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About RISS

Robotics-related technologies are becoming ubiquitous and are dominating  

national headlines due to innovations such as driverless cars, service robots, 

surgical robots, and aerial vehicles. Robots and the knowledge required to create, 

operate, and interact with them will become increasingly important to society.

Launched in 2006, the Robotics Institute Summer Scholars (RISS) program is  

among the best and most comprehensive robotics research programs for  

undergraduates in the world. The RISS program immerses students in the world 

of robotics. Through RISS, students perform research under the mentorship of 

top scientists in robotics and intelligent systems at Carnegie Mellon University’s 

Robotics Institute. The 50-plus participating mentors draw from a broad range of 

robotics research (e.g. field robotics, computer vision, machine learning, artificial 

intelligence, autonomy, graphics, human-robot interaction, and space robotics).  

The RISS-guided research experience is coupled with powerful professional  

development in a nurturing global community and culminates in August with an 

annual research poster session and the publication of this RISS Working Papers 

Journal. The quality and breadth of research, high level of institute and university 

engagement, extensive professional development curriculum, graduate school 

application counseling, and alumni network create transformative experiences  

and remarkable post-program trajectories, with many students continuing to  

collaborate with CMU faculty members and the RI community.
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The Robotics Institute Summer Scholars (RISS) program is 
an intensive summer program bringing together students 
from all over the world to participate in cutting-edge robotics 
research. The program culminates in the RISS Working Paper 
Journal, where each participating scholar shares the results 
and implications of their research. 

Some scholars from past cohorts have gone on to be  
published in reputed conferences such as the International 
Conference on Robotics and Automation and International 
Conference on Intelligent Robots and Systems. For all scholars, 
publishing in the Working Paper Journal is a platform to  
showcase what was learned and accomplished, and to  
exchange ideas on future work. 

This summer, the RISS cohort comprised of students from  
7 countries, 14 US states and territories. Scholars answered  
a wide array of research questions this summer, ranging 
from robotics in healthcare and education, to intelligent 
transportation, path planning and scheduling. 

Publishing in a Working Papers Journal requires not only a 
commitment to a research question, but also a commitment 
to clear communication and writing. The editors would like to 
thank the scholars and their mentors for the effort behind the 
works presented here.

Each paper in this journal underwent two rigorous rounds  
of peer review, and was reviewed by two scholars in a  
single-blind process. The journal team would like to thank 
Daniel Feshbach, Rebecca Martin, Patrick Naughton, Samuel 

Triest, Boshi Wang, and Nadia Atmulak for their participation 
in the peer review process. For their help with the journal’s 
design details — such as the selection of photographs and 
templates — the editors would like to thank Rebecca Martin, 
Daniel Feshbach, Xinjie Yao and Ivana Collado. Other mem-
bers of the journal team that the editors would like to thank 
are Sushant Wadavker, Valerie Chen, Sharmistha Gupta, and 
Andy Gao. Previous RISS alumni Stephanie Milani and David 
Russell also lent their time to guiding the peer review process; 
the team and editors would like to acknowledge and thank 
them as well. 

The Global Communication Center at Carnegie Mellon also 
provide time this summer to help the cohort with their writing 
and presenting abilities. This came in the form of various 
workshops and many hours of individual appointments.  
Therefore, the editors would like to thank Emily Ferris, Alex Hall, 
Dr. Juliann Reineke, and Dr. Joanna Wolfe, of the GCC.

The RISS cohort would also like to thank the countless CMU 
faculty, staff, and graduate students who dedicated time to 
mentorship. What they give to the program is what allows 
summer students to learn from their research experience. 

Finally, the RISS 2019 cohort would like to thank co-Directors 
Rachel Burcin and Dr. John  Dolan. The effort that Rachel and 
John put into the RISS program is not only in the summer; it’s 
year-round, as long as it takes to get the scholars where they 
want to be. This journal itself testifies to their dedication: the 
hard work and ambition of these scholars reflects a fraction of 
the effort that Rachel and John have put into this program.

Letter from the Scholar Editors

Quintessa Guengerich and Mononito Goswami 
2019 RISS Working Papers Scholar Editors
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CMU Go Research Program
CMU Office of the Assistant Vice Provost for Graduate Education

CMU Global Communications Center
CMU Office of the Assistant Vice Provost for Educational Outreach

CMU Catering Services

At the core of the Carnegie Mellon University Robotics Institute Summer Scholars’ program are incredibly  
talented and dedicated faculty, graduate students, staff, and RISS alumni. Their support, participation,  

leadership, and vision make this one of the best research experiences in robotics and intelligent systems in the 
world.  We thank the RISS sponsors whose support is opening doors and creating futures in robotics & AI.

Thank You 
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UBTECH and DJI Sciences and Technologies have provided 
tremendous support to the RISS program, and risen to  
address the shortage in hands-on robotics for summer scholars. 

First, DJI joined the scholars and provided hand-held drones to 
complete an obstacle course. The challenge allowed scholars 
to use their skills in computer vision to see April Tags on the 
ground, then use knowledge in dynamics and controls to 
help the drone navigate to the next tag. For many students, 
the challenge was a first in computer vision, learning to have 
the drone look for the April Tag and recognize it. For other 
students, it was their first experience working with robot 
navigation and controls. The event allowed the students to 
gain exposure by working with a real drone, and help other 
scholars learn skills outside of their comfort zone.

Later in the summer, UBTECH came to Pittsburgh from China, 
and worked with scholars on a unique challenge. Using 
Yanshee humanoid robots and PS3 controllers, students were 
asked to “rescue animals” from danger zones and deliver them 
to safety. The challenge consisted of controls interfacing,  
kinematics, and style — and allowed students to apply their work 
on real robots. The results of the challenge were surprisingly 
creative: the fastest robot slithered on its back like a snake, 
and the best grabber was outfitted with gloves. 

The Robotics Institute Summer Scholars of 2019 express their 
deep gratitude to UBTECH and DJI Sciences and Technologies 
for their incredible improvement upon the RISS experience. 
The time and hard work they gave to the scholars this summer 
is tangible in the skills we have taken forward with us.

A Note of Thanks to DJI & UBTECH from the Entire 2019 RISS Cohort

The Robotics Institute Summer Scholars offers research experience to students from around the world,  
working on cutting-edge research problems in computer vision, planning algorithms, and machine learning. 

However, a common request has reverberated through the Robotics Institute: how can so many skilled  
students never have worked with a real robot? 

Thank You Corporate Partners! 

CMU Go Research Program

CMU Office of the Assistant Vice Provost for Graduate Education
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Semi-supervised Learning to Perceive Children’s Affective States in a
Tablet Tutor

Mansi Agarwal1 and Jack Mostow2

Abstract— Like good human tutors, intelligent tutoring sys-
tems should detect and respond to students’ affective states.
However, accuracy in detecting affective states automatically
has been limited by the time and expense of manually
labeling training data for supervised learning. To combat
this limitation, we use semi-supervised learning to train an
affective state detector on a sparsely labeled, culturally novel,
authentic data set in the form of screen capture videos from
a Swahili literacy and numeracy tablet tutor in Tanzania that
shows the face of the child using it. We achieved 88% leave-1-
child-out cross-validated accuracy in distinguishing pleasant,
unpleasant, and neutral affective states, compared to only 61%
for the best supervised learning method we tested. This work
contributes toward using automated affect detection both off-
line to improve the design of intelligent tutors, and at runtime
to respond to student affect based on input from a user-facing
tablet camera or webcam.

I. INTRODUCTION AND RELATION TO PRIOR WORK

The field of affective computing seeks to narrow the
communicative gap between the naturally emotional hu-
man and the emotionally challenged computer by devel-
oping computational systems that recognize and respond
to the affective states (i.e., emotions) of the user [1]. In par-
ticular, considerable work has investigated the automated
estimation of affective states from facial expressions (e.g.
[2]) and other visual cues (e.g. [3]). Emotional expressions
are socially reactive, so users may try to mask certain
unpleasant emotions [4].

Much of the research on affective computing has fo-
cused on making intelligent tutoring systems react to
students’ emotions (e.g., [5], [6], [7]). This paper likewise
presents work on automated detection of children’s af-
fective states in an educational tablet app, RoboTutor.
RoboTutor’s thousands of activities teach basic literacy
and numeracy to children who have little or no prior
schooling. Our eventual goal for automated affect detec-
tion is to help RoboTutor increase children’s engagement
and learning gains. The work reported here is novel in
several respects.

Novel population: Work on affect detection in intelli-
gent tutors has typically focused on American high school
and college students. In contrast, the work reported here
is based on data from children ages 6-12 in Tanzania. This
data is novel in three respects. First, few databases of facial
expressions include children’s faces [8] [9]. Second, even
fewer include Africans [10]. Finally, emotional expression
varies from culture to culture [11], so affect detectors
trained on an American population might not work for
an East African population.

Authentic context: Foundational research on emotion
detection has mainly focused on six “basic” emotions
(happiness, sadness, surprise, disgust, anger, and fear)
[12]. Typically these emotions are represented by delib-
erate facial expressions [13] or elicited by experimental
stimuli [14]. In contrast, the affective states relevant to
intelligent tutors are students’ normal reactions to them,
namely boredom, confusion, delight, frustration, surprise,
and neutral or “flow” [15]. Most facial expression data
is recorded in well-controlled laboratory conditions. In
contrast, this paper is based on data from authentic
contexts of children using RoboTutor.

Camera-only: Even data on authentic affective states in
intelligent tutors are typically collected in heavily instru-
mented laboratory conditions using an expensive array of
devices such as pressure sensors [16] and EEG headsets
[17], as well as video from cameras external to the tutor
itself. These input signals are informative for research but
not practical outside the lab.

In contrast, we use only video input recorded by Google
Pixel C Android tablets running RoboTutor in the field,
both indoors and outdoors. Limiting its temporal and
spatial resolution served to avoid filling up tablet memory
or swamping the WiFi bandwidth required to send it to
our lab for analysis. This data is therefore characterized
by limited resolution, variable indoor and outdoor illumi-
nation, and occlusion by children’s friends and their own
hands.

Multi-channel: Facial expressions are an important vi-
sual channel to convey emotions, but by no means the
only one. We also use other features known to reflect
affective states: head proximity [18], head orientation [19],
blink rate [20], pupil size [21], and eye gaze [3].

Semi-supervised: Systems that rely on supervised ma-
chine learning require large amounts of labeled training
data (e.g. [22], [23]). Labeling affective states by hand is
costly and time-consuming. Therefore we employ a semi-
supervised approach for training an affective state detec-
tor on a sparsely labeled dataset [24]. That is, we train
a classifier on the manually labeled instances, "pseudo-
label" a subset of the unlabeled data using the trained
classifier, retrain it on the expanded set of labeled data,
repeat, and iterate.

In summary, this paper presents and evaluates a multi-
channel affective state recognizer trained on authentic,
partially labeled data from a novel population and context.
The rest of the paper is organized as follows: Section II de-
scribes our data set. Section III specifies our methodology
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for training the affective state detector. Section IV reports
our results. Finally, Section V summarizes contributions,
limitations, and future work.

II. DATA SET

The data for the present study come from 229 screen
capture videos of approximately 30 children using Robo-
Tutor on two tablets in Tanzania between 6/22/2016
and 7/17/2017. Each video typically shows one session
lasting 20− 30 minutes (until the next child’s turn). The
videos were recorded by a free app called AZ Screen
Recorder [25], which displayed the front-facing camera
input in a small window and included it in the screen
video it recorded, as shown in Figure 1. To limit storage
consumption, we configured AZ Screen Recorder to record
at a temporal resolution of 48 frames per second and a
spatial resolution of 1024 x 720 pixels, of which the camera
window took 192 x 148 pixels.

Fig. 1: RoboTutor interface with camera window.

The entire 100+ hours of video was far too large to
label manually, so we selected approximately 345 short
clips to label. As in previous work [26], we excluded the
first and last minute of a video so as to avoid artifacts at
the start and end of each session. Based on watching a
few clips, we determined that 10-second clips were long
enough to label yet short enough to be dominated by a
single affective state.

We used two types of sampling to find clips to label.
Based on previous research [27], we expected neutral to
be by far the most frequent affective state. To find likely
instances of less common affective states, we randomly
selected seven of the videos, located unusually high or
low values of various visual features, i.e., local maxima or
minima more than 3 standard deviations from the mean,
and chose 10-second windows centered at these points.
This method yielded 285 clips. To obtain an unbiased
sample more representative of typical affective behavior,
we randomly chose 60 10-second clips from 10 other
videos. We randomly intermixed the two samples and
partitioned them into 16 batches, each comprising 15-20
pairs of clips.

We constructed a separate Google form for each batch,
with these instructions:

1) This Google form will present a series of pairs of
RoboTutor screen video clips for you to annotate.

2) The first clip of each pair contains just the zoomed-
in camera input showing the kid.

3) The other clip shows the entire screen, including the
camera input. White dots indicate screen touches.

4) Pick the option that fits best. If it fits poorly, or if an-
other option fits almost as well, use the Comments
field to explain why.

This protocol first elicited judges’ perception of the
child’s affective state based solely on the video clip of
the child, without any additional context, and then based
on the video showing the same time interval but in the
context of the entire RoboTutor screen. Thus changes in
label from the first clip to the second clip could reveal
the influence of context on the judge’s perception of the
affective state.

There were two questions for each clip.

1) Is the student paying attention? (Yes, No, Can’t tell)
2) Which of the following best describes the kid’s state?

(Boredom, Confusion, Delight, Frustration, Neutral,
Surprise, or I can’t tell.)

We expected the first question to be easy for both hu-
mans and computer to answer based simply on gaze, i.e.
whether the child was looking at the screen. The second
question required finer-grained distinctions, and in fact
proved much harder. Figure 3 shows the six affective states
manifested while the children were using RoboTutor.

To label our data, we recruited a Kenyan professor with
PhDs in English and International Education, a Tanzanian
with a PhD in Instructional Technology, a Tanzanian doc-
toral student in Linguistics, and two American undergrad-
uate Psychology majors, all of whom were familiar with
RoboTutor. It was important to include East African judges
not only because they understood the Swahili spoken by
RoboTutor and its users, but also because perception of
affective states is known to be culture-dependent [11]. All
the judges classified the clips independently.

A. Inter-rater reliability

As an intuitive measure of consistency in labeling, we
computed the percentage agreement between the judges.
To measure the degree to which it exceeded the amount
of agreement expected by chance, we computed Cohen’s
Kappa κ.

To quantify the influence of cultural differences on
annotation, we compared pairwise agreement between
judges from similar backgrounds (East Africa or USA)
versus agreement between judges from different back-
grounds. The East African judges agreed 61% of the time,
with κ of 0.58, compared to 55% and κ of 0.47 for the
American judges, who averaged only 50% agreement with
East African judges, with κ of 0.41. That is, judges agreed
more often with judges from the same culture than with
judges from another culture. Accordingly, we used only the
East African judges’ labels to train and test the classifier.
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Judges agreed on some distinctions more than on oth-
ers. In particular, they had trouble distinguishing frus-
tration from confusion. One clue to the reason comes
from the labeling protocol. The frequency with which
judges changed their initial labels, which were based just
on the camera input, reflects the extent to which they
inferred affective states based at least in part on children’s
interactions with RoboTutor. Figure 2 shows the transition
frequency from label i to label j, represented graphically
by the arrow from i to j. The number of label changes was
highest for frustration and confusion.

To avoid training our classifier on distinctions with low
inter-rater reliability, we combined hard-to-distinguish
states, thereby reducing the original set of 6 affective states
to just 3 classes, namely pleasant (delight and surprise),
unpleasant (boredom, confusion, and frustration), and
neutral (flow). Inter-rater reliability was higher for this
reduced set, with 67% agreement and κ of 0.63 on the
cropped clips. Reliability was higher on the uncropped
clips thanks to the additional context they provided, with
73% agreement and κ of 0.65. We used the cropped clips
where both the judges agreed. These 231 “consensus” clips
were distributed more equally among the 3 classes than
among the original 6 affective states: 42 clips were labelled
as pleasant, 91 as unpleasant, and 98 as neutral.

Fig. 2: Number of label changes from cropped to un-
cropped video clip

III. APPROACH

Our approach has 4 steps:

1) Extract features from the videos.
2) Aggregate each feature over the 10-second duration

of a video clip into a single value.
3) Use semi-supervised learning to train a classifier on

labeled and unlabeled data.
4) Use the trained classifier to predict the affective state

of a child in a video clip.

We now describe each step in more detail.

A. Feature extraction

We started by extracting the camera input, which AZ
Screen Recorder displayed over RoboTutor in a translucent
window as shown in Figure 1. This window overlapped
with the green banner at the top of the screen. Fortunately,

(a) Boredom (b) Confusion

(c) Delight (d) Frustration

(e) Neutral (f) Surprise

Fig. 3: The six affective states

this overlap did not prevent us from detecting faces and
extracting useful information.

As Figure 4 shows, this information consisted of visual
features relevant to affective state, namely head proximity,
head orientation, facial action units, blink rate, pupil
size, and eye gaze. Each of these features provides a
different channel of visual information. To help extract
these features from video input, we used OpenFace [28],
an open-source facial behavior analysis toolkit trained on
a large collection of facial data sets, both static images
and videos, diverse in age, gender, and ethnicity.

We now describe how we computed and used each
feature.

Head proximity: Research on body language has shown
that leaning forward indicates an increase in interest
and leaning backward shows disinterest [18]. This finding
motivated us to measure head distance to the camera.
Openface gives the location of the head in millimeter
coordinates as (Hx , Hy , Hz ) in a 3-dimensional reference
frame with the camera at the origin, where the X axis is
horizontal, the Y axis is vertical, and the camera is pointed
along the Z axis. We computed the Euclidean distance of
the head from the camera as shown in Equation 1.

Hd =
√

(H 2
x +H 2

y +H 2
z ) (1)

Head orientation: OpenFace computes pitch (Rx ), yaw
(Ry ), and roll (Rz ) of the head rotation relative to the
location and orientation of the camera. The rotation is
in radians around the X, Y, and Z axes. When restless,
humans tend to be more fidgety and hence move their
heads unconsciously. Therefore, head orientation is the
overall angle of the head from the baseline and reflects
affective state. Equation 2 specifies head orientation as a
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Fig. 4: System Architecture.

function of pitch, yaw, and roll.

Ho = Rx ∗Ry ∗Rz (2)

Facial action units: Prior work on affective state recog-
nizers has focused on Facial Action Units (FAUs) that were
most diagnostic of the learning-centered emotions. Fol-
lowing [4], we employ AU04, AU07, AU12, AU25, AU26, and
AU45. For every FAU, OpenFace outputs a classification
and regression value. To obtain a continuous channel, we
used the regression value, which measures the intensity
of the FAU’s presence as absent (value = 0), low (< 0.2),
medium (0.2 − 0.7), or high (> 0.7).

Blink rate: Researchers have found that when nervous
or troubled, humans’ blink rate increases [20]. Using the
eye coordinates obtained from OpenFace, we calculated
an eye-aspect ratio [20] for each eye and used the average
value of both eyes. If the eye aspect ratio was below a
threshold θ for t frames, we considered it to be a blink.
We tried different values for these two thresholds. θ = 0.4
and t = 4 gave the best accuracy on a sample of 10 video
clips. Equation 3 formally defines the eye aspect ratio (Er )
as:

Er = ‖(h −b)‖+‖( f −d)‖
2∗‖(e −a)‖ (3)

where a, b, d, e, f, and h are eye landmark coordinates
obtained from OpenFace (Fig. 5).

Fig. 5: Eye coordinates obtained from OpenFace

Pupil size: Pupil size reflects whether a person is
aroused and alert, or bored and fatigued [29], so it is a use-
ful indicator of affective state. Using the eye coordinates

computed by OpenFace, we determined the ratio of the
area of the pupil to the area of the eye using Equation 4.
The ratio helped us deal with situations where the child
was too close to the screen, leading to a large pupil size,
without any role of affect. We used the average of this
ratio for both eyes as an input to our classifier. We used
Equation 4 to compute this ratio (Pr ) as follows:

Pr = ‖(l − j )‖∗‖(k − i )‖
‖(e −a)‖∗‖(g − c)‖ (4)

where a, c, e, g, i, j, k, and l are eye landmark coordinates
obtained from OpenFace (Fig. 5).

Eye gaze: Eye gaze has been used by many researchers
to detect alertness, attentiveness, and awareness [3].
OpenFace outputs the gaze direction averaged across
the two eyes as (gaze_angle_x, gaze_angle_y) in radians.
Looking from right to left changes gaze_angle_x from
negative to positive; looking from up to down changes
gaze_angle_y from negative to positive. Looking straight
ahead is represented as zero for both gaze_angle_x and
gaze_angle_y.

B. Temporal aggregation

To avoid the complications and computational cost of
time series analysis [30], we reduced each feature of a clip
to a single summary value. To aggregate discrete features,
we simply counted the number of occurrences in the
video clip and divided by its duration to obtain a rate,
e.g. blinks per second. To aggregate continuous features,
we experimented with several functions:

• To summarize the feature, we computed its mean
over the 10-second window. However, this function
can be distorted by outliers.

• To combat distortions caused by noise, especially
outliers, we computed its median over the window.
However, this function fails to capture significant
events shorter than half the duration of the clip.

• To measure the spike caused by the main event in the
clip, we computed the maximum value of the feature.
However, this function can be distorted by outliers.
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• To accentuate spikes while reducing distortion by
outliers, we computed the root mean squared value.
However, this function is invariant to scrambling the
order.

• To select clips based on extreme values of features, i.e.
local minima and maxima at least 3 or more standard
deviations from the mean, we chose the 10-second
clip centered around each extreme value. To focus
on its central region, we weighted the mean and root
mean squared by dividing the value at each point in
the clip by its distance t from the midpoint of the
clip (plus an offset o to prevent division by zero).

We then normalized each aggregate feature value v to
the interval [0,1] as (v −mi n)/(max −mi n), where max
and min are the largest and smallest aggregate values of
the feature over the entire set of 10-second clips. We found
that proximity-weighted root mean squared achieved the
highest cross-validated accuracy when used in a classifier
trained as we now describe.

C. Semi-supervised learning

Semi-supervised learning [24] trains a classifier by using
unlabeled data to augment sparse labeled data in order
to achieve higher classification accuracy. We use the fol-
lowing algorithm:

Algorithm 1 Semi-Supervised Learning

Initialize the training set T to the set of labeled instances.
while unlabelled instances remain do

Train a classifier on T.
Select an unlabelled instance.
Run the classifier on it.
if classifier predicts class C with confidence τ then

Add the instance to the training set T with pseudo-
label C.

end
end

One can select an unlabelled instance at random, or
choose the one closest to a labeled instance. For efficiency,
we chose the 10 unlabeled instances closest to any of
the labeled instances. In practice the method always
exhausted all the unlabelled instances. In theory it could
reach a state where it couldn’t classify any of them with
confidence τ, in which case it should terminate.

We considered several popular classifier learning meth-
ods. We chose Random Forest because it performed best
on our data (see Table I). We computed the confidence of
a prediction as the percentage of trees in the forest that
predicted class C. We set our confidence threshold τ to
0.9.

IV. RESULTS

To illustrate how our detector works in practice by
using the features defined in Section III-A, Figure 6
shows an instance classified as a pleasant affective state.
After struggling to write the preceding number 0, the

Fig. 6: Pleasant Instance

child wrote the number 1 correctly on the first try, and
smiled when RoboTutor responded Mzuri! ("good" in
Swahili). This clip had negligible deflection from typical
head orientation. Eye gaze and blink rate were normal,
i.e., within one standard deviation of their respective
means. However, the child was very close to the screen,
i.e., head distance was less than its mean value by more
than three standard deviations. Head proximity typically
indicates engagement. Also, his pupils were dilated, which
typically indicates interest. AU04 (Brow Lowerer) and
AU45 (Blink) were absent, AU25 (Lips Part) was present
with low intensity, AU07 (Lid Tightener) and AU26 (Jaw
Drop) were present with medium intensity, and AU12 (Lip
Corner Puller) was present with high intensity. As this
example illustrates, our detector’s recognition of pleasant
instances is probably influenced by head proximity, pupil
size, and smiling. We say "probably" because a random
forest’s calculations are too complicated to readily analyze
the individual influence of all the features. Instead, we
described their values relative to their distributions, on
the assumption that unusual values are likely to affect
the classifier output.

A. Quantitative Evaluation

To estimate performance on unseen children, we used
leave-1-child-out cross-validation, training the classifier
on all but one child and testing it on the held-out child.
We performed this process for 5 randomly chosen children
and report the median results. Accuracy is the percent-
age of test instances classified correctly. This measure is
simplest and has practical significance because it pre-
dicts performance on unseen data drawn from the same
distribution. However, it is sensitive to that distribution.
In contrast, the following weighted measures are weight-
averaged across all three classes, and therefore indepen-
dent of the training set distribution. Each class is assigned
a weight equal to the ratio of the number of instances
in that class to the total number of instances in the test
set. Weighted precision is the percentage correct among
the instances classified as positive. Weighted recall is
the percentage correct among the true positive instances.
Weighted F1 is the harmonic mean of weighted recall
and weighted precision. As unlabelled data, we used 1007
clips from 20 videos, sampled using the same sampling
techniques described in Section II.
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As Table I shows, our method beat the supervised
learning methods on all four criteria:

Classifier Accuracy Precision Recall F1-Score
Naive Bayes 0.21 0.52 0.21 0.23

Decision Tree 0.44 0.43 0.44 0.43
SVM 0.51 0.49 0.51 0.46

Adaboost 0.47 0.47 0.47 0.47
Logistic Regression 0.53 0.50 0.53 0.51

KNN 0.53 0.53 0.53 0.53
Random Forest 0.61 0.63 0.61 0.60

Proposed Approach 0.88 0.88 0.84 0.86

TABLE I: Comparison with supervised learning.

These results were for the consensus data where both
judges agreed. We further tested our classifier on all our
labeled test data, including 55 consensus clips not used
for training and 114 clips on which the judges disagreed.
This experiment helped us quantify the degradation in
performance due to label noise. We evaluated the accuracy
of the prediction compared to both judges’ labels and
took the average. As expected, average accuracy dropped
from 88% to 56% when we included the non-consensus
labels, compared to testing on the consensus data alone.
The lower accuracy on the unfiltered data reflects the
inherent difficulty of replicating subjective judgments on
which human experts disagree.

To estimate the effect of cultural differences, we tested
our trained classifier on both sets of consensus labels,
African and American. Accuracy fell from 88% to 57%
when tested on American labels. This difference quan-
tifies the effect of cultural influence on people’s facial
expressions and other visual cues, and the consequent
importance of recruiting judges from the same culture to
label their affective states.

B. Error Analysis

Fig. 7: Confusion Matrix

Figure 7 shows that our classifier performed well in
most cases. However, the classifier incorrectly charac-
terized four unpleasant instances as neutral. Most of
these misclassifications involved boredom. Boredom is not
easily distinguishable from neutral based on facial fea-
tures. Indeed, boredom typically lacks facial expression. To
detect boredom, we may have to use additional indicators,
such as posture and acoustic-prosodic features of speech.

Accuracy is limited by the quality of the visual features
input by the classifier from OpenFace, which depend in

turn on its face detection. Our data come from authentic
settings subject to varying illumination and occlusion.
Consequently, OpenFace occasionally (especially in low-
light conditions) fails to detect a face when it is present.
Inspection of sample videos showed that OpenFace failed
to detect a face approximately 2% of the time, typically
for a second at a time.

C. Sensitivity analysis

To explore the sensitivity of the results to different
factors, we varied the amount of unlabeled data, the
amount of labeled data, and the method for selecting
unlabeled data.

(a)

(b)

Fig. 8: Classifier Performance vs. (a) Number of Unlabeled
Training Instances (b) Number of Labeled Training In-
stances

Effect of amount of unlabeled data: How did test
accuracy vary with the amount of unlabeled data? We
started with no unlabeled data, i.e., supervised learning,
and added 10% of the unlabeled data at each iteration
until all of the unlabeled data was utilized. Figure 8a shows
that as the number of unlabeled instances increased from
zero to 1007, accuracy rose asymptotically from 61% to
88%.

Effect of amount of labeled data: To analyze the effect
of the amount of labeled data on classifier performance,
we varied the percentage of labelled instances used from
10% to 100%, keeping the unlabeled training set constant,
i.e. 1007 instances. Figure 8b shows that:

1) Accuracy, precision, and recall increased with the
amount of labeled data, as expected.

2) Too little labeled data produced poor results, even
with all the unlabeled data.
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Effect of choice of data to pseudo-label: We conducted
an experiment to understand why unlabeled data helped,
and where the action was. We hypothesized that the
order in which semi-supervised learning chose unlabeled
instances to pseudo-label had a substantial effect on
the performance of the resulting classifier. To test this
hypothesis, we compared choosing 10 random instances
at each iteration versus choosing the 10 instances closest
to the instances labeled (or pseudo-labeled) so far.

Data pseudo-labeled Accuracy Precision Recall F1-Score
10 Random instances 0.78 0.78 0.72 0.74
10 closest instances 0.88 0.88 0.84 0.86

TABLE II: Effect of order of pseudo-labeling

Table II shows that choosing the 10 nearest instances at
each iteration performed better than choosing 10 random
instances. Why? Semi-supervised learning exploits the
continuity assumption that instances near each other are
likelier to belong to the same class than other instances
assigned to that class based solely on generalization by a
classifier trained on incomplete training data.

V. CONCLUSION

Contributions: We presented an innovative, multi-
channel method for automating affect detection in a
tablet app solely by integrating visual cues extracted from
its front-facing camera input. We used semi-supervised
learning to leverage our sparsely labeled training data.
We evaluated it against human judges on authentic data
from a novel population of children using the app in
natural settings, and analyzed its performance both quan-
titatively and qualitatively. This work constitutes signifi-
cant progress in automated affect detection, whether to
improve tutor design off-line or to respond to student
affect at runtime.

Limitations and future work: To increase inter-rater
reliability, we combined confusable affective states into
the same class. Future work to distinguish them could
enhance RoboTutor’s emotional intelligence.

The evaluated method is based solely on input from the
tablet’s front-facing camera, consistent with our focus on
identifying what information about affect we can derive
from visual cues. This type of input is more practical
in realistic settings than inputs currently available in lab
settings, such as EEG, pressure sensors, or even video from
external cameras. However, some other types of input are
readily available to a tablet tutor.

In particular, tablets input audio. Speech input is peda-
gogically informative when it can accurately be recognized
or analyzed for other properties, such as prosody. Both
these uses of audio input are feasible in quiet lab settings.
However, in natural settings where multiple children use
tablets in close proximity and noise-canceling headset
microphones are too fragile or expensive, audio input
is liberally contaminated with background speech from
other children and their tablets.

The tutor itself could be a fruitful source of information,
including its internal states, decisions, and actions, and
student input such as screen taps and other gestures. Such
data is tutor-specific but informative, and we plan to ex-
ploit it in the future, especially to recognize the contextual
clues that our judges used to distinguish among boredom,
confusion, and frustration.

We implemented our detector on a Windows PC. We
can use it off-line to analyze screen-recorded sessions
for guidance in redesigning RoboTutor. In principle, it
could be applied to any screen capture video that includes
camera input of the user, whether from the front-facing
camera of a tablet, or the webcam atop a computer
monitor.

However, RoboTutor itself runs on Android tablets.
Incorporating the detector into RoboTutor will require
porting it to an Android tablet to detect facial expressions
and other visual cues in real time. We will also need to
redesign RoboTutor to respond to detected affective states,
evaluate the effects of such responses, and refine them
accordingly. These responses should improve RoboTutor’s
ability to engage children and help them learn, and may
generalize usefully to other tutors as well.
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Incorporating Eye Gaze into Shared Autonomy
for Assistive Robotics

Nadia AlMutlak1 Reuben Aronson2 and Henny Admoni3

Abstract—Robots enable people with disabilities to complete
activities of daily living like eating independently. However, tele-
operating robots in 3D can be challenging because of the robot’s
unintuitive kinematics and users’ limited physical ability to
provide input controls. Shared autonomy, a collaboration between
autonomous robot control and high-level human control, was
introduced to alleviate those challenges. Yet, shared autonomy
only works with prior knowledge of the users’ goals, and current
goal prediction methods rely on explicit input from users to
generate goal probabilities. Alternatively, eye gaze is a useful
implicit input which can be used for predicting those goals given
its ability to reveal people’s intention and aid in collaborative
activities. In this project, using activity specific gaze patterns
such as alternating gaze fixations between a fork and plate while
eating, we develop a model for gaze-based goal predictions. We
then use previously collected data to create a two-step system
that validates that model which: [1] interprets users’ goals
based on their fixations on potential targets, and [2] based on
that interpretation, moves the robot’s end-effector closer to that
target. We intend to validate the system’s effectiveness through
a user study measuring task duration and user experience.

Index Terms—Shared Autonomy, Assistive Robotics, Gaze
Tracking, Goal Prediction

I. INTRODUCTION

Robots are powerful enablers for people with whom they
share spaces and collaborate to complete tasks that would
otherwise be impossible. One instance of this is the collab-
oration between robots and people with disabilities in which
robots mitigate the burden of completing activities of daily
living such as eating or navigation. The integration of robotic
systems into wheelchairs and robotic arms has allowed their
users to complete tasks which were unmanageable due to their
injuries or disabilities. For example, primarily used by people
with spinal chord injuries, robotic arms like the Kinova Mico
are controlled via joystick teleoperation to pour water or spear
food with a fork. [1, 2]

However, teleoperating such robots is challenging and fa-
tigues users. This may be attributed to the robots’ unintuitive
kinematics in a 3D environment since these robots have more
degrees of freedom than a user can handle at a time. For
example, robots like the Mico have 6 Degrees of Freedom
(DOFs) which include (x, y, z, roll, pitch, yaw); whereas
its controller, a 2D or 3D joystick, only has 2 DOFs (x, y)
or 3 DOFs (x, y, z), respectively. As a result, users have

1N. AlMutlak is Biomedical Engineering student at Columbia University
in New York. nadia.almutlak@columbia.edu

2R. Aronson is a Ph.D. student in Carnegie Mellons Robotics Institute.
rmaronson@cmu.edu

3H. Admoni is an Assistant Professor in Carnegie Mellons Robotics
Institute and leads the Human and Robot Partners (HARP) lab. Henny@
CMU.edu

Fig. 1. Our proposed shared autonomy system incorporates gaze as an
additional input for intent recognition. Both eye gaze input and joystick input
are used to infer intent and generate a probability for the goal location. This
probability is then input into the shared control algorithm which takes in both
the user’s real time control and the robot’s control to continuously update the
location of the goal and move the robot towards it.

to switch between modes to access different DOFs, which
side tracks users and increases task time.[3] Challenges with
teleoperation can be further exacerbated by the complicated
motion planning needed by teleoperated systems which is
limited by the user’s range of motion. [4] Herlant et al have
looked into solutions like automatic mode switching which
enables autonomous shifts between the DOFs of the joystick
for the user. They found there was no significant reduction
in task time; however, through their survey they found that
users preferred some robotic assistance navigating the task.
[3] Further investigation revealed that users, in addition to
not preferring fully manual teleoperation, did not prefer fully
autonomous assistance either.[2, 3]

Shared autonomy is presented as the happy medium of the
two as it engages both the user’s high-level task planning
abilities and the robot’s precision in a form of collaborative
control to complete a task. This works in conjunction with
prior knowledge of the user’s goal to create a dynamic
experience between the user and robot in which they contin-
uously update the probability of a goal’s location. Different
adaptations of shared autonomy have collectively shown a
relatively improved user experience.[2] For example, Javdani
et al experimented with a food-spearing task on a robotic arm
which evalauted multiple forms of control (full autonomy,
shared autonomy, etc). They found that full autonomy was
frustrating to users; whereas shared autonomy improved per-
formance, requiring less physical effort and achieving greater
precision with user’s input [2].

While shared autonomy appears to be promising, it is still
dependent on prior knowledge of the user’s end goal which
requires a large amount of information at the beginning of
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a task [5]. Different control systems have approached their
prediction framework in various ways that, while able to
reduce task time, are not intuitive for users. A number of
these systems can be described as trajectory-based prediction
methods which rely on modal or coordinate changes from the
input device to generate a probability distribution for a goal
along a path. [2, 3] While these methods eventually locate the
end goal, they are not able to provide assistance early in the
task when assistance is most crucial.

Recent research has proposed that natural eye gaze may
be used as an additional input for determining the user’s end
goal in conjunction with joystick teleoperation.[5, 6] Gaze has
been shown to be a reliable form of non-verbal communication
with the ability to convey a person’s intentions. [7] Unlike
joystick input, eye gaze is continuously provided by the user
and does not require explicit input into a system. As a result
of its implicit nature, gaze can be introduced into the shared
autonomy system at no extra cost to the user to help the system
infer the user’s goal earlier in the task. Used as an additional
input, gaze along with joystick input (as seen in Fig. 1) will
infer more accurate goal predictions and create a seamless
shared autonomy system that is more user friendly and time
efficient.

In order to develop an intuitive shared autonomy system
with the integration of eye-gaze-based predictions, this paper
contributes the following:

1) The development and validation of a model which infers
goals from eye gaze

2) A user study to measure the effectiveness of the
integration of that model into the shared autonomy
system using varied parameters

This work is currently in its developing stages, as such,
this paper only presents the initial models developed for this
project. However, we intend to run a user study and revisit the
project in the future.

This paper is organized as follows: Section II discusses the
work related to this project and provides crucial background
information. Section III discusses our approach including the
development of the models, their validation and selection.
Section IV presents the suggested set up for our user study
and future works for this project.

II. RELATED WORK

This work builds on previously proposed approaches in
shared autonomy, adapting the state-of-the-art shared auton-
omy systems presented by Jadvani et al. [2] It further explores
work put forward by Admoni et al [5], which proposes gaze
as a useful implicit input for goal predictions, by delving into
manipulation-related gaze behaviours to incorporate into our
proposed framework.

A. Shared Autonomy

One strategy for mitigating the difficulties of pure teleop-
eration is to fuse autonomous robot planning with the user
signal, a process called shared autonomy. Shared autonomy [2]

complements users’ high-level controlling abilities with the
robotic system’s ability to perform in order to mitigate the
difficulties of completing a task. As a form of assistance, it
aims to alleviate the difficulties of operating fully teleoperated
systems by integrating the robot’s actions seamlessly with the
human actions.[2, 5] The integration of shared autonomy into
robotic arms, wheelchairs, and similar systems has managed
to reduce overall task time and fatigue, and more technically,
minimized the cost-to-go towards a goal. [8]

Shared autonomy operates around two concepts: Goal in-
ference and assistance. While some assistive algorithms have
approached goal inference with a predict-then-assist frame-
work, which selects an exact goal rather than general location,
these systems do not continuously update for changing goals
and purposes. [2] Thus, to better adapt to changing tasks,
Shared Autonomy infers the user’s goals as a location belief
distribution which is continually updated as the user provides
information through an input device. The robot then uses the
belief over goals in its planning using a POMDP. [2, 8]

A number of approaches for predictions and protocols for
implementing the actions that follow have been developed. In
prior works from which we build on in this paper, probabilistic
methods such as the use of Hidden Markov Models (HMMs)
[9, 10] and Maximum Entropy Inverse optimal Control (Max-
Ent IOC) systems[4, 11] have been adapted to generating
probabilities. Using the controller input’s location history,
these models generate a probability for the goal’s probable
location based on the robot’s movement. This probability is
then used by different protocols for shared autonomy such
as the Blend Method, which considers User actions and full
autonomy as two independent inputs and combines them to
generate assistance. [12] Another protocol, Hauser’s Policy
Method, creates a distribution over the goals which minimizes
the burden generated by the system. [2, 8]

While these different protocols deliver assistance at some
point in the task, they don’t act very early on in the task
when assistance is most crucial.[6] This delay happens because
inferences require a large amount of information which users
cannot provide at the beginning of the task using explicit inputs
like the joystick. [6] As such, based on the recommendations
of previous research, we are adapting more implicit means of
input that are indicative of user’s goal for early predictions,
specifically eye gaze.[5]

B. Eye Gaze

People naturally communicate large amounts of information
about their intentions through only their eye gaze [13, 14]
People use gaze to obtain new information faster than any
physical reaction could, especially to gather information about
objects and scenes. [6] Thus, people telegraph their intentions
to manipulate certain objects based on where they are looking.
For example, a person making tea looks at a kettle before
picking it up [15], or a person looks at a morsel on a plate
before using a robotic arm to spear it with a fork. [6]

As a result of these observations in hand-eye correlated be-
havior, researchers we able to document a number of patterns
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Fig. 2. Pipeline for inputs into our intended prediction system

associated with gaze and task completion. For example, Land
et al noted that eye gaze reaches a target before manipulation
occurs.[14] Johansson et al noted that users’ gaze will fall onto
all the relevant landmarks in a scene and avoid irrelevant ob-
jects to the task. [16]. Gaze was also was established to occur
in a dynamic order which collects the most useful information
about a scene. [13] These series of glances also illustrated that
people look at their goals more than other objects in the scene
and for a longer duration of time. [14, 15, 16]. While these
behaviors were observed in direct hand manipulation, Aronson
et al[6] were able to confirm that these patterns also occurred
during robot teleoperation. Their work notes two categories
of gaze during teleoperation: monitoring or planning. These
monitoring and planning glances illustrate similar behaviors
as by-hand manipulation.

Considering prior work that has combined robot and eye
gaze [17], these finding incentives the premise that gaze could
be a useful prediction source for assistive robots. [13]

III. APPROACH

In order to incorporate eye gaze predictions into the shared
autonomy framework, we began by developing a model for
eye gaze predictions based on previously documented gaze
patterns. [6, 15] . After developing a number of models, we
then validated them using a pre-existing dataset. Based on
the results of that validation, a model will be chosen and
incorporated into the shared autonomy algorithm. This will
be followed by a user study to evaluate the effectiveness of
our selected model.

A. Model Development

The model designed in this paper is intended to fit into the
framework illustrated by Fig. 2, which shows how the two
inputs of joystick and gaze will both generate a probability
which will be combined for more accurate goal predictions.

While the the joystick predictions will still be generated
using the current state-of-the-art systems presented by Jadvani
et al [2] using MaxEnt IOCs, gaze requires a new pipeline into
the system. For that, raw eye gaze will be tracked using eye-
tracking glasses, then the data will be segmented into fixations.
These fixations will be labeled by semantic gaze labeling using
the system improved by Aronson et al [9], and finally, the
labeled data will be filtered by our model to generate the
probability distribution of the goal.

To develop our model, we refered to a number of distinct
gaze patterns which occur during the task of food-spearing
with a robotic arm.[6] These patterns which arise during
manipulation provide the foundations for different models
which we can develop to predict a goal from gaze. [6] Some
of the documented patterns in gaze have stated that people
follow their goals closely in a task, implying that users look
at their targets:

1) More frequently
2) For a larger fraction of time during the task than any

other item in the scene
From these implications, we developed 2 initial score tal-

lying models which measures the user’s gaze probability of
falling on the goal a certain number of times or for a certain
duration of time.

Fig. 3. Screenshots of video data from the HARMONIC dataset
with gaze fixation information

B. Model Validation

After developing the different models, they were validated
using the HARMONIC dataset which collected video and
gaze data from users working with the Kinova robotic arm
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on a food-spearing task. [18]. The experiment designed in
this dataset, shown in Fig. 3, asks users to spear one of
three morsels on a plate using different modes of autonomy
including manual teleoperation, shared autonomy (adapted
from the policy method),full autonomy, and the Blend method.
This dataset segmented and filtered gaze data while also
providing processed joystick input which not only allowed
us to measure the accuracy rates of our models, but also
allowed us to learn more about user’s actions during robot
teleoperation.

