be the
most common case in urban source detection, it may not
generalize well to all real-world scenarios.

Another limitation of our testing is that, in the interest of
representing our empirical results against the approximated
theoretical bound, we select a decision threshold individually
for each test according to a set of scores that were all
generated with the same scene parameters, including back-
ground rate vector, source intensity, position, occlusion, etc.
While this does show our models’ potential for improvement
over baseline BA, further testing is necessary to show how
they will perform in real-world applications, where decision
thresholds can not be custom-tuned to every possible scene.

Future work on this project will involve testing the model
under the remaining sources of uncertainty, namely moving
sources, nuisance sources, and anisotropic shielding. Adap-
tations to the models and theoretical analysis may be made
to account for nuisance sources, which are not yet modeled
explicitly.

Work is also underway to integrate these methods with
video cameras and computer vision techniques. This can
provide basis for moving source hypotheses through object
tracking, reduce the hypothesis space in stationary-source
problems by considering only locations with suspect objects,
and improve priors by ruling out occlusion when there is line
of sight to the suspect.
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Online Learning for Obstacle Avoidance with Powered Transfemoral
Prostheses

Max Gordon1, Nitish Thatte2, and Hartmut Geyer2

Abstract— Avoiding obstacles is a significant challenge for
amputees using transfemoral prosthetic limbs due to the lack
of knee control available to them. Powered prostheses may make
obstacle avoidance easier than passive prostheses due to their
ability to add energy to the amputees stride. Stumble recovery
systems have been implemented on such powered prosthetic
limbs that improve recovery from a failed obstacle avoidance
attempt. However, these systems only aid in recovery after
an obstacle has disrupted the users gait, and do not allow
the user to more easily avoid the initial obstacle than an
unaltered powered prosthetic limb. We designed an adaptive
system using kinematic data from the prosthetic limb to detect
obstacle avoidance responses in the prosthetic limbs user before
the portion of the stride critical to obstacle avoidance. We
then used this system to alter the prosthetic limbs planned
swing trajectory to help avoid the obstacle. The system used a
regression model to predict the user’s desired level of obstacle
response. We validated our system by comparing obstacle
avoidance success rates with and without the obstacle avoidance
response prediction.

I. INTRODUCTION

Successfully navigating around and avoiding obstacles on
the ground is an important task in everyday life, and is
necessary to maintain basic safety while performing a large
number of tasks. Amputees have significant difficulties in
safely navigating their environment, with an extremely high
annual fall rate [1]. This is made particularly challeng-
ing by current prosthesis technology. In particular, current
transfemoral prostheses, used for patients with above-knee
amputations are capable of more closely reproducing normal
human gait [2], [3]. This provides little to no control of
the knee joint, making it challenging to gain the necessary
height above the ground to clear some obstacles. Powered
prostheses can improve obstacle avoidance abilities by pro-
viding more predictable knee flexion and adding power to
the user’s gait cycle, but the underlying problem of lack of
control remains. Existing research focused on improving an
amputee’s ability to navigate obstacles is largely integrated
into stumble recovery systems [4], providing assistance after
an obstacle has caused a disruption. There has been work
in online learning systems for powered transfemoral pros-
theses for the problem of gait classification, including the
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1Max Gordon mjgordo3@ncsu.edu is with the Department of
Electrical and Computer Engineering, North Carolina State University, 890
Oval Dr, Raleigh, NC 27606, USA
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hgeyer@cs.cmu.edu are with the Robotics Institute, Carnegie Mel-
lon University, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh
PA 15213, USA

integration of electromyograph data. We propose an obstacle
avoidance system for powered prostheses using early-swing
measurements of the mechanical state of the prosthesis and
position and velocity of the user’s residual limb to determine
whether an obstacle avoidance attempt is in progress. After
detection, the system alters the behavior of the prosthesis to
aid in the avoidance of the obstacle. This system is made
robust through online learning using a forward-backward
classifier feedback system to use information from later in
the step to refine the predictive model. We also developed a
regression system to predict the appropriate obstacle avoid-
ance trajectory for the user’s avoidance response using the
obstacle avoidance backward classifier margins.

II. METHODS

A. Prosthesis

We used a powered knee and ankle prosthesis and min-
imum jerk swing controller. The mechanical features we
used for our online learning system were calculated from
data provided by the hip IMU unit of the prosthesis. The
prosthesis is shown in Figure 1.

Fig. 1. Powered Transfemoral Prosthesis

B. Feature Extraction

The same features were used for the forward classifi-
cation, backward classification, and trajectory regression,
consisting of the mean, standard deviation, minimum value,
and maximum value of 5 physical signals in the feature
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extraction window. For forward classification and regression
we used window beginning 210ms before prosthesis toe-off
and ending 90ms after, while for the backward classification
we used a window consisting of the entire swing phase
between toe-off and heelstrike.

C. Forward-Backward Classifier

To adjust the swing trajectory in time to avoid an obstacle,
an obstacle avoidance attempt must be detected early in
the swing phase. We used a linear support vector machine
classifier and features calculated in the early swing phase
to detect obstacle avoidance attempts. As user behavior
changes over time in response to changes in the environment
and prosthesis obstacle avoidance, we retrain this forward
support vector machine every 10 steps using labels from the
backward classifier. The backward classifier is another linear
support vector machine trained once for each user that uses
features extracted from the entire swing phase to label a step
as an avoidance attempt after the fact. Figure 2 provides an
overview of this system.

Fig. 2. Forward-Backward Classifier Overview

D. Target Knee Angle Regression

A prosthesis user will not always encounter obstacles of
the same height. As the obstacle avoidance response can be
disruptive to the prosthesis user, it is desirable to give the
user control over the magnitude of the prosthesis response.
We accomplished this by using the normalized backward
classifier scores of detected obstacle avoidances as a metric
for the difficulty to avoid the obstacle. The knee angle
regression was performed by a linear support vector machine,
retrained every 10 steps to target its own output for each step
modified by a proportional decay term to prevent runaway
increase and the class scores of each step. Before use, the
class scores were normalized so that scores above the 10th
percentile produced positive values and so that scores in
the 90th percentile or above would cause an angle to be
unaffected by decay at maximum flexion. This resulted in
larger commanded angles for pronounced obstacle avoidance
behavior by user.

Fig. 3. Knee Angle Regression Overview

E. Avoidance Trajectory Planning

We designed a bang-bang controller to provide maximum
obstacle clearance while staying within the prosthesis joint
limits. When an obstacle avoidance attempt is detected, the
minimum jerk swing trajectory produced by the normal
swing controller is replaced with the obstacle avoidance tra-
jectory. The target knee angle regression is used to determine
the appropriate peak angle for the knee trajectory, while the
ankle trajectory is planned to provide the same proportion
of its maximum possible clearance as the knee trajectory.
We made this simplification to speed the convergence of
the angle regression. Examples showing the minimum jerk
swing trajectory and obstacle avoidance trajectories planned
for medium and high difficulty obstacles are given in Figure
4

Fig. 4. Trajectory Planning Comparison
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III. RESULTS
A. Obstacle Avoidance Success Rate

We tested our obstacle avoidance system by placing ob-
stacles of varying size in front of a subject walking using
the prosthesis. Experiments were also conducted using the
base minimum jerk swing controller to provide a point of
comparison for the obstacle avoidance capabilities of the
system. The results of this testing are shown in Table I and
show that our online learning system significantly improves
obstacle avoidance success rates.

TABLE I
OBSTACLE AVOIDANCE SUCCESS RATES

Controller Success Rate
Minimum Jerk 37%
Adaptive Bang-Bang 89%

B. Knee Angle Regression Behavior
We also examined the behavior of the knee angle regres-

sion to determine its necessity to the obstacle avoidance
system. As increased knee flexion is disruptive to the user,
we would like to use the minimum possible response while
still guaranteeing knee clearance. As shown in Figure 5,
our system is able to ensure that high classification score
steps, associated with high user effort, obtain larger angle
regressions.

IV. DISCUSSION
We developed an online learning system to assist users

of powered transfemoral prostheses in obstacle avoidance.
Our system makes use of sensors already integrated into
most existing powered prostheses and provides the user
volitional control of the obstacle avoidance response. Our
system requires a brief supervised training period for each
user, but otherwise acts without human oversight.

In the future, we look to expand upon this work by incor-
porating electromyographic data into the obstacle avoidance
system. Other potential avenues for future work include
integration with LIDAR-based localization and mapping to
better plan trajectories around specific obstacles.

Fig. 5. Backward Classifier Score and Regression Angle
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Two-State Control Structure for 2 DOF Aerial Manipulator on 6
DOF Hexarotor*

Enrique Maytorena Guemez1 and Sebastian Scherer2

Abstract—Advances in robotics are being madde all around the
world for every possible scenario. One of the most important and
prominent branches of robotics refers to Unmanned Autonomous
Vehicles (UAVs). These UAVs can be built and programmed for
either research or commercial purposes. Nowadays, most UAVs
are more focused on the sensing stage of robotics, rather than
actuation. Nevertheless, there are multiple applications where
actuating UAVs would be useful. This paper focuses on a two
state control structure of a robotic arm on an aerial manipulator
self-designed UAV for civil inspection and general purposes. The
robotic arm control uses a Proportional-Integral-Derivative (PID)
algorithm to fulfill two major tasks: setting the end effector to a
position and maintainting that same position. For the first task,
a triangulation algorithm is used, while the second uses data
from the UAVs Pixhawk. These algorithms were able to reach
and mantain the desired position 97.47% of the run.

I. INTRODUCTION

Advances in robotics are being madde all around the
world for every possible scenario. One of the most impor-
tant and prominent branches of robotics refers to Unmanned
Autonomous Vehicles (UAVs). These UAVs can be built
and programmed for either research or commercial purposes.
Nowadays, most UAVs are more focused on the sensing
stage of robotics, rather than actuation. Nevertheless, there are
multiple applications where actuating UAVs would be useful.
Some of these applications include but are not limited to
disaster response UAVs, military UAVs and civil engineering
support UAVs. MBZIRC is one of the most important robotics
competitions around the world using UAVs, enclosing devel-
opment for the applications listed above. With the objective
of competing on the MBZIRC 2020 event and developing a
civil inspection support drone, a 6 DOF Hexarotor (Fig.1) was
designed and built at Carnegie Mellon Universitie’s Airlab.
For fulfilling these two purposes, the drone has an aerial
manipulator, which is a 3 DOF self-designed robotic parallel
arm (Fig.2). The purpose of this paper is to describe the control
structure used for this aerial manipulator, it’s main capabilities
being to point and lock the end-effector.

II. THE TWO-STATE CONTROL STRUCTURE

The control structure was divided into two states for fulfill-
ing the manipulator’s main purposes. The first state is the Free
State, destined to point the end-effector to any desired point
within reach. The second one is the Locked State, destined to
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Fig. 1. Figure 1. Picture of the Hexarotor with prototype Aerial Manipulator.

Fig. 2. Figure 2. CAD Design of Aerial Manipulator rendering.

maintain the end-efector at an absolute position after setting
it.

A. Free State

The Free State control is an closed loop control structure
that uses a numerical method of triangulation based on the
bisection method. The control structure consists on receiving
a desired position signal and then modifying the actual position
through the triangulation. The method requires to have a mesh
with at least the 8 most important reach endpoints of the arm
and the angles at which the two extension joints must be set
(Fig. 3). Then, we do the following steps:

1) Create a triangle through the following vertex criteria:
A is the current end-effector position, B is the closest
endpoint to desired position and C is the closest endpoint
to AB midpoint on desired position’s direction.

2) Find the triangle’s centroid and set the servo’s to that
position.

3) Repeat the loop.
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Fig. 3. Figure 3. Representation of triangulation method. Square is the start
point, circles represent the endpoint mesh and X is the desired position.

B. Locked State

The main objective of the Locked State is to compensate
for the UAV’s unplanned displacements while using the end-
effector for a task that requires stability. The control system
works to a closed loop control between the Pixhawk and
the Arm, since the displacement is compensated both by the
UAV’s general control and the manipulator’s. To achieve this,
the angle between the Y and Z axis displacements registered
by the Pixhawk’s IMU is calculated. Then, the position at
which each joint has to be calculated and sent to the servos.
For the calculation of the angles, the following set of equations
is used:

θv = 180−A− α− sin(Lb sin(β +B)/Lv)

Where A = Main arm’s initial position, α = Main arm’s
displacement, B = Second arm’s initial position, β = Second
arm’s displacement, Lb = Second arm’s length and Lv =
Displacement vector length.

III. RESULTS

Since both of the methods have different algorithms, the
results obtained also need to be classified between this two,
through different tests representative of the method’s purpose
fulfillment.

A. Free State Method

The method was ran with 4 distinct max-iteration quantities,
10.000 times each. Table I shows the success and error rates
of those experiments:

TABLE I
TABLE REPRESENTING THE DATA OBTAINED THROUGH 10.000

REPETITIONS OF THE NUMERIC METHOD.

Method Iterations Success Rate Average Error
4 83.78% 10.53%
12 94.23% 5.72%
36 94.94% 3.96%

360 97.47% 4.78 %

B. Locked State Method

For this method’s evaluation, the algorithm was tested with
an IMU simulation that generated random displacements and
checked whether the arm was or was not able to reach that
point before the Pixhawk’s control was able to fully react.
The manipulator simulation was able to react to displacements
from 20 to 65 mm 92.76% of the runs, out of 10,000 runs.

IV. CONCLUSIONS

Tilting the motors of a UAV to achieve 6 DOF greatly
simplifies the design and control of an aerial manipulator. With
just 2 DOF on one and by synchronizing a drone’s IMU with
the manipulators position control, it is possible to point and
lock the end-effector through relatively simple mathematical
computations. The impact this milestone has on UAVs present
and future is the possibility to use drones for various actuating
next. Nevertheless, while a 2 DOF manipulator may work for
a 6 DOF hexarotor and point-lock operations, more DOF are
needed for more complex tasks. What comes next is to escalate
these methods to higher DOF systems while maintaining or
increasing the methods simplicity and effectiveness. The next
step is to be able to add even more degrees of freedom to the
manipulator and it’s control, to be able to answer quicker and
more efficiently to the displacements, as well as to reach more
complex end-effector positions. Also, to let the manipulator
have it’s own sensor set for not needing to rely on the Pixhawk
for all the State Estimation process would be an important
addition.
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A Modular, Multi-Modal Tactile Sensor Demonstrated during Object
Grasping

Quintessa Guengerich1, Eric Markvicka2, and Carmel Majidi3

Abstract— To expand robots capabilities in social and indus-
trial environments, robots will need to adjust to unexpected
changes, and interact with a wide variety of objects. One
solution being explored is tactile sensing, which can allow a
robot to fine-tune its approach to different objects. Current
tactile sensors range from simple pressure sensor arrays to
information-dense camera arrays. However, the state-of-the-art,
data-rich sensors are often large and incur high computational,
processing, and power costs. For tactile sensors to be integrated
with robots, the sensors would ideally be small, inexpensive, and
provide rich, simply-processed data. We present a thin, small
tactile sensor that provides pressure, last-mile proximity, and
reflectivity using a barometer, short-range time-of-flight sensor,
and pulse oximeter. Computational, processing, and power costs
remain low. We demonstrate the use of the tactile sensor during
object grasping using an anthropomorphic two-finger gripper.
Our preliminary results imply the possibility of an algorithm
to automate a closed feedback loop between the sensor and a
robotic manipulator.

I. INTRODUCTION

Without tactile sensing, robots are limited in their ca-
pability to process their environment. Versatile, easily-
manufactured tactile sensors will be crucial to the smooth
integration of tactile sensing with existing and new robots in
industry and in human-robot interaction.[1],[2]

In industry, robots perform tasks based on control al-
gorithms designed for specific objects. Multi-modal tactile
sensors would allow these robots to adaptively distinguish
the temperature, texture, shape, and hardness of objects, and
use the data in control algorithms for a broader range of
objects–thus opening a world of potential for more agile
industrial robots.[3],[4] For social and assistive robotics,
where environments are unstructured and human-robot in-
teraction is likely to occur, tactile sensing provides data
to safely navigate through a chaotic environment, maxi-
mizing safe and cautious grasping, movement, and object
identification.[1],[2]

Tactile sensors are being developed to meet the needs
across this wide range of applications.[1] On the simplest end
of the spectrum, pressure sensors can provide the minimum:
binary contact information, hardness, and grasping force that
can be autonomously controlled.[5] On the other end of
the spectrum, cameras are used to gather information-rich
data: contact information, shape, texture, hardness, grasping

1Q. Guengerich is a Chemical Engineering student at
the New Mexico Institute of Mining and Technology
quintessa.guengerich@student.nmt.edu

2E. Markvicka is with the Carnegie Mellon Robotics Institute.
3C. Majidi is an Associate Professor of Mechanical Engineering at
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Fig. 1. Modular, multi-modal tactile sensor. Components from left to
right: (1) Time-of-flight sensor (2) Pressure sensor (3) Pulse oximeter (4)
Accelerometer. A quarter is shown for scale.

force, slip conditions, and fine pattern recognition.[6] Tactile
sensors that provide only contact information and grasping
force are limited in their applicability, particularly because
contact information is ”on” or ”off” until contact is made
with an object.[7] On the other hand, tactile sensors that
utilize cameras are bulky, and incur large power, compu-
tational and processing costs.[1] These parameters become
a nuisance when integrating with robotic manipulators that
must maintain dexterity and adaptability.

We present a multi-modal tactile sensor that is
information-rich, small, thin, flexible, and easily integrated
with existing models and designs. The sensor employs a
barometric pressure sensor, accelerometer, time-of-flight sen-
sor, and pulse oximeter to render contact, temperature, hard-
ness, grasping force, and absolute proximity sensing, with
the added capability of taking the vitals signs of humans. We
demonstrate the use of this sensor on a two-finger gripper
during object manipulation. Our results suggest that the
signals from the pressure sensor, time-of-flight sensor, and
pulse oximeter could be used as parameters in an autonomous
control algorithm. Further work is needed to demonstrate the
detection of slip conditions by the accelerometer.
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II. RELATED WORK

The requirements of tactile sensors as well as current
pitfalls of various designs are delineated by Kappassov et. al,
particularly for those applications in dexterous robot hands.
A tactile sensor must measure contact force and surface
properties (such as hardness, texture, and shape), and tactile
data should be used as a control parameter (force control and
shape identification).[1],[5]

Specific design requirements vary by application.[7]
Across the board, an emphasis is placed on spa-
tial resolution[1], sensitivity[9], frequency response[6][10],
hysteresis[11], wire count[12], and surface friction[1] of the
device. Robots tasked with manipulation of small, fragile
objects may sacrifice high spatial resolution for higher
sensitivity, particularly if wire count must be low. Most
other in-hand object manipulation tasks require high spatial
resolution.[1] Likewise, tactile sensors that might be used
to detect slippage must have a high frequency response,
typically sacrificing spatial resolution.[10]

Kappassov et. al also discuss a number of different sensing
types, their applications, and their advantages and disadvan-
tages. For example, barometric pressure sensors have been
used to control grasping force and distinguish textures to
a high resolution,and are listed as having high bandwidth
and sensitivity, with low resolution.[9],[8],[1] Comparatively,
optical sensors have high resolution, sensitivity, and re-
peatability, and have been used to determine a vast set
of parameters, including shear forces and texture.[6],[13]
However optical tactile sensors tend to be relatively large and
computationally expensive. Accelerometers and microphones
have been used in object detection, grasping, and placement,
but signals are prone to noise, which can be worsened by
vibrations caused by motors.[1],[14],[10]

With a wide range of sensing modalities available, the

balance between meeting specific design requirements while
maintaining feasibility can be difficult to strike. Recently,
multi-modal tactile sensors strike this balance by addressing
these needs in tandem. For instance, the BioTac tactile sensor
measures pressure, temperature and vibration to provide high
resolution data about texture.[15] Multi-modal tactile sensors
are limited by size and wire count in most applications.[1]

In contrast, the multi-modal tactile sensor presented in
this work is small and thin. The sensor can be used in a
wired configuration, requiring four wires, or in a wireless
configuration, sacrificing high frequency and risking packet
loss. The sensor detects short-range proximity, pressure, and
vibrations, with the added capability of taking the vitals signs
of humans via the implementation of a pulse oximeter. In
these object grasping experiments, pulse oximeter signals
were also observed to represent the reflectivity of each object.

III. METHOD

A. Sensor Fabrication

The tactile sensor consists of the following components:

• Barometer (BMP280, Bosch)
• Absolute orientation sensor consisting of accelerometer,

gyroscope, and magnetometer (BNO055, Bosch)
• Time-of-flight sensor (VL6180x, STMicroelectronics)
• Pulse oximeter (MAX30101, Maxim)

The components fit on a flexible board, as pictured in
Figure 2. The barometer is prepared using the method
described by Tenzer et. al [3], by first casting the barometer
in PDMS before removing the cover of the barometer. After
component placement, a thin layer of PDMS is added over
the board to maintain durability, and provide a uniform point
of contact against the sensor.

Fig. 2. (Left) Two-finger gripper. (Right) Two-finger gripper with gloves and sensor attached.
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B. Construction of a Two-Finger Gripper

A simple two-finger gripper was built, shown in Fig-
ure 2, using anthropomorphic fingers inspired by the UC
Softhand.[16] Finger endoskeletons were 3D printed from
Tough material on Form2 printers, and subsequently cast
in Vytaflex 30, a polyurethane elastomer. The fingers were
placed onto a 3D-printed mount along with a Power HD
1501 servo, and pulley-actuated using fishing line strung
through the inside of the fingers. Nitrile gloves were used
to increase the adhesion of the tactile sensors to the fingertip
using double-sided tape.

C. Object Manipulation

Object grasping tests were done using an open-loop
configuration, collecting data from the sensor while a dif-
ferent program opened and closed the gripper fingers to
a predetermined position. These tests were performed in
order to demonstrate the most basic signals that could be
received from the tactile sensor and inform future work
of an autonomously controlled feedback loop. Each object

TABLE I
OBJECT GRASPING SET

Object Unique property
Black cloth Soft and non-reflective

Sponge Soft, elastic, porous
Cardboard Non-reflective, hard, plyable
Glass slide Smooth, clear, hard

Shiny coin (quarter) Small, reflective, hard
Apple Reflective, soft, firm, large

Blueberry Dull, small, soft, round
Marshmallow Soft, elastic
Gummybear Soft, elastic, translucent, small

was placed between the fingers of the two-finger gripper
before data acquisition started. Data was acquired before,
during, and after the closing of the gripper. A control test
was performed to demonstrate the behavior of the sensors
as the fingers closed in on each other, without an object to
grasp. Figure 3 below shows the tactile sensor attached to
the gripper, in action during object grasping.

IV. RESULTS

Table 2 shows a binary interpretation of the applicability of
each signal to an eventual closed-loop algorithm. A data set
is marked as not applicable (X) if the test was inconclusive,
and marked as applicable (X) if the data set repeatable and
predictable. Time-of-flight proximity data and pulse oximeter
reflectivity data is particularly simple to process, with small
changes in position simply detected via the implementation
of a threshold value. Changes in pressure data would be less
detectable. However, three object grasping tasks resulted in
steep pressure changes, possibly detectable by a threshold
value, and are marked as possible (?).

Fig. 3. Grasping experiments were performed to characterize the limits
of the tactile sensor. From top left, clockwise: cardboard, sponge, quarter,
apple, gummybear, marshmallow, blueberry, black cloth.

TABLE II
APPLICABILITY OF EACH DATA SET TO A CLOSED LOOP ALGORITHM

Object Pressure ToF Pulse Ox.
Black cloth X X X

Sponge X X X
Cardboard X X X
Glass slide X X X

Shiny coin (quarter) ? X X
Apple X X X

Blueberry ? X X
Marshmallow ? X X
Gummybear X X X

A. Pressure Sensor Data

Pressure sensor data indicated that for each object, pres-
sure decreased upon contact with the object. This response
is the inverse of what we expected to find: an increase in
pressure as contact is made and force increases. Furthermore,
the baseline pressure reading for the control read a number
much higher than atmospheric pressure. We conclude that
the baseline pressure of this sensor is modified by strain on
the PDMS elastomer, residual from the curing process.

However, the pressure data was not inconclusive. The
largest pressure differentials occurred during the manipula-
tion of the marshmallow and the blueberry, and the smallest
pressure differential occurred during manipulation of a piece
of cardboard. We conclude that flat objects distribute a
load across the face of the tactile sensor, while rounded
faces load pressure onto a tangent point. One exception to
this observation occurs during the manipulation of a coin,
where we expected and observed a high pressure differential
because the coin is non-deformable.

B. Time-of-Flight Sensor Data

Time-of-flight sensor data indicated out-of-range data
(>200 mm) until the sensor came across the face of the
object. At that point, range data decreased to it’s baseline
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Fig. 4. Pressure differential during each object manipulation experiment.
Units in Pascals.

value, flatlined while the gripper was closed, increased,
and indicated out-of-range data again. This is the predicted
outcome of the sensor when used in a configuration other
than parallel-plate gripping, during which the sensor would
always be parallel to a surface (thus never indicating out-of-
range data). Although out-of-range data points would have to
be accounted for, a simple closed-loop algorithm to guide the
gripper closed could easily be structured based on proximity
data.

C. Pulse Oximetry Data

Pulse oximetry data exhibited an inverse signal to the
time-of-flight signal: as the sensor approached each object,
reflection of IR light and red light increased until the object
was gripped, at which point the signal stayed the same until
the object was released again. Black cloth did not reflect any
red light, but the sponge and marshmallow reflected large
amounts of red light. There was a detectable change in IR
light for every object, easily detectable by a simple heuristic
closed-loop algorithm.

V. CONCLUSIONS

This preliminary data implies that a closed loop algorithm
will be possible to implement on this sensor and gripper to-
gether. Time-of-flight proximity data indicated a repeatable,
predictable change that can be interpreted by a closed-loop
algorithm to control approach to an object. Upon contact,
pressure data can be used to control grasping.

However, pressure experiments will need to be repeated
with a pressure sensor that’s baseline exists at atmospheric
pressure, to confirm the magnitude and behavior of the
pressure sensor upon contact with different objects.

Future work includes building a new sensor and repeating
these tests, as well as analyzing results from slip condition
detection testing. We would also like to repeat these tests on a
dexterous 5-finger robotic hand. Finally, the implementation
of a closed-loop algorithm will be crucial in the characteri-
zation of this sensor.
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Trajectory Prediction of a Fixed-Wing UAV with
Sequence-to-Sequence RNNs

Adarsh Karnati1 and Sebastian Scherer2

Abstract—The growing use of Unmanned Aerial Vehicles
(UAVs) has prompted extensive research into risk-aware motion
planning. In particular, UAVs require onboard contingency plan-
ners, which safely land the robot in emergency situations. To
make intelligent decisions, contingency planners must be aware
of the UAVs current dynamics, which may change due to weather
or propulsion failures. Current methods rely on fixed models,
which can be simplistic or make strong assumptions, and can fail
to capture these changes in dynamics. We address this issue by
measuring risk through a sequence-to-sequence recurrent neural
network (RNN). The model is made of an encoder RNN, which
takes in a sequence of observations in real time to build an
internal state of the UAVs modified dynamics. Then, a decoder
RNN uses the encoder's internal state and a proposal path to
produce a distribution of states relative to this proposed path.
We compare the sequence-to-sequence model with a Sequential
Monte Carlo method in scenarios with varying wind conditions
for a simulated fixed-wing UAV.

Index Terms—unmanned aerial vehicle, contingency planner,
recurrent neural network, sequence-to-sequence, encoder, de-
coder

I. INTRODUCTION

Since the birth of modern robotics, the potential of au-
tonomous vehicles for use in every-day life has moved closer
to reality. Unmanned Aerial Vehicles (UAVs), for example,
have made forays in agriculture, search-and-rescue and de-
livery scenarios [8]. Fixed-wing UAVs, specifically, present
enormous opportunity in that they can reach higher speeds
and fly more efficiently than their rotorcraft counterparts [7].

However, the limiting factor in the deployment of aerial
drones is the ability to ensure safe operation around people and
infrastructure. The cornerstone of UAV safety is contingency
planning [9] intelligent decision making in the event of a
necessary landing. The primary role of a contingency planner
is to quickly find a feasible (obstacle-free) path to a low risk
terminal state [16]. To this end, contingency planning is con-
cerned with measuring risk and producing safety guarantees
for proposed paths.

Risk in robotics motion planning requires an understanding
of the robot workspace as well as transition uncertainty [7].
Probabilistic modeling of risk often considers the tracking
distribution, which is the distribution over actual trajectories
the robot could realize while attempting to follow a proposed
reference path. Using functions of the tracking distribution of
a candidate path to optimize on [3] or rank paths allows a
planner to iteratively find low risk paths.

NASA UAS Contingency Grant
1University of California, Berkeley: akarnati@berkeley.edu
2Robotics Institute, Carnegie Mellon University: basti@andrew.cmu.edu

Fig. 1. Example of a tracking distribution of a fixed wing UAV coinciding
with a high risk obstacle (house)

However, representing and operating on the tracking dis-
tribution of a robot of several dimensions presents high
computational overhead. Moreover, tracking distributions are
dependent on several factors such as a reference path, world
conditions and maneuver capabilities of the robot. Some of
these conditions are unknown, partially known or can only be
observed indirectly in real-time.

These constraints generally lead roboticists to approximate
the system and tracking distribution with parametric (model-
based) techniques, in which an underlying probabilistic model
is assumed and reasoned on [1]. One of the most celebrated
classes of parametric estimators is the Sequential Monte Carlo
(SMC) family. In SMC approaches, particles representing
possible robot states are propagated through the underlying dy-
namics model. However, these models often are too simplistic
or make strong assumptions, producing poor predictions. Also,
power failures aboard the robot, may change the dynamics
model completely, e.g. the dynamics of an engine-enabled
fixed-wing UAV is far different from that of a gliding one.
Model-based algorithms may not be able to rectify these
changes through simple parameter estimation.

This study tackles these issues by proposing a non-
parametric, data-driven approach to the trajectory distribution
prediction problem for use in a contingency planner. The
method relies on a recurrent neural network (RNN), sequence-
to-sequence architecture. RNNs are feedforward neural net-
works that accommodate inputs of variable length or temporal
dependencies. Sequence-to-sequence models make use of two
RNNs, an encoder, which takes a sequence of inputs, and a
decoder, which uses the internal state of the encoder RNN
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to produce an output sequence. At a high level, the authors
approach is to use the encoder RNN to build an implicit
model of the worlds dynamics by inputting a sequence of
observations. Then the decoder uses this model to produce
the tracking distribution relative to a candidate path.

The main contributions of this paper are summarized below:

• Formulation of risk assessment in terms of the tracking
distribution

• A sequence-to-sequence architecture for predicting the
tracking distribution from real time observations

• Performance comparison of the sequence-to-sequence
model with a common SMC approach on a simulated
dataset of a fixed wing UAV

II. RELATED WORK

Our work is primarily related to contingency path plan-
ning and subsequent tracking in uncertain environments. The
following section is split into two parts. First, we discuss
primary facets of contingency planning, specifically optimality,
computation speed and safety guarantees. Then, we describe
risk analysis and its role as the foundation of contingency
planners.

A. Contingency Planning

Optimal path finding is producing the shortest path to
a goal based on some cost function. It is most commonly
solved with search-based methods over a graph of robot
states [13]. However, basic implementations of A*, D* and
other shortest-path algorithms suffer from large computation
overhead to be effective in high-dimension state and action
spaces [12]. Dubins paths [11] have been used extensively
for fast and optimal path planning of non-holonomic systems.
However, Dubins planners cannot consider obstacles and may
not produce trackable paths in uncertain systems [12].

Sampling based planners have become popular in recent
years for their ability to quickly find feasible paths in environ-
ments with obstacles [13]. However, the speed of the algorithm
largely depends on heuristics or scoring functions similar to
the search methods above [12]. Some variants, such as RRT*,
and RRG*, also provide asymptotic optimality guarantees [6].
Although these algorithms have been used successfully in
many motion planning scenarios, they may not provide safely
trackable paths for systems with complicated dynamics and
uncertainty [5].

Online trajectory optimizers, such as CHOMP, TrajOpt
and STOMP, have also been developed recently, and attempt
to minimize an objective function over candidate paths [3],
[10].These candidate paths are often produced using the afore-
mentioned sampling methods and allow for explicit incorpora-
tion of risk, via the objective function [3]. This flexibility also
means that design of the objective function is often handmade,
which can incorporate bias and fail to capture subtleties of the
system.

B. Risk Modeling

As mentioned in the previous section, contingency planning
is based on an underlying score function. This function is a
representation of risk and has been defined several ways in
literature. The most basic of risk modeling is the stopping
distance between a robot and a sensed obstacle [2]. Stopping
distance is an example of a conservative model that acts on
worst case scenarios. Robots that use conservative models do
not exploit the full capabilities of their dynamics, which can
cause greater danger in time-critical situations. Another ex-
ample of a conservative risk modeling is reachability analysis,
which is the prediction of whether a robot will collide with an
obstacle. Previously a computation process suffering from the
curse of dimensionality, reachability was made possible to run
online in [4]. However, reachability analysis is fundamentally
a binary measure of risk and is not the most informative
descriptor.

Other risk models reason on expected scenarios, rather than
worst case analysis. [2] features a selection of emergency ma-
neuvers that guarantee safety in expected collision scenarios.
However, this library was constructed for a quadrotor UAV,
and its maneuvers consist of hovering patterns, which cannot
be executed by a fixed-wing aircraft. Additionally, [13] uses a
Long Short-Term Memory (LSTM) RNN to quickly estimate a
low-risk path for a quadcopter. This model-free approach relies
on prior knowledge of the environments dynamics, which is a
strong assumption to make in an emergency scenario.

III. PROBLEM FORMULATION

A. State Space Model

The state space model of the fixed-wing UAV is described
by table 1 and equation 1, [14]:

Table 1: State space variables
Name Description
x Inertial north position of UAV (north-east-down)
y Inertial east position of UAV (north-east-down)
z Inertial down position of UAV (north-east-down)
u Body frame velocity along roll axis
v Body frame velocity along pitch axis
w Body frame velocity along yaw axis
φ Roll
θ Pitch
ψ Yaw
p Roll rate
q Pitch rate
r Yaw rate

fx, fy, fz External forces along roll, pitch and yaw axes
J UAV inertia matrix
mb External moments about roll, pitch and yaw axes
wc Constant wind vector in world frame
wg Turbulence vector in body frame
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We model atmospheric disturbances as the sum of constant
wind and turbulence. Both variables fully define the vehicle
airspeed, angle of attack, and side-slip angle used to derive
the external forces (see [14] pg. 59).
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wg is modeled using the Dryden gust filter [14], which
maps white noise to body velocities. Where σu, σv, σw and
Lu, Lv, Lw are intensity hyperparameters and spatial wave-
lengths, respectively, along the vehicle frame axes. Va is
vehicle airspeed.

Our linear observation model is defined in equation 6.

y =Bx + v

v ∼N (0,Σv)
(6)

B. Trajectory Nomenclature

We define a reference trajectory ζ(t)ref as a sequence of
N evenly spaced robot states (x1, ..., xN ), each of dimension
d for some duration T .

ζref (t) := (x1, ..., xN ) (7)

Let ζ(i)act(t) be an actual trajectory; a random realization
of a ζact(t) from the true tracking distribution, ptrue, given a
world, W , and control inputs, U , of the robot. W is used to
represent world uncertainty. A concrete example for U could
be the roll, pitch, yaw and thrust on a fixed-wing UAV.

ζact(t) :=(X1, ..., XN ) ∼ ptrue(·|W,U)

ζ
(i)
act(t) :=(X1 = x1, ..., XN = xn)

(8)

A model-based representation of W and U , assumes that
ζact can be fully represented by a first-order differential
equation with parameters derived from the world and and
control sets.

ẋ =f(x,u,w)

u ∼U
w ∼W

(9)

A model-free approach, however, relies exclusively on
observations to represent the environment:

ζobs(t) := (Y1, ..., Yk) (10)

IV. APPROACH

A. Distribution Representation

In this study, ptrue(·|W,U) must be approximated via
simulation in order to be used as training labels. First, for
computation reasons, we describe the full trajectory distri-
bution as a vector of N conditional distributions, which we
denote below, dropping the conditionals for clarity:

ptrue(·|W,U) :=
[
p1(·), ..., pN (·)

]
(11)

Next, each distribution is discretized to a k-dimension his-
togram, k ≤ d, of numbered voxels α. Visually, the histogram
is centered on the reference state at each timestep, which
reduces the required size of the grid. This histogram allows
us to approximate the true distribution via a normalized sum
of the occupied voxels over a sample of M,M >> 1, actual
trajectories.

pτ (αj) ≈
1

M

M∑
i

I{
∫
αj

ζ
(i)
act(τ)dx > 0} := Pτ (αj) (12)

The above formula is simply an unbiased estimator for
E[g(ζ

(i)
act(τ))] where g(·) is the indicator function. In other

words, we are trying to estimate the expectation of every
voxel of the discretized distribution, which is guaranteed to
converge almost surely as M −→ ∞, by the Strong Law of
Large Numbers.

Now we define the prediction of the sequence-to-sequence
model as p̂t(·|ζref (t), ζobs(t), θ), the neural net weights pa-
rameterized by θ. The prediction can then be defined as an
optimization problem, which can be solved through gradient
methods.

θ̂ = argmin
N∑
i

DKL(Pi||p̂i) (13)

Where DKL(p||q) is the Kullback-Leibler Divergence, a
common premetric used to relate the information difference
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of two distributions. The DKL(p||q) will also be used as an
accuracy measure.

DKL(p||q) :=
∑
x

p(x)log(
p(x)

q(x)
) (14)

B. Data Generation

The model simulator plans paths using a x-y-z-heading
Dubins path planner, then filters this path by simulating
tracking the path, in perfect conditions, with a Pure Pursuit
follower and PID loop closure control [14]. This dynamically
filtered path serves as the reference trajectory defined above.
The simulation is then run with the same Pure Pursuit follower
tracking the reference trajectory, but now incorporating atmo-
spheric disturbances. This wind is modeled as described in the
Problem Formulation section. Specifically, wc is drawn at the
beginning of a simulation, and remains constant in speed and
direction for the entirety of the simulation. Whereas the wg is
drawn every timestep of the simulation.

The dataset consists of ∼4000 reference Dubins trajec-
tories, with terminal x-y-z-θ states in randomly chosen in
[−150, 150]2×[−25, 25]. This region of goal states was chosen
based on the simulated UAV's physical parameters and to keep
trajectories relatively short (∼60 seconds). In planning the
reference trajectories, a constant target speed of 20 m/s is
used. The reference trajectories are randomly and evenly split
into four groups, each associated with weather conditions:
low-wind-low-turbulence (LWLT), low-wind-high-turbulence
(LWHT), high-wind-low-turbulence (HWLT) and high-wind-
high-turbulence (HWHT). The weather conditions are used
in running the simulations of trajectory tracking, and the
parameters of these conditions are summarized in Table 2.

For each reference trajectory, 200 simulations are run at a
timestep resolution of 0.01 seconds and downsampled with an
interval of 1 second. These simulations were used to build
histogram approximations of the true tracking distribution,
with a bin size of 2 meters3 and range of (-30,30)3 meters.
The simulations were run on 4 Pascal Titan X processors in
parallel.

Table 2: Weather condition parameters
wc wg

LWLT |wc| ∼ N (1, 1)ms Lu, Lv = 200m,Lw = 50m
∠wc ∼ Uni[0, 2π) σu, σv = 1.06ms , σw = 0.7ms

LWHT |wc| ∼ N (1, 1)ms Lu, Lv = 200m,Lw = 50m
∠wc ∼ Uni[0, 2π) σu, σv = 2.12ms , σw = 1.4ms

HWLT |wc| ∼ N (2, 1)ms Lu, Lv = 200m,Lw = 50m
∠wc ∼ Uni[0, 2π) σu, σv = 1.06ms , σw = 0.7ms

HWHT |wc| ∼ N (2, 1)ms Lu, Lv = 200m,Lw = 50m
∠wc ∼ Uni[0, 2π) σu, σv = 2.12ms , σw = 1.4ms

C. Sequence-to-Sequence Model

The architecture for the model can be seen in Figure 2. The
model was trained end-to-end using back-propagation in time.
Provided a sequence of observations, the model produced a

Fig. 2. Sequence-to-sequence architecture used in the experiments

sequence output scored with the KL-Divergence premetric.The
RNN was not provided any information regarding the weather
conditions of the trajectory it was predicting, other than the
observations. This network was trained on roughly 75% of the
dataset and tested on the remaining 25%.

D. Unscented Kalman Filter Baseline

The sequence-to-sequence model was compared to an Un-
scented Kalman Filter (UKF) on the same test set of trajecto-
ries. The UKF uses the Expectation-Maximization algorithm
to estimate the variance matrix of additive, zero-mean pro-
cess noise, which is assumed as the model of environmental
disturbances.

V. RESULTS

Figures 3 shows the predicted distributions provided by the
UKF after performing parameter estimation with a previous
trajectory of observations. Figures 3 also shows the predicted
distributions provided by the sequence-to-sequence model with
the same number of observations. Qualitatively, it is clear that
the variance of the UKF grows quite rapidly after the progres-
sion of a turn. Additionally, the UKF's predicted distributions
are Gaussian in distribution and biased towards the reference
path rather than the mean of the actual trajectories.

In contrast, the predicted distributions of the sequence-
to-sequence model are much more tightly clustered around
the true tracking distribution. The shapes of the sequence-to-
sequence predictions are also noticeably more similar to the
true distributions', suggesting a less biased estimate.

Quantitatively, the KL-Divergence evaluation of the UKF
vs. the sequence-to-sequence model is summarized in Table
3. We see that our RNN model produces a distribution that is
around 6 bits closer to the true tracking distribution than the
UKF, for all weather conditions. These results suggest that the
model is able to differentiated between weather conditions and
use this information to provide better predictions. Moreover,
the sequence-to-sequence model outperforms the UKF without
an explicit definition of a dynamics model.
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Table 3: DKL Between Predictions and Ground Truth (bits)
UKF Sequence-to-Sequence

LWLT 21.260 14.600
LWHT 22.437 16.714
HWLT 24.950 17.390
HWHT 25.029 19.560

VI. CONCLUSION AND FUTURE WORK

In this work we presented a prediction method for quanti-
fying risk in emergency landing scenarios. We formulated an
understanding of risk via the tracking distribution, a construct
that many model-based prediction methods fail to capture. Our
model-free proposal, the sequence-to-sequence RNN, outper-
formed a model-based counterpart in predicting the tracking
distribution of four different weather conditions.

For the future, the model can be improved by changing
the underlying representation of the true tracking distribution.
Instead of a sparse histogram that is currently being used, a
set of polynomials may provide a richer and lower dimension
approximation. The sequence-to-sequence networks should
also be compared to more powerful density estimators such as
a Gaussian Process filter. Additionally, evaluating the baseline
and our model with more physically intuitive metrics, such
as cross-track error may be beneficial. Finally, extending the
dataset to include a wider diversity of weather conditions as
well as propulsion failures would provide more insight into
our model's capabilities.
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Fig. 3. (Top) predicted distributions of UKF in red vs ground truth in blue. (Bottom) predicted distributions of sequence-to-sequence in red vs ground truth
in blue
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Multi-UAV Persistent Coverage for Multiple Target Visitation
Frequencies

Tushar Kusnur1,∗

Abstract— In this paper, we focus on the problem of persistent
monitoring, cast as a coverage problem for multiple unmanned
aerial vehicles in a discrete environment. We also account for
kinodynamic constraints and resource constraints on the UAVs.
With multiple coverage zones of various priorities, there are
multiple objectives to be optimized for viz. area covered, travel
time, travel distance, etc. Our goal is to develop a lattice-based
plan that allows us to compute bounded suboptimal results in a
reasonable time with re-planning and partial-plan improvement
capabilities. We would also like to prioritize over the multiple
objectives to optimize. We will demonstrate our method with
the help of a custom visualization tool developed to replicate
this scenario specifically as accurately as possible.

I. INTRODUCTION

Long-term and persistent surveillance and monitoring
tasks can be too risky or repetitive for humans to perform.
Thus, it is common for robots to be deployed for these
purposes. In scenarios that entail surveillance or monitoring
in a disaster zone or military operation zone, multi-robot
teams can cooperate to speed up the process of setting
up an infrastructure and deploying a fleet of agents to
perform targeted sensing for the entire environment. If the
area to be monitored is significantly large, a small number
of robots cannot efficiently cover all the desired locations
simultaneously. Also, in such a scenario, one might want
to go back to certain regions multiple times to check for
any developments or threats. We define our problem as one
of persistent coverage for a fleet of agents to constantly
revisit targeted locations in an environment with multiple,
pre-defined visitation frequencies. Additionally, we must
incorporate possibilities of drained resources and consequent
departure of agents from the scene for recharging purposes,
kinodynamic constraints, and significantly large environ-
ments in our framework. We demonstrate our method on a
simulation via a custom visualization framework and deploy
it on Unmanned Aerial Vehicles (UAVs), although the basic
algorithmic concepts can be applied to more platforms.

