The physician exerts significant force in uncomfortable positions during examination. Probe force and orientation need to be fine-tuned to obtain good image qualities. Previous works have been focused on uni-direction orientation adjustment on flat phantom[1][2] and surface exploration of spherical probe[3].

System setup

- UR5e robot arm
- Ultrasound Phantom
- Force transducer
- Z-wires
- Calibration Phantom

Zero-force mode

\[V_f[i] = \alpha K F_f[i] + (1 - \alpha)V_f[i - 1] \]

- \(V_f = [\omega_1, \omega_2]^T \): desired twist in force sensor frame
- \(\alpha \): constant of low-pass filter
- \(K \): diagonal matrix of scaling factors
- \(F_f = [F_1, M_f]^T \): wrench reading from the UR5 force sensor.

\[V_s = \begin{bmatrix} R & 0 \\ 0 & R \end{bmatrix} V_f \]

\(V_s \): desired twist in space frame

\[V_j = J^{-1}V_s \]

\(V_j \): joint velocity

\(J \): instantaneous Jacobian matrix from MoveIt.

Image segmentation

1. Gaussian filtering
2. Thresholding
3. Hough transform

Left: starting position
Right: end of orientation adjustment

Acknowledgement

Firstly, I would like to express gratitude to Ms. Rachel Burcin and Dr. John Dolan for organizing RISS program and the Hong Kong Polytechnic University for providing subsidy.

I would like to express my great appreciation to Dr. Howie Choset and Mr. Nicolas Mateo Zevallos-Roberts for their guidance and encouragement. My grateful thanks also extends to Mr. Lu Li for his constructive feedback on mechanical design and academic graph. I am particularly grateful for the patient and countless assistance given by Mr. Charles Hart on ROS and hardware support. I would like to thank Dr. John Galeotti for providing the ultrasound equipment.

References