Fig. 4. Comparative analysis of prediction model accuracy between the
baseline of a random selection and the models developed in this project.

We found that, as seen in Fig 4, when compared to the
random selection probability in HARMONIC’s three marsh-
mallow scene, gaze-based goal predictions were about ∼ 20%
more likely to select the right marshmallow. While this differ-
ence is only relatively higher, it is indicative of the potential
that gaze has for higher accuracies in predictions which we
can utilize in future, more optimized, models.

IV. FUTURE WORKS

While this work is still in progress, we hope to determine
which model for gaze prediction will be most optimal for our
goals. After choosing a model, we aim to conduct a user study
which compares user experience and collects observations
across different parameter. We hope to find that the use of
gaze as a prediction method will work in favor of our goals.

A. User Study Setup

The projected set up for this project slightly augments the
procedures as presented in the HARMONIC data [18]. As
shown in Fig. 5, our set up adapts the use of the feeding
experiment. However, it differs in the configuration of the
morsels and our procedural parameters.

Instead of evaluating different types of control with the
robot, we will evaluate:

1) Teleopertion
2) Shared autonomy using joystick-based predictions only
3) Shared autonomy using gaze-based predictions only
4) Shared autonomy using both gaze and joystick predic-

tion

Fig. 5. Screenshots of video data from the HARMONIC dataset
with gaze fixation information

From this experiment, we will conduct a survey evaluating
users’ experiences with each setting. We also intend to collect
more gaze data in order to continue developing our gaze-
prediction model into a more optimized format.

B. Expected Results

From this user study, we hope to conclude that the fusion of
both joystick goal predictions and gaze-based goal predictions
will result in an accurate and comprehensive goal probability
distribution. We expect it will provide a more user friendly ex-
perience characterized by faster task completion and efficient
assistance.
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Training an Instance Segmentation Object Classifier from Exclusively
Synthetic Data

Colin Chen1 and Christoph Mertz2

Abstract— Deep-learning based object classifiers can accu-
rately segment and classify multiple classes in a single image.
However, training these models requires large amounts of pixel-
wise annotations to train on. These annotations are traditionally
done by hand and it takes a large amount of time to generate
a sufficiently large dataset to train an instance segmentation
object classifier. To address both the time and accuracy of
annotating images, we introduce a method for automatically
annotating images for instance segmentation. We recreate a
three-dimensional model of the object and paste instances of the
three-dimensional object against many different backgrounds
to quickly create thousands of images with perfect pixel-wise
annotations.

I. INTRODUCTION

Recent advances in deep learning have been instrumental
in creating more powerful object classifiers [1]. Convo-
lutional Neural Networks (CNN) can single instances of
objects but struggle with multiple detections in an image.
Region based Convolutional Neural Networks (R-CNN) can
identify multiple objects in an image by using a CNN at
multiple locations on the image. Multiclass object detection
can be done in real-time with Faster R-CNN [2] or YOLO
[3], which take different approaches to apply a CNN at
multiple locations in an image. These models can identify
multiple types of objects in a single image by drawing
a bounding box around each object. Multiclass instance
segmentation can be done with Mask R-CNN [4]. In addition
to drawing a bounding box, Mask R-CNN can create a
predictive mask or outline of an object. In other words, Mask
R-CNN [4] can identify which pixels belong to a certain
object in addition to the object’s position in the image.

All of these approaches require thousands of annotated
images to train on. Datasets such as Microsoft’s Common
Objects in COntext (COCO) [5] provide pixel-wise annota-
tions for multiple classes which allows models such as Mask
R-CNN [4] to generate predictive outlines of an object in
addition to the traditional bounding box. Training an instance
segmentation classifier such as Mask R-CNN [4] requires
thousands of carefully annotated images that can take hu-
mans thousands of hours to create. Each image requires
careful review and the resulting annotations can still contain
minor inaccuracies. While existing datasets are sufficient to
create multiclass instance segmentation classifiers such as

1Colin Chen’s RISS participation in the 2019 cohort was under the title
”RISS Program Intern,” and not as a Robotics Institute Summer Scholar.
This role involved a mixture of research and administrative support. Chen
is a robotics engineering student at the University of California, Santa Cruz.
coachen@ucsc.edu

2Christoph Mertz is a project scientist at Carnegie Mellon University’s
NavLab.

Mask R-CNN [4], it is time consuming to create new dataset
for new classes.

Instead of annotating thousands of real images, another
approach is to create a synthetic dataset. Synthetic images
are images created partially or completely by a computer
instead of captured and annotated by humans. The advantage
of using synthetic data is that images can be annotated
automatically. As images are being created, their class,
location, and other relevant information can automatically
be recorded which significantly reduces the time to create a
sufficiently large dataset.

Synthetic images can be created using a variety of meth-
ods. One approach is to capture images from a realistic three-
dimensional environment. This ensures objects are to scale
and interact with their environment realistically. Video games
are an excellent source of synthetic data especially given the
improvements in computer graphics [6]. However, this type
of environment is difficult to create and not always freely
available.

A simpler approach is to overlay objects on a real image
[7]. This approach requires cutouts of an object and back-
ground images to paste instances on. However, no virtual
elements are required and it is easy to create images with
different backgrounds.

We create synthetic images with a combination of these
methods. We recreate a three-dimensional model of the
object to preserve texture and capture two-dimensional views
at any angle. We then rotate, scale, and paste these instances
against multiple backgrounds to quickly create a perfectly
annotated image dataset. We find that training exclusively
on synthetic images can produce a model that performs well
on real images.

II. RELATED WORK
The tools we use for our pipeline are structure-from-

motion three-dimensional reconstruction, synthetic image
generation, and instance segmemntation. In the next three
subsections, we will discuss common implementations of
these tools.

A. Three-Dimensional Reconstruction
Three-dimensional reconstruction is a well-researched

computer vision problem [9]. There are many implemen-
tations of structure from motion and multi-view stereo al-
gorithms that reconstruct a three-dimensional model from
a series of images taken from a single camera. We use
COLMAPS’s [10] implementation of structure from mo-
tion and multi-view stereo algorithms to create our three-
dimensional model.
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B. Creating Synthetic Images

There are many approaches to creating synthetic data for
object detection. [6] uses a video game environments to
capture images from virtual environments. We use [8] to
create simple synthetic images with minor adaptations to
produce pixel-wise annotations in addition to the traditional
bounding boxes.

C. Instance Segmentation

Deep-learning based object detection is a very popular
field of study. There are many different networks for mul-
ticlass object detection such as Faster RCNN [2], YOLO
[3], and Mask RCNN [4]. We modify Mask RCNN [4] to
segment and identify basketballs but make no changes to the
network structure.

III. METHODS
A. Structure-From-Motion Three-Dimensional Reconstruc-
tion

To recreate a three-dimensional model, we used
COLMAP’s [10] implementation of structure-from-motion
and multiview-stereo algorithms. These algorithms take a set
of images from different angles, find matching features, and
create a point cloud and three-dimensional model.

We tried several techniques to capture a comprehensive set
of images from all angles. We initially placed the object on a
narrow pole and took pictures by moving around the object.
We then removed the pole from the three-dimensional model
by hand but found that the missing area occluded by the pole
produced a rough model with minor craters and inaccurate
textures (Fig. 1).

This model (Fig. 1) was likely already good enough for our
purposes, but we found we could get an even better model
by taking pictures against a featureless background (Fig. 2a)
and rotating the object to capture it from all angles (Fig. 2b)
produced an even more complete model without any craters
or missing textures.

Taking pictures against a featureless background (Fig. 2)
significantly decreased the number of extraneous background
points that needed to be removed later.

We used MeshLab [11] to remove extraneous points from
the reconstructed point cloud (Fig. 3) and create a Poisson
blended mesh which we used to create object instances for
dataset synthesis.

This model (Fig. 4) is of excellent quality for creating syn-
thetic images for our classifier. However, it may not be good
enough for other applications. For example, if we wanted
to create a classifier that identified this particular basketball
from other basketballs, we would need a more precise model.
If we were to pursue a higher quality model, we could take
several approaches. The main problem with the current three-
dimensional model is its inconsistent coloring. This is a result
of different lighting conditions on the same feature during the
image capturing stage. We could create a better environment
for collecting images with controlled lighting from multiple
angles. We could also solve this problem in MeshLab [12] by
applying more advanced coloring techniques such as texture

(a) Reconstructed Poisson Mesh blurry texture.

(b) Reconstructed Poisson Mesh with inaccurate shape.

Fig. 1: Initial Poisson blended mesh

(a) Basketball against a feature-
less background

(b) Image instances

Fig. 2: Input images to reconstruct our three-dimensional
model

mapping. However, the current three-dimensional model is
more than sufficient for our purposes.

B. Creating a Synthetic Image Dataset

To create an image dataset, we modified [8] to create
pixel-wise annotations for each image. [8] takes instances,
rotates and scales them, pastes them against a background,
and performs a variety of blurring techniques to create ro-
bust training data. We used CloudCompare’s [13] animation
plugin to create 2100 instances (Fig. 5b) from the three-
dimensional model. We initially used 20 background images
(Fig 5a a), but eventually used 40 to improve the final
model’s performance. Using [8], we were able to easily
create 4300 images with perfect pixel-wise annotations. This
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Fig. 3: The resulting point cloud from COLMAP[10].

Fig. 4: The final Poisson blended mesh model.

(a) Background images (b) Image instances

number is comparable to the number of annotated images for
a single class in the COCO dataset [5].

C. Training

We trained on top of a pre-trained classifier [14] for the
objects in the COCO dataset [5]. We trained with 4300

synthetic images which were created from 2100 basketball
instances pasted onto 40 backgrounds. We validated on a
set of 3300 synthetic images created from the same 2100
basketball instances pasted onto 5 new backgrounds. We
trained for eight hours on a GeForce GTX 1070/PCIe/SSE2
but found the model began to overfit after four hours.

IV. RESULTS

To evaluate our model, we tested it on both synthetic
images and real images. We calculated the average precision
for Intersection Over Union (IOU) values from .5-.95 with
.05 increments. We calculated IOU with predicted bounding
boxes and ground truth bounding boxes.

A. Synthetic Images

We evaluated our model on 500 synthetic images. These
images were created with the same 2100 view instances
pasted on five new backgrounds. We achieved an average
precision of .82. As seen in Fig. 7, our model performs with
high precision at all recall values for most IOU values. Our
model has difficulty at high IOU values where a prediction
must very closely match the ground truth to count as a correct
detection.

Most missed detections were due to occlusions 6c. False
positives 6d were fairly rare but did occur occasionally.

(a) Correct detections (b) Inaccurate masks

(c) Two missed detections due to
occlusions

(d) One false positive

Fig. 6: Predictions on synthetic images

B. Real Images

We also evaluated our model on 70 real images. We used
[15] to hand annotate these images. We achieved an average
precision of .69. As seen in Fig. 9, our model performs with
high precision at most recall values over almost all IOU

24



Fig. 7: Our model performs with high precision on synthetic
images. High precision indicates our model correctly identi-
fies objects that are actually basketballs. Higher IOU values
mean the prediction must more closely match the ground
truth to count as a correct prediction.

values. Similarly to synthetic images (Fig. 7), the model
struggles on high IOU values.

(a) Correct detection (b) One false positive

(c) Two false positives (d) Misses and false positives

(e) Misses due to occlusion (f) Missed detection due to oc-
clusion

Fig. 8: Predictions on real images

We found that across both synthetic and real images, our
model rarely missed instances. Many failed detections were
due to occlusions by other basketballs (Fig. 6c). We found
false positives were rare in synthetic images (Fig. 6d) but
fairly common in real images (Fig. 8b, 8c, 8d).

These numbers compare to the pretrained model we
trained on top of. The pretrained model achieved a mean
average precision of .50 across all 80 classes in the COCO
dataset and .48 for the sports ball class in the COCO dataset
[14].

We wanted to compare our model with the Mask R-CNN

Fig. 9: Our model performs moderately well with high
precision on real images. High precision indicates our model
correctly identifies objects that are actually basketballs.
Higher IOU values mean the prediction must more closely
match the ground truth to count as a correct prediction.

[14] trained on hand-annotated images from the COCO [5]
dataset. The closest comparison is the sports ball class found
in the COCO [5] dataset. The pretrained model [14] was
trained to recognize 80 classes while we retrained our model
to only recognize basketballs. Additionally, the sports ball
class in the COCO dataset contains many types of sports
balls, not just basketballs [5]. However, the pretrained model
does provides a basic baseline for our models performance.

V. CONCLUSION

We could improve the precision of our model by increasing
the diversity of our background images. After our initial
training and reviewing the model’s performance, we added
more background images and saw its performance improve.
To improve the accuracy of generated masks, we can add
additional distractor objects. The only times the training
dataset saw occlusions were when a basketball was occluded
by another basketball, and as a result, any generated masks
have rounded edges, even when straight edges are more
appropriate.

We believe this pipeline is a good way to generate syn-
thetic data for image detection and instance segmentation for
certain objects. The next steps in developing this pipeline
are to use more complex shapes with less texture and more
complex geometry.

ACKNOWLEDGEMENTS

Colin would like to thank Rachel Burcin, John Dolan, and
the RISS program for the opportunity to work on this project.

REFERENCES

[1] U. Shah and A. Harpale, A Review of Deep Learning Models for
Computer Vision, 2018 IEEE Punecon, 2018.

[2] S. Ren, K. He, R. Girshick and J. Sun, ”Faster R-CNN: Towards
Real-Time Object Detection with Region Proposal Networks”, IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 39,
no. 6, pp. 1137-1148, 2017.

[3] Redmon J, Divvala S, Girshick R, et al. You Only Look Once: Unified,
Real-Time Object Detection. In CVPR, 2016.

[4] K. He, G. Gkioxari, P. Dollar and R. Girshick, ”Mask R-CNN”, IEEE
Transactions on Pattern Analysis and Machine Intelligence, pp. 1-1,
2018.

25



[5] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollr, and C. L. Zitnick, Microsoft COCO: Common Objects in
Context, Computer Vision ECCV 2014 Lecture Notes in Computer
Science, pp. 740755, 2014.

[6] Mark Martinez, Chawin Sitawarin, Kevin Finch, Lennart Meincke,
Alex Yablonski, and Alain Kornhauser. Beyond grand theft auto v for
training, testing and enhancing deep learning in self driving cars. arXiv
preprint arXiv:1712.01397, 2017.

[7] C. J. A. Rozantsev, V. Lepetit, and P. Fua, On rendering synthetic
images for training an object detector, Computer Vision and Image
Understanding, vol. 137, pp. 2437, 2015.

[8] D. Dwibedi, I. Misra, and M. Hebert, Cut, Paste and Learn: Surpris-
ingly Easy Synthesis for Instance Detection, 2017 IEEE International
Conference on Computer Vision (ICCV), 2017.

[9] O. zyeil, V. Voroninski, R. Basri and A. Singer, ”A survey of structure
from motion.”, Acta Numerica, vol. 26, pp. 305-364, 2017. Science,
1989.

[10] J. Schoenberger, COLMAP. UNC Chapel Hill: ETH Zurich and UNC
Chapel Hill, 2018.

[11] M. Kazhdan and H. Hoppe, Screened poisson surface reconstruction,
ACM Transactions on Graphics, vol. 32, no. 3, pp. 113, Jan. 2013.

[12] G. Ranzuglia, M. Callieri, M. Dellepiane, P. Cignoni, R. Scopigno,
MeshLab as a complete tool for the integration of photos and color
with high resolution 3D geometry data, CAA 2012 Conference Pro-
ceedings, page 406-416, 2013

[13] R. Wicks and D. Girardeau-Montaut, CloudCompare Animation Plu-
gin. 2G Robotics Inc., 2015.

[14] W. Abdulla, Mask R-CNN for object detection and instance segmen-
tation on Keras and TensorFlow. Matterport, 2017.

[15] Abhishek Dutta and Andrew Zisserman. 2019. The VIA Annotation
Software for Images, Audio and Video. In Proceedings of the 27th
ACM International Conference on Multimedia (MM 19), October
2125, 2019, Nice, France. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1148/3343031.3350535.

26



Towards Hierarchical Problem Solving via Natural Language
Instructions

Valerie Chen1, Kenneth Marino2 and Abhinav Gupta2

Abstract— To successfully solve real-world tasks, robotic
agents must be able to exploit contextual and structural
information in the world and apply prior knowledge of relevant
tasks to a new task. Complex multi-task learning is a natural
skill for humans that has proven to be difficult to build
into robotic systems using deep learning techniques because
of a need for a large number of examples or samples of
environmental interaction to learn from. Recent approaches
suggest leveraging the contextual information embedded in
natural language to guide the learning process. Existing work
for such hierarchical tasks assume templated task structures
or provide synthetic languages as guiding information, which
are typically handcrafted and do not generalize to new tasks.
Thus, we present a dataset which incorporates step-by-step
natural language and action execution to facilitate hierarchical
task learning. The dataset consists of 20k pairs of action-
instruction pairs from goal-based task completion scenarios
in a crafting-based world collected from Amazon Mechanical
Turk. Additionally, we present a new OpenAI Gym training
environment and a new method to employ the dataset in
more sample-efficient learning. In future work, we will evaluate
our proposed method against existing methods to demonstrate
improved generalization capabilities to unseen, yet similar tasks.

I. INTRODUCTION

From a young age, children are able to learn from in-
structions and demonstrations through imitation and from
exploring their environments through trial and error. These
two inherently human capabilities are critical to learning how
to quickly adapt to new environments and acquire new skills.
In machine learning research, two dominant paradigms,
imitation learning (IL) and reinforcement learning (RL),
respectively aim to capture these two skills to enable agents
to solve tasks in real-world environments.

IL relies on access to an expert or oracle to guide the
agent to learn a policy that will mimic the expert or ora-
cle [1]. Learning from demonstrations parallels this notion
where children typically learn via step-by-step instruction
and demonstration. The difficulty that IL poses is the need
for a large amount of demonstrations to sufficiently capture
expert behavior in many possible situations.

On the other hand, RL algorithms enable agents to learn
correct behaviors in complex environments by learning from
making mistakes and from receiving rewards. However,
environments and tasks that are characterized by sparse or

1Valerie Chen is a student in the Department of Computer Science at
Yale University, New Haven, CT v.chen@yale.edu

2Kenneth Marino & Abhinav Gupta are with the Visual Robot Learning
Lab, Robotics Institute, Carnegie Mellon University, PA kdmarino,
gabhinav@andrew.cmu.edu

delayed rewards are difficult for existing RL algorithms to
solve through purely learning from experience.

To improve generalization capabilities and sample effi-
ciency, researchers have suggested that both IL and RL can
leverage the use of natural language to provide additional
information that is encoded in language particularly for
complex, hierarchical tasks [2]. In some tasks, language is
a necessary component to solving the task. In other tasks,
language can be utilized to facilitate learning. We consider
the second type where language is used to facilitate learning
as a means of representing and relating policies.

We make the following contributions towards this direc-
tion:

• We present a new dataset with natural language an-
notated sub-tasks and corresponding game-play in a
crafting-based environment with over 20,000 traces on
20 crafts.

• A method to leverage the dataset to improve sample
efficiency of learning complex hierarchical tasks using
a hybrid of IL and RL.

II. RELATED WORK

Existing work presents frameworks for tackling the long-
term learning problem of complex tasks through structural
guiding knowledge. However, these work often reduce cer-
tain aspects of the problem, including utilizing only synthetic
language or assuming prior knowledge of sub-policies within
the task by design. [3] provides a guiding data structure
known as a policy sketch to inform the hierarchical controller
of the sub-tasks within the larger task. However, assuming
knowledge of an existing template for a given task limits the
ability to generalize to new tasks where this template is not
know.

The language component of the task can also be tem-
plated or synthetically generated. This makes the structure
of the language much easier to predict compared to natural
spoken or written language. [4] introduces a Stochastic
Temporal Grammar to enable interpretable multi-task RL in
the Minecraft environment. Similarly, the BabyAI platform
[5] presents a synthetic language which models commands
inside a grid-based environment. They utilize a curriculum
training to approach learning complex skills and demonstrate
through experimentation in their environment that existing
approaches of pure IL or pure RL are extremely sample
inefficient.

Others have utilized natural language for other tasks,
including [6] and [7] but not focused on the multi-task
learning setting. More recently, [8] demonstrates the use
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of word embeddings to inform robotic motor control as
evidence of particular promise for exploiting the relationship
between language and control.

A recent paper [9] presents a hybrid hierarchical reinforce-
ment learning and imitation learning algorithm for the game
Montezuma’s revenge by leveraging IL for the high level
controller and RL for the low level controller demonstrating
the potential for combining IL and RL to achieve the benefits
of both algorithms. By learning meta-actions, the agent is
able to learn to solve the complex game. However, their
meta-actions were also hand specified. Another recent paper
[10] attempts to leverage natural language instructions in
hierarchical decision making focusing only on a behavioral
cloning based IL algorithm. They show that the compo-
sitional structure of language can be effective for action
representation.

III. MAZEBASE PLATFORM

To address the limitations of existing work, we built
an interface to collect human-annotated data to guide the
learning model. The utility for the data is two-fold: the first
is to provide an expert human policy for the task and the
second is to provide automatically annotated subpolicies.
The environment is one where an agent has navigation and
crafting capabilities in a grid-based world. This crafting
game that our interface features is adapted from an environ-
ment originally developed by [11] and is openly available
on https://github.com/facebook/MazeBase. We extended the
agent’s capabilities from the original repository to include the
crafting capabilities. We have also created a new environment
reflecting this setup in OpenAI Gym to facilitate training.

Fig. 1. Example board and goal configuration where the goal is to make
an iron ore.

A. The World

As shown in Figure 1, the environment is a 5-by-5 grid-
based world where there is a Crafting Agent who can
navigate the grid by moving up, down, left, and right. The
agent can also grab certain objects, like tools, if it is next
to it and then use the tools to mine resources. The agent
can also use a key or switch to open doors blocking its path
from collecting other items. Finally, the agent can also go to
a crafting table to build final items.

B. The Crafting Task

The tasks selected for training were scraped from the
Minecraft recipes website and adapted for our Mazebase
environment. In general to craft an item, the agent must first
pick up a tool, go to a resource, mine the resource, and then
go to a table to craft the item. There are crafts that require
multiple items to be crafted first as materials for the final
craft. We limited the tasks to a maximum length of 5 recipes
recursively to limit the amount of time a worker would have
to spend on the task. Existing work also only deals with
recipe lengths of at most 2 and have already demonstrated the
difficulty to learn in RL. The recipe in Figure 1 for making
an Iron Ore is shown above the grid. To breakdown this
recipe: the agent must use the pickaxe at the Iron Ore Vein
to mine Iron Ore to complete the task.

TABLE I
LIST OF RECIPES FOR WHICH WE ARE COLLECTING ANNOTATIONS FOR

LABELED BY THE NUMBER OF STEPS NEEDED TO COMPLETE IT (DEPTH)
AND OTHER RECIPES WHICH SHARE SOME OVERLAP.

ID Recipe Name Depth Related Crafts by ID
1 Gold Ore 1 2, 17
2 Iron Ore 1 1, 8, 18, 20
3 Diamond Boots 2 12, 14, 16, 18
4 Brick Stairs 2 5, 7, 19
5 Cobblestone Stairs 2 4, 7, 13, 15, 19
6 Wooden Door 3 7
7 Wood Stairs 3 4, 5, 6
8 Iron Ingot 3 2, 20
9 Leather Leggins 3 10, 11, 12
10 Leather Chestplate 3 9, 11, 12
11 Leather Helmet 3 9, 10, 12
12 Leather Boots 3 3, 9, 10, 11
13 Stone Pickaxe 5 5, 14, 15, 19
14 Diamond Pickaxe 5 3, 13, 16
15 Stone Shovel 5 16, 19
16 Diamond Shovel 5 3, 14, 15
17 Gold Boots 4 1, 18
18 Iron Boots 4 2, 3, 8, 20
19 Stone Stairs 4 4, 5, 7, 13, 15
20 Iron Door 4 2, 3, 8, 18

As seen in Table I, many crafts share similar features and
sub-steps that are required to finish that craft. This is done
intentionally, so that later we will be able to test whether
the method is able to learn these shared features and reuse
existing knowledge to solve new, but related tasks more
quickly.

C. Data Collection

We now describe our dataset, the collection interface and
process on Amazon Mechanical Turk (AMT), and analyze
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the dataset. The concrete task for our Mazebase environ-
ment is the following - given a goal craft, relevant recipes
to reach the goal, and the initial board state, the worker
should provide step-by-step instructions accompanied with
execution on the actual game board of each instruction. So
the workflow would be to type one instruction, execute the
instruction, then type the next instruction, and execute until
the goal was completed. We motivate this type of annotation
in the demo for our task by telling the worker to imagine
that they were describing how to solve this board game in a
step-by-step fashion to their younger sibling.

Fig. 2. Example view of game interface that the worker would see on
AMT. On the left the worker is given the goal and recipes; the board is in
the middle; the worker provides annotations on the right.

Consider the example in Figure 2. The agent must first
go to the switch and toggle the switch to open the door.
Or the agent can first choose to pick up the pickaxe.
Either way, the door must be opened for the agent to
complete the task, which will include mining the ore and
then crafting. We expect each of the previously described
high-level instructions to be a separate step that given by the
user and followed by the appropriate control of the agent
to execute such instructions. This type of granularity of
specification was difficult to convey to the worker without
explicitly giving them an example of what an instruction
was. We deliberately chose not to provide examples as
to not prime the worker to a particular format to follow.
Originally, some workers provided not enough instructions,
meaning that they wanted to finish the task as quickly as
possible, and other workers provided instructions that were
too granular, meaning that they did not abstract the task into
sub-tasks and rather wrote “press left” or “go up 1” as their
instruction. In either case, we checked prior to the worker
submitting the HIT and built in precautions so that they had
to redo a level if they did not comply with such instructions
clearly delineated in the demo. New workers were given two
short games to complete to familiarize themselves with the
environment. Returning workers were given one longer game
to complete as they already had experience with the task.
Workers who completed the task as previously described
were fully compensated.

On AMT, we were not able to make use of existing tem-
plates that were already provided, so we redirected workers
to our own website where the game was hosted. We built a

website from scratch using HTML, CSS, and Javascript, with
the Python Mazebase game in the backend. Workers were
provided with an entrance code at the beginning of the task
to enter the website and an exit code when they completed
the task to be able to submit the HIT. This enforces that
we do not have workers doing extra HITs that we are
unable to pay for and to ensure that worker who submit
HITs have indeed completed our task. Then we also wrote a
parsing script to be able to quickly verify all submitted HITs
before payment. Our entire data-collection infrastructure and
modified Mazebase environment is publicly available at
https://github.com/valeriechen/dialog-rl.

D. Dataset Analysis

We present some high-level analyses of the data that we
have collected thus far. Overall, as shown in Figure 3, we
had many returning workers to our task. A few even wrote
emails to our requesting email to let us know that they really
enjoyed the HIT and thought it was quite interesting to work
on. We gave bonuses to the top workers who completed the
most HITs and found that over time, they were able to learn
all of the built-in keyboard short cuts to complete the task
quicker.

Fig. 3. Number of HITs sorted by the workers who have done the largest
number with a maximum of 309.

We also provide an example of a game trace in the tran-
scription below where the crafting task is to make Leather
Boots:

Turkerdow
: Grab the key : Open the door : Grab the sword : Mine the

rabbit to get rabbit hide : Craft the rabbit hide into leather :
Craft the leather into leather boots

In the end, we believe that we found a happy medium
in terms of the number of instructions the workers provided
compared to the number of actions through the correction
mechanisms that we implemented.

IV. METHODS

A. State Representation

An important consideration for methods is how to best
represent the state information for learning. We choose to
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embed the goal information using the Glove word embedding
[12] as well as each object name on the 5-by-5 grid into
word vectors. We hope that this contextual information will
eventually help with generalization to similar tasks that
utilize different materials in its construction.

B. Reinforcement Learning Baseline

To define the task in RL, we choose a sparse reward, where
the agent only receives a reward when it has completed the
full craft. The magnitude of the reward can also be scaled by
the number of steps the agent took to reach the final reward.

While we want to learn,

θ∗ =θ Eτ∼pθ(τ)[
∑
t

r(st, at)]

where θ∗ is the optimal parameters, τ is a sampled trajectory,
θ a set of parameters, st the state at time t, and at the action
from time t. The agent only receives a reward when reaching
goal state:

r(τ) =

{
1 goalstate

0 otherwise

As the RL baseline, we used a standard implementation of
the proximal policy optimization (PPO) algorithm [13] with
the reward defined as above and the environment previously
described.

C. Imitation Learning Baseline

The first IL baseline we consider is the most naive
approach of behavioral cloning, where we learn a policy
to determine the action given state and goal information
with a MLP set-up where the state and goal are separately
passed through fully-connected layers and then concatenated
downstream. We will also consider the generative adversarial
imitation learning (GAIL) method [14], where we make use
of the sparse-reward function as defined from above and
the labeled expert trajectories collected in our dataset in the
game-theoretic framework.

D. Proposed Method

The proposed method consists of 3 components, the first
two of which are supervised the dataset and the third which
utilizes the defined reward function.

1) Language Generation: We would like to first pre-train
an LSTM to generate proposed natural language sub-task
instructions given the current board state and overall goal,
using all annotations of step-by-step instructions that we have
collected as the text corpus.

2) Imitation Learning Component: Then we proceed to
utilize the expert trajectories in our dataset in a supervised
manner to train a policy conditioned on the language sub-step
and current state to predict corresponding action trajectories.
At the time of inference, we use the pretrained language gen-
eration module to provide the language sub-step to predict
actions from.

3) Reinforcement Learning Component: Finally if super-
vised learning was not sufficient to learn the task then we
use the sparse-reward to fine-tune the model using RL.

V. RESULTS

A. Baseline Comparison

We want to compare a baseline against pure RL, using
the proximal policy optimization (PPO) algorithm, to do a
1-step craft task. Based on Figure 4, learning the 1-step task
requires over 106 timesteps where the agent receives a reward
5 when the task is complete and 0 if incomplete.

Fig. 4. Reward graph for PPO solving a simple 1-step task.

VI. CONCLUSION AND FUTURE WORK

The future work includes the complete implementation of
the described baseline algorithms and proposed methods.
We would like to demonstrate generalization capabilities
to unseen tasks through our use of word embeddings in
the state representation and to demonstrate better sample
efficiency when compared to the baseline methods given
only a limited number of demonstrations. In conclusion, this
project introduces a new dataset to facilitate the use of natural
language in guiding learning policies for multi-step complex
tasks through our proposed method using a combination of
IL and RL.
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Force-controlled Surface Exploration of Ultrasound Probe

and 3-D Vein Reconstruction

Haoran Cheng1 and Nicolas Mateo Zevallos-Roberts2

Abstract—Ultrasound imaging is used extensively in various
clinical diagnostic and surgical procedures. However, forces
exerted on the probe and probe orientation need to be fine-
tuned to obtain good image qualities. In addition, sometimes the
physician is required to exert significant force in uncomfortable
positions during the process, which results in musculoskeletal
damage. To address these issues, various robotic ultrasound
systems have been developed in recent years. However, previous
studies have not achieved fully automated force-based orientation
adjustment of an ultrasound probe on a curved surface, which
is essential for imaging quality and probe exploration. In this
study, a force-based surface exploration control is proposed and
preliminary studies are conducted on the UR5e robot.

Index Terms—admittance control, hybrid force/positition con-
trolled exploration, registration with known correspondence,
ultrasound image segmentation and reconstruction

I. INTRODUCTION

During the past decade, various robotic ultrasound systems
have been developed with different focus of functionalities.
However, full automated control over the ultrasound probe
orientation and surface exploration have not been achieved.

In some studies, the scanned surface is flat and horizontal.
As a result, roll and yaw orientation adjustment of the probe
are not considered. Coordinate frame definition is illustrated
in Fig. 1.

Fig. 1: Ultrasound probe frame definition

Mathiassen et al. [1] implemented compliance force control
and forward flow haptic control on a tele-operated robotic
ultrasound system consisting of UR5 robot and a haptic device.
However the force compliance control is only implemented in
the vertical direction since it is assumed to be the main contact
force component.

1 Haoran Cheng is an undergraduate mechanical engi-
neering student at the Hong Kong Polytechnic University.
haoran.cheng@connect.polyu.hk

2 Nicolas Mateo Zevallos-Roberts is with the Biorobotics Lab,
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
nzevallo@andrew.cmu.edu

Merouche et al. [2] developed a robotic ultrasound scanner
that can automatically track and reconstruct lower limb artery
in a phantom. However, the phantom used in the study has
a flat surface which does not always reflect the real clinical
scenario.

Huang, Lan and Li [3] present a robotic ultrasound system
that plans the probe path after a depth camera scan and
then fine-tune probe orientation by two uni-axis force sensor
attached at two ends of the probe contacting surface. However,
only orientation adjustment in the vertical plane that coincide
with the two force sensors can be achieved and the force sensor
may block the imaging.

Other systems still rely on the sonographer’s skill in adjust-
ing the probe orientation and applying constant normal force
during operation. For example, Finocchi et al. [4] developed
an ultrasound system that can comply with the user’s force
and torque input on the probe thus following user’s desired
path. During imaging, the robot augments the user’s applied
force in normal direction thus lessening physical efforts.

Wang et al. [5] propose hybrid position and force control
for surface exploration of a spherical end-effector. Due to the
spherical shape of the end-effector, the normalized force vector
at the tool tip can be approximated as surface normal vector
and tool orientation can be adjusted accordingly. However,
in the case of a rectangular-shaped ultrasound probe, This
assumption does not always hold.

In order to orient the ultrasound probe locally normal to
the contact surface while exploring the surface, this paper
proposes a control method that implements Wang et al.’s [5]
method in the case of ultrasound probe with the following
objectives:

• Probe orientation adjustment in yaw direction by normal-
ized force vector reference

• Probe orientation adjustment in roll direction by moment
information

• Normal direction (y direction) admittance control to keep
contact force to achieve good image quality

• Tangential velocity control to move the probe to the next
target position

The fist 3 objectives are implemented and tested in the
preliminary study. A 3-D vein reconstruction is conducted
on a flat phantom to validate the ultrasound calibration,
segmentation and reconstruction process.
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II. MATERIALS AND METHODS

A. System Overview

Fig. 2: System setup

Figure 2 shows the experimental system, which consists of
• A robot (UR5e, Universal Robots Inc.) holding the ultra-

sound probe
• An ultrasound imaging system (DIASUS Inc.)
• An ultrasound phantom (CAE Inc.)
• A calibration phantom (fCal2.0, Plus Toolkit, The Perk

Lab, Queens University)
• A six-axis force/torque transducer and Net Box (Nano25,

ATI Inc.)
• Custom-made 3-D printed ultrasound probe holder, cali-

bration phantom holder and phantom plate.
Robot Operating System (ROS) framework is used to

read image data, force sensor data and control the robot.
The ultrasound image is captured by a frame grabber in
real time and published to the /camera/image raw topic by
video stream opencv package at 30Hz. Package image view
provides a service call to trigger the node image saver to
save images as .jpg files. The force transducer and robot
communicate to the computer via Ethernet network.

B. Admittance Control of Ultrasound Probe

In the experiment, in order to perform tasks such as probe
registration and placing the probe at the starting pose, it is
essential for the ultrasound probe to be manipulated intuitively
and interactively by the user. Though the teaching mode of
UR5e robot allows the user to change robot configuration
by hand manipulation, it has high torque threshold for base
and shoulder joints which hinder fine adjustments. Thus, the
following admittance control is implemented based on the
work of Mathiassen et al. [6] and Finocchi et al. [7]

The admittance control law translates force and torque
(wrench) inputs detected at the end-effector into velocity and
angular velocity (twist) commands to the end-effector.

Firstly, the 6x1 desired twist in force sensor (inside the
robot, between the end link and second-to-last link) frame
Vf = [vf , ωf ]T is calculated using the formula

Vf [i] = αKFf [i] + (1− α)Vf [i− 1] (1)

where α is the constant of low-pass filter, K is the diagonal
matrix of scaling factors and Ff = [Ff ,Mf ]ᵀ is the wrench
reading from the UR5 force sensor.

If ‖Vf‖ < Vmin the robot skips the following calculations
and remains still for this time instant.

Then, the desired twist is transformed from force sensor
frame to space frame, which coincides with the fixed robot
base:

Vs =

[
R 0
0 R

]
Vf (2)

The joint velocity Vj is calculated:

Vj = J−1Vs (3)

where J is the instantaneous Jacobian matrix gained from
MoveIt. If maxi Vji > vsafe, the robot stops for safety.

Lastly, the joint speed commands are sent to the robot via
speedj command in URScript package.

C. Rigid Registration with Known Correspondence

In this paper, a revised version of Sorkine-Hornung and
Rabinovich’s [8] method of registration with known corre-
spondence is used to register unknown frame coordinates
and calibrate ultrasound probe. Let S = [s1, s2, . . . , sn]
and B = [b1,b2, . . . ,bn] be the matrices of coordinates
of correspondence points in space frame and body frame
respectively. The following steps can find Rsb and psb that
minimize

∑n
i=1 ‖Rsbbi + psb − si‖,

1) Compute the centroid of both point sets

s̄ =

∑n
i=1 si
n

, b̄ =

∑n
i=1 bi

n
(4)

2) Compute the centered vectors

xi = si − s̄, yi = bi − b̄ (5)

3) Compute the 3× 3 covariance matrix

S = XY ᵀ (6)

whereX = [x1,x2, . . . ,xn] and Y = [y1,y2, . . . ,yn]
4) Compute the singular value decomposition S = UΣV ᵀ

5) Compute Rsb and psb as follows:

Rsb = V


1

. . .
1

det(V Uᵀ)

Uᵀ (7)

psb = b̄−Rsbs̄ (8)

33



Fig. 3: (a) Calibration setup. (b) Ultrasound image

D. Ultrasound Calibration

We define the following subscripts representing coordinate
frames:

• C: calibration phantom frame
• R: robot base frame
• U : ultrasound probe frame
• A: ATI force sensor frame
• I: image frame
The goal of ultrasound calibration is to find the transforma-

tion matrix TUI .
As shown in Fig. 3 (a), a z-wire calibration phantom is

placed in a water bath. The ultrasound probe is moved by the
robot arm to several locations and the ultrasound images are
recorded. Then, wire cross-sections are manually segmented in
MATLAB as shown in 3 (b). Let p denote each segmentation
point in image frame.
pI and pU are calculated as follows:

pI =

[
sxu
syv

]
(9)

pU = T−1
RU TRC pC (10)

where (u, v) denotes horizontal and vertical pixels of seg-
mentation point and sx and sy denote the horizontal and
vertical scaling factor. Knowing the ultrasound probe and
holder CAD information, ultrasound frame can be defined in
the robot urdf file, thus TRU can be obtained from tf::listener.
pC can be obtained from the CAD file of calibration phantom
and the image segmentation results using similar triangle
method [9]. TRC can be obtained by poking the ultrasound
probe in the rectangular groove on the calibration holder.

After calculating pairs of corresponding pI and pU , registra-
tion with known correspondence can be performed to calculate
TUI . The point locations after matching are shown in Figure.
4.

E. Image Segmentation

In this paper, basic computer vision techniques are used
to detect vein cross-sections in ultrasound B-mode images as
circles. Steps are as follows:

Fig. 4: Correspondence points after calibration

1) Gaussian filtering and thresholding by ismooth() func-
tion in Robotics Toolbox [10]

2) Hough transform is used to detect vein cross-sections as
circles.

Fig. 5: (a) Before segmentation. (b) After segmentation

It is observed in Fig. 5 that ellipse vein cross-section is
segmented as two circles.

F. Ultrasound Probe Force Control

The control architecture is illustrated in Fig. 6.
Contact wrench applied from the phantom

to the probe in the probe frame {U}, FU =
[Fux, Fuy, Fuz,Mux,Muy,Muz]ᵀ is computed as follows
[11]:

FU = [AdTAU
]ᵀ(−(FA −FA0)) (11)

where FA = [FA,MA]ᵀ is the wrench reading of force
transducer and FA0 is the force transducer reading without
ultrasound probe contact.
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Fig. 6: Control Loop of Ultrasound Probe Control

[AdT ] =

[
R [p]R
0 R

]
is the adjoint representation of

the transformation matrix T =

[
R p
0 1

]
and [p] = 0 −p3 p2

p3 0 −p1
−p2 p1 0

 is the skew-symmetric matrix corre-

sponding to p = [p1, p2, p3]ᵀ [11]. The transformation from
ultrasound frame to ATI force sensor frame TAU is calculated
as follows:

TAU = T−1
RATRU (12)

where TRU is obtained from tf::listener in ROS. and TRA is
obtained from point registration of known correspondence.

Then, the desired twist in ultrasound frame VU is calculated
as follows:

VU = [0, vy, 0, ωx, 0, ωz]ᵀ (13)

where
vy = −ka(F0 − Fuy) (14)

ωx = kx∆θ (15)

∆θ =
π

2
− cos−1 Fuz√

F 2
uy + F 2

uz

(16)

ωz = kzMuz (17)

Equation (14) is the probe normal direction (y-direction)
admittance control aiming at keeping a constant contact force
between the probe and phantom in probe normal direction. F0

is the desired contact force, Fuy is the y-direction force in
ultrasound probe frame.

Equation (15) is the surface normal-based roll adjustment.
∆θ is the angle error between current roll and the surface
normal direction, which is estimated by the angle between the
projected force vector in yz plane and the -y direction. The
assumption is that the force vector is perpendicular to phantom
surface, which is considered to be true in roll direction where
point (cylindrical) contact can be assumed. ∆θ is calculated
according to Equation (16)

Equation (17) is the moment-based yaw orientation adjust-
ment.

Then, the computed twist in ultrasound probe frame is
transformed to robot frame and then transformed to joint space
using Equation (2) and (3).

III. PRELIMINARY RESULTS

A. Compliance Force Control with roll&yaw Adjustment

In this preliminary study, the control architecture in Fig. 6
was implemented. Once the ultrasound probe was in contact
with the horizontal flat phantom, the robot arm adjusted its roll
and yaw while keeping normal contact force. Fig. 8 shows

Fig. 7: (a) ultrasound orientation (b) start pose (c) end pose

Fig. 8

Fig. 9

the ∆θ and roll change during the control. Figure 9. shows
the moment and yaw change during the control. It is observed
that ∆θ and Mz reached the goal within 6 seconds while the
orientation reached the near-vertical orientation with steady
state error of 4.4 degrees and 1.7 degrees in roll and yaw.
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B. Ultrasound Scan on Flat Surface and Vein Reconstruction

To validate the calibration process, a preliminary vein
reconstruction experiment was conducted on a horizontal flat
phantom with vertical compliance force control. The result
is shown in Fig.10. It is observed that false and missing
segmentation take place occasionally.

Fig. 10: 3D vein reconstructed from linear scan on flat
phantom

IV. CONCLUSION

In this study, a force-controlled surface exploration method
of ultrasound probe is proposed. Preliminary studies validate
the first three control objectives and ultrasound calibration,
segmentation and reconstruction.