Numerous tasks like surveillance, mapping, and mail
delivery require visiting a series of targets or points or
traversing parts of a large environment to accomplish a goal.
Many times this goal is to efficiently cover the entire area
by visiting all such points or parts of the environment. This
task is also referred to as Coverage Path Planning (CPP). The
survey on CPP for Robotics, [1], by Galceran and Carreras

*The author was supported by the Federation of Indian Chambers of
Commerce and Industry (FICCI).

1Tushar Kusnur is with the Robotics Institute, Carnegie Mellon Uni-
versity, Pittsburgh, PA, U.S.A. kusnur tushar at gmail dot
com

covers most of the traditional methods of solving the general
CPP. This task is integral to many robotic applications,
such as vacuum cleaning robots [2], painter robots [3], lawn
mowers [4], and inspection of complex underwater structures
[5], just to name a few. Early methods for solving the Cover-
age Path Planning problem use classical cell decomposition
(exact and approximate) and also coverage approaches based
on detection of landmarks. [6] presents coverage algorithms
for environments that can be represented as graphs for single
and multiple robots in a system.

Given the environment beforehand, with information about
the targeted regions and their visitation frequencies, we can
approximate travel times between them via information about
vehicles’ sizes, velocities, and some initial pre-planning.
Having done this, it is natural to think of this coverage
problem as a form of the graph problem of optimal node
visitation. This leads us to the classical Traveling Salesman
Problem (TSP). Though the TSP solution is an optimal patrol
for one agent, it can be used as a basis for solving the
problem for multiple agents by either distributing the agents
evenly among the solution, or by dividing the graph into
subgraphs and solving multiple simultaneous TSPs.

[7] use a variant of a frontier-based approach with multiple
objective utility functions for the problem of exploring an
environment. They incorporate soft constraints on maximum
and minimum inter-robot distances and a heading bias.

[8], [9] address the Multi-Robot Persistent Coverage Prob-
lem (MRPCP) as a variant of the Vehicle Routing Problem
(VRP). For VRP and its variants, one must find the optimal
routing strategy that allows a fleet of vehicles to visit a set
of targets while trying to minimize some objective, which
usually takes the form of travel distance. They consider
an objective function that minimizes the maximum period
of tours, wherein the solutions include a path that visits
all targets once and then revisits the first target. The key
distinction of MRPCP from traditional VRP is that the robots
have a limited fuel capacity and operate on a time scale
much longer than the capacity allows. The VRP at its most
basic is NP-hard. Therefore, solutions in practice rely on
heuristic methods to provide suboptimal routes or formulate
the problem as a Mixed Integer Program (MIP) and solve to
optimality using standard Branch-and-Bound techniques.

In our work, we attempt to modify the frontier-based
exploration method to a frontier-based coverage method and
defining our objectives based on the visitation frequencies
of the targets in the environment, as well as other quantities
like traversal cost, energy/fuel consumption, and exit of one
of the UAVs in the middle of a plan for recharging/refueling.
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We demonstrate our method via visualization and debugging
on a custom-made Graphical User Interface using the Qt
framework and also by comparing it with existing algorithms
that are applicable to our problem.

II. THE PROBLEM

Consider an m×n grid representing a discrete 2D environ-
ment that needs to be efficiently monitored by N UAVs. Each
cell of the grid contains a number determining the ‘revisit
time’ of that cell. A revisit time ri,j implies that cell (i, j)
should be revisited by a UAV after ri,j time steps from now.
The problem is to plan optimal trajectories for the N UAVs
to cover the environment effectively. We define optimality
by the notion of minimizing a cost function that represents
the overall cost of the system at a particular time step.

Types of cells: A cell is ‘good’ if it the UAVs have not
‘violated’ its revisiting requirements, i.e., it has ri,j > 0 at
the current time step. A cell is ‘bad’ otherwise. Of the good
cells, the lower its current revisit time, the more ‘critical’ it
is. For visualization, we assign a particular color for each
revisit time value. Bad cells are colored red and good cells
are colored shades of blue, where a darker shade indicates a
more critical cell.

Fig. 1. Environment representation example

Since we need to efficiently cover this environment while
satisfying these constraints, there are multiple objectives we
need to satisfy:

1) Travel to a particular cell via an optimal path.
2) Have minimum number of ‘bad’ cells at any point of

time in the environment.
3) Ensure that each UAV is assigned the best cell that

will help satisfy the two aforementioned objectives.

In this way we model the state space as one with 5
degrees of freedom viz. (x, y, θ, v, t) with N UAVs. This
could potentially lead to a joint state space of 5N degrees
of freedom.

Fig. 2. Example of coverage environment

III. MOTION PRIMITIVES

In problems where analytic representations are not conve-
nient, a useful step in problem formulation is to establish a
sampling policy in order to avoid attempting to search the
entire continuum. Beneficial sampling policies include those
that cover a larger volume of the state space with fewer
samples. It is natural to extend this concept from values
of state space to paths to functions. Similar to the state
space, the continuum of motions that are executable by the
system can also be sampled to make computation tractable.
In our case, we use a simple regular lattice aligning with the
environment’s (x, y) grid locations.

Assuming lattice state discretization outlined earlier, mo-
tion primitives are defined here to be the controls that connect
roadmap vertices (states) and that are feasible motions.
Motion primitives developed in such a way as to connect the
vertices of the roadmap, sampled as a lattice in state space.
By sampling regularly, the connectivity of this roadmap is
completely specified with its control set. Any systematic
graph search algorithm can be utilized to find the shortest
path in the state lattice graph.

Given various restrictions on the UAV’s linear acceler-
ation, linear velocity, and angular velocity, we carefully
devise kinodynamically feasible motion primitives assuming
double integrator dynamics viz. ẋt+1 = ẋt + ẍt · ∆t. We
assume discrete velocity values (2, 4, 6, 8 m/s), a trapezoidal
angular velocity profile, a linear linear velocity profile, and
a maximum angular velocity of 6 degrees per second. The
advantage of assuming a trapezoidal velocity profile is to
devise motion primitives that have a zero start and end
angular velocity. In this way, we do not have to consider
angular velocity in the state space.

IV. ALGORITHM

Our approach to this problem is two-fold. The first step is,
given a particular scene in our environment (which consists
of current revisit times for every cell and current UAV poses),
to determine the best possible immediate goal locations on
the frontier for each UAV. In this step, we account for three
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Fig. 3. Motion primitives precomputed offline

different restrictions: (1) The UAVs cannot fly into certain
pre-designated no-fly zones, (2) We wish to select a location
that ensures coverage of the most number of bad (and urgent)
cells, and (3) We would like to minimize on travel time or
travel distance. Considering travel distance for the last point,
we perform this goal assignment via a multi-goal search for
potential goals. For each UAV, we perform Algorithm 1.

Data: Discrete environment with M frontier cells
marked, N UAV locations.

Result: Target goal (xi, yi) for each UAV i
for i← 1 to M do

for j ← 2 to w do
Connect each cell j on the frontier to a single
imaginary goal G;

Assign a cost proportional to the cell’s revisit
time to the edge connecting to the imaginary
goal;

end
Perform a 2D (x, y) search for each UAV i with its
location as the start node and G as the goal node.

end
Algorithm 1: Multiple UAV Goal Assignment

Fig. 4. Goal assignment

In Algorithm 1, we perform a simple multiple-goal search
to determine the next location each UAV should plan a path
to. We first identify which cells are on the coverage frontier.

Data: Discrete environment with N UAV-goal pairs.
Result: Kinodynamically feasible persistent coverage

plans.
Assign a random priority i to each UAV;
for i← 1 to N do

if i == 1 then
continue;

else
Consider (i− 1)-th UAV as a dynamic obstacle;

end
Plan a kinodynamically feasible path using
precomputed motion primitives;

end
Algorithm 2: Coverage planner

Then we connect each frontier cell to an imaginary goal G
via an imaginary edge, the cost of which is proportional to
the current revisit time of that frontier cell. We then perform
a 2D search from the UAV’s current location to the imaginary
goal. The effect of this is that the path chosen will determine
which frontier cell the UAV should move to. The effect of
adding the imaginary edges ensures that we optimize for
the “best” frontier cell we would like the UAV to reach,
and the search accounts for minimizing travel distance. Since
the imaginary edge costs are proportional to the cell’s revisit
time, we can choose a proportionality constant depending on
how much importance we want to give revisit time over the
UAV’s distance to the frontier cell.

In Algorithm 2, we implement prioritized planning. De-
coupled approaches like this first design motions for the
robots while ignoring any inter-robot interactions. Once these
interactions are considered, the choices available to each
robot are already constrained by the designed motions. If
a problem arises, these approaches are typically unable to
reverse their commitments. Therefore, completeness is lost.
Nevertheless, decoupled approaches are quite practical, and
in some cases completeness can be recovered. In our baseline
implementation, we use a simple weighted-A* algorithm to
plan feasible paths using the offline-precomputed motion
primitives.

Fig. 5. Weighted-A* planner with expanded states for different epsilon
values
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V. CUSTOM VISUALIZATION

We also present the custom visualization tool written using
the Qt SDK for graphics. Grid cell colors, UAV positions,
headings, sensor footprints can be updated at each time step
as “graphics items” in the Qt graphics framework.

Fig. 6. Sensor footprint approximated to a set of cells covered at any point
of time in the environment.

Fig. 7. Visualization framework

VI. SUMMARY AND FUTURE WORK

We present a baseline implementation of a multi-UAV
coverage planner that produces kinodynamically feasible
paths for multiple coverage zones. Future work involves
learning from experience to produce better strategies for path
planning.
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Segmentation of Humans from LiDAR Point Clouds Using Visual Pose
Estimation

Gaini Kussainova1, Luis E. Navarro-Serment2, Martial Hebert2

Abstract— Human segmentation from point clouds usually
requires high computational budgets that result in slow process-
ing speeds. This paper proposes an algorithm for fast, reliable
and computationally inexpensive segmentation of humans from
point clouds that is suitable for common robot configurations
comprising a camera and a 3D LiDAR. The algorithm takes
advantage of the detections from a visual pose estimation
process that detects key points from the human body–like limbs
and facial key points–from images and uses them to identify
and cluster the points in the cloud that represent humans. The
algorithm consists of two basic steps. First, the 3D points from
the cloud are projected onto the camera’s image plane and
then filtered according to their proximity to the regions in the
image labeled as humans by the pose estimation process. Then,
the filtered 2D body coordinates are projected back to the 3D
space and further processed, adding or discarding other points
nearby depending on their geometrical relationship with the
original set.

The proposed approach relies heavily on state-of-the-art
algorithms for visual detection of key points from the human
body, and does not require significant additional computational
budget, making it suitable for real-time operation and for
operation with sparse point cloud data.

I. INTRODUCTION

Accurate automatic human segmentation is an important
problem in computer vision due to its applicability to differ-
ent problems, such as video surveillance, understanding of
crowd behavior, motion tracking, and activity recognition.
It is particularly relevant for socially-aware robots because
they must interact, navigate, and act in spaces occupied by
people.

Achieving accurate human segmentation for robotic appli-
cations is not a trivial task due to occlusions, changes in the
point of view, moving objects, changes in illumination, and
others [1].

There is a significant number of human segmentation algo-
rithms for both images and point clouds. Image segmentation
algorithms have been used extensively in all of their forms:
clustering, region growing, and image-domain techniques.
Although they provide good segmentation results, they typ-
ically do not provide a complete description of the spatial
layout of objects [2]. Conversely, LiDAR sensors provide
the ability to directly analyze shapes, sizes, and distances in
Euclidean space. For this reason, it is desirable to implement

1Gaini Kussainova is a research scholar of Robotics Institute, Carnegie-
Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA
gaini.kussainova at nu.edu.kz

2Luis E. Navarro-Serment and Martial Hebert are a project sci-
entist and Faculty (respectively) at the Robotics Institute, Carnegie-
Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA
lenscmu@ri.cmu.edu, hebert@ri.cmu.edu

perception systems based on 3D point clouds. However, the
robust and accurate detection of humans from point clouds is
difficult, mainly because the number of points representing
a person decreases with the distance from the sensor, and
consequently reduces the information available to establish
an accurate identification. This problem is compounded by
the use of low-resolution scanners, which have become more
prevalent because of their lower cost and smaller size.

In this work, we propose a fast, reliable, and computa-
tionally inexpensive algorithm for human segmentation from
point clouds, which was motivated by our application on
a mobile ground robot that operates among people. The
algorithm is able to accurately segment humans without
the use of appearance-based descriptors. To minimize the
computing budget required, the algorithm takes advantage of
the detections generated by a visual pose estimation module,
which uses a monocular camera. These detections are sets of
key points that indicate the locations in the image of human
body joints. This module consumes the largest part of the
computing budget; our algorithm benefits from this effort
and performs local searches on very specific areas in the
point cloud guided by the pose detections. These searches
are computationally inexpensive and allows the segmentation
algorithm to piggyback on the pose estimation system with
little additional processing time.

The paper is organized as follows: the next section presents
the related work describing segmentation techniques overall
and human segmentation methods. Then, section III contains
the detailed explanation of our approach. Section IV presents
the evaluation of our algorithm and section V concludes the
paper and discusses the future modifications to the algorithm.

II. RELATED WORK

Although image segmentation is an important task in
computer vision, and it has been implemented in multiple
applications [4], segmentation techniques from monocular
images need to perform elaborated processing to generate
geometric descriptions in 3D that can improve their
performance significantly. Conversely, 3D point clouds
directly provide valuable geometric information, such
as location and 3D distances, that simplify the task of
differentiating individual objects. However, point cloud
segmentation is not a trivial task due to measurement
noise, sparseness and uneven density in the data. Point
cloud segmentation can be edge-based, region-based and
model-based algorithms. Edge-based algorithms analyze
the shape to find the boundary. They are fast, but not very
accurate in segmenting noisy, and unevenly distributed
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points. Region-based methods cluster neighboring points
if they satisfy some criteria. Although region-based
methods segment the noisy data more accurately, they
are more susceptible to over- or under-segment the data.
The approach described in [5] made a region-based point
cloud segmentation, where user sets the desired level
of abstraction, local threshold. Such algorithms are very
sensitive to the user input. Model-based algorithms use
geometric shapes, mathematical representation, to group
points in one region [6]. The algorithm used in [7] made
the segmentation of sparse point clouds by implementing
the region-growing segmentation with the use of geometric
relation between neighboring points and point clouds edges
distribution analysis, and then used K-means clustering
method to refine the segmentation. 3D semantic labeling in
[8] was implemented with the use of deep neural networks;
they created 2D views from a 3D scene, made segmentation
on 2D plane with the use of deep networks, and projected
the results of 2D segmentation back to the original 3D
space.

Approaches that segment particularly people can be
implemented effectively with the use of human body
knowledge. The approach in [13] made the human parts-
based detection and segmentation with the use of human
instance structure. The output of face detectors as input
was used in [9] for human segmentation. Their algorithm
iteratively apply grabcut by analyzing the color model
and increase the ’human’ labeled region. However, the
use of only color model is not enough to make the
accurate segmentation. In [10] the human segmentation
from multi-modal visual cues was implemented using
RGB-depth-thermal dataset. Although a lot of segmentation
and tracking of human methods use full and complex 3D
modeling of human being, they are too slow and cannot be
used in real time or require additional camera/scene setup
[11].

III. THE PROPOSED APPROACH

In this section we describe the implementation details of
the proposed approach. The algorithm takes 3D point cloud
data and 2D pose estimation key points as input, and returns
a 3D point cloud whose points are labeled as human or
not-human as an output. Fig. 1 shows the intermediate and
final results of the proposed algorithm. The pseudo code
description of this approach is shown in Algorithm 1.

To perform visual pose estimation we use OpenPose [12],
a state-of-the-art system that detects human key points in
real time. It detects the location in the image of 25 main
body key points for all the humans present in the scene
(within a certain distance). Our approach uses human pose
estimations because they provide a good indication of the
location of humans on the image, and also of the regions
where LiDAR measurements are most likely to be found.
Moreover, pose estimations generate image coordinates
for most body joints, which allows obtaining seed points
covering the most salient body parts. With the use of pose

(a)

(b) (c) (d)

(e)

Fig. 1. The intermediate steps of the algorithm: (a) is the original image,
(b) the cropped image with skeleton points (red) and projected 3D point
cloud data (green) on image plane, (c) bounding boxes (yellow) around
every body region and projected 3D point cloud data (magenta) labeled as
human after the 1 stage of the algorithm, (d) the zoomed output of the
algorithm: black points - false negatives, green points - true positives, red
points - false positives, (e) the output of the algorithm: blue points - true
negatives.

estimations as input to our algorithm, we can make a reliable
human segmentation by the analysis of only geometrical
relationships between points. As a result, the algorithm is
fast and requires minimal additional computational power.

The algorithm starts by projecting the point cloud onto the
image plane of the camera (we assume that the camera and
the LiDAR have been extrinsically calibrated). This is done
to examine their location with respect to the detections from
visual pose estimation in the same plane. The algorithm
then inspects the estimates of pose of the human skeleton
and includes only the points that either belong to a limb
or lie in a close proximity to it; this prevents the algorithm
from analyzing irrelevant points. This inspection is done by
creating a bounding box around the human skeleton, and
expanding it from all four sides, as shown in Fig. 1-(c). The
width and height of the human bounding box was increased
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Fig. 2. The 25 human body keypoints detection and 12 regions used in
the algorithm illustrated by different colors.

by quarter of a body width and quarter of a body height
respectively from both sides, resulting in expansion of a
bounding box’s height and width by half the human height
and width. Such expansion assures that the algorithm does
not discard human points before conducting further analysis.
The removal of irrelevant points decreases the number of
points to process, which in turn reduces the processing time.

The next step is the initialization of regions of interest. If
a point is inside one of the region of interest, it is labeled as
a ‘human’ for further processing and analysis. We used 12
regions of interest: head + neck, torso, right and left arms
before elbow, right and left arms after elbow, right and left
legs before knee, right and left legs after the knee, right and
left foots. The regions are illustrated in Fig. 2. We decided
to make arms (legs) before and after the elbow (knee)
two different regions, because we use the bounding boxes
around every region, and bend of arm or leg leads to a
bigger bounding box and more false positive human points.
When OpenPose fails to detect a key point, the algorithm
ignores it and creates the region from the only the existing
detected points. However, if a region consists of only two
points, such as arms and legs, and one of the body key
point was not detected, the algorithm does not consider that
region. The algorithm expands the bounding box around
every joint horizontally and vertically by the half of a
maximum horizontal and vertical distances between points
in the region. The expansion is carried out to ensure that all
potential ‘human’ points will be analyzed.

After all the bounding boxes have been created, the
points projected onto the image plane are examined to
determine whether they are located in one of these regions
and marked as ‘humans’ for further analysis (line 7 -
line 10).

At this point, the algorithm has generated an initial set
of points that are candidate elements of the ‘human’ set
using only geometrical relationships between points in
the image plane. In the next step, the algorithm examines
the set of points from the previous step, but now back in
the original 3D space. To compute the inverse mapping

from image plane to Euclidean space, we need to observe
constraints to resolve the uncertainty in distance from the
camera. To this end, the ground plane is found using the
orientation specified by a normal reference vector obtained
from extrinsic calibration. To find the coordinates of the
human skeleton in 3D space, we use the projection of the
image coordinates of the key points corresponding to the
skeleton’s feet to 3D point and calculate the location of the
intersection with the ground plane. The geometric constraint
is that the z coordinate of the feet which is closest to
the ground plane is used to determine the location on the
ground plane. Then, the points that are located outside of a
1.5 m radius from the human skeleton in 3D are discarded.
To decrease the number of false positives, points belonging
to the ground are discarded if they are located 0.75 meter
away from feet.

In the final step the goal is to remove all points that
were mistakenly labeled as ‘human’ in the previous steps
by inspecting the distances between points in every region.
The main idea was that points in the same region should be
close to each other. Therefore, the algorithm discards points
that are too distant from the other points in the same region.
This is accomplished by calculating the mean distance of
point to all the other points in the same region (line 28 -
line 33) and the mean distance between every pair of points
in the region (line 34 - line 38). These values are calculated
for every point and every region, and compared for the final
labeling.

IV. RESULTS

We have performed experiments using the KITTI dataset1,
which contains synchronized, calibrated, and timestamped
data from multiple sensors collected from a moving platform
in urban environments [3]. There is a calibration file with all
the intrinsic and extrinsic calibration parameters for every
sequence. The dataset includes images and point clouds
captured by two high-resolution color and grayscale video
cameras, and a Velodyne 64 laser scanner with a 360◦

field of view. It also contains manually annotated ground
truth bounding boxes for five classes: cars, trams, trucks,
pedestrians and cyclists.

The algorithm was implemented using MATLAB. To
test our approach we annotated by hand 65 examples of
3D point clouds, which were selected to represent various
combinations of human pose, distance and orientation to
sensors, while retaining the ability of OpenPose to generate
accurate detections. The mean, maximum, and minimum
distance from the sensor to the human from our test set
were 8.99 m, 11.85 m, and 6.1 m respectively. The standard
deviation of distances for 65 selected examples is 1.85 m.
Fig. 3 illustrates several samples and algorithm outputs.

We evaluated the performance of the algorithm using
precision and recall as performance metrics. The precision
measures the percentage of correctly predicted points

1http://www.cvlibs.net/datasets/kitti/index.php
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Algorithm 1: Human Segmentation Algorithm
Input : Pk = {p1, p2, .., pk} - point cloud, where

pi =< xi, yi, zi >
Sm = {s1, s2, .., sm} - pose estimations
where sj =< uj , vj >

Output: HSn = {hs1, hs2, .., hsn} segmented point
cloud, where hsl =< xl, yl, zl >

Parameters: PRk = {pr1, pr2, .., prk} - point cloud
projected on image plane, where
prj =< uj , vj >
boundBox - [xmin, xmax, ymin, ymax] -
skeleton bounding box
R = {R1, R2, ., R12} - bounding boxes
around every body part
factor - factor of region expansion
H = {H1, H2, .,Hn} - human labeled
points in image plane; Hi =< ui, vi >

Functions : PROJECT(Pk, calibrationMatrices) -
makes homogeneous transformation of
point clouds onto image plane

1 Begin:
2 READ skeleton file
3 removeUndetectedSkeletonPoints(Sm)
4 PRm = PROJECT(Pk, calibrationMatrices)
5 crop(PRm, skeleton bounding box)
6 expandBoundingBoxes(R, factor)
7 for pi in PRm do
8 for rj in R do
9 if pi belongs to rj then

10 Hp[rj ].append(pi)
11 end
12 end
13 end
14 fitGroundPlane(referenceV ector)
15 xfeet 3D, yfeet 3D = PROJECT(calibrationMatrices,

xfeet 2D, yfeet 2D, mean(zground))
16 meanPoint(Hp)
17 meanRegion(R)
18 for pi in PRm do
19 for rj in R do
20 if meanPoint(pi) < meanRegion(rj) AND

piinrj AND dist(pi, <
xfeet 3D, yfeet 3D, zfeet 3D >) < 1.5 then

21 HSn{pi} = human
22 end
23 end
24 end
25 return HSn

26 End
27

28 meanPoint(p):
29 for pi in R do
30 mean = mean(dist(pi, p))
31 end
32 return mean
33

34 meanRegion(R):
35 for all combinations(pi, pj) in R do
36 mean = mean(dist(pi, pj))
37 end
38 return mean

Fig. 3. The output of the algorithm for different samples: the left column
shows the cropped image with skeleton points (red), projected 3D point
cloud data (green) on image plane, bounding boxes (yellow) around every
body region and projected 3D point cloud data (magenta) labeled as human
after the 1 stage of the algorithm; the right column shows the output of the
algorithm: green points - true positives, black points - false negatives, red
points - false positives.

from all the points labeled as ‘human’. The recall metric
represents the percentage of all the ‘human’ points that
were correctly detected as ‘human’.
The mean of the precision and recall values for our
algorithm is 94.45% and 97.55% respectively in our test
dataset. These and other statistics are presented in Table 1.

The hardware requirements for the proposed approach are
mainly imposed by OpenPose: an NVIDIA graphics card
with available 1.6 GB and 2.5 GB of free RAM memory[12].

MEAN (%) MAX (%) MIN(%) STDEV (%)
Precision 94.45 100 85.25 2.84

Recall 97.55 100 89.09 2.65

TABLE I
TABLE 1. SEGMENTATION PERFORMANCE.
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V. CONCLUSION AND FUTURE WORK

This paper described a fast and computationally inexpen-
sive algorithm for human segmentation from LIDAR point
clouds. The algorithm relies on OpenPose’s capabilities for
human pose estimation and uses the 3D point cloud to
consider geometric relationships between the body regions,
resulting in accurate and robust segmentation.

However, this reliance results in ungraceful degradation
of segmentation performance if the pose estimation system
performs poorly. Therefore, it is recommended to investigate
mechanisms to mitigate the negative impact in such situa-
tions.
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Abstract— Dedicated Short-Range Communications (DSRC)
are a standard of communications designed for vehicle-to-
vehicle and vehicle-to-infrastructure communication. This tech-
nology offers significant promise for improving pedestrian
safety, as it allows pedestrians to communicate directly with
nearby infrastructure elements and vehicles, and offers more
precise GPS localization. Our work shows the current standard
is too imprecise at low speeds, and as such cannot be used
for pedestrian localization. We propose a method to increase
the accuracy of DSRC GPS readings at low velocities and to
increase precision by utilizing both iPhone and DSRC GPS
readings.

I. INTRODUCTION

DSRC was developed in 1999 by the United States Federal
Communications Commission as a short range, low-latency,
line of-sight wireless data transmission standard designed
for interactions between vehicles and infrastructure in urban
environments. DSRC messages use the Basic Safety Message
(BSM) for safety-related applications, which is described
below. Non-safety related information is communicated with
the other message formats, which can include toll collection
data, digital maps, intersection signal status, and other in-
formation. Some messages can also provide more detailed
information on intersection geometries and positioning by
using known coordinates of DSRC intersection nodes in
conjunction with differential GPS algorithms [2].

A. BSM Message

The main message standard used in positioning without
the use of DSRC-enabled intersections as reference points
is the Basic Safety Message (BSM). The BSM is comprised
of a set of data frames, each containing data elements or
data frames. The elements included in the BSM are defined
in the ASN.1 coding standard, and can include information
on vehicles, weather conditions, road conditions, positioning,
and other information. All BSMs include a set of basic
elements, denoted as Part 1. This includes basic positional
information, motion information (such as speed, heading,
etc.), brake system status, and vehicle size. All remaining
information is optional, and can be included in Part 2 of the
BSM. The BSM is encoded as a binary file, with each data
element allocated a specific number of bytes (as described
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1A. Lakshman is with Department of Mathematics, University of Central
Florida, and is funded through the NSF.
2V. Parimi is with the Department of Computer Science, Indraprastha
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in the ASN.1 coding standard[3][4]). Messages are sent to
DSRC-enabled devices, which decode the message into its
components. As each data element has a maximum number
of bytes allocated, the granularity of the data is determined
by the number of bytes it has access to in the message.

B. Goals

Mobility-impaired pedestrian often have greater needs for
intersection navigation than average pedestrians. The long-
term goal of our work is to improve the safety of mobility-
impaired pedestrians when crossing busy intersections. In
order to implement a more robust system for this com-
munity, we need to be able to accurately communicate
their needs to surrounding infrastructure and vehicles. Cur-
rently, pedestrians have no way to communicate with cars
or intersection controllers other than Accessible Pedestrian
Signals, which have been previously proven to be ineffective
for increasing safety[1]. In addition, cell phone GPS has
a reported accuracy of 10 meters, which is not precise
enough to measure the position of a pedestrian within a
typical intersection. The primary intention of this paper is to
experiment with implementing a DSRC-enabled device with
which a pedestrian can communicate with nearby DSRC-
enabled nodes to improve their safety when navigating an
intersection. Current DSRC enabled devices report a GPS
accuracy of less than one meter, which would theoretically
provide enough precision to ensure safer pedestrian mobility
in urban settings.

II. EXPERIMENT DETAILS

The BSM message allocates four bytes for each coor-
dinate value (latitude and longitude), expressed in 1/10th
microdegrees. Our experiment seeks to improve the ability
of pedestrian-infrastructure communication by measuring the
accuracy of localization of DSRC devices and normal GPS
devices found in cell phones. iPhones Location Manager
allocates 8 bytes for each coordinate value, allowing for
precision to the femtodegree (10−15).
We used the Arada Systems LocoMate ME Mobile V2X
Sleeve to allow our iPhone to receive BSM messages for
positioning and recorded these alongside GPS readings from
the iPhone’s onboard GPS. GPS signals are received by an
Arada Systems DSRC-enabled device (denoted as the ”trans-
mitter”), and are then sent to the Mobile Sleeve (denoted as
the ”receiver”) as a BSM message, which is passed to the
iPhone. The two Arada devices were kept at a distance of
6-18 inches throughout all tests.
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We used an iPhone 7 for testing and performed trials at
several urban environments in Pittsburgh to test performance
under different settings.
We use the track test to test the accuracy of the GPS devices
in an environment with no nearby buildings or obstructions.
This test should indicate the best possible accuracy for
each device. Intersection tests involved walking in a circle
around all crosswalks in an intersection. Every path was
taken in the direct center of each crosswalk around the
intersection. All attempts were made to walk at a constant
rate of approximately 1 m/s, but due to traffic and signal
timings our actual walking speed fluctuates between 0.75 and
1.25 m/s. Different intersections were tested to experiment
with different building heights and urban canyons.
The roadside test involved walking alongside a road, making
a 90 degree turn, and walking down a second road. This was
to test the performance of the GPS units when the pedestrian
took a path similar to that of a vehicle.
Finally, the driving test tested the performance of the GPS
units in high speed setting. This was designed to measure
the normal performance of the DSRC GPS, as DSRC is
specifically designed for vehicle-to-vehicle communication
at high speeds. This test involved taking measurements while
driving at speeds of 40-60 miles per hour. The transmitter and
receiver were both placed on the front dashboard to allow
clear communication with as little obstruction as possible.
The two devices were kept approximately 12 inches apart for
the duration of the test, and maintained a constant relative
distance.
In all tests, both the iPhone GPS and the DSRC messages
were recorded for the same length of time.
The iPhone GPS reliably updates once every second. The
Arada DSRC Sleeve attempts to update as often as ten times
per second, but in our experiments the update rate ranges
from 8.82 readings per second to 0.16 readings per second.
This large range in update rates is attributable to messages
being lost while transmitted between the two Arada devices.

Fig. 1: Craig St. and Forbes Ave.

III. RESULTS AND ANALYSIS

Diagrams of the intersections tests are found in Figure 1
and in the Appendix. Red lines represent the coordinate read-

ings from the DSRC information, and Green lines represent
the coordinate readings from the iPhone 7. The actual path
taken is denoted in blue (black for the track test).
In the track test as well as Avenue and Regular Canyons, the
iPhone GPS performs significantly better than the reported
10 meter accuracy. Actual accuracy of the iPhone in urban
environments is around 1-2 meters.
In contrast, the DSRC device reported accuracy significantly
worse than its claimed <1 meter accuracy. In the best tests,
the DSRC GPS accuracy was 5 meters, and in the worst case
around 200 meters. As most intersections are less than 15
meters wide, these readings show the DSRC granularity is
too large for localization in urban intersection environments.

Fig. 2: Roadside Test

Fig. 3: Driving Test

Figure 3 show the results of the driving test. At higher
speeds, DSRC GPS reports accuracy of under 0.5 meters,
compared to 2 meter accuracy with iPhone. This either
suggests that DSRC GPS is utilizing speed as a correction
measure, or that DSRC is attempting to ”push” measurement
readings onto roads with the assumption that vehicles are
utilizing the communication protocol.
Figure 2 shows the roadside test. DSRC performed no
better in this trial than in the original pedestrian intersection
tests, meaning DSRC is likely not correcting measurements
by assuming all readings are taken from roads. This leads
to the conclusion that speed is a major factor in DSRC
GPS readings. However, this reliance on speeds leads
to overfitting in pedestrian environments, as pedestrian
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navigation is much slower than vehicle navigation.

IV. CONCLUSIONS AND FUTURE WORK

Our findings show the DSRC communication is currently
too inaccurate for use in localization of pedestrians. The
two main problems in DSRC communication is the highly
variable refresh rate, and the inaccuracy of measurement at
low speeds.
DSRC packet loss has been previously been shown to be
volatile in research studies involving truck platoons. Gao et.
al. showed that numerous factors can contribute to packet
loss with broadcast messages (such as BSM). Line of sight
obstruction as well as latency caused by lower level com-
ponents of the DSRC transmitter can have a detrimental
effect on the data delivery ratio[5]. In future tests, we will
position the transmitter and receiver to minimize any line
of sight obstructions, and will look into the hardware of the
transmitter/receiver to maximize the number of GPS readings
per second.
In addition, we plan to isolate the internal corrections using
speed to help predict for position. If we can access GPS data
before they are adjusted and cast into a BSM message, we
can achieve greater accuracy, as the low differences in speed
are causing inaccuracies in position measurements.
We plan to implement these solutions and retest the DSRC
sleeve to attempt to obtain accuracy of at least 5 meters.
Many past research projects have detailed algorithms to
combine inaccurate GPS readings to obtain higher precision
than a single GPS receiver. Schrader showed that in the best
case, multiple GPS devices used in conjunction can yield
up to a 27% improvement in precision compared to a single
GPS unit[6]. Trinklein performed an experiment using two
clusters of GPS receivers each with 3 meter accuracy. The
clusters were kept at a constant distance of 4.5 meters, but
the system as a whole was mobile. Trinklein’s algorithm was
able to exploit the constant relative distance between the
two clusters to achieve approximately 1 meter accuracy[7].
Hedgecock et. al. developed an algorithm to obtain position
with accuracy of 15 centimeters given two or more GPS
receivers with 2.5 meter accuracy. This algorithm utilized
raw GPS data and satellite positioning information to correct
errors due to satellite velocities and temporal differences in
readings[8].
We plan to implement a variation of these algorithms to
use both the iPhone GPS and DSRC GPS signals together
to obtain precision of under 1 meter, allowing for precise
pedestrian localization in small-scale urban environments,
such as intersections.

V. APPENDIX

Fig. 4: Centre Ave. and Aiken Ave.

Fig. 5: Baum Blvd. and Euclid St.

Fig. 6: Baum Blvd. and Liberty Ave.
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Fig. 7: Baum Blvd. and S. Negley St.

Fig. 8: Centre Ave. and Cypress St.

Fig. 9: Centre Ave. and Graham St.

Fig. 10: Centre Ave. and S. Highland Ave.
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FPGA Acceleration for High Dimensional Inverse Kinematics

Yike Li1, Lu Li2, Howie Choset 3

Abstract— A robot has to solve inverse kinematics problem
in order to reach the desired target. The numeric solution for
solving inverse kinematics of a high degree of freedom robotic
arm is computationally expensive and resource demanding, es-
pecially in a real-time closed-loop control scenario. We propose
an acceleration method that uses FPGA to parallel compute the
Jacobian method algorithm. Also, we develop the system with
high-level synthesis tool, so we can use programming language
C++ instead of low-level hardware description language (HDL),
which makes it easier to reorganize the design for the further
application. The proposed method is implemented and veri-
fied on a low-cost heterogeneous FPGA SoC. The hardware
implementation of the accelerator is described and method
performances are analyzed.

I. INTRODUCTION

To complete certain tasks, like feeding disabled people or
grasping a package on the goods shelf, industrial robotics
or other robot manipulators need to follow an optimized
trajectory, so that they can reach the target fast while avoiding
collision with obstacles. Inverse Kinematics problem is the
transformation of position and orientation of a manipulator
end-effector from Cartesian coordinates to joint coordinates.
[1] Robot manipulator uses inverse kinematics to reach the
desired end-effector position.

Many of these robots have multiple joints, the redundant
DOF give multi-solution in robotics joint space, which is
helpful for robot arms to avoid both internal problems and
external obstacles, such as the ability to perform the same
task when one of the joint angles is broken or using different
trajectory planning to avoid the obstacles that occurred in the
robot working place.

The one to many relationships between task coordinates
and joint coordinates endow the robot with greater dexterity
and flexibility, however, the solution for redundant inverse
kinematics problem is infinite. [2] Therefore, solving high
dimensional inverse kinematic problems in an optimized
manner has been an increased research interest in the robotic
field.

To solve the inverse kinematics, there are two types of
methods, analytically and numerically. [3] Analytical solu-
tions exist only for some special robots that have geometry
symmetric property or other inner structural connections like
paralleling with each other. Within these constraints, the
DOF can be reduced and the solution can be analytically
expressed. However, in some cases, the explicit analytical

1Yike Li is a student of School of Information and Science Technology,
ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai
yike.pear@gmail.com

2,3Lu Li and Howie Choset are from Robotic Institute of
Carnegie Mellon University lilu12@andrew.cmu.edu,
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solution does not exist, in the absence of the analytical
solution, the numerical techniques are alternative options for
solving inverse kinematics.

There are plenty of methods to solve IK numerically,
such as quasi-Newton and conjugate gradient methods [1]
[4], neural net and artificial intelligence methods [5] [6],
cyclic coordinate descent methods [1], pseudoinverse meth-
ods [7], Jacobian transpose methods [8] and the Levenberg-
Marquardt damped least squares methods [9]. Each of these
methods needs a large amount of computation to get the final
results, and the procedures usually involve large amounts of
matrix operations such as matrix multiplication or matrix
inversion, results in that the process of calculating IK of the
end-effector spend much CPU time, which will affect the
motion response in robot operation. Therefore, solving this
problem in a fast and efficient way becomes an important
issue.

A field-programmable gate array (FPGA) is an integrated
circuit of gate level design that can be programmed according
to the designer’s special needs. The FPGA is similar to an
application-specific integrated circuit (ASIC) in functional
aspect, they both use to specify the configuration to perform
a certain task, however, ASIC is more costly in terms of the
manufacturing since a single ASIC product has unchange-
able configuration and can only be used in one scenario.
FPGA, on the other hand, is convenient to be reprogrammed
according to different demands.

FPGAs are used to create custom hardware circuits,
such as repeatable data processing functions that would
be resource intensive when performed by micro-controllers
or local central processing units (CPUs). Also, FPGA can
be used to perform hardware acceleration by processing
large volumes of data in parallel, increasing throughput in
comparison to a CPU or microcontroller.

In inverse kinematics problem, to increase the end-
effector’s accuracy and precision, float-point data type should
be used, which introduces severe time delay compared to
fixed point calculation, also, high rank of matrices like
8*8, 16*16 are needed for redundant robot to express their
multiple DOF features, the multiplication steps between
internal procedure of getting IK would be thousands of times.
The resource and timing demanding feature constraints the
localized calculation inside the robot processing system, and
portability is also limited due to the need for a powerful
computer.

Therefore, for speed up the computational time, the inverse
kinematics method based on FPGA realization is studied in
this paper. And the C++, as well as high-level synthesis
tool, is applied to generate the inverse kinematics hardware
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accelerator core.

II. METHODS

A. Inverse Kinematics problem description
A basic idea of solving inverse kinematics, or tracking the

target positions, is that the robot should try to reach out the
target position when they are distant. Or, mathematically,
a robot should try to minimize the error distance between
the target position and end-effector position. Also, when
considering the cases that the target position is unreachable
because of link length is limited or joint angle needs space
to rotate, the equation should be:

e = fClampMag(t− s, Dmax), (1)

where

fClampMag(w, d) =

{
w if ‖w‖ ≤ d
d w
‖w‖ otherwise

}
(2)

t, s denote the target position and end-effector position.
Dmax denotes the maximum distance that the end-effector
can move within a single step.

Evidence [10] shows that by defining e in this way, the
oscillation that happens when target are out of reach can be
effectively reduced.

B. The pseudo inverse method
Jacobian Matrix can be used to describe the local change

of each joint angle in a single move, because it is the matrix
of all first-order partial derivatives of the position vector
function. It can be described in the form as

J =


αf1
αx1

. . . αf1
αxn

...
. . .

...
αfm
αx1

. . . αfm
αxn

 (3)

where f1tofm can be the positions x, y, z and angles roll,
pitch, yaw of the end-effector.

The desired angle change of each joints ∆θ can be found
by equation:

J∆θ = e (4)

For redundant robotics, m is not equal to n, so the Jacobian
matrix is not square or not of full rank. To make sure there
exists the solution, left multiply the transpose of Jacobian
matrix:

JTJ∆θ = JTe (5)

If J has full row rank, then JJT is invertible, so the
solution of ∆θ can be obtained by:

∆θ = JT (JJT )−1e (6)

A more general formula that for both J that has full row
rank or not is given by Buss[11]. Even though, this method
still performs poorly because it has a singularity problem.
When the configuration is close to a singularity, the pseudo-
inverse method will be sensitive to a small target position
change, which will introduce big torque to conduct rapid
change in joint angle.

C. Levenberg-Marquardt method

This method was first used by Wampler [12] and Naka-
mura [13], also called as damped least square method. The
advantage of this method compared to the pseudo method
is that it can avoid the unstable problem of singularity and
give a numerically stable solution for ∆θ. According to
Wampler’s justification [14], the value of ∆θ can minimize
equation (7):

‖J∆θ − e‖2 + λ2 ‖∆θ‖2 (7)

λ is the damping factor, it should be large enough to avoid
collision near singularities, and λ value varies from different
robotics configuration and task, plenty of research [15] [16]
[17] [18] proposed dynamical methods to select damping
factor based on the situation. In this paper, we assume that
the damping factor is given by the user, which means this is
a known constant.

To minimize equation (7), it is mathematically equivalent
to minimizing: ∥∥∥∥∥

(
J
λI

)
∆θ −

(
e
0

)∥∥∥∥∥ (8)

To ensure the existence of solution, do the left modifica-
tion:

(JTJ + λ2I)∆θ = JTe (9)

So the solution to ∆θ is:

∆θ = (JTJ + λ2I)−1JTe (10)

To further reduce the possible calculation times, the for-
mula (JTJ + λ2I)−1JT can be rewritten as JT (JJT +
λ2I)−1,

∆θ = JT (JJT + λ2I)−1e (11)

So the n × n matrix JTJ can be converted to m × m
matrix JJT , where m usually indicates the six dimension
of target space, (x, y, z, roll, pitch, yaw)T , and n indicates
the dimension of degree of freedom(DOF), which is often
bigger than m in redundant robot.

In this paper, we assume that Jacobian matrix J , damping
factor λ and target position t as well as end-effector position
s are already given, so the problem will be focused on how
to design FPGA configuration to accelerate the computation.

III. IMPLEMENTATION

In this paper, we use MiniZedTM board. It is a single-
core Zynq 7Z007S development board. This board provides
a low-cost prototyping platform to fast develop and verify
customized design for users. The board detail is showed in
Fig.1. The chips and parts used in the design are boxed in
the red line.

MiniZed Board has external 512MB DDR3 memory, and
it is easy to reprogram the configuration as well as debug
via on-board USB to JTAG and debug UART circuit. The
core 7Z007S integrates a single-core ARM CortextTM −
A9MPCoreTM based processing system(PS) and Xilinx

79



Fig. 1. MiniZed detail view.

programmable logic(PL) in a single device. The development
tool we used is Xilinx tool Vivado, software development
kit(SDK) and High level synthesis.

A. System design

The goal of the system is to fast calculate high dimensional
inverse kinematics problems, therefore, we choose 6, 8,
10 and 16 joints robotic scenarios to test the accelerator
performance.

To fulfill the demand of computing in real time, we design
the system (Fig.2) with mainly three blocks, the processing
system(PS), direct memory access(DMA) and customized
programmable logic IP. AXI4-stream is used for high-speed
streaming data transformation between different parts.

Fig. 2. System design and interconnects between PS and PL

Besides these functional parts, there are also a timer to
count acceleration block’s calculation time, some intercon-
nects between AXIS slaves and masters, also, a contact and
system reset to synchronize the interruption and clock.(Fig.
4)

B. AXI4-stream protocol

Compared to AXI4 and AXI4-Lite, AXI4-Stream get rid
of memory-mapped interfaces, therefore removes the require-
ment for an address phase altogether. It allows unlimited
data burst size, therefore, the applications of AXI4-Stream
are typically focused on a data-centric and data-flow design,
where the concept of an address is not present or not
required.

C. Processing system and DMA
The processing system is used to control DMA engine

to transfer the data. AXI DMA IP core provides high-
bandwidth direct memory access between the AXI4 memory
mapped, which is external memory DDR3, and AXI4-Stream
IP interfaces. The central processing unit(CPU) inside the
ARM core can send commands to initialize, check status
and manage registers inside the DMA engine.

D. HLS acceleration IP
This IP is designed to have stream data interfaces as input

and output. And the function of this IP is to compute and
accelerate the computation from input data, and then send
out to the output port. The idea of acceleration is to utilize
FPGA’s parallel processing feature, so series operations like
looping can be unrolled to parallel synchronized operation.

