

Motivation

- Sparse reward multi-step problems are difficult for reinforcement learning [4]
- Existing work depends on synthetic languages and templated tasks [1,2,3] and are not generalizable
- However, humans are able to learn from instruction and demonstrations
- Humans are also able to infer similarities and relations from natural language

Contributions

- A dataset of annotations from Amazon Mechanical Turk (AMT) of how humans solve complex crafting tasks
- A method that leverages the dataset to guide hierarchical learning algorithms

References

[1] Andreas et al. "Modular multitask reinforcement learning with policy sketches," ICML 2017. [2] Le et al. "Hierarchical imitation and reinforcement learning," ICML 2018. [3] Co-Reyes et al "Guiding policies with language via meta-learning," ICLR 2019. [4] Chevalier-Boisvert et al "BabyAI: First steps towards grounded language learning with a human in the loop," ICLR, 2019.

Towards Hierarchical Problem Solving using Natural Language Instructions

Valerie Chen¹

Kenneth Marino² Abhinav Gupta² ¹Yale University, ²Carnegie Mellon University

AMT Data Collection Process

Goal

Make a diamond pickaxe

Board

			Axe	
	Stick			
		DOOR		
Diamond Pickaxe	Diamond Ore Vein	al di Cal Ma	- 61 - 61 X - X -	i od ji od Vila Vila

Recipes

Diamond Pickaxe	Stick	Diamond		Diamond Pickaxe
	Stick	Wood Plank		Stick
	Wood Plank	Wood		Wood Plank
	Tree	Axe	${}$	O Wood
	Diamond Ore Vein	Pickaxe	${}$	Diamond

Data Analysis

- 20.000 +
- annotated subpolicies

Proposed Methods

Combining imitation learning and hierarchical reinforcement learning

- The worker is given a complex goal, the current board state, and guiding recipes
- The worker must provide step-bystep annotations of how they would achieve the goal accompanied with the appropriate action execution

Expected number of traces to be collected:

• Total number of unique crafts: 20 • The dataset provides (1) an expert human policy for solving the overall task (2) automatically

Thank you to Kenny Marino, Abhinav Gupta, Rachel Burcin, John Dolan,

Baseline Comparisons

 Reinforcement Learning: proximal policy optimization (PPO) with sparse reward $\theta^* = \arg\max_{\theta} E_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t} r(s_t, a_t)\right]$

- $r(\tau) = \begin{cases} 1 & goalstate \\ 0 & otherwise \end{cases}$
- Imitation learning: behavioral cloning with MLP

Baseline Results

Future Work

- Demonstrate generalization to similar yet unseen tasks by using word embeddings
- Improve sample efficiency against baseline methods given only few annotated demonstrations