In the future, probe exploration on curved surface and vein
reconstruction can be experimented. In addition, the robustness
and steady state error of the control method can be improved.
Lastly, more sophisticated vein segmentation methods can be
implemented.
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Detection of Static Pedestrians from Vertically Sparse 3D Point
Clouds

Ivana Collado1 Luis E. Navarro-Serment2

Abstract—Precise pedestrian detection is an essential capa-
bility for autonomous mobile robots operating in populated
environments. High resolution 3D LiDARs capable of producing
dense point clouds, commonly used for pedestrian detection
in autonomous vehicles, are economically and computationally
expensive. Low resolution 3D LiDARs offer a more accessible al-
ternative, suitable for use in small robots. However, they produce
vertically-sparse point clouds, which makes the interpretation
of shapes for object classification more challenging. This paper
proposes a method suitable for detecting pedestrians using 3D
LiDAR sensors with low vertical angular resolution. Our method
handles the decreasing point density of more distant objects, and
is also capable of interpreting partially-seen pedestrians at close
ranges, making it suitable for operation in close proximity to
pedestrians. Moreover, the approach does not rely on motion
features, thus enabling the robust detection of static pedestrians.
The algorithm consists of three basic steps: first, the raw point
cloud data is clustered. Then, a simple screening process identifies
clusters that are candidates for representing humans; a set of 3D
and 2D geometrical features are obtained for each candidate
cluster. Finally, the features are fed to a binary classifier
trained using the Adaboost algorithm, which determines whether
the cluster represents a human. We conducted experiments to
compare the performance of this approach against that of the
detector previously used in our robot. Experiments reveal an
overall increase in performance, particularly for static pedestrian
detection at distances from 1-10m.

Index Terms—Sparse Point Clouds, Pedestrian Detection, Li-
DAR, Adaboost classifier, Perception for Autonomous Vehicles.

I. INTRODUCTION

Autonomous robots must be capable of accurately sensing
and interpreting their environment to avoid collisions. Percep-
tion of static and dynamic objects must be specially robust in
scenarios where robots work in close proximity with people.
To achieve safe human-robot interaction, real time detection
and classification of objects is required. This makes the robot
aware of potential collision situations and allows it to timely
take obstacle avoidance measures.

Laser range sensors are commonly used for perception
in many mobile robot scenarios. Compared to RGB camera
systems, LiDARs are typically more stable against illumina-
tion changes and have larger fields of view. High resolution
3D LiDARs provide vertically and horizontally dense point
clouds which are suitable for detailed detection. However, they
are economically and computationally expensive. Furthermore,

1Department of Engineering and Information Technology, Instituto Tec-
nológico y de Estudios Superiores de Monterrey, Monterrey, NL 64849,
México. ivanacollado@gmail.com

2The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213,
USA. lenscmu@ri.cmu.edu

Fig. 1. Sample pedestrian point clouds obtained at various distances from the
sensor using a low resolution LiDAR Velodyne VLP-16.

their larger size and power budgets makes them unsuitable
for small robots. Conversely, low resolution 3D LiDARs
are economically more accessible and less computationally
expensive, which in turn lowers their size and power demand.
However, they usually produce vertically sparse point clouds,
which makes shape recognition more challenging since the
point cloud density in the vertical direction is increasingly
reduced as distance to detected object grows. Moreover, if
the detected object is too close to the sensor, it will only
be partially detected. Both long and short range detection
problems using a low resolution LiDAR can be observed in
Figure 1.

The proposed approach explores a methodology for close
range static pedestrian detection from a vertically sparse point
clouds. The focus of this research is to enhance the static
human detection of a small mobile robot that uses a low
resolution 3D LiDAR for 360° sensing and requires fast point
cloud processing time without GPU. In our target application,
the previously implemented method for human detection relied
heavily on object motion and distance tracking, resulting from
numerous false negatives since the static pedestrians were
not detected. The proposed approach calculates a geometric
feature vector for each object in the scene, without relying on
motion. The feature vector is afterwards evaluated by a binary
classifier.

II. RELATED WORK

In literature there are many different approaches for pedes-
trian detection. Image based approaches are very common and
have been successfully implemented in numerous works, as
seen in [1], [2] and [3]. Others explore multi-sensor systems,
where they focus on merging vision and laser data as presented
in [4]. These approaches are, as mentioned before, limited to
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the camera’s field of view and are susceptible to changes in
illumination conditions.

2D laser scanners have been extensively used for human
detection. The work which is closest to our work is [5], which
presents a set of 14 simple 2D features extracted from a single
line scan, which are fed to an Adaboost binary classifier. In
order to achieve a more reliable detection, this approach is
expanded to work with 3D point clouds in [6] by dividing the
3D cloud into a series of 2D point clouds at various heights. In
this approach, each layer in the 3D point cloud votes toward
the likelihood of the cluster being a human.

Pedestrian detection using high definition 3D LiDAR is
also explored in [7], here the point cloud is clustered and a
potential human cluster is divided in three sections, upper half,
lower left and right halves. 3D variance features are extracted
from each section and then the 3D cluster is projected onto
a 2D histogram on the two principal planes. The extracted
geometrical features are then processed by a classifier trained
using an SVM. Motion features, like moment of inertia is
also calculated and used to train a second SVM classifier
for a more robust detection. In [8] two more features to the
previous approach are added: the slice feature which considers
widths at different heights in a 3D point cloud cluster and
the distribution of reflection intensities feature. Hsueh-Ling
presents an approach in [9] that extracts the 3D and 2D
features presented in previous works ( [7] and [8]) and it
tackles the unavoidable point resolution loss while distance
increases by applying a distance-aware expansion approach
when performing 3D-to-2D projection. All of the approaches
mentioned above were implemented using a high resolution
3D LiDAR and are not tailored to work for vertically sparse
point clouds. Motion is an important feature in these pedestrian
classification approaches, which contradicts our objective of
detecting static pedestrians.

More resent approaches for pedestrian detection in 3D point
clouds like [10] and [11] successfully use deep learning neural
network approaches like RCNNs ad RPNs for training a
classifier. These methods require large amounts of training
data, as well as graphic processing units (GPU) and vast
processing resources at run time, compared to previous ma-
chine learning algorithms. In contrast to these approaches, the
Adaboost algorithm requires a much smaller training set, and
its lower computing budget makes it suitable for operation in
real time. In [5] and [12] the Adaboost algorithm achieved
high precision rates for human and object detection using 2D
and 3D LiDARs.

There are two main aspects addressed by our work. First, we
explore a simple 2D and 3D feature set that does not relay on
motion and focuses on horizontal characteristics to reduce the
effect of increasing vertical sparsity of 3D point cloud from
degrading precision in human detection. Second, our human
classification model is trained with the Adaboost algorithm in
order to limit run time processing and provide high precision
results with a small training data set, as large labeled data sets
for low resolution LiDARs are not readily available.

Fig. 2. General pipeline for this pedestrian detection framework.

Fig. 3. Side view of the 3D sensor. The vertical field of view of ±15°
is covered by 16 independent rotating lasers, with a 2° angular separation
between scan lines, or rings. Conversely, the horizontal angular resolution (i.e.
angular distance between consecutive measurements in each ring) is 0.25°.

III. APPROACH

In the following subsections we present the detailed method-
ology followed in our approach; an overview of the general
data processing pipeline is illustrated in Fig.2. First, the
processing flow from obtaining the raw detection data to the
object detection and extraction is introduced. Then, details of
the classification process, with a focus on feature extraction,
are explained.

A. Preprocessing point cloud data

A 3D LiDAR typically generates range measurements ar-
ranged as a series of scan lines, called rings, as shown in
Figure 3, where each ring is designated by a number. The point
cloud Zj = {x0, x1, ..., xN−1} read from sensor is defined as
the set of N points measured at time tj , whose elements are
represented by Cartesian coordinates and their corresponding
ring number:

x = (x, y, z, r) (1)

The raw point cloud is not down sampled, as object details
are necessary for the classification process; however, only a
close range region of interest, centered at the robot’s current
location, is considered, thus removing unnecessary background
data and accelerating the process:

Region of interest = 20m× 20m× 3m (2)

B. Object extraction

Both ground removal and clustering are necessary for de-
tecting potential humans, in this case both steps are done in
a separate code. This separate code not only down samples,
but vocalizes the point cloud for faster computation. The
ground is removed by creating an elevation map, the method
is thoroughly described in [15]. First, a virtual 2D slice from a
certain height above ground is extracted and projected onto a

38



TABLE I
SEGMENT FEATURES

3D Features 2D Features
Nr Feature Name Nr Feature Name
f1 Number of points f4 Circularity
f2 3D Covariance f5 Radius
f3 Distance from LiDAR f6 Standard Deviation

grid plane. An elevation map is then computed by subtracting
one standard deviation from the average height of all the
points in the cell. Clustering is then done by using the KdTree
method. Clusters require a minimum of 21 points and distances
between points must be less than 0.75m. Clusters found are
then considered detected objects.

We define Tj = {o0, o1, ..., oI−1} as the set of I objects
detected in a frame collected at time tj , whose elements are
represented by the object center using Cartesian coordinates,
object volumentric dimensions and object id:

o = (x, y, z, w, h, d, id) (3)

Tj is then communicated to our pedestrian detection code.
The objects position and size information are used to iso-
late, from the original point cloud Zj , points corresponding
to detected objects. We now have a collection of M sets
of {S0, S1, ..., SM−1}, where Si∈{0,1,...,M−1} ⊂ Zj . To be
considered a pedestrian candidate, a set must contain at least
4 rings with more than 5 points. This way, only objects with
the right point distribution to be potential humans are passed
to the feature extraction set.

C. Feature Extraction

From each valid object S, a feature vector is extracted,
which will then be evaluated by a classifier to determine if
the object is human. The feature vector calculated is made up
of 6 features indicated in Table I. The features are divided in
two categories. Features under the 3D category are calculated
using all the points in a segment, and are meant to provide a
general idea of object dimensions and orientation. 2D features
are calculated using only the middle third of the rings and
projecting then into an XY plane. This second set of features
represent the overall shape and curvature of the object.

1) Number of points: Number of points can be correlated
with distance to determine if object is dense appropriate to be
a human.

N = (si) (4)

2) 3D Covariance: This feature is used to determine overall
orientation of segment, usually humans are in an upright
position, which would prove very different from any non
human object that is horizontally dominant. Only 6 values of
the matrix are usually considered because it is a symmetric
matrix. In this work we also do not consider σ2

xz because test
showed this feature had negligible influence in the classifica-
tion process.

Σ = {σ2
xx, σ

2
xy, σ

2
yy, σ

2
yz, σ

2
zz} (5)

3) Distance from LiDAR: As previously mentioned, this
feature can be correlated with number of points in a cluster
and others to determine correct dimensions of a human cluster.

d =
√
x̄2 + ȳ2 (6)

4) Circularity: Circularity is key for differentiating humans
from any flat surface, this is specially important in indoor
scenarios to rule out any wall, table or desk segments that
might fit the initial dimensional search. For calculating this
feature the linearized geometric approach is used, explained
in detail in [16]. The method involves the sum of the residual
squares to a fitted circle. Given a set of points in Cartesian
coordinates, it is possible to parameterize the problem by a
vector of unknowns z = (xc, yc, x

2
c + y2c − r2c )T , where xc,

yc and rc denote the circle’s center and radius, respectively.
With this, the equation system B · z = a can be established.

B =


-2x0 -2y0 1
2x1 -2y1 1

...
...

...
2xn−1 -2yn−1 1

 y =


-x20 − y20
-x21 − y21

...
-x2n−1 − y2n−1


The equation system can be solved using the pseudo-

inverse:
z = (BT B)−1BT · a (7)

Finally, the circularity Ω is calculated from the residual sum
of squares:

Ω =
n∑

j=1

(rc −
√

(xc − xj)2 + (yc − yj)2)2 (8)

5) Radius: The radius rc is obtained from the best circular
fit calculated in the previous feature. The difference in radios
from two clusters with similar size can help determine their
shape: a flat wall sample will have a much bigger radios than
a person sample.

6) Standard Deviation: The standard deviation in the XY
plane is calculated as follows:

σ =

√√√√1/(n− 1)
n∑

j=1

(xj − x̄)(yj − ȳ) (9)

D. Classification

As previously mentioned, we use the Adaboost algorithm
to train a binary classifier. Some of the advantage of us-
ing Adaboost over deep learning approaches are: the easy
implementation, high performance, low processing time and
small data set required. In this paper we specifically used the
Adaboost algorithm introduced by Freund and Schapire [11].
This algorithm repeatedly fits a set of weak learners, which are
classifiers who’s only requirement is to be better than random
guessing, on a changing set of data and combining these weak
classifiers through a weighted majority vote to create one
strong classifier. The input of this algorithm is a labeled set of
one dimensional feature vectors like the one described in the
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previous subsection. The initial weights are all wi = 1/f ,
f being the number of features used. With each iteration,
examples predicted incorrectly are given more weight, while
those predicted correctly are given less weight, this way,
missed examples are increasingly given more importance in
order to be classified correctly at the end. In this work the
number of weak learners used to train a final model is 50.

IV. EXPERIMENTS

The approach presented above was implemented and tested
using the low density 3D LiDAR Velodyne VLP-16 which
has 16 channels and a vertical resolution of approximately 2°
illustrated in Fig. 3. The vertical field of view of this sensor is
±15°. The sensor was mounted on a ClearPath Husky A200
robot, as seen in Fig. 4, at a height of approximately 40cm
from the ground. Various point cloud recordings were obtained
from different environments, including cases where the robot
was stationary and others where it was in motion. Human
test subjects were recorded at various distances inside the
Velodyne’s field of view, the recordings also included different
activities being preformed by the test subjects, including:
remaining stationary, walking, running, turning and jumping.

The recorded data was used to obtain point cloud samples
and for each sample set, the corresponding feature vector
was calculated and manually labeled as human or non-human.
These feature vectors were then used to build a data set. The
final data set has a total of 1763 samples, 1214 examples are
identified as stationary. The data set has a total of 415 moving
human samples and 300 stationary ones.

The recorded data was compared against the motion
dependent approach [18] previously used in our robot, which
was used as a baseline. The previous approach segments
the point cloud and identifies clusters of points representing
objects and categorizes them as large (walls, cars, trees, etc.)
or small objects (tables, people, chairs, etc.). This approach
relies on an object tracker that determines the distance
an object has moved. If an object has traveled at least a
minimum distance over a span of several frames, and if it
also meets other scores in terms of size and variations in size
and velocity, it is considered a human. This approach, though
very easy to implement and capable of running in real time
on limited computing resources, was designed to focus on
moving pedestrians, thus producing large numbers of false
negatives when dealing with humans that are not in motion.

The objective of the experiments is to evaluate the classifi-
cation results of the proposed method and compared it to the
previous approach to determine which can more successfully
detect static pedestrians. First, training and results of a new
Adaboost classification model using only stationary segments
is done implementing a five fold cross-validation technique.
Individual feature importance and errors for different distance
ranges are also obtained and analyzed. Next, another classifica-
tion model is trained and compared, but this time, considering
stationary and in-motion segments to analyse results in all
scenarios. Afterwards, the model with the best results is chosen

Fig. 4. Robot Clearpath Husky and sensor Velodyne 16, with which all human
perception experiments were carried out.

TABLE II
PEDESTRIAN DETECTION PERFORMANCE ON TEST DATA SET

Results Accuracy Recall F1 Precision AUC
(%) (%) (%) (%) (%)

Using Static Samples
Previous
Approach 77.19 9.67 15.06 36.66 53.54

Our
Approach 96.38 94.61 92.38 91.02 95.53

Using Static and Motion Samples
Previous
Approach 70.29 23.68 36.76 94.08 61.09

Our
Approach 97.18 98.39 96.50 94.39 98.39

and it is validated using new never before seen stationary data
obtained in a new location and recorded with different test
subjects. The new dataset has a total of 382 stationary samples
including 201 pedestrians.

V. RESULTS

In Table II, first we compare the performance of our human
detector with that of the previously used approach [18],
using 1214 static-only samples, including 300 pedestrian
examples. Second, we compare using 1214 static examples,
including 300 pedestrians, and 549 mobile examples,
including 415 pedestrians. We observe that our approach
obtains considerable better results in all metrics using only
static pedestrians. When comparing the static and motion
samples, we notice that our approach also preforms better;
yet, the precision metric using our approach is only slightly
increased. Table III shows the confusion matrix using
static-only samples. The previous approach does a very good
job detecting true negative samples; yet, it mislabels many
human samples as non-humans (i.e. false negatives). Our
approach reduces the number of false negatives by more than
80% while maintaining a high percentage of true negative
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TABLE III
CONFUSION MATRIX COMPARISON ON STATIC SAMPLES

Previous Approach Our Approach
Detected Label Detected Label

True Label Human Non-Human Human Non-Human

Human 29
(10.28%)

253
(89.71%)

265
(93.97%)

17
(6.03%)

Non-
Human

26
(2.78%)

906
(97.21%)

35
(3.75%)

897
(96.24%)

TABLE IV
PEDESTRIAN RECOGNITION PERFORMANCE ON NEW DATA SET

Results Accuracy Recall F1 Precision AUC
(%) (%) (%) (%) (%)

Using Static Samples
Previous
Approach 53.14 1.10 2.18 100.0 50.55

Our
Approach 93.97 97.79 93.89 90.30 94.16

detections.

To analyze the ability of our detector to generalize beyond
the examples of the training set, we studied its performance
using a new data set, including only static examples never
used before for training or testing. The result is shown in
Table IV. The data used in this experiment has a total of 382
stationary samples including 201 pedestrians. Results of our
approach with this new data were slightly lower than with
the previous test; however, all metrics are acceptably accurate.
The precision of the previous approach is reported as 100%.
The precision metric formula is Precision = tp/(tp + fp)
and in this case Table V shows there were no false positives.
However, due to the large number of false negatives all other
metrics are low, the performance of this previous approach
is considered no better than a random guess do to its low
accuracy of 53.14%.

A particular analysis subject was the precision vs. distance
correspondence because of the decreasing point density of
distant objects makes it difficult to interpret shapes. The num-
ber of misclassified examples using 1214 static-only samples,
including 300 pedestrian examples, is shown in Table VI. We
can observe that there is no significant increase in the number
of false positives and false negative as the distance increases.
The misclassified percentages by category is also displayed.
The error percentage grows for distances greater than 10
meters, although this is mainly due to the small number of

TABLE V
CONFUSION MATRIX COMPARISON ON NEW DATA SET

Previous Approach Our Approach
Detected Label Detected Label

True Label Human Non-Human Human Non-Human

Human 2
(1.10%)

179
(98.89%)

171
(94.47%)

10
(5.52%)

Non-
Human 0 (0%) 201

(100%)
9
(4.47%)

192
(95.52%))

TABLE VI
MISCLASSIFICATION ERRORS AT VARIOUS DISTANCES

Distance Total Misclassified Error Percentage
(m) Samples Samples (%)

0 - 1 10 0 0.00
1 - 2 58 2 3.44
2 - 3 86 6 6.97
3 - 4 81 8 9.87
4 - 5 44 0 0.00
5 - 6 60 0 0.00
6 - 7 41 5 12.19
7 - 8 307 2 0.65
8 - 9 161 2 1.24

9 - 10 186 4 2.15
10 - 11 150 13 8.66
11 - 12 19 7 36.84
12 - 13 3 3 100.0

Fig. 5. Examples of clusters misclassified as humans.

actual examples in those categories. This indicates that the
training data set must include more examples of long distance
subjects to get more accurate results at distances longer than
10 meters.

After concluding that the increasing distance from sensor is
not the greatest factor for false labeled samples, the misclas-
sified data was furthered examined. A number of mislabeled
examples presented similar characteristics. Two of the most
common point cloud examples causing false positive errors
are shown in Fig. 5. The sample shown in the right is a
simple 90° corner of the inside of a room. The 90° angle
of the points can fit on to a circle without much error while
providing a radius measurement resembling that of a person.
The sample on the left side of Fig. 5 is a small piece of wall.
The wall fragments classified as humans all have exactly 4 ring
lines, six to ten points in each line and are in a range from
0 to 3 meters. This samples have a limited number of points
which makes shape differentiation difficult between them and
a partially seen person. Both these cases involve flat surfaces,
by adding a surface normal gradient feature, flat surfaces with
no surface change as well as corners with drastic 90° surface
changes would be discarded. The second case error could be
be reduced by elevating the number of points required to be
considered a valid object, as differentiating shapes with so
little available information is difficult and imprecise.
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VI. CONCLUSION

This paper describes a simple method for recognizing
pedestrians from vertically sparse point cloud data. The ex-
perimental results verify that our approach deals with partially
seen pedestrians, as well as decreasing point density up to
10 meters distance from the sensor. The proposed feature set
is demonstrated to be effective at classifying static humans
without the need for motion features. Our work can be
improved by selecting additional features to deal with specific
error cases.
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Using Similarity Measures to Detect Organizations in Online Escort
Advertisements

Carl Edwards1, Anthony Wertz2 and Artur Dubrawski3

Abstract— Sex trafficking is a substantial problem in the
world, and millions suffer from forced sexual exploitation.
Due to the proliferation of internet, a significant amount of
potential information for detecting trafficking behavior is now
available online. By using this online data to trace organizations
over time, law enforcement can both target specific trafficking
organizations as well as better understand and address changes
in trafficking activity. Past work has extracted various features
from the data and attempted to cluster and classify it. In
this paper, we approach this problem with several similarity
measures in order to detect and monitor organizations in escort
advertisement data. Our framework allows for easy incorpo-
ration of new similarities as well. Additionally, we examine
multiple modalities (text advertisements and corresponding
images) to enhance the detection of these trends by providing
multiple perspectives. This work finds that organizations can be
detected which show the evolution of advertisements temporally
and geographically even as both names and phone numbers
change.

machine learning, escort advertisements, similarity mea-
sures, trend detection, multimodal data

I. INTRODUCTION

Human trafficking is a pervasive and global problem today.
In 2017, the International Labour Organization estimated that
40 million people globally were victims of modern slavery.
Among these, “3.8 million adults were victims of forced
sexual exploitation and 1.0 million children were victims
of commercial sexual exploitation in 2016” [1]. Due to the
massive social impact of the internet, advertising for sex
trafficking has moved online in the form of social networking
sites and online classifieds [2]. In order to avoid detection
by law enforcement, trafficking organizations attempt to
blend in with non-trafficking related advertisements. They
may periodically change phone numbers or other identifying
features. Essentially, connecting advertisements becomes a
game of whack-a-mole. An organization might pop up with a
phone number in one location and then somewhere else with
another number. By using multiple similarity measures, we
are able to draw connections between advertisements even if
these identifying features changes.

In 2014, DARPA launched its Memex program with a
specific focus on combating human trafficking; this three
year program resulted in a significant amount of research
involving information retrieval, feature extraction, and clas-
sification and clustering to obtain and utilize data from this

1Carl Edwards is a senior student at the Department of EECS at the
University of Tennessee cedwar45@utk.edu

2,3Anthony Wertz, Artur Dubrawski are in the Auton Lab,
Robotics Institute, Carnegie Mellon University awertz@cmu.edu;
awd@cs.cmu.edu

source of online information [3]. To best use this information,
approaches have included training classifiers [4], [5], entity
resolution [6], and graph-based techniques [7], [8] Addi-
tionally, some techniques go beyond text and incorporate
multiple modalities of data using smaller supervised datasets
such as in [4].

Recent work has focused on unsupervised natural lan-
guage processing techniques such as word and document
embeddings in order to extract and match templates for
organizations [9] or to indicate sentences likely to be related
to human trafficking [10].

Prior work has primarily focused on text or images,
however, our technique allows for easy integration of new
similarity measures from different modalities. Additionally,
past efforts have frequently avoided the use of pairwise
similarities since it is computationally intractable to compute
them between all data points.

In this paper, we investigate the usage of multiple pairwise
similarity measures to find trends and connections between
advertisements. We examine text similarity based on word
embeddings, similarities based on features extracted from
the data such as phone numbers, names, and image hashes,
and similarities based on face recognition. Additionally,
we incorporate geospatial and temporal information into
our framework. Like [9], we define an organization as a
singular individual or group of related indivudals posting
about escort services on backpage.com. Our approach would
allow law enforcement officials to look for and monitor
organizations suspected of sex trafficking and then build a
case against them as they evolve and change over time. By
combining multiple similarity measures, we are able to better
characterize these organizations.

II. METHODOLOGY

A. Dataset

The dataset, D, consists of roughly 40 million adver-
tisements which were scraped from the escorts section of
backpage.com from September 2012 to December 2017.
Each advertisement contains text, location, time, and images.
There are approximately 20 million unique images present
in the data and 562 unique locations, such as New York
City. The text portion of the data is very noisy; emojis
and mispellings are frequently used, words run together, and
grammatical rules are ignored. Additionally, the dataset does
not have labels due to its size and the domain expertise
required to estimate an advertisement’s likelihood of being
posted by traffickers.
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B. Similarity Measures

Similarities measures take two points, q, d ∈ D, and
compute the similarity f : D × D → R. In this work, we
use similarity techniques which have a range of [0, 1] where
q and d are more related if f(q, d) is nearer to 1 and less
related if f(q, d) is nearer to 0.

• Text similarity: We determine text similarity between
advertisements using unsupervised word embeddings.
In recent years, word embeddings which use distributed
representations have significantly improved state-of-the-
art results on a variety of NLP tasks [11], [12]. In
particular, we use fastText embeddings [13], which
extend word2vec [11] to allow for the incorporation of
subword information; this is desirable for representing
this noisy text data where characters such as emojis may
replace a single letter in a word and mispellings are
frequent. Additionally, this model is capable of produc-
ing embeddings for unseen words, which could allow
new ads to be easily embedded by an already-trained
model. A fastText model is initially trained using a
skip-gram architecture [11] and default hyperparameters
on a corpus consisting of the text body of every ad in
the dataset. It creates 100-dimensional embeddings for
the vocabulary in the corpus. Following this, paragraph
embeddings for each ad are created by taking the
average of the word embeddings for each word in the ad.
According to [14], “simply averaging word embeddings
of all words in a text has proven to be a strong baseline
or feature across a multitude of tasks.” Cosine similarity
is used to compute a value between -1 (least similar) and
1 (most similar) to measure the similarity between two
embeddings. This is the only similarity which outputs
values below 0. However, empirical results produce
only positive values. Cosine similarity [15] between two
vectors v1 and v2 is defined as follows:

similarity(v1, v2) =
< v1, v2 >

‖v1‖‖v2‖

• Common-Feature similarity: This boolean similarity
measure is 1 if two advertisements have a feature in
common (e.g. a phone number) and 0 otherwise. We
use it for the following similarities:

– Phone Number Similarity: Phone numbers are ex-
tracted using regular expressions.

– Image Hash Similarity: Images are hashed for each
advertisement. This allows detection of image reuse
between advertisements.

– Name Similarity: Names are extracted using the
AnonymousExtractor regex from [6].

• Face similarity: Faces are extracted and processed
into 128-dimensional vectors using a pipeline
of dlib pretrained models [16]. Face detection
is performed using the CNN-based model
cnn face detection model v1. This is chosen
over the HOG (histogram of oriented gradients) model
since it can be accelerated on a GPU. Next, a 5-point

landmarking model trained on the dlib 5-point face
landmark dataset is used to localize the faces. Finally,
dlib face recognition resnet model v1
is used to create a 128-dimensional embedding for
each detected face. This model is a ResNet based
on [17] with only 29 convolutional layers instead of
34 and with the number of filters reduced by half.
Two faces are considered to belong to the same
person if the Euclidean distance between them is less
than 0.6; this produces a binary output [16]. When
using the HOG model instead of the CNN for face
detection, this pipeline achieves a reported accuracy
of 99.13% on the Labeled Faces in the Wild dataset
[18]. The CNN-based model which we use, however,
is reported to be more accurate than HOG [16]. Two
advertisements are considered similar if they both have
images containing the same face.

C. Pipeline

• Initially, the data is processed and textual features such
as phone numbers are extracted using regex.

• A fastText model is trained on message body text,
and paragraph embeddings are calculated by averaging
constituent word embeddings.

• Faces are detected in the associated images and face em-
beddings are computed. This completes the extraction
of features from the data.

• First, we optionally restrict our dataset to a specific
location, such as New York City. We use an initial ad-
vertisement, or query point, to look for related advertise-
ments. This is necessary since computing the pairwise
similarity between all the data points is computationally
intractable.

• Following this, we use a similarity function in order
to isolate a smaller subset, S ⊆ D, of relevant adver-
tisements. In this work, text similarity is used to create
this subset. The text similarity is calculated between
our query point and all other paragraph embeddings.
A subset of advertisements which are above a certain
threshold are selected as S.

• Next, other similarity measures, f , such as common-
feature similarities and face similarity are used to link
advertisements within this subset. For all d1, d2 ∈ S, d1
and d2 are linked if f(d1, d2) is above some threshold
for that similarity measure. This produces a temporal
trail which links advertisements as they change over
time.

D. Thickness of Tail

As a potential indicator of whether a query has produced
an interesting trend, we use the thickness of the tail of the
distribution of text similarities as a proxy representing signal
vs noise in the subset, S, of text related to the query point, q.
We calculate this as the ratio of points above two different
similarity thresholds, the numerator threshold, tn, and the
denominator threshold, td. The number of ads above these
two thresholds are counted: nn and nd respectively.
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Fig. 1: Each point represents an advertisement. The y-axis is the text similarity between the query point and each ad.
The query point can be seen at 100% similarity in the upper left of the figure. This organization is found within 247,000
advertisements in Pittsburgh. Activity ceases after a couple months and resumes two years later with a different name and
phone number.

We then calculate our thickness, Θ = nn

nd
. A high Θ value

indicates that a large portion of the closely related ads are
very closely related in text similarity: the tail gets thicker
after tn than it does at td.

III. RESULTS

A. Text Similarity

We find that cosine similarity between unsupervised para-
graph embeddings can be used to successfully extract adver-
tisements related to the query point shown over time. Most
advertisements fall in a range of 0.4 to 0.8. Advertisements
over a certain threshold are considered related to the query
point. We empirically determine this threshold as 0.95. We
find that advertisement text is frequently reused, even over
several years and when features like phone numbers and
names change. The evolution of advertisements can also
be observed, which can be seen in Figure 2 where the
same organization modifies an advertisement from 2012
to 2016; the text similarity slowly decreases as the ad is
continuously tweaked. Figure 1 shows an example of related
ads in Pittsburgh which would not be linked by any of
these features alone. Prior work often uses phone numbers
as an oracle label for groups. Unfortunately, this approach
can fail to successfully capture an entire organization. For
example, Figure 3 showcases an organization which pe-
riodically changes its phone number. Additionally, many
phone numbers are obfuscated, such as in Figure 6, which
poses another challenge to using phone numbers to predict
organizations.

Although text similarity can successfully be used to find
related advertisements, false positives due to high text sim-
ilarity to the query point are erroneously included in the

subset of textually related ads. This creates noise which can
make isolating organizations more difficult. Figure 5 shows
an organization which is surrounded by this noise. Noise is
much more common if a specific location is not selected to
reduce the size of the subset. This is due to an increase in the
magnitude of advertisements from a few hundred thousand
in an individual city to the entire dataset of 40 million ads.

B. Linking

In order to address the noise in the subset of advertise-
ments selected using text similarity, we isolate organizations
from the noise by using additional similarity measures to
link advertisements together. Since the non-text similarity
measures we use are boolean in nature, we link ads if the
similarity between them is 1. Additionally, this serves to help
connect advertisements into organizations which may change
names, phone numbers, and other features at various intervals
of time. For example, Figure 3 show an organization which
can be linked using text, name, and phone similarity. Figure
4 shows an example where an organization is isolated from
noise using other similarity measures.

C. Face Similarity

In order to augment the text similarity and similarities
based on features extracted from the text, we incorporate
multiple modalities of the data by incorporating visual in-
formation in the form of faces. Previous studies, such as
[6], only use image hashcodes. While hashcodes are very
useful, they don’t incorporate visual information which may
help tie together organizations. Figure 4 shows how faces
connect two groups of ads which image hashcodes do not.
The top-left organization completely changes all its images
in 2013, but they still share the same face.
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Fig. 2: This figure also shows another organization within Pittsburgh. An ad is posted over 2,000 times and continuously
tweaked. Notably, the names of the organization’s apparent pimps change. This organization was actually originally identified
in [19] during 2012.

Fig. 3: An organization from Pittsburgh is linked together over several years by combining phone number and name
similarities. Each colored line represents a shared attribute. For example, in the top plot the name ’Mandy’ is connected
using a gray line. The bottom plot shows periodic changes in phone number.
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Fig. 4: This figure shows an organization (top left in plot) in
LA which changes all its images at once. Face similarity is
used to connect these two groups of ads with separate image
hashes.

In this work, we extract approximately 635,000 faces
from the first 5 million chronologically-posted unique images
in the dataset. Due to time constraints and computational
limitations, we were unable to process the remaining images.
However, images which may have been initially posted in
2012 can often be found during later years, since images
are frequently reused. The usage of stock images is also
common.

Although using face recognition allows improved con-
nections between ad images, the face recognition model
appears to suffer from false positives. This may be due
to irregular poses, occlusions, and intentional obfuscation.
Additionally, the face recognition model may not perform
as well on minorities. Figure 5 shows an example of two
organizations which are linked using both text and face
similarity, However, inspection shows they are not related.
Due to privacy concerns, an example of matching faces
which are false positives are not shown.

D. Multiple Locations

In addition to searching for organizations within specific
cities, nationwide searches can also be conducted to find
multi-city organizations, such as in Figure 6. In fact, the
URLs in these ads appear to be subdomains of an organiza-
tion taken down by the DoJ in early 2019 [20]. Unfortunately,
searching all locations results in more noise being included
in the textually related subset of advertisements due to the

Fig. 5: Although these two organizations in LA are connected
by faces, manual inspection shows that this is a false positive.

Fig. 6: This figure shows a query of all the data which
finds a multi-city operation in several locations around the
New York City metropolitan area. The text from one of
these advertisements is shown above. The ads have location-
specific URLs and obfuscated phone numbers.

increase in magnitude of data. Since nationwide similarity
computations are more expensive, we find it prudent to
examine trends occurring within a specific location first
before looking for multi-city activity. This is supported by
[6]’s finding that location is the most informative feature for
their entity resolution classifier.

E. Examining Thickness of Tail

We also find that the thickness of the tail of a distribution
of text similarities can be indicative of an organization. An
example of this can be seen in Table I. After examining this
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Fig. 7: An organization identified in data from Los Angeles.
Its query point corresponds to index 13 in the Table I, which
has a Θ value of 47.7

table, we then selected index 13 for investigation, resulting
in Figure 7. It is important to note that although this metric
indicates the likely existence of an organization, a thin tail
does not indicate that no organization exists. In queries
with more text noise, several unrelated organizations could
appear. Additionally, there might be related ads whose text
similarities are not above the threshold tn.

Index nd nn Θ
4 2451 64 2.61
5 1567 23 1.47
6 1980 19 0.96
8 330 153 46.36
9 410 1 0.24

11 988 929 94.03
12 4818 44 0.91
13 153 73 47.71
15 747 352 47.12
16 572 1 0.17

TABLE I: An example of comparing queries using the
thickness of tail on a few advertisements in Los Angeles.
Each row represents an ad with over 50 textually related ads
taken from the first 20 ads. nn is the number of ads above
a similarity threshold of 0.99 and nd is the number above a
threshold of 0.95. Θ is the thickness of tail, nn

nd
.

IV. CONCLUSION

In this paper, we examine the use of multiple similarity
measures in order to find trends and connections indicating
organizations within escort advertisements. We demonstrate
how this technique can find organizations even as they
change names and phone numbers. Additionally, the use
of multiple similarities can help to remove erroneous noise
from being included in potential organizations. In particular,
this framework allows easy incorporation of new similarity
techniques, and we leverage this capability in order to draw
information from multiple modalities of the data, which can

help provide a more complete picture of an organization. This
would allow law enforcement to investigate for the existence
of sex trafficking organizations, monitor organizations as
their activity changes (such as attempting to conceal their
identity), and build case evidence against them.

V. FUTURE WORK

In the future, our technique can be improved through
the use of more features from [5] as well as incorporation
of other similarities. The usage of visual information can
be improved through similarities based on background and
foreground segmentation and matching. Additionally, the
use of a weighted average-based paragraph embedding and
higher dimensional embeddings may improve the quality of
the measure of text similarity.
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Angle-Specific Goal Assignment for Multi-UAV Persistent Coverage

Daniel Feshbach1, Shohin Mukherjee2 and Maxim Likhachev3

Abstract— In a variety of situations from traffic monitoring
to disaster response, mobile robots present promising tools to
observe large areas over time. Planning for persistent coverage
with one or more robots involves ensuring that each site
of interest is observed at least as frequently as some given
minimum, which may vary by site. This paper builds on [1],
which provides an online kinodynamic planning framework for
persistent coverage of a grid-based environment using multiple
robots with circular sensor footprints. Since its sensor footprint
is a circle, the coverage from position (x, y) does not depend
on the angle the robot is facing, so the framework assigns goal
positions as (x, y) and then finds plans to reach that position
indifferent to the final angle. However, many sensors in the real
world face a specific direction and thus have coverage which
depends on the robot’s heading, requiring planning systems
to specify heading in goal assignment. This paper extends the
planning framework from [1] to non-circular sensor footprints
by assigning and planning to angle-specific (x, y, θ) goal poses.
Most of our work is in the goal assignment, which balances
the the urgency of what is covered at the goal pose with the
feasibility (approximated using Dubins Distance) of reaching
that specific pose.

I. INTRODUCTION AND RELATED WORKS

In robotics, the problem of persistent coverage involves
using one or more mobile robots to continually monitor
a region over time [1]. It is characterized by the need
to repeatedly re-observe the same areas as frequently as
possible or based on some desired minimum frequency.
Desired observation frequencies may vary between regions
in the environment, with some at higher priority than others.

This paper builds on [1], which presents a planning system
for persistent coverage of a grid-based environment with
multiple unmanned aerial vehicles (UAVs) which cover a
specified sensor radius around their position. It approaches
the problem by running a continuous loop which plans for
one UAV at a time for upcoming window of time. The
goal assigner selects a target position which balances close
proximity to the current position with high urgency of the
goal position’s coverage, based on how long remains until the
cells will have been unobserved for too long. Then the goal
planner finds a collision-avoiding, kinodynamically feasible
plan of motion primitives to reach this goal.

Since [1] models the sensor footprint as a circle centered
on the robot, what a UAV covers does not depend on
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Fig. 1: A UAV with a plan to a goal. The black center of
the circle is the UAV’s current location, and it is currently
covering the red rectangle in front of it. The red point is
the location of the UAV’s current navigation goal, and the
red curve is the path that takes it within a distance tolerance
of the goal. The goal angle faces towards the yellow inner
square, because that is the highest priority region to cover.

the angle it is facing. Its goal assigner therefore outputs
(x, y) positions on the flight plane, and its goal planner
seeks paths which end at this position facing any angle.
However, the assumption of a circular sensor footprint does
not hold for many real-world sensor systems, particularly
on non-holonomic or kinodynamically constrained vehicles
like UAVs. In such systems, the coverage depends on which
angle the robot is facing, so that angle must be considered
in planning systems.

This paper extends the planning framework from [1] to
non-circular sensor footprints by assigning and planning
to angle-specific (x, y, θ) goal poses instead of just (x, y)
positions. Specifically, we consider a rectangular footprint
displaced in front of the robot. This is more difficult than
using a circular sensor footprint because the space of possible
goals is much larger, and the planner must reach a state which
satisfies a much more specific restriction. We approximate
the feasibility of reaching goals with specific angles using
the length of the shortest Dubins path [2].

To restrict the size of the search space, we select a
single heading from each cell: we test and compare two
versions of how to select the heading from each cell. One
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version optimizes for urgency of a pose’s coverage, the other
minimizes the Dubins path from the current pose. Then, in
the space of each cell associated with its ‘best’ angle, we
conduct a multi-Goal Dijkstra search to minimize a cost
function which accounts for both urgency and feasibility.

Simulation experiments demonstrate that assigning and
planning to angle-specific goals improves coverage perfor-
mance compared to approximating rectangular sensor foot-
prints as circles. We also find that, when selecting the
angle from each cell to consider in the goal assignment
search, minimizing the Dubins distance successfully leads
to assigning goals which are easy to reach. This improves
the success rate of the motion planning search and resulting
in superior coverage performance.

Section II formalizes the problem statement and provides
a detailed summary of system structure (based on [1]) in
which we work. Section III explains our version of the
goal assigner, the adjustments to which are this paper’s
central contribution. Section IV discusses how we adjusted
the goal planner, section V presents our experimental setup
and results, and section VI discusses concluding thoughts
and future directions.

II. SYSTEM SETUP AND PROBLEM STATEMENT

We consider n UAVs {U1, . . . , Un} flying over a 2D
environment and observing rectangular regions in front of
them. To reduce the dimensions of path planning, we assume
all UAVs fly at a constant height. As in [1], the task of
the overall system is to observe environment cells at least
as often as a frequency specified in each cell, so we use
the same overall system structure. This paper considers
the problem of how to adjust the [1] system to handle
sensor footprints which are not circular, and whose coverage
subsequently depends on the angle the UAV is facing.

A. Environment

We discretize the environment into a mission-map grid M .
Let ci,j denote the cell at row i and column j of M . There
are three types of cells:

1) Coverage cells, which UAVs can fly over and are
tasked with observing repeatedly. Let MC denote the
set of all coverage cells in M .

2) No-coverage cells, which UAVs can fly over but need
not observe. Let MNC denote the set of all no-coverage
cells in M .

3) Obstacle cells, which UAVs cannot fly over, must avoid
colliding with, and need not observe.

Let Mfly = MC ∪MNC , the set of all cells which the UAV
can fly over.

Each coverage cell ci,j has a specified lifetime `(ci,j), a
desired upper bound on the time since the cell has last been
covered. While the system is running, we keep track of the
age a(ci,j) of each coverage cell, the time since it has last
been covered. We say a cell expires when its its age exceeds
its lifetime, and that its time remaining is `(ci,j)− a(ci,j).

Fig. 2: From [1], an example environment. The red, yellow,
and green zones are coverage cells with lifetimes of 5, 10,
and 15 minutes respectively. The blue zone is no-coverage
cells, and the black border is obstacle cells.

Fig. 3: The dimensions of the UAV sensor footprint. For our
experiments we use d = 30 meters, w = 25 meters, φ = 10
meters, on grid cells of size 3 meters.

B. UAVs

Each UAV Uk is a kinodynamically constrained system,
and so we use the motion planner from [1] which plans using
kinodynamically feasible motion primitives defined on states
which include velocity. The contribution of this paper focuses
on the UAV’s pose (i, j, θ), where (i, j) is its coordinates in
the grid and θ is the angle it faces.

Each UAV is equipped with a sensor whose footprint Fk is
a rectangle of width w and length d in front of the robot. The
center of the rectangle is at distance φ in direction θ from
(x, y). A cell in the environment is covered by Uk when
any portion of it is within Fk. Whenever a coverage cell is
covered, its age is reset to 0 and its time remaining is reset
to its lifetime.

C. Persistent Coverage Problem

The goal of the system is to maintain the highest possible
level of coverage of the environment relative to the cell
lifetimes. Specifically, we seek to minimize the number of
cells which are expired (have their age exceed their lifetime)
and minimize the environment’s overall coverage criticality,
defined as the average a(ci,j)/`(ci,j) of all coverage cells
ci,j at a particular time.

