Angle-Specific Goal Assignment for Persistent Coverage

HAVERFORD

Daniel Feshbach, Shohin Mukherjee, and Maxim Likhachev

PERSISTENT COVERAGE

- UAVs covering rectangular sensor footprints in front of their position
- Grid-based environment whose coverage levels degrade over time at varying rates
- Previous work [1]: planning framework for UAVs which cover circles around them
- My work: extend framework to sensor footprints facing in particular directions
- Assign goal poses in (x,y,θ) instead of (x,y) positions

Prioritized Planning Framework

Selecting the Next Goal Pose

Angle-Dependant Sensor Footprints

- Selects poses balancing
 coverage urgency: average time remaining in footprint until cell expiration
 cost to reach from the current position: approximated with Dubins path length
- From each environment cell (x,y), considers the angle θ^* with the most urgent coverage

Angle With Most Urgent Coverage

 $cost(R \to G2 \to PG) = 6 + 5\sqrt{2} + 6 + (14.9 - 12.2) \approx 21.8$

RESULTS

- Proposed Approach provides better coverage than approximating the footprint as a circle
- Considering the Dubins distance does not significantly improve coverage performance

REFERENCES

[1] T. Kusnur, S. Mukherjee, D. M. Saxena, T. Fukami, T. Koyama, O. Salzman, and M. Likhachev, "A planning framework for persistent, multi-UAV coverage with global deconfliction," in In Proceedings of Field and Service Robotics 2019 (FSR19), 2019.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National Science Foundation under Grant No. 1659774 and by Mitsubishi Heavy Industries, Ltd.

