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Detection, Segmentation, Tracking and Forecasting?
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Approach

Motion forecasting is the task
of predicting the position and
size of every object based on
its motion history.

Extend the Mask RCNN architecture to incorporate tracking and forecasting.
(Marked with red in the architecture diagram above)

a) Association module: An association module added to the Mask RCNN backbone for
associating detections across frames.

. Detection and segmentation are fundamental tasks for scene understanding b) Forecast module: A centroid forecasting module added to predict centroid in the

| next frame.
° Tracking ObjECtS In Image sequences hE|pS to understand the dynamics of an object Fig. showing segmentation masks as well as forecasts. Colored squares represent the location of centroid in the past frames. Solid circles ] .
and its interactions with its surroundings. represent the predicted centroid position. c) RPN Score boosting: The output of forecaster used to boost the RPN scores in the
next frame.
 Motion forecasting is tracking into the future — helps in making the tracker and
detector more robust to occlusion. ]
Conclusion

* The model reduces the number of false negatives by boosting the RPN scores using
the forecast.

Motivation

* Multi-task learning: Faster R-CNN and Mask RCNN [2! proved that combining the tasks
of detection and segmentation can help us perform better in both the task than done

* |Improved recall helps maintain consistent identities.

* The model captures a good estimate of motion parameters like velocity and

individually. . L .
._ ——. s acceleration. However, it gives equal importance to the whole past as opposed to
« Tracking by detection: Recent surge in the use of detection for tracking. 34 | S giving more importance to the immediate past.
Fig. showing some failure cases. The green bicyclist in the middle does complicated maneuvering relative to the camera motion and the
o Tracking and forecasting being related tasks has been done together in the past [5] model fails to capture its motion. The man sitting to the right of the person marked in teal on the right half of the image was not detected in
' the first frame he appeared; since the RPN scores are boosted for the person marked in teal, the man’s detection never passes NMS.
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