D. Prioritized Planning System

To approach the overall problem of persistent coverage,
we use the prioritized planner (PP) from [1]. This considers
UAVs one at a time, and separates out the questions of where
it will go next (what we call goal assignment) and how it
will get there (goal planning). Goal assignment considers the
current position of the UAV and coverage status of the envi-
ronment, adjusting for what other UAVs are about to cover
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in their committed plans. Goal planning runs a weighted A*
search for the goal position on a graph of kinodynamically
feasible motion primitives, avoiding obstacle cells and other
UAVs.

After the goal planner finds a path, the prioritized planner
takes the first tmax seconds of the path and declares it com-
mitted so that the subsequent UAVs can treat it as a moving
obstacle and avoid it in their goal planning. The choice of
an appropriate tmax must be made based on the specific
application, and [1] discusses the competing concerns with
it being too long or too short.

[1] uses a circular sensor footprint, so it assigns goals
which were simply particular cells (i, j), and plans paths
which reach the cells without regard to the angle it ends
up facing. Since we use a footprint which varies based on
the robot’s angle, this paper considers how best to assign
goal poses specified as (i, j, θ). This is more challenging
because the space of possible goals is larger, and because
goals it substantially restricts the UAV states which qualify
as reaching the goal.

III. GOAL ASSIGNMENT ALGORITHM

We select goal poses which seek to cover the most urgent
cells while being as easy as possible to reach from the robot’s
current position. Like [1], we achieve this by conducting a
multi-goal Dijkstra search on the 8-connected grid of non-
obstacle cells, but our approach adjusts for the coverage
and reachability of the specific angles we assign. Multi-
goal Dijkstra proceeds by augmenting an existing graph
with a pseudo-goal node, which is connected to existing
nodes (the potential goal nodes) by pseudo-edges. It then
conducts a Dijkstra search to find the shortest path from a
start node to the pseudo-goal. The node immediately prior
to the pseudo-goal in the shortest path - the one whose
pseudo-edge is used to reach the pseudo-goal - is selected and
returned as the output goal. In our case, our starting graph
is the 8-connected grid of non-obstacle cells, with weights 1
and
√

2 for horizontal or vertical edges and diagonal edges
respectively. As detailed below, we consider the angle with
the most urgent coverage from each cell, and weigh the
psuedo-edges by a combination of how urgent the coverage
is and how difficult it is to reach that angle, so the total path
length balances coverage and reachability.

A. Selecting the Optimal Angle at Each Cell

Let F (i, j, θ) be the set of coverage cells covered by
the footprint at (i, j, θ). We define the remainder of a pose
(i, j, θ) as

R(i, j, θ) = mean
c∈F (i,j,θ)

(`(c)− a(c)) ,

the average time remaining over F (i, j, θ). Note that smaller
remainders are more urgent to cover because the cells are
closer to expiration.

Let (is, js, θs) be the pose of the UAV at the start of the
time period for which we are selecting a goal. We use Dubins
distance to approximate the feasibility of reaching a specific
goal from this position, with a minimum turning radius

Fig. 4: Modified from [1], an illustration of the multi-goal
Dijkstra search used in goal assignment. Between these two
possible goals, the search will select Goal 2 because the total
path cost to the pseudo-goal through it is shorter than the path
through Goal 1. While Goal 1 is closer in grid distance than
Grid 2, it is much farther in Dubins distance, and covers a
region with a higher average time remaining until expiration.

r. This radius is selected manually based on the motion
primitives used in goal planning, aiming to be reasonably
representative of desirable and realistic flight paths. Given a
potential goal cell ci,j and an angle θ, let D(i, j, θ) denote
the shortest Dubins path from (is, js, θs) to (i, j, θ) given a
minimum turning radius of r.

We discretize the unit circle into a set Θ of 16 angles,
which we consider as the possible angles for goals. At
each non-obstacle cell node ci,j , we select an angle θ∗i,j to
associate with the cell node in the Dijkstra search. This θ∗i,j is
the angle we would assign if the multi-goal Dijkstra selected
node ci,j . We test two separate versions of how to select this
angle:

1) Select θ∗i,j as the angle which minimizes the remainder
of the pose’s coverage,

θ∗i,j = min
θ∈Θ

(R(i, j, θ)) ,

i.e., the angle which provides the most urgent coverage
from this cell.

2) Select θ∗i,j as the angle with the shortest Dubins path
from the start pose,

θ∗i,j = min
θ∈Θ

(D(i, j, θ)) ,

i.e., the angle which seems easiest to reach.
While we prioritize one over the other when selecting θ∗i,j ,

we will account for both coverage quality and feasibility to
reach in our selection of which cell node (i, j, θ∗i,j) to assign,
by incorporating both R(i, j, θ∗i,j) and D(i, j, θ∗i,j) into the
cost of the pseudo-edge from node ci,j .

B. Balancing Distance and Time-Remaining Magnitudes

The remainder is in units of time while the rest of the path
cost is in units of distance, so simply adding them together
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Fig. 5: Version (1), optimizing for urgency of coverage, of
selecting the angle θ∗i,j for ci,j . The dark grey cells are
closer to expiration than the light grey cells, so the most
urgent coverage is given by having the UAV face to the right
(the highlighted green footprint). This figure depicts 4 angle
options for clarity, but in our experiments we consider 16.

Fig. 6: Version (2), optimizing for feasibility to reach, of
selecting the angle θ∗i,j for ci,j . The dotted grey paths are
all longer than the solid green path, so in this version θ∗i,j
would be the angle to the right. This figure depicts 4 angle
options for clarity, but in our experiments we consider 16.

may not produce meaningful or useful values for total path
lengths. Time remaining until cell expiration and time for
the UAV to travel a path are fundamentally different uses
of units of time, so we cannot simply use UAV speed to
convert between distance and time. Instead, we must ensure
that distances and coverage urgency are each substantial
contributing factors to goal selection, by scaling them to have
similar magnitudes.

We achieve this by multiplying remainders by a weight
Wt selected to balance the average time remaining rt (at
the current time t) over all coverage cells with the average
euclidean distance dt from the current start position to each
coverage cell.

rt = mean
c∈MC

(`(c)− a(c))

dt = mean
ci,j∈MC

(√
(i− is)2 + (j − js)2)

)
Wt = dt/rt

The result is Wtrt = dt, meaning that the average time
remaining is scaled to equal the average euclidean distance.
This balancing is an improvement over [1], which manually
selected a weight which remained fixed throughout the run.

C. Balancing Dubins and Euclidean Distances

In order to approximate the feasibility and cost of reaching
specific poses, we add a measure based on Dubins distance
to our pseudo-edge costs. However, the search of the 8-
connected grid already incorporates an approximation of the
Euclidean distance to ci,j into the path length. To avoid
double-counting Euclidean distance, we subtract this from
our Dubins distance before adding the result to our pseudo-
edge costs.

D′(i, j, θ∗i,j) = D(i, j, θ∗i,j)−
√

(i− is)2 + (j − js)2

D. Selecting the Optimal Pose

The total cost of the pseudo-edge from the node corre-
sponding to cell ci,j is

Pi,j = WtR(i, j, θ∗i,j) +D′(i, j, θ∗i,j)

Let Gi,j denote the path length in the 8-connected grid from
(is, js) to (i, j). The Dijkstra’s search as a whole will select
the cell node ci,j which minimizes the total path length,

min
ci,j∈Mfly

(Gi,j +WtR(i, j, θ∗i,j) +D′(i, j, θ∗i,j)),

and assign the goal pose (i, j, θ∗i,j). The chosen pose balances
being quickly reachable from the start pose with covering
relatively urgent regions.

Note in line 11 of Algorithm 1 that as we make a breadth-
first search through the 8-connected grid, we ignore any
cell nodes whose grid distance from the start cell is longer
than the shortest currently-known path to the pseudo-goal.
This saves time because there is no way such cells or their
descendants can define a shorter path to the pseudo-goal.

IV. GOAL PLANNER ADJUSTMENTS

Our goal planner is essentially the same as [1], except
that we terminate our search when we reach a state within
small tolerances of both the spatial position and the angle of
the goal, rather than just of the spatial position. Since this
is a much more restrictive condition and thus more difficult
to reach in a search, we run our experiments with a higher
suboptimality bound (weight in the weighted A* search) than
used in [1], and give it more time to conduct the search.

Additionally, we improve robustness over [1] to failures of
the goal planner. In event that the goal planner fails to find
any path to the goal within its allotted time, [1]’s default
behavior is to hover in place. This happens extremely rarely
when planning without a specific goal angle, but much more
frequently in our more difficult search. Hovering in place
leaves UAVs in essentially the same position relative to the
environment, often leading them to keep choosing the same
difficult-to-reach goal and remaining stuck. To prevent this,
our system instead has the Goal Planner always return the
last path in its search if it times out, and log an error if this
path does not reach the goal.
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Algorithm 1 Goal Assignment: Multi-Goal Dijkstra

1: Wt ← dt/rt
2: pseudoGoal← new graph node
3: pseudoGoal. costTo←∞
4: start← new graph node
5: start. coordinates← (is, js)
6: start. costTo← 0
7: frontier ← queue containing only start
8: while frontier is not empty do
9: thisNode← pop front of frontier

10: (i, j)← thisNode. coordinates
11: if thisNode. costTo ≤ pseudoGoal. costTo then
12: θ ← θ∗i,j
13: pseudoEdgeCost ← WtR(i, j, θ) + D(i, j, θ) −√

(i− is)2 + (j − js)2

14: totalCost← thisNode. costTo +pseudoEdgeCost
15: if totalCost < pseudoGoal. costTo then
16: pseudoGoal. costTo← totalCost
17: pseudoGoal.predecessor← totalCost
18: end if
19: for (i, j) ∈ thisNode.neighboringCells do
20: if (i, j) has not been seen before then
21: neighbor ← new graph node
22: neighbor.predecessor← thisNode
23: neighbor. costTo ← thisNode. costTo +

{
√

2 if diagonal neighbor, 1 otherwise}
24: push neighbor to back of frontier
25: end if
26: end for
27: end if
28: end while
29: nodeSelected← pseudoGoal.predecessor
30: (i, j)← nodeSelected. coordinates
31: θ ← θ∗i,j
32: return (i, j, θ)

V. EXPERIMENTAL VALIDATION

A. Evaluation Criteria

Like [1], we measure system performance by evaluating
environment states and timing system components over 2-
hour runs. Specifically, we log the percentage E(t) of
coverage cells which are expired at time t as well as the
coverage criticality C(t) of the environment defined in [1]
as

C(t) = mean
c∈MC

(
a(c)

`(c)

)
,

the average ratio of age to lifetime of all coverage cells. Ideal
system behavior is to keep E(t) at zero and C(t) low and
stable. Meanwhile, we measure the average time taken by
Goal Assigner and Goal Planner respectively, as well as the
success rate of Goal Planner at finding a plan which reaches
the goal within its allotted 6 seconds.

We compare the two versions our system (using coverage
urgency vs Dubins reachability to select θ∗i,j) as well as two
benchmarks:

1) A version of our system which assigns and plans to
goal poses with specific angles (i, j, θ), but does not
incorporate Dubins distance at all, or otherwise in any
way account distinguish between a goal being close
and being easy to reach. Not only does it use coverage
urgency to select θ∗i,j , it also does not add the Dubins-
minus-euclidean distance to the pseudo-edge costs.

2) A system essentially from [1], using a circular foot-
print of diameter 25 meters (the width the rectangular
footprint sweeps out if it moves straight forward). This
assigns and plans to goals only in spatial coordinates
(i, j), and maintains its internal representation of cell
ages based on the circular footprint. However, we
separately maintain the actual environment state based
on the rectangular footprint, which is what we use
to measure the performance. This measures how well
[1]’s circular-footprint system works when applied
on UAVs whose actual footprints are not circular,
demonstrating the need for this paper’s modifications.
For ease of comparison, however, we do make one
change from [1]: in this version we automatically and
dynamically set the weight Wt between distance and
time, as described in III-B

B. Experiment Setup

We test the system in an environment of size 220x220
meters, discretized into 3x3 meter cells. Pictured in Figure
1, this environment has concentric square regions featuring
cells with lifetime increasing inwards out. The lifetimes are
5, 10, and 20 minutes respectively for the yellow, green, and
blue regions, while the grey region on the outside is a no-
coverage zone and the black is obstacle cells. We consider
UAVs with rectangular footprints of width w = 25 meters
and length d = 30 meters, displaced φ = 10 meters in front
of the UAV. Our Dubins approximation of path cost uses
minimum turning radius r = 19 meters. We allow the Goal
Planner up to 6 seconds find a path to the goal, with a sub-
optimality bound of 30, and commit up to tmax = 30 seconds
of plans.

C. Results

Figure 7 plots E(t) and C(t) over a 2-hour run for
each version, while table II shows the averages of these
values over the run. Our proposed approaches maintain better
coverage (indicated by lower values for C(t) and E(t)) than
the benchmark which falsely treats the footprint as a circle.
The benchmark which completely ignores Dubins distance
performs surprisingly well, about as well as the version
which considers Dubins distance only in the pseudo-edge
costs after selecting θ∗i,j . The version which selects θ∗i,j to
minimize the Dubins distance, however, performs noticeably
better than the others.

Table I presents timing data for the goal assigner and the
goal planner, and the frequency at which the goal planner
failed to find a path to the goal. Table II shows the average
duration of the plans returned by the goal planner (including
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Fig. 7: Plots of C(t) and E(t) through a 2-hour run. For
both, lower values indicate better coverage. All approaches
which assign angle-specific goals outperform the version of
the system which approximates the rectangular footprint as a
circle and assigns goal positions instead. This demonstrates
that that we have improved over applying [1] to non-circular
footprints. The plot also shows that the best coverage is
achieved by selecting θ∗i,j to minimize the Dubins distance
from the current pose.

the semi-arbitrary paths returned by the goal planner when
it fails to reach the goal). As expected, assigning angle-
specific goals slows down goal assignment because the space
of possible goals is much larger, and goal planning because
the states consistent with a goal are much more restricted.

Here we can see clearly how screening for θ∗i,j to minimize
Dubins distance succeeds in picking much more reachable
goals: it is much faster and succeeds much more often. The
fact that this results in distinctly better coverage performance
than the versions which select θ∗i,j to optimize coverage
urgency is somewhat surprising, but makes sense in light
of how frequently the latter versions fail to find any path
to the goal. Even more surprising is the fact that the paths
found in the easiest-angle version average less than half the
duration of those in the circle-approximation version.

VI. CONCLUSION

We present a method for assigning angle-specific goal
poses in a persistent coverage scenario which balances the

Version Average GA
Time (s)

Average GP
Time (s) GP Failure Rate

Easiest Angle to Reach 0.7 0.8 10%
Most Urgent Angle 1.4 2.9 40%
Ignoring Dubins 1.3 3.0 40%
Circle Approximation 0.5 0.3 0%

TABLE I: Data from 2-hour runs of each version of the
system.

Version Average Plan
Duration (s) Average C(t) Average E(t)

Easiest Angle to Reach 18.8 63% 20%
Most Urgent Angle 42.0 68% 23%
Ignoring Dubins 44.2 68% 24%
Circle Approximation 40.6 81% 30%

TABLE II: Data from 2-hour runs of each version of the
system.

feasibility of reaching the goal with the priority of what it
covers. Our proposed method provides significantly better
coverage for angle-dependent sensor footprints than are
achieved by approximating those footprints as if they are
angle-independent, demonstrating that we have successfully
generalized [1].

We also find that Dubins distance can improve the goal
assigner’s notion of how feasible it is to reach a pose,
particularly when used to aggressively screen for only the
most reachable angles at each potential goal location.

It was surprising that screening candidate angles for the
most urgent coverage did not lead to better coverage results.
Even when using feasibility as a factor in the cost function
the Dijkstra search minimizes, this has a strikingly high rate
of planner failure. After future work which may improve the
goal planner, it may be worth re-examining the best way to
select the candidate angle to associate with each cell.

When candidate angles are screened to minimize Dubins
distance, the planner succeeds nearly as frequently as when
it does not deal with angle-specific goals, and the resulting
paths are dramatically shorter. The shorter paths to goals are,
the more of the coverage is deliberate (selected with urgency
in mind) rather than incidental (happening to be along the
way to the goal). This dynamic suggests that future work
integrating coverage priority directly into goal planning may
be fruitful.

Other areas for future work could include replacing goal
positions with goal regions (clusturs of nearby similar-
urgency cells), learning parameters such as tmax, Wt, and
rmin from data, and more sophisticated approaches to col-
laboration between UAVs.
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Detecting Physiological State Changes During Blood Loss via Deep
Unsupervised Learning

Chufan Gao1, Anthony Wertz1 and Artur Dubrawski1

Abstract— Monitoring of physiological responses during a
blood loss event is crucial in determining appropriate treatment
for the well-being of the patient. Physician intuition implies
that the body has a number of different physiological response
patterns to blood loss, which change as time passes and as
blood loss worsens. Although previous research has shown
that a random forest classifier is able to determine whether
a patient is bleeding based on data alone, it is unclear whether
a model is able to detect these accompanying response patterns
from raw physiological data. To approach this problem, we use
unsupervised machine learning techniques, such as K-means
and Agglomerative clustering, as they are designed to extract
patterns from data without a ground truth. However, since
the data gathered from the patient are high-dimensional and
in time series form, it is impractical to handle without further
preprocessing. To make this tractable, we employ a deep dilated
convolutional encoder with combined with a custom triplet loss
function to project the data into a lower dimensional space.
By clustering these latent vectors with time constraints and
visualizing the clusters over time, we hypothesize that the
clusters will correspond to the physiological response patterns
that match physician intuition.

I. INTRODUCTION

Internal bleeding is a common symptom from physical
traumas, but it is difficult to analyze due to its complexity.
The raw data produced by the monitoring equipment
is often of multivariate time series form, which is high
dimensional and difficult to visually analyze. Machine
learning is a natural way of analyzing this high-dimensional
data. However, as a whole, the internal bleeding process has
not yet been extensively analyzed by the field of machine
learning.

This is not to say that no work has been done–for
example, Li et al. showed that prediction of whether a
crash will happen during blood loss is possible [1]. Falck
et al. found that for hemmorhage prediction, a GRU-based
model achieves best performance in small false-positive
range, while being inferior for negatives compared to a
formidable baseline using manually extracted features and a
random forest classifier [2]. Lei et al proposed a method of
performing supervised classification canonical correlation
clusters on time windows of CVP on a pig bleed dataset
and was shown to perform well in prediction of bleeding
vs non bleeding [3] (the appendix also has a list of medical
terms and abbreviations for the reader’s convenience). The

1Chufan Gao, Anthony Wertz and Artur Dubrawski are with the
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213,
USA chufang@andrew.cmu.edu; awertz@cmu.edu;
jdolan@awd@cs.cmu.edu

work previously done on this data has focused on clear-cut,
supervised or semi-supervised approaches in validating their
hypothesis.

Previous work uses supervised learning to predict clearly
delineated outcomes, like the mortality of a person in a
given time window. However, there has been a lack of work
focusing on less obvious changes in physiological data
associated with blood loss. Supervised learning techniques
are not applicable to discover these pattern due to the lack
of ground truth in analyzing physiological state changes.
Only a few studies use unsupervised learning to examine
unlabeled data and discover important patterns. Utilizing an
unstructured approach may allow us to more extensively
understand different physiological effects of blood loss.

Furthermore, Lei et al’s work demonstrated that interesting
patterns could be found from the clusters - one cluster
corresponded mostly to the prebleed phase, a second
cluster would take over after bleeding started, and a third
cluster would appear even further throughout the bleed. The
interpretation was that the physiological responses reflected
in the CVP data of the pigs were changing throughout the
bleed and that these changes were different physiological
responses. Their interpretation was that initially there is
an initial compensation reaction to blood loss, and this
quickly shifts into a secondary overall systemic reaction.
Additionally, they found that most pigs that they analyzed
all similarly exhibited such behavior.

This previous work serves as inspiration to our work,
as it leads to many additional question concerning the
nature of the physiological reactions. For example, are all
physiological compensation events universal for each pig?
How many such physiological responses are there? Can we
build a model to learn and detect these responses?

Despite the widespread adoption of neural networks
in data processing, continuous, multivariate time series data
have not been affected insofar as, for example, the computer
vision or natural language processing communities. The
breadth of work in these fields has not translated to this
multivariate time series data, even though these fields
have valuable models that could be applied. Although
deep unsupervised sequence processing techniques have
generally focused on natural language processing, many of
these model architectures can be generalized to continuous,
multi-variable time series data with some additional effort.
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Fig. 1: Overview of the methodology

In this paper, we demonstrate a modern deep unsupervised
encoder model in the application of finding embeddings
from continuous data of 6 health metrics. With these
embeddings, we can then use several different clustering
techniques to obtain a number of clusters which may
correspond to physician intuition. Additionally, this would
expand on Lei et al’s findings of physiological response
patterns associated with blood loss.

A. Contributions

To summarize, the main contributions of this paper are
1) An investigation as to whether pigs in general have

a universal physiological response pattern to internal
bleeding.

2) An investigation as to the number of such physiological
responses detected from the model.

II. METHODOLOGY

An overview is shown in 1.

A. Data

The data consists of health metrics of 93 pigs in total.
These pigs are separated into 4 groups, which are then bleed
at different rates - 60mL/min, 20mL/min, 5mL/min, and
0mL/min respectively. Each pig was monitored for 11 vital
signs at 250 Hz (synchronized): arterial and venous blood
pressures (CVP, arterial pressure fluid filled and millar,
pulmonary pressure), arterial and venous oxygen saturations
(SpO2, SvO2), EKG, Plethysmograph, CCO, stroke volume
variation (Vigeleo), and airway pressure. The data collection
methodology is similar to [4].

For our task, we choose to only use the 16 pigs assigned to
the most gradual bleeding task - 5mL/min - as this should
give us clearest indications of physiological responses as
the pigs’ status slowly worsens. Also, we choose to only
use 6 of these features - EKG, arterial pressure fluid filled,
pulmonary pressure, CVP, plethysmograph, and airway
pressure - as they contain potential important semantic
information about the physiological status. Additionally,
we also have physician annotated timestamps and notes
of when a blood draw is performed. This is important as
performing a blood draw corresponds with extremely high

variation noise in some variables in the time series for a
few seconds. Each health metric is measured in 250 hertz.

Since we have 16 pigs and we want to simply analyze all of
them, we train our encoder all 16 pigs. This ensures that we
are training over all of the data and learning as much from
the data as possible. For our training data, we pass in the
entire bleed sequence of each pig to the model. To obtain
embeddings of the bleed sequences, We choose a window
of 600 timesteps and split from the time sequences (without
overlap) time windows of 600 timesteps by 6 features. This
allows us to get an embedding of the pig state for every 2.4
second window. We chose 600 as it was long enough to get
1 to 2 breaths in and was easier to process computationally;
however, this is also a parameter that may be tuned in
further research.

B. Causal Dilated Convolutional Neural Network

A convolutional neural network (CNN) is a neural
network that trains well on even very high dimensional data,
such as images. First introduced in 2012 [5], CNNs have
long since been the cornerstone of modern computer vision
approaches. However, CNNs can also be applied to non
image data as well. For example, although recurrent neural
networks have historically been used in sequential data
modeling, CNNs are now a popular and viable approach in
dealing with sequential data. Wavenet is one of the most
famous example of this approach–audio waves produced
by the CNN were better than previous state-of-the-art
recurrent neural network approaches [6]. Wavenet used
dilated convolutions, which skips a timestep every layer of
the CNN - leading to an exponentially large effective view
of the sequence. It also used causal convolutions, or the
idea that the CNN can only process what it has seen before
in the time sequence. In our application, causal convolutions
are still important because it allows the model to be run
on arbitrary length sequences and also be able to run on
sequences online during test time. Should we extend our
approach to online detection of bleeding responses phases,
our model wouldn’t break.

For our deep unsupervised embedding model we use
an convolutional encoder as proposed by Franceschi et
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al. [7]. Compared to an autoencoder, training solely an
encoder model is beneficial in that it severely reduces the
training time necessary for the model to achieve good
performance; additionally, in many cases, training a decoder
model is unnecessary to obtain meaningful embeddings, as
shown by Franceschi et al. This model is able to produce
meaningful embeddings that perform close to state of the
art if not better compared to even supervised time series
embedding methods [7]. Using CNNs to process sequences
have also another inherent advantage: the speed. Since CNN
operations are highly parallelizable, training this encoder
is faster than training a traditional sequence to sequence
recurrent neural network [7]. We choose to use this model
as opposed to traditional statistical feature extraction as
we want to assume as little as possible about the data and
see if the network can discover patterns by itself. Further
information about the nature of this convolutional structure
is shown in Figure 2.

While only 3 dilated causal CNN layers shown here,
in the actual model, the number of these modules is a
hyperparameter that we can specify. The dilated part is
visualized by the doubling of the gaps between the boxes
that is analyzed by the CNN as you go further up in the
output layers. The causal part is shown by the fact that the
final output box on the upper right only has access to the
information of the boxes before it–a regular CNN would
appear more symmetric in that it have access to information
after its current timestep as well. The adaptive pooling
layer comes after the dilated causal CNN layers and simply
reduces an arbitrary dimensional input to a fixed-sized
output. Finally, the final layer is a fully connected layer that
outputs the embedding.

C. Triplet Loss

We will use triplet loss to train our encoder as specified
by [7] et al. Triplet loss is a loss function with a very
natural intuition as its basis - similar things should be close
together and unsimilar things should be further apart. This
is reflected in its mathematical formulation. Let f be our
encoder that obtains latent vectors from the time series data.
Let x, xpos, xnegk be the reference time series, a positive time
series example, and a negative time series example. Let K
be the number of negative samples to take. Then, the loss is
shown in equation 1.

L = −log(σ(f(x)T f(xpos)))−
K∑

k=1

log(σ(−f(x)T f(xnegk )))

(1)
Triplet loss is popular in natural language processing -
Word2vec [8] as it is effective in training unsupervised
models that obtain latent vectors from words that encode
some semantic meaning. Franceschi et al. demonstrated that
this is useful for unsupervised learning of useful embeddings
of general multivariate time sequences as well [7].

Fig. 2: Graphical representation of dilated and causal con-
volutions. The output of each row is the row above it.
The bottom-most row of boxes denotes a variable length
input, and the top-most row of boxes an out of latent vector
embeddings.

D. Sampling methodology

We use a modified version of Franceschi et al.’s sampling
algorithm to obtain choices of reference x, positive example
xpos, and negative example xnegk . This is different from
the original implementation from Franceschi et al. since the
negative samples are only choosen randomly when there
can be no overlap with the reference time series; thus,
this guarantees that a negative example can’t be a positive
example as well. This should allow the model to learn better
as there is a clearer difference between positive and negative
samples. Algorithm 1 shows the methodology. Figure 3
shows how our proposed sampling algorithm in practice.

E. Evaluation

Since we have no ground truth, validation of usefulness
of these embeddings is an open problem. However, we can
qualitatively evaluate them. We use a variety of different
clustering methods to try to find the one that produces
the best cluster of embeddings that makes sense to us
intuitively. We are looking for is separation of the clusters
by time - that is - different clusters should be separated
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Fig. 3: Sampling methodology. Let the each row of boxes
represent multivariate sequences of our training data, and let
the rows be the sequences in the batch where we choose
the references from. Then, the pink squares represent the
reference timesteps, positive timesteps are sampled form
within the reference timesteps. Negative timesteps are sample
from the white boxes (all of the timesteps excluding the
reference timesteps).

for i ∈ [1, N ] do
randomly choose length of reference sample
lenrefi ∈ [1, len(yi)]
randomly choose length of positive sample
lenposi ∈ [1, lenref

i ]
randomly choose reference sample xrefi from
subseries of yi of length lenrefi

randomly choose positive sample xposi from subseries
of xrefi of length lenposi

end for
for k ∈ [1,K ∗N ] do

randomly choose yk from the batch
randomly choose lennegk ∈ [1, size(yk)]
Let xrefyk

be the reference sample that we previously
took from yk
randomly choose xnegk among subseries of yk of
length lennegk without overlapping xrefyk

end for
Algorithm 1: Input: A training batch of complete sequences
yi, where i is the ith training sequence. Let N be the total
number of sequences in this training batch. Let K be the
ratio of negative samples to be sampled per batch item.
Output: N reference samples xref , N samples of positive
samples xpos, and N*K negative samples xneg .

from each other by time, but the same cluster should not
be separated by time. Another thing that we are looking at
is order consistency of the clusters over time. For example,
since the pigs are only ever getting worse in our data, and
should never return to a previous ”healthy” state.

Specifically, we use a number of different time embeddings,
clustering techniques, and latent dimensions, and finally,
number of clusters. We explore:

1) Time embeddings added to latent embeddings. The
type of time embedding is taken from attention trans-
fomers, from Vaswani et al. [9].

a) No time information added
b) Adding time information for full length of the

sequence
c) Adding time information only from the start of

bleed (Since we know the exact location of the

start of bleed from the physician annotations,
we only add temporal information to the em-
beddings obtained after the pig starts bleeding.
The prebleed embeddings are left alone. This is
effectively adding information about the amount
of blood lost, since bleed speed is constant after
the pig starts bleeding).

2) Clustering methods (All of these are implemented in
sklearn [10])

a) K-means
b) Agglomerative clustering with ward linkage

(Bottom-up hierarchical clustering. Ward’s link-
age merges the two clusters such that the increase
in the value of the sum-of-squares variance is
minimized [11]. Specifically, sklearn references
[12].)

3) Latent embedding dimensions: 64, 128, 256
4) Number of clusters: In addition to all of these methods,

we also explore 11 different numbers of clusters that
we pass into the clustering algorithms (from 2 to 12
clusters).

III. RESULTS

A. Graphs of the clusters

Since there may be 3 clustering methods * 3 time embed-
ding methods * 3 latent embedding dimensions * 11 number
of clusters = 297 possible graphs in total, it is impractical
to show all of them in this paper. Thus, we only show a
few examples shown in Figure 4. However, all of the figures
and model code (along with hyperparameters) will be on
my github: github.com/andy1445. The Y axis of each of
the following figures represents each pig, and the X axis
represents minutes. The different colors represent different
clusters found by the clustering algorithm, and the colors
are random. To make these plots easier to see, we jittered
the Y axis.

IV. DISCUSSION

From these graphs, we can see that the clustering algo-
rithm is at able to discern a ”healthy” state and a ”non
healthy” state for all of the 3 cluster graphs. For the 11 cluster
graphs, for both kmeans and agglomerative clustering we are
able to discern between different pigs as well as different
cluster progressions throughout the bleed; however, all pigs
eventually end up in the same state - the green or purple
cluster for kmeans and the orange cluster for agglomerative
clustering. This make sense as the pigs all crash after this
last cluster. Additionally, we found that reactions between
pigs are not universal, as some pigs skip clusters entirely
through the bleed, and they can also start off in different
clusters compared to other pigs. We also see that pigs can
go through as many as 5 different states and as low as 2
states. Additionally, we are able to detect bleed draws. They
show up as noise that occurs regularly every few 30 minutes
or so in the plot of the latent clusters.
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Fig. 4: The plots of the clusters over time when the model is trained with the ability to differentiate between differences
between individual pigs. The colors of the clusters are not consistent between the plots. The X axis is in minutes, and the
Y axis are the pigids.

(a) 128 dimensional latent vectors, half time embedding, agglom-
erative clustering, 3 clusters

(b) 128 dimensional latent vectors, half time embedding, kmeans
clustering, 3 clusters

(c) 128 dimensional latent vectors, no time embedding, agglomer-
ative clustering, 3 clusters

(d) 128 dimensional latent vectors, no time embedding, kmeans
clustering, 3 clusters

(e) 128 dimensional latent vectors, half time embedding, agglom-
erative clustering, 11 clusters

(f) 128 dimensional latent vectors, half time embedding, kmeans
clustering, 11 clusters

(g) 128 dimensional latent vectors, no time embedding, agglomer-
ative clustering, 11 clusters

(h) 128 dimensional latent vectors, no time embedding, kmeans
clustering, 11 clusters
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V. FUTURE WORK

Future work should seek to use more rigorous evaluation
metrics. Once we have the labels, we can then train a
random forest classifier to predict the labels from the raw
embeddings alone. Additionally, we should also use our
embeddings to predict bleed or survival, like previous work
has done. Future work should also explore more variety of
models such as different encoder models such as Variational
Autoencoders. Additionally, Additionally, we can also find
clusters or separations in a multitude of different ways,
for example, we can use Hidden Markov Models (HMMs)
to detect changes as well as change point detection. We
should also aim to have physicians analyze the validity of
the different clusters that we find.
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APPENDIX

Abbreviation and Definitions
• Airway pressure: Pressure in the the airways, note that

this is under artificial ventilation to offset the energy
requirement for breathing, so that a cleaner reaction to
the blood loss may be obtained (measured in mmHg)
[2].

• Arterial pressure fluid filled: Systemic arterial blood
pressure in the aorta, measure in mmHg [2].

• Arterial pressure millar: Systemic arterial oxygenated
blood pressure in the peripheral (measured in mmHg)
[2].

• CCO: Continuous cardiac output is a measure of the
volume of blood pumped from the heart in a certain
amount of time. It is often used as a predictor of oxygen
delivery to the cells (measured in mL/s) [13]

• CVP: Central venous pressure is a measure of pressure
in the superior vena cava that can be used as an
estimation of right atrial pressure, often used as an as-
sessment of hemodynamics and hemmorage prediction,
particularly in intensive care units (measured in mmHg)
[14].

• EKG/ECG: Both are the exactly the same thing and
stand for electrocardiogram, which is a measure of the
flow of the cardiac electrical cycle (measured in mV)
[15].

• Plethysmograph: A waveform that represents changes
in blood volume. It has no units and is qualitative due
to the non-linear relationship between the absorption of
the light for each individual, but overall patterns can be
[16].

• Pulmonary pressure: Pulmonary artery pressure (PAP).
The pressure of blood pumped from heart into pul-
monary (lung) system (measured in mmHg) (i.e. de-
oxygenated) [2].

• SpO2: Arterial oxygen saturation (oxygenated) (mea-
sured in %) [2].

• SvO2: Venous oxygen saturation (deoxygenated), (mea-
sured in %) [2].

• Vigeleo: Variation of the stroke volume (SV) or the
volume of blood pumped out of the left ventricle
(oxygenated), defined as range over mean [2].
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Anomalous Pattern and Systemic Error Detection in Radiation Portal
Monitors via Robust Deep Autoencoders

Harshayu Girase1, Kyle Miller2 and Artur Dubrawski2

Abstract— Detecting anomalous points and patterns has al-
ways been a highly researched topic in the machine learning
community. Our work focuses on detecting anomalous pat-
terns and potential systemic malfunctions in radiation portal
monitors (RPMs). Since RPMs have over hundreds of sensors
that collect real-time data, it is not uncommon to expect
systemic malfunctions due to sensor bias and noise from time to
time. Most RPMs are often unaffected by minor malfunctions;
however, it is of critical importance to detect these slight errors,
as there is always a risk of missing hazardous radioactive
materials. Prior research on this topic involves distance and
non-parametric based detection; however, the performance of
these methods often does not scale well in high-dimensional
spaces. Thus, more recent literature focuses on PCA and
spectral clustering based methods to detect unusual patterns.
To leverage complex relationships present in high-dimensional
data, we use state-of-the-art robust deep autoencoders [1],
[2] along with a changepoint detection algorithm to detect
anomalous changes in data. Our method detects periods of
anomalous patterns and small sensor malfunctions, for example
bias and unexpected noise, with higher accuracy on more subtle
errors.

I. INTRODUCTION

Following the attack on 9/11, US Customs and Border Pro-
tection deployed thousands of RPMs across national borders
to detect radiological threats. One of the most comprehensive
methods used for radiation detection is a tool developed by
Lawrence Livermore National Laboratory: Algorithm Devel-
opment for the Enhanced Radiological Nuclear Inspection
and Evaluation (ERNIE). ERNIE classifies passing vehicles
into one of the following 6 categories NonEmitting, NORM,
Medical, Industrial, Fissile, and Contamination based on
materials present in the vehicle. ERNIE extracts various
features via vehicle motion profiling and classifies radioac-
tive materials using machine learning and algorithmic based
classifiers [3].

While there has been significant R&D into building robust
classifiers, RPMs suffer from sensor drift and noise intro-
duced from external factors. To combat potential systemic
issues, port staff often look out for unusual sensor behavior
and calibrate sensors with noticeable drift or noisy outputs.
However, there are many issues with human-based detection
— most notably that RPMs can have sensor malfunctions
without a significant effect on output, leading them to go
unnoticed.

1H. Girase is a junior student in Department of Computer Science, Uni-
versity of California, Berkeley harshayugirase@berkeley.edu

2Kyle Miller & Artur Dubrawski are with the Auton
Lab, Robotics Institute, Carnegie Mellon University, USA
mille856@andrew.cmu.edu, awd@cs.cmu.edu

Fig. 1. An image of a radiation portal monitors at US border

Hawkins [4] defines anomalies as observations that deviate
so significantly from other observations as to arouse suspi-
cion that it was generated by a different mechanism. Much
prior work in anomaly detection relies on non-parametric
distance and density based models, which tend to scale
poorly as data becomes higher dimensional [5]. Many papers
on anomaly detection for radiation data have also explored
PCA and RPCA based anomaly detection [6], but there
are several limitations with these methods. With the rise
of deep learning, there have been many breakthroughs in
deep-learning based anomaly detection. Deep networks can
leverage complex relationships present in this highly multi-
dimensional setting to identify anomalous data that may
be generated by a different process than what is expected.
This paper focuses on identifying anomalous patterns in data
rather than singular anomalies. Through this detection, we
aim to create a more robust system that will notify port staff
about potential issues in RPMs that may have otherwise gone
unnoticed.

II. RELATION TO PRIOR WORK

Detecting anomalies in radiation data is a tough task due
to the high-dimensional nature of RPM data. Beyer et. al [5]
shows the implications when the ratio of the variance of the
length of a vector (x ∈ Rd) in feature space to the length of
the mean vector (E[x] ∈ Rd) in feature space approaches 0
as the dimensionality increases:

lim
d→∞

var

(
‖x‖
‖E[x]‖

)
= 0 =⇒ Dmax −Dmin

Dmin
→ 0 (1)

From equation (1) we see that the proportional distance be-
tween the closest and farthest point vanishes with increasing
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dimensions, posing issues for common density and distance
based outlier algorithms. Below we outline several current
methodologies used for anomaly detection in this field and
address pitfalls in each of these techniques.

A. PCA and Robust PCA

The Mahalanobis distance metric is quite popular when
it comes to anomaly detection; however, its effectiveness
reduces due to the hundreds of sensors present in RPMs.
To combat this, many approaches [6], [7] have performed
Mahalanobis-based thresholding following PCA dimension-
ality reduction. These papers rely on the fact that the top
principle components capture majority of the data’s variance.
Thus, they project the data onto a linear, lower dimensional
subspace and then perform anomaly detection using Maha-
lanobis distance as a metric for how ”anomalous” data may
be.

RootMD =

√
(x− x̄)

T · S−1 · (x− x̄) (2)

Both [6] and [7] use equation (2), where x is the projected
data point, x̄ is the mean of all projected points, and S−1

is the inverse covariance matrix of the data, to attribute a
Mahalanobis-based score.

While Mahalanobis distance would work better in this
lower dimensional space, there are a few fundamental issues
with PCA based anomaly detection. Chalapathy et. al discuss
the two major limitations of PCA. First, it is highly sensitive
to perturbations in data — that is few unexpected training
points will result in a completely different lower dimensional
representation of the data. Second, it forces the data to be
captured effectively in a linear subspace. While the first
issue has been addressed through robust PCA, the second
is still unanswered [1]. Furthermore, in our experiments we
still needed more than 50 dimensions to avoid significant
information loss, which in some scenarios would still pose
problems for distance-based clustering algorithms.

B. Spectral Clustering

There has been work done to leverage local relation
between points via spectral clustering. The main claim as
to why PCA and clustering techniques fail is that they only
perform well in cases where normal data falls into a dense
region and anomalous data falls into sparser regions. Fur-
thermore, the magnitude of features and distance thresholds
are challenging parameters to tune [8]. The authors of [8]
find lower dimensional projections using spectral methods
without assumptions about data density. They claim this
method works better than PCA, as principle components
sometimes fail to capture important local patterns unlike
spectral clustering. As discussed later, we noticed that subtle
anomalous patterns are hard to notice even with spectral
methods such as TSNE [9].

C. Our Approach

With large amounts of data, deep neural networks tend to
perform better than traditional machine learning methods.
This is primarily due to the fact that deep models can
capture complex structure in data and can learn hierarchical
discriminative features from the data to detect anomalies
[10].

Fig. 2. Scaled Performance of Neural Networks vs. Traditional Models
[11]

Autoencoders, a popular deep neural network model, have
been shown to detect subtle anomalies better than methods
such as linear PCA and kernel PCA, as they incorporate
nonlinear dimensionality reductions [12], [13]. In addition,
autoencoders can learn correlations between features, unlike
PCA which projects features onto an orthogonal basis. How-
ever, autoencoders like traditional PCA, tend to be sensitive
to highly noisy data and outliers. Thus, we explore a more
robust scheme introduced in [2] of robust autoencoders. We
train a deep robust autoencoder on our data (which inher-
ently contains a few anomalies/noisy input points) and use
reconstruction error of the test data as a metric to determine
how well the testing data is represented by our training
set. Significant changes in reconstruction error (i.e. sudden
increases) may indicate that the new data may be generated
differently than expected. We are more focused on detecting
these changing patterns rather than singular anomalies. To
flag significant changes in reconstruction error, we use a
changepoint detection algorithm. To our knowledge, no paper
has explored the use of robust autoencoders and changepoint
detection to identify anomalous patterns in radiation data.

III. METHODOLOGY

A. Anomaly Detection via Autoencoders

Autoencoders are neural networks that learn a nontrivial
function to map a vector x ∈ Rn to a vector x̃ ∈ Rn where
the reconstructed vector, x̃ ≈ x.

In figure [3], we see two key steps in the network:
encoding and decoding. The encoder is a function E : X −→
Z where X ∈ Rn, Z ∈ Rm and m << n. The encoder trans-
forms input points into a lower dimensional representation
through nonlinear transformations such as ReLU and sigmoid
functions. The decoder is a function D : Z −→ X̃ where
X̃ ∈ Rn. The decoder reconstructs the lower dimensional
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Fig. 3. Image of a 5-4-3-2-3-4-5 autoencoder [11]

embedding back to a point in the original space. The typical
loss functions used for autoencoders are Lp norms or cosine-
similarity. We use the following reconstruction loss function:

TotalMeanAbsoluteError =

∑
x∈X |x−D(E(x))|

|X|
(3)

We use mean absolute error rather than higher Lp norms,
so as to penalize singular abnormalities in features less.
In our experiments, MAE and MSE produced empirically
similar results. In minimizing the MAE (3), the autoencoder
learns a lower dimensional subspace via nonlinear transforms
to capture the most important aspects of the data. Thus, in
theory, the autoencoder will produce a low reconstruction
error for normal data, as it has learned a well-represented
lower dimensional embedding for the majority of data, and
produce higher reconstruction errors for anomalous data, as
the information of these points is not captured effectively in
the lower dimensional embedding.

