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Fig. 1. The merging problem - the ego vehicle (in red) needs to move from
the merging lane to the host lane without disrupting the host vehicles (in blue)

e A number of dI'iViIlg scenarios including ramp Fig. 2. The ego-vehicle is controlled using a deep neural network that controls
. , , ’ the vehicle’s heading and acceleration, given an observation. The policy output
merging, réimain difficult for ADAS to handle. is verified using a distance-keeping model based on IDM.
* High degree of interaction with human-driven

* Apolicy 1s trained using GAIL on expert
merging trajectories extracted from NGSIM.
* Kinematic features are extracted from the
ego-vehicle and 6 of tis neighbors

Related WO rk * Lowe-level control outputs are used to

generalize across ramp geometries, avoid

vehicles
* Must interact with drivers 1n a human-like way

Fig. 3. Diagram of the vehicles that the ego-vehicle has access to - two in

° Dong et al. use pI‘ObabﬂiStiC graphical models to fixed merge pOiIlt the the merging lane and four in the host lane. The ego-vehicle is in blue, the
: : . : : ing neighb in yellow, and the host neighb j . Th
estimate intention, and ACC to generate merge » IDM is used to provide safe bounds on the leading vehisle that IDM Ly distance-keeping to is in putple. Greea webicles
trajectories. acceleration of the ego-vehicle are unobserved by the ego-vehicle.
* Kuefler, Bhattacharyya et al. use imitation * Allows for verifiable low-level behavior
learning to generate trajectories for general ¥ o o
e ) : tioas = amas (1 — (Payt — (¥ (Vs A%) s, Discussion and Future Work
highway driving. IDM = Gmaz Yo o
* Hu, Bouton et al. use reinforcement learning for e GAIL with IDM masking performs about as well as other
merging to generate accelerations along a fixed where s* (v, Avy) = 8o + 0o T - VoAU, methods.
merge path. 2v/mazb * The low-level control likely hurts GAIL performance
- : . ¥ ithout IDM.
* Prior work assumes a path to a fixed merge point — — mi wit
. di 1 p . 5¢P Tmask () - mll}(W(S), “IDM ) «  Will experiment with more sophisticated imitation
no 1mme. late app 1cat101.1 to certain 1.‘amp learning methods (multi-agent, data augmenting) to get
geometries, not necessarily human-like. better results.
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