Signal Processing for Environment-Invariant WiFi Human Sensing

Yutian Lei

Fei Wang

Dong Huang

Motivation

- Raw CSI data contains redundant information from the static environ
- CSI measurements are sensitive to the location and orientation of the antenna
- There are hardware and software estimation errors for CSI

CSI: Channel State Information

CSI characterizes how wireless signals propagate from the transmitter to the receiver at certain carrier frequencies.

$$H(t; f) = \sum_{l} \gamma_l(t) e^{-j2\pi f \tau_l(t)}$$

Reference

[1] R. Schmidt, "Multiple emitter location and signal parameter estimation," IEEE Transactions on Antennas and Propagation, vol. 34, no. 3, pp. 276–280, March 1986.
[2] Y. Ma, G. Zhou, and S. Wang, "Wifi sensing with channel state information: A survey," ACM Comput. Surv., vol. 52, no. 3, pp. 46:1–46:36, Jun. 2019. [Online]. Available:

http://doi.acm.org/10.1145/3310194
[3] M. Kotaru, K. Joshi, D. Bharadia, and S. Katti, "Spotfi: Decimeter level localization using wifi," in ACM SIGCOMM computer communication review, vol. 45, no. 4. ACM, 2015, pp. 269–282

Acknowledgment

I would like to thank Dr. Huang Dong and Mr. Fei Wang for their advising and mentoring. I would also like to thank the RISS program for this funded research opportunity and the entire RISS team and cohort for help and support.

Phase Offsets Removal

Sampling Time Offset (STO): the receivers and the transmitter are not tightly time synchronized, so their sampling clocks at the DAC and the ADC are not in sync; Sampling frequency offset (SFO): between every WiFi sender receiver pair. SFO changes the sampling time offset from packet to packet for the same sender-receiver pair; Cyclic Shift Diversity (CSD): caused by Orthogonal Frequency-Division Multiplexing (OFDM). [2]

$$H_{m,n,k} = (\sum_{l}^{L} \gamma_{l} e^{-j2\pi f_{k}\tau_{m,n,l}}) e^{-j2\pi a_{m}f_{k}} e^{-j2\pi bf_{k}} e^{-j2\pi c(f'_{k}-f_{k})}$$

$$\angle H_{m,n,k} = \Phi_{m,n,k} - 2\pi f_{\sigma}k(a_{i} + b + c(f'_{k}/f_{k} - 1))$$

Muiltipath Feature Estimation

- Angle of Arrival and Angle of Departure; Time of Flight; Doppler velocity [3]
- X = AF + N, X: Recevied Signal, A: Steering Matrix, N: White Noise
- $\widehat{R_X} = \frac{1}{N} * E(XX^H) = U_S \Sigma_S U_S^H + U_N \Sigma_N U_N^H$
- $\theta_{\text{Music}} = \arg\min_{\theta} \frac{1}{\alpha(\theta)^{\text{H}} \text{UU}^{\text{H}} \alpha(\theta)}$

SUMMARY OF 1-D ESTIMATION OF MULTI-PATH FEATURE

	Snapshot Domin	CSI Shape
AoA	Transmitter, Frequency and Time	$(N, M \times K \times T)$
AoD	Recevier, Frequency and Time	$(M, N \times K \times T)$
ToF	Recevierm Transmitter and Time	$(K, M \times N \times T)$
Doppler	Recevierm Transmitter and Frequency	$(T, M \times N \times K)$