B. Robust Autoencoders

Similar to PCA, autoencoders suffer greatly from outliers
present in training data, as it learns to represent these few
anomalies in a lower dimensional space to prevent incurring
high reconstruction penalties for these unusual points. In
doing so, the latent representation learned by the autoencoder
does not encapsulate the normal data as effectively. While
training regular autoencoders, we noticed that the training
set had abnormally high reconstruction error for 1% of
data. We adopt the framework proposed in [2] to train robust
deep autoencoders to learn a better latent representation. The
proposed method splits the training data into two disjoint sets
X = L+S where {L} ideally contains the normal data well
represented by the latent encoding and {S} contains outliers
and noisy inputs. To balance minimizing reconstruction error
and putting all points in set {S}, we minimize the following
joint cost function [2]

min
θ

‖L−Dθ(Eθ(L))‖p + λ · ‖S‖0

s.t. X − L− S = 0 (4)

Here, λ is a tunable parameter to penalize the size of
set {S}. As λ −→ ∞, we simply get a regular autoencoder
and as λ −→ 0, all points will be placed in {S} as noisy
points and outliers, trivializing the optimization problem.
Thus λ should be tuned based on how many points should
be allowed in {S}. Currently, equation (4) is non-convex,
making it intractable. Using similar motivations from RPCA,
[2] relaxes the combinatorial ‖S‖0 term to ‖S‖1 making it
convex and tractable:

min
θ

‖L−Dθ(Eθ(L))‖p + λ · ‖S‖1

s.t. X − L− S = 0 (5)

There are other regularization schemes for S such as l1,2
regularization, but we use the standard l1 penalty, and assume
unstructured noise/outliers [2].

C. Changepoint Detection

After reconstructing unseen test data, we use a change-
point detection algorithm to identify significant changes in
reconstruction error. If there is a significant increase in
reconstruction error, we have reason to believe that there
may have been some systemic malfunction that introduced
this anomalous pattern; thus, we flag it for port staff to further
investigate. For now, we use an offline detection framework
from the ruptures changepoint detection library [14].

After collecting sequential data from RPMs and calculat-
ing reconstructing error for these points, we have a signal
R = {r1, r2, ..., rT } We assume that if there are anomalous
patterns in the data, perhaps introduced by sensor bias or
noise, there will be abrupt shifts in the reconstruction signal.
Let’s assume there are K significant shifts in the signal at
instances t∗0 < t∗1 < ... < t∗K . We want to find the optimal
K where 0 < K < T . To find these shifts, we first define a
total cost function [15]:

TotalCost =
K∑
i=1

[
C
(
R(ti−1:ti)

)]
+ β · ρ(K) (6)

Here, C(subsignal) is a cost function for a segment of
the reconstruction signal. In our case, given a subsignal
Y = {ya, ya+1, ..., yb} with median ȳ, the cost would be∑
e∈Y ‖e − ȳ‖1. The term β · ρ(K) is a weighted penalty

term to avoid overfitting and detecting K = T changepoints.
We used the binary segmentation method [14] to find an
approximate solution to this optimization problem.

IV. EXPERIMENTAL SETUP

A. Dataset

We use a dataset provided by Lawrence Livermore Na-
tional Laboratory (LLNL) that contains both synthetic and
real-world radiation data. The dataset contains sensor data
for alerts that include NonEmitting, Normally Occuring
Radioactive Materials (NORM), Medical, Industrial, Fissile,
and Contaminated materials. We extract important features
from this dataset, as it contains over hundreds of features.
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Some extracted features include top PCA components, key
features in the Fourier domain, vehicle data via motion pro-
filing, and signal-related information such as peak distances.
Even with extracting important features, we have over 150
features, which is still relatively high dimensional for current
anomaly detection methods [6], [7], [8] to work effectively.

B. Simulating Anomalous Patterns

Sensor bias and noise is a common issue radiation portal
monitors face. Early detection and calibration of these faulty
sensors is critical to prevent further performance deterio-
ration. Spontaneous sensor bias and noise are introduced
in RPMs due to a variety of external factors, including
physical imperfections of material, poor mechanical coupling
and electrical issues, and random temporal phenomena of
thermal and photonic origins [16]. One of the toughest tasks
in the field of anomaly detection is developing a robust
evaluation metric. This problem arises because ground truth
anomalies often do not exist. We adopt a similar scheme
as [17] to simulate potential system malfunctions. Some
of the most common distributions associated with noise
are Gaussian, Binomial, Poisson, Bose-Einstein, and Fermi-
Dirac distributions [16]. In our simulations, we experiment
with gaussian noise, as it is one of the most common and
simple forms of noise.

Algorithm 1 Simulate Faulty Sensors
Initialize: probability failure, p: 0.05
Loop:
for j ← 0 to len(features) do
rand = randomNumber(0, 100)
if rand < p · 100 then

bias = 10−4 ·min(Featurej)
variance = std(Featurej)
error = N (bias, variance)
Featurej = Featurej + error

end if
end for

We run algorithm 1 on the entire dataset and concatenate
the normal and anomalous data. We now have 50% normal
data and 50% anomalous data. We perform two tests of
detecting these anomalous patterns. First, we simply test if
our algorithm can detect a change from normal to anomalous
by having just a singular changepoint. Second, we simulate
periods of systemic malfunction by simply injecting 2 peri-
ods of anomalous data in the normal data.

C. Effect of Anomalies

After adding noise to roughly 5% of the features to
simulate malfunctioning sensor readings, we noticed that
classifier had an insignificant decrease in performance —
that is, the classifier can handle these minor malfunctions
fairly well. This makes it even harder to detect these errors,
as the ”anomalous” data can barely be discriminated from
normal data.

Fig. 4. ROC Curves of All Classes with 95% confidence interval (Log
Scale). There is clearly an insignificant drop in performance even with data
generated with faulty sensors. Thus, detecting sensor malfunctions purely
based on performance drop may not work in case of minor errors.

Fig. 5. TSNE Embedding of Data (Blue=Normal, Red=Anomalous)

Figure 4 shows that there is an insignificant drop in
classification performance (we use a robust implementation
of random forests). Classification accuracy drops from 91.8%
to 91.4% which is unnoticeable and statistically insignificant.

V. RESULTS

A. TNSE Projection

From figure 5, we can observe that there is no clear
visual distinction between normal and anomalous data. There
are a few small regions of densely clustered red points,
but it would be hard to algorithmically tune parameters
to determine significant changes between anomalous and
normal data based on these embeddings. Because TSNE
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Fig. 6. Ground truth changepoint for RPCA (red line indicates changepoint
from normal to anomalous). [Experiment 1]

approximates spectral clustering [9], we can see that spectral
clustering based approaches for anomalous pattern detection
[8] may perform poorly when there are very minute mal-
functions in RPMs.

B. Experiment 1, Simulating Singular Malfunction

All data is projected onto a 75 dimensional subspace for
both autoencoders and PCA. In these figures, the first ∼
30,000 points are normal data while the latter ∼ 30,000
points are those generated by a simulated malfunctions. A
changepoint is defined when the data changes normal −→
anomalous.

1) RPCA Performance: From figures 6 and 7, we see that
changepoint detection on RPCA-based point reconstruction
can accurately identify changes from normal to anomalous
data. An interesting observation here (figure 7) is that RPCA
does not learn all of the normal data equally. Later data points
(∼12,000 to ∼30,000), which belong to different classes than
earlier data points (0 to ∼12,000), have a noticeably higher
reconstruction error than earlier data points. This imbalance
in representing normal data based on class may raise false
alarms simply based on changes due to class reconstruction.

2) Robust Autoencoder Performance: Figures 8 and 9
show that changepoint detection based on the autoencoder’s
reconstruction also correctly identifies the change from
normal to anomalous behavior. However unlike the PCA
reconstruction, the autoencoder learns the normal data more
evenly (reconstruction error for normal data (points 0 to
∼30,000) in figure 9 is similar across all points).

C. Experiment 2, Simulating Multiple Malfunctions

All data is projected onto a 75 dimensional subspace for
both autoencoders and PCA. In these figures, we have 3
changepoints: normal −→ anomalous −→ normal −→ anoma-
lous.

Fig. 7. PCA correctly detects changepoint via changepoint algorithm.
[Experiment 1]

Fig. 8. Ground truth changepoint for autoencoder (red line indicates
changepoint from normal to anomalous). [Experiment 1]

Fig. 9. Autoencoder correctly detects changepoint via changepoint algo-
rithm. [Experiment 1]
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Fig. 10. Ground truth changepoints for RPCA (red line indicates change-
point from normal to anomalous or anomalous to normal). [Experiment 2]

Fig. 11. RPCA correctly identifies 2 out of the 3 changepoints. However,
it raises 3 false alarms due to imbalanced latent representation of different
classes. [Experiment 2]

1) RPCA Performance: Figure 10 depicts the true shifts
from normal to anomalous data. However, we see in figure
11 that the changepoint detection algorithm incorrectly flags
some changepoints. The first changepoint (between blocks
1 and 2) is due to imbalance in reconstruction error be-
tween classes; thus, although this data (blocks 1 and 2)
is normal, the algorithm flags it as ”different.” This issue
arises again in the third changepoint (between blocks 3
and 4) due to an imbalanced representation of different
classes. This experiment highlights a critical shortcoming of
PCA-based methods: imbalanced representation of different
classes. Possible explanations for this phenomenon include:
(1) imbalanced datasets (2) not explicitly minimizing a cost
function over all data.

2) Robust Autoencoder Performance: Figures 12 and
13 show that the changepoint detection algorithm on the
autoencoder-based reconstruction error correctly identifies
all 3 changepoints. The main difference between the au-
toencoder and PCA is that the autoencoder avoids false
detections of changepoints, as it learns a latent representation
that encapsulates the normal data more uniformly.

Fig. 12. Ground truth changepoints for robust autoencoder (red line
indicates changepoint from normal to anomalous or anomalous to normal).
[Experiment 2]

Fig. 13. Robust autoencoder correctly identifies all changepoints. [Exper-
iment 2]

VI. CONCLUSION

Anomalous pattern detection in high dimensional spaces is
a nontrivial task; many researched methods such as KNN’s,
Mahalanobis Distance based clustering, Local Outlier Factor,
Gaussian Mixture Models and Isolation Forests, unfortu-
nately fail to scale effectively [5]. While methods such
as spectral clustering and PCA help combat the curse of
dimensionality, spectral clustering may fail to detect subtle
patterns in data and PCA may raise false positives due to
improper lower dimensional representations. We believe ro-
bust autoencoders have 3 main benefits over current methods
in the radiation safety domain: (1) they capture correlations
between features unlike PCA-based techniques (2) they al-
low for nonlinear transformations (3) they minimize a cost
function specifically designed for reconstructing points and
dealing with class imbalance. Due to the large volume and
high dimensional nature of radiation data, deep learning
based approaches for data inference tend to be superior to
traditional methods [10]. We believe the robust autoencoder
and change point detection framework will help detect minor
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malfunctions with higher accuracy and lower false positives.

VII. FUTURE WORK

Our initial results show promise for a more effective
monitoring system of RPMs using robust autoencoders.
However, we would like to perform a more comprehensive
analysis of current approaches and our methodology. For
example, we would like to explore different kinds of noise,
compare performance to varying amounts of bias/noise, and
develop a more robust metric for evaluation. Another natural
step would be evaluating performance of online anomalous
pattern detection.
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Dynamic Task Allocation Using Multi-Agent Mobile Robots

Raghavv Goel1 Jaskaran Singh Grover2 Sha Yi2 Sumit Kumar3 Katia Sycara4

Abstract— Multi-agent systems are being widely used in
scenarios like search and rescue, surveillance of danger zones,
monitoring of crops, pursuit-evasion etc. All these tasks/mis-
sions are dynamic, that is, the environment is constantly
changing and is uncertain. Not only this, but missions may
require robots of varying capability (UGVs and UAVs) to
cooperate and collectively complete tasks. We thus propose an
algorithm to allocate robots to tasks present in the environment
as and when they discover these tasks or become aware of
these tasks. Multi agent system provides wide-area coverage,
fault tolerance, and robustness to missions and hence they are
being preferred. While the recent work has ignored the concept
of unknown environment others do not care of the path the
robots will follow from one task to another. We thus integrate
our method with barrier certificate, to ensure that no inter
agent collision takes place and at the same time restricting the
maximum inter agent distance to prevent communication loss.
A team of homogeneous and heterogeneous robots has been
used for the same and successful completion of all the tasks
has been observed. Another concept that we introduce in this
paper, is that of white agents, these are agents which can model
their behaviour according to other agents depending on the task
requirement(s). Lastly, we look into a learning based technique
for allocating mobile tasks to the robot team, that is, these
tasks are like preys which need to be captured by our agents
which are predators. We do not form any comparison between
model-based approach and learning-based approach as these
two are very different from each other, especially in terms of
the environment settings, although the inherent problem is the
same.

multi agent system, task allocation, multi-agent learning

I. INTRODUCTION

In recent times, a surge in multi-agent research has taken
place. This trend has been seen in both research schools: pure
controls and pure learning, especially using deep reinforce-
ment learning [1]. Apart from the plethora of applications
of multi-agent systems, some mentioned in abstract, there
are limitations too. This includes having a central controller
instead of a decentralized controller, which leads to high
computation power and latency, poor communication due to
low bandwidth and high inter-agent distances and collision
avoidance. [2] introduced the concept of barrier certificate to
avoid inter-agent collisions in robot teams. This concept has
also been used for limiting maximum inter agent distance
from another agent to prevent communication loss and thus

1 was a Robotics Institute Summer Scholar and is a student at IIIT Delhi,
India, raghav16179@iiitd.ac.in

2 are PhD students at Robotics Institute, Carnegie Mellon University,
jaskarag@andrew.cmu.edu, shayi@andrew.cmu.edu

3 is a masters student at Robotics Institute, Carnegie Mellon University,
sumitsk@cmu.edu

4 is a research professor at Robotics Institute, Carnegie Mellon University
katia@cs.cmu.edu

agent loss. Having these low level controller and separate
planner provides modularity.

In the task allocation problem, researchers have put em-
phasis on planning only, rather than control, for example [3]
has done work similar to ours by using a team of heteroge-
neous agents, but the environment was explored beforehand,
and agents were made aware of all the tasks present. They
used MCST(Monte Carlo search tree) to assign the agents
with tasks depending on which agent had better chances.
Here, a task was defined by a set consisting of entries from
one or more agents which could complete that task. The
problem was solved by maximizing the individual rewards of
all agents towards the total reward of the swarm. [4] proposed
allocating several agents from one task to another based
on a desired distribution of robots for different tasks. The
robots move from one task to another based on a transition
probability. In this also, the team is heterogeneous, but the
agents know about all the tasks present in the environment.

We propose, to solve the problem of task allocation in an
unknown environment setting with limited observability, that
is only certain positions in the environment make specific
tasks visible, without coming to these locations the agents
remain oblivious to the fact that these tasks existed. Once
a task is discovered, an optimizing problem is solved to
allocate agents based on the current requirement, not every
agent maybe allocated to a task, so these agents move slow
till it is confirmed that no more agents will be required. More
agents can be required as there exists a possibility that the
agents assigned to a task discover another task visible via the
current task they have gone to but not visible to the others.
This information is communicated back to other agents, as
communication exists between agents as they always remain
within the communication distance of at least one other
agent.

[5] have formed an optimization problem for different
types of agents, for finding the best step size for each type of
agent. In all of these works, all the agents are just transported
from one task to another, ignoring the path traversal and
the challenges it brings. As the swarm size increases the
path traversal becomes difficult because of less space for an
agent and avoiding collisions can influence the planner. Here,
merely forming solutions for assigning agents from one task
to another does not solve the challenges faced in the real
world, where the robot needs to travel to the new location
of the new task physically.

In multi-agent-based learning, a lot of work has been done,
such as [1], [6]. We examine and change [6], which was
modeled only for static tasks, to mobile tasks. MAPE (multi-
agent particle environment) [7] has been used for simulating
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the algorithm and even designing new environments for
enabling mobile task allocation, which is described later in
the methods section. The agents and the targets(tasks) are
considered as a connected graph, with all agents connected to
all the tasks at all times but with varying inter-agent connec-
tivity. The graph structure was used because of the inherent
property of a graph to ensure permutation invariance. The
observation of all the neighbors of an agent is aggregated and
sent without any order. Permutation invariance is important
to prevent bias due to agent order. Furthermore, all the
observation of the neighboring agents is passed via the
attention model [8] so that agents can have preferences for
neighboring observations.

II. MODEL BASED

We have a mission which needs to be completed, here
the mission is to check all the rooms as shown which has
a number of rooms and walls(black), with a team of robot
agents also present. This team of robots needs to go into all
the rooms and check these rooms. Checking a room can be
related to completing a task present in a room like attacking
enemies or helping a human in need or just scouting the
area. We use a team of robots with mixed capabilities, like
for example ground vehicle(Clear-path Husky), aerial vehi-
cle(Hexacopter) and underwater vehicle, which we denote
using different colors circles: Red, Green, and Blue. The
catch of having different color rooms is that it can be checked
only by those color robots. In the real world, often mission
requires cooperation between UGVs and UAVs to increase
the overall efficiency of the mission [9].

Fig. 1: Environment without leaf room and same rooms,
used for testing our proposed method. The red triangles are
mid points of doorways while the red plus(+) signs are goal
positions of rooms.

III. ENVIRONMENT

We have fours different scenarios as shown in table I.
The basic setting as shown in figure 1 consists of homo-
geneous agents and tasks of a varying number of agent

TABLE I: Different scenarios

Type of Rooms Type of Agents Req. agents per room Leaf Rooms
1. same color same color fixed NA
2. diff color RGB fixed NA
3. diff color RGB varying A
4. diff color RGB + white varying A

requirement without any leaf room (defined below), while the
most difficult setting has heterogeneous agents with tasks of
different capabilities, varying number of agent requirements
and having leaf rooms as shown in figure 2. A leaf room is a
room which is not accessible from the corridor which is the
root room. Table I shows the different settings which will be
covered.

Room 1

Room 8

Room 2

Room 7

Room 3

Room 6

Room 4

Room 5

Corridor

Leaf Room

Door

DoorDoor

Door

D
o
o
r

Door

Door Door

3

2 4

1

Fig. 2: These rooms are tasks present in the environment
(which need to be completed), the room color denotes the
type of agent it needs and the darker a room is the more
number of agents is required.

IV. PRELIMINARIES

The method for the basic scenario 1, refer to figure 1, is
mentioned first, and then the rest of the scenarios are built
on top of it. Below are definitions which are used in the
algorithm 1 proposed by us.

We assume the origin to be the top left corner of figures
shown.

1) M = total number of room excluding the root room
2) N = total number of robots/agents
3) êi ∈ B(M+1)×1 with ith entry as 1, and rest as 0.
4) êi ∈ BN×1 with ith entry as 1, and rest as 0.
5) R = {0, 1, 2, . . . ,M} where each number denotes the

ID of the room assuming there are M rooms.
6) R =

[
R0 R1 . . . RM

]
where Ri ∈

[(xRi

leftmost, y
Ri
topmost), (x

Ri

rightmost, y
Ri

bottommost)] ∀ i ∈
{1, 2, . . . ,M}, R0 is the corridor which is connected
to all the rooms and hence no specific door is required.

7) doors =
[
d01 d02 . . . d0M

]
where dij is

a door between Ri and Rj , i < j. dij ∈
[(xijleft, y

ij), (xijright, y
ij)] assuming that doors will be

parallel to x axis.
8) G =

[
g0 g1 g2 . . . gM

]
, where gi ∈ R2×1 is
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the goal position of Ri ∀ i ∈ {0, 1, 2, . . . ,M}, which
implies that G ∈ R2×(M+1)

9) P =
[
p0 p1 p2 . . . pM

]
, where Pi ∈ R2 is the

corresponding point in corridor(R0) which the robot(s)
returns to after checking Ri at Gi. As g0 is already
present in the corridor, hence p0 = g0

10) Qt =
[
q1 q2 . . . qN

]
, where qi ∈ R2×1 is the

corresponding position of the ith robot at time t ∀ i ∈
{1, 2, . . . , N}, which implies that Q ∈ R2×N

11) A = {1, 2, . . . , N} is the set of all robots, assuming
there are N of them.

12) RA ∈ B(M+1)×1, where each element is ∈ {0, 1},
depending on the following

RA(j) =


1 if ∃ i ∈ {1, 2, . . . N} s.t. exQtêi ∈

[xRj−door−left, xRj−door−right] and
eyQ

têi ∈ [ycorridor-bottom, ycorridor-top]

0 otherwise

Where, j ∈ {1, 2, . . .M}, ex = [0 1] and ey =
[1 0] are ∈ R1×2. This is updated after every time
step whenever an agent enters the doorway of a room
not already present.
Once a room is discovered by an agent, i.e., it be-
comes available, then at no point of time, it becomes
undiscovered.
RA(0) = 1 from the start, as the agents where the
corridor ends. Please refer to figure 2 which shows
no walls present between the agents start and the end
of the corridor, so it is assumed that the agents know
where the goal of R0 is.
It can be accounted in future works that the agents are
given some sort of memory in which an available room,
if left unchecked for a long time may go unavailable
as well.

13) RC ∈ BM×1, where each element is ∈ {0, 1},
depending on the following.

RC(j) =


1 if ∃ {i1, i2, . . . } ∈ {1, 2, . . . N} s.t.

Qêil = Gêj ,∀l ∈ {1, 2, . . . |Rreq(j)|}
0 otherwise

This is updated whenever a robot clears a room.
14) Rreq ∈ NM×1: which tells the requirement of M

rooms and the corridor(0th room) where Ri
req is the

requirement of the ith room where i ∈ R.
15) K is a scalar and is the total number of rooms available

but not checked, it computed as follows:

K = 0
f o r j <− 1 t o M do

i f RA( j ) == 1 and RC{ j } == 0 t h e n
K += 1

end i f
end f o r

16) T ∈ BK × BM+1, is a transformation matrix which
gives all the available and unchecked rooms when
multiplied with other matrices mentioned below.
Here k = 0 initially and then k = k+1 , while k < K

T (k, :) =

{
êᵀj if RA(j) = 1, RC(j) = 0

0 otherwise

17) Xt ∈ BM+1 × BN , is the assignment matrix:

Xt(j, i) =

{
1 if Qtêi = Gêj

0 otherwise

Where, j ∈{0, 1, 2, . . . ,M}and i ∈
{1, 2, . . . , N}which tells which robot is in which
room.

18) U t ∈ R(M+1)×1, a utility vector which helps agent
decide whether to enter a room or not. It is defined as:

U t(j) =



0 if j = 0

2 if RA(j) = 1, RC(j) = 0,

−2 if RA(j) = 1, RC(j) = 1,

Don’t Care if RA(j) = 0, RC(j) = 1,

Don’t Care if RA(j) = 0, RC(j) = 0,

The values assigned above are for specific reasons so
that the agents move in the desired way. The corridor is
like a neutral ground for all the agents and hence given
the value 0. As agents should cover all the available
and unchecked rooms, these rooms have been given a
value of +2, motivating the agents to move in these
rooms. After the agents move and check these rooms,
there is no longer a need for the agents to stay in them,
and so the value given to available but checked rooms
is -2. This makes the value of the corridor, which is
0, greater than the checked rooms, making the agents
move back to the corridor.
If a room is not available, it implies that the agents are
not aware of this room’s existence, so no utility can
be assigned to these rooms and hence don’t care has
been written.

19) Dt ∈ RM × RN :

Dt(j, i) =


−‖Gêj − P êj‖2 − ‖P êj − PXtêi‖2−
‖PXtêi −Qtêi‖2 if Qtêi /∈ R0, else
−‖Gêj − P êj‖2 − ‖P êj −Qtêi‖2

where j ∈{0, 1, 2, . . . , M} and i ∈ {1, 2, . . . , N}
20) dqt ∈ R2×N step size taken by an agent in the desired

direction, is defined as:

dqt(i) =


PXtêi −Qtêi if Qtei ∈ R0

Gêj −Qtêi if Qtei ∈ Rj , GX
têi ∈ Rj

P êj −Qtei if Qtei ∈ Rj , GX
têi /∈ Rj

Where, i ∈ {1, 2, . . . , N} and
d̃q

t
= dqt

‖dqt‖2 vmax if ‖dqt‖2 > vmax
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TABLE II: SRSA matrix assignment for figure 2

a1 a2 a3 a4
R0 1 1 1 1
R1 1 0 0 0
R2 0 0 1 1
R3 0 1 0 0
R4 0 0 1 1
R5 1 0 0 0
R6 0 0 1 1
R7 0 1 0 0
R8 0 0 1 1

V. METHODS

1 For same room same color
Please note that: U,D is same U t, Dt

maximize
x

λ1u
ᵀx+ λ2d

ᵀx

subject to E1x = 1N ,

TE2x ≥ TRreq,

E3x = 0M+1,

x ∈ BN(M+1)×1

(1)

where, λ1 ∈ [0, 1] and λ2 ∈ [0, 1], d = vec(Dt), x =
vec(Xt+1), u =

[
U×N

]
∈ R(M+1)×N , u =

[êᵀju∀j∈{1,2,...,N}]
E1 = [IN×(M+1)

]
E2 and E3 are calculated as follows:

E2 = z e r o s (M+1 , N(M+ 1 ) )
f o r j <− 0 t o (M+1) do

E2 ( j , j *N: ( j +1)*N) = ones (N)
end f o r

E3 = z e r o s (M+1 , N(M+ 1 ) )
f o r j <− 0 t o (M+1) do

i f RA{ j } == 0 t h e n
E3 ( j , j *N: ( j +1)*N) = ones (N)

end f o r

The aim is to assign ≥ number of agents to all the
available, unchecked rooms. For this an objective func-
tion is made, as shown in equation 1, the solution
to this assigns agents to all the available rooms. The
assignment is done by maximizing the cost function.
The constraints help us to restrict the agent assignment
to only one room and also take into account only
the rooms which are available and unchecked to have
assignments.

2 Different color rooms, different color agents
Here, if the color of the agent and the room is the same,
then, the agent should go into the room, otherwise not.
To enforce this, a matrix is defined as follows:
This is called S and remains fixed for an environment
setting refer to table II. Another constraint is added to
the already existing constraints for preventing different
color agent( e.g., green) from entering a red room.
We introduce an adjacency matrix N ∈ R(M+1)×(M+1)

here, which keeps an account of which room is neigh-
bour of which. We use this to enforce another constraint

Algorithm 1 Assigning Rooms to Robots

Initialize:
pos0 ←− Initial Position of Robots
Rreq ←− Robots requirement for each room
available-roomscurr ←− Rooms available currently

cleared-roomscurr ←− Rooms cleared currently
RRAcurr ←− Current Rooms-Robot-Assignment.

while all-rooms-not-cleared do
Calculate
room-utilitycurr ←available-roomscurr

room-utilitycurr ← cleared-roomscurr

Determine RRA∗new by maximizing

Total Utility from Assignment
subject to

room min-robot-requirement-constraint
room-capability-constraints

Calculate
Control u∗ to the centroid in the newly assigned

room, calculated using RRA∗new (velocity to centroid of
room)
Update

posnew ← f(poscurr, u
∗)

available-roomsnew from posnew
cleared-roomsnew from posnew

end while

that an agent can only enter a leaf room via the room
connected to it.
N ∈ B(M+1)×(M+1) defined as

N(j, i) =

{
1 if door present
0 otherwise

4 Different color rooms, different color agent, leaf
rooms & white agents
Agents with diverse capabilities are introduced; these
agents are white in color and then change their color
according to the environmental requirements.

VI. LEARNING BASED

The environment is shown in figure 7 and 8, where the aim
is to capture the red colored circles(preys). The dimensions
of the environment is 2 × 2 .The movement of prey(s) is
modeled like that of a snooker ball, whenever the prey hits
the edge its velocity perpendicular to that edge becomes
opposite. The agents(blue circles) have a double integrator
control and can move in x and y with maximum acceleration
= 5 and time step dt = 0.1.

The setup with a single prey and multiple predators has
the reward as the negative of the sum of distances of agents
from the prey, and a trial is said to be successful if all the
agents are within a threshcurrent distance (usually the sum
of radii of agent and prey) of the prey.
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Fig. 3: (a) shows the time when each room becomes available, (b) shows the time when a room is checked and (c) shows
the trajectories the agents follow. These follow similar pattern below and hence we will not be repeating this information
below.)λ1 = 1.0, λ2 = 0.0. The average time taken to check all the rooms = 135.24 and the maximum time was = 169.
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Fig. 4: λ1 = 1.0, λ2 = 0.0. The average time taken to check all the rooms = 162.92 and the maximum time was = 182.
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Fig. 5: λ1 = 1.0, λ2 = 0.0. The average time taken to check all the rooms = 126.28 and the maximum time was = 136.
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Fig. 6: λ1 = 1.0, λ2 = 0.0. The average time taken to check all the rooms = 127.04 and the maximum time was = 136.
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Fig. 7: The blue circles are agents(predators) and the red
circle are tasks(preys), which need to be captured

Fig. 8: Similar to figure 7, but here the agents need to
collaborate to distribute the task of capturing the preys.

For the multiple preys case, along with the above, addi-
tional positive reward needed to be given for making the
agents split into small teams to capture multiple preys at the
same time instead of all agents running behind a single prey.
As preys require a certain number of agents to get captured,
the done/success condition was also modified accordingly.

Testing speed Success Avg. episode length
(out of 100) (out of 50)

0.025 100 19.30
0.05 70 35.02

0.075 0 50

TABLE III: 3 agents and 1 task, trained on a constant velocity
of 0.025 in both x and y but tested on different velocities

Testing Avg. ep. Success Avg. ep. Success
speed (max 50) (max 100) (max 100) (max 100)
0.025 61 35.96 75 52.56
0.050 92 25.57 100 26.89
0.075 21 46.81 46 80.86
0.100 0 50 0 100

TABLE IV: 3 agents and 1 task, trained on a constant
velocity of 0.05 in both x and y but tested on different
velocities

Collision Collision Avg. Ep. Sucess Min distance
at training at testing (max 100) (max 100) req. for capture

Yes Yes 100.00 0 0.125
No Yes 100.00 0 0.125
Yes No 96.58 12 0.125
No No 93.59 20 0.125
No No 83.44 44 0.15

TABLE V: 6 agents and 2 tasks, trained on a constant
velocity of 0.025 in both x and y and tested on same velocity
but we toggle the inter agent collision and agent to task
collision

VII. CONCLUSION

For the model based case, discussed before the learning
based control, we ran our proposed algorithm for scenario
1 and scenario 2 as mentioned in table I. We tested for two
cases, λ1 = 1, λ2 = 0 and λ1 = 0, λ2 = 1 and observe
for scenario 1 that giving higher preference to utility leads
to faster coverage of all the rooms as compared to giving
preference to distance matrix. (a) shows the time when each
room becomes available, (b) shows the time when a room
is checked and (c) shows the trajectories the agents follow.
All of them have been averaged over 25 runs. For rooms
available and checked, we show that if a room is available
then it’s value becomes one in its corresponding row, as
shown in figures 3, 4, 5, 6. For the scenario 2, refer to 5,
6, we see a very similar trend between both the cases. One
for reason for this can be that due to limited number of
rooms, the restriction on agent color and room color leads
to exploration even in the case where λ2 = 1, λ1 = 0, which
has only distance exploitation. If given a large number of
rooms in parallel, then it’ll be interesting to see the result of
both the cases. We observe that higher dependence on utility
u i.e. λ1 closer to 1, leads to faster coverage versus distance.
However, when we introduce room color constraint then both
the cases have almost equal maximum time taken to check
all the rooms and average checking time is same. We still
need to integrate our latest approach with barrier certificate
to prevent inter agent collisions. Also, we need to further
build for last two scenarios. Bringing this method to real
world can become costly as the number of robots increases,
as then solving the optimization will take more time, so we
need to find a way to solve the optimization after certain
interval of times and still giving the same result.

VIII. FUTURE WORK

An interesting setting in the model-based case will have a
series of leaf rooms, one after the other. Here, agents having
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more capabilities similar to the white agents mentioned ear-
lier will be immensely useful as they can adapt according to
the room requirements versus, the normal agents which move
slowly when they are passing the doorways. Because, as the
doorways within a room increases, the time delay due to the
slow-motion does not give the agent enough time to explore
every room. Furthermore, testing on more complicated maps
like those having loops will also be interesting.

In the learning-based approach, one thing that will help
improve the accuracy of getting close to the tasks as soon as
possible is to introduce a recurrence model which can store
a series of positions of the tasks, and the agents can then
approximate a function to predict the next position of the task
better. Also, making the environment more complicated by
introducing obstacles and having a heterogeneous team are
also interesting avenues. In terms of having a heterogeneous
team, the agents can have different underlying controller:
single integrator versus a double integrator, the map can
have areas which can be restricted for one type of agent
and not for the other and the velocities limits are some of
the traits which can played with and is even useful in the
perspective of real-world, where for example: a building has
several entries, but entries high above the ground cannot be
easily accessed by aerial vehicles instead of ground vehicles,
similarly collapsed building often have small entries near the
ground where ground vehicle can work really well.
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Discriminating Cognitive Disequilibrium and Flow in Problem Solving:
A Semi-supervised Approach Using Involuntary Dynamic Behavioral

Signals

Mononito Goswami1, Lujie Chen2 and Artur Dubrawski2

Abstract— Problem solving is one of the most important
21st century skills. However, effectively coaching young stu-
dents in problem solving is challenging because teachers must
continuously monitor their cognitive and affective states, and
make real-time pedagogical interventions to maximize their
learning outcomes. It is an even more challenging task in social
environments with limited human coaching resources. To lessen
the cognitive load on a teacher and enable affect-sensitive intel-
ligent tutoring, many researchers have investigated automated
cognitive and affective detection methods. However, most of the
studies use culturally-sensitive indices of affect that are prone
to social editing such as facial expressions, and only few studies
have explored involuntary dynamic behavioral signals such
as gross body movements. In addition, most current methods
rely on expensive labelled data from trained annotators for
supervised learning. In this paper, we explore a semi-supervised
learning framework that can learn low-dimensional repre-
sentations of involuntary dynamic behavioral signals (mainly
gross-body movements) from a modest number of short time
series segments. Experiments on a real-world dataset reveal a
significant advantage of these representations in discriminating
cognitive disequilibrium and flow, as compared to traditional
complexity measures from dynamical systems literature, and
demonstrate their potential in transferring learned models to
previously unseen subjects.

I. INTRODUCTION

One of the fundamental goals of education is to transform
students into mature problem solvers who are able to over-
come the inherent uncertainty of problems, failed attempts
and impasses. For young children, solving challenging non-
routine math problems emulates the real life challenges they
will encounter later in their lives. Different from routine
math exercises (e.g. back-of-chapter exercises), non-routine
problems may not have immediate solutions, and thus require
innovative thinking, and may often invite a child to ride an
”emotional roller-coaster” as the student advances through
various stages of problem solving [1]. Problem solving
is a complex affective and cognitive process replete with
states of cognitive disequilibrium manifested by a mixture
of confusion, frustration, indecisiveness or struggle, as well
as states of flow [2] when one is (or at least is feeling
of) moving forward smoothly. The cognitive disequilibrium
triggered by conflicts and contradictions in these problem

1M. Goswami is a senior student in Computer Science & Engi-
neering Department, Delhi Technological University, New Delhi, India
mononitog@hotmail.com

2Lujie Chen & Artur Dubrawski are with the Auton Lab,
Robotics Institute, Carnegie Mellon University, USA karenchen,
awd@cs.cmu.edu

solving processes can be beneficial for learning only if ap-
propriately regulated and resolved [3] (Facilitative Confusion
Hypothesis), which may be challenging for an inexperienced
problem solver whose self-regulation and problem solving
skills are in their nascent stages.

Therefore, effectively coaching young students requires
teachers to continuously monitor their cognitive and affec-
tive states and make real time pedagogical decisions such
as when to intervene and how best to do so, especially
in social environments with low teacher-student ratios and
with limited coaching resources available for each student.
Moreover, teachers also have to effectively handle the high
cognitive loads of monitoring a diverse cohort students vary-
ing significantly in their perception of academic self-efficacy
and ability to use of self-regulated learning strategies [4].
Intelligent Tutoring Systems that attempt to teach problem-
solving also face similar challenges. To lessen the cognitive
load of teachers and also to improve the effectiveness of
intelligent tutoring, we envision a decision support system
which can monitor the cognitive and affective states of
multiple students simultaneously in real time. The focus
of this paper is on the state detection capability of such a
system, specifically needed to discriminate between cognitive
disequilibrium (CD) and flow states, which are the critical
inputs to inform appropriate subsequent interventions.

In this work, we investigate a method designed to dis-
criminate between CD and flow using involuntary behavioral
signals that are less prone to social editing, including head
and eye movement, which can be non-invasively collected
using inexpensive sensors such as cameras. To overcome
limited supply of labeled data, while taking advantage of the
large supply of unlabeled data, we explore a semi-supervised
approach where deep embedding features are derived from
unlabeled time series segments, which are then fed into
a supervised learning algorithm. We compare these deep
features with a set of baseline complexity measures discussed
in dynamical systems literature and note significant im-
provement in predictive power. Furthermore, our experiments
confirm that our semi-supervised model performs reasonably
well even with very limited amount of data.

The rest of the paper is organized as follows. Section II
provides background of our study by discussing its mo-
tivation and relation to prior work. Section III describes
the data collection, methodology, and experiments in detail.
Section IV discusses experimental results, and Section V
explores their implications. We conclude the paper and
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present avenues of future work in Section VI.

II. BACKGROUND AND RELATED WORK

A. Cognitive Disequilibrium and Flow in Problem Solving

In the last few years, the research community has shown
keen interest in the affective and cognitive dimensions of
learning [5]. Studies such as [3] have shown that children
may get confused when they are unsure of how to proceed
or face challenging impasses. They may also get frustrated
when they repeatedly make mistakes or important goals are
blocked [6]. At the same time, students may also experience
delight when they achieve their goals by overcoming prob-
lems or enter a flow state of intense engagement when the
learning goals as well as problem solving paths are clear, and
they find an appropriate balance between skills and challenge
[2].

In the practice of problem solving education, a teacher
would be broadly interested in two cognitive states of the
student: (1) Cognitive Disequilibrium, characterized by con-
fusion, frustration and indecisiveness, and (2) the Flow state,
characterized by smooth progression toward the goals. In this
paper, we only consider two distinct and broad cognitive
states of primary interest to teachers, and therefore we also
attribute positive emotions such as curiosity and happiness to
the flow state, and pose the problem of detecting cognitive
states of a student as a binary classification problem. [5]
previously found that flow, confusion and boredom were the
most frequent affective states found in studies employing
learning with technology, in support of our choice of the
cognitive-affective states to consider.

B. Automated Detection of Cognitive-Affective States

The problem of identifying cognitive and affective states of
students is challenging since these states are loosely-defined
psychological constructs embedded in extremely context-
sensitive environments [7]. Many studies have investigated
the possibility of detecting affective states automatically,
primarily in the context of Intelligent Tutoring Systems.
For instance, [8] proposed Engagement Tracing to detect
the engagement levels of students based on audit logs from
an intelligent tutor. Later, [9] investigated the relationship
between facial features and emotions such as confusion,
frustration and delight, and found important patterns in
the way that learners communicate their emotions through
their faces. Most recent literature on affective and cognitive
computing has focused on the use of multimodal features.
These multimodal affect classifiers have also been shown to
be consistently better than their unimodal counterparts [10].
[11] in their affect-sensitive AutoTutor combined decisions
from conversational cues, gross body language and facial
feature tracking in order to track the affective and cognitive
states of students. [12] used multi-channel physiological sig-
nals such as heart-activity, skin conductivity and respiration
to detect the learner’s affective states during their interac-
tion with AutoTutor. While many of these classifiers have
achieved impressive performance, one major limitation is
their reliance on data from expensive and intrusive sensors to

monitor body posture (Body Posture Management System),
electrocardiogram (ECG), etc. The expense of these sensors
coupled with their intrusive nature preclude their deployment
at scale, in common classrooms, and in less developed
communities. Furthermore, many studies have used facial
expressions and vocal features as indicators of affect [13].
While facial expressions are widely considered as a language
of emotion [14], many studies such as [15] have highlighted
that culture and ethnicity may influence the recognition of
emotion by facial expressions. Furthermore, most affective
classifiers are trained using supervised machine learning and
require a sufficient supply of labeled “ground-truth” data
from experts and self-reports. Obtaining labeled data free
from cultural, reference [16] and social desirability [17] is
very hard. In such a scenario, unsupervised representation
learning methods may be handy, since they do not require
training data and may learn useful features. We illustrate the
feasibility of semi-supervised models in the cognitive state
detection pipeline through our experiments later in the paper.

C. The Expressive Power of Gross Body Movements

Many researchers have investigated the role of facial
expressions, speech patterns and physiological responses, as
indices of cognitive and affective states. [18] also pointed
out that owing to the numerous degrees of freedom, the
human body is a potentially ideal affective communication
channel. However, only few studies have focused on gross-
body movements as predictors of cognitive and affective
states, which is surprising due to the embodied nature
of affect and cognition [18]. Gross-body movements are
promising predictors of cognitive states because they are
mostly involuntary and therefore less prone to social editing
in comparison to vocal and facial features. In addition, the
human body owing to its large number of degrees of freedom
forms a rich affective communication channel [18]. Existing
research utilizing gross body movements as an index of
affect, has mostly focused on gestures and specific postures
[19], and relied on expensive sensors such as Body Posture
Measurement Systems [20], which are hard to deploy at
large scales in practice. A few years ago, [18] established
that body fluctuations in the normal state of mind (cognitive
equilibrium) are characterized by correlated pink noise, and
underwent whitening when their participants experienced
states of cognitive disequilibrium. Inspired by the findings,
we hypothesized that states of cognitive disequilibrium and
flow differ in the complexity of the gross body movement
signals. By considering gross body movements in addition
to facial action units in the form of time series (rather than
raw video logs), we ensure that our features are not only
privacy-preserving, but also involuntary and therefore less
susceptible to social editing.

III. DATA AND METHODOLOGY

A. Data Collection and Pre-processing

Our experiments are based on a dataset collected in one-
to-one coaching scenarios for math problem solving. Seven
children within eight to twelve years of age and their parents
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were recruited from a local community. Parents were asked
to record videos (using a web camera) and pencast videos
(using a Livescribe Smartpen) of their children solving a
math problem. The cohort comprised of three girls, four boys
(two girls were siblings) and their parents (two fathers and
four mothers). The dataset consisted of 36 sessions having
a cumulative duration of 307 minutes, with a mean duration
of 7.9 minutes per session.

A number of features were extracted from the dataset
along the visual and writing channels. Visual features such as
Facial Action Units (FAUs), head and eye gaze orientations
were extracted using OpenFace [21] at a sampling frequency
of 30 Hz. We computed the first and second order derivatives
of all visual features with the exception of Facial Action
Units using NumPy’s gradient function which approximates
the gradient of an array using second order accurate central
differences in the interior points and second-order accurate
one sides in the end points. The writing speed was estimated
from Livescribe Echo Smartpen by computing the cumula-
tive distance covered by the tip of the pen and thereafter
measuring the change in the “amount of ink” collected in a
trailing window of two seconds. The final sets of features
used in our study are listed in Table I.

B. Ground Truth Labels

In order to validate our results, we annotated non-
overlapping 10-second time series segments for states of
cognitive disequilibrium or flow. 20% of the video segments
from each child were annotated by two independent annota-
tors1. Each annotator labeled a ten-second window within a
session based on the “perceived” cognitive state of the child,
as cognitive disequilibrium (1), neutral (2), flow (3) or off-
task behavior (-1). The rest of the data were then labeled by
one annotator, after a satisfactory inter-rater consensus was
reached with Cohen’s kappa greater than 0.5.