1) Design tool: In this paper, we used the Xilinx tool
High-Level Synthesis(HLS) to transforms the C specifica-
tion, which is C++ code, into a Register Transfer Level(RTL)
implementation that synthesizes into FPGA. HLS design can
directly compile C++ code and generate the corresponding
implementation. It also supports simulation and debugging,
which is more user-friendly and efficient for complex project
design. The most important thing is that HLS can create
many different implementations from the source code using
optimization directives which improves the likelihood of
finding the most-optimal implementation while sacrificing
a little amount of time. There is another way to generate
RTL design by using hardware description languages like
VHDL or Verilog. However, the latter one is time-consuming
because it is a low-level description language that reaches the
register level assignment, also, it is difficult to re-customized
to different applications.

2) Interface and Acceleration procedure: This block reads
data directly from external memory via DMA, then after
computation, gives results back to external memory, read
and write procedure are controlled by processing system
command. The working flow is shown in Fig.3

Fig. 3. Working principle of FPGA.

When the accelerator gets the Jacobian matrix, damping
factor and distance vector from external memory, it computes
the equation (11).
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Fig. 4. Vivado block design

3) Matrix inversion: The costly part of the acceleration is
getting the inversion of the middle part. We choose the LUP
decomposition method to find the matrix inversion. For any
given full-rank matrix A, it can be decomposed as a lower-
triangle matrix L, a diagonal matrix D, and an upper-triangle
matrix U after several possible row permutations. As shown
in equation (12).

PA = LDU (12)

To get the inverse of matrix A, it is easy to know that

A−1 = U−1D−1L−1P−1 (13)

U−1 and D−1 can be obtained by back substitute itera-
tions. Since L and U are triangular matrices,

1 0 0 . . . 0
a2,1 1 0 . . . 0
a3,1 a3,2 1 . . . 0

...
...

...
. . .

...
ad,1 ad,2 ad,3 . . . 1




1 0 0 . . . 0
b2,1 1 0 . . . 0
b3,1 b3,2 1 . . . 0

...
...

...
. . .

...
bd,1 bd,2 bd,3 . . . 1



=



1 0 0 . . . 0
a2,1 + b2,1 1 0 . . . 0

a3,1 + a3,2b2,1 + b3,1 a3,2 + b3,2 1 . . . 0
...

...
...

. . .
...

...
...

... . . . 1



=


1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1


So, in the first iteration, all the bn,n−1 can be solved, the

second iteration, all the bn,n−2 can be solved. The iteration
ends after all the b elements are found.

D is a diagonal matrix, so the reciprocal is its inverse. P is
a row permutation matrix, left multiple P will permute row
order, right multiple the inversion of P matrix will permute
column in the same order.

All the looping involved in this part are pipelined to
reduced waiting time and flatten to be parallel processed.

4) The complete computation: Start with reading data till
the end of the computation, FPGA accelerator has to multiply
the Jacobian transpose, inverse part and distance vector. In
Fig.5, the red parts indicate blocks are accelerated, green
parts indicate blocks are not accelerated.

Fig. 5. System design and interconnects between PS and PL

Table 1 shows the resource usage and HLS time perfor-
mance for different DOF robots

DOF 6 8 10 16
Resource utilization
LUT 7459 7486 7486 7486
FF 6227 6243 6243 6243
DSP 30 30 30 30
BRAM18K 12 12 12 12
Timing
Latency(max) 4133 4637 5141 6647
Interval(max) 4132 4636 5140 6646
HLS time(ms) 0.08265 0.09273 0.10281 0.13293

TABLE I
RESOURCE USAGE AND HLS TIME PERFORMANCE FOR DIFFERENT DOF

ROBOTS

The results show that even for DOF range from 6 to 16,
there are only a few differences in terms of resource usage.
However, the execution time increases with the number
of robot joints. One reason for this is because current
system design that implemented on MiniZed Board uses 85%
LUT(look-up table), for resource consideration, the function
parts we optimized have to be selectively, so there is a
balance between resource and performance.
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IV. EXPERIMENTAL RESULTS

We test the implementation on Artix-7 based pro-
grammable logic @100MHz and MATLAB on Intel(R)
Core(TM) i7-5500U CPU @2.40GHz. Also, since the al-
gorithm involves float data type and inversion operation, we
check the data quality by comparing the FPGA result with
MATLAB result. We use the square root of mean square
error as the metric. Table 2 shows that the powerful software
mounted on the powerful CPU only has a speed-up of no
more than 10 times than our small chip, also, the error
is less than 0.001 for all types redundant robots, which
is accurate enough for robots since actuators have limited
angular resolution.

Timing(ms) Error
DOF Pure HW MATLAB MSE MAX

6 1.43551 0.579 1.429E-6 1.934E-4
8 1.44057 0.869 4.070E-7 1.696E-5

10 1.44560 0.923 4.217E-7 4.804E-5
16 1.46040 1.014 1.982E-7 1.677E-6

TABLE II
RESOURCE USAGE AND HLS TIME PERFORMANCE FOR DIFFERENT DOF

ROBOTS

V. CONCLUSION AND DISCUSSION

We designed an inverse kinematics core implemented
on a Xilinx MiniZed Board with a Zynq core. By using
the Levenberg-Marquardt algorithm with 32-bit float-point
arithmetic, the 6 DOF, 8 DOF , 10 DOF and 16 DOF robot IK
solutions were solved in real time with 100 MHz frequency.
The benchmark test is investigated for different joint numbers
with different processing devices. The proposed design can
achieve a throughput of 696, 694, 691, 684 updates per
second for 6, 8, 10, 16 joints robots. The proposed design
can reach same order of magnitude timing compared with a
strong powerful CPU for 16 DOF redundant robot, while the
size and prize are more than 10 times lower than the latter
one. Our design can be easily customized to different robots
with different configurations and Jacobian matrix sizes.

The major constraint on our implementation is we didn’t
fully parallel all the progress, the results show that with the
number of DOF increase, the resource does not increase,
however, the time does, which means the critical time relies
on the series part. One possible solution is that we change
our device with a board that has enough resource, so we
can flatten all progress so that they can run concurrently to
reach a better performance. From the resource perspective,
we can also conduct a conclusion that current design is well
pipelined and might be capable with more DOF since the
resource usage for 8, 10, 16 DOF is exactly the same. In
the future, several experiments will be conducted to evaluate
our proposed system on physical robotic hardware such as
industrial robot arms and legged mobile robots, also, we will
explore the possibility to play with more complex robots.
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FG-GMM based Social Behavior Estimation for Autonomous Driving
Vehicle in Ramp Merging Control

Yiwei Lyu1, Chiyu Dong2,and John M. Dolan3

Abstract— Social behavior is important for autonomous
driving vehicles, especially for scenarios like ramp merging
which require significant social interaction between autonomous
driving vehicles and human-driven cars. This project enhances
our previous Probabilistic Graphical Model (PGM) merging
control model for the social behavior of autonomous driving
vehicles. To better estimate the social behavior for autonomous
driving cars, a Factor Graph (FG) is used to describe the
dependency among observations and estimates other cars’
intentions. Real trajectories are used to approximate the model
instead of human-designed parameters. Forgetting factors and
a Gaussian Mixture Model (GMM) are also applied in the
intention estimation process for stablization, interpolation and
smoothness.

The advantage of the factor graph is that the relationship
between its nodes can be described by self-defined functions,
instead of probabilistic relationships as in PGM, giving more
flexibility. The proposed method enhances the performance of
the previous solution by 16 percent in terms of collision rate.

I. INTRODUCTION

Since autonomous driving vehicles cannot replace all
human driven-cars in the near future, they should share roads
with human drivers. Therefore, understanding human drivers’
intentions is essential for safe autonomous driving.

Ramp merging is one of the most important and typical
scenarios where autonomous vehicles interact with human-
driven cars. An autonomous vehicle may collide if it can’t
correctly predict human drivers’ intention given a compli-
cated situation. Therefore, it is important for autonomous
vehicles to understand human drivers’ intentions and gen-
erate appropriate social behaviors. Since human-driven cars
can introduce significant uncertainty in autonomous-human
driving interaction, it is challenging to estimate their inten-
tions.

Current autonomous driving vehicles are not able to under-
stand social behavior properly. Human-driven cars’ intentions
can not be predicted by simply using the speed detection
sensors like RADAR, which will introduce large noise that
results in serious estimation oscillation. This task is more
challenging if there is no V2X communication system. In our
previous research, a probabilistic graphical model (PGM) is
proposed to model uncertainty with probabilities. By taking
advantage of the independence and conditional independence

∗This work was supported by NSF REU funding.
1Yiwei Lyu is with the Robotics Institute, Carnegie Mellon University,

Pittsburgh, PA 15213 USA.
2Chiyu Dong is with the Department of Electrical and Computer Engi-

neering, Carnegie Mellon University, Pittsburgh, PA 15213 USA.
3John M. Dolan is with the Robotics Institute, Carnegie Mellon Univer-

sity, Pittsburgh, PA 15213 USA.

Fig. 1: Ramp merging scenario. The host car (green) is an
autonomous vehicle, running on the main road; the merge car (red)
is a human driven car, running on the ramp.

Fig. 2: A factor graph representation for the ramp merging intention
estimation. St and St+1 are factor nodes which take velocity
observation, and time-stamps; It and It+1 are latent variables which
denote intentions over time; P is a prior factor, which denotes the
effect of prior intention.

that hold among random variables, the representational and
computational bottlenecks are alleviated.

However, one of the major problems of PGM is that the
relationship between nodes in PGM has to be probabilistic,
i.e., all transition models should integrate to one. In addition,
PGM cannot treat historical data with differing weights.

In this paper, a method based on Factor Graph [1], [2]
is proposed. Our main contributions are: 1) using factor
graph to better explain the relationship between variables.
2) using a forgetting function to assign self-defined factors
to historical data and a Gaussian Mixture Model (GMM) to
better approximate the intention prediction.

II. RELATED WORK

There are several works that address the merging problem.
Adaptive Cruise Control (ACC) is one of the approaches
which is being widely commercialized. For example, GM’s
Full Speed Range ACC and Audi’s “STOP and GO” ACC
makes it possible for cars to follow other cars in dense traffic
with low speed. ACC is also used by Mercedes-Benz in its
lane departure prevention system and Tesla in ”Autopilot” to
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perform higher-speed autonomous driving. However, these
methods cannot help vehicles generate social behaviors to
interact with other cars properly.

A slot-based approach is proposed by Marinescu et al.
[3], for cooperative intelligent vehicles in on-ramp traffic
merging. Its contribution includes preventing congestion un-
der heavy traffic conditions by predicting the time to arrival
to the merging point accurately. However, their decision is
based on current states and no historical data are considered,
which can lead to failures in some cases.

Wei et al. [4] used a hard-coded distribution and cost
function to estimate merging intention. They proposed an
intention-integrated framework to enable an autonomous car
to perform cooperative social behavior, but only instanta-
neous acceleration is considered. The lack of historical data
leads to instability in estimated intention, which results in
oscillation or delayed reaction to the autonomous vehicle.

Dong et al. [5] proposed a PGM learning-based method for
intention estimation. The main contribution is that the model
is trained and validated by real trajectories, and shows great
improvement when validated by a designed merging strategy
in simulation compared with previous methods. However, the
model only takes speed and time as factors in the process
of intention estimation. In addition, the transition models
trained from data still rely on the Markov assumption.

We use a factor graph which is converted from the original
probabilistic graphical model (PGM) to describe dependency
among observed data and estimate other car intentions. Real
driving data are used to parametrize this model instead of
manually designed parameters.

The social behavior estimation can be extended to various
cooperation situations, such as lane changing, stop sign
traversal and ramp merging. In this paper, we focus on ramp
merging.

III. FACTOR GRAPH-BASED INTENTION ESTIMATION

A. Structure of Factor Graph
Factor graph is widely used in perception [6] and motion

planning [7]. We here adapt it to behavioral estimation.
A factor graph representation for ramp merging intention
estimation is shown in Fig. 2.

Our model assumes that human intention does not oscillate
as fast as the program’s update rate. Therefore, one intention
node will affect the next n speed nodes. These n speed nodes
keep track of the target vehicle’s speed during n cycles. The
past state (speed) and last intention will decide the intention.

P (It+1|It, Vt−n, ..., Vt) (1)

where It is the last intention, and Vt−n, ..., Vt are the past
n+ 1 velocities. Alternatively, Equation 1 can be written as,

It+1 = arg max
It+1

f(It+1, It, Vt−n, ..., Vt) (2)

where f(It+1, It, Vt−n, ..., Vt) is a factorization of current
intention, last intention, and past n+ 1 velocities.

There are two kinds of effects on future intention estima-
tion from other nodes/edges in the factor graph.

Fig. 3: States for velocities in the factor graph.

1) State (speeds) Effect: The state effect is indicated in
Equation 3, which takes historical speed data into considera-
tion during the future intention estimation process. Forgetting
Functions ω(i) are included in the factor nodes and assigned
to historical speed data. As shown in Fig. 3, each frame of
selected historical speed data will affect the current intention
estimation. The forgetting function makes it possible that the
closer the historical speed is to the current one, the larger
effect it will have on current intention estimation.

g(St+1) =
n∏

i=1

ω(i)f(Vi, Vi−1) (3)

where f(Vi, Vi−1) describes the transitional relationship be-
tween current velocity and last velocity. Here (Vn, ..., Vi, V0)
correspond to the last n+1 frames of past velocity
(Vt, Vt−1, ..., Vt−n). The transitional relationship for each
current-past velocity pair is gained from the Speed Transition
Model, which is introduced in a previous paper [5].

2) Last Intention Effect: This is the effect of the prior
intention’s effect on future intention estimation, which is
indicated in Equation 4. The b(It) and b(It+1) in Equation 4
are a ”Blurring function”, which makes the discrete intention
a continuous value ranging from 0 to 1. The Blurring func-
tions help to smooth the estimated intention and encourage
the stability of intentions over time.

m(It) = exp {−||b(It+1)− b(It))||2

σ
} (4)

where σ is obtained from a Gaussian Mixture Model, which
is introduced in Section IV-A.

The Factorization F = f(It+1, It, Vt−n, ..., Vt) is expressed
as:
F = g(St+1) ·m(It)

=
n∏

i=1

ω(i)f(Vi, Vi−1) ·m(It)

=
n∏

i=1

ω(i) exp (−||∆V (It+1)||2

σ
) · exp (−||∆b(It+1)||2

σ
)

(5)

where ∆V (It+1) , V (It+1) − V (It), and ∆b(It+1) ,
b(It+1)− b(It).

B. Evaluation of Factor Graph
For the forgetting functions in the State effect, we define

exponential functions to assign different weights to historical
data. This has two main advantages:
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1) Prevent Underflow: With exponential forgetting func-
tions, the original product expression is converted to a
summation. In the product expression, with tiny values, it’s
easy to have an underflow situation. Using exponential terms
instead, every term will be added up together, which can be
efficiently calculated and prevent the underflow situation.

2) Reduce Computation: Converting the original product
expression to a summation with exponential terms requires
less computation (summation vs. multiplication).

C. Intention Estimation Procedure

The last 20 frames of historical speed data before the
merging point (Vt, Vt−1, ..., Vt−19) are selected to be taken
into state effect consideration. Forgetting decay functions
are assigned to each frame’s historical speed datum. The
estimated intention It+1 is affected by the 20 frames of
historical data, last intention It, and the prior term P which
assigns weight to the last intention effect.

If the merging vehicle’s estimated intention is ’Not Yield’,
it will tend to speed up and reach the merging point before
the host vehicle. Then the host vehicle activates a distance-
keeping model to keep a desired safe longitudinal distance
to the merging car on the ramp. On the other hand, if its
estimated intention is ’Yield’, the host car will ignore the
merging car and accelerate to the speed limit.

IV. TRAINING FROM DATA

In the previous research [4], prediction of the merging
cars behavior was based on hard-coded cost functions and
assumptions about the probability distribution of accelera-
tion.

We instead use the US-101 and I80 freeway real-world
dataset NGSIM to extract a model of cooperative behavior
between host and merging vehicles. The dataset was obtained
from overhead cameras near the US-101 and I80’s entrance
ramps in the Los Angeles area. Cars in this region were
filmed and tracked during morning rush hours (7:50 am to
8:35 am for US101, 4:00 am to 5:30 am for I80). The road
segment consists of 5 lanes and one entrance ramp at the
beginning, as shown in Fig. 4 [8].

Vehicles in the right-most lane on the main road are
considered host vehicles, and counterparts on the entrance
ramp are considered merging vehicles. We preprocessed the
data to filter out unrelated cars that run in inner lanes without
interacting with merging vehicles, and used only those from
the right-most lane and the entrance ramp.

Host vehicles are paired with merging vehicles that are
close to and temporally overlapped with the host, as shown
in Fig. 5. There were 647 host-merging vehicle pairs in
the dataset. We classify merging vehicles into two classes:
1) yield; 2) not yield, based on which car reaches the
merging point first. From group 1, the distribution of
P (V |I = Y) can be estimated; from group 2, the distribution
of P (V |I = N).

Fig. 4: The aerial photograph above shows the extent of the US
101 study area in relation to the building from which the digital
video cameras were mounted and the coverage area for each of the
eight cameras. The schematic drawing [8] on the bottom shows the
number of lanes and location of the on-ramp at Ventura Boulevard
and the off-ramp at Cahuenga Boulevard within the US 101 study
area.

Fig. 5: Time overlap example for a host-leading pair, and multiple
host-merging pairs. Three different colors, green, red and yellow
indicates three classes of vehicles, the lead vehicle, the host vehicle,
and merging vehicles. The length of the colorful lines indicates their
corresponding start time and end time for appearance in the camera.

A. Speed Transition Model

The goal of the training is to estimate the conditional
probability of intentions given historical speed information,
i.e., P (V |I). The two classes of data are used to train
the speed transition model. Fig. 6 and Fig. 7 show the
speed transition probability distributions for given speed and
intention.

The x-axis Vt indicates the current speed of merging
vehicles, the y-axis Vt−1 indicates the past speed of merging
vehicles, and the z-axis shows the probability of a particular
speed transition occurring. The main difference between the
two figures is in the zone 80 (feet/second) ≤ V (t) ≤
100 (feet/second) and 80 (feet/second) ≤ V (t − 1) ≤ 100
(feet/second), where there are more dots when the intention
is ’Not Yield’. If the merging car’s driver decides not to
yield to the host, it has higher probability to accelerate; and
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Fig. 6: Speed transition distribution for given speed (feet/second)
and Yield intention.

Fig. 7: Speed transition distribution for given speed (feet/second)
and Not Yield intention

the merge car is more likely to decelerate if it decides to
yield to the host. These results are consistent with intuition.
Additionally, each speed has specific transition probabilities
under different intentions.

B. Gaussian Mixture Model (GMM)

The speed transition model is also used in the previous
PGM-based method. However, there are several shortcom-
ings of the speed transition model:

1) Inefficient Computation Process: In the speed transi-
tion model, given current and past speed, a closest coordinate
is searched in the two spaces and its probability of occurrence
is taken for comparison between ’Yield’ or ’Not Yield’. The
searching process takes time and is inefficient.

2) Missing Data: In some cases, an existing point close
to the target coordinate may not be easily found. In the speed
transition model, surrounding points’ average probability of
occurrence are calculated. This may also lead to inaccuracy.
To tackle the problems above, a Gaussian Mixture Model

[9] is used to approximate the speed transition probability
distribution. A 2-component GMM models is built, as shown
in TABLE I.

We assume the distribution of speed transition as a mixture
of multiple single Gaussian models. Means µ, covariance σ,
and weights ω gotten from the GMM are used to calculate
the probability for yield and not yield.

P (I) =
∑
i

Ai exp
||x− µi||2

σi
, (6)

where

Ai =
ωi√
2πσi

(7)

V. EXPERIMENTAL RESULTS

We run simulations on reacting to merging veihicles with
real-data trajectories which are extracted from datasets. The
host car will estimate the merging vehicles’ intention and
make the decision by observing their state. Simulations were
run as experiments on the proposed model. 100 host-merging
pairs extracted from the I80 dataset with time range from
05:15 am to 05:30 am were used for testing. We conducted
three sets of experiments: 1) Intention estimation without
forgetting factor and GMM; 2) Intention estimation with
forgetting factor but without GMM; 3) Intention estimation
with both forgetting factor and GMM. Collision Rate is
calculated as the rate of total collided pair counts among all
tested pairs. The experimental results are shown in TABLE
II.

From TABLE 2, we find that the collision rate without
forgetting factor and GMM is higher than the one only
without GMM. The forgetting factor reduces the collision
rate by 9 percent. More importantly, the collision rate without
GMM is twice that with GMM, which indicates that the
GMM greatly improves the accuracy of estimated intention.

VI. CONCLUSION

Real data test results show that the proposed Factor Graph-
based method with Forgetting function and GMM has the
lowest collision rate.

Compared with the previous PGM-based method, the
collision rate is not lower, probably because the parameters
of the model have not been fine-tuned and the forgetting
function has not been better designed yet.

In the future, we will further tune the parameters and
design the forgetting function. More tests will be run on both
US101, I80 and other datasets. The results of the proposed
method will be further compared with previous methods, e.g.
ACC, Slot, i-PCB, and PGM. Criteria including minimum
safe distance, cycle rate, and other terms will be applied.

We will also extend our method to estimate long-term
motion of merging vehicles, in the scenarios that have more
than one merging car, and take advantage of a broader set
of training data.
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TABLE I: 2-components Gaussian Mixture Model parameters

Yield Not Yield

Means [[17.59 17.58][43.51 43.50]] Means [[44.02 44.01][17.87 17.87]]
Covariance [[ 64.04 64.00][106.53 106.77]] Covariance [[106.96 107.20][66.25 66.20]]

Weights [0.57 0.42] Weights [0.43 0.56]

TABLE II: Collision Rate Comparison

Dataset Num. of Pairs Collision Rate(w/o FF,GMM) Collision Rate(w/o GMM) Collision Rate(w/ GMM)

I-80 (05:15-05:30) 100 23 14 7
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Abstract— Intelligent Tutoring Systems (ITS) have great
potential to change the educational landscape by bringing scien-
tifically tested one-to-one tutoring to remote and under-served
areas. But effective ITSs are too complex to make perfect.
Instead, a practical guiding principle for ITS development and
improvement is to fix what’s most broken. In this paper we
present SPOT (Statistical Probe of Tutoring), a tool that mines
data logged by an Intelligent Tutoring System to identify the
”hot spots” most detrimental to its efficiency and effectiveness
in terms of its software reliability, usability, task difficulty,
student engagement, and other criteria. SPOT uses heuristics
and machine learning to discover, characterize, and prioritize
such hot spots in order to focus Intelligent Tutoring System
refinement on what matters most. We applied SPOT to data
logged by RoboTutor, a Finalist in the $15M Global Learning
XPRIZE Competition to help children acquire basic literacy
and numeracy without adult assistance.

Index Terms— Intelligent Tutoring Systems, Educational
Data Mining, Software Reliability, Student Engagement, Us-
ability, Decision Trees

I. INTRODUCTION
An Intelligent Tutoring System (ITS) is a computer system

that enables learning in an effective and meaningful manner
by providing personalized instruction to learners. Intelligent
Tutoring Systems are becoming increasingly popular for
education across a wide variety of subjects from algebra
and geometry to foreign languages. In the 1970s researchers
envisioned an ambitious goal for computer-based instruction:
inspired by human teachers, they began applying principles
of machine learning and cognitive psychology to lend intel-
ligence to these tutors.

Ever since, the field has progressed from simple cognitive
tutors to more and more complex tutoring systems that
provide customized instruction and feedback to students [21].
Prior research has demonstrated that ITSs take extensive
time to author, with reported estimated of 200-300 hours of
development per hour of instruction [1]. As a result, many
authoring tools such as the Cognitive Tutor Authoring Tool
(CTAT) have been built to make ITS development more effi-
cient for programmers as well as non-programmers. Besides,
despite our growing understanding of human cognition, the
tutor authoring process, and advances in Machine Learn-
ing, developing effective tutoring systems remains hard.

*both authors contributed equally

Koedinger et al [20] identified 30 instructional decisions such
as spacing of practice, concreteness of examples, timing of
feedback etc., for authors of tutoring systems.

As our own Intelligent Tutoring system, we present Robo-
Tutor [28] (see Figure 1): an ITS developed as an open-
source Android application that teaches children aged 7-10 in
developing countries basic reading, writing, and arithmetic.
As one of the five finalists in the Global Learning XPRIZE
[14] competition, RoboTutor was designed based in part on
lessons from over two decades of educational research on
Project LISTENs Reading Tutor [27].

But with limited development resources and time, Intelli-
gent Tutoring Systems become very hard to make perfect.
Instead, a practical guiding principle is ’fix whats most
broken’.

Figure 2 illustrates the iterative development process of
RoboTutor. The process involves designing prototype activ-
ities, deploying them for field testing, collecting data as the
children do the activity, and mining this data to identify and
modify ”whats most broken.”

In this paper, we address the question: Is there a way to
use data from RoboTutor to automate discovery of design
issues and highlight them? To best address this issue, we
must answer the following subquestions pertaining to the
development and design process of RoboTutor:

• Reliability: How often and under what conditions does
RoboTutor crash or hang? How fast does a child recover
from the crash or hang?

• Recognition: How accurately does RoboTutor recog-
nize both written and spoken written input?

• Usability: How easily and efficiently can children op-
erate RoboTutor? Which activities do they find hard to
navigate?

• Engagement: When are the children disengaged the
most, and why?

To answer these questions, we present Statistical Probe
of Tutoring (SPOT), an educational data mining tool in-
tended to help ITS developers identify what’s most broken
that is, hot spots with respect to design criteria such as
software reliability, recognition accuracy, UI/UX usability,
student engagement, task difficulty, and learning. SPOT uses
quantitative metrics to evaluate such criteria; for example,
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metrics of reliability include the frequency of crashes and
hangs.

SPOT uses metrics to identify and predict the occurrence
of undesirable events, and trains a decision tree to discover
hot spots. A hot spot is a subtree with a high proportion of
undesirable events.

The intuitions that inspired this approach are as follows:
• Within a decision tree, undesirable events in the same

subtree are likely to have the same underlying cause.
• The feature combination associated with a subtree that

is, the sequence of tests from the root to the subtree
characterizes when the undesirable events tend to occur
and may reflect this underlying cause.

• Screen capture videos of a random sample of undesir-
able events in the subtree may shed further light on a
certain cause and inspire ideas for how to address it.

SPOT may be especially useful when user-testing in
person is impractical, such as in situations where the users
are far away, when children may behave differently when
adults are present, and when hot spots are important to fix
but too rare to observe in person.

A senior capstone project in Carnegie Mellons Bachelors
of Human-Computer Interaction program designed a UI/UX
for SPOT, and prototyped it using simulated data [17]. Here
we describe an implementation that uses automated decision
tree learning and runs on real data from RoboTutor.

Section II discusses related works. Section III describes
SPOT. Section IV summarizes our contributions to Intelligent
Tutoring Systems and presents avenues of future work.

II. RELATION TO PRIOR WORK

Many Intelligent Tutoring Systems record student inter-
actions in log files. These log files are major sources of
data for analyzing reliability, usability, student engagement,
motivation and learning.

A. Software Reliability

Intelligent Tutoring Systems, like other software products,
must be reliable. Frequent crashes or hangs might potentially
disengage learners and negatively impact user experience.
Prior studies focus on software reliability growth models
based on assumptions about the nature of faults and the
non-deterministic behavior of failures [15]. Connectionist
models have also been used to predict software reliability,
as they can generate models automatically from the history
of past failures [19]. In our work, since RoboTutor does not
explicitly log crashes, we could not use reliability models
that utilized data of past failures. Instead, SPOT uses simple
heuristics to label likely instances of a crash or hang, eg.
session changes on the same tablet with a short hiatus.

B. Usability

Usability is concerned with making a system easy to
learn and use. A natural approach to realizing usable ITSs
involves iterating between design and usability evaluation
until a satisfactory usable design is achieved. Granic et al
[16] present a scenario-based usability evaluation approach

to ITS evaluation. They evaluated the user interface of an ITS
based on objective performance measures of effectiveness
and efficiency, and users’ subjective assessment of their
system use. Their operational definition of usability enables
them to set quantitative goals of execution before evaluation,
as well as specify operationally defined criteria for success,
based on measurable attributes, such as error rate. Further-
more, subjective assessment of usability and user experience,
in addition to scenario-based user testing, has often been
utilized to assess the usability of ITS. [7], [8], [16].

C. Engagement, Off-task Behavior and Gaming the System

Children must focus on solving problems and engage with
a tutor to effectively utilize their time and learn. A child is
disengaged when he or she is not actively thinking about
the subject material, and/or attempts to ”game the system”
by systematically misusing the ITSs feedback to advance
through the curriculum. Studies such as [9] have shown
that off-task, and gaming behaviors are associated with poor
learning outcomes . There is also extensive literature on
detecting instances of student disengagement and lack of
motivation. Beck modeled student engagement based on
modified item response theory using a technique called
Engagement Tracing [18]. Engagement tracing modeled dis-
engagement without humans having to rate user interactions
or measurements with biological sensors, and showed that
time on task is an important predictor of disengagement.

Some years later, Cocea et al [10] used a richer bag of
features from log files to train a decision tree and detect
students motivation levels. These studies concluded that
student engagement can be effectively determined from basic
data recorded in log files.

Learner disengagement often manifests itself as gaming
behavior in which students take undue advantage of the tutors
feedback and hint architecture. Baker et al [3], [4], [12]
extensively examined gaming behavior and developed latent
response models to classify instances of gaming the system.

Successful detectors of engagement and off-task behavior
in the past have often relied on either a limited set of
activities (or questions), for example [18] examined student
performance on multiple-choice cloze questions only, or field
observations of student affect to train statistical or machine
learning models [9]. In our work, we did not have any data
from observers to ascertain whether a child is off-task while
using RoboTutor. Also, RoboTutor has many different kind
of activities such as story reading activities, multiple choice
activities, and writing activities.

Metrics such as number of bailouts in activities, and av-
erage duration per attempt (see Table II) under Engagement
were inspired by predictors of gaming behavior. Studies [5],
[10], [11], [13], [18] have shown that these predictors are
accurate in detecting disengagement.

D. Learning

While tools like [22] that explore logs of student and
tutor interaction exist, to the best of our knowledge SPOT
is the first tool that specifically facilitates the discovery of

90



Fig. 1: A math activity in RoboTutor: The child has to evaluate
5 + 2 and write the answer Fig. 2: Data-driven Iterative Development process

design issues. Besides, SPOT relies only on log files and
screen captured videos, both of which are easy to record.
In contrast, previous studies have utilized field observations
and questionnaire evaluations that are often time and resource
intensive.

III. METHODOLOGY

A. Organization of RoboTutor

RoboTutor uses a variety of activities such as story read-
ing, math activities etc. to teach children basic reading,
writing, and math skills. Figure 1 illustrates a math activity
teaching addition of two numbers. RoboTutor is organized
as follows:

1) Activity: A tutor or game that teaches a certain skill,
such as addition of two numbers by presenting a
sequence of items that exercise the skill.

2) Item: An item is a stimulus presented visually and/or
orally. Depending on the activity, the child taps, speaks
or writes a response. In figure 1, the problem of adding
20 and 51, and writing their sum is an item of a math
activity. The next item is shown when the child gets
the current item right. An item may require multiple
steps.

3) Step: A part of an item the child does. For example
figure 1 is a two-step item. Adding numbers in the
ones’ place is the first step, while adding numbers in
the units’ place is the second step. A step may require
many attempts.

4) Attempt: A single input by the child within a step. An
attempt can be either correct or incorrect. Steps can
be composed of more than one attempt, as children
are prompted to re-attempt after incorrect attempts.
Activities vary in the number of incorrect attempts
allowed before RoboTutor automatically advances to
the next step.

The RoboTutor log data consists of transactions. A trans-
action is a record of an attempt at a step of an item, which
can be a successful, unsuccessful, or unfinished attempt. An

attempt where a child quits an activity is regarded as an
unfinished attempt.

We also derived three levels of aggregates from the dataset:
• Step level: Aggregation over all the attempts at a step,

e.g. number of attempts
• Item level: Aggregation over all steps of an item, e.g.

time spent on items
• Activity level: Aggregation over all items of an activity,

e.g. percent of items correct

B. Data Collection
The dataset used by SPOT to discover hot spots is derived

from the performance logs from RoboTutors beta field testing
sites in Tanzania between April and July 2018, and is
composed of 357,115 student transactions from a total of 198
user IDs (students aged 7-10), spanning across approximately
212 student hours. After data cleaning, we get the fields in
the logs relevant to SPOT, as listed in Table I. SPOT also
uses screen capture videos of RoboTutor recorded using AZ
Screen Recorder [24], used by developers to further examine
the obtained hot spots.

C. Approach
SPOT aims to help ITS developers by focusing their atten-

tion on design issues that hamper effective tutoring. SPOT
automates the discovery of these design issues based on
different criteria and quantitative metrics. Figure 3 illustrates
the SPOT work flow.

A design criterion can be formally defined as any property
of an Intelligent Tutor that we wish to analyze. We classify
Design issues into one of these design criteria: Reliability,
Recognition, Usability, Engagement and Learning. For ex-
ample, Figure 5 illustrates a design issue under Recognition,
where the writing recognizer tends to mis-classify 7 as 1 in
the absence of its middle stick.

A metric is a heuristic that facilitates the search for design
issues under a design criterion. For example, the rejection
rate of responses in writing activities is a metric of writing
recognition. A metric of reliability is: ”Small hiatus between
session changes of the same child on the same tablet”. A
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Fig. 3: Workflow of SPOT

short time interval between two sessions of the same child
may indicate that RoboTutor crashed, and the child had
to restart RoboTutor. Table II enlists various metrics under
different criteria.

A metric approximately labels each row of the data
(representing either an attempt, item or activity depending
on the aggregation) as: a suspicious (positive) instance
indicating a design issue, or a non-suspicious (negative)
instance. For example, all attempts at writing activities where
the responses were rejected, were labeled as suspicious
instances. Our labeling qualifies as ’approximate’ because
a metric does not guarantee finding a design issue. In our
example, suspicious instances may also include incorrect
responses, besides correct responses that are rejected due
to mis-recognition. Only correct responses that are rejected
due to mis-recognition are potential design issues with the
writing recognizer.

Decision trees have been extensively used in the past for
summarizing, generalizing as well as classifying data [2],
[23]. Decision trees also enjoy widespread use in educational
data mining due to their comprehensibility [25]. SPOT uses
the approximately labeled data to train a decision tree for
each metric, using features such as the name of activity,
student response, expected answer, duration of an attempt
etc. Table 1 lists all the features used to train the decision
trees, and Figure 3 illustrates a portion of the decision tree
for the rejection rate metric. SPOT trains these decision
trees using the Classification and regression trees (CART)
algorithm. CART is a non-parametric decision tree learning
technique that can learn either a classification or regression
tree, depending on the type of the dependent variable. CART
constructs a decision tree top-down, by choosing a feature
that best splits the set of data items at each step.

SPOT uses the decision trees to search for non-random
homogeneity in suspicious instances. Our intuition suggests

that undesirable events in the same sub-tree are likely to
have the same underlying cause. Therefore, a big cluster
of suspicious instances might suggest an underlying design
issue that needs immediate fixing. A hot spot is a cluster
of instances (an instance can be an attempt, step, item or
activity) having bad values of a metric for any given criterion.
In a decision tree, a hot spot is a subtree that contains a
significant number of bad instances. In our example, most
suspicious instances having 7 as the expected answer are
grouped in the same subtree, and therefore this subtree is a
hot spot.

In any decision tree there are as many as 2n subtrees,
where n is the number of nodes in the tree. But every subtree
is not a hot spot. For a subtree to be counted as a hot spot it
must be pure, i.e. it must concentrate the suspicious instances
as much as possible, and it should also contain a significant
number of suspicious instances. A subtree must balance
both the properties to qualify as a hot spot. Therefore,
leaves of a decision tree are not hot spots in spite of being
pure, because they do not contain a significant number of
suspicious instances. Similarly, the entire tree is not a hot
spot in despite covering all the suspicious instances, because
it is significantly impure. SPOT searches for hot spots in the
trained decision tree using a scoring function. This function
evaluates the ”heat” of a subtree. Formally, the heat or score
of a subtree is a function of how many of its children are
bad instances, and how many of the total bad instances lie
in the subtree. We operationalize the notion of heat as the
F1 score of a subtree, defined as:

F1 =
2PC

P + C

where:

P (precision) =
number of suspicious instances in hot spot

total number of instances in hot spot
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Granularity Field Type Fields

Attempt

Feature

Duration (sec)
Tutor Name
Tutor Level

Problem Name
Student Input

Activity Status
Expected Answer

Hiatus
Tutor Matrix (Category)

Outcome
Student Repeated Activity (binary)

Student Took Hint (binary)
Tablet Name

Attempt Number

Other

Session ID
Student ID

Time of attempt
Tutor Sequence Session

Tutor Sequence User
Village

Activity / Item

Feature

Tutor Name
Tutor Level

Tutor Matrix (Category)
Tutor Sequence Session (for Activity)

Tutor Sequence User (for Activity)
Problem Name (for Item)

# of attempts
# of items (for Activity)

Activity / Item Duration (sec)
Avg, min, max duration of attempt

# of correct attempts
% of correct attempts

# of bail-outs (activity quit)
# of scaffolds (i.e hints taken)

# of re-attempts
# of activity repeats

Activity / Item Hiatus

Other Time of Activity / Item Start
Time of Activity / Item End

TABLE I: Data from Performance Logs

C(coverage) =
number of suspicious instances in hot spot
total number of suspicious instances in data

The higher this F1 score of a subtree, the hotter it is. We
term the top N hottest subtrees as the hot spots. Figure 4
illustrates a particular hot spot in a portion of decision tree.

Fig. 4: Hot spot illustration. Nodes in decision tree with high
F1 scores are taken as hot spots

SPOT automatically characterizes each of the hot spots
by conjoining every test on the path from the root node
of the tree to the hot spot. Hot spot characterization refers
to the feature combination associated with a hot spot, and
indicates when the undesirable events tend to occur and may
reflect this underlying cause. In our example, the hot spot is

characterized as: ”expected answer = 7.”
After discovering a hot spot, SPOT picks up a random

sample of suspicious instances, and presents their corre-
sponding screen capture videos to the developers. These
screen capture videos may be able to explain the underlying
cause or the design issue, and inspire ideas on how to address
it. Figure 5 illustrates a screen shot from the screen capture
videos for the hot spot characterized as: ”expected answer
= 7.” Looking at the sample of screen capture videos from
this hot spot, we realized that the writing recognizer often
mis-recognizes 7 in the absence of its middle stick. On
examining further videos, we also realised that 7 is most
often mis-recognised as 1 in absence of the middle stick,
leading children to confuse between the two. SPOT provides
links to the exact second by referring to a video metadata
table. The video metadata table is a mapping between the
performance logs, tablet IDs, video names (file IDs) and
location of videos. Since screen record videos of RoboTutor
were stored in Google drive, we could design SPOT to
display URLs indexed to the exact occurrence of the attempt
or item.

Criterion SPOT Metrics Positive Labeling Criteria

Reliability Crashes (quick session
changes)

Session ID changes in
successive attempts on the
same tablet within a very
short period (indicative of
a crash), mark the first
session change attempt as
positive

Recognition Rejection rate
Rejection (Outcome = IN-
CORRECT) for spoken
and written input

Usability

Hiatus: time between end
of previous attempt / item
/ activity, and start of the
current one

Above mean hiatus

Engagement

# of bailouts in activities Activities with at least one
bailout

% correct attempts in ac-
tivities

Activities with % correct
< 0.5 and # of incorrect
attempts ≥ 2

Average Duration per at-
tempt

Above mean average du-
ration

Number of reattempts per
item Number of reattempts ≥ 2

TABLE II: SPOT Metrics and Labeling Criteria

IV. RESULTS, CONCLUSIONS AND FUTURE
WORK

We used SPOT to identify hot spots in the criteria
mentioned. Based on SPOT’s findings (characterization and
looking at videos), we proposed numerous design changes to
RoboTutor. Table III presents some of the findings and their
corresponding design implications.

In this paper we introduced SPOT, a tool to simplify data
driven iterative design of an Intelligent Tutoring System by
focusing on criteria such as reliability, recognition, usability
and engagement. We described some hot spots that SPOT
discovered and their design implications. SPOT can also be
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Criterion SPOT Findings Design Implications

Reliability
Crashes especially occur
in CountingX and Story
Reading activities

Implement crash logging,
Examine CountingX and
Story Reading activities
for bugs

Recognition

Children confuse between
number pairs like 1 and
7 (often forget the middle
dash in 7) and 5 and 3

Bias data sources of num-
ber copying and dictation
to include such frequently
confused digits for better
practice

Usability
Children spend unusually
long time per story in
Story Reading activities

Add a timeout for story
reading

Engagement

Children tend to bail out
of an activity when given
the same problems to
solve repeatedly

Children should not be
given the same problems
repeatedly

TABLE III: SPOT Findings and Implications

Fig. 5: Recognizer mis-recognizing 7 as 1 because of absence
of middle stick - instance provided by SPOT

used for other Intelligent Tutoring Systems, since it only
relies on very simple data sources.

As future work, we plan to develop SPOT into a web
application and integrate it into LearnSphere [26], one of
the worlds largest learning analytics platforms combining
various tools for mining educational data from a variety
of sources. We believe SPOT would benefit many tutor
designers, help them iteratively improve their tutors, and in
turn save a lot of time. We also plan to experiment with other
scoring functions. Additionally, we wish to explore wheel-
spinning [6] to discover if there are skills that children are not
learning, as well as identify what design issues cause wheel
spinning and can be eventually used as a SPOT criterion.
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Abstract— As autonomous robots make increasingly more
decisions that significantly impact the lives of humans, it is
essential for these agents to incorporate human norms in their
decision-making processes. Robots can integrate these norms
with traditional methods for learning how to accomplish tasks
so that they can learn how to act in environments where
actions can have social ramifications. To address the issue of
scalability in previous work, we propose a novel framework,
called penalty-modified Markov decision processes (PMMDP),
for reinforcement learning in norm-rich environments. We
formalize the learning and decision-making problem as solving
a Markov decision process that is modified only as norms are
violated. We show that our method has worst-case guarantees
for the size of the state space that are equivalent to the average-
case for previous methods.

Keywords: model-free reinforcement learning, normative
reasoning

I. INTRODUCTION

Emerging autonomous robots will make increasingly more
decisions that significantly impact human lives. For that
reason, these robots must incorporate human values and
preferences into their decision-making processes. Robots can
integrate these values and preferences - hereafter referred
to as norms - with traditional methods for learning how
to perform tasks so that they can learn how to act in
environments where there may be social ramifications to
actions. For example, the owner of a domestic robot may
desire for it to not interrupt others while they are talking.
If this robot that is tasked with communicating information
to someone, but that has no sense of the “do not interrupt”
norm, then it will not consider that norm when learning to
accomplish its goal.

Previous attempts to integrate normative reasoning and
task-completion methods suffer from a lack of scalability.
In part, this issue stems from the coupling of norms and
their resulting penalties, which means that norms that share
the same penalties are considered to be separate, independent
norms. In reality, penalties are often shared across various
norm violations. For example, a robot may be sent to a
particular room in the house for a “time-out” for a variety
of different norm violations, but the end result is still the
same: a “time-out”. If the robot then violates another norm
that leads to a “time-out” while on time-out in that room,
there is no need to apply and keep track of that punishment

twice.
In this work, we propose a novel framework, called

penalty-modified Markov decision processes (PMMDPs), for
reinforcement learning agents to learn how to act in an envi-
ronment that incorporates norms. We formalize the learning
and decision-making problem as solving a Markov decision
process (MDP) that is modified only as norms are violated.
We show that our method has worst-case guarantees for the
size of the state space that are equivalent to the average-
case for previous methods. We conclude by proposing future
advancements to our method.

II. BACKGROUND

A Markov decision process (MDP) M “ xS,A, T,R, γy
consists of the following components: a finite set of states
S, a finite set of actions A, a state transition probability
function T : S ˆA ˆ S Ñ r0, 1s that defines the transition
dynamics from one state to another, a reward function R :
S ˆ A P R, and a discount factor γ P r0, 1s that represents
the difference in importance between present and future
rewards. An MDP poses the problem to be solved by an
agent, collectively referred to as a domain. The goal of a
reinforcement learning (RL) agent is to improve its policy,
π : S ˆ A Ñ r0, 1s, which is defined as a probability
distribution over state-action pairs, to achieve an optimal
policy, π˚, that maximizes the cumulative expected rewards.
Generally, an RL agent approximates one of two types of
value functions in the process of learning a policy: the state-
value function or the action-value function. The state-value
function expresses the expected future discounted reward
from a particular state, recursively computed over rewards
received following the policy through state-action space as
V πpsq “ Eπr

ř8

k“0 γ
krt`k`1|s “ sts,@s P S. The action-

value function expresses the expected future discounted
reward from a particular state given that that the agent
takes a particular action, recursively computed over rewards
received following the policy through state-action space as:
Qπps, aq “ Eπr

ř8

k“0 γ
krt`k`1|s “ s, at “ as,@s P S. An

optimal value function V ˚ or Q˚ can be derived from the
optimal policy for the MDP.

