Motion Planning for Urban Driving Including Evasive Maneuvers Using iLQR
Het Shah, Yanjun Pan, John Dolan

Introduction
- There exist a lot of challenges in motion planning for autonomous driving, especially in the case of sudden motion of dynamic obstacles.
- A real-time implementation of spatial and temporal planning that can handle nonlinear vehicle model and dynamic obstacle avoidance is needed.

Motivation
- The majority of road accidents are caused by vehicle collision. The aim of the collision avoidance system is to avoid imminent accidents using longitudinal (emergency braking) or lateral control (active steering).
- However, emergency braking is not possible for every situation, as there might not be enough distance or time to stop before an obstacle.
- Our approach focuses on integration of emergency obstacle avoidance scenarios and tuning technique for cost weights.

Methodology
- Iterative Linear Quadratic Regulator is used for motion planning that can handle a nonlinear model. Constraints are handled as barrier functions and added in the cost function.[1]
- A constant acceleration model is assumed to predict obstacle trajectories and used in cost function.
- Adaptive cost weights are a linear function of the distance of the obstacle from the vehicle.

Results
- We have shown that Iterative LQR with cost weight tuning technique is capable of motion planning for urban areas including evasive maneuvers and emergency situations.
- Efficient solvers for taking the dynamic model of the vehicle into consideration for better implementation at high speeds.
- As a part of future work, the cost weights can be learned to adapt according to the situation through a better function.

References

Acknowledgments
The authors would like to thank the Federation of Indian Chambers of Commerce and Industry (FICCI) for their generous financial support and would also like to acknowledge the support of the RISS and its organizers: Dr. John Dolan and Ms. Rachel Burcin.