The choice of 10-second windows was inspired by litera-
ture where a number of studies such as [18] used fixed size
windows for annotating affect. The choice of the window
size was also driven by the fact that complexity measures
such as Higuchi Fractal Dimension expect stationary time
series as input, and while 10s windows (300 time steps at 30
frames-per-second video) are short enough to be considered
stationary, they also include sufficient number of time steps
to accurately compute the complexity measures. In our
experiments, we only used time series segments labeled as
cognitive disequilibrium and flow since both the annotators
had substantial agreement (average Cohen’s kappa = 0.6).
From a total of 3532 time series segments, we could only use
2483 time series segments for our analysis. The remaining
segments were shorter than 10s, too short for computing
complexity measures.

1The first and second authors of the paper. The second author has
considerable experience in annotating similar datasets.

2198 segments for Cognitive disequilibrium and 158 for flow
3128 segments for Cognitive disequilibrium and 120 for flow

Fig. 1. Composition of the i-th layer of the network [30].

C. Measures of Time Series Complexity

Measures of time series complexity were developed to
distinguish regular, chaotic and random behavior. Measures
such as Higuchi Fractal Dimension, Approximate Entropy,
etc. have been widely used in bio-medical signal process-
ing applications such as electroencephalographic time series
analysis [22] and psychology [23].

In their seminal work, [18] found that fluctuations in gross
body movements in states of cognitive equilibrium are char-
acterized by correlated pink noise, and undergo whitening
when students experience cognitive disequilibrium. White
noise is characteristic of random systems having no long or
short term correlations between observations, whereas pink
noise exhibits both long and short term correlations [18].
Inspired by those results and the success of complexity
measures in analyzing physiological time series [24], we
hypothesize that states of cognitive disequilibrium and flow
may differ in complexity.

Numerous time series complexity measures have been
proposed, but in our study we consider the following six most
widely used: Approximate Entropy [25], Sample Entropy
[26], Spectral Entropy [27], Permutation Entropy [28], Katz
Fractal Dimension [22], and Higuchi Fractal Dimension
[29].

In order to test our hypothesis, we conducted the two-
sample Kolmogorov-Smirnov (K-S) test which compares the
empirical distribution functions of two samples under the null
hypothesis that both are drawn from the same underlying
distribution. We carried out a total of 48 univariate two-
sample K-S tests, one for each combination of 8 features
(gaze vel X, gaze vel Y, gaze acc X, gaze acc Y, head vel T,
head vel R, head acc T, head acc R) and 6 complexity mea-
sures. The two samples for the test were the states of
cognitive disequilibrium and flow. We also carried out a
randomization test (with 1000 runs) and computed the K-S
statistics (D) by randomly permuting cognitive state labels.
The results of our experiments are discussed in detail in
Section IV-A.

D. Deep Feature Embedding

The field of affective and cognitive computing relies on
supervised learning algorithms [31], and is therefore heavily
dependent on training data from expert annotators or self-
reports by participants of a study. Since most advanced
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Features Description Derivation from OpenFace features
FAUs Indicate the presence or absence of 18 Facial

Action Units
AU01 c, AU02 c, AU04 c, AU05 c, AU06 c, AU07 c, AU09 c,
AU10 c, AU12 c, AU14 c, AU15 c, AU17 c, AU20 c, AU23 c,
AU25 c, AU26 c, AU28 c, AU45 c

gaze vel X Velocity of eye gaze along X-axis (gaze angle x)′

gaze vel Y Velocity of eye gaze along Y-axis (gaze angle y)′

gaze acc X Acceleration of eye gaze along X-axis (gaze vel Y)′

gaze acc Y Acceleration of eye gaze along Y-axis (gaze vel Y)′

head vel T Translational velocity of head
√

(pose Tx)′2 + (pose Ty)′2 + (pose Tz)′2

head vel R Rotational velocity of head
√

(pose Rx)′2 + (pose Ry)′2 + (pose Rz)′2

head acc T Translational acceleration of head
√

(pose Tx)′′2 + (pose Ty)′′2 + (pose Tz)′′2

head acc R Rotational acceleration of head
√

(pose Rx)′′2 + (pose Ry)′′2 + (pose Rz)′′2

writing speed Speed of writing -

TABLE I
FEATURES USED IN THE STUDY. X ARE FEATURES RETURNED BY OPENFACE. (X)′ AND (X)′′ ARE THEIR FIRST AND SECOND DERIVATIVES.

and powerful supervised learning algorithms require sub-
stantial amounts of training data to learn reliable decision
functions, application of affective computing is severely
limited by short supply of trained expert annotators or
potentially biased self-reports. To this end, we investi-
gated the utility of an unsupervised representation learning
model proposed by [30], which can be trained on a large
amount of unlabeled data to learn potentially useful feature
representations. By automatically learning useful features
for classifying raw data, representation learning algorithms
replace manual feature engineering and allow systems to
identify potential discriminators and use them to support a
specific predictive task. Very few studies have focused on
unsupervised representation learning for time series and [30]
is amongst the few general-purpose representation learning
algorithms for time series without any structural assumptions
on non-temporal data. Their model can learn representations
from multivariate time series segments of varying lengths
in a completely unsupervised fashion using a triplet loss
function coupled with time-based negative sampling. The
model (Figure 1) comprises of a deep neural network with
dilated causal convolutions to handle time series [32]. This
model minimizes an unsupervised triplet loss function which
assigns similar time series proximate embeddings based on
the assumption that they occur in temporal proximity while a
distant subseries chosen at random (from either the same time
series or a different one) is likely to be dissimilar. Therefore,
for a reference time subseries xref , the paper chooses one of
its own subseries as the positive example xpos and another
randomly chosen subseries xneg as the negative example.
In order to improve the convergence and the stability of
the training procedure, the model chooses multiple negative
samples independently. The training objective of the model
is given by the following equation:

C = −log
(
σ
(
f
(
xref , θ

)T
f
(
xpos, θ

)))
−

K∑
k=1

log
(
σ
(
f
(
xref , θ

)T
f
(
xnegk , θ

)))
(1)

where f(., θ) is a deep network with parameters θ and σ is
the sigmoid function.

The unsupervised representation learning model was
trained on 248 time series segments each having 27 features
(refer Table I) over 300 time steps. The unsupervised model
returns embeddings of a fixed and pre-determined shape.
We trained our models for 4 different output dimensions
of (64, 1), (128, 1), (256, 1) and (512, 1) respectively, and
found that the model with 64 features performed comparably
to more complex ones in the classification task, and we chose
to use 64-dimensional embeddings as our featurization.

Using these output embeddings as feature vectors and
manually annotated labels, we trained a random forest classi-
fier to predict the cognitive state (Flow or Cognitive Disequi-
librium) of a time series segment. We chose random forests
because they are able to learn non-linear and complex deci-
sion boundaries, work well with high-dimensional data and
can be robust to outliers. The unsupervised representation
learning model coupled with a random forest classifier can
function as a semi-supervised model, where the former learns
embeddings (features) from a large number of time series
segments in a completely unsupervised fashion, and the latter
uses these features and a limited number of annotations to
learn a decision function. Such a semi-supervised paradigm
can be extremely useful in practice of affective computing,
where obtaining vast amounts of unlabeled data is extremely
easy, but its annotation can be expensive.

IV. RESULTS

A. Analysis of Time Series Complexity Measures

The results of K-S and randomization tests are illustrated
in Table II. It can be clearly seen that the distributions
of complexity measures of gaze velocity significantly differ
across states of Cognitive Disequilibrium and Flow. Further-
more, distributions of Approximate and Sample Entropies of
all behavioural features yielded significant differences be-
tween the two states. In order to investigate the directionality
of the difference i.e. to answer whether behavioral signals in
Cognitive Disequilibrium resulted in higher complexity than
Flow or vice versa, we plotted the Empirical Cumulative Dis-
tribution Functions (ECDFs) for each complexity measure-
feature pair which had a significant difference (Figure 2).
The plots reveal that it is much more likely to observe lower
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Fig. 2. ECDFs of Approximate Entropy (AppEn) values of Gaze velocity
in CD (red) & Flow (blue). Given the AppEn of gaze velocity, it is much
more likely to observe lower values of AppEn amongst CD than Flow.

complexity values in CD than in Flow. These results are
in contrast to the findings of [18], which suggested that
cognitive disequilibrium is correlated with a whitening of
gross-body movement signals. Since whitening of a signal
adds to its complexity, then gross body signals in Cognitive
Disequilibrium should have higher complexity. However, our
results (for instance Figure 2) consistently suggest otherwise.
Inspired by these statistical results, we investigate the utility
of complexity measures from a multivariate point of view in
predicting CD and Flow.

B. Deep Feature Embedding Results

Figure 3 is a 3-dimensional UMAP [33] visualization of
deep features (embeddings) returned by the unsupervised
representation learning model. Subplots A and B represent
embeddings of baseline non-personalized features and are
colored by labels and subjects respectively. As shown, the
deep features group the data points into two separate clusters

Fig. 3. 3D visualization of Deep Feature Embedding: (A) non-personalized
features version colored by labels; (B) non-personalized features version
colored by subjects; (C) personalized features version colored by labels;
(D) personalized features version colored by subjects.

and in most cases the same subjects belongs to the same
cluster. In other words, it seems that the deep embeddings
have learned mostly the between-subject difference rather
than the discrimination between labels. Subplots C and D are
results from embedding learned from personalized features
(i.e. features for a given subject are normalized using mean
and standard deviation of the same subject aggregated across
all sessions). As a result, the post-personalization features
remove the between-subject variation and thus force the
embeddings to learn something different, as can be seen
from subplot D. It is however not obvious from subplot
C whether the embedding is able to discriminate between
labels due to its high dimensional feature space and possibly
non-linear decision boundary, which motivates us to feed the
embedding results into powerful classifier such as random
forest for further evaluation. The next section presents results
from these experiments.

C. Predictive Utility of Deep Features Embedding and Com-
plexity Measures: Multivariate View

We conducted experiments to compare predictive utility
of time series complexity measures and deep embedding
features by feeding the two different features sets into
random forest classifiers. We choose random forest for
illustration as one a popular model type capable of learning
complex non-linear decision boundaries. In order to test the
utility of feature personalization/normalization, we compared
the performance of the model using personalized and non-
personalized features for both complexity measures and deep
embedding features. In addition, we conducted three types
of experiments given the hierarchical structure of the data:
one subject has multiple sessions (one session is one child
solving one problem) and one session has multiple time
series segments. The first type of experiment (“Random”)
makes a random split between train and test sets, ignoring
the grouping structures. This type of experiment could yield
inflated algorithm performance as the information from the
same session and the same subject may appear in both the
training and testing sets, allowing the model to succeed
by hooking-onto personal characteristics of some distinct
subjects. The second type of experiment is conducted by
leaving one session out (“LOSO”) where the test set contains
all data from one session (thus the same subject). This setup
illustrates a “warm start” where we have data from all other
subjects in addition to data from the same test subject,
but from different sessions than the left-out test session.
The last type is leave-one person(subject)-out (“LOPO”),
which represents a “cold start” scenario where the model
is trying to predict for a completely unseen subject. Due
to varying degrees of information sharing between training
and test set, we expect the performance will degrade from
the upper bound case of random split, to LOSO and to
the most conservative (but of most practical utility) LOPO
experiments. Figure 4 shows the Area Under Receiver Op-
erating Characteristic Curve (AUC) scores under various
experimental conditions, comparing the effect of feature
personalization and utility of deep embedding features versus
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Gaze Velocity Gaze Acceleration Head Velocity Head Acceleration
Complexity Measures X Y X Y Translational Rotational Translational Rotational
Approximate Entropy 0.278 0.155 0.243 0.243 0.172 0.231 0.167 0.200

Higuchi Fractal Dimension 0.140 0.208 0.119 0.119 0.122 0.141 0.071 0.114
Katz Fractal Dimension 0.176 0.128 0.085 0.085 0.182 0.230 0.151 0.222

Permutation Entropy 0.215 0.218 0.283 0.283 0.119 0.082 0.077 0.079
Sample Entropy 0.259 0.166 0.178 0.178 0.177 0.224 0.190 0.210
Spectral Entropy 0.136 0.196 0.157 0.157 0.174 0.133 0.119 0.278

TABLE II
KOLMOGOROV-SMIRNOV STATISTICS. VALUES IN BOLD INDICATE STATISTICALLY SIGNIFICANT DIFFERENCES AT 5% SIGNIFICANCE LEVELS. ALL

THESE VALUES ALSO HAD EMPIRICAL p-VALUES < 0.05 RESULTING FROM THE RANDOMIZATION TEST. THE DISTRIBUTION OF COMPLEXITY

MEASURES OF gaze velocity DIFFERS SIGNIFICANTLY ACROSS STATES OF COGNITIVE DISEQUILIBRIUM AND FLOW.

2*Features Deep Complexity
Non-personalized Personalized Non-personalized Personalized

Experiments Random LOPO Random LOPO Random LOPO Random LOPO
Precision 0.83 (0.037) 0.81 (0.063) 0.82 (0.035) 0.78 (0.083) 0.74 (0.062) 0.61 (0.099) 0.71 (0.030) 0.69 (0.143)

Recall 0.82 (0.04) 0.7 (0.111) 0.8 (0.050) 0.61 (0.159) 0.71 (0.070) 0.5 (0.138) 0.71 (0.033) 0.59 (0.143)
F1 0.82 (0.04) 0.71 (0.092) 0.8 (0.050) 0.61 (0.137) 0.71 (0.071) 0.48 (0.127) 0.71 (0.033) 0.60 (0.135)

Accuracy 0.82 (0.04) 0.7 (0.111) 0.8 (0.050) 0.61 (0.158) 0.71 (0.070) 0.5 (0.137) 0.71 (0.033) 0.59 (0.143)
AUC 0.83 (0.052) 0.79 (0.058) 0.8 (0.051) 0.74 (0.143) 0.72 (0.056) 0.43 (0.177) 0.71 (0.034) 0.55 (0.133)

TABLE III
PERFORMANCE COMPARISON OF DEEP FEATURE EMBEDDINGS VS. COMPLEXITY MEASURES, PERSONALIZED VS. NON-PERSONALIZED FEATURE SETS

IN RANDOM AND LOPO EXPERIMENTS.

Fig. 4. Area Under ROC Curve (AUC) with 95% confidence interval, vary-
ing experimental conditions, feature penalization choices and featurization
techniques (deep embedding vs. complexity measures).

baseline complexity features. The left panel shows the results
from non-personalized features while right panel are those
with personalized features. There are several interesting
findings:

• Effect of experiment conditions: We observe a down-
ward trend for both deep features and complexity
measures from random split to Leave-One-Person-Out
(LOPO, “cold start” condition), suggesting that the
supervised model can be trapped to overfit on subject’s
specifics;

• Effect of deep embeddings and complexity features: As
shown, deep features seem to have a clear advantage
in predictive utility over complexity measures. This
advantage is more prominent with non-personalized
feature set;

• Effect of feature personalization: With complexity mea-

sures, personalization shows slight improvement from
the non-personalized ones across all experiment condi-
tions. With deep embedding features, it is interesting to
note that the performance does not drop as significantly
as in non-personalized version. In fact, the LOPO scores
reveal a level of performance comparable with the
random split evaluation with non-personalized features.

Table III presents detailed performance metrics (Precision,
Recall, F1 score, Accuracy and Area Under ROC Curve)
under different experiment conditions, generally consistent
with data in Figure 4.

D. Towards Semi-supervised Learning: How Much Supervi-
sion is Necessary?

We conducted sensitivity analysis to demonstrate the util-
ity of unsupervised embedding in the prediction task. In these
set of experiments, we fixed the held-out test set, varied
the size of the training set and reported the performance of
our semi-supervised approach accordingly. For brevity, we
only present results using non-personalized deep embedding
features with random split and leave-one-person-out (LOPO)
evaluation. As shown in Figure 5, the model was able to
achieve reasonable performance even with limited amount
of supervision. For random split, the performance drop is
more prominent however within reasonable range. For the
leave one person out (LOPO) condition, the performance is
robust even with very limited amount of labeled data.

E. Comparison with Deep Supervised Learning

We also compared the performance of our semi-supervised
model with ResNet [34]. [35] in a recent and comprehen-
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sive survey found that ResNet can significantly outperform
other deep learning approaches in classifying time series on
the UCR/UEA and MTS archives. In addition, they found
encouraging results (comparable predictive performance and
significantly less training & testing time) while comparing
ResNet to other state-of-the-art time series classification
algorithms such as HIVE-COTE [36].

Semi-supervised Supervised (ResNet)
Experiments Random LOPO Random LOPO

Precision 0.83 (0.037) 0.81 (0.063) 0.81 (0.016) 0.77 (0.074)
Recall 0.82 (0.04) 0.7 (0.111) 0.81 (0.023) 0.78 (0.071)

F1 0.82 (0.04) 0.71 (0.092) 0.81 (0.024) 0.77 (0.069)
Accuracy 0.82 (0.04) 0.7 (0.111) 0.81 (0.022) 0.78 (0.072)

AUC 0.83 (0.052) 0.79 (0.058) 0.8 (0.016) 0.73 (0.081)

TABLE IV
PERFORMANCE COMPARISON OF SEMI-SUPERVISED-MODEL & RESNET.

Table IV compares ResNet and the deep semi-supervised
model introduced above on several performance metrics. For
brevity, we only use the non-personalized feature set for two
types of experiments: random split and leave-one-person-
out. The results (Table IV) reveal that while ResNet achieved
higher accuracy (0.78%) in the LOPO experiments, there was
no significant difference (within 95% confidence interval)
between the models in terms of AUC in both evaluation
scenarios.

V. DISCUSSION

In this paper, we explored a semi-supervised framework
to model the dynamics of involuntary behavioral signals
collected using inexpensive sensors in order to discriminate
between cognitive disequilibrium and flow as the primary
input for decision making by human teachers or intelligent
tutoring systems. Experimental results with a modestly sized
multi-modal multi-sensor dataset, collected from young chil-
dren practicing problem solving in a naturalistic environ-
ment, reveal several insights. Firstly, in comparison to time
series complexity measures commonly cited in dynamical
systems literature, we find that the deep feature embedding

Fig. 5. Our semi-supervised model is able to achieve reasonable perfor-
mance (AUC) even with limited amount of supervision

approach is able to identify plausible discriminators between
those two states of interest more effectively than considered
alternatives, when coupled with a random forest classifier.
Secondly, we notice that this deep representation was able to
effectively generalize from training subjects to previously un-
seen subjects, as demonstrated by its robust performance with
leave-one-person-out experiments, and the advantage is even
more pronounced with personalized features. Thirdly, sen-
sitivity analysis with the semi-supervised framework shows
that with deep embeddings features, the model is able to learn
effective discrimination with even a small number of labeled
data points, and the resulting performance is comparable with
a potent fully supervised deep learning alternative which
often requires large extents of supervision. When further
validated with a more diverse set of subjects, the proposed
approach has the promise to scale up practicality of the
task of cognitive and affective state detection that is often
bottle-necked by high costs of label acquisition even with
abundant unlabeled data. Practically relevant capability of
generalization to unseen subjects is also encouraging as the
proposed approach would often be expected to work well
with out-of-sample subjects in the real world use cases.

VI. CONCLUSION

Effective coaching of problem solving requires real time
monitoring of students’ cognitive and affective states, which
can be challenging in societal environments with limited
teaching resources. This paper tackles this challenge with
a semi-supervised framework designed for automatic detec-
tion of two critical states of students during problem solv-
ing: Cognitive Disequilibrium and Flow. The discrimination
model learns from involuntary behavioral signals that are less
prone to social editing than more common alternatives, and
that can be feasibly collected using inexpensive sensors. We
empirically demonstrated the utility of the proposed approach
and shown that it could work well even with a modest amount
of data and limited supervision. When fully developed into a
working system, we envision that the proposed methodology
can play a role in augmenting human teacher’s perceptual
capability in the classroom as well as in improving the
effectiveness of intelligent tutoring systems.
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Statistical Simulation for Multi-Agent Scheduling under Uncertainty

Quintessa Guengerich1 and Isaac Isukapati2

Abstract— The Mat Sinking operation along the Mississippi
River, which aims to protect the riverbed by covering it with
concrete slabs, is currently being automated. Challenges arise
in the automation of such a large-scale, dangerous task: with
multiple large, robotic arms carrying heavy equipment over
long distances, a scheduling algorithm is called for. However,
scheduling the agents of the Mat Sinking robot is challenging,
in part because task duration is dependent on safety, cost, and
physical constraints. Uncertainties in these constraints creates
a finite number of viable solutions in a vast search space.
Furthermore, testing the performance of the scheduler often
cannot be done on physical equipment, due to limited time
and funds. In this paper, we present a statistical simulation
of the Mat Sinking robot and its operating environment. The
statistical simulator accounts for the uncertainty of the process,
and allows for the testing of the scheduler without a physical
prototype of the robot.

I. MOTIVATION

Riverbeds suffer erosion due to sloughing and turbulence
associated with water navigation. In order to prevent this
erosion, a process called Mat Sinking is performed, in which
concrete slabs are tied together into mats and lowered onto
the riverbed. The concrete mat covers the riverbed, protecting
from erosion and maintaining a safe waterway. To aid the
process, the Mat Sinking group at the National Robotics
Engineering Center is building a robot to lift the concrete
slabs off of supply barges, tie them together, and lower them
onto the riverbed.

Fig. 1. Current Mat Sinking operations [1]

However, scheduling the robotic arms of the robot to
operate efficiently and safely is a challenge: scheduling
algorithms have solution search spaces that increase in size
combinatorially as new agents are added. In the case of
mat sinking, this means that with each new robotic arm

1Quintessa Guengerich is a Chemical Engineering graduate from New
Mexico Institue of Mining and Technology qguenger@gmail.com

2 Isaac Isukapati is a staff scientist at Carnegie Mellon University

Fig. 2. The Mat Sinking Robot in development at the National Robotics
Engineering Center [2]

introduced to the system, the number of ways to perform
the same task increases exponentially, with only a few suit-
able solutions. Furthermore, the testing of these scheduling
algorithms often requires fully functional prototypes, that in
turn require input from a scheduler to be optimally built.

To address this gap, we have constructed a statistical sim-
ulation of the Mat Sinking process, allowing the scheduler to
be tested quickly and realistically. The statistical simulator
models the uncertainty of the process such as the time
taken to move concrete slabs, and the likelihood of failure
in each step of the process and tests the performance of the
scheduler under different operating conditions.

In this paper, we first discuss the system architecture,
illustrating the scheduler and simulator structures and their
interactions in depth. Next, the experimental design for
testing schedulers using the simulator is described. Finally,
we present our expected results.

II. RELATED WORK

The Mat Sinking process can be considered a flexible job
shop problem, where M jobs can be processed by any of N
machines in a given set. Job shop scheduling is a well-studied
and often applied problem, and simulation is frequently used
to arrive at approximate solutions. [3] Optimization is often
focused around minimizing makespan, or the time for the
jobs to be complete, an optimization that is considered one
of the most difficult NP-hard problems to solve. [4]

Statistical simulation, specifically, has also been applied to
job shop scheduling problems. [5] In statistical simulation,
parameters are estimated by sampling from distributions,
thereby emulating the random and stochastic nature of many
systems. In job shop scheduling, statistical simulation then
renders the makespan as a cumulative distribution function.
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Fig. 3. Overall System Architecture, showing the components of the
simulation

In Mat Sinking, the makespan should be minimized. In
this paper, we explore two algorithms that allocate machines
(lifting arms) differently to jobs (grasping and placing con-
crete slabs). We statistically simulate the makespan of each
step along the way, and will compare the two schedulers by
their maximum makespan.

III. BACKGROUND: MAT SINKING PROCESS

The Mat Sinking process is 4 basic steps:
1) Mat squares (with rough dimensions of 4 feet by 20

feet) are grasped and lifted off of a Supply Barge by
up to 6 lifting arms, controlled by an Arm Motion
Supervisor.

2) Mat squares are then moved from the Supply Barge to
a Mat Boat, where they are placed in a line and tied
together.

3) A launch is built when a certain number of squares are
tied together – usually 35 squares. Once the launch is
built, the launch is moved out of the way, and more
launches are added to the mat.

4) When a mat is built, it’s pushed into the water where
it sinks to the bottom of the riverbed.

Ultimately, these tasks are aided by 6 robotic arms on a
gantry.

Figure 4 shows a simplified schematic of the mat sinking
environment. In the upper right-hand side of the image is the
supply barge, with a bottom layer of stacks and a top layer
of stacks. In the bottom left of the illustration is the row of
mat squares, representing a single launch. The robot, which
will interact with this environment, is not pictured here.

This environment, as well as the actions of the robot, are
captured in the statistical simulation, discussed in the next
sections.

IV. SIMULATION ARCHITECTURE

Figure 3 describes the overall system architecture of the
simulation (outlined in blue) and the interacting components.
The Arm Scheduler has access to data about the current state

of the system, and uses that information to make decisions
regarding each arm. Then, the scheduler passes high-level
commands to the Arm Motion Supervisors, which control
the movement of the robotic arms on a lower level in order
to complete the task.

A. Arm Motion Supervisors

On the Mat Sinking robot and in simulation, the Arm
Motion Supervisors (AMS) will control the movement of
arms individually by issuing step-by-step commands, which
include moving and sensing instructions to complete overall
goals.

The AMS commands and the movements of the arm are
simulated together, with methods that act on the Supply
Barge and Mat Boat structures. These methods also estimate
the success and failure of the task, as well as task duration,
by randomly sampling from a distribution. The object accepts
commands from the scheduler and sends requests to the
Workspace Claims Manager. In order to complete tasks, the
AMS must request space and receive permission from the
Workspace Claims Manager, which checks that the requested
space is not already claimed by another arm, discussed
further below.

B. Supply Barge & Mat Boat

The supply barge and mat boats, illustrated in Figure 4, are
simulated to be stacked on top of each other in a staggered
configuration, with coordinates associated with each stack.

The availability of the bottom stacks depends on the
availability of the top stacks: squares in a bottom stack are
only available to be grasped by the robotic arm when the
squares in the top stacks have been moved.

The Mat Sinking operation will indicate 23 stacks on
the bottom and 22 stacks on the top layer, with each stack
containing 12 squares. The lifting arm of the Mat Sinking
robot lifts up to 2 squares at a time to deliver to the mat
boat. The mat boat is simulated as a vector, which contains

Fig. 4. Simplified illustration of supply barge and mat boat.
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Fig. 5. In the basic scheduler, claimed space is preallocated for each arm, whose goal is to fill a specified fractions of the mat launch positions.

Fig. 6. In the Adaptive Scheduler, each arm is assigned to pick up stacks from the closest available stack, and place the stack on the closest available
mat launch position, with claimed space allocated dynamically. In this way, an arm experiencing a high rate of failure can receive help from a neighboring
arm to fill the nearby mat launch spaces.

up to 35 positions for squares. Each position has a coordinate
associated with it, and is either empty or contains a square.
Furthermore, space on both the supply barge and mat boat
will be ”locked” if a lifting arm has claimed the space,
preventing another arm from claiming the space.

C. Stack Detection

In order to grab and lift squares, each robotic arm must
confirm its location above a stack on the supply barge
by detecting a stack with a camera. In simulation, this is
represented by randomly sampling from a distribution to
generate estimated positions of the detected stacks and pass
the point back to the AMS.

D. Workspace Claims Manager

The Workspace Claims Manager (WCM) evaluates a high
level command received from the scheduler and evaluates
the legality of the command before the arm completes the
command. The WCM evaluates legality of a command by
comparing:

• The current position of other arms
• The claim of the current arm
• The claim of other arms

What this means is that the WCM is preventing arms
from attempting to fill the same space (ie, crashing into each
other), by tracking their locations and their intended locations
within the current command they are completing (their
current claim.) If the WCM rejects a request for space, the
AMS does not issue low level movement commands; instead,
the AMS requests a new command from the scheduler.

V. METHOD

The statistical simulator is then used to test the perfor-
mance of the scheduler. Two configurations are tested: a
Basic Scheduler and an Adaptive Scheduler.

A. Basic Scheduler

In the basic scheduler – used as a control and ”worst case
scenario” of efficiency – each arm is assigned a fraction of
the stacks and a fraction of launch positions within their
claim space, and they are then scheduled to fill those launch
positions – a divide-and-conquer algorithm. In this case, the
claimed space of each arm does not change. The illustration
below in Figure 5 shows how these claim spaces could be
distributed with six arms and 35 launch positions, with two
steps and 4 squares placed.

86



B. Adaptive Scheduler

In the adaptive scheduler, each arm is assigned to grab
squares from the closest supply barge stack, and place the
squares on the closest mat launch positions, similar to a
greedy algorithm. Figure 6 illustrates 2 steps of this process.
Claimed space is allocated dynamically and freed when a
task is complete, so that another arm can enter or move past
the claimed space if necessary.

At first glance, the two schedulers appear to have similar
results, and this is because the ”nearest stack” depends
largely on where the lifting arms are initialized on the gantry.
However, we anticipate that the differences between the two
schedulers will become more prominent under the following
circumstances:

• when one launch of 35 squares is completely filled and
moved, another launch must be filled, and the lifting
arms begin the process in the position they left off in,
which could be much closer together or further apart.
This is only possible in the adaptive scheduler; in the
basic scheduler, each arm will always be within it’s
declared claimed space.

• when some arms are functioning more slowly than
others, or when arms are experiencing a higher rate
of failure, other lifting arms will be able to enter the
space that, in the basic scheduler, is claimed. This is
only possible in the adaptive scheduler.

One exception exists in the algorithm: the rightmost and
leftmost arms must have a preference to fill the ends of the
mat launch, instead of the most nearby empty square, because
only those arms can fulfill those requests.

VI. EXPERIMENTAL MATRIX

To compare the two schedulers, we will run them with
the varied parameters shown in Table 1. Both the percentage
failure and the number of functional (full speed, not slow or
broken) arms are parameterized and will be varied to test the
efficiency of the schedulers.

Functional Arms
2 3 4 5 5

%
Fa

ilu
re

E
xp

ec
te

d 5 – – – – –
10 – – – – –
25 – – – – –
50 – – – – –
75 – – – – –

VII. FUTURE WORK EXPECTED RESULTS

These schedulers are still being implemented in C++ to
interact with the simulation architecture discussed above.
Upon running the simulation with the scheduler, the adaptive
scheduler is expected to outperform the efficiency of the
basic scheduler, most notably when slow arms are present in
the system, because faster arms are less constrained. These
faster arms will then be available to enter the space near the
slow arms and aid in loading the launch area, which is not
possible in the basic scheduler. Futhermore, when some arms
are faced with a higher rate of failure and are stuck to fix

or ”retry” a task multiple times, arms facing lower rates of
failure are free to move into nearby space to complete tasks
on the supply barge and mat boat.

VIII. DISCUSSION AND CONCLUSION

Scheduling problems under uncertainty is a challenging
problem. Discrete schedulers do not arrive at optimal solu-
tions, and for real world problems with large uncertainty,
a better solution is sought. In this paper, we discussed a
statistical simulation of the Mat Sinking process along the
Mississippi River, which is a process involving uncertainty
on many fronts, such as inclement weather, wind, and con-
ditions on boats. The statistical simulation described in this
paper will be used to test two different schedulers, operating
with different scheduling algorithms: divide-and-conquer and
greedy. We will test both schedulers with different sets of
constraints, such as percent failure expected and the number
of functional arms, to illustrate a worst case scenario and a
better solution, found via a statistical simulation.
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Imitation Learning for Latent Factors in Collaborative Multi-Agent Systems

Sharmistha Swasti Gupta1, Dana Hughes2 and Katia Sycara2

Abstract— Enabling robots to collaborate with humans re-
quires both predicting the human’s behavior, and determining
appropriate robot responses. Imitation learning, or learning
from demonstrations of human-human collaboration is a sam-
ple efficient way to achieve the same. Prior work on human-
robot collaboration using imitation learning is mostly centered
on the underlying assumption that human behaviours in a
particular situation can be narrowed down to a specific expert
policy. On the other hand, research that deals with varying
human behaviour does not talk about scenarios where humans
and robots collaborate without direct communication. In this
paper, we propose a novel framework to train an agent that
must learn to make intelligent observations and take sequential
decisions in order to collaborate effectively with a human and
work towards the same goal. We take into account the latent
factors present in expert demonstrations and try to recover
multiple expert policies. Thus, for every collaborator, an agent
must be able to identify its type and also predict the best policy
that it should adopt on its own, in order to have an effective
collaboration.

Multi-Agent Systems, Human-Robot Collaboration, Imi-
tation Learning, Multiple Experts, Latent Factors

I. INTRODUCTION

The role of artificially intelligent systems in our lives is
getting more prominent with time. There is now a prepon-
derance of applications that require humans and agents to
interact and cooperate with each other in order to complete
a task. Thus, there is a need to develop robust frameworks
that can facilitate effective human-robot teaming.

For robots to collaborate well with humans, they must be
able to predict the human’s behaviour accurately in addition
to figuring out an appropriate response for that behaviour.
Imitation learning, or learning from expert demonstrations,
is a sample efficient approach to achieve the same. However,
for a particular situation, human behaviours can vary signifi-
cantly due to factors such as level of expertise, preference for
a strategy etc. Additionally, a human might exhibit different
behaviours under the same circumstance, at different points
of time. This introduces unaccounted latent factors for an
agent trying to learn from the human and essentially yields
multiple distinct experts to learn from.

While [1] addresses this issue for a single agent, there does
not exist a framework that enables multi-agent systems to
distinguish between different experts. In multi-agent settings,

1Sharmistha Swasti Gupta is a senior undergraduate student in
the Department of Electronics and Communications Engineering at
Indraprastha Institute of Information Technology, New Delhi, India.
sharmistha16193@iiitd.ac.in

2Dana Hughes and Katia Sycara are with the Advanced-Agent
Robotics Technology Lab at the Robotics Institute in Carnegie Mel-
lon University, Pittsburgh, USA. danahugh@andrew.cmu.edu,
katia@cs.cmu.edu

there is an inherent relation between the agent responses: the
optimal response of one agent can affect the response of the
other agents. Thus, multiple solutions are possible in which,
the agents’ response might differ in each situation, but the
collective goal is still achieved.

Fig. 1: Team Space Fortress Environment: The blue agent is
the bait, which diverts the attention of the fortress, whereas
the pink agent is the shooter, which attacks the fortress.

Team Space Fortress, shown in Fig. 1, is one such col-
laborative environment: two agents collaborate to destroy a
fortress by taking on complementary roles of either a bait
or a shooter. In a human-agent teaming scenario, the agent
must be able to identify the type of human player from
observations of the human’s actions in the environment, and
adopt a suitable policy for effective collaboration. However,
the challenge with human behaviour data is that it is very
difficult to confidently cluster them as separate types.

Through this work, we first propose a novel framework
that aims to combine two existing adversarial imitation
learning algorithms that can help learn latent factors like
preferences of another agent in a multi-agent setting. Sec-
ondly, we propose environments where we can test this
framework on self-generated data at present, so that it can
later be extended to more complex human data.

The paper is structured as follows: Section II talks about
prior work on collaboration in multi-agent systems using
different approaches. Section III talks about the necessary
background required to understand our proposed framework.
In section IV, we introduce our approach. Section V describes
our environments in detail and mentions the results and
ongoing work. We finally conclude with discussions and
future work in Section VI.
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II. RELATED WORK

A. Learning in Collaborative or Competitive Multi-Agent
Systems

Multi-agent cooperation and competition has been ex-
plored in literature using various deep reinforcement learning
[2] and inverse reinforcement learning approaches [3] [4].
He et al. propose a framework in [5] to encode observations
of the other agent into a deep Q-network (DQN) instead of
predicting the action explicitly. There also exists literature
on reinforcement learning with multiple experts [6] which
employs a Bayesian Model Combination approach to learn
a good combination of experts.
GIRL [7] is an inverse reinforcement learning based frame-
work for a single agent through policy gradient minimization.
Unhelkar et al. extend it to a multi-agent case by proposing
a model-free method for the inverse reinforcement learning
problem for a set of trajectories generated by different
experts’ policies [8]. However, algorithms like Q learning
and policy gradient do not work for multi-agent systems
because of non-stationarity of the environment in case of
Q-learning and increase in variance with number of agents
in case of policy gradient.
In [9], the authors propose a reinforcement learning frame-
work independent of the number of agents or entities in the
environment for cooperative behaviour in multi-agent teams
where agents learn to cooperate by exchanging messages
along the edges of a shared agent-entity graph. However,
communication between multiple agents comes with a cost.

There also exist imitation learning approaches to multi-
agent tasks. Zhan et al. [10] propose a generative multi-agent
behavioral cloning framework that enables the agents to learn
mappings from stages to distributions over multi-agent action
spaces. However, the issue of generalization with behaviour
cloning persists due to compounding errors and covariate
shift [11] [12].
In [13], Song et al. propose a multi-agent generative ad-
versarial learning framework that builds upon inverse re-
inforcement learning which can enable the agents to learn
behaviours in cooperative or competitive high dimensional
environments effectively. However, this work fails to take
into account latent factors that might be present in expert
demonstrations.

B. Learning Latent Factors in Expert Demonstrations
Springenberg et al. [14] propose a method to learn closely

related expert policies by taking into account latent variables
and exploiting a connection between reinforcement learning
and variational inference. In [1] Song et al. develop an
adversarial imitation learning framework for learning expert
policies that are a function of a latent variable, using visual
data as input. However, both these works are currently
limited to single agent systems.

In [15], Unhelkar et al. attempt to learn the latent states
in a human-agent collaborative multi-agent setting. However,
their approach involves communication between the agents
which is not efficient because communication, especially in
sequential decision making, incurs cost [16].

III. BACKGROUND

A. Markov Games

In a multi-agent learning domain, the Markov Decision
Processes (MDPs) are generalized to Markov games. A
Markov game [17] can be defined by a set of states, S and a
collection of action sets, A1...Ak, for each agent. Each agent
uses a policy to move to the next state in accordance with a
transition function, T: S × A1 × .... × Ak → P(S) where P(S)
is the probability distribution of actions over the set S. Each
agent also has a reward associated with it. The objective of
each agent is to find a policy such that it maximizes its own
total expected reward:

∞∑
j=0

γjrt+j

where γ ∈ [0,1) is a discount factor.
In a cooperative environment, in addition to the agent’s

own reward function, the total reward:

k∑
i=0

∞∑
j=0

γjrt+j

is also taken into consideration.

B. Imitation Learning

Imitation learning [18] uses expert demonstrations to learn
a given task without knowledge of the reward functions.
It learns a mapping between the current state and the
demonstrated behaviour and attempts to optimize the error
of deviating from that behaviour. It is efficient because it
requires minimal expert knowledge of the tasks. Thus, it
facilitates intelligent sequential decision making which is the
major task at hand in teaming situations.

Inverse reinforcement learning is one of the approaches of
imitation learning wherein data from expert demonstrations
is used to infer the reward function of the agent. The agent
then identifies the expert policy using reinforcement learning
and adopts it. Fig. 2 shows the steps involved in an inverse
reinforcement approach.

Fig. 2: Inverse Reinforcement Learning: Expert demonstra-
tions are used to infer reward function. Then, reinforcement
learning is used to determine optimal policy.
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C. Generative Adversarial Imitation Learning (GAIL)

The GAIL framework [19] allows for directly recovering
an expert policy from demonstration data as opposed to
inverse reinforcement learning which recovers the reward
function of the agent first. It uses a more expressive, non
linear cost function thus proving to be more efficient than
previous approaches. The cost function of GAIL is the
negative log loss function of the binary classification problem
of distinguishing between state action pairs of the generated
policy and the expert policy [20].

Fig. 3: Generative Adversarial Imitation Learning (GAIL):
A discriminator tries to distinguish between trajectories gen-
erated by the learned policy and the expert policy.

As shown in Fig. 3, in GAIL, a policy is learned through
a generative adversarial approach, where the policy is the
generator function, and the discriminator tries to distinguish
between trajectories of the learned policy, and expert demon-
strations. The error of deviation of generated behaviour from
expert behaviour is optimized by minimizing this error as
measured by Jensen-Shannon divergence. It essentially finds
the saddle point (π, D) of the expression:

Eπ

[
logD(s, a)

]
+ EπE

[
log(1−D(s, a))

]
− λH(π)

where π is the generated policy, πE is the expert policy, D is
a discriminator which tries to distinguish state-action pairs
from the trajectories generated by π and πE , and

H(π) , Eπ[−logπ(a)]

is the γ-discounted casual entropy of the policy πθ.
We consider two variations of GAIL:
1) MAGAIL: The MAGAIL framework [13] extends

GAIL to multiple agents. It finds the saddle point (θ, ω)
of the following function:

Eπθ

[
N∑
i=1

logDωi(s, ai)

]
+ EπE

[
N∑
i=1

log(1−Dωi(s, ai))

]

where N is the number of agents, Dωi is the discriminator for
an agent, which maps state-action pairs to scores optimized
to distinguish between expert demonstrations and policy
behaviours. πi.

2) InfoGAIL: Data from human expert demonstrations
show significant variability due to the presence of latent
factors that result in multiple distinct expert policies. The
InfoGAIL framework [1] infers the latency of such demon-
strations in an unsupervised way. Let c denote a discrete
latent variable that selects a policy π from the set of expert
policies through p(π|c) (needs to be learned), where p(c) is
the prior distribution of c (known before training). InfoGAIL
recovers a policy π(a|s, c) close to the expert policy πE; when
c is sampled from the prior p(c), the trajectories (sequences
of state-action pairs) τ generated by the conditional policy
π(a|s, c) are similar to the expert trajectories τE, as measured
by a discriminator.

If

LI(π,Q) = Ec(c),a∼π(.,c)[logQ(c|τ)] +H(c)

where Q(c|τ ) is an approximation of the true posterior P(c|τ ).
Then, the objective function of InfoGAIL is:

min
π,Q

max
D

Eπ

[
logD(s, a)

]
+ EπE

[
log(1−D(s, a))

]
− λ1LI(π(c), Q)− λ2H(π)

where λ1 > 0 is the hyperparameter for information
maximization regularization term, and λ2 > 0 is the
hyperparameter for the casual entropy term.

IV. MULTI-AGENT INFOGAIL
Fig. 4a) describes the framework for MAGAIL. Each agent

has its own discriminator. However, there is no variable, as
can be seen in the figure, that can account for latent factors
present in the environment.

Fig. 4b) describes the framework for InfoGAIL. There is
a discriminator which tries to get the generated policy as
close as possible to the expert policy. The expert policy in
this case is a function of a latent variable, c, which is an
indicator or agent preference or expertise, depending on the
environment.

Fig. 4: a) MAGAIL framework: An extension of GAIL
to multiple agents b) InfoGAIL framework: GAIL with an
additional latent factor

Thus, to accomodate latent factors in a multi-agent set-
ting, we propose a framework that combines MAGAIL and
InfoGAIL, and call it Multi-Agent InfoGAIL.
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Fig. 5: Proposed Framework: A Combination of MAGAIL
and InfoGAIL

As can be seen in Fig. 5, each agent has a discriminator.
Additionally, there is a latent variable associated with the
expert policy of each agent.