A common means of solving for the optimal value function
is to use model-free reinforcement learning, where the agent
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tries to directly learn the optimal policy. Model-free rein-
forcement learning algorithms can be either off-policy, like
Q-learning [1], or on-policy, like SARSA [2]. An off-policy
learner updates its value function based on the maximum
value of the next state, while an on-policy learner updates
its value function based on the actions executed in the policy
that is currently being followed. For this reason, on-policy
algorithms tend to be more conservative with exploration,
avoiding costly actions.

III. RELATED WORK

In general, the majority of the papers in machine ethics
consider agents whose primary and only task to reason
ethically [3]–[5]. Prior work in norm-aware reinforcement
learning uses reward shaping to incorporate human desires
that are independent from the task-completion goals [6]
or considers the issue of incorporating human values and
preferences in a reinforcement learning agent by learning an
ethical utility function that is a part of the hidden state of
partially observable Markov decision processes [7]. However,
in these approaches, only norms with reward penalties are
considered, but long-term penalties, such as those that mod-
ify the components of the state space and/or the transition
function, are not.

There is more work in constructing scalable computational
frameworks for planning [8]–[10]. There exist two recent ap-
proaches that are most similar to ours. One approach, called
normative Markov decision processes (NMDPs), explicitly
represents norms and includes all possibly relevant norms
in the state-space representation [11]. In a reinforcement
learning setting, the use of this representation causes the
problem succumb to the curse of dimensionality [12], an
exponential explosion in the total number of states as a
function of the number of state variables, which means
that the problem is computationally intractable with a large
number of norms. The modular normative Markov deci-
sion process (MNMDP) framework seeks to mitigate this
issue by constructing a separate Markov decision process
for each individual norm and for each set of interacting
norms [13]. Notably, each individual MDP consists of the
original components of the state space in addition to the
relevant norm(s). This representation suffers from increased
state-space size when there are a large number of interacting
norms in the environment. In the case where there are a
large number of interacting norms in the environment, using
the NMDP approach is preferable to using the MNMDP
approach because the total number of states is less in the
former than in the latter, which we prove in Section VI.

IV. PENALTY-MODIFIED MARKOV DECISION PROCESSES

In this section, we detail our novel framework, first fo-
cusing on our representation for norms. We then discuss the
different types of norms allowed by this framework. After
that, we show how these norms are included in the MDP
formalism, as well as how to modify the various components
of the MDP to incorporate the penalties that arise from
violating the norms.

A. Norm Definition

Here we depart from previous literature in our represen-
tation of norms by decoupling the changes that arise when
an agent violates the norm from the norm itself, enabling
the application of these modifications in the appropriate
components of the MDP. In our framework, a norm n is
represented as:

n P N “ xC, σy (1)

where C is the violation condition(s) and σ consists of the
MDP modifications. The violation condition tests whether
the norm has been violated; the modifications to the MDP
represent the penalties that arise when a particular norm is
violated.

1) Violation Condition: The violation condition C is a
propositional function that determines whether a norm has
been violated. It is defined as:

C : st ˆ aˆ st`1 Ñ r0, 1s (2)

where st is the state from which the agent took the action a,
and st`1 is the resulting state. If a particular norm has been
violated, it returns a 1; 0, otherwise.

The violations of the norm are conditioned on any number
of state variables, and need not include all of the state
variables. For example, the contents of the condition function
for a norm dictating that a domestic robot tasked with
delivering a message ought to not interrupt humans while
they are speaking could test the following components of st:

‚ Is the person to whom the robot is delivering the
message in a conversation?

‚ Is the message important?

in combination with testing if the robot took the action,
speak, when in st. If all of the aforementioned conditions are
true in st, then the agent is in violation of the norm and all
of the modifications associated with violating that norm are
applied to the MDP. Because these checks are conditioned
on state variables and not whether a particular, pre-fixed state
has been reached, norms can be applied to domains that share
common attributes.

2) Violation Modifications: The set of violation modifi-
cations are the modifications to the MDP that are made as
a result of violating a norm. There are three components in
the set of modifications xσR, σp, σT y P σ, which represent
modifications to the reward function, the state space (the
penalty), and the transition function, respectively.

The first component modifies the reward function, impos-
ing what is analogous to a fee if the agent has violated a
norm. It represents the more immediate penalty for choosing
not to follow the action prescribed by a given norm. It is
represented by:

σR : rt Ñ rm (3)

where rt is the original reward received for taking the action
and rm is the new reward received based on the norm
violation.
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Algorithm 1 Modifying the MDP with Norms
function APPLY-PENALTIES(st, a, st`1)

for p in N do
if PRE-EXISTING-PENALTY(s) _ IN-VIOLATION(st, a, st`1) then

st`1 Ð ADD-PENALTY-TO-STATE(st`1, p.σp)
function MODIFYING-THE-MDP-WITH-NORMS( )

COMPUTE-TRANSITION(st, a, st`1) Ź compute for unmodified state
APPLY-PENALTIES(st, a, st`1)
COMPUTE-NORM-MODIFIED-TRANSITION(st, a, st`1) Ź compute for norm-modified state
return st`1

The second component consists of a penalty flag that
modifies the state space to indicate that a particular violation
has occurred. It is represented by:

σp Ñ 1 (4)

and is a variable that takes on a single value, 1, corresponding
to the violation of a particular norm. If the agent takes an
action to violate the norm, then the associated penalty flag
is added to the resulting st`1, as well as all future states
encountered in the episode.

The inspiration for this type of penalty is from how
penalties are applied in the real world: if someone takes an
action that results in a violation of a norm or a law, then the
penalties are represented as separate entities. For example, a
robot can either enter the bedroom or not, which is separate
from other potential consequences, like a ban from entering
a bedroom, a ban from touching a particular item, and so on.

The third component modifies the transition function,
taking the agent to a new state after a norm violation. It
is represented by:

σT : st`1 Ñ st`1 Y σp (5)

where st`1 is the original resulting state from the transition
function and st`1Yσp is the new resulting state that includes
the penalty for the norm violation.

It represents the long-term penalty that arises from violat-
ing a norm. For example, suppose the penalty for the robot
being rude to guests is a “time-out” to a particular room
in the house. If an agent violates the politeness norm and
is restricted to the “time-out” room, then the result is an
addition of penalty flag that modifies the state space, as well
as a change in, at a minimum, the x and y coordinates of the
agent to reflect the movement of the robot to the “time-out”
room. Until the end of the episode, the agent is then unable
to move from the “time-out” location.

These transition modifications can alternatively be used to
help guide the agent along the right path after a mistake.
For example, suppose there is an agent that is attempting to
navigate to a particular area. While attempting to reach that
area, the agent violates a norm by choosing some exploratory
action. Instead of imposing a transition modification as a
punishment, the transition modification is applied to con-
strain the agent’s x-coordinate to one that is shared with
the goal location, enabling it to reach the goal faster while
making fewer mistakes.

B. Types of Norms
There exist two types of norms: those that are implicit and

those that are toggleable. Implicit norms are norms that are
baked into the MDP and cannot be turned off. We primarily
focus on this type of norm in this work.

Toggleable norms are dependent on some feature of the
MDP being turned on. This representation is akin to a
condition function where if some violation has already
occurred, then the penalty is compounded. Suppose a robot
is already receiving some punishment, represented as a
penalty in the state space, for taking an undesirable action.
It then takes another action that violates a norm, where the
violation of that norm depends on the robot receiving the
aforementioned punishment. Notably, if the agent were to
have taken that same action from that same state, sans the
norm penalty, then it would not be in violation of that norm.
This capability enables norms to be conditioned on features
of the environment that may change, such as visitors who
may be going in and out of the home.

C. The Penalty-Modified Markov Decision Process
A penalty-modified Markov decision process (PMMDP)

is a six-tuple xS,A, T,R, γ,N y consisting of the following
components: a finite set of states S, a finite set of actions A, a
transition function T : SˆAˆS Ñ r0, 1s, a reward function
R : SˆA P R, an ordered set of norms N applicable in the
state space, and a discount factor γ P r0, 1s. The ordering
of the norms is crucial for producing a principled way to
apply the penalties. The ordering represents the importance,
or priority, of the norms and the resulting penalties.

V. LEARNING IN AN ENVIRONMENT WITH NORMS

For an agent to learn in an environment with norms, the
penalty-modified MDP can either be precomputed or mod-
ified during the learning process. The application of norm
penalties to the MDP proceeds is shown in Algorithm 1.
When an agent takes an action in an environment, the original
transition is computed, sans norms. Using the set of norms,
the environment checks for any resulting penalties from norm
violations or whether the agent violated a norm by taking
action a from state st. If there are existing or new penalties,
then the penalties are applied to the corresponding aspect
of the MDP: the state, the transition function, and/or the
reward function. Then, the transition is recomputed including
modifications to the state space.
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VI. STATE-SPACE SIZE ANALYSIS

In this section, we show that, by using our definition of
norms and the resulting MDP, we do not encounter the same
state-space explosion as previous methods. We show the
benefit of our method by, first, showing that using there exist
some cases where using the NMDP approach is preferable
to using the MNMDP approach. Next, we show that our
method is always at least as good as the MNMDP and
NMDP approach in terms of the size of the state space. With
our approach, the complexity of the MDP is only increased
with the number of penalties that are imposed by the norm
violations. If the agent does not violate any norms, then
no penalties are imposed, and, thus, the agent solves the
original MDP, making the best-case size of the state space
equivalent to that of the original, normless MDP. Importantly,
this analysis is only for binary norm features; future work
will extend this method to handle non-binary features. See
Table I for an overview of our analysis.

Theorem 1. There exist some cases where using the NDMP
approach is preferable to using the MNMDP approach.

Proof. Let n be the total number of norms. Let d be the total
number of possible interactions between the norms. Then,
as claimed [13], the number of states in the fully normative
MDP framework is of the order Ωp2nq and the number of
states in the MNMDP framework is of the order Ωpndq. Thus,
using the MNMDP framework is preferable if nd ă 2n,
which can be converted to log2n

d ă n by taking the log
of both sides. Then, dplog2nq ă n, so d ă n{log2n. Thus,
the MNMDP framework is preferable to the fully normative
MDP approach when the number of interactions is less than
n{log2n.

Theorem 2. Our method is always as good as the MNMDP
and the NMDP approaches.

Proof. Let p be the number of possible penalties. In the
worst case of a one-to-one mapping of penalties to norms,
where each norm has its own unique penalty, the number of
penalties p is the same as the number of norms n (p “ n);
however, in reality p ď n because the set of norms to

Approach Number of States (Order of) Note
NMDP 2n

MNMDP nd If d ą n{lgpnq,
more states created

than NMDP.
PMMDP 2p, pd p ď n

TABLE I: Here is the state-space size analysis for each
of the three compared methods. The state-space size for
NMDPs is exponential in n, where n is the number of
norms that can be either on or off. The state-space size
for MNMDPs is polynomial in d, where d is the maximum
number of interactions between norms. The worst-case state-
space size for PMMDPs is exponential in p or polynomial
in d; however, importantly, p ď n, so no more states are
created than in the other two methods.

penalties consists of one-to-one or many-to-one mappings.
Let |P | be the number of possible concurrent penalties.
Because p ď n, |P | ď 2|P | ď 2n. Continuing with the
aforementioned notation, let d be the maximum number of
concurrent norms. Then,

|P | “
d
ÿ

i“1

ˆ

p

d

˙

“

ˆ

p

1

˙

` ...`

ˆ

p

d

˙

Ñ p1 ` ...` pd (6)

Hence, the number of states created in our approach is of the
order Oppdq, meaning that our worst-case bound is equivalent
to the average-case of previous methods.

VII. CONCLUSION

We present a novel framework for incorporating normative
and task-based reasoning for reinforcement learning that can
modify states, transitions, and rewards. The number of states
in our framework is less than other frameworks because it
depends on the number of penalty flags, not on the number
of norms (p ď n). The computed worst-case bound on the
number of states in our method is of the same order as the
average cases for previous work. Our framework also avoids
redundant states, adding no more states than are included in
the naive case.

VIII. FUTURE WORK

Our complexity bounds are not tight; the actual perfor-
mance of our framework will likely be better in practice.
We will empirically evaluate our method to better estimate
actual performance. We will conduct this evaluation on the
scenarios in previous work to empirically validate our claims
and provide a better comparison to existing frameworks.

Because domestic service robots are a promising appli-
cation of normative reasoning due to the rich and varied
norm preferences and representations, we will then use our
novel environment that we created using BURLAP, House-
hold, to represent our target test environment of domestic
service robots. In Household, which is loosely based off of
Cleanup [14] an agent navigates through rooms and doors to
reach a desired goal. The agent can move north, south, east,
or west; it can also attempt to open doors, which can either
be locked or unlocked. If a door is locked, then the agent

Fig. 1: An example 18x18 household environment with five
doors and five rooms. Gray doors are locked; white doors are
unlocked. The red dot in the blue room is the agent. The goal
of the agent is to reach its target destination while violating
the minimum amount of norms.
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cannot pass through it; if a door is unlocked and open, then
the agent can choose to pass through it. Figure 1, shows an
example configuration of an 18x18 grid consisting of five
rooms and five doors. We will use a number of different
configurations of the Household environment, as well as a
variety of norms, to test the efficacy of our method in our
target application area.
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Realistic Simulation System for Environmental Understanding of
Autonomous Driving Vehicles

Akari Minami1, Zhiqian Qiao2, John M. Dolan3

Abstract— Currently, the behavior of autonomous vehicles
tends to be unpredictable, which can affect the behavior of
other vehicles and people around them. To improve this and
make autonomous vehicles drive similarly to human driving,
many researchers are working on algorithms. In this project,
we use Inverse Reinforcement Learning (IRL). Applying IRL,
we need to collect human driving data to get reward functions.
For this, we chose using a simulator over driving with actual
cars for convenience. We asked subjects to drive in a simulator
with a steering wheel and pedals to obtain the data, making
this human experience as realistic as possible. In this paper,
we document the driving interface with the simulator and the
data collection process.

I. INTRODUCTION

A. Current Problem of Autonomous Driving

Autonomous vehicles work very well in tasks such as
obstacle avoidance, lane-keeping and car-following. How-
ever, when merging into another lane, such as occurs in
intersections and lane changing, the way they drive is not
natural compared to actual human driving. As they predict
other cars’ future trajectories and try to stay out of their way,
they tend to be too defensive and indecisive. For instance,
they wait until surrounding cars go away, block two lanes
when they want to switch to a third lane, and suddenly stop
in the middle of an intersection when a pedestrian enters
a crosswalk even though there is enough distance to finish
turning. This can affect other vehicles’ behavior in the real
world. For example, they may simply block a human driver’s
way and cause them to stop/slow down.

B. Need for Simulation

Many researchers are working on algorithms to improve
these behaviors. Human driving data are a good source for
deriving a competent autonomous driving model, but it is
difficult to formulate the reward function for driving (for
Reinforcement Learning) and we want autonomous driving
to be applicable in environments it has not experienced
(for imitation learning). Hence, we chose to use Inverse
Reinforcement Learning (IRL) in this research. To apply
IRL, we need to collect human driving data to generalize
a human driver’s behavior model and to find a preferred
reward function. There are two ways to collect data: actually
driving in a town with a real car and driving in a simulator.

1Akari Minami is a 2018 Robotics Institute Summer Scholar and is a
Mechanical Engineering undergraduate at Kyushu University, Japan. This
work was supported by TOBITATE! Young Ambassador Program.

2Zhiqian Qiao is a PhD student at Robotics Institute in Carnegie Mellon
University.

3Dr. John M. Dolan is with the Robotics Institute at Carnegie Mellon
University

In the actual driving approach, you need to put cameras
and sensors on the car, and you might need to care about
specific traffic conditions or go to places with an ideal
environment [2]. On the other hand, a simulator doesn’t
require you to go somewhere else and enables you to create
an environment. As we need to obtain a sufficiently large
amount of human driving data to train autonomous vehicles,
which is time-consuming and laborious, we decided to use a
simulation for its convenience. There is also a safety concern
with testing algorithms in the real world since they might
behave in unexpected ways. Thus, we would like to use a
realistic simulation for this human data collection stage and
to simulate driving policies derived from the reconstructed
cost function as well [1]. In this project, we set an urban
area as a target environment.

C. Our Goal

Our final goal is to make autonomous vehicles drive as
humans do using IRL. We will apply the obtained reward
function of the human behavior model to the behavior of an
autonomous vehicle itself. As a first step, we set the goal
for this project to make the human experience in simulation
as realistic as possible and to collect human driving data.
For data collection, we asked human subjects to drive a car
in the simulation using a steering wheel and pedals (Figure
1). Making the response of the simulator to human action
comparable to actual driving is essential in order to make a
subject feel like he/she is driving a real car with its wheel
and pedals.

Fig. 1. Driving in a simulator with a steering wheel and pedals
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D. Related Work

Broadly speaking, an objective of this research is to make
the behavior of autonomous driving better using IRL. This
section will introduce previous research work using IRL.

1) Using human driving model as a model of vehicles
around an autonomous vehicle: In both our project and
this work, we use IRL to learn a reward function which
enables us to mimic human driving. The differences are in
the objective and the object modeled by the reward function.
Our objective is to make an autonomous vehicle behave like
a human-driven vehicle, so we derive the reward function
of the autonomous vehicle itself. On the other hand, in
[1], they wanted autonomous driving to be more effective
by enabling an autonomous vehicle to leverage effects on
human actions, so they applied the reward function to human-
driven vehicle models around the autonomous vehicle. In the
model they assume, the interaction between an autonomous
vehicle and a human driver is dynamic system, in which
the autonomous vehicle’s action has immediate effects on
human action as well as the vehicle’s state. They proposed a
dynamics model for this system by modeling the human as
optimizing the reward function they got from IRL. In case
studies, they gave an autonomous vehicle reward function
with a specific desired human action, and the behavior of
the trained autonomous vehicle actually affected the human
model’s behavior in the way they expected. After that, they
did user studies, in which a subject drove a targeted vehicle
with a trained autonomous vehicle, and the behavior of the
autonomous vehicle could purposefully modify human be-
havior. These results show autonomous vehicles can generate
human-interpretable behaviors through optimization, which
uses a reward function learned through IRL [1].

II. DATA COLLECTION

A. Simulator

We chose the CARLA simulator and Logitech G920
(steering wheel and pedals) for this project. CARLA is an
new open-source simulator for autonomous driving research
released on March 27, 2018. In addition to open-source
code and protocols, CARLA provides open digital assets
(buildings, vehicles, pedestrians, traffic lights, streets signs)
we can use freely, which allows the autonomous vehicles to
run in a realistic environment. The environment has 2 default
town maps (you can create a new one as well) and 15 weather
presets, and you can also set the number of other vehicles
and pedestrians [3].

B. Controlling Ego Vehicle with Steering Wheel and Pedals

In order to collect human driving data by letting subjects
drive in simulation, we interfaced the simulator with the
steering wheel and pedals. To make driving in simulation as
close as possible to real driving, we set the right pedal as the
accelerator, and the middle pedal as the brake. The remaining
third pedal is not used in this project since we assume an
automatic transmission. The Logitech pedal outputs are 1
when not pressed and -1 when pressed all the way down,
but CARLA expects a [0, 1] range with zero acceleration

TABLE I
DESCRIPTION OF THE LOGITECH INPUT

Function Description
right pedal throttle Throttle input between [0.0, 1.0]
middle pedal brake Brake input between [0.0, 1.0]
wheel steer Steering input between [-1.0, 1.0]
LB plate toggle reverse T/F (In reverse gear when True)
B button hand-brake T/F (Hand-brake is engaged when True)
X button toggle autopilot T/F (In autopilot mode when True)
Y button change episode Save graph and start new episode

for the input 0, so the sign and the range of the pedal input
were changed as shown in TABLE 1.

For conversion of the throttle input from the pedal (Ipt)
to the simulator (Ist):

Ist = (−Ipt + 1.0)÷ 2.0

The Logitech brake is stiffer than a brake in an actual car,
so the brake input from the pedal (Ipb) was converted to the
brake input to the simulator (Isb) as follows:

Isb = (1.0− Ipb)× 3

Since the steering was not responsive enough with the
original steering input (Iws), the steering ratio was changed
to depend on the steering level (Iss):

Iss =


Iws × 2.0− 0.08 (Iws < −0.1)
Iws × 3.0 + 0.02 (−0.1 ≤ Iws ≤ −0.01)
Iws (−0.01 < Iws < 0.01)
Iws × 3.0− 0.08 (0.01 ≤ Iws ≤ 0.1)
Iws × 2.0 + 0.08 (0.1 < Iws)

C. Data Item

As subjects drove, we collected the following data at each
step:

• RGB image from default camera: view of scene
• Raw image from depth map camera: depth of objects

in a view (Max render distance: 1 km ahead)
• Raw image from semantic segmentation camera: view

classified with tag information
• Sensor data from ray-cast-based rotating LIDAR: dis-

tance between the car and surrounding objects
• Driving data of the human-driven vehicle: time step,

time, input from a wheel and pedals (steer, throttle,
brake), speed, acceleration, transformed location (x, y,
z), transformed orientation (x, y, z), transformed rotation
(pitch, yaw, roll)

• Driving data of other vehicles in the town: time step,
time, vehicle id, speed, transformed location (x, y, z),
transformed orientation (x, y, z), transformed rotation
(pitch, yaw, roll)

All of the images are obtained from the driver’s perspective,
which is the same as what subjects see while driving. A
graph of shifts in input from wheel and pedals, speed, and
acceleration over time can be shown at the same time as
the subject is driving and saved as an image at the end of
each episode. This graph shows speed and acceleration of the
human-driven vehicle corresponding to throttle/brake pedal
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input against time. The images and the graph are shown in
Figure 3.

III. USER STUDIES

We conducted user studies and collected human driving
data. The focus is on the trajectory and the way the driver
accelerates/decelerates at curves as well as according to
traffic lights and speed limits. As we want to see basic driving
behavior of human, there is no interaction with other vehicles
and pedestrians in this study.

A. Settings and Configuration of CARLA

We used the following settings for CARLA: Town01 map,
clear noon for weather, no other vehicle and pedestrian. The
system gives a view from the driver’s perspective. In order
to keep up with real-time, we used a variable time-step and
ran the simulation in synchronous mode.

B. Condition

We asked 4 participants (1 female, 3 male), who had
driver’s licenses and more than 2 years of driving experience,
to drive in the simulator with a steering wheel and pedals
(Figure 1), and collected 8 sets of driving data. The drivers
followed traffic lights and speed limits as much as possible
and drove for 2.5 minutes, which is long enough to encounter
and go through both curves and intersections.

IV. DISCUSSION

In this section, we compare human driving with the driving
of the autopilot, which is the hard-coded AI inside CARLA.
Figure 4 shows driving data of one of the human subjects
and the autopilot for about the first 1100 steps along different
routes.

• The route of the subject: 60 km/h, intersection (turning
right), 30 km/h, 60 km/h, curve, 90 km/h, curve, 60
km/h, traffic light (red)*

• The route of autopilot: 30 km/h, curve, 30 km/h, traffic
light (red), 30 km/h, intersection (turning left), 30 km/h,
90km/h, 30km/h, traffic light (red)*

*30 km/h, 60 km/h, 90 km/h are straight roads with speed limits of 30 km/h,
60 km/h, 90 km/h.

There are two big differences between those two types
of driving. The autopilot drastically accelerates/decelerates.
Looking at Figure 4 (b), the slope of the speed is nearly
vertical when it tried to change speed based on speed
limit, no matter how fast the limit is. On the other hand,
human drivers change speed more smoothly. Furthermore,
the autopilot does not slow down at all when it turns at
intersections and curves. As it’s designed to drive at the right
speed depending on speed limit, it keeps going at the speed.
However, human drivers slow down because it’s physically
hard to make a turn at high speed in the real world. That’s
why the speed of the human-driven vehicle drops to 10-20
km/h even though the speed limit after a curve is larger than
one before the curve.

Although this autopilot is not as sophisticated as an
advanced autonomous driving model, this comparison of

(a) Default camera

(b) Depth map camera

(c) Semantic segmentation camera

(d) Human driving data

Fig. 2. (a) - (c) are images obtained from cameras, (b) and (c) are images
converted to a more human-readable palette of colors [3], (d) shows speed
and acceleration of the human-driven vehicle corresponding to throttle/brake
pedal input against time.
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Fig. 3. Screen which subjects see while driving

driving data shows big gaps between the designed driving
policy and human driving policy. We need to take physical
and environmental conditions into account as well as driving
techniques when we design the driving policy of autonomous
vehicle, and learning from actual human driving data can
provide significant insights.

V. FUTURE WORK

In this project we developed a realistic simulation envi-
ronment and collected human driving data. As mentioned in
the introduction, our goal is to train autonomous vehicles to
drive as humans do. Once we collect more human driving
data, both information data and image data could be used to
find a preferred reward function for the following actions:

• trajectory and the way the driver accelerates/decelerates
at curves (with/without oncoming car)

• the driver’s acceleration/deceleration according to the
color of traffic lights and speed limits

• how the driver reacts to other vehicles at intersections
• how drivers react to pedestrians and cyclists
• how a driver’s view affects the driver’s behavior (if

the driver can recognize others before reaching an
intersection)

• relationship between what the driver sees and the
driver’s action

We can work on vehicle detection and tracking with images
and sensor data, and on learning of human driver behavior
with human driving data.
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Abstract— The use of Deep Learning for semantic seg-
mentation of highly sparse point clouds has not been fully
explored. Two key reasons are the unavailability of training
data, and the fact that high levels of sparsity make it difficult
to interpret object structure. In this paper, we explore semantic
segmentation in urban environments of 3D point clouds that
present high-levels of vertical sparsity. We leverage our work
on a lightweight CNN called SqueezeSeg, which was trained
on the KITTI dataset for the object instances car, pedestrian
and cyclist. We extend SqueezeSeg to include the ground class,
which is not currently available in this dataset. Similarly, the
point clouds from this dataset exhibit high vertical density,
however, our focus is on processing point clouds of lower
vertical density generated by low-end scanners. In this work
we first developed an approach to obtain annotated ground
examples from the KITTI dataset. Then the examples from the
dataset were downsampled to produce sparse point clouds while
retaining the annotations of the original dataset. Subsequently,
we trained the CNN with the sparse data using Recurrent
Conditional Random Fields (CRF) to increase the accuracy
of predictions. Our experiments show that the extended CNN
achieves prediction accuracies which are comparable to the
original approach, which was trained on denser point clouds.

Index Terms— Semantic Segmentation, Sparse Point Clouds,
Deep Learning

I. INTRODUCTION

Autonomous vehicle navigation depends on real-time per-
ception systems that produce accurate descriptions of the
scenes and the objects within it. With the increasing com-
puting capabilities enabling continuous progress in Deep
Learning algorithms, these systems are becoming highly
robust and capable of making descriptions of the environment
with high levels of granularity. In particular, LiDAR sensors
have become one of the most prevalent components of
these perception systems. Such sensors are able to collect
highly accurate positional measurements that are stored in
a data structure called point cloud. These measurements
allow to directly model the geometry of the environment
more accurately than vision-based sensors. Nevertheless,
high levels of analysis and costly computation resources are
often required to extract meaningful information from the
point clouds because the span between adjacent laser pulses
generated by these sensors grows as they travel farther from
it, producing sparse data that is difficult to interpret.

*This work was supported by Tecnologico de Monterrey and Carnegie
Mellon University

(a) Sparse Point Cloud (b) Dense Point Cloud

Fig. 1: Example of segmentation results of a sparse point cloud (a)
compared against a dense point cloud (b).

Previous work on scene interpretation from LiDAR point
clouds includes multi-stage processes that require numerous
steps such as ground removal, clustering-based segmenta-
tion and manual feature mining [1], [2], [3], [4]. These
approaches rely on hand-crafted and complicated features [5]
or even random initializations [6], all of which are usually
unable to gather a general context of the environment and
might exhibit significant instability.

Motivated by their success in other fields like Computer
Vision, there has been a rising interest in designing Deep
Learning algorithms to perform tasks such as instance seg-
mentation [7], [8], [9], object detection [10] and reconstruc-
tion [11] of 3D Point Clouds. However, these approaches
often require to incorporate image-based sensors to produce
a better interpretation of the point cloud data. Moreover, such
approaches are usually tailored to 3D scanners that produce
highly dense representations of the environment (e.g Kinect,
MatterPort or Velodyne HDL-64E, illustrated in Fig. 1-(b)).
However, our particular motivation is to explore semantic
segmentation in point clouds presenting higher levels of
vertical sparsity, such as those produced by a Velodyne VLP-
16 sensor, as seen in Fig. 1-(a), since this type of sensor
is less expensive in terms of cost and computation budget
compared to other LiDAR sensors like the Velodyne HDL-
64E.

To our knowledge, approaches that directly operate on this
kind of point clouds using Convolutional Neural Networks
(CNN), have been seldom studied. Thus, working with
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highly sparse point clouds1 remains a largely open topic in
perception systems.

For this reason, we explore the potential of Deep Learning
to perform semantic segmentation of these point clouds.
In particular, we focus on segmenting dynamic outdoor
scenes from point clouds in urban environments. First, we
adapt the SqueezeSeg [9] CNN which is currently able to
segment cars, pedestrians and cyclists from the KITTI dataset
[12] to operate on sparse point clouds. Then, as we are
limited by the unavailability of training data, we leverage on
the LiDAR scans from this dataset which already contains
labels of the aforementioned classes. However, our focus
includes performing ground segmentation, but annotating
data manually is rather labor intensive and time-consuming.
Thus, to generate training samples for the ground class,
we designed an automatic ground annotator tool using a
3D plane-fitting algorithm to estimate the ground. Next, we
designed a method to down-sample the KITTI dataset by
reducing the vertical density of the point clouds to simulate
the scans that our sensor of interest (i.e. Velodyne VLP-16)
would produce. Finally, we used the generated dataset to
train the CNN and evaluated the performance of the model
using Recurrent Conditional Random Fields to refine the
inference maps of the sparse point clouds. We compare our
experiments against the original approach and show that our
experiments attain accurate results.

II. RELATED WORK

A. Segmentation of 3D Point Clouds

Previous work show a wide range of approaches for
ground extraction and cluster-based segmentation. In [2],
they perform real-time ground filtration of sparse LiDAR
scans by projecting the angles between vectors onto a 2D
plane and interpolating data using iterative algorithms for
ground estimation such as Random Sample Consensus Al-
gorithm (RANSAC) [6], [13]. The authors in [4] propose a
two-step segmentation pipeline for LiDAR scans from the
KITTI dataset. First, they use a plane-fitting technique to
extract the points belonging to the ground. Then, they cluster
the remaining points using a connected component approach.
In[1], they propose fast region-growing algorithm that maps
sparse point clouds into range images and establishes a rela-
tionship between points and the distribution of the reflectivity
in a particular object instance. Bogoslavski and Stachniss
[14] explore different algorithms for ground segmentation,
clustering based on local neighborhoods and clustering based
on vertical variance. The former approach might not perform
well when evaluated in cluttered environments, whereas the
latter might fail when dealing with sparser and unstructured
data.

In general, although these approaches are usually able
to perform fast ground segmentation and clustering, they
present underlying disadvantages. First, they are usually

1In this work, when mentioning sparse point clouds we refer to sparsity
in the vertical direction

tested on environments where conditions are ideal and well-
structured. Second, approaches that depend on random ini-
tializations or iterative algorithms to perform ground removal
or object clustering might be subject to instability. Thus,
when evaluated in cluttered environments, these approaches
might require extensive pre-calibration, optimizations and
multi-stage processes that depend on highly complex feature
mining algorithms [3], [15] to increase the robustness against
instability.

B. Semantic Segmentation of Point Clouds using CNNs

The foregoing limitations have motivated the study of
robust perception systems for point clouds using Convo-
lutional Neural Networks. Velas et al. [8] present a fast
method to perform binary classification of Velodyne VLP-64
point clouds from the KITTI dataset, into ground and non-
ground points using different shallow CNNs. They encode
the point cloud into a dense 2D matrix, and then use a height
difference constraint to separate ground points from non-
ground points. Then they train the data using four different
model architectures.

One of the current state-of-the-art approaches for point
cloud segmentation is described by Qi et al. [16]. They
designed a novel neural network called PointNet that is
invariant to point cloud permutation. Furthermore, their
approach performs both, object classification and seman-
tic segmentation. Leveraging their work on the PointNet
architecture, Engelmann et al. [17] explored mechanisms
to incorporate spatial context into the network architecture
like neighborhood information and point descriptors. In [7]
the authors explored using 3D Fully Connected Conditional
Random Fields with neural networks to obtain fine-grained
semantic segmentation of point clouds.

Wu et al. [9] addressed the point-wise semantic segmenta-
tion of instances such as cars, pedestrians and cyclists from
raw point clouds obtained from the KITTI dataset. They
designed and end-to-end pipeline called SqueezeSeg that first
projects the point cloud onto a sphere to produce a compact
representation of the data. Then, it uses a CNN to produce
an output point-wise labeled map, and finally it refines
the predictions using Recurrent Conditional Random Fields
(CRF) as in [18]. The latter, has been successfully used in
several image-based semantic segmentation approaches [19],
[20], [18] to restore details that might be lost in down-
sampling operations.

III. APPROACH

In the following subsections we introduce the methodol-
ogy followed in our work. In subsection A, we review the
CNN used in our approach [9] and how it was adapted to
operate with our data of interest.

As described before, there are two main aspects addressed
in our approach. First, extending the capabilities of the
network to perform ground segmentation together with cars,
pedestrians and cyclists2. Second, obtaining the appropriate

2In our experiments, we merged the instances for pedestrians and cyclists
into a single class
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training data, and evaluating the performance of the network
when it operates with it. To address the former, we implement
an algorithm to label the ground points in the point clouds
from the original dataset. For the latter, we propose the down-
sampling method to reduce the vertical density of the scans
in the original dataset and generate a dataset of sparse point
clouds. We present the details of our implementation of both
methods in subsections B and C, respectively.

A. SqueezeSeg and Conditional Random Fields

Our work is based on the Convolutional Neural Network
structure SqueezeSeg [9], which in turn is derived from the
lightweight CNN SqueezeNet [21]. The network is designed
to work like conventional CNN models that operate on
images of size H x W x C, where H and W encode the
spatial position, i. e. the height and width, and C encodes the
features per point. To use this convention, they transform the
point cloud into a more compact representation by projecting
it onto a 2D spherical grid (θ, φ) obtained as

θ = arcsin
z√

x2 + y2 + z2
, (1)

φ = arcsin
y√

x2 + y2
(2)

where θ represents the azimuth and φ is the zenith angle.
Then, the angles are discretized using the resolutions of
vertical spanning (∆θ) and rotation (∆φ). The original work
carried out their experiments using the LiDAR data from
KITTI, which was collected from a Velodyne HDL-64E
sensor with 64 vertical channels. The number of channels
represents the height of the 2D spherical projections, thus,
H = 64. Then, the 2D spherical projection represents points
within a 90◦ front-view of the point cloud discretized into a
512 grid. This is the rotation angle and represents the width
of the projection, so W = 512. Finally, they used 5 features
per point in the point cloud to perform their experiments: the
(x, y, z) coordinates, an intensity measurement and a depth
value, so C = 5.

Predicting a robust and accurate point-wise label map
requires understanding of high-level and low-level details.
With the use of down-sampling operations, there could be
significant loss of low-level semantics, which may in turn,
generate inconsistent and spurious predictions. Conditional
Random Fields (CRF) have been extensively used along with
CNNs for image-based segmentation to refine inferences
and restore low-level details [19], [20], [18]. The work in
SqueezeSeg follows a similar approach as [22] to refine
the label map generated by their CNN. They formulated
the CRFs as Recurrent Neural Network layer as in [18],
and added an additional module to their pipeline that takes
the output of the CNN as a probability map and refines it
using Gaussian Kernels that aggregate probabilities of the
neighboring points. In our work, we evaluate if the Recurrent
CRFs are capable of recovering low-level details from point
clouds. This is particularly important in the context of sparse
point clouds since we are interested in increasing the amount

of contextual information that the model has to make better
predictions.

B. Ground Annotation

In our work, we adapt the dataset used in the SqueezeSeg
approach. This dataset is a modified version of the KITTI
dataset that only considers a front-view of 90◦ (i.e. in the
direction of movement) of the point clouds instead of a full-
view of 360◦. Furthermore, this dataset only contains labeled
examples of cars, pedestrians and cyclists, and the remaining
points are labeled as unknown. However, as mentioned
before, our interests include performing segmentation of
ground points. Nevertheless, manual annotation is a rigorous
task. Thus, we designed an automatic ground annotation tool
based on an plane-fitting algorithm [8], [4] to automatically
label ground points from the KITTI set.

The algorithm discriminates deterministically between
ground and non-ground points based on two main assump-
tions. First, that the points that correspond to the ground have
the lowest height. Second, that we can describe the geometry
of the ground using the linear equation of a 3D-plane (3),
(4).

ax+ by + cz + d = 0 (3)

−(nTp) = d (4)

where the the orthogonal vector is n = [a, b, c] and the
coordinate point is p = [x, y, z].

Although, in environments such as those analyzed in
this work, the ground usually does not present significant
irregularities, it does not form a perfect plane, so it is
important to consider changes in the steepness of the ground.
To do so, we follow the technique used in [4] in which the
point cloud is evenly separated into a number of segments,
N seg, along the direction of movement (usually the x-axis),
as shown in Algorithm 1. Then, we estimate the ground plane
on each of the segments.

The first step to estimate the plane is to extract initial
seed points by sorting the point cloud segment along the
height axis and taking the first Npoints the median values of
these points. The resulting values are used as a threshold to
determine the seed points. In [4] they use the mean values to
obtain the seeds, however we compute the medians to avoid
being affected by outliers.

After obtaining the seed points we iteratively adjust the
plane normal by re-computing the seeds on each iteration.
We obtain point p0 which is the median x, y, z values of
the seeds, and use it to estimate the normal n vector of
the plane. To do this, we capture the dispersion of the seed
points through a covariance matrix and using Singular Value
Decomposition (SVD). With both vectors we compute dmax

which is used as the distance threshold from a point to a
plane. Then, for each point in the point cloud segment we
compute its orthogonal distance and compare it against the
threshold value to determine if the point will be used as a
seed. We repeat this process Niter times to refine the plane
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Algorithm 1 Ground Labeling Algorithm
1: Input: Pin: input point cloud without ground labels
2: Output: Pout: output point cloud with ground labels
3:
4: Initialize:
5: Pseg: input point cloud segment
6: Npoints: number of points used to estimate seeds
7: Nseg: number of point cloud segments
8: Niter: number of plane estimations per segment
9: Thseed: seed selection threshold

10:
11: Begin:
12: sort(Pin, axis=x)
13: dividePointCloud(Pin, Nseg)
14: for Pseg : Pin do
15: seeds←extractInitialSeeds(Pseg, Npoints, Thseed)
16: for i : Niter do
17: p0 ←computeMedians(seeds)
18: n←estimateNormal(seeds, p0)
19: dmax ←distance(n, p0)
20: seeds.clear()
21: for p : Pseg do
22: if distance(n, p) < dmax then
23: seeds.push(p)
24: for p : Pseg do
25: if distance(n, p) < dmax and p.label == UNKNOWN then
26: p.label← GROUND

27: Pout.push(Pseg)
28: End
29:
30: extractInitialSeeds:
31: sort(Pseg, axis=z)
32: Thlowest ← computeMedians(Psort(1:Npts) + Thseed
33: for p : Pseg do
34: if p.height < Thlowest then
35: seeds.push(p)

return seeds

normal. The final linear model is used to assign labels for
the ground class to the point cloud.

C. Down-sampling

The following step to annotating ground points, is to
down-sample the dataset to generate the sparse point clouds
required for our experiments. The reason for it, as explained
before, is the unavailability of training data and that collect-
ing and annotating data is a labor intensive task. Thus, we
propose reducing the vertical density of the original dataset
to generate training examples for our experiments.

LiDAR point clouds from the KITTI dataset were col-
lected using a Velodyne HDL-64E which has a total of 64
channels with a vertical resolution of approximately 0.42◦

within a field of view (FOV) of 26.9◦ (Fig. 2 (a)). However,
we are interested in working with sensors that have higher
vertical sparsity, hence lower resolution. One such example
is the Velodyne VLP-16 which has 16 channels and a vertical
resolution of approximately 1.8◦ to 2◦ (Fig. 2 (a)).

Note that vertical FOV of Fig. 2 (a) goes from 2◦ to -
24.8◦, whereas the FOV of Fig. 2 (b) goes from ±15◦. In this
work, we assume that we would be able to tilt the Velodyne
VLP-16 to align it with the vertical FOV of the Velodyne
HDL-64E.

Our procedure to down-sample consists on removing all
points from a set of rings in the dense point cloud, depending
on the desired resolution of the sparse point cloud. To do
so, it is necessary to obtain the ring information per point

(a) Verical field of view of a Velodyne HDL-64E

(b) Vertical field of view of a Velodyne VLP-16

Fig. 2: Vertical FOV of a sensor with high vertical density (a) and
a sensor with lower vertical density (b).NOTE: angles are not to
scale, they are used for visualization purposes.

measurement as,

ring =
θmax − θ

∆θ
(5)

where θmax = 2◦, is the angle of the uppermost laser beam in
the Velodyne HDL-64E, θ is the zenith angle obtained from
(1) and the vertical resolution, ∆θ = 0.42◦.

Here, we illustrate an example to produce a down-sampled
point cloud from one that has a high density. To generate
scans that resemble those produced by a sensor with low
vertical resolution like the Velodyne VLP-16 (Fig. 1 (b)),
our desired resolution should be close to the range 1.8◦ to
2◦. Based on the vertical resolution of dense point clouds
from KITTI (Fig. 1 (a)), the closest resolutions we can
obtain are 1.68◦ and 2.1◦, which are the spanning angle
between 4 and 5 consecutive laser beams. This means that
to produce the sparse point cloud it would be necessary to
keep only the information of either 1 out of 4 rings or 1 out
of 5 from the original point cloud.

IV. IMPLEMENTATION DETAILS
A. SqueezeSeg

As explained in (Section II. A), the SqueezeSeg CNN
takes an input of H x W x C. In our experiments, the channel
size of our target point clouds is 16, so H = 16. We keep the
width W and the number of features C unchanged. To operate
with point clouds with 16 ring we slightly modify the number
of filters required by the network modules fireModules[21]
and fireDeconvs. We refer the readers to [9] for further details
about the structure of these modules and how to modify
them.
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B. Ground Annotation

As mentioned in the previous sections, we designed the
ground annotation tool to label the dataset used on the
SqueezeSeg approach. We used our ground annotator to label
a total of 10,278 point clouds, and we empirically set our
calibration parameters as follows: Nseg = 4, Npoints =
20, Niter = 3, Thseed = 0.8 m.

C. Downsampling

For simplicity and as proof of concept, in our experiments,
we reduced the density of the original point clouds from 64
channels to 16 channels to obtain sparse point clouds with
a vertical resolution of 1.68◦. Fig 1 shows an example of a
resulting point cloud after reducing the vertical density from
64 channels to 16 channels.

D. Training

To demonstrate our approach, we present two experiments
using three classes ground, car and person which comprises
both pedestrian and cyclist classes. In the first experiment
we train the network model without modifications using
the original dataset. In the second experiment we train and
evaluate the network that operates on sparse point clouds
with the dataset that was down-sampled to 16-ring point
clouds.

The original dataset, as well as the generated datasets
are split into a training set with 8,736 point cloud frames
and a validation set of 1,542 frames. We make sure that
the sequence frames in the training set do not appear in the
sequence frames of the validation set because frames can be
temporarily correlated if they are from the same sequence
[9]. To perform the training experiments we use an NVIDIA
GeForce GTX 1080 Ti, for the evaluation and testing we use
an NVIDIA GeForce 1060 Max Q.

For both experiments, we present and compare results
when the prediction map of the CNN is fed to the CRF
layer against the results when CRFs are not used. This is
to evaluate if the Conditional Random Fields proposed by
SqueezeSeg will allow to refine the prediction maps of the
sparse point clouds. One objective of using CRFs is to restore
low-level details [19], [20], [18] that might be lost during
pooling operations that reduce the spatial size of the data.
Evaluating the performance of CRFs in sparse point clouds
is particularly important because due to the nature of the
data, it is significantly harder to extract meaningful structural
information of object instances and, low-level details are less
evident in these point clouds. This loss of object structure
can be observed in Fig. 1. Finally, the performance metrics
presented on each of our experiments are the precision (P),
recall (R) and intersection over union (IoU) obtained during
the validation processes.

