Deep Spatio-Temporal Video Based Analysis for Shoulder Pain Intensity Measurement

Maimoon Siddiqui, Zakia Hammal, Diyala Erekat, Hamdi Dibeklioğlu

School of Computer Science, The Robotics Institute Carnegie Mellon University, Department of Computer Engineering, Bilkent University

Motivation

- Pain assessment and management are important across a wide range of disorders and treatment interventions.
- The standard clinical assessment of pain is limited primarily to the subjective reports (e.g., Visual Analog Scale (VAS)).
- While convenient and useful, subjective reports have several limitations (e.g., inconsistent metrics, reactivity to suggestion).
- We propose an automatic and objective pain intensity measurement using spatio-temporal changes in facial expression.

Experimental Setup

Two level 5 fold Cross Validation

Stratified distribution of data

- Dataset is split into five independent folds.
- Well distributed pain intensities per fold.
- Ensures model training is not biased due to skewed training distribution.

Experimental Results

Mean Absolute Error (MAE) in pain intensity measurement: VAS [0-10], OPI [0-5]

End-to-end Spatio-Temporal Deep Model

The CNN-RNN Model trained on spatial and temporal features

Face Registration And Warping

- 66 facial points tracked using Active Appearance Model.
- Face registration and warping using Delaney triangulation.
- Normalized facial video sequences.

For each video sequence:

- Three self-reported pain scores
 - Affective Scale (AFF)
 - Sensory Scale (SEN)
 - Visual analogue Scale (VAS)
- Offline Observer Pain Intensity Rating (OPI)

Dataset

UNBC McMaster Pain Archive

- 25 Participants with shoulder pain
- 200 video sequences

For each video sequence:

- Three self-reported pain scores
 - Affective Scale (AFF)
 - Sensory Scale (SEN)
 - Visual analogue Scale (VAS)
- Offline Observer Pain Intensity Rating (OPI)

Conclusions

- Automatic, objective, and reliable measurement of pain intensity from facial expression is feasible.
- The proposed loss function exploits the consistency between different pain intensity measures.
- Stratifying data on average improved VAS and OPI results by 13.6% and 8.9%, respectively.
- OPI offers a more objective assessment of pain intensity.

References

Acknowledgement

Thank you Dr Zakia Hammal, Dr Hamdi Dibeklioğlu, Diyala, Dr John Dolan, Rachel Burcin and all the members of RISS who made this project possible.

Research reported in this publication was supported in part by the National Institute of Nursing Research of the National Institutes of Health under Award Number R21NR016530. The content is solely the responsibility of the authors and does not necessarily represent the official views of the sponsors.