Thus, the resultant objective funtion of Multi-Agent Info-
GAIL is to find the saddle point (θ,D) of:

Eπθ

[
N∑
i=1

logDωi(s, ai)

]
+ EπE

[
N∑
i=1

log(1−Dωi(s, ai))

]

− λ1LI(π(c1), Q)− λ2H(π(c1))− λ1LI(π(c2), Q)

− λ2H(π(c2))

where λ1 > 0 is a hyperparameter for the information maxi-
mization regularization terms and λ2 > 0 is a hyperparameter
for the casual entropy terms.

V. ENVIRONMENT SETUP AND RESULTS

We set up two environments wherein the aim was to
generate multiple expert trajectories, in order to test our
approach.
Since the current Info-GAIL implementation uses visual data
as input, we created an environment for position based input,
which would eventually be useful in our TSF testbed. We
modified OpenAI’s CartPole environment [21] and added
a position based bias to its reward function. Multiple such
expert CartPole behaviours were generated which resulted in
multiple expert trajectories.
For the multi-agent setting, we modified the existing simple
spread scenario of OpenAI’s multi-agent particle environ-
ment [22] to generate multiple expert trajectories of agent-
agent teaming when covering certain landmarks.

A. Biased CartPole Environment (Single Agent)

The CartPole environment, as shown in Fig. 6 consists of a
block that tries to balance a pole placed on top of it and gets
a +1 reward for every successful step within the specified
window: [-2.4, 2.4] on the horizontal axis. We introduce a
bias by specifying a desired position of the block.
The additional position based term to the reward is then

Fig. 6: Biased CartPole environment

calculated as per the following Gaussian distribution (nor-
malised to 1).

P (x) =
1

σ
e−(x−µ)

2/2σ2

where x is the position of the block, µ is the mean (preferred)
position of the block and σ is the standard deviation (”tol-
erance” to deviation from the position). Thus, the modified
reward becomes 1 + C ∗P (x) where C is a hyperparameter.

We generated multiple experts (standard deviation is taken
as 0.0001 in all cases) using PPO (Proximal Policy Optimiza-
tion) [23]. The expert agents differed in their preferences for
the desired position along the x-axis.

Fig. 7: Reward Function for Biased CartPole. Desired Posi-
tion a) -2 b) +2

Fig. 7 shows the reward function of two such expert
agents. Fig. 7a) indicates the plot of an agent with -2 as
its desired position whereas Fig. 7b) indicates the plot of an
agent with +2 as its desired position.

B. 4-Colored Tasks Environment (Multiple Agents)

There are 2 differently colored agents and 4 differently
colored landmarks in the environment. Each agent has a
preferred landmark color. The collaborative task of the agents
is to cover a certain pair of landmarks, predefined to fetch
the maximum reward. A bonus reward is received if an agent
covers its preferred landmark.

In Fig. 8, let either of red (R) and green (G), or blue (B)
and orange (O) be the pair that fetches maximum reward,
if covered by the agents. Let us say the agents receive a
reward of 10 each, if any of these pairs are covered. Let the
preference of Agent 1 be red, and that of Agent 2 be orange.
Let us say that the agents receive a bonus reward of 1 if they
cover the landmark of their preference.
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Fig. 8: 4-Colored Tasks Environment: The two agents must
collaborate to cover the pair of landmarks that would fetch
them maximum reward

Then, the payoff matrix of the agents would be as shown
in Table I. The rows denote the landmark covered by Agent
1 (which prefers red) while the columns denote the landmark
covered by Agent 2 (which prefers orange).
If the agents were to follow a game theoretical approach, and
aim to arrive at a Nash equilibrium, their rewards would be
(10, 10). However, since the task at hand focuses on effective
teaming, the best option would be to get a reward of (11,
10) or (10, 11), which is what our approach tries to achieve.

Agent 1

Agent 2
R G B O

R (1, 0) (11, 10) (1, 0) (1, 1)

G (10, 10) (0, 0) (0, 0) (0, 1)

B (0, 0) (0, 0) (0, 0) (10, 11)

O (0, 0) (0, 0) (10, 10) (0, 1)

TABLE I: Payoff Matrix: Cell values denote an ordered
pair of rewards for Agent 1 (which prefers red) and Agent
2 (which prefers orange) on covering any of the R/G/B/O
landmarks

The preference of an agent to move to a landmark of the
same color is an indicator of the latent factors present in
human decision making and this is what consequently yields
clusters of multiple expert policies.

When a new agent is introduced into the environment, it
must identify the type of the expert the other agent is, in
this case, the color of the agent. It should then try to adopt a
policy based on the cost function of the other agent so that
it can collaborate with it in the best possible manner.

We are using MADDPG (Multi-Agent Deep Deterministic
Policy Gradient) [24] to generate multiple experts such
that the trained agent is able to continuously adapt to the
preferences of the other agent.
The agent policy, as shown in Fig. 9 is defined such that
it takes as input agent and landmark positions, takes into
account its own preference, and also considers the preference
of the other agent.

Fig. 9: Agent Policy: Preference of the other agent is also
taken into account while taking action

VI. DISCUSSION AND FUTURE WORK

Our current work generates expert agents in two contexts.
The single agent biased cartpole environment is a testbed
for InfoGAIL with velocity, orientation and position as the
input parameters, instead of visual data. This will enable us
to establish confidence in the approach before we move to
the Team Space Fortress environment which has similar data.

The multi-agent 4-Colored Tasks environment will be
used to test our combined approach, Multi-Agent InfoGAIL,
essentially learning latent factors in a collaborative multi-
agent setting.

After we test our proposed framework on these simple
environments, we will move on to a more challenging
dataset of human expert demonstrations in a Team Space
Fortress environment. Clustering human behaviours as differ-
ent experts will prove to be a challenge. Another interesting
research problem could be introducing a third agent in the
environment and trying to establish effective collaboration.
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Pre-computed Alternative Paths and Evaluation for Indoor Navigation
Based on Elevation Information

Jiafan Hou1, Zhaopei Gong2 and Peng Yin3

Abstract— This paper describes the improvements of Pre-
computed Alternative Paths (P-CAP) method for the applica-
tion of indoor navigation. P-CAP was previously adopted to
enable the aggressive aerial maneuvers in a fast selection and
computation way. Since the method only checks the obstacles
along the paths instead of searching or generating path online,
it turns out to be a good candidate for safety and robust indoor
navigation even in dynamic environment. The solution to the
new application is separated into four steps. Various paths
are pre-computed offline based on the fixed hypothetical map
firstly. The planning environment is then online expressed as
the grid map that store elevation information. By evaluating
the traversability of each path, the velocity commands to track
the selected path are finally sent out to the vehicle to perform
obstacle avoidance and auto-navigation. The frame work was
tested in simulator, and the result shows that the proposed
method works for wheeled mobile robot in the normal indoor
environment.

I. INTRODUCTION

Intelligent unmanned vehicle is believed to have signif-
icant impact on human society. It can be applied for the
construction of smart city, goods delivery and regular routing
inspection in industry, etc. In recent years, researchers have
put many efforts in this area and thanks to their great
work, multiple methods and algorithms are developed and
available for the auto-navigation with different purposes [1].
For instance, Genya, Keiji and Kazuya have developed a
path planning algorithm for planetary exploration rovers
[2]. Ji, Rushat, Vivek and Sanjiv defined P-CAP to enable
aggressive aerial maneuvers in cluttered environments [3].
Systems like emergency braking with the help of active
suspension [4], automatic parking [5] or blind angle vehicle
detection [6] have been constructed for safer driving in urban
environments.

With plenty of planning strategies though, still there are
challenges in auto-navigation in dynamic environment due to
the complicated real situations. Traditional searching based
algorithms like A* or D*, etc. discrete the local environment
to search optimal path, which lack efficiency and are time
consuming for real time path planning to avoid moving
obstacles. Learning and estimation based methods such as
the ones described in [7] [8] [9], try to predict the objects

1Jiafan Hou is a senior student of School of Science and Engineer-
ing at Chinese Universiy of Hong Kong, Shenzhen, Shenzhen, China
116010072@link.cuhk.edu.cn

2Zhaopei Gong is a PhD. student of School of Mechatron-
ics Engineering at Harbin Institute of Technology, Harbin, China
gongzp@hit.edu.cn

3Peng Yin is with Biorobotics Laboratory, Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA 15213, USA
pyin2@andrew.cmu.edu;

motion paths and future locations with limited data base,
which is not highly reliable and risky in application.

The strategy for auto-navigation introduced in this paper
is based on the framework proposed by [3], who defines P-
CAP and mainly focuses on the aggressive aerial maneuvers
in cluttered environment. Autonomous flight in complex
environments, as it figured out, is computationally expensive
to plan and avoid obstacles because of the high speed and
limited computation power. The paper thus declares the idea
of generating paths offline beforehand, and selecting the one
that is best suitable for the current situation to navigate
towards the goal. Because of its fast speed in response to
the environment for obstacle avoidance, it is believed that
P-CAP is highly applicable for mobile robot in dynamics
environment. However, in [3], online evaluation of pre-
computed paths is limited in small available path space after
checking obstacle collisions. The improvement of the method
in this paper is therefore by constructing a local grid map
that contains elevation information as an extra term for path
evaluation. Since the test bed and concern of this paper focus
on indoor ground navigation, the elevation information does
make sense in path assessment. Evaluation based on this
information is capable of reserving the whole path space
and thus enhanced the method. Fig. 1 shows one situation
for the path evaluation in local grid map in simulator, where
the grids are constructed from the local environment in world
frame and the axes are in vehicle frame.

Fig. 1: Indoor environment expressed in grid map.

Furthermore, as the structure property of grid map per-
mitted, it is also possible to add different layers of message
into the grid map for higher level decision and strategy
making in the future. Likewise, planning in grid map has
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the potential to consider more difficult problems by adding
layers of meaningful semantic information.

The structure of this paper is organized as follows. Section
II proposes the frame work and the idea of navigation
designed in details. The whole process is separated into four
basic steps: 1) Pre-computation and generation of the path
space. 2) Online grid map construction. 3) Path evaluation. 4)
Path tracking. Section III discusses the conducted simulation
and experiment results. Section IV eventually sums up the
work and the future plan.

II. FRAME WORK

The solution to deal with indoor navigation based on
elevation information was separated into four steps. A bunch
of available path candidates are first generated offline in
a basic map and stored to form a path space. The plan-
ning environment is then online constructed as grid map
that stores elevation information and refreshed continuously.
Based on the evaluation of traversability for each path in
path space, the candidate that gains highest score with the
consideration of heading angle, direction preference and
obstacles avoidance is selected and fed into the path follower
to perform auto-navigation. The frame work of the whole
process is sum up to flow diagram shown in Fig. 2.

Fig. 2: Process flow for auto-navigation.

A. Offline path space formation

The local path candidates are generated before the online
navigation. Thus, it is supposed that they cover most of the
directions and are ready to be smoothly tracked with look

ahead exploration. Based on these motivations, the paths are
generated in the range of [0, 2π] and each with two segments,
one for navigation decision making and the other for heuristic
exploration to avoid obstacles. The first part of the path is
generated according to (1).[

x
y

]
=

[
d · x̃ cosλ
d · x̃ sinλ

]
(1)

where d is the planning path length, x̃ is the sample space
and λ is the switching angle of the path. Basically, the
arcs of the circle that covers the search radius are grabbed
and projected to the cartesian coordinates for smoothly
navigation, illustrated by Fig. 3.

Fig. 3: Figure 3. Illustration of paths generated method.

This bunch of concave paths is then rotated in 2π to cover
one round direction. The other part of the path is generated
in the same way and brunches out from the start path for
look ahead exploration. Fig. 4 demonstrates all the paths that
cover the total area of 6× 6m2 generated by this idea ready
for evaluation. Note that the start paths in the figure are in
black spreading out from the right middle robot center, and
the look ahead parts are colourful.

Fig. 4: All pre-computed path.
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B. Robot-Centric Elevation Mapping

A robot-centric map is crucial for the mobile robot nav-
igation in an unknown environment. In order to adapt the
robot to a more complex indoor environment, online grid
map that contains height information is constructed for path
evaluation, whose process is named as elevation mapping
for convention in this paper. In this section, we describe
a Kalman-filter-based scheme for building elevation maps
by integrating distance information from Lidar, whereas the
map is incrementally build in real-time. The elevation map
is represented by a two dimensional grid structure who
stores the height of the grid h with variance σ2

h. For the
determination of the height for each location, the last points
from the Lidar readings are transformed from robot relative
distance measurements to global locations, with respect to
the robots global pose as shown in Fig. 5.

Fig. 5: Illustration of transforming range measurements to
height values.

The measurements comes from the Lidar are first trans-
formed into the robot-centric frame(xr, yr). The relative
distance dx and the height z of every measurement can be
calculated as (2).

(
dx
z

)
= Fdα

(
d
α

)
=

(
d cosα

hR − d sinα

)
(2)

where hR is the height of the Lidar located on the robot.
Then the map grid location can be calculated as (3)(

xr

yr

)
=

(
dx cosβ
dx sinβ

)
(3)

where β denotes the horizontal angle of the laser beam.
Due to the inevitable noise caused by unknown envi-

ronment such as the material and the light, the measure-
ment would contain the noise. Thus, the height estimation
is further updated from observation based on the history
knowledge by applying Kalman filter(4),

h(t) =
1

σ2
zt + σ2

h(t−1)

(
σ2
zth(t− 1) + σ2

h(t−1)zt

)
σ2
h(t) =

1
1

σ2
h(t−1)

+ 1
σ2
zt

(4)

However, the mapping and updating method described in
(4) is not suitable if the Lidar scans vertical structures such
as walls. In that case, this method will lead to different
height measurements and failed. The solution we figured out
to walk out from this dilemma is restricting the application

of mapping and updating it by introducing the Mahalanobis
distance, which can be described as (5) [10]

h(t) =


zt, if zt > h(t) ∧ dM (zt, h(t)) > c

h(t− 1), if zt < h(t) ∧ dM (zt, h(t)) > c

h(t) = 1
σ2
zt

+σ2
h(t−1)

(
σ2
zth(t− 1) + σ2

h(t−1)zt

)
, else

(5)
and variance σ2

h(t) with (6)

σ2
h(t) =


σ2
z′t
, if zt > h(t) ∧ dM (zt, h(t)) > c

σ
z2t
h(t−1), if zt < h(t) ∧ dM (zt, h(t)) > c

1
σ2
h(t−1)

+ 1
σ2zt

, else
(6)

where dM is the Mahalanobis distance defined as (7)

dM

(
zt, ĥ(t)

)
=

√√√√√
(
zt − ĥ(t)

)
σ2
ĥ(t)

(7)

Thus, a robot-centric elevation map can be obtained based
on the Lidar measurement and the corresponding mapping
procedure.

C. Path traversability evaluation and decision making

Now the grid map of local environment with appropriate
resolution is ready for navigation decision making. Trading
the online computation speed with memory allocation, the
traversability for each path regarding every single grid is
pre-memorized for online searching, as shown in Fig. 6. To

Fig. 6: Traversability for each path regarding every single
grid.

select the best suited path in current local environment with
look ahead distance, the score for each path is evaluated by
the cost from the elevation, the preference direction and the
desired heading angle, given by (8)

score =
(
1− wd · θ̃

)
·
(
10−

∣∣∣∣θ − 180◦

18

∣∣∣∣)3

− wh ·
∑
hi
r
(8)
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where in first term,

θ̃ = |θdesired − θend of the path| (9)

is the angle difference between the end point of the path and
the desired heading direction (e.g. the global path direction),
and wd is the weight to normalize the difference. In second
term, θ is the start point direction meaning the facing angle
of each path. The term was included with the consideration
that little turn would be preferred in planning. In last term,
r is the distance from robot center to the current interested
grid,

∑
hi is the accumulated grid heights that the particular

path pass by. In this way, lower score is given to the path that
traverse grids with high elevation information and closed to
the robot center, which is possibly blocked by the obstacles.

D. Path follower to perform tracking

After evaluating each path according to the constructed
online grid map, the one with highest score that trading
the heading angle, preference direction and looking ahead
obstacles is selected. Classical PID controllers, who are the
control strategy most frequently used in industry [11] are
then applied for path tracking in terms of heading angle and
velocity by (10) to perform auto-navigation.

[
ω̃
ṽ

]
=

[
Kpωδϑ +Kiω

∫
δϑ +Kdω

dδϑ
dt

Kpvδs +Ktv

∫
δs +Kdv

dδs
dt

]
(10)

where Kx are the tuning variables for each term and δθ and
δs are the error terms to be controlled.

SIMULATION AND DISCUSSION

With the process described in Section III, simulation is first
conducted in ROS base test bed in the virtual environment
that recorded beforehand to test the method.

As the case shown in Fig. 1, whose original point cloud
environment is the one shown in Fig. 7, the pre-computed
path space is visited for the evaluation of current situation by
(8), where the desired heading angle θdesired for θ̃ comes from
joystick for testing. The green path shown in Fig. 8 gives out
the final solution for tracking based on the objective function
described by (8). With the move of the robot center, online
grid map is refreshed according to the local environment in
a certain range, and the assessment system eventually gives
out the solution for continuous auto-navigation.

The simulation proves that the improved P-CAP can be
applied in normal indoor navigation. But with its fast speed
in path selection and evaluation, it is believed that the
method can be also applied in dynamic environment for auto-
navigation and obstacles avoidance. Further experiments are
going to be conducted to show this capability to prove the
claim.

CONCLUSION AND FUTURE WORK

This paper proposes the new application of the improved
P-CAP in indoor ground vehicle navigation with different
kinds of the inputs. Basically, instead of reducing the path
space due to the traversability against detected obstacles,

Fig. 7: Path evaluation in local grid map.

Fig. 8: Environment converted into grid map.

the grid map structure that stores elevation information
of the environment is adopted. Considering that particular
information in path assessment, the entire path space is
maintained for better performance of P-CAP. And with the
fast speed property in path selection and decision making,
improved P-CAP is believed to have the ability to navigate
mobile robot in dynamic environment.

Simulation result shows that the method works for normal
indoor environment. Experiment is going to be further con-
ducted to prove the capability of its functioning in dynamic
environment for auto-navigation. Last but not the least, as
the structure of grid map permitted, it is also possible to
add semantic information in the expression of different map
layers to do higher level decision making for navigation in
the future, which is going to be explored out in the next step.
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Enhancing Autonomy in Warehouse Truck Unloading Via Greedy
Optimization

Ashton Larkin1, Fahad Islam2, Anirudh Vemula2 and Maxim Likhachev2

Abstract— Warehouse applications typically involve manual
labor to unload boxes from delivery trucks. This can be a time
consuming task if a warehouse receives frequent shipments,
and unloading boxes is a demanding task that can physically
injure employees. In order to efficiently automate warehouse
truck unloading, we modify the decision making components
of an existing autonomous box unloading robotic system. The
robot’s goal is to maximize the throughput of boxes unloaded
over a fixed time frame without dropping boxes or jamming
the system. The physical interactions between the boxes in a
truck create a stochastic environment, making truck unloading
a complex task to automate using hand-designed strategies. We
use machine learning techniques to learn task-level actions (e.g.,
pick boxes from the top-right corner or scoop boxes from the
bottom of the truck). Training data is collected using a physics
simulator, and self-supervision techniques are used to train our
learning algorithm. Although the problem can be formulated
as a partially observable Markov decision process (POMDP),
the high dimensionality of the state space makes solving this
problem with POMDPs intractable. Instead, we take a greedy
approach and optimize the immediate reward by predicting the
best action from a set of actions (using our trained classifier)
for each scene of boxes that the robot encounters. Several
experiments were run in simulation that tested our approach
versus a planning under uncertainty approach. The results show
that our method mimics the performance of planning under
uncertainty in some environments and outperforms planning
under uncertainty in other environments.

I. INTRODUCTION

Unloading boxes from delivery trucks occurs frequently
in warehouse settings. Automating truck unloading can help
increase warehouse throughput and reduce employee work-
related injuries. In order to automate warehouse truck un-
loading using a robot, the robot must be able to know what
unloading action to perform given the state of boxes in a
truck. The optimal action to perform is one that maximizes
the number of boxes unloaded and minimizes the number of
boxes dropped. The action the robot takes at a given state af-
fects the next state of boxes the robot encounters, making this
a sequential decision making process. Physical interactions
between boxes also create a stochastic environment, which
means that executing the same action on similar scenes may
produce significantly different results.

The robot used in this work can be seen in fig. 1. The robot
has an arm with suction cups that can be used for picking
boxes, and a nose with conveyor belts that can be used

1Computer Science Department, Brigham Young University, Provo, UT
84602, USA adl95 at byu.edu

2Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213,
USA {fi, avemula1, mlikhach} at andrew.cmu.edu

3https://www.therobotreport.com/honeywell-
robotic-unloaded-distribution/

Fig. 1. The robot being used for autonomous truck unloading.3

for sweeping boxes. Example environments that the robot
may encounter are shown in Fig. 2. The robot can execute
an action like pick boxes from the top-right corner of the
truck, or scoop boxes from the bottom of the truck. Since the
robot should perform actions that maximize the number of
boxes unloaded and minimize the number of boxes dropped,
picking boxes closer to the top of the truck is best for the
environments presented in Fig. 2(a) and 2(b), while scooping
boxes from the bottom of the truck is best for 2(c) and 2(d).
It’s difficult to hand-design robust heuristics that enable the
robot to make these correct decisions.

There are many things to consider when deciding which
action the robot should execute. The robot has a noisy
perception system and also has no prior information about
the boxes packed in a truck. The robot should not only
avoid executing actions that drop a lot of boxes, but also
avoid executing actions that unload too many boxes at once
and end up jamming the unloading system. The boxes in a
truck vary in size and mass, and box configurations depend
on how they are packed. The variations between boxes and
configurations create a large number of scenarios that the
robot might encounter. Combining all of these factors makes
automating warehouse truck unloading non-trivial.

In order to handle the stochastic aspect of this problem
along with the uncertainties associated with the environments
the robot encounters, a simulator can be used that mimics real
world truck scenarios. The simulator can perfectly regenerate
a given scene of boxes, allowing us to test each action on a
particular scene to determine which action yields the optimal
reward for that scene. This approach automatically generates
correctly labeled data, which allows us to formulate the task
of decision making as a self-supervised learning problem.
After generating labeled data through self-supervision in
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(a) (b) (c) (d)

Fig. 2. Example environments that the robot may encounter at the start of truck unloading.

simulation, a multiclass classifier is trained to learn the
relationship between box scenes and the optimal unloading
action a robot should take.

Section II discusses the previous decision making ap-
proach used on the robotic system we are using, along with
other approaches that may seem appropriate for this problem.
Section III describes the problem formulation, including how
self-supervised data collection and learning occurs. Section
IV details the experiments that are conducted in order to
compare our approach to the decision making approach
taken in [1]. Section V shows the results obtained from
conducting the experiments outlined in section IV and notes
the advantages of our approach, along with future work to
be done.

II. RELATED WORK

A. Planning Under Uncertainty

Planning under uncertainty defines problem settings where
uncertainty exists in the outcome of actions [2]. The truck
unloading problem can be treated as planning under uncer-
tainty since the environment is stochastic. The work done in
[1] solves the truck unloading problem from this perspective
by using a belief space planner [3] in an offline phase to
generate strategies (i.e., a decision tree of states and actions)
over a finite horizon. After these strategies are generated,
online learning is used to choose the best strategy for the
current scene. This approach is similar to the approach taken
in [4]. The solution proposed in [1] is less complex than
previous approaches that model planning under uncertainty
as a partially observable Markov decision process [5]–[7].

B. Reinforcement Learning

Reinforcement learning (RL) is an area of machine learn-
ing where an agent learns how to maximize some notion
of cumulative reward in an environment through trial and
error without human assistance [8]. RL has been shown
to outperform humans in areas such as Atari games [9]
by collecting large amounts of training data through fast
simulators [10]. Since our simulator is slow, using RL makes
it challenging for us to collect enough training data. Success
has also been shown using RL in problem domains where
training occurs slowly by running multiple agents in parallel
and updating each agent’s policy asynchronously [11], but

the problems solved using this approach are not as complex
as the truck unloading problem.

C. Self-Supervised Learning

Self-supervised learning is a type of supervised learning
technique where the labelling of data is done automatically.
Self-supervised learning can be used to solve problems that
are otherwise unsolvable due to challenges in data collection
[12]–[14]. In the context of our problem, we take a self-
supervised learning approach since we have a simulator that
can perfectly re-initialize scenes quickly. Since any scene
can be re-initialized in simulation, we let the robot try
every action on a given scene (when training) in order to
determine which action gives the highest reward for a given
scene. Repetitive experimentation on the same scene allows
us to correctly label the scene, and we use the simulator to
generate as many scenes as needed.

After generating various labeled scenes through simula-
tion, the labeled scenes are combined to form a large data
set that can be used to train a multiclass classifier. Although
many self-supervised learning domains handle binary labels
(e.g., object recognition) [15], we get continuous rewards
for different actions. To account for this, we use weighted
sampling, which is explained in section III-C.

III. METHOD

The approach we take in this work is aimed at helping
the robot learn a mapping between a scene of boxes and
the optimal action the robot should execute for that scene.
We are doing this by training a classifier with data that was
collected in simulation through greedy optimization. For this
problem, greedy means that the robot only considers how to
maximize the reward for the current scene it sees through an
immediate action. The robot does not consider how the next
scene will be affected by the current action. In this section,
we will describe the problem formulation, data collection
approach, and learning algorithm.

A. Problem Formulation

Assumptions:
• The collected training data is independent and identi-

cally distributed.
• The robot’s perception system is perfect and gives us

the ground truth about the box poses and dimensions.
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The Robot. The robot has an arm with suction cups that
can be used for picking boxes, and a nose with conveyor
belts that can be used for scooping boxes. Refer to Fig. 1
for a depiction of the robot’s arm and nose.

Robot Actions. There are six different pick actions and
one sweep action that the robot can perform to unload boxes.
These actions define an action set A, which is shown in eq.
(1). When training, the robot tries every action in A on a
given scene in order to determine which action a ∈ A gives
the maximum reward for that scene.

A = {
pickLeftLow , pickLeftMid , pickLeftHigh ,

pickRightLow , pickRightMid , pickRightHigh ,

sweep

}
(1)

Rewards. For each scene the robot encounters, the goal
is to choose an action that will maximize the reward, r.
The reward is a function of the number of boxes unloaded,
dropped, and jammed in the system for a given action. It’s
important to note that r ∈ R since there must be a penalty if
boxes are dropped, or if the system gets jammed due to trying
to unload too many boxes at once. The penalty for jamming
the system is more severe than the penalty for dropping boxes
because system jams require human intervention.

B. Data Collection

Feature Extraction. In order to save the simulation
scenes with their corresponding best action, features must
be extracted from the scene. In this work, feature extraction
is motivated by the approach taken for the game of Tetris
[16]. The features are defined by discretizing the scene
into columns, saving the height of each column and the
differences in heights between each column. This results in
each scene being represented as a 95-dimensional feature
vector. For an example of feature extraction, see Fig. 3.

Data Collection Algorithm. The procedure for collecting
training data is outlined in algorithm 1. In this algorithm,
A is the action set defined by eq. (1). The data collection
algorithm tries each action on the current scene, saves
the best action and the rewards for that scene (if a best
action exists), and then triggers the next scene by executing
whatever action was defined as the best action for the current
scene. It’s important to note that all actions may produce a
reward that is ≤ 0 for a given scene since there are penalties
associated with dropping boxes and jamming the system. If
this fail state ever occurs, we do not save this scene as part
of the data set since there was no ”optimal” action to pair it
with. All we do for a fail state is trigger the next scene by
executing a default action d ∈ A. In our experiments, we set
d to sweep, but d can be set to any action a ∈ A.

Self-supervision. Another thing to note about algorithm 1
is that the labels for each scene are generated automatically
through self-supervision. Since this algorithm is run on a

Algorithm 1: Data collection through self-supervision

1 Input: startScene, trainingIterations
2 Output: data
3 A = initializeActionSet();
4 data = new list();
5 iterationsRan = 0;
6 currScene = startScene;
7 while iterationsRan < trainingIterations do
8 actionRewards = new list();
9 nextAction = None;

10 for a ∈ A do
11 reward = currScene.performAction(a);
12 actionRewards.append(reward);
13 end
14 if max(actionRewards) ≤ 0 then
15 nextAction = A.defaultAction;
16 else
17 bestAction = argmax(actionRewards);
18 nextAction = A.get(bestAction);
19 features = extractFeatures(currScene);
20 data.append(features, bestAction,

actionRewards);
21 end
22 currScene = currScene.initNextScene(nextAction);
23 iterationsRan += 1;
24 end
25 return data;

simulator, we are able to try each action a ∈ A on the
same scene S. The simulator is key here because it allows
us to reset S to its original state quickly whenever we want
to execute another action on it. Resetting scenes manually
instead of in simulation would not only take time, but would
also void the guarantee that the scene was reset to the
exact same state each time. By having a simulator, we can
guarantee consistency and collect a large amount of correctly
labeled data with ease.

C. Learning Algorithm

The Classifier. Once training data has been collected,
this data is used to train a classifier whose goal is to
learn a mapping between box scenes and optimal actions.
Since there are more than two actions in A, we need to
perform multiclass classification, not binary classification.
We use scikit-learn’s support vector classifier (SVM) as our
multiclass classifier [17]. Details regarding the classifier’s
parameters are described in section IV-B.

Weighting the Training Data. When training this clas-
sifier, points are weighted based on the difference between
the best and second best action rewards for a given scene.
For some scenes, the optimal action produces a reward that
is far better than all of the other action rewards. For other
scenes, the optimal action reward is not significantly better
than one or more of the other action rewards. We place a
higher emphasis on fitting the classifier to scenes that have a

101



(a) The scene in simulation (b) The extracted features

Fig. 3. A visualization of how features are extracted from a particular scene.

distinctive best action to prevent the classifier from predicting
actions that can potentially jam the system or achieve little to
no reward. We place a lower emphasis on fitting the classifier
to scenes that have multiple good actions because the penalty
associated with predicting an action that performs close to
the optimal action for a given scene is low.

Multi-Step Classification. For some scenes, it’s difficult
to distinguish the difference between performing a pick
action on the left side of the truck vs the right side of the
truck. Consider the scene depicted by fig. 2(a). Picking boxes
from the top of the truck is the best action for this scene,
but the side on which the high pick should occur is unclear.
Since this is a stochastic environment, one experiment on
this scene may come to the conclusion that pickLeftHigh is
best, while another experiment on this scene may argue that
pickRightHigh is best. This can limit the classifier’s learning
ability since it may receive multiple data points with very
similar features, but different labels.

We avoid this issue by making action prediction a two
step process. This involves relating the actions in A to a
high level action set H , which is shown in eq. 2. The first
step in this process is to determine which high level action
h ∈ H should be executed. This decision is made by the
classifier. Once h is decided, the side on which h should be
exectued must be determined if h is a pick action. The side
is determined by extracting the total height of the boxes in
the left and right halves of the truck from the features. If the
total box height for the left half is greater than the total box
height for the right half, then the pick action is executed on
the left side. Otherwise, the pick action is executed on the
right side. This decision making process is outlined in fig.
5.

H = {pickLow , pickMid , pickHigh , sweep} (2)

IV. EXPERIMENTS

In order to compare the performance of our greedy
optimization approach to the performance of the planning
under uncertainty approach taken in [1], we train and test
each approach on the same environments. Four simulation
environments are used, shown in fig. 4. Environments A1

and A2 resemble neatly stacked boxes in a truck, while B1
and B2 represent messy boxes. Environments A1 and B1 are
used to collect the training data. Environments A2 and B2
are used for evaluation. For information on how the training
data is collected, see algorithm 1. V-REP [18] is the simulator
used in this work, which is the same simulator used in [1].

A. Data Collection

Training data for this experiment was collected by running
the simulator on environments A1 and B1. Ten simulations
were run in parallel for each environment. Each parallel
simulation ran for 50 iterations. Running parallel simulations
reduces training time and also helps account for the stochas-
ticity in the environments. After the runs were completed,
the collected data from the parallel runs was combined into
a single file. Any duplicate data points were removed during
combination. A duplicate data point is defined as a point that
has the same features and label. Duplicate points were likely
to occur early in training since the parallel simulations for a
given training environment started on the same scene. Data
points that were correctly labelled but had rewards indicating
that some of the actions failed to execute (due to either a
system jam or communication timeout) were also removed.
This resulted in 689 training data points.

B. Classifier Hyperparameter Tuning

Once the training data was collected, the SVM hyperpa-
rameters were tuned using a grid search over the following
parameters:

• Linear kernel
– C: [1, 10, 100, 1000]

• RBF kernel
– C: [1, 10, 100, 1000]
– Gamma: [0.001, 0.0001]

Performing this grid search on the collected training data
resulted in an optimal SVM having an RBF kernel with
gamma set to 0.001 and C set to 1000.

C. Evaluation

Testing occurred on environments A2 and B2. Ten parallel
simulations on each environment were run for evaluation.
Before running the simulator on the test environments, the
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(a) A1 (b) A2 (c) B1 (d) B2

Fig. 4. The simulation environments used for training and testing.

Fig. 5. The multi-step classification process.

classifier was fitted to the training data collected from envi-
ronments A1 and B1. For testing, the multi-step classification
process (see fig. 5) is used to determine what action to
execute given the current scene. The robot then executes
this action, which triggers the next scene that the robot
encounters. This process is repeated until either all boxes
have been unloaded from the truck, or the robot executes
ten consecutive actions that result in no reward.

Fig. 6. The performance of our approach (green) against the approach
outlined in [1] (red). The left subplot shows the evaluation results from
environment A2, and the right subplot shows the evaluation results from
environment B2.

V. RESULTS AND DISCUSSION

The performance of our approach was compared against
the performance achieved in [1] by performing the experi-

ments described in section IV. The results of running these
experiments are shown in fig. 6. Each line in fig. 6 represents
the average performance of the 10 parallel runs, with the
shaded area representing the standard error.

Our greedy approach outperforms [1] on environment
A2 and performs similarly to [1] on environment B2. It’s
interesting to note that ignoring the effect the robot’s cur-
rent action has on the next scene does not reduce system
performance. This is because the problem space for truck
unloading is bounded by the walls of the truck. For problems
with open environments like self driving cars, poorly made
decisions at a given time step can lead to major error later
on since the accumulated error in an open environment
extrapolates more than the accumulated error in a closed
environment. Our results confirm that the approach taken
in [1] is overly complex, and that planning for extended
horizons is unnecessary for this problem. Our approach
is simpler than [1] and also performs no worse than the
approach taken in [1].

A. Future Work

Multiclass Const-Sensitive Classification. In this work,
we weighted the training data points based on the differences
between the top two action rewards for a given scene.
Weighting the training data does not make the classifier’s loss
proportional to the degree of error in the predictions made
during training. We would like to define the classifier’s loss
as a function of the difference between the optimal action
reward and predicted action reward.

Feature Engineering. We used features similar to the
features used in [1]. Although our approach improved the
robot’s performance, these features do not seem to be infor-
mative for classification between task-level actions. Further
work is needed to determine the proper feature representation
for this problem.

VI. ACKNOWLEDGEMENTS

Thank you to Carnegie Mellon University’s Robotics Insti-
tute For Summer Scholars (RISS) program and the National
Science Foundation for supporting this work. Ashton would
like to give special thanks to Michael Goodrich and the mem-
bers of the Search Based Planning Laboratory at Carnegie
Mellon University for their mentoring and guidance.

103



REFERENCES

[1] O. Salzman, A. Dornbush, F. Islam, S.-K. Kim, A. Vemula, and
M. Likhachev, “Planning, learning and reasoning for robot truck
unloading—a system’s case study,” unpublished, 2019. [Online].
Available: http://orensalzman.com/docs/ISRR19-Systems.pdf

[2] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006.

[3] S. K. Kim, O. Salzman, and M. Likhachev, “POMHDP: Search-
based belief space planning using multiple heuristics,” in Proceedings
of International Conference on Automated Planning and Scheduling
(ICAPS), July 2019.

[4] X. Guo, S. Singh, H. Lee, R. L. Lewis, and X. Wang, “Deep learning
for real-time atari game play using offline monte-carlo tree search
planning,” in Advances in Neural Information Processing Systems 27,
2014, pp. 3338–3346.

[5] L. P. Kaelbling, M. L. Littman, and A. R.Cassandra, “Planning and act-
ing in partially observable stochastic domains,” Artifical Intelligence,
vol. 101, pp. 99–134, May 1998.

[6] J. Pineau, G. Gordon, and S. Thrun, “Anytime Point-Based Ap-
proximations for Large POMDPs,” Journal Of Artificial Intelligence
Research, vol. 27, pp. 335–380, 2006.

[7] S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa, “Online Planning
Algorithms for POMDPs,” Journal Of Artificial Intelligence Research,
vol. 32, pp. 663–704, 2008.

[8] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016, http://www.deeplearningbook.org.

[9] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. A. Riedmiller, “Playing atari with deep reinforce-
ment learning,” NIPS Deep Learning Workshop, December 2013.

[10] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade
learning environment: An evaluation platform for general agents,”
Journal of Artificial Intelligence Research, vol. 47, pp. 253–279, 2012.

[11] S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learn-
ing for robotic manipulation with asynchronous off-policy updates,”
in 2017 IEEE International Conference on Robotics and Automation
(ICRA), May 2017.

[12] L. Pinto and A. Gupta, “Supersizing self-supervision: Learning to
grasp from 50k tries and 700 robot hours,” in 2016 IEEE International
Conference on Robotics and Automation (ICRA), May 2016, pp. 3406–
3413.

[13] C. Doersch and A. Zisserman, “Multi-task self-supervised visual
learning,” International Conference on Computer Vision, 2017.

[14] B. Sofman, E. L. Ratliff, J. A. D. Bagnell, N. Vandapel, and A. T.
Stentz, “Improving robot navigation through self-supervised online
learning,” in Proceedings of Robotics: Science and Systems, August
2006.

[15] Y. Wu, T. S. Huang, and K. Toyama, “Self-supervised learning
for object recognition based on kernel discriminant-em algorithm,”
in Proceedings Eighth IEEE International Conference on Computer
Vision. ICCV 2001, vol. 1, July 2001, pp. 275–280.

[16] C. Thiery and B. Scherrer, “Improvements on learning tetris with cross
entropy,” International Computer Games Association Journal (ICGA),
vol. 32, 2009.

[17] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[18] E. Rohmer, S. P. N. Singh, and M. Freese, “V-rep: a versatile and
scalable robot simulation framework,” in Proc. of The International
Conference on Intelligent Robots and Systems (IROS), 2013.

104

http://orensalzman.com/docs/ISRR19-Systems.pdf
http://www.deeplearningbook.org


Signal Processing for Environment-Invariant WiFi Human Sensing

Yutian Lei1, Fei Wang2 and Dong Huang3

Abstract—With the high demand for wireless data traffic,
WiFi networks have very rapid growth because they provide
high throughput and are easy to deploy. Recently, Channel State
Information (CSI) measured by WiFi networks is widely used for
different sensing purposes. Though, there exists one particular
challenge for the generalization of WiFi sensing, that the current
algorithms are not robust enough to deal with the varied
environments. In this paper, we present the methods to remove
the random phase shift of Channel State Information (CSI) by
estimating sampling time offset (STO), sampling frequency offset
(SFO) and Cyclic Shift Diversity (CSD). Also, the (MUSIC)
MUltiple SIgnal Classification algorithm is discussed to estimate
multi-path features of signal propagation. In addition, we propose
a novel way to calibrate the relative position of the transmit
and receive antennas, and make the CSI less sensitive to the
location and orientation of the antennas. Our experiments shows
the modified CSI are to some extent free from variance of the
random noise from the environments and hardware.

Index Terms—MUSIC, signal processing, phase removal, WiFi,
CSI

I. INTRODUCTION

Recent advances in WiFi technology have accelerated the
popularization of wireless devices. Due to the widespread
deployment of wireless networks, WiFi sensing with Channel
State Information (CSI) provided by Multiple-Input Multiple-
Output (MIMO) is actively researched these years. CSI de-
scribes how a signal propagates from the transmitter to the
receiver at certain sub-carrier frequencies and represents the
combined effect of, for example, scattering, fading, and power
decay with distance. A time series of CSI data can actually
capture the spatial and movement information of the envi-
ronment, and thus can be used for different wireless sensing
applications, like human detection [1], indoor localization [2]–
[4], gesture recognition [5], activity recognition [6], [7].

Due to the multi-path effect, the raw CSI data is the super-
position of signals in different paths, which contains redundant
information from the static environment. In addition, the CSI
measurements are sensitive to the location and orientation of
the antennas, meaning even recent research about WiFi sensing
requires the transmit and receive antennas to be placed in
fixed positions. To some extend, it restricts the real-world
application of environment-invariant WiFi sensing since it’s
difficult to duplicate the same setting of the transmit and
receive antenna.

Therefore, signal processing methods for CSI data are
explored in this paper to make the CSI capable of environment-
invariant sensing. The method consists of three parts: 1)

1Yutian Lei is a senior student of Computer Science and Engineering
Department at The Chinese University of Hong Kong, Shenzhen, Shenzhen
518116, China. 115020250@link.cuhk.edu.cn

2,3Fei Wang, Dong Huang are Delight Laboratory, Robotics
Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
feiw2@andrew.cmu.edu; dghuang@andrew.cmu.edu

Phase Offsets Removal: removing the phase offsets due to
hardware and software errors like Sampling Time Offset
(STO), Cyclic Shift Diversity (CSD) and Sampling Frequency
Offset (SFO); 2) Muiltipath Feature Estimation: Estimation
the feature of interest of different paths by MUSIC(MUltiple
SIgnal Classification)-based algorithm; 3) Signal Calibration:
Calibrating the relative position of the receiver and transmitter.

The paper is organized as follows: section II introduces the
preliminary of Channel State Information (CSI), section III
explains the methods and reasons to remove random phase
shift, section IV shows MUSIC algorithm for estimating the
multi-path feature, section V introduces the novel way to make
signal calibration and VI covers the experiments and results.

II. PRELIMINARY: CHANNEL STATE INFORMATION

CSI characterizes how wireless signals propagate from
the transmitter to the receiver at certain carrier frequencies.
CSI amplitude and phase are impacted by multi-path effects,
including amplitude attenuation and phase shift. Each CSI
entry represents the Channel Frequency Response (CFR),

H(t; f) =

L∑
l

γl(t)e
−j2πfτl(t) (1)

where f is the carrier frequency, γn(t) is the amplitude
attenuation factor and τn(t) is the propagation delay for path l.
[8] The CSI amplitude |H| and phase ∠H are impacted by the
displacements and movements of the transmitter, receiver, and
surrounding objects and humans. In other words, CSI captures
the wireless characteristics of the nearby environment. These
characteristics can be utilized by mathematical modeling or
machine-learning algorithms for different sensing applications.
This is the rationale for why CSI can be used for WiFi sensing.
[9]

For a Wifi System with N transmit antennas, M receive
antennas, and K subcarriers operating for T time, the CSI
data is a 4D matrix with shape M ×N ×K × T .