V. RESULTS

A. Ground Annotation

We compare our implementation with the Ground Plane
Fitting (GPF) technique in [4], which was also tested on the
KITTI dataset. We observe that in general, both methods

(a) GPF result (b) Our result

Fig. 3: Example of the impact of outliers in [4] resulting in under-
segmentation of ground points (a). Result of our implementation
(b).

achieve similar results. However, GPF significantly under-
performs when the seed points used to estimate the 3D
plane include outliers (Fig. 3). This is because they compute
the mean values of the seed points to obtain the distance
threshold to discriminate between ground points and non-
ground points. Thus, noisy measurements that have a highly
negative height value have a severe impact on the segmenta-
tion results. We addressed this situation simply by computing
the median values of the seed points to obtain the distance
threshold instead of the means values.

B. Experimental Results

Following the experimental setup proposed in the Squeeze-
Seg approach, we summarize accuracy scores of the ex-
periment with the down-sampled dataset in Table I and
the original dataset in Table II. In both experiments, we
achieve good results for the ground class and in general,
high recall scores. The latter is important in applications like
autonomous navigation as the cost of missing a positive value
might be higher and lead to accidents compared to the cost of
including negatives. In both experiments the accuracy scores
of the remaining classes is notably reduced. We associate
these results to the unbalance of the dataset, i.e. significantly
fewer points are attributed to the car instance than to the
ground instance.

For the experiment carried out on the sparse point clouds,
we observe that using Conditional Random Fields to refine
the prediction significantly improved the prediction maps.
However, we obtain similar results with and without the CRF
layer on the experiment with the dense point clouds. In the
original approach, they present a similar behavior in their
results. They attribute this situation to the empirical choice
of hyperparameters used to compute the Gaussian Kernels in
the CRFs.

In Table III, we summarize the average prediction time per
point cloud frame of our experiments. Although using CRF
notably increases the processing time, the prediction times
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Down-sampled Dataset
CRF P R IoU

Ground
w 0.9760 0.9118 0.8905

w/o 0.9762 0.8898 0.8758

Car
w 0.4528 0.9157 0.4342

w/o 0.4027 0.9158 0.3883

Person
w 0.1249 0.6697 0.1192

w/o 0.0579 0.6283 0.0561

TABLE I: Performance on the validation set of the 16-ring down-
sampled dataset.

Original Dataset
CRF P R IoU

Ground
w 0.9890 0.9194 0.9101

w/o 0.9904 0.9212 0.9131

Car
w 0.6859 0.9854 0.6791

w/o 0.6850 0.9857 0.6783

Person
w 0.4468 0.8701 0.4189

w/o 0.4354 0.8698 0.4087

TABLE II: Performance on the validation set of the original
dataset.

are faster than common sampling rates of LiDAR scanners
(10 - 20 Hz). This is particularly important for embedded
applications in robotic perception and autonomous vehicles
where computation resources are limited.

In Fig. 4 and Fig. 5 we compare the prediction results from
the original dataset (Fig. 5) and the down-sampled dataset
(Fig. 4) represented in the 2D projection. In both figures
we compare the same frame from a sequence obtained from
the KITTI dataset. We observe that compared against the
ground truth (a), both experiments show accurate predictions
(b) and (c), and also that using CRF helped refining spurious
predictions. However, predictions from the down-sampled
dataset in some cases mislabel object instances. One such
example can be observed in the visualizations from the ex-
periments, where objects like poles, letter boxes or trash cans
are mislabeled as person. As discussed before, this might be
because there are significantly less training examples for this
class compared to ground and car.

VI. CONCLUSIONS

We explored a method to perform fast and accurate
semantic segmentation of highly sparse point clouds in
urban environments. In particular, we focused on segmenting

Average prediction time (ms)
Down-sampled

Dataset
Original
Dataset

w/ CRF 12.36 23.11
w/o CRF 9.42 18.30

TABLE III: Prediction time per frame.

(a) Intensity Map

(b) Ground truth of the point cloud in 2D projection

(c) Prediction map without CRF

(d) Prediction map with CRF

Fig. 4: Visualization of predictions on a 2D projection of a LIDAR
point cloud using the down-sampled dataset. Note that these images
were expanded along the height for visualization purposes.

(a) Intensity Map

(b) Ground truth

(c) Prediction map without CRF

(d) Prediction map with CRF

Fig. 5: Visualization of predictions on a 2D projection of a LIDAR
point cloud using the original dataset.

person, car and ground instances. Using Deep Learning
allowed us to address some of the difficulties presented
in previous work on these type of point clouds by taking
advantage of a CNN that does not rely on hand-crafted
features, nor iterative algorithms that are subject to instability
or are not scalable to unstructured environments. As a proof-
of-concept, we designed a simple method to obtain training
data that resemble the data produced by our target sensor, i.e.
Velodyne VLP-16. We also extended the CNN capabilities
to segment ground. In general, our results show very high
accuracy on ground detection and general robustness against
noise. We mainly attribute lower scores for the car class to
the unbalance of classes.

In future work, we foresee several pathways. First, there is
potential in exploring semantic segmentation in unstructured
environments. Then, we intend to add the pedestrian and cy-
clist instances to the system, instead of only the person class.
There is also room for improvement in regard of making a
more hierarchical description of the ground, e.g. detecting
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sidewalks and intersections. Finally, we aim to integrate this
system on an NVIDIA Jetson TX2 as a potential application
in mobile robot perception in dynamic environments.
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Toward Robust Stair Climbing of the Quadruped using
Proprioceptive Sensing

Zhiyi Ren1 and Aaron Johnson1

Abstract—Uneven stairs and ground obstacles often cause
legged robots to trip and even fall over. Autonomous traversal
requires robots to detect leg disturbances accurately and react
in time. We present an approach that combines a leg observer
for contact detection with reactive behavior for recovery. Ex-
ploiting the mechanical transparency of the robot design, the
observer achieves leg proprioception and contact identification
with minimal delay. Reactive algorithms then trigger the robot
to switch between walking and stair-climbing, or to adjust
swing leg trajectories to step over obstacles. We demonstrate
the reliability and potential of the contact observer on robust
stair climbing. We envision that future work will establish an
autonomy framework for legged robots to traverse through multi-
component natural terrains using similar proprioceptive sensing
strategies and reactive behaviors.

I. INTRODUCTION

Legged robot can traverse through various difficult terrains
that obstruct traditional wheeled or tracked robots, benefiting
from large leg workspace and contact geometry reconfigura-
tion [1]. However, as one of the most common obstacles in
both indoor and outdoor environments, stairs remain challeng-
ing for legged robots to climb over. Due to the inherent ge-
ometry of normal stairs, small-sized legged robots often need
to use more dynamic gaits such as jumping and bounding [2],
and compositions of these dynamic behaviors often risk the
stability of the robots. Timely transitions between behaviors
require precise detection of the stair tread. In addition, any
unexpected disturbances on the stairs may cause the robots to
lose balance and even fall over, demanding quick detection
and recovery.

For robust autonomous stair climbing, we believe that
exteroception with camera and other sensors is essential to the
overall system in the future. But robots cannot entirely rely
on the the visual approach: small bumps on the stairs may be
difficult for the camera to notice, and the camera view is often
occluded. Computer vision algorithms are yet to be developed
to accommodate the highly dynamic motion of legged robots,
with the state of the art likely to generate insufficiently
precise stair location data. Meanwhile, proprioceptive sensing
provides a more intuitive and reliable solution to contact and
disturbance detection. Using motor encoders and IMU built-in
on the robot, it can “feel” the object and perceive its orientation
as it walks through terrains. It is usually computationally
inexpensive, thus reducing the detection latency and allowing
for in-time recovery.

Our vision is to let the robot traverse through any type
of stairs in any environment. Most of the existing stairs are

1Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213.
zhiyi.ren@jhu.edu, amj1@cmu.edu

designed specifically for human walking, and the relative
size of the stair may pose a problem for the robot. Our
earlier attempts showed that the high slope of some stairs
consistently led to loss of stability during behavior transitions.
Furthermore, outdoor stairs are often rugged and uneven, even
sometimes tripping humans. To simulate a similar setting in an
indoor, controlled environment, we chose a set of stairs with
a smaller slope (about 30 degrees), and place obstacles on the
stairs. The robot is expected to trot towards the stair, detect
and ascend, and recover from disturbances.

Fig. 1. Minitaur robot on the stairs used for testing.

Here we present the beginning of a solution to robust stair
climbing of the robot. The gaits used include trotting on the
ground for approaching the stairs, trotting on the stairs for
aligning with the next one, and bounding of the front and rear
legs alternatively for ascending the stairs. Leg state estimation
is achieved with both offline simulation and online observers,
which only require motor shaft encoders as the onboard sensor.
As the robot walks towards the stair with a pre-defined leg
trajectory, the actual leg positions from the encoders are
compared to the outputs of the offline simulation, forming
the residual values. A significant residual value during the
expected air phase indicates the leg contact with the first stair,
and signals the robot to start bounding up. Meanwhile, upward
bounding of the legs does not follow a specific leg trajectory,
and a online observer is necessary to generate expected leg
states. High residual values indicate either the leg touchdown
or the presence of obstacles at the legs, which quickly adapts
to a certain trajectory for recovery.

The paper is organized as follow: the following subsection
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presents major related works in robot stair climbing, and some
background and justifications of the robot used in our stud-
ies. Section II introduces the proprioceptive sensing in more
details, explaining the offline simulation and online observer
in the use of disturbance detection. Section III demonstrates
the gait compositions for stair climbing, and the reactive
behaviors for disturbance recovery. Section IV documents the
experimental results of the detection algorithm and reactive
behavior. The paper finishes with a conclusion and multiple
future directions.

A. Related work

Stair climbing has been researched with different types of
robots and strategies. Tracked robots enjoy enhanced stability
over traditional wheel robots thanks to greater ground contact
area and lower center of gravity. Xiong and Matthies [3]
demonstrated using computer vision algorithms to locate the
stair edges and determine the relative orientation of the stair
and robot for guidance. Steplight et al. [4] developed a
hierarchical stair-climbing model using sensor fusion for a
tracked robot, and work in [5] improved the robustness of
the sensor fusion approach by introducing extended Kalman
filtering for state estimation. Meanwhile, few legged robots
have been used in stair climbing. One of the earliest versions
of the RHex hexapod robot exploits a special curved leg design
[6] for stair clmbing. The RHex robot further incorporated stair
sensing and sequential compositions of controllers to achieve
autonomy [7], [8].

However, almost all of these works demonstrated the climb-
ing strategies on regular indoor stairs with no obstacles. Some
of the works [5] dealt with collisions with stairs but not
any unexpected irregularities of the stair shape. It is certain
that most of the algorithms would fail in an outdoor rugged
environment, where the stairs may be littered with small
obstacles.

Fig. 2. Outdoor stairs at Schenley Park, Pittsburgh, PA.

We addressed the problem with a quadrupedal platform, the
Minitaur from Ghost Robotics (Fig. 1). Each leg is lightweight
(Table 1) and driven by two DC brushless motor with no
gearbox. This direct-drive design results in high mechanical

transparency [9], which enables high leg acceleration and
ground impulse detection in minimal delay. It has been demon-
strated that the Minitaur is capable of a series of stable,
dynamic maneuvers including bounding and trotting [10]. We
believe that the high maneuverability and high mechanical
transparency render the robot a competent choice for stair
climbing. It is also equipped with motor encoders and an IMU,
and the STM32 ARM microcontroller onboard updates motor
commands at a maximum of 1 KHz subject to the amount of
computations.

One issue that we encountered was that the leg length of
Minitaur is almost the same as the height of normal-sized
stairs, which causes difficulty in walking up the stairs. Topping
et al. [2] documented the quasi-static mismatch between
Minitaur and normal-sized stairs due to the leg size and
torque limit, introducing a dynamic, pronking-like gait for stair
ascent. However, we believe that this gait is vulnerable to any
disturbance on the stairs. With all four legs in the air and hence
no ground contact when any collision occurs, the robot is likely
to lose stability and fall over on the stairs. Instead we adopt
a less dynamic, bounding-like gait, with front and rear pairs
of legs ascending alternatively. While the other pair of legs is
anchored to the floor, the legs in the air are able to quickly
adjust the trajectory when contacting obstacles, maintaining
whole-body stability.

While we intend to develop a complete stair climbing
behavior for the Minitaur, our focus in this paper, as the first
step towards robust traversal over uneven stairs, is to introduce
proprioceptive sensing for obstacle detection. Disturbance ob-
server has been applied on multiple legged robot platforms,
including the RHex robot [11] and some humanoids [12].
While many other novel approaches, such as using particle
filtering [13] or probabilistic contact fusion [14] have emerged,
we believe that a simple, deterministic observer model is
sufficient to spot the changes in leg dynamics caused by
the obstacles. Also, the simple model is less demanding in
computations for the sole onboard microcontroller. As the
target terrain becomes more complicated, we would improve
upon the simple model in the future.

II. PROPRIOCEPTIVE SENSING

The general approach is to simulate the 2D leg motion in
finite time steps. We ignore the contact force and focus on the
period when the legs are in the air. Significant deviations from
the expected states (high residuals) indicate that the leg has
“felt” a stair or obstacle.

A. Leg Dynamics

The Minitaur robot has a symmetric five-bar mechanism for
each of the four legs. Each leg is driven by two brushless DC
motors to move in the sagittal plane. The kinematics of the
mechanism is detailed in [9]. We assume that the center of
mass of each link is located at the geometric center.

We use Euler-Lagrange equations to solve the leg dynamics.
The generalized coordinates are θ ∈ R2×1, the two motor
angles. Consider the following equation of motion.
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M(θ)θ̈ + C(θ, θ̇)θ̇ +N(θ, θ̇) = τ (1)

where M ∈ R2×2 is the mass matrix obtained by combining
the mass each of the four link in a leg, C ∈ R2×2 is the
Coriolis matrix, N ∈ R2×1 is a vector that contains gravity
and joint friction terms, and τ ∈ R2×1 is the torque vector
from the ideal motor model based on the applied PWM ,

τ = KtI (2)

I =
0.95 · V · PWM − Vemf

R
(3)

Vemf = Ktθ̇ (4)

where Kt is the torque constant (and the back electromotive
force (emf) constant), V is the supplied voltage measured by
onboard sensor, R is the armature resistance. The 5% voltage
deduction is built-in and confirmed with Ghost Robotics. A
standard proportional-derivative (PD) controller determines the
motor PWM value as follows,

PWM = Kp(θd − θ) +Kd(0− θ̇) (5)

where Kp and Kd are the proportional and derivative gains,
and θd is the target position. Note that we do not set a
reference velocity here. The controller gains are tuned for
stable behavior.

B. Model Parameters
Accurate model parameters are critical to the performance

of the offline simulation and online observer. Below are all
the major parameters that we considered.

TABLE I
MODEL PARAMETERS, FINAL VALUES, AND SOURCES

Limb

Parameters Value Source

Upper limb length (m) 0.1 Measured

Lower limb length (m) 0.2 Measured

Upper limb mass (kg) 0.040 Measured

Lower limb mass (kg) 0.081 Measured

Upper limb inertia (kg-m2) 0.00023 Estimated

Lower limb inertia (kg-m2) 0.00068 Estimated

Motor

Torque Constant (Nm/A) 0.0959 Estimated

Rotor Inertia (kg-m2) 0.00005 Estimated

Static Friction (Nm) 0.056 [9]

Kinetic Friction (Nm) 0.023 [9]

Viscous Friction ( Nm
rad/s

) 0.00013 [9]

Armature Resistance (Ω) 0.180 Estimated

Others

Joint Viscous Friction ( Nm
rad/s

) 0.0037 Estimated

Time delay (ms) 3 Estimated

1) Limbs: Limb length and mass are measured directly.
Initially we estimated the limb inertia from the CAD model,
but the extra weight of the bolts and bearings at the joints
were ignored in that case.

2) Motors: The motor friction values are from [9], which
also provided an overestimated value of the motor rotor inertia.
The torque constant and armature resistance values are both
provided by the motor manufacturer, but any partial burnout
of the motors may have affected the values.

3) Time delay: For the offline model, the time delay be-
tween the mainboard and the motor controller needs to be
taken into account. The effect of the time delay on the stability
of the Minitaur robot is documented in [15]. When we ran
simulation with a fairly long time delay (10ms), the result
showed instability of the legs.

Overall, we estimated the limb inertia, torque constant,
armature resistance, rotor inertia of the motor, and time
delay. We collected the sample data by running the triangular
trajectory of the legs in the free air, and the speed ramped
up from 1 to 2.5 strides per second. The cost function was
set to the total error per millisecond (per update) from all the
samples. We chose the constrained Nelder-Mead method [16],
which uses variable transformation to set the upper and lower
bounds of the estimated parameters. We ran the method with
different initial values within the bounds. The results were
consistent and reasonable, listed in the Table 1. The estimated
limb inertia is higher than the estimations from the CAD
model, possibly due to the extra weight of bolts and bearings.
The torque constant and armature resistance provided in the
motor specifications is 0.0959 Nm/A and 0.186 Ω respectively,
exactly the same as or very close to the estimation results. The
estimated time delay value is consistent with [15].

C. Offline Simulation

When the robot trots on the ground, the legs follow a
pre-defined reference trajectory, an isosceles triangle in the
Cartesian space. We simulated the trotting gait of the robot
with 1ms time step in Matlab by solving the leg dynamics.
The outputs of the simulation, θ̂ and ˆ̇

θ, are compared to the
leg position θ and velocity θ̇ recorded in real robot trials, and
the observer residuals of the simulation are formed by taking
the average of the absolute values of both motors:

rθ =
sum(|θ̂ − θ|)

2
(6)

rθ̇ =
sum(| ˆ̇θ − θ̇|)

2
(7)

We collected leg data at a median speed (1.25 stride per
second) in both conditions of swinging in the air and trotting
on the ground, and plot rθ and rθ̇ with controller tracking
error (θd − θ and θ̇d − θ̇) in Fig. 3 and 4. The shaded green
region indicates the expected stance phase of the gait.

The figures show that the tracking errors in the expected
flight phase is much higher than the observer residuals. Due to
the nature of PD controller, the leg cannot follow the corners of
the triangular trajectory well where high acceleration occurs,
while the model-based simulation accounts for the inertial
effect. Therefore, if the leg experiences any disturbance in the
air, the increasing residual values should indicate the event,
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(a) Position residual (red), rθ , and position tracking error (black), θd − θ

(b) Velocity residual (red), rθ̇ , and velocity tracking error (black), θ̇d − θ̇

Fig. 3. Observer residual compared to PD controller tracking error in position
and velocity in a free swinging cycle (no disturbance from the ground). Green
shading indicates the expected stance phase.

(a) Position residual (red), rθ , and position tracking error (black), θd − θ

(b) Velocity residual (red), rθ̇ , and velocity tracking error (black), θ̇d − θ̇

Fig. 4. Observer residual compared to PD controller tracking error in position
and velocity in a trotting stride cycle (disturbance from the ground). Green
shading indicates the expected stance phase.

while the tracking errors would not be able to. Although the
velocity residual values show the similar trend, the position
data alone was sufficient to capture the abrupt change in leg
dynamics.

Note that during the expected stance phase, both residual
and tracking error values are high since we ignore the ground

contact force in the leg dynamics. The leg disturbance during
the stance phase is not within the interest of this paper, and
would require contact force estimation.

D. Online Observer

While the robot trots on the flat ground with a pre-defined
trajectory, the legs do not follow a specific trajectory when
the robot climbs up stairs. Many of the dynamic maneuvers
on the stairs are closely sequenced and some involve open-
loop power. While this can still be simulated, the errors in
residual values are likely to accumulate, and affect the initial
conditions of the legs at a certain step within the sequenced
behavior. This leads to the necessity of a memoryless, online
observer that predicts leg states as the robot bounds up stairs.
At each time step, the observer reads the current states of the
legs from the motor encoders, and outputs the predicted states
at the next time step for comparison.

1) Reduced dynamics: Since the computational power of
the onboard microcontroller is limited, we adopted a reduced
dynamics model instead. The Coriolis terms take a fair amount
of overall computations, but the values are usually small
enough to be negligible. We also remove the joint friction
terms. The equation of motion is reduced to:

M(θ)θ̈ +N(θ) = τ (8)

Since the robot always has at most two legs in the air when it
climbs up stairs, only two observers run at the same time. The
computations benchmark at about 2ms per cycle. However, the
leg states do not change significantly in 2ms even if the leg
hits an obstacle. When the rear legs lift off the ground and
swing forward in the air, the residual shows a small amount
of error due to the inertial effect, which is comparable to the
residual caused by the obstacle. Therefore, we extended the
observer time step from 2ms to 5ms, and the results were able
to differentiate hitting the obstacle from swinging forward as
shown in Fig. 5. Now the motor commands update at 200 Hz
during stair ascent as opposed to 1 KHz during trotting. The
update rate is still fast enough for quick reactive behaviors in
the case of leg disturbances.

Given the changes in the model, we re-ran the parameter
estimation using the same constrained Nelder-Mead method
on the same selected parameters, except for the removed joint
viscous friction coefficient. The results were very close to
those listed in Table 1 and the differences are negligible.

To compare the performance of the reduced and full models,
we calculated the position residuals summed in a free swinging
cycle at a median speed (1.25 strides per second) using both
models. We also simulated the 200 Hz update rate on both
models. The results are listed in Table 2 below. The lower
update rate does not affect the performance significantly. The
model reduction results in an increase in errors, but still within
a reasonable range. The goal of the online observer is to
capture the sudden impulse at the leg instead of tracking a
specific trajectory, thus not as demanding in performance. Fig.
5 shows that the reduced model is sufficient to pick up such
impulses from obstacle contacts.
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(a) Position residual

(b) Velocity residual

Fig. 5. Online observer residuals when the rear legs are in the air and the
rear right leg hits an obstacle. The three peaks corresponds to: 1. swinging
forward, 2. obstacle contact, 3. touchdown

TABLE II
PERFORMANCE OF THE FULL AND REDUCED MODELS AT DIFFERENT

UPDATE RATED

Model Type Update Rate (Hz) Error (Rad)
Full 1000 7.57
Full 200 7.68

Reduced 1000 16.60
Reduced 200 16.86

III. STAIR CLIMBING AND REACTIVE BEHAVIOR

After we developed both the offline model-based simulation
and the online observer, we would like to apply these strategies
in rugged stair climbing. However, we quickly encountered
difficulty in developing a reliable stair climbing gait for the
Minitaur. Since the robot is not capable of walking up stairs, it
has to use gaits that are more dynamic such as bounding. With
no existing controller for stair ascent, tuning open-loop power
and controller gains turned out to be very time-consuming.
Another issue was that the supporting legs on the ground often
slip off the stairs when the other pair bound, causing the robot
to fall off the stairs. We reduced the slippage by applying open-
loop power to generate more normal force. The current gait
is robust enough to ensure that the robot does not slip off the
stairs.

The stair climbing behavior consists of a few major com-
ponents.

A. Trotting on the Floor and Stair Detection

The robot trots with a pre-defined triangular trajectory
towards the first stair, and calculates the residual values using
offline simulation outputs and motor encoder readings. The
robot would check the residual values within a time range
when the legs are expected in the air, determined based on
offline simulation results.

Initially we would like to put some obstacles on the ground,
and the robot would detect them and step over them with
fast leg circulation. However, we could not find a method that
consistently differentiates the obstacle and the stairs. Therefore
the robot now treats the first stair as the disturbance and then
starts stair climbing.

B. Legs Bounding

In order to climb the stairs, the front and rear legs of the
robot bound upstairs alternatively. The bounding legs push
off the ground, retract until minimum length, swing forward
in the air, and touch down (Fig. 6). The supporting legs
apply open-loop power into stair to generate normal force for
balance. Meanwhile, two observers update the residual values
of the bounding legs. While the leg touchdown generates high
residual values, the expected touchdown time is known to the
robot. The robot would treat the high position and velocity
residual values as hitting an obstacle if it occurs before the
expected touchdown.

C. Disturbance Recovery

Once the leg observer reports the presence of an obstacle,
the affected leg retracts to the minimum length and swings
forward, stepping onto the obstacle. Meanwhile, the two legs
on the other diagonal extend more to lift up the whole robot
body.

D. Trot on the stair tread

When both the front and rear legs have bounded up, there is
usually some space between the front legs and the next stair.
The front legs have to start bounding right next to the stair,
otherwise they will not be able to catch it due to geometric
limit. We rotate the triangular trajectory of the ground trotting
to match the slope of the stairs, and the robot was able to trot
forward with small steps and align itself with the next stair.
After a certain time threshold, the next bounding cycle starts.

E. Exit the stairs

Detecting the end of staircase is straightforward. Once the
IMU reports a very small pitch angle after a bounding cycle,
the robot knows that it has reached the top of the stairs. It
would trot forward for some distance and stop.
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Fig. 6. The rear legs bound up the stair in 450ms.

IV. EXPERIMENTAL RESULTS

We test the performance of the offline simulation, online
observer, and stair-climbing gait separately. Eventually we
would like to place random obstacles on the stairs and conduct
an experiment survey on stairs of various dimensions and
surface conditions.

1) Stair Detection with Offline Simulation: We let the robot
start trotting at ten locations, ranging from 0.2 meter to 2 meter
from the stairs. The robot was able to detect the stairs every
time within two leg cycles once it contacted the stair.

Ideally the robot should detect the stair within the same
leg cycle. However, we found that the stair contact sometimes
occurred right before the leg hit the ground. If the end of the
detection time range is set too close to the start of the ground
phase, the robot often mistook the ground for the stair. Some
delay on the ground is sacrificed for the extra accuracy of stair
detection.

2) Obstacle Detection with Online Observer: A brick-like
obstacle was placed on the stair, and tripped the rear right leg
of the robot as it swung forward in the air. During initial tests,
the robot was able to detect the obstacle consistently.

3) Stair Climbing Robustness: We challenged the robot to
keep climbing the stairs before it failed. During initial tests,
the robot was able to climb about five to ten stairs.

We realized that PWM control for bounding is not sufficient
for robustness. As the robot climbed upstairs, the bounding
height of the legs decreased given the same PWM values
since the motors started to overheat and the battery charge
is reduced. The bounding discrepancies caused the robot to
trip on the stairs, or steer sideways and lose balance.

V. CONCLUSION

This work addresses the robustness of the stair climbing of a
quadruped by incorporating proprioceptive sensing and climb-
ing behavior. Offline simulation models and online observers
are developed for disturbance detection. The robot is able to
detect the stairs, bound up the stairs, and react to obstacles
by quickly adjusting the leg trajectory. More experiments are
yet to be completed. We believe that proprioceptive contact

detection and reactive behavior would be crucial to the robust
traversal of stairs.

Certainly the overall stair climbing framework is not quite
complete yet. Parts of the climbing behavior we introduced
rely on open-loop control, causing issues such as slipping of
the supporting legs. Although our main focus has been using
proprioceptive sensing to improve the robustness, we hope
to establish a better stair climbing model for behavioral de-
velopment, integrating force and impedance control. Another
ongoing project at our lab is to investigate the effect of tails
on dynamic maneuverability of the Minitaur robot. We believe
that active actuation of an inertial or aerodynamic tail would
maintain the stability of the robot during stair ascent, and
even help achieve certain dynamic behavior that is otherwise
infeasible.

Other future works include adding an extra onboard com-
puter to enable online, full dynamics disturbance detection.
The extra computational power also enables many other im-
provements, including whole body modeling, contact force
sensing, sensor fusion, and sequential compositions [17] of
online controllers. A newer version of the Minitaur robot also
provides current sensing, which would allow motor current
control and improve the accuracy of the online observer by
skirting the ideal motor model.

Beyond the scope of stair climbing, we envision that pro-
prioceptive sensing and model-based behavioral development
would be critical components of the overall terrain locomotive
framework of the legged robot. The robot may combine these
components with other approaches such as vision detection to
fulfill robust traversal through any terrains.
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Using Convolutional Neural Networks on Optical Flow for Visual
Object Tracking

Vivek Roy1 David Russell2, Satyaki Chakraborty3 and Martial Hebert3

Abstract— Visual object tracking is the process of following
an object through a video, given the position of the object in
the first frame of the video. It has applications across robotics,
surveillance, and autonomous driving. While enormous progress
has been made in recent years, challenging benchmarks such as
the Visual Object Tracking (VOT) Challenge [1] have demon-
strated that there is still significant room for improvement. We
propose a convolutional neural network which learns to track
objects using the optical flow between consecutive video frames.
This approach leverages the explicit geometric information
contained in optical flow, which many other methods may
abstract away. We present preliminary results on the VOT
dataset and discuss avenues for improvement.

I. INTRODUCTION

Visual object tracking is the process of predicting the
location of an arbitrary object through consecutive frames of
a video, given only its position in the first frame. Tracking
systems are utilized in many domains including robotics,
surveillance and autonomous vehicles, as they allow intel-
ligent systems to reason about their surroundings at a higher
level.

Tracking can be challenging because in addition to mov-
ing, the object may exhibit changes in viewpoint or illumi-
nation, undergo occlusion, or other be subject to other varia-
tions. While enormous progress has been made, challenging
datasets such as VOT [1], demonstrate that many trackers
are still poor at handling these challenging situations. Given
this, and some speed constraints, trackers are still not able
to be deployed in many of the situations where they would
be useful.

A common tracking method is constructing correlation fil-
ters based on the appearance of the tracked object using these
to search the next frame. Since these filters are generated
online, using solely from the data at runtime, the miss out
on the vast annotated datasets which could be used to learn
general relationships offline. For this reason, convolutional
neural networks (CNNs) are becoming common components
of trackers, as the training process allows them to exploit this
data. Many CNN-based networks, such as Siamese Network
[2] and GOTURN [3], are able to predict the object’s motion
between a pair of frames, without needing to utilize the entire
history.

1Vivek Roy is with the Computer Science and Engineering Department,
Jadavpur University vivek at vivekroy.com

2David Russell is with the Department of Computer Science, Clarkson
University russeldj at clarkson.edu
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Robotics Institute Summer Scholars Program

3Satyaki Chakrabory and Dr. Martial Hebert are with the Robotics
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Fig. 1: Results on the validation set of ImageNetVID. Blue
boxes represent the ground truth and the green boxes repre-
sent the predictions from the proposed approach.

In this work, we build off of approaches like [2] and
[3] to create a CNN-based tracker which predicts the object
motion between pairs of frames. Our primary contribution is
exploring the use of optical flow as an input to the network,
rather than image pairs as is currently standard. This optical
flow input is computed between the two images the network
would normally receive and represents the motion of feature
points between frames. This means that the network does not
have to learn how to perform feature matching, and can focus
on learning more abstract and interesting features of the data.
After computing the optical flow for the entire image, we
crop it to the location of object in the first frame and resize
this crop to a fixed size. This is then fed into our network,
which predicts how much the object has moved between the
current frame and the next one.

We present preliminary qualitative results of this tracker
on a subset of the VOT dataset [1]. Additionally, we propose
several improvements to our algorithm, which we believe
could improve its performance.

II. RELATED WORK

A traditional approach for object tracking involves build-
ing correlation filters which can used to search for the object
in the next frame [4]. In general, these filters are trained
online, by taking the past crops from the area not predicted
to be part of the object and using them as negative samples,
while taking the predicted crop as a positive sample. The
filter is updated at a certain interval so such that it has
a low response for negative samples and a high response
for positive ones.This means that as the object is tracked,
the network learns an appearance model which incorporates
all the different views which have been seen over time. In
addition to not being able to utilize the large amount of
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Fig. 2: A high-level diagram of our system architecture.

offline data, these approaches are computationally intensive
and far from realtime, because they are training the filters
online.

Following the trend in the larger computer vision com-
munity, deep convolutional architectures are becoming in-
creasingly common. GOTURN [3] takes a common approach
of cropping the current and next frame using the current
bounding box, so only the local area affects the prediction.
GOTURN uses convolutional layers for feature extraction,
and then fully connected layers to reason on these features
and produce the motion estimate. In some approaches, no-
tably Siamese Network [2], convolutional layers are used
simply to perform feature extraction on the two images
cropped images. Then correlation is performed in feature
space, and the highest response indicates the expected object
position. While successful, this approach looses some low-
level features which could be useful. Detect to Track [5],
adds one more operation, by computing correlation maps on
convolutional features, and then feeding them into a fully
connected network. The approaches of [2] and [5] suggests
that non-learned operations can be effectively combined with
learned ones, and provide motivation for our work using
optical flow.

Optical flow, or the estimated displacement between corre-
sponding points in two images, can give us rich information
about the geometric structure of a scene. The computation
of optical flow has been a topic of interest in the vision
community a significant period of time and approaches such
as Brox [6] and FlowNet [7] provide compelling results;
they are surprisingly robust at estimating feature motion in
a variety of challenging situations. This is partly because
the the flow is computed using a hierarchical approach
which preserves some level of geometric consistency. In fact,
optical flow has been used for the basis of geometric trackers
such as Median Flow [8]. In this work they simply estimate
the robustness of the flow estimation at each point, and
then take an average of the displacement suggested by the
points which are expected to be most robust. This approach
considers all of the points within the rectangular bounding

box, whether or not they are likely to lie on the object, and
also entirely ignores the points which are not considered
to be the best. Our goal with this work is to learn a more
sophisticated mapping from optical flow to displacement than
can be generated with a hand-crafted approach such as this.

III. METHODS

Our network learns to regress the coordinates of the
current bounding box to predict the object’s position in
the next frame, given the optical flow between the two.
This section explains our choice of optical flow, the overall
algorithmic pipeline, the network architecture, and training
regime.

A. Optical Flow

Optical flow between two images is the change in the
feature points in one image to the other, in both magnitude
and direction. It is a well established way of modelling the
motion of an object between frames in a video. Optical flow
is usually represented by a two channel image, where one
channel represents the magnitude of the movement in the x
direction and the other the y.

The decision to choose optical flow as the input to the
CNN lies in our belief that when raw images are fed to
a neural network for tracking objects, it implicitly learns
something similar to the optical flow. Feeding the optical
flow explicitly as input helps us make the network simpler
and easier to train. Additionally, using a robust optical flow
computation method which can handle fast motion well,
can help us eliminate a major drawback of existing neural
network based object tracking methods.

We experimented with some established optical flow com-
puting algorithms. OpenCV [9] has a built-in function for
computing dense optical flow based on Gunner Farneback’s
algorithm [10]. But the algorithm is inaccurate and fails to
handle fast motion. Flownet2 [11] is the second iteration
of a deep learning based optical flow algorithm. Though its
output is significantly more accurate, the computation time
is drastically higher.
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(a) Gunner Farneback (OpenCV) (b) Flownet2 (c) Brox

Fig. 3: A qualitative comparison of the optical flow algorithms on fast-moving hands. The color represents the direction,
while the brightness represents the magnitude.

OpenCV
(CPU-only)

Flownet2
(CPU+GPU)

Brox
(CPU+GPU)

5min video ∼5mins ∼60mins ∼4mins

TABLE I: Time comparison of the optical flow algorithms.

Brox algorithm [6] is a good middle ground between [10]
and [11] in terms of accuracy and ability to handle fast
moving objects as shown in Fig. 3, but taking significantly
lower time to compute compared to [11] as shown in Table
I.

B. Pipeline

We aim to predict the location of the object in the next
image, given its location in the current one. This can be
formalized as trying to predict Bt+1, from It, It+1, and Bt.

The first step in the process is computing the optical
flow between frames It and It+1. This optical flow, Ft,
which is the same width and height as It is cropped to
solely the region inside of Bt. This allows the network to
focus on only the information relevant for predicting the
object’s motion. We found that providing a region larger
than the bounding box did not yield any performance gains.
This crop is then resized to a 128x128 pixels using bilinear
interpolation. This is necessary as our CNN contains fully-

Fig. 4: Examples of the input data to the network, optical
flows which are cropped on the groundtruth and resized to
128x128 pixels. They are visualized in the HSV colorspace.

connected layers and therefore requires a constant-size input.
From this optical flow input, the CNN predicts ∆pred =
(∆xpred,∆ypred,∆widthpred,∆heightpred), which repre-
sents the predicted change from Bt to Bt+1.

Thus, in the next iteration, the bounding box is updated:

Bt+1 = Bt + ∆pred

C. Network Architecture & Training

A convolutional neural network is used to learn the map-
ping from optical flows to bounding box motion, ∆pred. We
utilize a 12 layer neural network which has 6 convolutional
layers and 4 pooling layers in between the convolutions.
Two fully connected layers serve as the last layers of the
network. After each of the convolutional and fully connected
layers, we apply a rectified linear unit (ReLU) non-linearity
to the output. We determined these hyperparameter choices
while trying to overfit on a small sample of training data and
running experiments on the validation dataset.

There has been a great deal of concern in the track-
ing community about overfitting to the dataset, given how
comparatively-few videos the approaches are tested on.
Given this, the organizers of the VOT challenge [1] have
prohibited the use of tracking datasets OTB, VOT, ALOV,
NUSPRO, and TempleColor for training due to concerns
about overlapping or similar data. Therefore we train on
ImageNetVID, which is a diverse object detection from video
dataset that consists of more than 400,000 frames across over
3,700 videos. Each training input consists of the cropped
and resized optical flow as shown in Figure 4 and the delta
between the current and next boxes. We are training with
teacher forcing, which means that errors are not allowed to
accumulate during training. Therefore, we simply use the
ground truth bounding boxes to crop the optical flows and
to compute the ∆pred (∆x,∆y,∆width,∆height) values
for training. The delta values are all normalized prior to
training, so they have a mean of zero and variance of one.
L2 regularization is used on the network weights to prevent
overfitting. Like many other regression approaches, we uses
SmoothL1 as the loss function between each predicted delta
value and the groundtruth. Training is done using the Adam
optimizer [12] and we use a learning rate scheduler which
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Fig. 5: Results on the VOT Challenge Dataset. The tracker was initialized on the leftmost frame of the sequence.

decreases the learning rate by a factor of ten if the validation
accuracy goes down for five consecutive epochs.

IV. RESULTS

We notice that during validation, the network predicts very
small values as seen in Fig. 1. This is likely because the
distribution of deltas in the training set are predominately
small and seem to have a significant peak near zero. This
also could be a bias in the way the magnitudes of the optical
flows are computed. In any case, it means that the network
is struggling to learn even the distributing of the training set.

It is unsurprising, therefore, that the network generalizes
poorly to the VOT challenge dataset [1]. When exposed
to these sequences which often have far faster motions
than what it was trained on, ImageNetVID, it is predicting
spuriously large values. In many cases this results in the
bounding box decreasing to zero in one dimension. An
example of this can be seen in the second series in Fig.
5. Because of this, the network rarely tracks the object for
more than a few frames.

V. CONCLUSION

This paper presents a CNN-based tracker which learns to
track objects from optical flow. Our results demonstrate that
we likely need to perform additional hyper-parameter tuning
to get more predictable results. However, we still believe that
optical flow can be a useful input to a tracking algorithm. If
it is shown that optical flow alone is not sufficient to achieve
competitive tracking results, then providing it as an addi-
tional input to an image-based tracker could also be explored.

Fig. 6: New dataset with annotated object occlusions

122



Additionally, through this work, we have identified several
areas which we think would be worthwhile to explore.

Currently, our approach only reasons on pairs of frames
and does not consider the entire sequence. While this makes
it simple and easy to train, it is possible that building
longer-term models could make the approach more robust.
This network could be combined with a complementary
recurrent network to capture the motion model of the object
in order to make the predictions more robust. This has been
demonstrated to be useful in works such as [13], [14] where
multiple network’s prediction are combined.

Generating synthetic training data could possibly improve
the tracker’s robustness in challenging situations. Currently,
the training deltas and flows only come from consecutive
frames of a video, thereby resulting in deltas which are very
small in magnitude. However, it would be straightforward
to sample the videos more sparsely in time, to have larger
movements between frames. Additionally, we could generate
artificial occlusions prior to computing the optical flow. This
could be done with simple geometric masks, or with images
taken from an instance segmentation dataset.

Finally, object occlusion of any sort is something which
trackers generally ignore. Being able to track an object when
the human hand holding the object completely occludes the
object is important in human-robot interaction. Being able
to capture the motion model as stated above can be helpful
in interpolating the motion of the object as it gets occluded.
We have started looking into this aspect.

Currently no dataset exists having annotated occluded
objects in order to train a network in such cases. Artificially
occluding objects can help us in it, but a dataset is a useful
thing to have. We have recorded about 300 videos which add
up to five hours of video data depicting object occlusion from
the perspective of a robot when interacting with a human as
shown in Fig. 6.
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evaluation methodology for single-target trackers,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 38, no. 11, pp.
2137–2155, Nov 2016.

[2] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. S.
Torr, “Fully-convolutional siamese networks for object tracking,” in
ECCV 2016 Workshops, 2016, pp. 850–865.

[3] D. Held, S. Thrun, and S. Savarese, “Learning to track at 100 fps with
deep regression networks,” in European Conference Computer Vision
(ECCV), 2016.

[4] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, “Visual ob-
ject tracking using adaptive correlation filters,” 2010 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pp.
2544–2550, 2010.

[5] C. Feichtenhofer, A. Pinz, and A. Zisserman, “Detect to track and track
to detect,” in International Conference on Computer Vision (ICCV),
2017.

[6] T. Brox and J. Malik, “Large displacement optical flow: Descriptor
matching in variational motion estimation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 33, no. 3, pp. 500–513,
March 2011.

[7] A. Dosovitskiy, P. Fischer, E. Ilg, P. Häusser, C. Hazirbas, V. Golkov,
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Road Marking Quality Assessment System Through Semantic
Segmentation

Shaden Shaar1 and Jahdiel Alvarez2

Abstract— Detecting road markings’ quality is an important
task to maintain driver safety, their inspection and evaluation is
mostly done manually by human inspectors. These markings are
regulated by governmental standards which dictate the optimal
characteristics of such markings in order to have safer roads.
Nowadays, specialized inspectors traverse the roads assessing
each standard road markings quality and compliance with
regulations. However, human inspection for this task leads to
subjectiveness and non-uniform classifications. To automate this
process, road marking detection and classification is an essential
step. Many previous approaches, use traditional computer
vision methods which use hand-made feature detectors in order
to utilize the geometry and shape of the markings from the
images. We propose a deep learning approach which detects
road markings, classifying the quality based on similar metrics
to US governmental standards. A fully convolutional network is
utilized to perform semantic segmentation on images obtained
from cell phones. We classify each pixel into background, road,
or road marking. Once we detect the markings we classify
them, using the same neural network, leading to novel results
in such task. From the authors knowledge this is the first
implementation on road marking quality assessment using a
computer vision and deep learning approach.

I. INTRODUCTION

In the United States, the Federal Department of Trans-
portation (DOT) in conjunction with each state’s DOT are
responsible for ensuring safety and efficiency in transporta-
tion systems. Their task consists of inspecting the city’s
transportation infrastructure, which includes monitoring the
state of road markings to assure that it meets the required
standards. This monitoring is mostly conducted by human
inspectors, which is an expensive and labor-intensive process.
In order to automate the road marking inspection procedure,
a road marking detection and classification system is re-
quired.

Road markings are essential to driver safety, providing
guiding lines to ensure proper traffic flow, specifically during
the night. Also, given the rise of autonomous vehicles it
is important for such systems to be able to detect all road
markings and, in our context, classifying the quality of the
markings ensures the DOTs can maintain them efficiently,
which leads to better performance by the autonomous ve-
hicles, due to the fact they use lane marking detection
algorithms.

The detection of road markings is not a new research
topic, therefore many of the methods used to detect lane

This work was supported by Carnegie Mellon University’s NAVLAB
1S. Shaar is a computer science student in Carnegie Mellon University,

Qatar.
2J. Alvarez is a Software Engineering student at University of Puerto

Rico, Mayaguez.

Fig. 1. Traditional vehicle-mounted camera model. Data Source: [9]

markings are based on traditional computer vision methods
and most require knowledge of the sensor models in the
vehicle, leading to very specified methodologies. In [1], [4],
[10] they take advantage of the camera model by using
the camera’s angle with respect to a plane parallel to the
road, as shown in Fig. 1 to create an Inverse Perspective
Mapping (IPM) and run detection after. These approaches
do not work on images for which one does not have the
camera model, limiting the generalization of the algorithm.
In [11] they obtain an IPM by detecting road edges and then
using Hough transforms to linearly fit the road boundary and
use those fitted lines to obtain the homography matrix. Even
though [11] does not use the camera model, it only works
with straight roads which are only a subset of all the types
of lane markings. Other methods have used spline models
and quadratic curve models also. The problem with most of
these methods are that they do not perform well in complex
environments, and road scenes are some of the most complex
scenes particularly in urban environments.

Our main approach focuses on the generalization of lane
marking detection, which is very difficult through the use
of traditional computer vision methods. With the advent
of deep learning, and the rise of state-of-the-art architec-
tures for the semantic segmentation task we look into a
deep learning approach for the markings detection given
recent deep learning approaches have been outperforming
traditional computer vision methods, such as in the object
detection and semantic segmentation tasks [2], [3], [6]. While
traditional approaches work well when the markings are
under good, clear lighting conditions, their performance de-
creases when these conditions change. For instance, changes
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in the reflectivity or the illumination, a fade in the color, or an
occlusion by a vehicle would cause such decrease. Learning
based approaches such as machine learning and deep learning
methods have become more prominent recently as they are
able to learn and extract higher level features from the input
in their particular tasks, leading to good performance in
difficult scenarios such as poor lighting and occlusions. Our
model learns to extract such high-level features, providing
detections of road markings.

