IMITATION LEARNING FOR LATENT FACTORS IN COLLABORATIVE MULTI-AGENT SYSTEMS

Introduction and Motivation

e Human behaviours can vary due to factors such as level of expertise,
preference for a strategy etc.

e This introduces unaccounted latent factors for an agent trying to
learn from a human and essentially yields multiple distinct experts.

e Currently, there does not exist a framework that enables multiple agents
to take into account these latent factors and collaborate effectively with
cach other.

Background

e The GAIL framework [1] allows for directly recovering an expert policy
from demonstration data.
Objective Function:
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Fig. 1: Generative Adversarial Imitation Learning [1]

e Data from human expert demonstrations show significant variability due
to the presence of latent factors that result in multiple distinct expert
policies. The InfoGAIL framework [2] infers the latency of
such demonstrations by learning a policy by introducing a latent
variable in the policy function.

Objective Function:

I};lgl mgx E {ZOQD(S, a)} + L, {log(l — D(s, a))]
— AiLi(m(c), Q) — A H(m)

e The MAGAIL framework [3] extends GAIL to multiple
agents. The cost function of MAGAIL is essentially the sum of the
cost functions of all the agents.

Objective Function:
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Proposed Approach

Through this work, we propose a novel framework that aims to combine
two existing adversarial imitation learning algorithms: InfoGAIL [2]

and MAGAIL (3].
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Fig. 2: Proposed Framework

Resultant objective tunction:
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Environment Setup

l .

Fig. 3: (Left) Biased CartPole Environment: The block has a preferred position (along the x-axis) (Right) 4-Coloured

Tasks Environment: The agents have preferred landmarks

e Biased CartPole Environment (Single Agent)

— We introduce a bias by specifying a desired position of the block. The

reward is then calculated as per the following Gaussian distribution (normalised
to 1).

P(x) = L —a—w?/20
O

e 4-Coloured Tasks Environment (Multiple Agents)

— Differently coloured agents and landmarks.
—The collaborative task is for the two agents to cover the preferred landmarks.
— Agent preference is accounted for using colour as a latent variable.
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Results and Ongoing Work

e For the biased CartPole environment, we generated multiple experts
(standard deviation is taken as 0.0001 in all cases) using PPO (Proximal
Policy Optimization).

CartPole-v0 CartPole-v0

Episode

Fig. 4: Reward Function for Biased CartPole. Desired Position a) -2 b) +2

e For the 4-Coloured Tasks environment, we are using MADDPG (Multi-
Agent Deep Deterministic Policy Gradient) to generate multiple experts
such that the trained agent is able to continuously adapt to the prefer-
ences of the other agent.
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Fig. 5: Agent Policy

Future Work

e We will implement the proposed framework on our environments.

e ['inal experiments to be done in a Team Space Fortress environment.

Fig. 6: Team Space Fortress Environment
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