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robots to help people complete their jobs and personal GQCNN), which is state of the art depth-based model. i;l]cclle > 1d ehl.n grgshpmhg tansparcl tanf ret CEHVE O tJ ec;. depth- based and color-based models under supervising
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depth models. reflective objects than state of the art. (The results of FC-

geometries, and material types. We need robust, grasping outputs from two types of models, and does not require

GQCNN, RGB-ST, RGB-G, RGB-C are all from [5])

robots to grasp objects 1n such a wide range. | - any RGBD-based simulation. We show our fusion model
* FC-GQCNN: State of the art depth-based model has better performances than state of the art model in
v  RGB-ST: Supervision transfer model P
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1mages, we can training models to predict the success rate
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