Recent methods integrate deep learning to their computer
vision algorithms such as in [10], obtaining better perfor-
mance but still limited in terms of generalization given you
need knowledge of the sensor models. In [8] a general
approach is used through a convolutional neural network
(CNN), specifically the object detection framework, Faster R-
CNN. In this approach patches of lane markings are detected
and using those detections various lines are fitted through
them. Given our goal is to detect the actual marking, this
approach did not seem appropriate, although it proves the
efficiency of learned models in the lane marking detection
area.

In order to detect the actual road markings with their con-
tour we took the semantic segmentation approach, where you
classify each individual pixel in the image. Modern semantic
segmentation architectures have accomplished state-of-the-
art results recently [2], [5], [6]. These networks provide
great results and generalize really well compared to prior
methods. They are able to predict correctly even with poor
lighting, rare viewing angles and occlusions, making them
good candidates to detect road markings. In order to keep
our algorithm as much agnostic as possible, we pass our
images through the FCN-8s architecture [6] and learn the
weights for road marking segmentation.

We used transfer learning on the FCN-8s model to classify
the three desired classes (road markings, road and neither).
The model was trained on the Mapillary dataset and we
achieved a meanIOU of 70.95% with a class IOU of 40.33%,
77.02% and 95.49% respectively.

The outline of the rest of this paper is as follows. Section
II describes the data set that we used, section III describe
our approach, section IV reports our experiments and results
and section V summarizes our method and emphasizes our
future work.

II. MAPILLARY DATASET

There are many data-sets that targets object recognition
on roads such as Mapillary, CityScape, etc. But included in
some of those dataset, we can find labels that correspond
to lane markings and roads. We used the Mapillary dataset
and built upon it to create a modified dataset that fits the
premise of our problem. We wanted to create a dataset that
can train a model to classify road markings, roads and non
markings/roads.

Mapillary dataset is built from images collected from
individuals who collaborated in collecting street level images
of roads. The images where taken from multiple countries

around the globe. In figure 2 we see the heat map repre-
senting all the countries that the images where taken from.
There are 20,000 images annotated. The annotation process
was done manually through a fine-grained style that uses
polygons to create the contours and the masks around the
targeted areas. The annotation represent 66 different classes
including cars, cross-walk, road, people, etc [7]. In figure 3
we can find all the classes that are used in the dataset.

The images try to capture a variety of scenarios, such as
snow, sunny, rain, etc. The images also capture multiple and
different lane marking schemes of the different countries.
Therefore, we notice that lane markings that are captured in
images cohere to different governmental standards around the
glob. This gives an advantage as we could train a generalized
model that can work in multiple locations around the world.
The entire dataset consists of 18,000 training images and
2,000 validation images which are annotated and 5,000
testing images that are not annotated [7].

To prune and modify the dataset we selected images that
contain a form of lane markings. We merged all the classes
that correspond to lane marking-general, lane marking-
crosswalk, service lane, crosswalk-plain and bike lane to
represent road markings. We also wanted to classify and
predict roads. We removed all the annotated images that
does not include roads or road markings from our modified
dataset. We also had to remove all the image containing snow
as the Mapillary dataset colored snow and Lane Marking
- General as the same color which can confuse the neural
network.

After the pruning with the dataset we ended up with a
small confide dataset that represent only the three desired
classes. We ended up with 17,742 annotated images that
contain all of the three classes and does not have snow
in them. We then split the dataset to the same rations that
the original Mapillary dataset was in. The split for training,
validation and test was 72%, 8% and 20% respectively.

In Table I we can represent, on average, for any given
image in the modified dataset the percentage of pixels that
belongs to one of the three classes. The image sin the dataset
had different sizes as well; therefore, while training we had
to re-size the images.

Class Road markings Road Non markings/roads
Percentage 3.2% 18.9% 77.9%

TABLE I. Represents the percentage of pixels representing a specific class
on average in any image in the modified dataset

III. TRANSFER LEARNING APPROACH FOR LANE MARK
DETECTION

Our main approach to this problem is to use transfer
learning on well known semantic segmentation models to
classify each pixel into the three classes. Famous semantic
segmentation models are like FCN, VGG, DeepLab, etc.
These models perform pixel wise classification. That is,
after performing the convolutions they perform upscale or
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Fig. 2. Countries from which the images in the Mapillary dataset where
collected from. Data Source: [7]

Fig. 3. All the classes that are included in the dataset. Data Source: [7]

Fig. 4. Examples of images from the original Mapillary dataset. Data
Source: [7]

deconvolutions where they create prediction with the same
size as the input. the first model to deploy this method is the
fully convolutions networks, FCN. [6]

A. Model Description

We used the FCN-8s model to predict the three classes.
Figure 5 represent the the FCN-8s model. The FCN-8s
consists of 7 2D convolutional layers with pooling in be-
tween. The special feature that this model has is that it has
2 skip layers starting from pool-3 and pool-4. These skip
layers are used to create the output of the model before
the deconvolutional layers. A simple adding function is used
to combine pool3, pool4 and conv4. This vector could be
considered as an embedding of the image. After we obtain
this vector an up-scaling is performed on it to create the
logits on each pixel.

Due to the nature of the model, the model is huge as
the fully convolutional layer tries to project the embedding
into the original image size. This cause the model to have
around 134,000,000 parameters all together. We thought
about freezing the encoder part but that would not work to

Fig. 5. Fully Convolutional Network FCN-8s

our advantage as the upsizing layers does not have non-linear
activation functions. They are used as affine transformations
only. Therefore, we need to train the model in entirety due
to that reason and the presence of the skip layers.

B. Weight Initialization

We used the pre-trained weights of the state-of-art FCN-8s
that is trained on the VOC data set. The initial model was
trained to detect and identify all different road objects from
cellphone images. The VOC dataset is a huge dataset that
tries to identify cars and people only on roads. Using these
pre-trained weights can shorten the convergence time and
give good initialization to out model. Since the scope of the
problem is still using the road view images then we assume
that the conv layers in the models will be able to capture
important features in the images. Therefore, we wanted to use
a better initialization of the encoder and then train the entire
model end-to-end to predict and identify the three classes.

We also tried to have better initialization through training
the network on a small subset of training set. Due to the huge
size of the network, if we trained directly on the entire dataset
the convergence rate will be very low; as the network will be
confused by the different images. We trained the model on
16 images for 300 epochs to get very accurate results on a
small dataset. Once the model converged to a small enough
loss then we used the entire training set to train the model.
This cut out training time by fourth.

IV. EXPERIMENTS AND RESULTS

A. Data Augmentation

We trained the model on downsized, or scaled down sizes
of the, images to 500x500 pixels. The reason for that is due
to the difference in the image sizes of the dataset we had to
make it uniform to perform batching. Also, as mentioned in
Table I we see that only 3.2% of any image represents road
markings. If we had a 3000x2500 image then it will be harder
for the model to accurately predict all the pixels correctly.
Hence downsizing the images can give faster convergence
rate while training.

None of the images were pre-processed and no data
augmentation was done throughout the training and testing
process. The training was done on the images as is. A
possible way to augment the data is instead of downsizing
the images we could use smart cropping. The problem with
cropping is that we might end up with crops that do not
contain all three classes. Instead we could perform cropping
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that targets the bottom of the images as roads normally are in
the bottom of the images. This part is definitely considered
for future work.

B. Detection Experiments

The training was done on a single NVIDIA GTX TitanX
GPU with 12GB of memory. The computational capacities
were low therefore fine-tuning an already existing network
was the best solution.

We trained for the model for 75 epochs with adadelta
optimizer with 0.01 learning rate. We used categorical cross
entropy loss and normal accuracy as a metric when we were
training the model. We performed a loss of 0.1143 on training
set and 0.1499 on validation set.

C. Evaluation on Test Set

As an evaluation metric we used intersection over union,
IU, metric. The IU is a standard metric when performing
semantic segmentation on images. Most papers measure the
accuracy of their model using this metric. The IU score for
a class c is calculated by Eq. 1.

IUc =
true positive

true positive+ false positive+ false negative
(1)

As for the overall score for all the classes, meanIU, is
calculated by Eq. 2. The weights of the classes are considered
in the final calculation of the accuracy of the model. This
is important because as shown in Table I we see that road
markings occupy a very small percentage of an image.
Hence, it is important to weight the classes.

meanIU =
∑

class c

weightc × IUc (2)

Based on the two metrics described in Eq. 1 and Eq. 2 we
calculated the IU of each class and the meanIU of the all the
classes combined on the test set. We were able to achieve
a meanIU of 70.95%. The individual classes IU is in Table
II. You can check the inference on some of the images that
were in the test set in 6

Class Road markings Road Non markings/roads
IU 40.33% 77.02% 95.49%

TABLE II. Classes individual IU

From the results of the individual IU in Table II obtained
on the test set we see that the model performs relatively
well on the road and non marking/road classes; however,
not as good on the road markings. The reason behind that
is the fact that in any image on average only 3.2% of the
image is road markings. Add to that to the downsizing of
the images, the downsizing algorithm might be simplifying
the road markings too much causing the inaccuracy while
training. This makes it hard for the model to detect the lane
markings.

From the inference images in Fig. 6 we notice that the
model did indeed learn that the lane markings and roads are

Fig. 6. Inference on some images from the test set

located in the bottom of the image. It still need to accurately
separate the roads from road markings. According to the III
we see that most of the false rejections of the road markings
are going to roads. We believe that with bigger computational
power we will be able to achieve better results. The loss still
has not converged; therefore, with more computational time
we could achieve better results.

True/Predicted Road markings Road Non markings/roads
Road markings 1.6x107 1.1x107 0.5x107

Road 0.6x107 15.4x107 2x107

Non markings/roads 0.1x107 0.8x107 73.5x107

TABLE III. Confusion matrix on the test set. Each value represent the
number of pixels. Column is prediction and row is true label

V. CONCLUSION

Using our transfer learning approach we were able to get
a meanIU on the test set of 70.9%. This indicates that our
model indeed is somewhat able to differentiate between road
markings, roads and everything else. However we notice that
the IU of the road marking class is about 40.33% which
could be improved upon. One method that could be used to
improve upon the IU of the classes is through better data
augmentation. As suggested in the Section IV subsection A,
we could do smarted cropping of images to make sure that
the training images has some portion of the three classes.
We could also perform cropping and accept cropped images
that has at least a threshold percentage of each class.

This entire work was done to perform semantic seg-
mentation to only detect lane markings. We would like to
extend our research to perform quality assessment of the
lane markings. But due to the lack of presence of a dataset
that gives quantified value to road marking quality we would
probably use synthetic dataset to train a model that can give
the quality of the road markings. Another approach would be
to perform stratified active learning on the unlabeled dataset
and only label very few instances that could represent a group
pf similar lane marking images.
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Hardware Acceleration for Sensor Data Fetch

Junyan Su1

Abstract— This paper considers a logic hardware design for
sensor data fetch. Most control systems have multiple sensors
to get the feedback from the environment. To fetch data from
all the sensors, a CPU has to consume time waiting. However,
on real-time systems like robots, the computational resource is
limited and CPU also performs compute-intensive algorithms
like sensor fusion. This paper provides a logic-circuit-level
design to fetch sensor data with the smallest CPU interven-
tion. Performance is evaluated empirically with PSoC5LP and
MPU9250. Results show a significant improvement in sample
rate. This leads to more advanced algorithms, like data fusion,
to be processed with higher performance. In the future, this
design may be integrated as an IP core ( semiconductor
intellectual property core ) and used in microcontrollers that
need I2C block. so that we can fetch sensor data small CPU
intervention.

I. INTRODUCTION

Most control system like robots needs sensors to get the
feedback from the environment to make the decision. In
most cases, the system uses multiple sensors to acquire the
information on different aspects of the world and make use
of those hybrid data to reduce estimation error and make
smarter decisions.

How to fetch data from all those sensors fast is essential
in an embedded system in most cases. Many protocols
like Inter-Integrated Circuit(I2C)[1] and Serial Peripheral
Interface (SPI) have been used widely for data communica-
tion between microcontroller and sensors. In a multi-sensor
system, I2C is preferred since it only requires two general-
purpose I/O while SPI requires more pins to communicate
with multiple devices.

However, I2C block in typical microcontroller use soft-
ware to perform I2C processing which requires CPU core
to manipulate some control registers inside I2C block. Due
to the speed limit of the I2C protocol, the CPU will waste
a lot of time waiting. In a real-time system, CPU resource is
quite limited and should be used for more compute-intensive
algorithms like data fusion and high-level control algorithms.

To fetch data with smallest CPU intervention, a logic
hardware design is proposed to parallelize the I2C process.
We use PSoC5LP and its on-board Universal Digital Block
to design the logic circuit with additional error handle
functions and user-friendly APIs. Performance is tested with
MPU9250 with data fusion algorithms Mahony Filter[2] and
Madgwick Filter[3]. As a result, we achieve to reduce the
CPU intervention time dramatically from 700 microseconds
to only 1 microseconds.

1Junyan Su is a student at School of Information Science and Tech-
nology, ShanghaiTech University, Shanghai, China. This work is done
during Robotics Institute Summer Scholar program in the Robotics Institute,
Carnegie Mellon University. sujy@shanghaitech.edu.cn

Fig. 1. The main blocks in a UDB from a high level [4]

II. BACKGROUND

A. Programmable Logic Device

PLD (Programmable Logic Device) is an electronic com-
ponent used to design digital circuits. Designers can use
HDLs (Hardware Description Languages) like Verilog and
VHDL to configure a PLD to achieve certain logic functions.
Since it is programmable and re-configurable, it is easy for
circuit developers to prototype a new design. After testing on
prototype, designers can easily translate their source codes
into an IP core ( semiconductor intellectual property core )
which can be used by other IC manufacturers.

We will use one of the variants of PLDs, called UDBs
(Universal Digital Blocks) to prototype our design. A UDB is
a flexible, programmable digital block inside a PSoC device
[4]. The main blocks in a UDB from a high level is shown
in Figure 1. Like other variants of PLDs, a developer can
use Verilog to configure UDB for a certain logic function.
Therefore, after testing our design, it can be easily translate
to a IP core and used in future SoC.

B. I2C protocol

I2C (Inter-Integrated Circuit) is a widely-used, low-speed
serial computer bus for low-speed peripheral ICs to com-
municate with microcontrollers within a short distance. A
typical I2C design has two bus clock(SCL) and data(SDA)
with 7-bit addressing.

There are two kinds of nodes on the bus: master and
slave. The master node is in charge of the SCL line and will
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Fig. 2. Typical protocol to communicate with a sensor via I2C from [5].
The microcontroller writes a byte to indicate from which address (RA) inside
sensors it would like to read/write. Then the microcontroller reads/writes
several bytes start at the address (RA) indicate before.

Fig. 3. Description for the Figure 2

decide when to start or stop the communication and which
slave should respond to the communication. Slave node will
detect the SCL line change and respond when corresponding
address detected.

As can be seen above in Figure 2, to start the communica-
tion, the master generates a START condition on the bus with
the slave address as well as a write/read bit following. Then
after waiting for the ACK signal from the corresponding
slave node, the master node will start to read/write data.
Note that if the start condition is NACKed, the master node
will consider the slave node not available and generate the
STOP condition immediately. For every byte, 1) if the master
node sends data to the slave node, the master node will wait
for ACK and then start next transmission. 2) if the master
node receives the data from the slave node, the master will
generate an ACK every time it receives a byte successfully.
On the last byte, it will generate a NACK to tell the slave
node not to send byte anymore. Finally, to complete the
transmission, the master node generates a STOP condition
on the bus.

From the top view, to read/write data from/to the typical
sensors like MPU9250, the microcontroller (master node)
writes a byte to indicate that from which address (RA) inside
sensors it would like to read/write. Then the microcontroller
reads/writes several bytes start at the address (RA) indicate
before.

I2C has several advantages over other types of computer
buses[1]:

• simple:I2C only has two lines for transmitting data
for multiple peripherals and the implementation is also
simple.

• well-known and Universally accepted: most sensors

Fig. 4. Design Top View: DMA Reg is a DMA instance to synchronize
the I2C registers between I2C and the design. DMA Data is responsible
for transferring sensor data to the memory.

have built-in blocks for communication with microcon-
trollers.

• plug& play: Since there are only two lines, additional
sensors can be easily added to the original system with
little change.

• cost-effective: Cost to build an I2C block is quite low.
However, the main shortage of I2C is the limited speed.

For example, the I2C fast mode runs at 100kHz which
means no more than 12.5kByte/s communication rate. Any
package greater than 12.5 bytes will reduce the sample rate
down to less than 1kHz. In fact, the size of the whole
sensor data package from one MPU9250 is 22 bytes. In
a multi-sensor system, there are many other data coming
which further reduces the sample rate. Since it requires the
microcontroller to generate different signals, there are a lot
of CPU interventions during fetching data via I2C .

III. THE LOGIC HARDWARE DESIGN

As stated above, the speed of I2C is quite limited. It limits
real-time system like robots to perform advanced algorithms,
like data fusion, with high performance. Our design corrects
this limitation, saving a lot of CPU time to allow these
systems to execute high-performance tasks.

A. Design Top View

As shown in Figure 4, in an I2C block, there are two
types of registers: control register and status register. Control
register can be changed by the user (CPU or our design) to
send a command to the I2C block so that it will perform a
certain function like generating START or STOP condition
on the bus. Status register indicates the state of the I2C
block. The user can check if the transmission is completed
or not by reading the status register. Details can be found in
[6].

Since the on-board UDBs (Universal Digital Block) have
no access to the registers inside the I2C block, we use DMA
(Direct Memory Access) to apply the control register change
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Fig. 5. Flow chart of the design

to the I2C block and read the value of the status register of
I2C block. Also, DMA is used to transfer sensor data from
I2C block to the memory so that CPU can easily access it.

In addition, whenever our design finish transferring, it
will generate an interrupt and disable itself automatically.
Inside the interrupt, CPU may start read from another sensor
or simply re-enable to read the current sensor again. This
design is useful when the sequence of reading data from
sensors matters. We can easily design a FSM (Finite State
Machine) to decide the order of how we read data from
different sensors.

B. Design Details

Figure 5 shows the logic routine of the hardware design.
It is similar to the normal I2C process routine except the
enable signal for the extension to multi-sensor system:

1) Waits for the enable signal from CPU.
2) If enable signal detected, it enters into the transmission

status and request the DMA Reg to change the control
register with the value corresponding to the START
condition.

3) Read from the status register and waits for the ACK
signal.

4) Write with the slave register value to indicate start from
which address in the sensor will it reads.

5) Request the DMA Reg to change the control register
with the value corresponding to RESTART condition.

6) Read from the status register to check if it can read a
byte from the I2C block.

7) Request the DMA Data to transfer the sensor data into
the memory.

Fig. 6. The sequence diagrams of the traditional method vs the proposed
method

8) Minus the counter by one and check if it is zero. If
not, continue reading.

9) Request the DMA Reg to change the control register
with the value corresponding to STOP condition.

10) Disable the hardware and goes back to the first step.

C. Extend to Multi-Sensor System

Since we introduce an interrupt into our design, it is
quite easy for the programmer to define a FSM (Finite State
Machine) inside the interrupt. For example, if we want to
read from the sensors one by one, when an interrupt occurs,
we can simply call a function and set the corresponding
parameters of the next sensor and re-enable it.

D. Comparison of traditional and proposed methods

Figure 6 shows the improvement in our design compared
to the traditional method. In the traditional method, when
needing data, CPU has to manipulate some control registers
inside the built-in I2C block and spend most of the time
on it. When interacting with the I2C block, CPU does no
computational work but simply change the value of some
registers. However, CPU has to supervise the status register
all the time to check if a one-byte transmission is completed.
And while CPU doing compute-intensive algorithms, the
I2C block is at idle status and does not perform data fetching
task which is a waste of I2C block resource.

In our new method, the CPU and I2C block work in
parallel. What CPU does is to initialize the block by setting
the slave address, data length and data buffer address. After
initialization, the block will start data fetching automatically
and CPU can do other high-level compute-intensive algo-
rithms like data fusion. Whenever the block transmission
completed, it will generate an interrupt and be disabled au-
tomatically waiting for CPU to re-enable it. In the interrupt,
CPU may change the slave to next slave address and start
data fetch from another sensor.
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In addition, we provide user-friendly APIs (Application
Program Interface) for the programmer to use the design.
Additional error handling functions are also provided for
further debugging.

IV. EXPERIMENT

Performance is evaluated empirically with PSoC5LP and
MPU9250. We have implemented two versions: CPU ver-
sion and hardware version. In the CPU version, we simply
subtract the time before calling the function from the time
point after calling the function. In the hardware version, we
measure the time used in an interrupt. The result shows that
we reduce the CPU intervention time dramatically from 700
microseconds to only 1 microseconds.

As far as the multi-sensor system, we test our design on a
system with one MPU9250 and four hall sensors and connect
that to the same I2C bus. To fetch data from all sensors,
it costs 2000 microseconds in CPU version while only 5
microseconds in the hardware version.

Besides, due to the parallelism, the sample rate also
increases twice as many as before which leads to a higher
accuracy of data fusion algorithm like Mahony Filter we
implement on board.

V. CONCLUSION

In this paper, we provide a hardware design to offload CPU
for the I2C process. Results show that there is a dramatic
reduction in CPU intervention time. Since we use UDB with
Verilog to design the logic hardware, this design has the
potential to be integrated into any general I2C block as a
new IP core in a microcontroller or SoC(System on a Chip)
so that sensor data fetch, especially in a multi-sensor system,
does not affect a system to be real-time.
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Functional Trajectory Forecasting and Consistency Guarantees for
Self-Driving Cars in Social Settings

Scott Sussex1, Chiyu Dong2 and John M. Dolan 3

Abstract— Self-driving cars will be required to navigate
urban scenarios such as intersections, ramp merges, and lane
changes. These are all highly social environments that require
accurate estimates of the intentions of other cars. Increasingly,
this problem is being tackled by learning a behavior model from
data. We present a new learning-based method which is based
on non-parametric regression in Reproducing Kernel Hilbert
Space. Our method provides three important contributions:
• The use of a prediction function class which can account

for the interactions between all relevant vehicles, both
autonomous and human-driven.

• A novel prediction function where the output is a smooth
trajectory over time, rather than a series of discrete points.

• A bound on how our estimated trajectory will vary as a
function of the time at which it is calculated, providing a
measure of forecast consistency over time.

We use the lane change setting to demonstrate and evaluate
our method. Our method outperforms alternative approaches.
The results also compare the use of different regularization
functions and kernels when applying our method.

I. INTRODUCTION

Intention estimation for autonomous driving is a difficult
problem. Intention estimation means forecasting what other
cars will do in social situations, for example, intersections,
ramp merging, and lane changing scenarios. We focus on
the lane change scenario for our experimental work, but our
theory applies to all of these scenarios.

Social settings are complex and forecasting requires con-
sideration of the behavior of multiple vehicles, which may
interact with the vehicle of interest. The difficulty of estimat-
ing vehicle intentions in social settings motivates learning a
model of vehicle intention from data.

Learning algorithms output a fixed number of points,
but we are interested in forecasting the entire trajectory
of a target vehicle, which contains infinitely many points.
Existing approaches can use a separate function to smooth
across the points they output, in order to find a smooth
trajectory for the vehicle. Doing this with a method such
as a smoothing spline leads to bias at the endpoints of the
estimated trajectory. We present a method that accounts for
smoothing within the training process, in order to learn a
model that accurately forecasts smooth trajectories for target
vehicles. We introduce a two-step RKHS method. The first
converts inputs to a parameterization of a trajectory, and the
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Sciences, Harvard University, 29 Oxford St, Cambridge, MA 02138 USA

2Chiyu Dong is with The Department of Electrical and Computer
Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 USA
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second acts as a smoother which generates a trajectory which
is a function of time.

Alternative deep learning approaches will be sensitive
to hyper-parameter selection. Methods like grid search or
random assignment have high training time and do not give
optimal hyper-parameters. We demonstrate how a validation
set can be used to analytically optimize one of the hyper-
parameters in our method.

Sensor error and change in vehicle positions over time
may lead to our model receiving noisy or changing input
over time. In a self-driving vehicle, it is desirable to have
forecasts that do not erratically change over time, so that
the vehicle has a consistent view of the world for motion
planning. Existing approaches do not provide any way of
quantifying how consistent a forecast will be over time. We
derive a bound for how much the estimated trajectory will
change with respect to the time at which the forecast is made:
a mathematical guarantee of the consistency of our forecaster.

We present two different approaches to regularizing mod-
els that use RKHS methods to forecast a complete trajectory,
and empirically evaluate them on the lane change scenario.
Finally, our empirical results also demonstrate the feasibility
of using an RKHS method with functional output in the self-
driving setting. We find that our method performs favorably
compared to alternative approaches.

II. PRIOR WORK

Some previous works on navigating social driving sce-
narios do not make predictions about the intentions of
surrounding cars. An example is Baker and Dolan’s slot-
based approach [1], used in the CMU Boss merge planner
to select where to change lane in a highway lane-change
scenario. Information on surrounding cars’ motion is used,
as well the distance of the host car from the slot it may
merge into. The most likely target slot is selected based on
feasibility of the maneuver and the context of the scenario.
The approach does not make forecasts about the expected
behavior of other vehicles when planning.

Nilsson et al. [2] do not make forecasts about the behavior
of other vehicles, but instead formulate lane changing as
an optimization problem using Model Predictive Control.
The approach is limited since it involves manual tuning
of constants and optimizes a hand-designed optimization
function, rather than designing a trajectory based on forecasts
about the behavior of other vehicles.

A significant number of probabilistic approaches to the
social behavior problem have been proposed. Yao et al. [3]
search for the k-nearest-neighbors in a lane-change database
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and use these to generate an estimated trajectory by interpo-
lating. Such an approach may have large bias in sparse areas
of the feature space, and does not incorporate smoothing
when learning the model.

Several approaches use binary or ternary predictions.
For example, Galceran and Cunningham et al. [4] [5] use
Bayesian changepoint detection on a car’s recent history to
forecast whether a car will turn left or right. Dong et al. [6]
use a PGM to forecast whether a car will yield or not yield
in a lane merging scenario. Both of these approaches could
be used as a higher-level module, preceding use of a model
that outputs an estimated trajectory.

A number of approaches employ a Partially Observable
Markov Decision Process (POMDP). Ulbrich et al. [7] and
Wei et al. [8] use real-time belief space search to solve
an online POMDP. To achieve real-time performance they
needed to use a discrete state and action space. Bai et
al. [9] proposed a continuous-state POMDP using a belief
tree. It was applied to navigating intersections, but only
used discrete actions represented by a generalized policy
graph. Seiler et al. [10] proposed an approximate online
solver for a continuous-action POMDP, but it was only tested
in toy problems. All of these POMDP models need their
transition models and reward functions to be designed by
hand. Sadigh et al. [11] and Hadfield et al. [12] try to learn
these from data using inverse reinforcement learning. Sadigh
et al. [13] develop upon this and model interactions with
human drivers as an underactuated dynamical system in order
to learn autonomous behaviors in social settings. The method
is interesting in that it allows the autonomous vehicle to
plan for how its own behavior will affect a human driver’s
future behavior. The method lacks hard safety constraints and
therefore performs some dangerous maneuvers during human
experiments on a simulator. The method is also unable to
handle interactions with more than one human driver, due to
both computational and modeling difficulties.

Dong et al. [14] also make predictions about other vehicles
using non-parametric regression in RKHS. Their model
similarly uses the recent motion of all surrounding cars,
but only predicts the start and end point of a lane change
maneuver, rather than a full trajectory. They also do not show
how to analytically determine hyper-parameters or provide
consistency bounds on their forecasts.

Existing approaches to the social behavior problem that
attempt to estimate other vehicles’ trajectories either do not
consider interactions with many vehicles, or do not output
estimates that represent the full trajectory as a function of
time. Outputting forecasts as a full trajectory is more practi-
cal for use in motion planning, since it allows for evaluation
of another vehicle’s expected position at any point in time.
To achieve this with methods that output just a sequence of
discrete points would require smoothing. Using commonly
used smoothing methods such as smoothing splines will lead
to bias at the end-points of the trajectory. Not considering
smoothing when learning a model means there is no way
to account for the bias induced by smoothing. Finally, no
existing methods consider bounding how much the estimate

can change over time to provide guarantees regarding the
planner having a consistent understanding of the world.

III. METHOD

A. Trajectories in RKHS

A RKHS (H) contains a family of smooth functions
associated with a particular kernel K. K : X ×X → IR. A
function f in H can be represented by a linear combination
of kernel outputs evaluated at each training set element:
f(·) =

∑
αiKxi(·),

Given a set of labels b and a set of inputs x in a training
set, traditionally RKHS methods result in solving

f̂ = argmin
f∈H

N∑
i=1

(bi − f(Xi))
2 + λJ(f) (1)

Where J = ||f ||2H . In this case, the representer theorem
holds, which states that the loss minimizing f is of the form∑
αiKxi

(·). In this case, α can easily be found to obtain
the optimum f for the loss function. RKHS methods are
nonparametric, and used when we do not know the form
of function f but are interested in approximating it given
data and with potentially unlimited degrees of freedom. For
a further discussion of RKHS methods in relation to vehicle
forecasting, see [15].

B. Learning a Smooth Trajectory

TABLE I: Table of Notation

x , Training data features of n trajectories.
x′ , The features of a single input.
b , The ground truth label for training trajectories. Contains

d points at times along each of the n trajectories. Time
points are represented by vector t and are consistent across
trajectories.

K , Kernel function between feature inputs. When no inputs
given, assume the matrix K(x, x)

k , Kernel function between two times. When no inputs given,
assume the matrix k(t, t).

η , The model’s estimated trajectories. This is a function of time.
ηi is the function corresponding to the ith training input.

D , A derivative operator for k. Can be chosen to represent
arbitrarily many derivatives rather than just the first. Assume
k is infinitely differentiable so that D is always a linear
operator.

α , A matrix of the learned weights in the regression.
. , Inner product operator.
λ , A constant to weight between minimizing error and complex-

ity.

Let f(x′) = α.K(x′, x). Let our output trajectory be η,
where η(t) = k(t, ).f(x′).

When training a model, we are interested in a low MSE
(mean squared error) between our trajectories at various time
points ti and the ground truth, where 0 ≤ ti ≤ 1 and 0 ≤
i ≤ d. We are also interested in generating trajectories that
are smooth, so we use smoothness as a regularizer. We can
use the loss function:
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1

nd

∑
i,j

(bi(tj)− ηi(tj))2 + λ
∑
i

||Dηi||2E

To minimize our loss function on a training set we solve
to find α = k−1(k + dnλD)kbTK−1 (Derivation 1 in
appendix). Note that for this loss function, the representer
theorem does not hold. Therefore the α found is only the
optimal linear solution. However, the regularizer used has
clear physical meaning. It seeks functions that have a smooth
ith derivative of the trajectories forecasted on the training set.

A more simplistic application of traditional RKHS meth-
ods might lead one to use ||f ||2H as the regularization term.
For the resulting loss function, the representer theorem does
hold, so the α found represents a true optimum. α can be
solved for in the standard way, but requires the solution of
a Sylvester equation [16] as a result of the smoothing step.
The intuitive meaning of the regularizer is also less clear.
It minimizes the complexity of f but does not consider the
smoothing step in the regularization.

C. Analytical Hyper-Parameter Optimization

λ, the smoothing basis function (k), and the non-
parametric regression kernel function (K) are all hyper-
parameters. For the first loss function given above, λ can
be optimized on a validation set as the solution to the linear
equation

∑
j

∑
i

dnDjkb
TK−1K∗i ((b

∗
ij − kjkbTK−1K∗i )

−dnλDjkb
TK−1K∗i ) = 0

(2)

where K∗ is the kernel matrix computed by inputting the
validation set trajectories against the training set trajecto-
ries. This can be shown by substituting in α = k−1(k +
dnλD)kbTK−1 and differentiating with respect to lambda.

D. Provable Bounds on Change in Predicted Output Over
Time

Input to the model will be changing over time. Therefore
the estimated trajectory will be changing with time. Let
g(T, t) = ηT (t−T ) be the point estimate gathered by taking
in input at time T into the future and then evaluating the
resulting trajectory at time t after the estimated trajectory’s
start point. We aim to bound g(T, t) given g(0, t). In other
words, we are interested in bounding a future forecast
regarding where the car will be in terms of our current
forecast. We are particularly interested in bounding g(t, t)
since if we have an unbiased model, this will be the exact
position of the target car at time t in the future.

In order to compute a bound we assume Lipschitz conti-
nuity of the input with respect to time, i.e.

||X1, X2|| ≤ C(T2 − T1)

We argue that this is a reasonable assumption because we
know the car has bounded velocity and our sensors likely
have bounded error. This would bound how much the input

Veh-rt

Veh-fVeh-r

Veh-ftTarget Lane

Current Lane Veh-s

Veh-st

Past trajectory The start point The end  point

Fig. 1: This diagram from Dong et al. [15] demonstrates the highway lane
change scenario and the difference between our two methods. Dong et al.
use all the shown cars’ past trajectories to forecast the start and end point
of the red car’s lane change. In contrast, we forecast a full trajectory as a
function of time: the dashed red line.

can change with respect to time. C can be determined from
data or domain knowledge.

We use a kernel function for smoothing within a trajectory
k(t1, t2) that is always greater than 0. We smooth at specific
time points ti for 1 ≤ i ≤ d. For our kernel function
that compares input to training set elements, we assume
any inverse multiquadratic kernel of the form K(X,Z) =

1√
||X−Z||2+r

where z is a training set input, r is a constant,

and the squared norm is any norm that satisfies the triangle
inequality.

For any regularizer we have presented, given input to the
model at time 0 of X0, we can show that g(T, t) is bounded
in the interval

[∑
i

k(ti, t+ T )
∑
j

min(Ai,j , Bi,j) ,

∑
i

k(ti, t+ T )
∑
j

max(Ai,j , Bi,j)

]
where each Zj is one of the n training set

inputs. and Ai,j =
αi,j√

(||X0−Zj ||+CT )2+r
, Bi,j =

αi,j√
(max(0,||X0−Zj ||−CT )2+r

(Derivation 2 in appendix) where each Zj is one of the n
training set inputs.

The width of the bound monotonically increases with C
as expected. As our bound on input gets wider, our bound
on the output also becomes wider. The width of the bound is
also monotonically increasing with respect to T as expected.
Our bound becomes wider as we look further into the future.

IV. EXPERIMENTAL DESIGN

We carry out thwo experiments to verify our method:
• Report Mean Squared Error (MSE) of our model at

different time points along a trajectory forecast, for
different regularization options.

• Compare the mean and standard deviation of errors from
our method and alternative approaches.

We evaluate the model specifically on the highway lane
change scenario. This scenario is shown in Fig. 1. We
call the vehicle changing lanes the host car. The input to
our model will be the previous trajectory of the host car
and all surrounding cars. The surrounding cars include the
leading and following car in the current lane, in addition to
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TABLE II: Regularizers Used in Experiments

Trad , Tr(αKαT )

Di , Tr((αK)TDik(αK)) where Di is the ith derivative oper-
ator.

the neighboring car in the target lane, and its leading and
following car. Our model’s goal is to output an estimate of
the trajectory the host car will follow as a function of time.

We use a dataset from NGSIM [17], with traffic data from
the I80 and US101 highways. The I80 dataset contains traffic
data for three 15-minute periods: 4:00 p.m. to 4:15 p.m.,
5:00 p.m. to 5:15 p.m., and 5:15 to 5:30 p.m. The US101
dataset also contains three 15-minute periods: 7:50 a.m. to
8:05 a.m., 8:05 a.m. to 8:20 a.m., and 8:20 a.m. to 8:35
a.m. In both datasets, we have the location of each vehicle
at 100-millisecond time intervals. We extract lane change
scenarios from the dataset in the same way as Dong et al.
[15]. This method gives the trajectory of the host car and all
surrounding cars for each lane change scenario. The location
of every car is recorded between 10 seconds before and 10
seconds after crossing the lane marking.

We measure the error of our model from ground truth
by evaluating our estimated trajectory at a set number of
time points in the future, and comparing to ground truth at
that time. Comparing separately at different points along the
trajectory allows us to illustrate how accurate the model is
in the near and far future. We compare to ground truth at
1-second intervals from the start of our estimated trajectory.
We extracted 543 lane change scenarios. 450 are selected as
training data. The remaining 93 trajectories form the test set.

The kernel used to determine K is the inverse multi-
quadratic kernel with the Frobenius norm, which has been
shown to be effective in previous RKHS approaches to self-
driving [15]. Forecasts are made using up to the previous
3 seconds of historical vehicle data at 0.1s intervals as the
features.

V. EXPERIMENTAL RESULTS
Trajectory forecasts are evaluated using the method with 4

different regularization terms (Table II). For the second term
we use i from 0 to 2.

For each regularizer, K is an inverse multiquadratic kernel
where the norm used is the square root of the Frobenius
norm.

K(X1, X2) =
1√

||X1 −X2||F + c

where

||A||F =
√
tr(AT ·A)

For smoothing, k is selected to be a radial basis function.

k(t1, t2) = e−ε|t1−t2|
2

For all regularization terms, we select hyperparameters
c = 0.5 and ε = 2. c was selected based on what was

Fig. 2: Graphs of MSE for forecasts in the y and x direction against the
point at which the forecasted trajectory is evaluated. All errors are relative
to the error of the Trad regularizer. The lines for D0 and D2 are almost
indistinguishable because their MSE values are so similar.

optimized in [15]. ε was selected arbitrarily before training,
and could have been set to any value depending on the
required smoothness of the model’s output.

We test two different kinds of input X in our experiments.
The first is ”Interaction”, which contains scaled positions of
all relevant vehicles at 0.1-second increments over the past 3
seconds, relative to the host vehicle’s position at the time of
prediction. The second is ”Dynamics”, which contains scaled
positions of just the host car at 0.1-second intervals over the
last two seconds. ”Interaction” is designed to capture interac-
tions between vehicles, whereas ”Dynamics” is designed to
mimic a naive method of just considering the host vehicle’s
velocity at the time of forecasting. All labels (true training
set trajectories) were transformed by subtracting the mean
training set trajectory. This was done so that regularization
would shrink trajectories towards the mean trajectory, rather
than towards a stationary trajectory at 0.

We compare the impact of different regularizers and
inputs on the forecasting error in directions parallel (y) and
perpendicular (x) to the lane markings. Figure 2 shows these
results. For Trad, λ is selected by grid search on a validation
set, but for Di, λ is selected by analytical optimization on
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Fig. 3: Visualization of a trajectory forecast on the test set. Red shows the
coordinates of the host car. Blue shows the other cars in the current lane.
Green is cars in the target lane. Circles (O) are data-points input to the
model, while dots (.) are the rest of the trajectory. The dashed black lines
are the road markings. The purple points are the forecast.

the validation set as presented above.
We find that in general the Trad regularizer has lowest

MSE. In the x direction and in the y direction with an
Interaction input, the alternative regularizers perform closely
to Trad, while in the y direction with the Dynamics input the
Trad regularizer performs far better. This suggests two things:
1) in general, incorporating smoothing information into the
regularizer decreases performance; and 2) the performance
of different regularizers is dependent on the kernel used. D0
and D2 perform very similarly, likely because the second
derivative of the radial basis function has the same sign as
the undifferentiated radial basis function.

A random trajectory is selected from the test set and
visualized to qualitatively assess the feasibility of a generated
trajectory. The forecast is made with regularizer Traj, using
input B in the y direction and input A in the x direction. We
make a forecast 3 seconds into the future.

Besides the comparison between different orders of deriva-
tive, the proposed method is also compared with two state-
of-the-art trajectory estimation methods.

A) The Conditional Neural Process framework (CNP) [18]
estimates the stochastic process of the future trajectory.
It collects three moments of historical trajectories of

Methods 0s 1s 2s 3s 4s 5s

KNN 0.0000 -0.0020 -0.0686 -0.2773 -0.4981 -0.5374
LSTM 0.2855 -0.0264 -0.3296 -0.5884 -0.7763 -1.2092
CNP -0.0009 0.0845 0.1808 0.3820 0.3791 0.4439
RKHS -0.0002 0.0125 -0.0011 -0.1304 -0.2510 -0.2515

TABLE III: Mean errors along the lateral (x) direction at each second after
forecasting (0-5) comparing with ground-truth, for each method.

Methods 0s 1s 2s 3s 4s 5s

KNN 0.0000 0.3088 0.7295 1.4579 2.1624 2.5313
LSTM 0.9431 0.7764 0.8807 0.9191 1.0202 1.1601
CNP 0.0051 0.4764 1.2679 1.9950 2.3249 2.4724
RKHS 0.0012 0.2876 0.6260 1.2407 1.8513 2.1388

TABLE IV: Standard deviation of errors against ground truth along the
lateral (x) direction at each second after forecasting (0-5), for each method

Methods 0s 1s 2s 3s 4s 5s

KNN 0.0000 0.0250 0.0003 0.0769 -0.1308 -0.4035
LSTM -1.4577 -2.1003 -4.4286 -6.4974 -9.8511 -17.9320
CNP -0.0030 -0.2291 -0.5650 -0.7824 -0.9790 1.1256
RKHS -0.0001 0.0033 -0.0289 0.0637 -0.1279 -0.4262

TABLE V: Mean errors along the longitudinal (y) direction at each second
after forecasting (0-5), for each method.

Methods 0s 1s 2s 3s 4s 5s

KNN 0.0000 0.9624 2.5461 4.3528 6.6001 8.9433
LSTM 5.3553 6.3561 8.2254 10.3025 14.6079 20.5533
CNP 0.0096 2.1842 4.8458 7.6852 10.7635 13.9952
RKHS 0.0042 0.8618 2.3333 3.9659 6.0391 8.2210

TABLE VI: Standard deviation of errors against ground truth along the
longitudinal (y) direction at each second after forecasting (0-5), for each
method.

all vehicles involved, and predicts the future trajectory.
As suggested by the original CNP structure, two three-
level fully connected layers are used for observation
and generation.

B) An End-to-End LSTM-based approach [19] which
directly predicts trajectory of a target, considering
surrounding vehicles by social tensor [20]. The LSTM-
based approach keeps all historical data of all relevant
vehicles and predicts the location at the next times-
tamp. To make the comparison equivalent, the output
LSTM cell is evaluated ten times to predict locations
at ten future timestamps. A 1 layer LSTM is used.

In addition, a KNN implementation for the trajectory es-
timation [3] serves as a baseline method, and the same
kernel is used as that used by the RKHS approach in each
direction. For the RKHS, we use the Trad regularizer in both
directions. We use the Dynamics input in the y direction and
the Interaction input in the x direction.

VI. DISCUSSION

Comparing different kernels, we find that the kernel using
the dynamics input works best in the y direction, while
also outperforming baseline approaches. We suspect that this
is because the car’s current velocity is likely the strongest
predictor of forward motion. In the x direction, we know
this is likely not the case, especially if the vehicle has yet
to begin the lane-change maneuver. In the x direction, the
kernel considering interactions between vehicles outperforms
baseline methods.
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In the comparison with previous approaches, as shown in
Table III, the RKHS method performs very competitively.
In the lateral direction, the LSTM has lower variance but
higher bias. In the longitudinal direction, the LSTM has both
high bias and high variance compared to the RKHS. RKHS
tends to have uniformly lower variance compared to the
KNN and CNP, and lower bias. Only in the lateral direction
does the KNN have comparable sample bias to the RKHS
method. The RKHS method has some bias and variance in
errors at the forecasting point, which may appear unusual.
This is because of the smoothing taking place. Recall that
the RKHS approach is outputting a full trajectory, whereas
the alternative approaches are outputting a series of point
estimates.

The visualizations demonstrate that the method can gen-
erate feasible trajectories. Whilst we were able to compute
a consistency bound for a given forecast, we did not include
it on the visualization since the bound becomes very large
a short amount of time after the time of forecasting. We
believe this is because the bound we have derived is very
conservative: we consider each term in the sum over training
elements separately and form an upper and lower bound on
each term.

VII. CONCLUSION

In this work we lay the foundations for using Reproducing
Kernel Hilbert Space methods in a setting where we desire
a functional output. We focus on the setting of forecasting
other vehicles’ trajectories for an autonomous vehicle. We
show that modified RKHS methods can be used to forecast
trajectories with less error than that of alternative methods.
We consider different regularization terms and kernels. We
derive a bound on the consistency of future forecasts with our
current forecast, a first in this setting. However, this bound
is very conservative and we hope future work will develop
more practical bounds.

