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Motivation

• Sparse reward multi-step 
problems are difficult for 
reinforcement learning [4]

• Existing work depends on 
synthetic languages and 
templated tasks [1,2,3] and 
are not generalizable

• However, humans are able 
to learn from instruction and 
demonstrations

• Humans are also able to 
infer similarities and 
relations from natural 
language

Contributions

• A dataset of annotations 
from  Amazon Mechanical 
Turk (AMT) of how humans 
solve complex crafting tasks

• A method that leverages the 
dataset to guide hierarchical 
learning algorithms 
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• Demonstrate generalization 
to similar yet unseen tasks 
by using word embeddings 

• Improve sample efficiency 
against baseline methods 
given only few annotated 
demonstrations

Future Work
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Proposed Methods
Combining imitation learning and hierarchical reinforcement learning

Baseline Results
• For simple crafting task, 

PPO takes on the order of 
106 time steps

Data Analysis
• Expected number of traces to be collected: 

20,000+
• Total number of unique crafts: 20
• The dataset provides (1) an expert human policy 

for solving the overall task (2) automatically 
annotated subpolicies

• The worker is given a complex 
goal, the current board state, and 
guiding recipes

• The worker must provide step-by-
step annotations of how they 
would achieve the goal 
accompanied with the appropriate 
action execution

Baseline Comparisons
• Reinforcement Learning: 

proximal policy optimization 
(PPO) with sparse reward

• Imitation learning:
behavioral cloning with MLP

Step	1.

First	…
Then..	
Next..