While we make progress in applying RKHS to the func-
tional output setting, our loss function still considers MSE at
discrete points along the forecasted trajectories. Theoretical
work might formulate loss as an integral of error across the
entire forecasted trajectory. Finally, we found that having
a manually selected kernel function can be restrictive in
such a complex setting. We would be interested in seeing
the application of deep learning methods to learn richer
kernel functions, while maintaining the consistency bound
and convex optimization properties of the RKHS approach.

APPENDIX

Derivation 1: show that

argmin
α

1

nd

∑
i,j

(bi(tj)− ηi(tj))2 + λ
∑
i

||Dηi||2E =

k−1(k + dnλD)kbTK−1 (3)

We can rewrite our loss function as

1

dn
Tr(||b− (αK)T k||2) + λTr((αK)TDk(αK))

Differentiate the loss function with respect to α and set
equal to 0.

− 1

dn
2k(−kαK + bT )K + 2λDkαK2 = 0

The following two identities are used in the above.
d
dXTr((AXB + C)(AXB + C)T ) = 2AT (AXB + C)BT

for the first term. d
dXTr(B

TXTCXB) = CTXBBT +
CXBBT for the second term.

Rearrange and we get kbTK − k2αK2 = dnλDkαK2

So α = k−1(k + dnλD)kbTK−1. We have a minimum
because the loss function is convex in α.

Derivation 2: Assume Lipschitz continuity on the input,
with Lipschitz constant C. Assume kernel K is inverse
multiquadratic (IMQ). We show that for any regularizer
we have presented, given input to the model at time 0 of
X0, we can show that g(T, t) is bounded in the interval[∑

i

k(ti, t+ T )
∑
j

min(Ai,j , Bi,j) ,

∑
i

k(ti, t+ T )
∑
j

max(Ai,j , Bi,j)

]
where each Zj is one of the n training set

inputs and Ai,j =
αi,j√

(||X0−Zj ||+CT )2+r
, Bi,j =

αi,j√
max(0,||X0−Zj ||−CT )2+r

By triangle inequality we know

||Zj −X1|| ≤ ||X0 −X1||+ ||X0 − Zj ||

for any training set input Zj .
g(T, t) =

∑
i k(ti, t + T )

∑
j(

αi,j√
||X1−Zj ||2+r

) but by the

above, ||Zj −X1|| ≤ (||X0−X1||+ ||X0−Zj ||) ≤ (||X0−
Zj || + CT ) by the Lipschitz assumption. By the reverse
triangle inequality we also get ||Zj−X1||2 ≥ (max(0, ||X0−
X1|| − CT ))2. Using this, we can bound αi,j√

(||X1−Zj ||)2+r
between Ai,j and Bi,j . The sign of α determines which is
the top and bottom of the interval.

This allows us to bound each element in the sum based
on the sign of αi,j . This gives the interval for g(T, t) above.
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Efficient Extrinsic Calibration System of a Camera and a 3D LiDAR
with Accurate Feature Extraction and Error Diagnostics

Jiawei Tang1

Abstract— The extrinsic calibration of a camera and a 3D
Light Detection and Ranging(LiDAR) sensor is the precondition
of combining the data in these two sensors for other processing.
Most extrinsic calibration approaches need to detect the feature
in a certain target, and their results are sensitive to the extracted
features. This means the pose with an imprecise extracted
feature can result in a large calibration error. In this paper,
we develop a efficient extrinsic calibration system of a camera
and 3D LiDAR by a checkerboard. We increase the calibration
accuracy by improving the precision of feature extraction
and improve the the robustness of an extrinsic calibration
system with an error diagnostics approach in extracted features.
This system is evaluated in real environment. The accuracy
and reliability are strongly verified by the testing results.
Meanwhile, in order to improve the usability of the whole
system, we provide an efficient Matlab toolbox with an user-
friendly GUI, which could benefit the large-scale industrial
application.

I. INTRODUCTION

In recent robotic research and applications, a camera and
a 3D Light Detection and Ranging(LiDAR) sensor are often
used together to collect environmental information. The color
and texture of different objects could be easily captured
through a camera. However, after transformation from world
coordinate to the pixel coordinate by camera project, the
deep depth information could not be obtained in the image
[1]. While the 3D LiDAR could provide the complement of
the deep depth by measuring the time-of-flight of the laser
light. Based on the characteristics of the camera and the 3D
LiDAR, they are currently widely used together in the fields
of robotics.

In order to effectively combine the information obtained
from both camera and 3D LiDAR, the extrinsic parameters,
which include rotation and translation, between two sensors
are required to obtain in advance. In the literature, the
extrinsic calibration problem could be solved by a target-
based method or a non-target-based method. In [2], [3], [4],
[5], they obtain the extrinsic parameters through the mutual
information, which includes the the LiDAR’s reflectance
and image’s color. These methods provide a calibration
system without using a particular target. However, comparing
with the target-based method, the non-target-based method
requires large number of poses to increase the calibration
accuracy, which makes the calibration task more difficult. In
the target-based approach[6], [7], [8], [9], a common target,
like a checkerboard, or a special-designed target is used to

1J. Tang is an Electronic and Information Engineering student at the
Hong Kong Polytechnic University. This work was supported by Robotics
Institute Summer Scholars program at Carnegie Mellon University .

estimate the extrinsic parameters. The special-designed target
need to use special material or technology to satisfy their
special geometric constraint, this special design increases the
cost. As a common target, the checkerboard is widely used in
many calibration systems, as it can provide lines and planes
correspondence in the camera frame and LiDAR frame. Due
to the features of the checkerboard needs to be extracted, the
precision of the extracted features will influence the accuracy
of the extrinsic calibration result as well as the robustness
of the whole calibration system. In this situation, a precise
feature extraction method and an efficient error diagnostic
approach need to be provided for increasing the accuracy of
the calibration result and the robustness of the calibration
system.

When a large number of cameras and LiDAR need to be
calibrated, the users do not hope to separate the calibration
task to several subtasks. Meanwhile, they do not expect a
complicated and cumbersome test setup, which may cost
too much time or calibration failure. So an easy-to-used
calibration toolbox should be proposed for solving these
drawbacks.

In this paper, we present an efficient camera and 3D
LiDAR extrinsic calibration system. We increase the calibra-
tion accuracy by making extracted features more precise in
camera and 3D LiDAR. And we propose an error diagnostics
approach for the extracted feature which could improve the
robustness of the whole extrinsic calibration system. Finally,
we provide a Matlab toolbox of the whole calibration system
with an easy-used graphic user interface, which could benefit
the large-scale industrial application.

The remainder parts of this paper are structured as fol-
lows: In Section II, we enumerate the related researches
on the extrinsic calibration of the visual system and the
range sensor. In section III, we describe the whole extrinsic
calibration system of a camera and a 3D LiDAR. The feature
extracting method as well as the error diagnostics approach
would be described in the meantime. The experiment result
of our extrinsic calibration system is presented in Section IV.
Conclusion and future works are finally discussed in Section
V.

II. RELATED WORK

The target-based approaches are widely used in the ex-
trinsic calibration between the different visual system and
range sensors. Gomez and Briales[10] propose an extrinsic
calibration approach for a camera and a 2D laser-rangefinder
based on orthogonal tetrahedrons on the corners. They es-
timate the extrinsic parameters based on the line-to-plane
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and point-to-plane constraints obtained from the orthogonal
tetrahedrons. Gong et. al. [11] solve the extrinsic calibration
problem of 3D LiDAR and camera through the geometric
constraints associated with a trihedral object. Through these
methods could estimate the extrinsic parameters of the visual
system and range sensors through the existing human-made
object, it is incontinent to find a fine target in most situation,
which means the usability of those approaches have huge
limitation.

The checkerboard is treated as a common target for
calibrating the extrinsic parameters between visual system
and range sensors in many different approaches. Zhang and
Pless [12] make use of plane-line correspondence in a planar
checkerboard to perform the extrinsic calibration between
a camera and laser rangefinder. This is the first extrinsic
calibration approach for a camera and a laser rangefinder
by using a checkerboard. In [13], [7], [8], they use the
checkerboard to calibrate a camera and a 3D LiDAR. As they
only consider the plane correspondence of the checkerboard,
at least 3 poses need to be used for estimating the extrinsic
parameters. This drawback has been solved by Zhou et.
al. [9] with combining 3D line and plane correspondences.
All of the methods mentioned above are needed to detect
the features from the calibration target and sensitive to the
precision of the features.

As a solution to deal with the real-world sensor system, a
calibration tool could help users to utilize it efficiently. Un-
nikrishnan [14] provides a fast extrinsic calibration tool for
a rangefinder and a camera. However, before using that tool,
the intrinsic parameters need to obtain from another toolbox,
Camera Calibration Toolbox for Matlab, which decreasing
the tool’s usability. Another toolbox used for calibrating the
cameras and range sensor is proposed by Geiger et. al.[6].
This toolbox could calibrate different cameras and range
sensor by one shot, however, as it needs to set up a large
number of checkerboards at the same time, the robustness
and usability of this toolbox are also limited.

III. SYSTEM DESCRIPTION

In this session, we firstly come up with an extrinsic
calibration system of a camera and a 3D LiDAR using a
checkerboard as the calibration target, which is shown in
Fig. 1. The whole system includes features extraction in
both camera and 3D LiDAR with data error diagnostics
approach for extracted features and the extrinsic calibration
and nonlinear optimization based on the line and plane cor-
respondences for obtaining the extrinsic parameters between
the camera and the 3D LiDAR. In order to benefit the large-
scale industrial application, an end-to-end Matlab pipeline
with user-friendly GUI is presented in the final part of this
session.

A. Feature Extraction

The detected boundaries in the image and the 3D infor-
mation of the checkerboard in laser point cloud are shown
in Fig. 2.

Fig. 1: Overview of the whole extrinsic calibration system,
the system includes the front-end feature extraction in both
camera and 3D LiDAR, and the back-end extrinsic calibra-
tion.

The image captured by a pinhole camera is distorted by the
camera distortion parameters. In order to reduce the influence
of the distortion for the line detection in the image, the
intrinsic parameters should be obtained in advance. We use
Zhang’s method[15] to calculate the intrinsic parameters of
the camera and recover the original image to undistorted
image.

For the feature in the image, We use LSD algorithm [16]
to detect the lines in the undistorted image. We optimize
the LSD algorithm when implementing it in Matlab. We
smooth the image by performing Gaussian filtering using
convolution to eliminate the noise in the background, and
we fuse broken line segments in the same line to which
results from the change of light intensity. As we can get
the four apical corners from the intrinsic calibration, the 4
boundaries which enclose the checkerboard could be detected
in the group of extracted lines. In camera, the plane and
boundaries in jth image are donated as πji and lji, where
i = 1, ,2 ,3 ,4 means the ith boundary. The direction of the
checkerboard’s plane in the image and the distance between
the original and the plane in are donated as nj and xj . The
direction of the checkerboard’s boundary in the image and a
point in the boundary are donated as dji and yji.

As for the checkerboard in the LiDAR point cloud, we
firstly provide a particular cuboid which could enclose the
whole checkerboard. Inside that area, we detect the laser
points on the checkerboard by using RANSAC algorithm[17]
as the detected plane. In this plane, we fit the fringe laser
points as the checkerboard boundaries. The plane and bound-
aries of the checkerboard in jth point cloud are donated as∏

ji and Lji, where i = 1, ,2 ,3 ,4 means the ith boundary.
The normal of the checkerboard plane in the point cloud
and a point in the boundary are donated as Nj and Xji. The
direction of the checkerboard boundaries in the point cloud
and a point in the boundary are donated as Dji andYji.

B. Error Diagnostics for Extracted Features

Here we verify the correction of detected lines based
on the homographic transform of lines in the image and
the perpendicular constraint of the coterminous detected
checkerboard boundaries in laser point cloud.
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Fig. 2: The extracted features, including the lines and plane,
of a checkerboard in the camera and 3D LiDAR.

A point, x, in a line, L, satisfies the following geometric
constraint:

LT · x = 0 (1)

where LT is the transposition of the line and x is a point
inside L. As for a pair of corresponding points in pixel
coordinate, xW , and in world coordinate, xI , they satisfies
that:

xW = H · xI (2)

where, H is the homographic matrix from pixel coordinate
to world coordinate. Based on the geometric constraint in
(1) and (2), the congruent relationship of the corresponding
lines of the checkerboard in image coordinate, LI , and that
in world coordinate, LW , could be noted as:

LW = HT · LI (3)

This shows that all of the corresponding lines of the
same planar surface in space could be transformed to each
other through the homographic matrix. As the Homographic
matrix could be estimated by four corresponding points
in the checkerboard [1], we could diagnose each detected
boundaries in the image by projecting them into the checker-
board respectively. We set angle threshold, θ, to estimate
whether the boundary we detected is the correct one in
the checkerboard based on the angle between the original
boundary and transformed boundary.

The coterminous boundaries of the checkerboard should
satisfy the perpendicular constrain as they constitute a rect-
angular. For the ith boundary detected in the jth LiDAR
scan, we denoted its direction as djiP , where i = 1, ,2 ,3
,4. As the points on the boundary exit slight noise, we set
a threshold, ν, to determine the perpendicular constrain of
detected boundaries:

dji · dji+1 < ν (4)

We diagnose the correction of the detected lines in image
and laser point cloud by (3) and (4). As the result of
extrinsic calibration could be obtained with only one pose
by using the method presented in session C, we discard the
pose which the detected boundaries could not satisfy line-to-
line homographic transformation in image and perpendicular
constrain in point cloud at the same time. The precisely
detected features are used in the extrinsic calibration system

can reduce the calibration failure due to the bad feature
extraction.

C. Extrinsic Calibration

We solve the extrinsic calibration problem between the
camera and the 3D LiDAR based on 3D line and plane cor-
respondences of the checkerboard. One correspondence lines
in camera and 3D LiDAR could provide four independent
constrains on rotation, R, and translation, t, from LiDAR
to camera, and one correspondence planes provides three
independent constraints on R and t. The constraints provided
by 3D line and plane are shown as follow:

RDji = dji (5)

(I − dji(dTji))(RYji− xji+ t) = 03×1 (6)

R · nji = Nji (7)

nj · (RXji + t) + dj = 0 (8)

As there are four perpendiculars and one plane in a checker-
board, these constraints guarantee that the extrinsic parame-
ters between the camera and 3D LiDAR could be estimated
with only one pose. As all of the detected boundaries in
image and point cloud should be matched with each other,
we put the detected boundaries in one pose to a RANSAC
framework. We first sort the detected boundaries based on
the order of connection in image and LiDAR. As the sorted
boundaries exit four possible matching relationships, we
calculate the R and t four times to get four results. Then
we project the boundaries in LiDAR to the camera using R
and t and calculate the residual error of the corresponding
boundaries. As only one result provides the correct matching
relationship, we treat the result with minimum residual error
as the final one pose solution of our calibration problem.
As the noise in point cloud is non-negligible, we reduce
the influence of the noise by increasing the number of
checkerboard’s poses and solve the nonlinear optimization
problem by using Levenberg-Marquardt method[18].

D. Visualized Matlab User Interface

The Matlab GUI, shown in Fig. 3, provides a direct
solution for helping the user obtain the extrinsic parameters
rapidly and easily. As we mentioned in Session A, a partic-
ular 3D area, which includes all of the laser points on the
checkerboard, should be figured out in the point cloud. The
function of Test XYBoundary provides a visualized 3D graph
for helping the user figure out the area of the checkerboard,
which could reduce calibration failure by human mistake.
By simply clicking the Extrinsic Calibration button, after
providing the data path, the number of data, square size of
the checkerboard and X,Y boundary, the user could observe
the operation of the whole calibration process in the GUI
with visualized graphs and get the final calibration result.
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Fig. 3: The end-to-end Matlab pipeline with easy-used GUI
for the whole extrinsic calibration system. The figure in the
GUI is the visualized point cloud and a red cuboid figured out
by the user for extracting the laser point on the checkerboard.

IV. EXPERIMENTS RESULT

For testing our extrinsic calibration system, we use a
Velodyne VLP-16 LiDAR and a ZED stereo camera as
our test platform. In accuracy evaluation, We use 32 pairs
of LiDAR point cloud and images as our calibration data.
This dataset is collected and used in [9]. The orientation
of the checkerboard in this dataset is well-distributed. And
it was collected in a simple environment with all of the
checkerboard’s boundaries could be extracted in both image
and point cloud. We use this dataset to verify the accuracy
of the extrinsic calibration system. In robustness evaluation,
we collect data in different light condition and increase the
noise in the point cloud by keeping moving the checkerboard,
We verify the performance of our error diagnostics approach
by observing whether it could provide an alert when the
extracted data is wrong.

A. Accuracy Evaluation

To evaluate the accuracy of our extrinsic calibration sys-
tem, we use the extrinsic parameters of the stereo camera
(R0, t0) as the ground truth. We first estimate the extrinsic
parameters of the LiDAR with the left (R1, t1) and right
camera (R2, t2), then we estimate the extrinsic parameters
of the stereo camera (R̂, t̂) through (R1, t1) and (R2, t2).
We calculate the rotation angle of R̂R0 in the angle-axis
representation[19], which is used to evaluate the rotation
error and the translation error by ‖̂t - t0‖2/‖t0‖2.

We compare rotation error and translation error of our
calibration result with that getting from Zhou’s result. For
one pose result, we estimate the rotation error and translation
error for all the 32 pairs of LiDAR point cloud and images.
For N poses result, we choose the data pairs from the dataset
randomly and run the experiment 200 times. As the result
shown in Fig. 4, our system only has 0.058 degree rotation

Fig. 4: The rotation error and translation error of our method
and Zhou’s method [9]. The calibration accuracy has signif-
icant improvement with a more precise extracted features in
image and 3D LiDAR.

error and 2.1% translation error in one pose result, which
could be achieved in Zhou’s approach in 15 poses result. This
indicates that our optimization in feature extraction could
provide a significant improvement in the extrinsic calibration
system.

B. Robustness Evaluation

We collect 50 checkerboard poses from the camera and 3D
LiDAR in different light condition, to evaluate the robustness
of our calibration system. We increase the noise of the laser
point on the checkerboard’s boundaries by keeping moving
the checkerboard when collecting the data.

The result shows that in the extremely bad light condition,
the boundaries of the checkerboard cannot be detected suc-
cessfully due to the change of gradient on the boundaries
is too small And the fitting lines of the checkerboard’s
boundaries is incorrect if the movement is too strong when
collecting data. In the 50 point cloud and image pairs, 5
images could not provide correct checkerboard boundaries
and 15 point cloud could not provide the correct fitting
lines of checkerboard boundaries. These incorrect poses are
detected from our error diagnostics approach.

V. CONLUSION AND FUTURE WORKS

In this paper, we develop an efficient calibration system
of a camera and a 3D LiDAR. We improve the accuracy of
the calibration result by improving the precision of feature
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extraction and make our more robust system by an error
diagnostics approach in extracted features. Experimental
results show that our system can provide an accurate calibra-
tion result with only 0.058 degree rotation error and 2.1%
translation error, this is a significant improvement compared
to the current start-of-the-art method. We also verify the
robustness by using a set of noisy data. We also improve the
usability of our system by developing an easy-to-use Matlab
toolbox with a user-friend GUI, this makes our system can
be utilized in the large-scale industrial application efficiently.

In future works, as our approach just uses the line and
plane correspondence for calibration, we will consider ap-
plying our extrinsic calibration approach to an online camera
and LiDAR localization and mapping system. We are also
interested in applying this approach to a multi-camera and
multi-LiDAR system, Which can benefit the application in
autonomous driving or other robotic application.
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Abstract—Image captioning receives significant attention by
the deep learning research community, as scientists maintain
large collections of public datasets and rapidly invent bench-
marks and algorithms. Existing image captioning frameworks
learn to generate sentences directly from ground truth pairs
of images and captions. However, previous methods commonly
produce ambiguous descriptions for two images with subtle
differences, which prevents the adoption of image captioning
systems in real world settings. We propose a captioning algorithm
that reduces this problem, and produces more visually descriptive
image captions. We develop a novel reinforcement learning cost
function that encourages generating captions with stronger word
choice, and a novel inference adaptation method that allows our
heuristic to improve the performance of existing image caption
frameworks using style transfer. Our work is being tested for
deployment on a mobile robot that navigates through an office
and lab building.

I. INTRODUCTION

The Artificial Intelligence community is currently witness-
ing an explosion of interest in multiple discipline research.
In particular, research at the intersections of computer vision,
natural language processing and robotics is dramatically in-
creasing. Within this movement, we observe researchers are
defining new problems with accompanying datasets—we focus
on Image Captioning and MSCOCO, but many other examples
exist [1]–[3].

These datasets are encouraging an entirely new class of
deep learning frameworks leveraging convolutions for im-
ages, recurrence for language, and memory [4]–[10]. These
benchmarks and algorithms are citing a belief: that combining
multiple data modalities (eg: image and text) creates a stronger
relational understanding of the real world, and that such
understanding is crucial for developing universal and general
artificial intelligence [1], [2].

This belief is motivating researchers to investigate Image
Captioning. These researchers are developing expressive neu-
ral networks capable of modeling fine interactions between
visual features and sentence words [4]–[6], [9]–[12]. Indeed,
these architectures are consistently improving with respect to
common evaluation metrics such as BLEU-4 score [6].

One of the primary goals motivating these inventions is to
learn captions indistinguishable from human annotated ground
truth examples [4], [6], [10]. This method works quite well
according to multiple common evaluation metrics [13], [14].
Because of these results, interest within the Image Captioning

Fig. 1. Captions produced by [4] are ambiguous. In the left image, a pitcher is
throwing a baseball. In the right image, a softball player is catching a softball.
The baseline algorithm produces the same caption for both images.

research community is beginning to shift away from the
fundamental problem definition into more specific domain
applications—for example, captioning novel objects, and word
style [5], [7], [8], [11].

These recent approaches introduce new capabilities that in-
crease the utility of Image Captioning systems, which motivate
the question of whether these systems can be integrated with
humans. We envision a robot platform that integrates Image
Captioning with a camera and speech interface, where humans
verbally command the robot to describe the surrounding en-
vironment. This application requires captions produced by the
model to be close to error free, and descriptive enough that
phrases can be visually identified.

However, these requirements are difficult to satisfy with
existing algorithms. We depict in Fig. 1 that our baseline
frequently misses contextual information within images that
requires abstract reasoning [7], [8]. Furthermore, a lack of de-
scriptive language requires explicit model adaptation to correct
[5]. Therefore, we conclude that before an Image Captioning
system can be deployed with humans, new algorithms for
descriptive captions are required.

In this paper, we expect to make the following specific
contributions to Image Captioning research.

• The first robot integrated Image Captioning system de-
scriptive enough to be useful to humans 1.

• Two novel cost function that encourage use of descriptive
words and visual words.

• An novel style transfer algorithm for making captions

1Code for our robot implementation can be found at http:// github.com /
brandontrabucco / image caption machine
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descriptive 2.

II. RELATED WORK

Image Captioning is a sequence generation problem, here
a sentence is generated using an image as input. Deep neural
networks are the standard method by which to extract visual
image features, and to model the complex interactions between
words in a sentence. The image of width X , height Y , and
colors C is transformed by φ parameterized by θ into a
sequence of integer word ids yi in a vocabulary.

φθ : RX×Y×C → {[y0, y1, . . . , yN ] : ∀yi ∈ Z}

The first publication reporting major success in training an
end-to-end deep neural network for image captioning was [4],
where an image encoder similar to [15] was used to compute
global image features, and a sequence decoder similar to [16]
was used to compute word probabilities at every time step.

A. Quality Of Word Embeddings

Collections of papers including [4], [6], [10] learned word
embeddings directly from captions, with no preemptive train-
ing. Other papers including [7], [8] use various word em-
beddings trained on Wikipedia [17], [18]. Using high quality
word embeddings appears optional to obtain strong testing
performance on caption datasets.

Somewhat to be expected, models without high quality
word embeddings over fit to their source datasets, and fail
to learn concepts seen infrequently in training [7], [8], [11].
Certain approaches leverage external text and image datasets to
learn these unfamiliar objects [7], [8]. Other methods achieve
the same capabilities by forcing latent image features to be
attributes [11].

Explicitly learning captions conditioned on image attributes
rather than latent image features appears to generally improve
performance [11], [19], [20]. Reflected in these papers, it ap-
pears high quality word embeddings are required to generalize
beyond the source dataset.

B. Producing More Detailed Captions

Many traditional works for Image Captioning propose novel
additions to [4] that must be trained and deployed indepen-
dently [4], [6], [9]–[11], [19]. Adapting these models during
inference is briefly investigated by [5], which produces more
descriptive captions that previous work. [5], [21], [22] continue
and augment [4] to learn stylistic captions during training.

Multiple of these approaches require optimizing a reinforce-
ment learning objective, which [5], [23], [24] demonstrate to
be effective. From these works, obtaining domain specialized
captions appears to require significant changes to the under-
lying model architecture or training scheme.

One relevant contribution inspiring our method is [5], where
they invent a critic-based planning algorithm by substituting
actions that maximize some Q-function during inference. Their

2Code for our tensorflow implementation can be found at http:// github.com
/ brandontrabucco / im2txt

method requires a significant amount of unaligned text for
training auxiliary critics on both source and target distribu-
tions. Our approach differs from theirs in that our inference
adaptation algorithm does not directly insert words into the
caption, rather we move through the language prior directly
using neural style transfer.

III. METHODS

Our baseline model is the [4]. We select this because
numerous scientific evaluations of this model already exist,
and many recent Image Captioning algorithms also use this
as a baseline. We begin with a public repository 3 published
by the authors of [25], which can be summarized by a CNN
encoder that maps an image I into visual features, on which
we take the mean across dimensions [X,Y ], and map into
an embedding space Wimage to produce a spatially invariant
feature context vector ~c.

~c =Wimagemean(CNN(I), [X,Y ])

We use this context vector ~c in the same manner as [25],
where the LSTM reads ~c mapped into an image embedding
space and generates an initial state ~s0 characterizing the image
contents. After this point, the LSTM no longer receives the
image features directly as input.

~s0 = state(LSTM(~c,~0))

At every decoding timestep, the LSTM produces a set of
word probabilities, which are sampled to produce the current
word identifier yt. The previous word that was sampled is
embedded η(yt−1) using word vectors from [17], and is input
to the LSTM along with the previous state ~st−1. In the first
timestep, the first ~s0 state is conditioned only on the image.
V Tglove is initialized with the transpose of word vectors from
[17]. V Tglove is trainable, while the embedding function η is
fixed.

P (yt) = V Tgloveoutput(LSTM(η(yt−1), ~st−1))

yt ∼ P (yt)

We select the [17] embedding space because prior work
[7], [8], [11], [19], [20] demonstrates that high quality word
embedding are a requirement for producing captions signif-
icantly different from those seen in training. Our goal is to
generate more visually descriptive captions than what was seen
in training, and it follows to use [17].

Research from [7], [8] also demonstrates that training the
LSTM using an external language corpus such as Wikipedia
successfully enables captioning of objects that were never seen
before. This is a useful property for our purposes, so we jointly
train our language model on a subset Wikipedia.

3The original implementation can be found at https:// github.com / tensor-
flow / models / tree / master / research / im2txt
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Fig. 2. Captions produced by [4] use ambiguous words. For each image, the
top caption is produces by the baseline algorithm, and the bottom caption
depicts one possible way to replace words to add more detail.

We train the baseline model [4] using supervision from pairs
of images and ground truth captions. After the decoding phase,
the LSTM has produced a sequence of word identifier yt, and
we are given the ground truth words ŷt. We use the standard
mean cross entropy loss with a vocabulary of N words and a
caption of length L. The probabilities Pj(yj) below represent
the jth possible word at the ith time.

δ(θ) =
−1
LN

L∑
i=0

N∑
j=0

Pj(ŷi) logPj(yi)

We train our model using the previous loss function on
the [1] dataset. We perform stochastic gradient descent with
a batch size of 32, and no additional regularization on the
weights and biases in the model. The CNN internally com-
putes batch normalization [15], and we apply dropout to the
LSTM during training only with a keep probability of 0.7.
The embedding space has 300 dimensions, and so does the
state vector of the LSTM. The vocabulary has the 70,000
most frequent words from a 6 billion word corpus [17].

A. Descriptive Cost Function

We initially observed that certain words were preferred by
our baseline model when generating captions. In these in-
stances, more descriptive alternative words exist. For example,
replacing the word ”man” with ”cowboy” as in Fig. 2. We
believe that performing such a replacement during inference
time will generate captions with more descriptive details.

We define a measure for the number of synonyms a word
has as the number of close neighbors in the embedding space
from [17] within some threshold. This is logical because it
is known that the distance of words in the embedding space
from [17] implies these words have similar definitions.

To calculate our measure for the number of synonyms a
word has, we look at a set of common words with known
synonyms in Fig. 3. We take these words and calculate an
average distance from a synonym to an origin word. This
distance is a threshold for if words are synonyms.

Equipped with this metric, we calculate the average number
of synonyms the words in some collection have. We be-
lieve that more descriptive words tend to have fewer close
synonyms. We compute the average number of synonyms
of words from the entire model vocabulary [17], from the
captions produced by [4], and from the ground truth captions
[1].

Word Synonyms
man woman, person, another, one,

he, boy, himself, him
walk walking, walks, walked, go

going, stroll, come
path paths, way, direction, heading

approach, trajectory, means, turn
fruit fruits, citrus, berries, mango

bananas, apples, banana, watermelon
strawberries, grape

building buildings, built, houses, construction
constructed, build, addition, structure
constructing, structures, tower, offices

Fig. 3. Words and synonyms used to calculate the mean synonym distance
for embeddings from [17]. On the left is the origin word, and the right are
related words selected from the 20 closest words in embedding space.

Distance Threshold
5.632423353

Fig. 4. The mean distance from the origin word to the synonym words in the
[17] vocabulary was calculated, which will serve as a threshold for calculating
how many synonyms a given word has.

Fig. 5. The mean number of synonyms in the [17] vocabulary, shown in red,
is less than those learned by the [4] model, shown in the middle, which is
higher also than the number of synonyms of the ground truth captions, shown
to the right.

Our results in Fig. 5 confirm the initial observation that
the baseline model resorts to using more general words when
more descriptive synonyms are available. We also learn that the
original dataset also resorts to more general words choice. We
propose to combat this by explicitly encouraging the model to
use words that have fewer synonyms using a novel descriptive
cost function.

In order to score words with less synonyms in the embed-
ding space higher, take the sum of distances from word x to
the K closest other words y in the embedding space.

D(x) =
K∑
i=0

min
y 6=x

[i]||η(x)− η(y)||

Even though we employ this cost function with our method
for style transfer, this cost function may even be used in
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training as regularization, but we do not present results for
this application.

B. Visual Cost Function

Recent publications demonstrate that detected attributes can
improve the performance of image captioners according to
dataset evaluation benchmarks [11], [19], [20]. We observe
in [11], [19] that inclusion of attributes changes the style of
captions produced by [4] to more descriptive.

A natural extension of previous work for captioning with
attributes should focus on leveraging training data from other
target domains. For example, two rich attribute datasets are
[26], [27]. Another natural consideration is to frame detection
of attributes instead as descriptive words. This provides access
to a larger set of attributes to detected, and integrates easily
with our method of neural style transfer.

Therefore, we build an attribute detector using [15] as a
base model. Our detector takes an image I as input, along
with a word x from our vocabulary. Our detector discriminates
the probability that word x is visually grounded in image I .
~c is the image context vector produced by [15], and η(x)
is the embedding vector of word x using [17]. We take a
linear combination of the embeddings and scale the result by
a logistic function to obtain a probability.

G(x, I) = σ(Wattr(~c� η(x)))

We train this attribute detector using [26], where each
attribute has been mapped to a unique relevant word in our
vocabulary. Since our cost function returns probabilities, not
attributes, we can obtain the K most relevant attributes by
collecting those with the largest probabilities.

A = {argmax
x

[i]G(x, I) : i ∈ [0,K]}

Similar to our previous cost function, we employ this cost
function with our method for style transfer. However, this cost
function may even be used in training as regularization, but
we do not present results for this application.

C. Inference Adaptation

Previous work by [5] demonstrates that changing the output
of [4] during inference is an effective strategy to change the
phrasing and style of captions. We notice their method relies
on adapting the model during a secondary training phase, and
additionally during inference to produce high quality results.

We are curious if an inference only adaptation method
could also produce equally descriptive and high quality image
captions. The benefit of such a method is that no additional
training of an image captioner would be required, and a
pretrained model could be downloaded from the internet, and
styled to match our needs.

One setback of the method proposed in [5] is that changes to
the model outputs during inference operate on the word level.
Rich information contained in the model’s language prior is
not used to globally plan when and where to insert words.
This is a problem we correct in our method.

# Algorithm
0 def caption():
1 Encode, Decode = load (”model.ckpt”)
2 s0 = Encode (”image.jpg”)
3 for x in range(N):
4 y0 = id (”< S >”)
5 y1, . . . , yL = Decode (y0, s0)
6 Q̃ =

∑L
i=1 P (yi)D(yi) + P (yi)G(yi, I)

7 s0 ← s0 + γ∇s0Q̃
8 return word (y1, . . . , yL)

Fig. 6. We load the [15] image encoder and an LSTM sequence decoder
trained on [1] for 100,000 iterations with batch size 32. We calculate the
beam search y1, . . . , yL at every iteration, along with the expected value Q̃.
We perform gradient ascent s0 + γ∇s0Q̃ once per iteration.

In previous work on text style transfer, summarized by
[28], [29], a decoding RNN is trained generate sentences
that match the style of a target domain. In some cases, an
adversarial critic is used to numerically quantify style. In both
settings, explicit training of the styled language generation
model is necessary. We demonstrate a style transfer method
that requires no additional training of a language model.

We define an objective Q that is the sum of the descriptive
score D(yi) and visual grounding probability P (yi|I) for
every word yi in a caption produced by [4].

Q =
L∑
i=0

D(yi) +G(yi, I)

In order to perform a sort of global planning using the
language prior of the RNN, we wish to maximize the value
of Q with respect to the initial state s0 of the RNN. By doing
this, the language prior still controls the structure and word
choice of the resulting caption, while certain visual features
of the initial state s0 are being made stronger.

Unfortunately, Q is a discrete function and ∇s0Q is not
defined, so we must instead maximize the expected value
for Q. which we can reformulate using the policy gradient
theorem into a defined gradient.

E[Q] =
L∑
i=0

Eyi [D(yi) +G(yi, I)]

∇s0E[Q] =
L∑
i=0

Eyi [∇s0 logP (yi)(D(yi) +G(yi, I))]

We perform gradient ascent on the expected value E[Q] with
respect to the initial state s0 with a learning rate γ, which
in practice we have found to be in the order of magnitude
of thousands. After each inference step, we immediately
computed an updated beam search for yi. We precisely define
our algorithm in Fig. 6.

s′0 = s0 + γ∇s0E[Q]
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Name BLEU-4 CIDEr
NIC 27.7 85.5
DetailedNIC 22.9 80.4

Fig. 7. We sample 320 images from the validation dataset, and compute the
beam search captions for [4] with a beam size of 3. We then compute the
stylistic transfer with a learning rate of 1000.0 and 20 iterations to obtain
styled captions. For each set, we compute the BLEU-4 and CIDEr scores.

Fig. 8. The mean number of synonyms of words in the styled captions
vocabulary, shown in red, is less than those learned by the [4] model, shown in
the middle, which is higher also than the number of synonyms of the ground
truth captions, shown to the right.

Our implementation of the policy gradient is vanilla, with
no additional constraints or penalties to KL divergence, and
no use of the fisher information matrix. Investigating the affect
of these more recent approaches to the policy gradient is an
important avenue for future work.

IV. RESULTS

A. Benchmark Performance Trade Off

The first interesting result is that our method scores lower
according to standard evaluation metrics on the validation
dataset for [1]. According to Fig. 7, our method has somewhat
of a large margin of performance loss when compared with
[4]. Normally, this would imply that our method is inferior to
existing approaches, but consider our findings in Fig. 5, that
the original dataset commonly uses general words with many
synonyms in the captions. Instead of using these common
metrics to evaluate performance, perhaps a more enlightening
indicator would be that from Fig. 5.

B. Our Method Is More Descriptive Than Baseline

Our results clearly depict in Fig. 8 that our styled model
produces words with less synonyms than the original model,
and also than the original dataset. We have been able to
push the model to include more distinct words than what it
was originally trained on, using only stylistic transfer. Also
worth mentioning is that the [4] model has learned a word
choice that has more synonyms er word on average that the
original dataset. This reinforces our belief that learning to use
more common words with more synonyms is actually a naive
solution to learning image captions that achieves a high score
using typical metrics.

C. Qualitative Results

Our results depict in Fig. 8 that our styled model produces
words with less synonyms than the original model, and also
than the original dataset. We have been able to push the model
to include more distinct words than what it was originally
trained on, using only stylistic transfer. Also worth mentioning
is that the [4] model has learned a word choice that has more
synonyms er word on average that the original dataset. This
reinforces our belief that learning to use more common words
with more synonyms is actually a naive solution to learning
image captions that achieves a high score using typical metrics.

V. DISCUSSION

Our results display an interesting trade-off between the
ability to generate captions with fine visual details, versus
captions that achieve high scores on benchmark datasets. In
our experiments, these two classes typically do not share
members. In order to build systems that perform accurately
in the real world, like our implementation on a mobile robot,
awareness of this trade-off is necessary, which prior work
addresses in a more limited scope.

Datasets within the scientific community are not always
treated with an appropriate level of skepticism. Supervision
on these datasets—for example, to learn image captions—
may cause models to learn implicit biases present in the data.
We have shown from our experiments that the [1] dataset is
biased towards image captions with word choice that has many
synonyms (implying generality) and only superficial visual
details.

Considerations of data bias are necessary when implement-
ing real world robotic systems that leverage image captioning,
especially where the application of the robot differs signifi-
cantly from the domain of images from the original training
dataset. Using auxiliary cost functions such as for descriptive
word choice and attributes can reduce the affect of the original
dataset bias, and may be useful in other domains of machine
learning as a generalization strategy.

We are currently testing our image captioning framework on
a Ballbot—a mobile robot that balances on a single spherical
wheel [30]—to describe humans and objects in an office
setting. Our hope is that research in more descriptive captions
enables more effective human robot interactions in office
settings, and eventually in health care and home settings.
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Fig. 9. We depict captions generated by the baseline [4] on the top half for each image, and captions produced by our descriptive stylistic transfer algorithm
on the bottom. Key word differences between the methods have been highlighted in red.
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High Precision In-Pipe Robot Localization with Reciprocal Sensor Fusion

Dapeng Eagle Zhao1 and William Whittaker1

Abstract— Manual measurement of U-235 deposits in ura-
nium enrichment piping is a costly, time consuming, and labor-
intensive process that is a well-known cost and schedule driver.
Autonomous, robotic innovation enabled by this research is
revolutionizing the measurement speed, quality and safety of
this important operation. The huge advantage is the robot’s
ability to measure from inside the pipes. The upside is sensing
the geometry, appearance and radiometry directly. The down-
side is the inability to know precise, absolute position of the
measurements in very long pipe runs. This paper develops the
unprecedented localization required for this purpose.

This paper presents the precise localization method designed
for in-pipe radiation measurement robots. Unlike other in-pipe
localization methods, this approach achieves millimeter-level
accuracy in hundred-foot runs and does everything on one
robot without relying on tether cable or communicating devices
out of pipe, which is a important feature for nuclear in-pipe
robot. It overcomes challenges usually encountered by in-pipe
localization such as long travelling distance and operation time,
narrow view angle, and featureless environment.

The robot is equipped with encoders embedded in tracks
which can record travelled distance, but encoder odometry
drifts unacceptably due to slip and non-linearity. The robot
also incorporates a laser rangefinder measuring the absolute
distance, but rangefinder in long pipes has many misleading
false measurements that are difficult to filter. The innovation
here is to use one to filter/calibrate the other so that data
used from the two sensors improve each other iteratively
and reciprocally. The survey measurements accuracy of this
localization method is proven by experiments comparing to
ground truth and “zippering error” experiments that compare
measurements to fixed features in pipes.

I. INTRODUCTION

A. Background

Vast amounts of U-235 remain in miles of piping that
once enriched America’s uranium. These immense facilities
are now defunct and decommissioning is underway. An
immense driver of decommissioning schedule and budget is a
requirement to determine the exact grams of U-235 in every
foot of that pipe before demolition.

To date, human workers in protective clothing have man-
ually deployed detectors from the outside of these pipes to
observe radiation emanating from the U-235 inside the pipes.
This incurs operational disadvantages of clearing around
pipes for access, hazards of elevated work, rad exposure,
and manual data transcription. The technical disadvantages
include faint signal from attenuation through pipe walls, in-
ability to directly view the deposits, and inability to position
a detector on the pipe’s center-line.

*Funding for this development was provided by the Office of Environ-
ment, Department of Energy of the US.

1Field Robotics Center, The Robotics Institute, Carnegie Mellon Univer-
sity, Pittsburgh, Pennsylvania, US dapengz at andrew.cmu.edu

Fig. 1: Uranium holdup deposit in process piping

Fig. 2: U-235 deposit measurement pipe-crawling robot
RadPiper

Since decommissioning involves cutting pipes, the unique
opportunity is to robotically deploy detectors from the inside
rather than the outside to measure per-foot quantities of
U-235. Compared to the current manual method, in-pipe
robotic measurement achieves superior speed, accuracy and
certainty. It does not requiring demolition for clear access
around pipes. It provides video and geometric record of
deposit acquired from inside pipes and precludes significant
elevated human work.

An autonomous U-235 deposit measurement pipe-
crawling robot is being developed by Carnegie Mellon
University called RadPiper [1][2] (Fig. 2). RadPiper is a
battery-powered and tetherless robot which self-steers using
two tracks. A detector assembly is mounted on the front
to acquire radiometric data. The robot is recovered from the
same pipe opening from which it is launched, hence it drives
the same distance out and back, measuring the same deposits
twice. This achieves redundant radiometric and odometric
measurements which adds further to statistical significance.
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For this in-pipe radiation measuring robot, localization is
essential, because it is required to report the precise location
of each radiation deposit measured. Also, since the robot
will measure the same deposit twice running forward and
backward, the locations of the two measurements must match
up with each other precisely.

B. Existing solutions and Challenges

Several prior approaches have realized robotic in-pipe
localization.

Encoder odometry is a simple, effective and well-studied
robot localization method. However, localization entirely
relying on encoder odometry is vastly insufficient for the
required precision and certainty. Encoding suffers from ac-
cumulated error over long travelling distance. Odometry
also measures the steered path which is always longer than
the straight-line pipe distance. These problems cannot be
completely modelled or predicted.

Tether cable is adapted by some in-pipe robots for pur-
poses of energy, communication, safety and recovery, as
well as odometry. Martra and Tur [3] measured the length
of a tether cable to acquire traveled distance information.
However, this approach is not adaptable for some in-pipe
robots which are not equipped with tether for varieties
of reasons. For example, as an fully-autonomous robot,
RadPiper precludes tether for reasons of contamination and
handling.

Some localization exploits ELF-EP communication be-
tween an in-pipe robot and sensor station set up out of the
pipes [4][5]. However, in many cases such as nuclear pipes
for RadPiper, it is difficult or impossible to set up sensor
stations or other localization assisting equipment along a
pipe.

Visual odometry is an approach for odometry of some in-
pipe robots [6][7]. It is not typically very robust because its
performance is highly affected by how many available valid
features can be found on an inner pipe surface. In some cases
such as uranium enrichment piping, only a few recognizable
features can be found sparsely (Fig. 3).

The precision of the prior localization methods is also
an issue. With ELF-EP communication method [4][5], from
the experiments conducted by Qi et.al, the error is about
0.75ft (0.23m) to 1.5ft (0.45m). In the research work done

Fig. 3: No feature suitable for Visual Odometry(left); Occa-
sional visual features are too rare and indistinct for Visual
Odometry(right)

by Hansen et.al with visual odometry [6][7], the error was
found as 0.84ft (256.4mm) when the travelling distance is
about 100ft (30483mm). However, radiation measurement
robots require much higher precision.

C. Technical approach

The localization method developed here is based on data
fusion of two sensors: laser rangefinder and track encoders.

The rest of this paper will present how reciprocal and
iterative sensor data fusion is done in details and its corre-
sponding testing result from RadPiper.

II. RECIPROCAL SENSOR FUSION ODOMETRY

The robot RadPiper is driven by a pair of trucks. There is
an encoder embedded in each track which can record trav-
elled distance. RadPiper also incorporates a laser rangefinder
which measures the absolute distance. The rangefinder is
intended to measure the distance between the robot and the
reflecting surface at the pipe end. The whole setup is shown
in Fig. 4.

In this section, the paper will respectively discuss about
problems of raw data from each sensor in details and present
how the problems of one sensor can be improved by the other
one iteratively and reciprocally. With the improved data, the
paper will then discuss how data fusion is done to estimate
the robot’s trajectory. The general overall work flow of this
localization method is shown in Fig. 5.

Fig. 4: Laser ranging and track encoding for localization

Fig. 5: Work flow for high precision in-pipe Localization
with Reciprocal Sensor Fusion

A. Rangefinder Data Filter

A laser rangefinder is installed on RadPiper to measure
the distance back to the end of a pipe. However, typically
rangefinders do not perform well in pipes, because in pipe
rangefinders take many false readings. The false readings
are not just valid reading with random noise (Fig. 6a), but
have certain patterns that is challenging for traditional filter
method to deal with.

Real rangefinder data from one test run is plotted in Fig.
6b. The horizontal axis is time in second, and the vertical
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axis is distance in foot. The V-shape red line is the actual
distance between the robot and the end of pipe. It increases
and then decreases, indicating the robot drives into the pipe
and traverse back to the starting point.

(a) Distance-time plot of laser Rf readings with typical Gaussian noise

(b) Distance-time plot of laser Rf readings acquired while driving out and
back in 1210-inch pipe during 1235 seconds.

(c) Rangefinder false reading

Fig. 6: Laser Rangefinder Illustrations

The aqua and black dots on the plot are measurements
from the rangefinder. Aqua data points are valid readings
which lie right on the red line. Black data points are false
readings which do not reflect the real travelling distance of
the robot.

The false readings are not entirely random. Most of them
can be found on the green lines, each of which is the correct
trajectory being shifted by a certain distance. In fact, false
measurements are caused by laser beam reflecting off pipe
walls or other objects in pipe instead of the intended surface
behind launch rig, as demonstrated in Fig. 6c. The small
object on the diagram can be a deposit lump or convex part
of unsmooth pipe interior surface. False readings measure
the distance from the robot to this kind of objects, which are
always shorter than the actual distance, so in Fig. 6a almost
all black false data points fall below the red line.

The measurements are almost all aqua at shorter distance
within 70ft. As the distance increases, less and less aqua
readings but more and more black false ones appear. It is
because that at long distance the rangefinder’s view angle is
narrowed due to the nature of the shape of pipes. Therefore,
the chance of false readings happening increases as the robot
drives deeper into the pipe.

Though at long distance valid data points in aqua become
very few, whenever there are valid measurements it is always
right on red line reflecting the distance precisely.

Overall, laser rangefinder is a good sensor for localization
because it is highly precise if the measurement is valid.
However, at long distance valid measurements becoming
very sparse and intermittent. Furthermore, false readings
from rangefinder at long distance are not any typical noise.
Other than offsetting, they are very similar to the correct
readings, which makes it very difficult to filter.

To filter out the false readings, different approaches were
proposed. If a line can be found that is close enough to the
trajectory, a region with a carefully chosen width then can
be set around this line with boundaries above and below.
Readings out of this region will be considered false readings
to be eliminated. In order to find a good estimating line,
line fitting methods like RANSAC[8] or votting scheme
Hough transform[9] were adapted, but it did not perform
well because the robot steers forward, its travelling path is
not straight resulting the straight-line pipe distance does not
increase linearly. Therefore, it is nearly impossible find a line
that can work well for filtering.

One of the reasons why methods above would fail is
that they try to solve the problem with rangefinder data
standalone. To filter well, it is necessary to have a good
estimate of the real trajectory, while the unfiltered raw
rangefinder data including both correct and false readings
form multiple lines of trajectory ambiguously.

In the method that is being presented, encoder odometry
is used for this purpose being a trajectory estimate to filter
rangefinder data. Though encoder odometry has drifting issue
over long distances, in this method, this issue is avoided by
iteration, which allows us to only look at a small distance
for encoder odometry at each time.

After syncing different sensors’ measurements, encoder
counts and rangefinder readings share the same time stamps
of measurements. Rangefinder readings are noted as Rf [t]
and encoder counts are noted as Ec[t], while t ∈ T , T is
a set of discrete time stamps. During filtering, Locest[t] as

153



estimated location will also be generated at the same time as
a reference value to help identify false rangefinder reading.
The strategy of filtering rangefinder reading with encoder
counts is presented in a iterative manner as follows:

• For t = 0, Locest[0]← 0.
• For t = k(k ≥ 1, k ∈ N), Locest[k + 1] is obtained:

1) Estimate Locest[k] with encoder counts:

Locest[k + 1] = Locest[k] +
Ec[k]− Ec[k − 1]

C

Here C is a coefficient that converts encoder
counts to actual distance and has unit as
“counts/inch”. Its value is calculated from track
and motor configurations like gear ratio, track
diameter, etc.

2) Now with a reasonable estimated location value,
the actual rangefinder reading at the moment t=k
will then be examined. If the difference between
the actual rangefinder reading and the estimated
location is larger than a selected threshold, this
rangefinder reading will be marked as false reading
and eliminated. If the difference is within the
threshold, which means the rangefinder reading is
valid and reliable, Locest[k] will then be updated
with this rangefinder measurement. The threshold,
thres, is an experimental value affected by the
clearance between valid and false readings and the
requirement on the final accuracy.

if |(Locest[k]−Rf [k])| > thres
then Eliminate this reading
else Locest[k]← Rf [k]

With this approach, the false rangefinder readings can
be precisely marked and eliminated. After well-filtering, all
rangefinder data are valid and reliable now.

B. Track Encoder Counts

The robot has two tracks on both left and right side of
the chassis, and each track is equipped with a encoder. The
average of the two encoder counts reflects the travelling
distance of the robot center proportionally:

Ec[t] =
EcLeft[t] + EcRight[t]

2

, where EcLeft[t] is the encoder counts from left track and
EcRight[t] is from the right track.

Ec[t] ∝ Loc[t]

, where Loc[t] is the robot’s travelling distance, also the
location when taking start point as 0.

As discussed earlier, encoder odometry is not reliable
over a long distance due to drifting issues. Drifting may be
caused by slippage, robot active steering, robot climbing over
lumps or other accidental situations. However, after filtering
rangefinder data, it becomes possible to calibrate encoder
odometry using valid rangefinder reading as landmarks.

Encoder odometry is forced to meet its corresponding
rangefinder reading periodically to prevent error being ac-
cumulating. A step distance is set, so that whenever location

is changed, increased or decreased, by the step distance,
the encoder odometry is multiplied with a coefficient to
equal to the rangefinder reading taken at the same time. If
the rangefinder reading was marked as false reading at the
current time stamp, the next encoder odometry data point
will then be considered instead in the same way. The detailed
implementation is presented below. Only the first half of the
trajectory, the part of robot driving out, is presented here.

• Initially, Ec[0] is considered as “calibrated”. Therefore,
the flag j for “the last calibrated encoder reading” is set
as 0. Searching index k is set as 0.

• Loop this section until the end of the first half of the
trajectory:

1) Keep increasing index k,
until Rf [k]−Rf [j] > Diststep,
Diststep is the step distance

2) Ec[j : k]← Ec[j : k] ∗ Rf(k)− Ec(k)

Rf(k)−Rf(j)
3) j ← k

In practice, the step distance is set as 3 foot.
After the operation above, encoder odometry’s drifting

problems, if there are, are restricted within each 3-foot
section. Up to now, encoder odometry is well-calibrated by
filtered rangefinder data, and ready for the following steps.

In reality the two process, rangefinder data filtering and
encoder odometry calibration, happen concurrently.

C. Information Fusion - Generating Trajectory

With all the data from rangefinder and encoder, a factor
graph can be built for state estimation to generate the robots
trajectory. In this process, toolbox GTSAM [10] was adpated.
In the factor graph, position estimates are inserted as nodes
and measurements as edges. Edges for encoder odometry
were inserted with larger variances and edges for rangefinder
data with smaller variances, because rangefinder gives abso-
lute and accurate measurement whenever it is available. A
trajectory will be formed in the end by optimizing each state
in the graph to reach the maximum likelihood.

III. TESTING RESULT

In order to evaluate this localization method, two tests
were conducted wit seven 100ft-long test runs.

A. Test I: Ground Truth Comparison

Result from reciprocal sensor fusion odometry is com-
pared with the ground truth which is measured by a total
station. A total station is an electronic optical instrument
usually used for surveying and building construction and it
measures the distance through a modulated infrared signal
emitted by itself and reflected by a prism installed on the
object[11]. In our case, a prism is installed on the robot for
total station to measure and offer ground truth. The whole
setup for testing is shown in Fig. 7.

Error in this test is considered as the absolute value of
the difference between reciprocal sensor fusion localization
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Fig. 7: Total station setup for acquiring ground truth

result and ground truth measured by total station.

E1(t) = |Loc(t)−Gt(t)|

, E1(t) is the error, Loc(t) is the localization result, and
Gt(t) is the ground truth. Error E(t) from one random-
selected test run is plotted in Fig. 8. The Error-Time plot
shows that error is below 0.3 inch almost at almost all time,
and only very few extreme error values reached over 0.5
inch. The statistical analysis of the ground truth comparison
error from seven test runs is shown in Table I.

Fig. 8: Error of Reciprocal Sensor Funsion Localization vs.
Ground Truth from one Test Run

TABLE I: Error (inch) of Reciprocal Sensor Fusion Local-
ization vs. Ground Truth

Test
Run Max(E1) Mean(E1) Var(E1) Std(E1)

1 0.96 0.10 0.0107 0.10
2 1.07 0.11 0.0155 0.12
3 0.99 0.12 0.0245 0.16
4 0.94 0.12 0.0125 0.11
5 1.17 0.11 0.0116 0.11
6 1.14 0.14 0.0259 0.16
7 1.59 0.13 0.0276 0.17

Max. 1.59 0.14 0.0276 0.17
Ave. 1.12 0.12 0.0183 0.13

B. Test II: Block Test

As discussed earlier, during operation a uranium deposit
will be detected twice on the robot’s forward and backward
running and it is very important that the two measured
locations match up with each other precisely.

Therefore, a test was setup as shown in Fig. 9. In a
100-feet-long pipe, 25 wooden blocks were placed 4 feet
apart from each other as “simulated deposits”. The robot
is deployed to run through the pipe and come back to the
launch rig. Time stamps are recorded at the same time when
blocks are detected by the Lidar installed on the robot. One

block has two corresponding time stamps because the robot
detects it twice on both forward and backward running.
After post-processing, based on the blocks’ time stamps,
the corresponding locations can be found from the generated
trajectory. Error between the two measured locations is called
“zippering error” in this project.

E2(n) = Block(n).Loc(tf (n))−Block(n).Loc(tb(n))

, where n is the block number, Block(n) indicates the n-
th block, E2(n) is the “zippering error” of the n-th block,
tf (n) is the time stamp recorded when the robot detects this
block during forward running and so is tb(N) for backward,
and Loc(t) is the reciprocal sensor fusion localization result.
This ”zippering error” from one randomly selected test run
is shown in Fig. 10, and the overall statics of all seven test
runs is shown in Table.2.

Fig. 9: Block test setup illustration

Fig. 10: “Zippering Error” from One Test Run

TABLE II: “Zippering Error” Statistics Overview

Test
Run Max(E1) Mean(E1) Var(E1) Std(E1)

1 0.41 0.13 0.0106 0.10
2 0.46 0.14 0.0145 0.12
3 0.57 0.13 0.0178 0.13
4 0.20 0.08 0.0023 0.05
5 0.32 0.12 0.0087 0.09
6 0.36 0.11 0.0100 0.10
7 0.43 0.13 0.0175 0.13

Max. 0.57 0.14 0.0178 0.13
Ave. 0.39 0.12 0.1163 0.10
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IV. CONCLUSION

Reciprocal sensor fusion odometry achieves precise and
certain in-pipe localization unachievable by previous method.
This is particularly for long runs where encoder drift is
significant and absolute range sensing is intermittent.

The error between reciprocal sensor fusion localization
and ground truth measurements in large diameter hundred-
foot piping is typically around 0.1 inch.

The RadPiper robot localizes any feature during its for-
ward and backward traverses. Hence, a metric of precision
is the extend to which its forward and backward localization
of a given feature are identical. For 24 objects over a distance
of nearly 100 feet, the maximum of the zippering error is 0.4
inch, the mean error is 0.11 inch and the standard deviation
of the error is 0.09 inch.
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Extrinsic Calibration Algorithm between a Stereo Visual System and a
3D LiDAR

Yang Zhou1

Abstract— Camera and light detection and ranging (LiDAR)
are frequently used for perception in real-world applications.
The combination of these heterogeneous sensors bring advan-
tages of both kinds of sensors and get accurate and promis-
ing results. The extrinsic calibration of camera and LiDAR
system is a prerequisite for robot perception applications, the
robustness and usability are required in research and industry.
Previous works have provided several extrinsic calibration
methods including target-based works and target-less works.
Although there are many works dealing with calibration of
a monocular camera and a 3D LiDAR, the solutions of the
calibration of the stereo visual system and 3D LiDAR still have
not meet the requirement of the real-world application yet. In
this work, we designed an extrinsic calibration algorithm which
can be used for calibration of a stereo visual system and a 3D
LiDAR system. Our method can estimate extrinsic parameters
between a stereo visual system and a 3D LiDAR with only
one checkerboard pose. We can further improve the result by
a joint non-linear optimization considering LiDAR disparity
constraint using multiple poses.

I. INTRODUCTION

Nowadays, the number of different sensors mounted on
robots is increasing. Different sensors have different char-
acteristics in real-world robotics applications which enable
robots to perceive the environment in challenging situations.
To utilize the advantages of different sensors, the fusion
system of different modalities have been widely applied to
perception, navigation, and mapping applications. The trans-
formation relationship between different sensors is required
for sensor fusion system to align information in a common
coordinate system. Since robot perception applications are
highly relying on the intrinsic parameters and extrinsic
parameters of different sensors, the calibration of multiple
heterogeneous sensors needs to be precise. The calibration
method needs to be robust for different settings and needs
to be convenient and user-friendly.

LiDAR and stereo visual system have different character-
istics. Light detection and ranging (LiDAR) is a range sensor
can obtain accurate range measurements using laser beams.
3D LiDAR uses multiple laser beams to produce precise 3D
point cloud, so it can sense the geometry feature of the
environment. Visual Camera can obtain color and texture
information of the scene. The stereo visual system has two
cameras which can capture 3D information of scene based
on feature matching between two cameras. To utilize the

1Yang Zhou is with School of Information Science and Technology,
ShanghaiTech University, Shanghai, China. This work is done during
Robotics Institute Summer Scholar program in the Robotics Institute,
Carnegie Mellon University. zhouyang@shanghaitech.edu.cn

advantages of the stereo visual system and the 3D LiDAR,
we need to calibrate these two different sensors.

The research focusing on this problem, however, is limited.
Although there are some works focusing on the extrinsic
calibration of 2D LiDAR and stereo visual system and
some works focusing on the calibration of 3D LiDAR and
monocular camera, there are very few works dealing with
extrinsic calibration between a stereo visual system and 3D
LiDAR. Among these works, some methods [1], [2], [3], [4]
exploit mutual information between different sensors. Some
methods [5], [6], [7] use special designed calibration target.
And some works [8], [9], [10], [11] use a checkerboard
which is common to users as the calibration target. We
also choose checkerboard as our calibration target because it
enables us to calibrate the intrinsic and extrinsic parameters
of the stereo visual system and LiDAR simultaneously.

To tackle the extrinsic calibration problem, we need to
find constraints between the stereo visual system and 3D
LiDAR to find the geometry relationship between these
two different sensors. The plane of checkerboard has been
used as geometry constrained in the extrinsic calibration of
a 2D LiDAR and a camera. They calculate the extrinsic
parameters only by plane correspondences which require 3
poses as a minimum number. Line correspondences and point
correspondences are also explored in many works on the
extrinsic calibration of a 2D LiDAR and a camera. To reduce
the minimum number requirement of poses, we obtain 3D
line and plane correspondences according to 4 boundaries
of checkerboard and 1 plane of the checkerboard. We can
estimate 2D line and 3D plane feature on the image based
on the line detection algorithm and intrinsic parameters of
the camera. 3D line feature on the image is calculated by the
intersection of the back-projected plane of 2D line extracted
from the image and the 3D plane of the checkerboard
extracted from the feature points on the checkerboard and
the intrinsic parameters of the camera. We can estimate 3D
line and 3D plane feature based on LiDAR point cloud using
the RANSAC[12] algorithm to eliminate outliers. Using 1
plane correspondence and 2 of 4 line correspondences, we
can estimate extrinsic parameters of a monocular camera and
a 3D LiDAR with one pose using a close-formed solution.
After calibrating each single cameras with 3D LiDAR, we
globally optimize extrinsic parameters with LiDAR disparity
constraint by non-linear optimization.

The contribution of this paper can be summarized as:
1) Extend extrinsic calibration of a monocular camera and

a 3D LiDAR [13]to extrinsic calibration of a stereo
visual system and a 3D LiDAR.
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2) We reduce the minimum requirement of poses from
3 to 1 by utilizing 3D correspondences of lines and
planes. The system can be extended to extrinsic cali-
bration of multi-camera and multi-LiDAR system.

3) We introduce LiDAR disparity constraint to improve
the result with multiple poses by non-linear optimiza-
tion.

4) We develope an extrinsic calibration software in C++
with high efficiency and robustness.

II. RELATED WORKS

There are different methods purposed to solve multiple
sensors calibration problem, here we will talk about related
works according to different problem categories about the
camera to LiDAR calibration.

For the monocular camera to LiDAR calibration problem,
there are different types of approaches based on different cor-
respondences. Some methods do not rely on the calibration
target. In [14] and [4], they make use of mutual information
between LiDAR reflectivity and camera intensity to do the
extrinsic calibration outdoors without a calibration target. In
[15] relies on PnP algorithm [16] using manually selected
points correspondences. In [17], the deep neural network is
applied on extrinsic calibration to solve this problem by end-
to-end training.

Some methods use a rectangle calibration target such as
a checkerboard. [8] uses a checkerboard to do extrinsic
calibration between a perspective camera and a 2D Li-
DAR, they use the plane-line correspondence established
by LiDAR points on plane and plane parameters estimated
in the camera coordinate system, their algorithm requires
at least 5 poses to get the extrinsic parameters. [9] use
plane-plane correspondence established by estimating plane
parameters from 3D LiDAR and camera to estimate initial
rotation matrix and translation vector, then they use non-
linear optimization to refine the result by minimizing point to
plane distance. Their method needs at least 3 poses. Instead
of using one checkerboard, [10] uses several checkerboards
in front of sensors to do the extrinsic calibration with one
pose, which avoids moving checkerboards. Methods based on
plane constraint can be easily extended to the multi-sensors
system, [11] calibrate the extrinsic parameters between an
omnidirectional camera and a 3D LiDAR. When estimating
plane parameters from the image and 3D LiDAR, a plane
from a farther distance cannot be estimated as precisely as the
plane from a closer distance. [13] can do extrinsic calibration
between a camera and 3D LiDAR using lines and planes
correspondences in one pose.

Some methods rely on specifically designed calibration
target. In [5], arbitrary trihedron is used to estimate the
extrinsic parameters with 2 poses. [6] uses a discontiguous
calibration target to emphasize 2D LiDAR information to
estimate extrinsic parameters between a camera and a 2D
LiDAR. In [7], the v-shaped target is used to utilize the
boundary of the target captured by LiDAR. These works
use the target with a specially designed pattern to exploit
the boundary information. The boundary information can be

detected by LiDAR and visual system as correspondences,
which can reduce the number of poses required for extrinsic
calibration.

For the stereo camera to LiDAR calibration problem,
[18] calibrate a 3D LiDAR and a stereo visual system
using inertial measurement unit (IMU). With the help of
inertial data, they used a bright spot as the only calibration
target. Their framework can be extended to the multi-camera
network. In [19], a board with circular hole pattern is used
to calibrate a 3D LiDAR and a stereo visual system. The
circular hole pattern can be detected in camera frame and
LiDAR frame robustly. In [20], the paper presents an ex-
trinsic calibration algorithm between a stereo vision system
and a 2D LiDAR-based on the 3D reconstruction of the
checkerboard. They use 3D corner points of checkerboard
obtained by stereo camera system to do triangulation, solve
least-square estimation of the 3D plane of checkerboard and
use non-linear optimization to optimize extrinsic parameters.
[21] used the particle swarm optimization algorithm (PSO) to
estimate extrinsic parameters and fuse information of a stereo
camera and a LiDAR without the aid of another calibration
target. [22] proposed a method to calibrate a 2D LiDAR and
a multi-camera system, it decouples the problem into two
hierarchical level optimization problem without using any
calibration target.

Comparing to the above works, our method utilizes 3D
planes and lines correspondences between camera and Li-
DAR, we use checkerboard to extract the plane and boundary
of checkerboard both from camera and LiDAR. Considering
there will be some cases that intrinsic parameters of the
camera are unknown, the checkerboard can be used to
estimate intrinsic parameters at the same time. The boundary
of the checkerboard can be extracted easily because of the
visual feature and reflectance feature of the checkerboard. To
consider the stereo visual system and 3D LiDAR globally,
our method refines the initial optimization result according
to the geometry constraint of the stereo visual system which
leads to the better result.

III. METHODS

A. Problem Formulation

This section will describe the formulation of the extrinsic
calibration problem of a stereo visual system and a 3D
LiDAR. The extrinsic calibration of a stereo visual system
and a 3D LiDAR is to estimate the relative rotation and
translation between two cameras and the 3D LiDAR. The
relationship of the three sensors is shown in Fig. 1. We use
R3

C1
as the coordinate system of the left camera, R3

C2
as

the coordinate system of the right camera, and R3
l as the

coordinate system of the 3D LiDAR.
For camera system, we will do intrinsic calibration to

both cameras to get the intrinsic parameters of cameras and
undistort image by estimated distortion coefficients by the
method described in [8] Then we can model both cameras
by pinhole camera model. We denote KC1 as the intrinsic
matrix of the left camera and KC2 as the intrinsic matrix
of the right camera. The points in left camera coordinate
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Fig. 1. Sensors Relashionship

system are presented as PC1 : (XC1 , Y C1 , ZC1) ∈ R3
C1

, and
points in right camera coordinate system are presented as
PC2 : (XC2 , Y C2 , ZC2) ∈ R3

C2
. The pixels of points in left

camera image can be described as (xC1 , yC1). The pixels of
points in right camera image can be described as (xC2 , yC2).
The relationship between the camera coordinate system and
camera image frame can be described as below.

KC1PC1 =

xC1

yC1

1

ZC1 (1)

KC2PC2 =

xC2

yC2

1

ZC2 (2)

For LiDAR system, we convert the distance from the
direction of each scan points in polar coordinates obtained by
3D LiDAR to the form of Cartesian coordinates as PL ∈ R3

l .
For extrinsic parameters, we decouple the transformation

relationship between cameras and 3D LiDAR as rotation ma-
trix RC1

L ,RC2

L ∈ SO(3) and tC1

L , tC2

L ∈ R3. Let (RC1

L , tC1

L )
and (RC2

L , tC2

L ) be the relative rotation matrix and translation
vector of left camera to 3D LiDAR and right camera to 3D
LiDAR. Let (RC2

C1
, tC2

C1
) be the relative rotation matrix and

translation vector from the left camera to the right camera.
The relationship of three sensors can be described as below:

PC1 = RC1

L PL + tC1

L (3)

PC2 = RC2

L PL + tC2

L (4)

PC2 = RC2

C1
PC1 + tC2

C1
(5)

For ith pose, we extract 3D plane features from both
cameras and 3D LiDAR. The 3D plane parameters in cam-
eras are described as [nC1

i ; dC1
i ] and [nC2

i ; dC2
i ]. nC1

i ,nC2
i

represent the normal vector of the plane in the camera frame,
dC1
i , dC2

i represent the distance from the plane to the origin
of the camera coordinate system. The 3D plane parameters in

CK
Image Frame

Camera Frame

x

y

x

y

z

z

y

x

LiDAR Frame

]ij
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Cd[

]i
C, di
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Fig. 2. Notation of plane and line parameters

LiDAR are described as [nL
i ; dLi ]. nL

i represents the normal
vector of the plane in the LiDAR frame, dLi represents the
distance from the plane to the origin of the LiDAR coordinate
system. For any point (X1, Y1, Z1) ∈ R3

C1
that lie on plane

i in left camera , any point (X2, Y2, Z2) ∈ R3
C2

that lie on
plane i in right camera, point (Xl, Yl, Zl) ∈ R3

l that is the
centroid point of plane i in 3D LiDAR,

[nC1
i , dC1

i ]


X1

Y1
Z1

−1

 = 0 (6)

[nC2
i , dC2

i ]


X2

Y2
Z2

−1

 = 0 (7)

[nl
i, d

l
i]


Xl

Yl
Zl

−1

 = 0 (8)

For the ith pose, we also extract 3D line features from both
cameras and 3D LiDAR. The the jth 2D line in left camera
and right camera are described as lC1

ij , lC2
ij which contains

image-space coordinates of starting points and ending points.
The the jth 3D plane in left camera and right camera are
denoted as [dC1

ij ,p
C1
ij ] and [dC2

ij ,p
C2
ij ], where dC1

ij ,d
C2
ij ∈ R3

are derections of 3D lines in both cameras and pC1
ij ,p

C2
ij ∈

R3 are points lie on 3D lines in both cameras. We use AC1
ij

and AC2
ij to represent the projection matrix (I−dC1

ij (dC1
ij )T )

and (I− dC2
ij (dC2

ij )T ).
The jth 3D line in 3D LiDAR can be described as

[dL
ij ,p

L
ij ], where dL

ij is the direction of the 3D line and pL
ij

is the centroid of points lie on the 3D line. We denote the
kth point lie on the jth 3D line in 3D liDAR as QL

ijk, and
the mth point lie on the jth 3D plane in 3D LiDAR as PL

im.
In ith pose, the number of points on the plane is denoted as
Ni, the number of points on the jth boundary is denoted as
Kij .

159



In this paper, LC1
ij , LC2

ij and LL
ij represent the jth line

in the ith pose of two cameras and 3D LiDAR, πC1
i , πC2

i

and πL
i represent plane in the ith pose. The plane and line

parameters are also illustrated in Fig. 2. We use · to represent
the dot product.

B. System Description

We implement the extrinsic calibration algorithm of the
stereo visual system and the 3D liDAR in C++. We will
discuss the structure of the calibration software. The basic
structure of the system is shown in [Fig].

To use this software, users need to use ROS [23] to record
several bags containing images from both cameras and point
clouds from 3D LiDAR. If intrinsic parameters of both cam-
eras are not provided, users need to place the checkerboard in
different positions to make sure that all image area is covered
by different positions to get accurate intrinsic parameters.
The point cloud and images will also be used to calibrate the
extrinsic parameters. Users record images and point clouds
for several seconds in rosbag at each position. Users need to
provide a cuboid in LiDAR coordinate system which contains
the checkerboard to help locate the checkerboard in the point
cloud. Then this information are regarded as the input of the
system.

Firstly, the system will use intrinsic calibration [8] built-
in OpenCV [24] to calibrate the intrinsic parameters of
both cameras using images containing checkerboard, then
undistorted images will be stored in a folder for further
processing.

In the second step, stereo calibration in OpenCV will be
used to obtain initial extrinsic parameters of both cameras.

In the third step, 3D planes and lines feature from both
cameras and 3D LiDAR are extracted. LSD method [8] is
used to extract 2D lines from images, and plane parameters
in cameras are estimated using checkerboard features. 3D
planes in 3D liDAR are estimated by RANSAC [25], the 3D
lines in 3D planes in LiDAR frame are also estimated by
RANSAC after denoising.

In the fourth step, we use the SVD method to give out the
initial guess of extrinsic parameters between each camera
and the 3D liDAR.

In the fifth step, we utilize the LiDAR disparity con-
straint to refine the extrinsic calibration result globally by
Levenberg-Marquardt algorithm[26].

C. Feature Extraction of Calibration Target

In this section, we will introduce the steps of feature
extraction in detail.

1) Planes and Lines Extraction from Camera: We will
consider feature extraction in cameras, without loss of gen-
erality, we will discuss it in the left camera.

The 3D plane parameters [nC1
i , dC1

i ] can be computed by
homography using checkerboard. After extracted all 2D lines
by LSD[27] method, we can extract several line segments on
the four boundaries of the checkerboard. After line fusion, we
can get starting points and ending points [(xs, ys), (xe, ye)]
of a line. A sample result of 2D boundary detection is shown

Fig. 3. Planes and Lines from Camera

Fig. 4. Planes and Lines from 3D LiDAR

in Fig. 3. We can get back-projected 3D plane of the line
which is the plane containing the 3D line and origin of RC1

as [KC1 · ([xs, ys, 1]
T × [xs, ys, 1]

T
); 0]. Then we can get the

3D plane parameters by the intersection of the back-projected
3D plane and the 3D plane.

2) Planes and Lines Extraction from 3D LiDAR: For 3D
LiDAR, we use user-provided cuboid to help locate the
checkerboard in the point cloud. The 3D plane parameters
can be computed by using the RANSAC algorithm to extract
points on the checkerboard plane. Then we can filter points
on scanlines according to the length of the consecutive
segments to get a refined point cloud of the plane.

After getting the point cloud of the plane, we apply line
fitting on each scanline to filter out outliers by RANSAC.
And we can obtain the left boundary and right boundary of
the checkerboard from the starting points and ending points
on the scan lines of the plane point cloud.

In the last step, we split the left boundary and right
boundary into four boundaries from detecting the turning
point of the boundary, and we use line fitting again to filter
out outliers to get the final 3D line parameters. The example
result of planes and lines extraction is shown in Fig. 4.

D. Extrinsic Calibration of a Stereo Camera and a 3D
LiDAR

In this section, we will describe the geometry constraints
and extrinsic calibration algorithm of a stereo camera and a
3D LiDAR.
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Fig. 5. Geometric Constraints

1) Geometric Constraints: The geometric constraints are
illustrated in Fig. 5.

For line pairs (LC1
ij , L

L
ij) and (LC2

ij , L
L
ij), there are follow-

ing constraints:

RC1

L dL
ij = dC1

ij (9)

RC2

L dL
ij = dC2

ij (10)

(I− dC1
ij (dC1

ij )T )(RC1

L QL
ijk − pC1

ij + tC1

L ) = 0 (11)

(I− dC2
ij (dC2

ij )T )(RC2

L QL
ijk − pC2

ij + tC2

L ) = 0 (12)

For plane pairs (πC1
i , πL

i ) and (πC1
i , πL

i ), there are follow-
ing constraints:

RC1

L nL
i = nC1

i (13)

RC2

L nL
i = nC2

i (14)

nC1
i · (RC1

L PL
im + tC1

L )− dC1
i = 0 (15)

nC2
i · (RC2

L PL
im + tC2

L )− dC2
i = 0 (16)

In Eq. (9) (10), we use a rotation matrix between the Li-
DAR frame and the camera frame to transform the direction
vector of the line from the LiDAR frame to the camera frame.

In Eq. (11) (12), we use rotation matrix and translation
vector between the LiDAR frame and the camera frame to
project QL

ijk which is one point on LL
ij to the camera frame

as Q′
C
ijk, then connect it with pij to form the vector. And

we use projection matrix (I−dC
ij(d

C
ij)

T ) to project it to the
vector from Q′

C
ijk to the line LC

ij . This vector should have
zero length since the projected point Q′

C
ijk should be also

on the line LC
ij in the camera frame.

In Eq. (13) (14), we use a rotation matrix between the
LiDAR frame and the camera frame to transform the normal
vector of the plane from the LiDAR frame to the camera
frame.

In Eq. (15) (16), we use rotation matrix and translation
vector between the LiDAR frame and the camera frame to
project PL

im which is one point on πL
i to the camera frame

as P′
C
im, then project it on the normal vector nC

i and minus
dCi to get the distance to the plane πC

i . Since the projected

point P′
C
im should be also on the plane πC

i in the camera
frame, that distance to the plane πC

i should have zero length.
2) Extrinsic Calibration from one pose: Using the above

geometric constraints, [13] proves that we can compute the
relationship between a 3D LiDAR and a monocular camera
using 2 pairs of non-parallel line correspondences and 1 pair
of plane correspondence with one pose. For the extrinsic
calibration of a stereo visual system and 3D LiDAR, we can
calibrate the 3D LiDAR with each camera to get the extrinsic
parameters of the whole system.

3) Extrinsic Calibration from multiple poses: We can get
a more accurate result using multiple poses. [13] introduced
the extrinsic calibration method between a camera and a 3D
liDAR from multiple poses using non-linear optimization.
We can also formulate our problem as a non-linear opti-
mization problem by minimizing line reprojection error and
plane reprojection error from the 3D liDAR to the 3D camera
to refine the extrinsic calibration result. And we can utilize
LiDAR disparity constraint obtained by stereo calibration of
the stereo visual system to optimize the extrinsic parameters
globally.

Firstly, we minimize the following cost function to solve
the initial RC1

L and RC2

L :

RC1

L = arg min
R

C1
L

N∑
i=1

4∑
j=1

‖RC1

L dL
ij − dC1

ij ‖2 + ‖RC1

L nL
i − nC1

i ‖2

(17)

RC2

L = arg min
R

C2
L

N∑
i=1

4∑
j=1

‖RC2

L dL
ij − dC2

ij ‖2 + ‖RC2

L nL
i − nC2

i ‖2

(18)

As described in [28], the above problem can be solved by
Singular Value Decomposition(SVD). We can define:

ML = [nL
1 ,d

L
11, . . . ,d

L
14, . . . ,n

L
N ,d

L
N1, . . . ,d

L
N4] (19)

MC1 = [nC1
1 ,dC1

11 , . . . ,d
C1
14 , . . . ,n

C1

N ,dC1

N1, . . . ,d
C1

N4] (20)

MC2 = [nC2
1 ,dC2

11 , . . . ,d
C2
14 , . . . ,n

C2

N ,dC2

N1, . . . ,d
C2

N4] (21)

Using SVD, we can get

ML(MC1)T = U1Σ1V
T
1 (22)

ML(MC2)T = U2Σ2V
T
2 . (23)

Then, the rotation matrix RC1

L and RC2

L can be solved by
closed-form solution:

RC1

L = V1U
T
1 (24)

RC2

L = V2U
T
2 (25)

To get intial translation vector tC1

L and tC2

L , we need to
utilize Eq. (11) (12) (15) (16). We denote P̄L

i as the centroids
of the planes PL

i in the LiDAR frame, Q̄L
ij as the entroids of

the planes QL
ij in the LiDAR frame. Using above definitions

and constraints, we can have
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nC1
i · tC1

L = −nC1
i ·RC1

L P̄L
i + dC1

i (26)

nC2
i · tC2

L = −nC2
i ·RC2

L P̄L
i + dC2

i (27)

AC1
ij tC1

L = −AC1
ij (RC1

L Q̄L
ij − pC1

ij ) (28)

AC2
ij tC2

L = −AC2
ij (RC2

L Q̄L
ij − pC2

ij ) (29)

We can solve this least-square problem to get a closed-
form solution of tC1

L and tC2

L .
After having the initial rotation matrices RC1

L , RC2

L and
the translation vectors tC1

L , tC2

L , we can solve a non-linear op-
timzation problem by Levenberg-Marquardt algorithm[26].

Considering Eq. (11) (12) (15) (16) as constraints, we can
formulate following cost function terms which describe the
constraits between 3D LiDAR and the cameras:

eC1

L =
N∑
i=1

1

Ni
‖nC1

i · (RC1

L PL
im + tC1

L )− dC1
i ‖2

+

N∑
i=1

4∑
j=1

1

Kij

Kij∑
k=1

‖AC1
ij (RC1

L QL
ijk − pC1

ij + tC1

L )‖2

(30)

eC2

L =
N∑
i=1

1

Ni
‖nC2

i · (RC2

L PL
im + tC2

L )− dC2
i ‖2

+
N∑
i=1

4∑
j=1

1

Kij

Kij∑
k=1

‖AC2
ij (RC2

L QL
ijk − pC2

ij + tC2

L )‖2

(31)

We jointly optimize two pairs of extrinsic calibration pa-
rameters between each camera and 3D LiDAR by minimizing
the following cost function:

(RC1

L ,RC2

L , tC1

L , tC2

L ) = arg min
R

C1
L ,R

C2
L ,t

C1
L ,t

C2
L

eC1

L + eC2

L (32)

Extrinsic calibration of a stereo visual system has been
explored by many researchers, we can obtain acure extrinsic
parameters including rotation matrix and translation vec-
tor between two cameras using multiple images containing
checkerboard. We adopt method [29] to calibrate two cam-
eras to get accurate extrinsic parameters (RC2

C1
, tC2

C1
) of the

stereo visual system.
Since the extrinsic calibration between a camera and

a 3D LiDAR has estimation error, we can use LiDAR
disparity constraint to consider this estimation error with
stereo calibration result. This LiDAR disparity constraint
is illustrated in Fig. 6. We project the point cloud of the
checkerboard plane {PL

im} in the LiDAR frame to the
left camera frame as {RC1

L PL
im + tC1

L } using estimated
(RC1

L , tC1

L ). Then we project {RC1

L PL
im + tC1

L } to right
camera frame as {RC2

C1
(RC1

L PL
im + tC1

L ) + tC2

C1
}using stereo

extrinsic parameters (RC2

C1
, tC2

C1
) obtained by stereo camera

calibration. This projected point cloud has disparity com-
pared to {RC2

L PL
im + tC2

L } projected from LiDAR frame to
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Fig. 6. LiDAR disparity constraint
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Fig. 7. Joint Optimization

right camera frame using (RC2

L , tC2

L ). This LiDAR disparity
can be described as

eC2

C1
=

N∑
i=1

1

Ni

Ni∑
m=1

‖RC2

C1
(RC1

L PL
im + tC1

L ) + tC2

C1

− (RC2

L PL
im + tC2

L )‖2
(33)

Combining LiDAR disparity constraint with Eq. (11) (12)
(15) (16) we can joinly optimize the extrinsic parameters
by minimizing the following cost function which is also
illustrated in Fig. 7:

(RC1

L ,RC2

L , tC1

L , tC2

L ) = arg min
R

C1
L ,R

C2
L ,t

C1
L ,t

C2
L

eC1

L + eC2

L + eC1

C2

(34)

Since the measurement error of the grid size of the
checkerboard will influence the extrinsic calibration result of
a camera and 3D LiDAR, [13] introduced similarity trans-
formation to replace the rigid transformation. We also apply
similarity transformation to extrinsic calibration between a
stereo visual system and 3D LiDAR.

We introduce a scale factor s to refine the scale factor for
the laser beam of the 3D LiDAR which is used for getting
actual distances of points. After getting initial RC1

L and RC2

L
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in the same way, we can solve the linear system which is
showed as below to get initial s, tC1

L and tC2

L .

nC1
i · tC1

L + nC1
i ·RC1

L P̄L
i s = −dC1

i (35)

nC2
i · tC2

L + nC2
i ·RC2

L P̄L
i s = −dC2

i (36)

AC1
ij tC1

L + AC1
ij RC1

L Q̄L
ijs = AC1

ij pC1
ij (37)

AC2
ij tC2

L + AC2
ij RC2

L Q̄L
ijs = AC2

ij pC2
ij (38)

To refine the result, the cost function without considering
the LiDAR disparity constraint is showed as below:

(s,RC1

L ,RC2

L , tC1

L , tC2

L ) = arg min
R

C1
L ,R

C2
L ,t

C1
L ,t

C2
L

N∑
i=1

1

Ni
‖nC1

i · (sRC1

L PL
im + tC1

L )− dC1
i ‖2

+
N∑
i=1

4∑
j=1

1

Kij

Kij∑
k=1

‖AC1
ij (sRC1

L QL
ijk − pC1

ij + tC1

L )‖2

+
N∑
i=1

1

Ni
‖nC2

i · (sRC2

L PL
im + tC2

L )− dC2
i ‖2

+
N∑
i=1

4∑
j=1

1

Kij

Kij∑
k=1

‖AC2
ij (sRC2

L QL
ijk − pC2

ij + tC2

L )‖2

(39)

the cost function considering LiDAR disparity constraint
is showed as below:

(s,RC1

L ,RC2

L , tC1

L , tC2

L ) = arg min
R

C1
L ,R

C2
L ,t

C1
L ,t

C2
L

N∑
i=1

1

Ni
‖nC1

i · (sRC1

L PL
im + tC1

L )− dC1
i ‖2

+

N∑
i=1

4∑
j=1

1

Kij

Kij∑
k=1

‖AC1
ij (sRC1

L QL
ijk − pC1

ij + tC1

L )‖2

+
N∑
i=1

1

Ni
‖nC2

i · (sRC2

L PL
im + tC2

L )− dC2
i ‖2

+
N∑
i=1

4∑
j=1

1

Kij

Kij∑
k=1

‖AC2
ij (sRC2

L QL
ijk − pC2

ij + tC2

L )‖2

+
N∑
i=1

1

Ni

Ni∑
m=1

‖RC2

C1
(sRC1

L PL
im + tC1

L ) + tC2

C1

− (sRC2

L PL
im + tC2

L )‖2
(40)

Then we also jointly optimize the extrinsic parameters by
minimizing the cost function using the Levenberg-Marquardt
algorithm to refine the result.

IV. EXPERIMENTS AND RESULTS

To evaluate our method, we compare our method to
Unnikrishnan’s method [9] which only used the plane in-
formation to calibrate a camera and a 3D LiDAR. Our

Fig. 8. Poses of checkerboards for the Stereo Calibration

Fig. 9. Reprojection Error of the Stereo Calibration

experiment uses a Velodyne VLP-16 LiDAR (16 scan lines,
±3cm range error, 360◦ horizontal field of view and ±15◦

vertical field of view)and a ZED stereo camera(1280× 720
resolution) to evaluate our method.

We use stereo calibration with 35 poses to get accurate
extrinsic parameters (RC2

C1
, tC2

C1
) of the stereo visual system.

The poses of the checkerboards are showed in Fig. 8. The
reprojection error of the stereo calibration is shown in Fig.
9.

To evaluate methods, we estimate the extrinsic
parameters between each camera and 3D LiDAR
(RC1

L , tC1

L ), (RC2

L , tC2

L ), then calculate the relative pose
from left camera frame to right camera frame using these
two transformation. For similarity transformation, we will
regard it as the rigid transformation when we calculate the
error.

To evaluate the transformation error between the estimated
transformation (R̂, t̂) and the groundtruth transformation
(R, t), we use ‖t̂−t‖2‖t‖2 as the translation error and the angle-
axis representation of R̂R−1 [30] as the rotation error.

We collected 30 pairs of LiDAR point clouds and images
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Fig. 10. Mean Rotation Error of rigid transformation, compare between our
method without LiDAR disparity constraint and Unnikrishnn’s algorithm[9]

to do our evaluation, we choose N ∈ [1, 23] randomly from
them for our method, and N ∈ [3, 23] for Unnikrishnan’s
method. We run the experiment 200 times for each N ∈
[2, 25]. We estimate extrinsic parameters for all 30 poses for
N = 1.

The comparison of our method and Unnikrishnan’s method
is shown in Fig. 10 and Fig. 11. In this comparison ex-
periment, we both use rigid transformation without using
LiDAR disparity constraint to calibrate each camera with
3D LiDAR. The results show that our method significantly
outperforms Unnikrishnan’s method. And the results prove
that our method can provide accurate extrinsic calibration
result even with one pose.

We compare the result of rigid transformation and simi-
larity transformation in different ways. Firstly, we use one
pose to calibrate each camera with 3D LiDAR using rigid
transformation and similarity transformation without using
LiDAR disparity constraint. Secondly, we back-project the
point cloud of the checkerboard plane from the LiDAR frame
to the camera frame. The fusion result is showed in Fig. 12.
We can observe from the fusion result that the similarity
transformation provides a more accurate result that the rigid
transformation.

We also show that the LiDAR disparity constraint can
improve the extrinsic calibration result significantly by com-
paring the performance of rigid/similarity transformation
with/without LiDAR disparity constraint. And the result
shows that similarity transformation gives more improvement
in translation estimation than rotation estimation. The rota-
tion error and translation error is showed in Fig. 13 and Fig.
14.

V. CONCLUSIONS AND FUTURE WORKS

Using line and plane correspondences, we can use fewer
(even one) poses to get more accurate extrinsic calibration
result of a stereo visual system and 3D LiDAR. Using
LiDAR disparity constraint, we can improve results with
multiple poses significantly. We show that similarity trans-
formation which does not require measurement of grid size
of checkerboard can have more accurate result than rigid

Fig. 11. Mean Translation Error of rigid transformation, compare be-
tween our method without LiDAR disparity constraint and Unnikrishnn’s
algorithm[9]

Fig. 12. Back-projection of the point cloud of the checkerboard plane
using extrinsic parameters obtatined from our rigid transformation method
without LiDAR disparity constraint(red) and our similarity transformation
method without LiDAR disparity constraint(green). Both methods use one
pose.

Fig. 13. Mean Rotation Error of our method: rigid/similarity transformation
with/without LiDAR disparity constraint
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Fig. 14. Mean Translation Error of our method: rigid/similarity transfor-
mation with/without LiDAR disparity constraint

transformation. We implemented a calibration toolbox in
C++ with high efficiency and accuracy. In the future, We will
extend the calibration framework to multi-sensor calibration
problem including intrinsic and extrinsic calibration.
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