III. PHASE OFFSETS REMOVAL

For real-world commodity Wi-Fi devices, expect the multi-
path effect, the measured CSI is also impacted by many
practical hardware and software problems. First, the receivers
and the transmitter are not tightly time synchronized, so
their sampling clocks at the DAC and the ADC are not
in sync, which causes sampling time offset (STO). Apart
from sampling time offset, there is also a sampling frequency
offset (SFO) between every WiFi sender receiver pair. SFO
changes the sampling time offset from packet to packet for
the same sender-receiver pair [4]. In addition, the Orthogonal
Frequency-Division Multiplexing (OFDM) causes Cyclic Shift
Diversity (CSD).
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Fig. 1. WiFi antennas as sensors for human sensing

Taking these into consideration, the measured CSI is there-
fore [9]:

Hm,n,k = (
L∑
l

γle
−j2πfkτm,n,l)e−j2πamfke−j2πbfke−j2πc(f

′
k−fk)

(2)
where Hm,n,k(t) is the CSI from receiver i to transmitter j at
subcarrier k, am is the time delay from Cyclic Shift Diversity
(CSD) of the nth transmit antenna, b is the Sampling Time
Offset (STO), c is the Sampling Frequency Offset (SFO).

According to (2), the phase of measured CSI is

∠Hm,n,k = Φm,n,k − 2πfσk(ai + b+ c(f ′k/fk − 1)) (3)

The phase offsets are estimated by minimizing the linear fitting
errors across K subcarriers, N transmit antennas, and M
receive antennas.

β̂1, β̂2, β̂0 = arg min
β1,β2,β0

∑
i,j,k

(∠Hi,j,k+β1ki+β2k+β0) (4)

where β1, β2, β0 are the fitting variables. From the unwrapped
CSI phase, subtract the phase that would have been added due
to STO, SFO and CSD to obtain modified CSI phase ∠ ˆHi,j,k

as
∠ ˆHi,j,k = ∠Hi,j,k + β1ki+ β2k + β0 (5)

IV. MUILTIPATH FEATURE ESTIMATION

Fig 2 shows a simplified propagation model for WiFi
signals, which consists of three types of path: 1) The static re-
flection paths caused by the static objects in the environments;
2) The direct path between the transmitters and receivers.
(Note that the direct path may not exist if there are obstacles
between the transmitters and receivers); 3) The moving paths
caused by human movement. The propagation paths of WiFi
signal can characterized by multi-dimensional features. And
in this section, we will introduce what are these features, how
can they affect the CSI and how to make estimations of these
features.

A. Feature of Propagation Paths

Angle of Arrival and Angle of Departure The angle
of arrivals (AoAs) θl is defined as the angle between the
normal of the receiver antenna and the direction of the signal
arriving at the receiver for path l, and the angle of departures
(AoDs) ωl is defined as the angle between the normal of the

Fig. 2. Multi-paths of the Signal Propagation

transmit antenna and the direction of the signal sending at the
transmitter for path l.

Assume there are M receiver antennas and N transmit
antennas in a uniform linear array, and wireless channel is
far-field (FF) narrowband. Let’s define L as the number of
propagation paths, and dR be the distance between consecutive
two receivers antennas, so that the difference of path length
between two receivers for path l will be d sin θl. Let’s denote

Φ(θl) = e−j∗2π∗dR∗sin(θl)∗f/c (6)

where c is the speed of light and f is the frequency of the
transmitted signal. So relative to the first receiver antenna in
the array, the phase shift introduced at mth antenna of path l
will be Φm−1(θl)

Similarly, let’s denote

Ω(ωl) = e−j∗2π∗dT ∗sin(ωl)∗f/c (7)

where dT be the distance between consecutive two transmit
antennas. So relative to the first transmit antenna in the array,
the phase shift introduced at nth antenna of path l will be
Ωn−1(ωl).

Time of Flight The time of flight (ToF) tl is defined as
the propagation time the signal takes along a particular path.
Assume there are K subcarries and the frequency difference
between consecutive subcarries is fδ . The subcarries with
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different frequencies have different wavelengths, and thus
introduce phase shifts. Let’s denote

T (tl) = e−j∗2π∗d∗fδ∗tl (8)

So relative to the first subcarrier, the phase shift introduced at
kth antenna of path l will be T k−1(tl).

Doppler velocity The Doppler velocity vl is defined as the
change speed of the path length due to the human movement.
It introduce phase shift at consecutive sampling time for the
moving path l. Let’s denote

V (vl) = e−j∗2π∗d∗tδ∗vl/c (9)

where tδ is the sampling interval. So relative to the data of
time 0, the phase shift introduced at tth time of path l by
Doppler shift will be V t−1(vl) [10].

B. Estimation of the Features

MUSIC (MUltiple SIgnal Classification) algorithm is first
proposed to estimate the Angle of Arrivals (AoAs) θk of
the propagation path [11]. Recently, there are many variants
of MUSIC-based algorithm developed for estimating other
features of interest of different propagation path, like Time
of Flights (Tofs), Angle of Departure (AoDs) and Doppler
velocity. To gain insight into how the variants of MUSIC-based
algorithm works, it is helpful to understand how standard AoA
computation with the well known MUSIC algorithm works,
which we review next.

According to Eq 6 and Eq 1, and considering only the phase
shift caused by AoAs, the CSI relative to first receiver will be

Hm(t; f) =
L∑
l

γl(t)e
−j2πfτ0Φm−1(θl) =

L∑
l

γ′l(t)e
−j2πfτ0

(10)
let ~α(θl) =

[
1 Phi(θl) · · ·PhiM−1(θl)

]
. This vector ~α(θl)

is also known as the steering vector. We have as many steering
vectors as propagation paths and the overall steering matrix
A is defined as A =

[
~α(θ1) ~α(θ2) · · · ~α(θL))

]
, and has

dimensions M×L. The received signal vector ~x at the antenna
array is obtained by superposition of signals due to all the
paths, i.e.,

~x = A~Γ + ~n (11)

where ~n is the white Gaussian noise, Γ = [γ′1 γ′2 · · · γ′L] is
the vector of complex attenuations along L paths and A is
the steering matrix. Since the steering vectors do not change
across closely spaced subcarriers, we can formulate

X = [ ~x1 · · · ~xK ] = A
[
~Γ1 · · · ~ΓK

]
+ N = AΓ + N (12)

The basic idea of the MUSIC algorithm is eigenstructure
analysis of an correlation matrix RX of the CSI samples. Since
the white noise is uncorrlated to the signal space, according
to (9),

RX = E[XXH ]

= AE[ΓΓH ]AH + E[NNH ]

= ARΓA
H + σ2I

(13)

TABLE I
SUMMARY OF 1-D ESTIMATION OF MULTI-PATH FEATURE

Snapshot Domin CSI Shape
AoA Transmitter, Frequency and Time (N,M ×K × T )
AoD Recevier, Frequency and Time (M,N ×K × T )
ToF Recevierm Transmitter and Time (K,M ×N × T )
Doppler Recevierm Transmitter and Frequency (T,M ×N ×K)

where RΓ is the correlation matrix of the signal matrix, I
is an identity matrix and σ2 is the variance of noise. Since
the signal and noise are independent of each other, the data
covariance can be decomposed into a signal subspace and a
noise subspace.

RX = UΣUH = USΣSU
H
N + UNΣNU

H
N (14)

where U = [US UN ] and Σ = diag(σ2
1 · · ·σ2

M ). US is
a subspace formed by feature vectors corresponding to the
largest M − L eigenvalues, that is, a signal subspace, and
UN is a subspace formed by features vector corresponding to
smallest L feature values, that is, a noise subspace. Since the
signal subspace and noise subspace are orthogonal, we find
that the steering vector ~αH(θ) and the noise subspace of the
signal subspace are also orthogonal, that is

~α(θ)
H
UN = 0, θ = {θ1, · · · , θn} (15)

In practice, each CSI sample requires multiple snapshots
to average out the random noise, so we can take multiple
snapshots for each CSI sample in its transmitter, frequency and
time domian. We reshape the 3D CSI with shape (M,N,K, T )
to (N,M × K × T ) to get M × K × T snapshots for each
CSI sample. And thus Rx can be estimated as,

R̂X =
1

N ×K × T
E[XXH ] (16)

And since the orthogonality is not fully satisfied by actual
estimation error and noise, the maximum optimized search of
the spectrum function can be used to estimate the AoA:

θMUSIC = argmax
θ
P (θ)

= argmax
θ

~α(θ)
H
ÛN Û

H
N

~α(θ)
(17)

The procedure to make estimation of ToFs, AoDs or
Doppler vector is similar, expect we should reformat the
steering vector and rearrange the CSI sample.

To estimate ToFs, for example, we can format the steering
vector as ~α(θl) =

[
1 T (tl) · · ·T (tl)

K−1] and take multiple
snapshots for each CSI sample in its transmitter, receiver
and time domain. That is to reshape the 3D CSI with shape
(M,N,K, T ) to (K,M×N×T ) to get M×N×T snapshots
for each CSI sample. Note that we can also make joint-
estimation of any combination of the features by reformatting
the steering vector.
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V. SIGNAL CALIBRATION

As mentioned before, CSI measurements are sensitive to the
location and orientation of the antennas, which restricts the
real-world application of environment-invariant WiFi sensing.
So in this section, as shown in Fig 3, we propose a novel
method to show how to calibrate the relative position of the
transmitter and receiver as if AoA and AoD of the direct path
between them is 0 and the length of the direct path is l.

Without loss of generality, we assume the transmitter is fixed
and the receiver is placed at random location with random
orientation with respect to the transmitter. Assume the AoD
of direct path between transmitter and receiver is θ before
calibration and the ToF of the direct path is t, then the length
of the direct path will be tc.

Considering the fact that the power of the signal will be
linearly attenuated during the propagation in the air, we can
get the amplitude calibration factor for the signal

Camplitude =
l

tc
(18)

Considering the phase shift by AoDs and change of path
length, the phase calibration factor for mth receiver of the
signal will be

Cphase(m) = e−j∗2π∗m∗dR∗sin(θ)∗f/c ∗ e−j∗2π∗m∗(l−tc)∗f/c
(19)

And thus the calibrated CSI will be

H ′m,n,k = Camplitude ∗ Cphase(m) ∗Hm,n,k (20)

VI. EXPERIMENTS

A. Effect of Phase Offsets Removal

As shown in Fig 4 and Fig 5, the modified CSI phase
response, obtained by Eq 5 for each packet, does not change
even if the STO changes, and hence is free from the variations
of STO. So, the ToF parameters estimated across packets using
modified CSI are free from variance of changing STO. Noted
according to [4], the CSI phases of two consecutive samples
will be same, which is also shown in Fig 5.

Fig. 3. The Target Effect of Calibration

Fig. 4. Unwrapped CSI phase

Fig. 5. Modified CSI phase

B. AoA Estimation Accuracy

For simplicity of demonstration, AoA is selected to be
estimated using the aforementioned MUSIC algorithm. The
original setting of WiFi antennas are shown in the Fig 1.
To record CSI samples, we used a classic commercial WiFi
Network Interface Card (NIC) and leveraged an open source
tool [12], recorded CSI of 30 EM waves with a bandwidth of
20 MHz centering at the standard 5 GHz WiFi. The 5 GHz EM
signal has a wavelength of around 2.6 cm. Similar to standard
house-hold WiFi routers, we uniformly spaced three receiver
antennas within a wavelength, 2.6 cm. This setting maximizes
the difference of CSI captured at different receiver antennas.

To demonstrate the robustness of the algorithm, the receive
antennas are set to make the direct path with AoA=40°, and the
CSI is recorded under different static environments. As shown
in Fig 6, the algorithm is capable to estimate the relatively
accurate AoA even the environments vary. Also, the algorithm
can also estimate the AoA for the main reflection paths of
signal propagation.
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(a)

(b)

Fig. 6. Estimated AoA (Direct Path = 40°) over Time with Different Static
Environments

The estimation of AoA can aslo help to detect the human
motion, since the propagation path of the signal will change
when there is moving object in the environment. As shown in
Fig 7, the estimation of AoA fluctuates when there is a human
walking in the environment.

VII. CONCLUSION

In this work, we began to investigate the potential way to
remove the random phase shift of Channel State Information
(CSI) by estimating sampling time offset (STO), sampling
frequency offset (SFO) and Cyclic Shift Diversity (CSD).
Also, we discussed the methods to estimate to the import
features of WiFi siganl propagation paths, including, angle of
arrival, angle of departure, time of flight and Doppler velocity.
In addition, we propose a novel way to calibrate the CSI data.
Experiments show the Modified CSI phase is uncorrelated to
the signal frequency and the estimation of AoA is not only

Fig. 7. Estimated AoA (Direct = 0°) over Time with Different Human Activity

robust to environment change but also help the detection of
human movement.
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Using Fixed Route Transit to Improve Paratransit Service Quality

Rebecca Martin1, Isaac Isukapati2, Zachary Rubinstein3, and Stephen Smith4

Abstract—Paratransit systems provide an equitable transit
service to the elderly and handicapped through shared-ride, door-
to-door transportation. The main objective of the dial-a-ride
problem (DARP) is to optimally schedule and dispatch available
vehicles to satisfy ride requests between given pick-up and drop-
off locations at specified times. In practice, DARPs are often over-
subscribed (i.e. demand exceeds capacity), resulting in increased
wait times or failure to fulfill a subset of service requests within
their constraints. Currently, the two ways of accommodating
this extra demand that have been studied are relaxing the time
constraints and increasing the fleet size. However, in contrast
with the increased wait times and transportation cost of these
two solutions, a rarely considered third solution is to use fixed-
route transit to partially fulfill the trip. In this research, we
are going to consider the static DARP scheduling problem with
transfers between paratransit and fixed-route transportation. The
crux of this idea is that the paratransit system services the last
mile travel (pick-up & drop-off to/from the fixed-route transit
locations), and the remaining part of the trip is serviced by the
fixed-route transit. To evaluate the feasibility of the system, we
analyzed the effect of this integration on overall service time.
We found that using the bus system can greatly reduce the total
travel duration for longer trips, but increases the ride time for
shorter trips.

Index Terms—Paratransit systems, Fixed Route Transit, Statis-
tics, Simulation, Scheduling

I. INTRODUCTION

Dial-a-ride paratransit systems play an instrumental role in
providing equitable transportation services to special groups of
the population, such as the elderly or handicapped. With a fare
scheme comparable to that of a fixed-route transit, paratransit
provides shared-ride, door-to-door service with flexible routes
and schedules. The dial-a-ride problem (DARP) aims to opti-
mally schedule and dispatch transit vehicles to satisfy requests
for travel between pick-up and drop-off locations at specified
times. A typical request in this context provides details on
pick-up and drop-off locations, number of passengers, type of
request, and optimal time windows within which the requests
need to be fulfilled. The scheduling component can be static,
dynamic, or a combination of both. In the context of static
DARP, all the requests and available vehicle fleet are known
well in advance. In a dynamic DARP, the requests are serviced
on an ongoing basis with an ability to increase the fleet size as
needed. In the hybrid approach, reservations made in advance

*This work was supported by the National Science Foundation
1R. Martin is with the School of Computing, Informatics, and De-

cision Systems Engineering, Arizona State University, Tempe, AZ, USA
rebecca_martin@asu.edu

2I. Isukapati is with the Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, USA isaack@cs.cmu.edu

3Z. Rubinstein is with the Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, USA zbr@cs.cmu.edu

4S. Smith is with the Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, USA sfs@cs.cmu.edu

permit the construction of day-ahead (off-line) schedules,
while the same day requests and other events such as trip
cancellations, vehicle breakdowns etc. can be re-integrated into
the current schedule (on-line schedule).

In the real world, DARPs have limited resources, making
them suffer from oversubscription, where there is more de-
mand than capacity. This leads to increasing the wait time
and could even result in failure to fulfill a subset of transit
requests within the specified time windows. In principle, there
are at least three possible ways to accommodate this extra
demand: 1) constraint relaxation, 2) increase the paratransit
fleet size, and 3) partial fulfillment of the trip via fixed-route
transit. There is some literature on how to tackle the first two
options, but there are still a number of issues that remain
unresolved. Relaxing time constraints and thereby increasing
passenger wait time leads to poor service quality and, in some
cases, can compromise the safety of the passenger depending
on where they are waiting. Increasing fleet size is not cost
effective, especially as most of these programs are government
subsidized.

The third option, though rarely considered, promises to
solve the oversubscription problem while avoiding the prob-
lems presented by the first two solutions. The presence of
ubiquitous connectivity and real-time communication presents
opportunity to tackle the scheduling problem from a fresh
perspective (paratransit fixed-route transit paratransit). In
this research, we are going to consider the static DARP
scheduling problem with transfers. The main idea here is
that the paratransit transports the passenger from their pickup
location to the nearest bus stop and then meets them at the
bus stop closest to their destination to finish the trip, with
the intermediate part of the trip being serviced by the fixed-
route transit. Before we can evaluate the impact of the system
on transportation costs and increased capacity, we must first
ensure that this method avoids the problems presented by the
other solutions. For this purpose, we will use total service time
as the performance metric in an attempt to quantify quality of
service.

II. SYSTEM ARCHITECTURE

A. Overall System Setup

In this system, we used historical paratransit data from Pitts-
burgh’s ACCESS paratransit system and historical bus data
from the P1 East Busway route of the Pittsburgh Allegheny
County Port Authority bus system. For these experiments, we
are only utilizing the P1 East Busway route, as the busway
will be more likely to show improvements in ride time, due
to the fact that other vehicles are not allowed to drive on the
busway.
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We started out with a set of 902 paratransit ride requests for
one day. These requests were then augmented with boolean
flags, marking whether or not that particular ride was a
good candidate for partial fulfillment by the fixed-route transit
system. A request was considered a good candidate if the
specified pickup location was within 2 miles of a time point
on the busway. A time point is a bus stop where the bus will
wait at if it is running early so that it can get back on schedule.
We chose to use the time points because they are usually main
stops on the route and there is generally more time to transfer
the passenger at these stops. The candidate requests were then
split into two separate requests: one request took the passenger
from the pickup location to the nearest bus stop and the other
from a bus stop to their destination. Then, we used the given
request data to generate the paratransit schedule.

The scheduler first used a greedy scheduling algorithm to
construct an initial schedule. This initial schedule was then
given as input to Generalized Task Swap [1], a local search
algorithm, which optimized the schedule and made sure that
all requests were scheduled within the given time constraints,
if they had not managed to fit into the initial schedule. This
scheduler was used to generate two different schedules. The
first schedule used the original set of requests and had the
paratransit system drop off the passenger at their specified
destination. The second schedule, which used the augmented
set of requests, was the hybrid schedule that incorporated the
fixed route transit, as seen in Figure 2. If the request had
been marked as a bus candidate, then the schedule had the
paratransit system drop off the passenger at the busway stop
nearest to their pickup location. Then, a new request was
generated to transport the passenger from the bus stop nearest
to their destination to the drop off location, shown in Figure
1. Else, if the request was not a bus candidate, the request
was scheduled without modification and the passenger was
dropped of at their specified destination.

Fig. 1. First schedule represented by baseline route (above) and second
schedule is represented by multi-legged route below

To test these schedules and incorporate some of the un-
certainty present in carrying out the schedules, we built a
statistical simulator in Python. The first schedule was tested
in our simulator as a baseline with which we compared
our results of the simulation of the second schedule. Both
paratransit schedules were randomized by sampling from
two uniform distributions. The first distribution determined
whether the vehicle would arrive at its stop early, on-time,

or late. If the vehicle was not on-time, the second distribution
determined how early or late the vehicle was going to be, with
a maximum of five minutes between the scheduled time and
the randomized time. However, to preserve the spatio-temporal
aspects of each trip, the randomized time between two stops
was not allowed to be less than 90% of scheduled duration.

To create the bus schedules, we used the historical data to
calculate the dwell time, the amount of time spent at each stop,
and the link travel time, the time taken to drive between each
pair of stops on the route, for each entry in the database. These
values were then used to generate two Cumulative Density
Functions, one for dwell times and one for link travel times.
To randomize the schedule in a realistic manner, values were
drawn from the appropriate CDF for each leg of the route and
used as the duration for that part of the ride.

Fig. 2. Flowchart of the overall system, where the dashed box encapsulates
the simulator pieces. The light blue parallelograms represent data that was
either input or output for the system. The dark blue rectangles represent the
different functions within the system that use the data along with their purpose.

B. Simulator Architecture

Within the simulator, we first divided the day into five
windows of time, so that we could model different traffic
conditions based on time of day. This allowed our model
to more closely follow the actual bus schedule. For the
transit vehicles, we modeled each Bus and Paratransit Vehicle
separately. The Buses were generated and added to the fleet
on an as-needed basis, while the Paratransit Vehicles were all
generated and added to the fleet at the beginning of the day.
Each Bus had its own Fixed Route Transit Schedule to keep
track of the times at which it would arrive at and depart from
the stops on the route. The Fixed Route Transit Schedule also
contained the dwell time and link travel time CDFs, which
were generated using only the historical data from within the
same time window during which the bus started its route.
Inside the simulator, there was only one global Paratransit
Schedule, and each Paratransit Vehicle fetched its individual
schedule directly from there at the beginning of the day.
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Fig. 3. Simulator structure

III. RESULTS

The main focus of our experiments was to test the effect of
the bus headway on overall service time. Bus headway is the
time between consecutive buses at any given stop. We ran the
simulation fifteen times for each condition and computed the
time between initial pickup and final dropoff as the total trip
duration. Our control experiments were the simulations of the
first schedule that did not incorporate the bus system at all.

For the experimental simulations, we tested the second
schedule with headways of five minutes, ten minutes, fifteen
minutes, and thirty minutes. As our performance metrics, we
found the minimum, maximum, average, and median of the
total trip durations. This analysis was completed for the entire
set of requests and for the subset of candidate requests.

Table 1 shows the duration statistics for all of the requests
for the entire day, while Table 2 shows the duration statistics
for the subset of candidate requests. As the candidate subset
only accounts for 14% of the rides, the degree to which the
fixed route transit affects the trip durations is not initially
apparent. In Table 1, both the minimum and the maximum
duration experience a negligible change as the bus headway
increases. Likewise, while the average and median do increase
with the headway, it is not a significant effect.

However, when the candidate subset is analyzed on its own,
the result of adding the bus becomes much more apparent.
While the minimum durations for the experimental cases
are longer than for the baseline simulations, the maximum
durations for all of the tested headways are significantly
shorter. In addition, between the baseline simulations and the 5
min headway tests, the medians are four minutes apart, while
the averages are the exact same. This suggests that the travel
time of the shorter candidate trips increased and that of the
longer candidate trips decreased.

Table 1: Duration statistics from entire set of requests
Headway Min Max Average Median
Baseline 00:00:56 01:37:22 00:17:49 00:13:31
5 min 00:00:57 01:36:47 00:18:23 00:14:40
10 min 00:00:57 01:36:46 00:18:45 00:15:04
15 min 00:00:59 01:36:59 00:19:04 00:15:22
30 min 00:00:57 01:37:15 00:19:57 00:15:38

Table 2: Duration statistics from candidate subset of requests
Headway Min Max Average Median
Baseline 00:02:48 01:17:31 00:21:00 00:16:26
5 min 00:05:40 00:54:37 00:21:10 00:20:02
10 min 00:06:04 00:58:27 00:23:56 00:22:40
15 min 00:06:20 00:59:36 00:25:58 00:24:11
30 min 00:06:44 01:13:10 00:32:24 00:30:32

In order to visualize the effect of utilizing fixed route transit,
we plotted the Cumulative Density Functions (CDFs) of the
overall service time distributions, measured in seconds. Figure
4 shows the CDFs of the overall travel time for each headway,
plotted with the CDF of the baseline distribution for reference.
For the simulations with large headways, the added serice time
to the subset of requests is significant enough to show a visible
difference in the overall time distribution for all of the trip
requests. However, on an overall scale, the experiments with
a shorter headway give an overall service time distribution that
is almost the same as the baseline simulations.

Fig. 4. Overall travel time distributions for all requests (left column) vs subset
of candidate requests (right column). The distribution for each headway has
been plotted along with the baseline distributions.

Figure 5 shows the CDF of the overall travel time for the
subset of candidate requests for both the baseline simulations
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and the experiments with a headway of fifteen minutes. This
confirms that adding the fixed route transit mainly benefits
the rides that have a duration above a certain threshold, which
varies based on the headway value. The benefit of traveling
on the busway is not significant enough for the shorter rides
to outweigh the extra distance traveled.

Fig. 5. The CDF of the overall travel time distribution of the subset of
candidate requests when the headway was set to 15 minutes.

IV. CONCLUSION

In this paper, we explore the feasibility of integrating fixed
route transit into paratransit schedules in order to reduce
overall service time. We chose which rides to use the bus
with based on the proximity of the pickup location to a bus
stop and generated a possible schedule to fulfill these requests.
The baseline schedule and experimental schedule were both
tested in a statistical simulator written in Python. We found
that adding fixed route transit decreases ride duration for long
trips, but increases duration for short trips.

V. FUTURE WORK

Based on our results, we are going to add minimum distance
covered on bus as candidacy constraint, that way we avoid the
extra time added to the shorter ride requests. Now that we have
shown that this solution can be implemented such that minimal
extra time is added to some requests, which was an issue
with the other solutions proposed to avoid oversubscription,
we will analyze the system using other performance metrics
such as cost and capacity. To more realistically simulate
traffic conditions, we will increase standard deviation of the
paratransit travel time distributions and test the simulations
using dynamic paratransit scheduling. On the scheduling side,
we will try scheduling the paratransit rides to a particular bus
time, instead of waiting for next bus. With this, we will be able
to test the feasibility of holding the bus based on scheduled
paratransit arrival at stop.
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Learning to Fail: Failure Plans and Predictions for Crowd Navigation

Patrick Naughton1, Tushar Kusnur2, Ishani Chatterjee3, and Maxim Likhachev4

Abstract— Probabilistic planners have demonstrated promis-
ing results in dealing with robotic navigation under uncertainty
[1], for example, when parts of a map are unknown or the robot
must navigate amongst other unpredictable agents. To compute
trajectories, probabilistic planners rely on atomic actions which
are strung together to form a path. Planners will often invoke a
lower level controller to execute these actions. Existing work fo-
cuses on situations in which the humans in the scene move such
that completion of the desired action is always feasible. Little
attention has been paid to scenarios in which humans make
reaching the goal waypoint impossible or prohibitively costly.
Current methods may simply attempt to replan in these cases
which can be too slow to avoid imminent collisions. Additionally,
if the waypoint is unreachable or costly to reach, this approach
may incur a higher cost than abandoning the waypoint and
moving to a different location first before replanning. This
paper presents a reinforcement learning based approach to
developing failure controllers for exactly these situations which
direct the robot to an optimal failure location if its original
goal waypoint becomes unreachable. We also present a predictor
which forecasts the outcome of each step of the controller at
planning time. This controller and predictor make the long-
term planner more robust by giving it a notion ahead of time
of the potential results of executing a given controller and help
the robot navigate more safely and efficiently when actually
executing its trajectory. We compare the trajectories produced
by our controller to trajectories produced by a social forces
[2] controller and by the robot remaining still to show how
our failure controller balances safety with time and distance
optimality.

I. INTRODUCTION

Pedestrian crowds present a challenging navigation envi-
ronment for a mobile robot. The robot must comply with la-
tent social rules governing its trajectory while simultaneously
reaching its goal in a reasonable amount of time. As robots
move into closer contact with humans, advanced methods
for navigation in crowds will gain increased importance.
Probabilistic planners, which make navigation plans in the
belief space, show potential to make headway in this problem
and have demonstrated success dealing with uncertainty like
that experienced navigating in a crowd. To form their plans,
these planners rely on smaller atomic actions which are
strung together to form an overall trajectory. Some of these
actions are learned by presenting the robot with its starting
pose and a waypoint pose and running simulations with
pedestrians or other agents [3]. In general, these controllers
guiding each action deal with unexpected situations in which

1Patrick Naughton is a junior studying Electrical Engineering and Com-
puter Science at Washington University in St. Louis, St. Louis, MO 63130,
USA. patrickrnaughton@wustl.edu

2,3,4Tushar Kusnur, Ishani Chatterjee, and Maxim Likhachev are
with Search Based Planning Laboratory, Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA 15213, USA {tkusnur, ichatter,
mlikhach}@andrew.cmu.edu

(a) (b)

Fig. 1: The green circle represents the robot, the blue circles
represent different humans and the black polygons represent
the walls of the corridor. The arrows indicate the heading of
each agent. Only the initial and final locations of each object
are shown. The numbers indicate the time step at which the
snapshot was taken. This is an example of a situation in
which the robot stopping (a) will cause more collisions and
intrusions than following a failure controller which in this
case simply moves the robot along the corridor out of the
way of humans (b).

their original trajectory to their waypoint becomes infeasible
by simply replanning or stopping altogether. Replanning in
some cases may take too long to avoid an imminent colli-
sion. Additionally, when the waypoint becomes completely
unreachable, replanning or stopping may result in a more
costly trajectory than simply abandoning it and seeking a safe
location from which the higher level planner can generate a
new trajectory to the overall goal. We address this issue by
developing a failure controller aimed explicitly at motion
control for the robot when it has no goal.

Developing such a controller is useful because it gives long
term planners a contingency plan and predicted future state at
planning time so they can more efficiently explore the search
space. The failure controller itself also helps ensure that the
robot obeys a safe policy even when it has no waypoint
to navigate to. For example, in some situations like that in
Figure 1a, staying still will cause the robot to be a hindrance
to the humans and it will likely intrude into their personal
space. Moving away to a different area of the scene would
give the robot a safer place to replan from.

This work facilitates combining learning with planning for
long term crowd navigation by providing a reinforcement
learning based failure controller and a supervised learning
based predictor for forecasting the results of the controller.
Specifically, this paper assumes that an existing probabilistic
planner uses a set of motion primitives and controllers to
create navigation plans. The set of controllers includes some
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to execute complex behaviors that interact with pedestrians.
Each of these controllers has some probability of success
which is associated with one goal and trajectory, and some
probability of failure which is associated with a different
trajectory. Success cannot be guaranteed for the controllers
because the surrounding humans may interact with the robot
or each other in unexpected ways. Note that the failure
controller’s objective differs from that of a traditional navi-
gation planner in that the failure controller is not given an
explicit goal; rather, it attempts to extract the optimal goal
and trajectory from its environment.

The main contributions of this work are:
1) A reinforcement learning based controller for com-

manding robot trajectories in cases of failure.
2) A predictor that forecasts a distribution of locations the

robot will end up in at each time step.
The design philosophy taken by this approach separates
controllers for individual actions from the long term planner.
This means the results presented here could easily be adapted
to work with any planner.

The remainder of this paper is organized as follows.
Section II discusses background information on the problem
presented here including related work and a formalized
statement of the problem. Section III lays out the approach
taken to construct and train both the failure controller and
the predictor. Section IV gives the results of simulation
experiments and compares the method presented here with
other methods. Finally, Section V draws conclusions from
these experiments and suggests future research directions.

The code of our approach is available here:
https://github.com/patricknaughton01/
LearnController.

II. BACKGROUND

A. Related Work
Several methods use explicit models of human behavior to

achieve smooth, predictable robot navigation among pedestri-
ans. Trautman et al. model the interaction between the robot
and pedestrians as an extension of an interactive Gaussian
process that accommodates multiple goals [4]. The social
forces model [2] treats humans and the robot in question as
masses subject to Newtonian dynamics and applies fictitious
forces to them to predict and plan trajectories. It recomputes
these forces and their effects on robot motion at each
time step to determine how the robot should move. These
techniques however rely on hand-crafted models of human
behavior to achieve their results and handle unexpected or
uncooperative human actions by simply replanning using
the same model. The social forces model in particular does
not demonstrate robust navigation plans and will sometimes
exhibit oscillatory behavior in more crowded or narrow areas
[2].

Another approach uses inverse reinforcement learning to
learn latent, possibly stochastic social rules humans observe
when navigating in crowds [5]. This method uses example
trajectories recorded from humans or gathered from teleop-
erated runs. This approach however is extremely unlikely to

observe failed trajectories where a human attempts to execute
some navigation plan and is forced to completely abort
their initial goal. If a human attempts to overtake someone
else, for example, they have many contingency options in
the case where the other person is either intentionally or
unintentionally uncooperative. For example, they could use
verbal communication or body language to more explicitly
communicate their intentions, options which are not available
to many mobile robots. For this reason, inverse reinforcement
learning will likely be unable to formulate a useful model
for navigation when situations such as these occur.

Advances in deep reinforcement learning have led many
to apply it to this problem. After demonstrating its capability
to match and in some cases exceed human performance in
a variety of video games [6], much research has focused
on applying it to different domains. It has successfully
been applied to the social robot navigation problem using a
variety of different models [7], [3]. Reinforcement learning is
particularly suited to this application as noted in [7] because
it is extremely difficult to specify what the optimal action for
a robot to take is but it is much easier to alert the robot when
it takes a socially unacceptable or unsafe action. Previous
work has focused on using reinforcement learning to develop
policies that generate optimal (in terms of time) paths to a
robot’s goal in the presence of humans or other autonomous
agents. These policies however generally assume the goal
is reachable and do not make contingency plans if that
assumption turns out to be incorrect. Additionally, the agent
is explicitly given a goal to reach by the experimenters; we
wish to navigate in the case of failure at which point there
is no obvious goal.

The above methods all either deal with failure at execution
time by simply replanning or do not consider failure to reach
the goal at all. We depart from this paradigm by designing a
controller specifically targeted at producing trajectories when
the robot’s original goal is no longer reachable.

B. Problem Statement

Consider a robot using a probabilistic planner to navigate
in a pedestrian environment. The environment contains both
static and dynamic obstacles in the form of humans and other
objects. This robot has a set M of motion primitives which
it can use to perform simple movements. The robot also
has a set C of controllers which it can execute to perform
more complex behaviors that may require cooperation from
humans. Because these controllers have some probability of
failing, the robot needs a contingency plan to follow that
will return it to a safe location. Moreover, we would like to
know at planning time how this trajectory is likely to look
so that the high-level probabilistic planner can account for
this. Thus, a predictor that can determine the distribution of
the next locations the robot will occupy at each time step is
sought.

This paper demonstrates our framework by applying it to
a barge-in controller. This controller addresses a situation
in which humans block a narrow corridor and the robot
wishes to move past them. Ideally, the robot would drive
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towards the group of people who would then part enough
for the robot to reach its goal. However, if the people do
not move—for example, if they do not notice the robot or
they cannot infer its intention to move past them—the robot
needs a contingency plan that results in safe behavior and
brings the robot back to a location from which it can replan.

We model the problem of finding the optimal failure policy
as solving a Markov Decision Process 〈S,A,R,P, γ〉 with
an infinite set of states S, a finite set of actions A, state tran-
sition matrix P(st, at, st+1), reward function R(st, at, st+1)
and discount factor γ ∈ (0, 1) [8]. The robot seeks an optimal
policy π∗(at | st) = P (at | st) where optimal indicates that
the policy maximizes the overall expected discounted reward
the robot receives (referred to as the ”return” of the policy)
from the current time step t onwards:

∞∑
k=0

E[γkR(st+k, at+k, st+k+1)] (1)

To aid in finding this policy, we define a Qπ(at, st) function
which estimates the return of executing action at from state
st and following policy π from that point onwards:

Qπ(at, st) =
∞∑
k=0

E[γkR(st+k, π(at+k | st+k), st+k+1)]

(2)

Qπ(at, st) =
∑
s′∈S
P(st, at, s′)[R(st, at, s′)

+ γ
∑
a′∈A

π(a′ | s′)Qπ(a′, s′)]
(3)

Assuming π is greedy, we can rewrite1

Qπ(at, st) = R(st, at, st+1) + γmaxaQπ(a, st+1) (4)

We denote the Q function of the optimal policy as Q∗.
Q∗ gives a convenient way to determine the optimal action
for any state given that the action space is finite and small
because we can simply find the action with the largest Q∗

value and execute it.
Finally, we wish to create a predictor which estimates a

distribution of next locations for the robot given the initial
state. This predictor takes in the robot’s initial state and
assumes its distribution of subsequent locations is Gaussian.
It learns to output the parameters of this two dimensional
distribution that maximize the likelihood of the observed next
positions.

III. APPROACH

A. Failure Controller

1) State Representation: Because the MDP we have de-
scribed has infinitely many states, it is impossible to store a
Q value for each state-action pair explicitly. We base our
state characterization on that presented in [3] with slight
modifications because of our controller’s lack of a goal.
An initial matrix is constructed with the same number

1This rewrite also makes use of the fact that the ground-truth next state
is an unbiased estimator of the expected next state.

of rows as there are agents and obstacles in the scene
(including the robot). Each row of the matrix takes the form
(spref, h, r, vx, vy, p

′
x, p
′
y, v
′
x, v
′
y, r
′, d, rsum) where

• spref is the preferred speed of the robot.
• h is the heading of the robot w.r.t. the global coordinate

frame.
• r is the radius of the robot.
• vx and vy are the x and y velocities of the robot w.r.t.

the robot’s coordinate frame.
• p′x and p′y are the x and y coordinates of the other agent

w.r.t. the robot’s coordinate frame.
• v′x and v′y are the x and y velocities of the other

agent w.r.t. the robot’s coordinate frame (note, this is
not relative to the robot’s velocity, just relative to its
rotation).

• r′ is the radius of the other agent.
• d is the Euclidean distance between the robot and the

other agent.
• rsum is the sum of the radii of the robot and the other

agent.
The first five components of each row are referred to as the
robot’s self_state because they pertain specifically to
the robot.

This is augmented by a series of occupancy maps, one
for each human and obstacle in the scene and one for the
robot itself. Each occupancy map is centered on and aligned
with its respective agent and their heading and is discretized
into a number of squares. Each square indicates in a binary
fashion whether or not it contains an object. Each square also
contains the average velocity of all the objects within that
square (simply set to 0 if the square is unoccupied). In our
case, each occupancy map is discretized into 16 (4x4) 1 unit
squares. This collection of occupancy maps and information
about the robot’s dynamics form the robot’s state. Note that
the dimensions of the state matrix will vary depending on
the number of humans and obstacles in the scene.

For the purposes of computing the position, velocity, and
heading of a given obstacle we simply consider the point on
the obstacle which is closest to the robot. Any obstacle will
always have a velocity of 0 and a heading along the robot’s
x-axis.

2) Q Function: There are 35 different available actions
in any given state. One is to do nothing (remain in the
same location). There are then 16 directions the robot can
move w.r.t. its heading which are evenly spaced from 0
to 2π (we assume a holonomic robot) and the robot can
travel at either half or full speed in each of these directions.
Finally, the robot can also rotate in either direction by a small
amount. We represent Qπ using a deep neural network whose
architecture is based on that presented in [3] which showed
that it could generate satisfactory goal-oriented trajectories
navigating amongst humans. The state of the robot is first
given to a Multi-Layer Perceptron (MLP). This output is
processed by two additional MLPs, one of which computes
weights and one of which computes features. The weight
MLP also receives the average of the input MLP’s outputs
across the different rows of the state matrix. The weights
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Fig. 2: Architecture of our network for learning the Qπ
function. Since the number of humans in the scene could
vary, the state input is not a constant size. The weighted
features get summed across each agent to form a constant
size vector before being given to the LSTM.

returned from this MLP are then passed through a softmax
layer. The dot product of the features and softmaxed weights
is then computed which yields a constant size vector (inde-
pendent of the number of agents and obstacles in the scene).
This result, along with the robot’s self_state are then
fed into a layer of LSTM cells. The outputs of these cells
are processed by a final MLP which generates Q values for
each of the 35 different possible actions simultaneously.

The different components of the overall network have the
following dimensions: [60, 80], [80, 120], [160, 64, 31, 1],
[86, 256], [256, 128, 64, 35] for the input MLP, feature MLP,
weight MLP, LSTM, and output MLP respectively.

3) Reward function: The reward function R(st, at) at
each time step is computed in three parts: Rcollision,
Rmovement, and Rsmoothness for collision, movement, and
smoothness rewards respectively. The components are de-
fined in the following way:

Rcollision =


−1 d < 0

−0.25 0 ≤ d < 0.2

0 else

Here, d denotes the distance between the robot and an
obstacle or another agent. Note that this reward is applied
individually with respect to each human and obstacle in
the scene so if the robot is colliding with two humans
simultaneously it will receive a reward of −2. When the
robot occupies the second region (0 ≤ d < 0.2) we refer
to this as an intrusion and call the upper bound of 0.2 the
intrusion threshold. This component disincentivizes colliding
with humans and obstacles. It is based on the reward function
used in [3]. Additionally, for each human or obstacle the
robot is forecasted to collide with or intrude into (based on
current velocities) the robot receives a reward of −0.05 (for

predicted collisions) and −0.0125 (for predicted intrusions).
This was done to make the reward function smoother.

Rmovement =

{
0 at = 0 (remain still)

−0.01 else

This component is meant to very slightly punish moving so
that areas farther from the robot’s initial location are less
desirable. It was added because, all other things equal, areas
closer to the robot’s initial position are preferred because
they can be reached more quickly.

Rsmoothness =

{
0 at = at−1 ∨ at−1 = 0

−0.01 else

The smoothness component of the reward incentivizes using
the same action repeatedly so that the robot prefers smooth
trajectories. These trajectories are qualitatively more pre-
dictable for humans which makes them easier to navigate
around and result in plans which are generally easier to
execute.

The total reward at each time step is simply the sum of
these three components.

4) Training: To simulate the robot moving about in a
pedestrian environment the RVO2 library as well as its
Python wrapper were used [9], [10]. This library provides
a convenient way to simulate an environment with multi-
ple autonomous agents and obstacles. It uses the Optimal
Reciprocal Collision Avoidance (ORCA) [11] algorithm to
generate safe velocity vectors for each agent to follow to
reach a predefined goal.

For the barge-in scenario, each training episode starts with
the robot right behind a group of humans blocking a narrow
passage as though it had approached attempting to move
past them. The width of the corridor, number and size of
the humans, and the initial position and size of the robot are
all initialized with small random perturbations. Each human
sets a goal at a random location inside the corridor which
would force the robot to abort its normal plan. The robot
then begins executing actions according to an epsilon-greedy
strategy, choosing a random action with probability ε ∈ [0, 1]
and otherwise choosing the action with maximum estimated
Q value. When the robot selects an action, this only sets
its preferred velocity. The underlying simulator may modify
the actual velocity it commands if an imminent collision is
detected.

We use the deep Q-learning algorithm with experience
replay to train our Q-network [12]. Two copies of the Q-
network are stored, one called the policy_model and one
called the target_model. The simulated robot follows
an epsilon-greedy policy and records a tuple containing the
state, action, reward received, and next state at each time
step in a memory buffer. It then samples a batch of these
tuples and updates the policy_model. Pseudocode for this
algorithm is presented in Algorithm 1.

The target_model and policy_model were im-
plemented using PyTorch. An Adam optimizer with a
learning rate of 0.001 was used to make updates to the
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Algorithm 1: Deep Q-Network with Experience Replay
and Target Network

Initialize replay buffer RB
Initialize policy_model network NP
Initialize target_model network NT ← NP
Initialize cumulative time steps tc to 0
for episode = 1, E do

for t = 1, T do
Increment tc
With probability ε select an action at randomly
Otherwise, select at = argmaxaNP (a, st)
Record the tuple 〈st, at, rt, s′t〉 in RB
Sample a batch of tuples from RB
Set yi = ri + γmaxaNT (a, s

′
i) . Eq. 4

Accumulate loss between yi and NP (ai, si)
Perform a gradient descent step on NP
if tc mod tupdate = 0 then

Update NT ← NP
end

end
end

policy_model’s weights and each MLP had a dropout
probability of 0.1. ε started at 1.0 and linearly annealed to
0.1 over 250000 time steps. γ was set to 0.9. Each episode
consisted of 100 time steps (corresponding to approximately
10 seconds). The mean squared error loss function was
used to compute the loss between the policy_model’s
predictions and their targets.

B. Prediction

We assumed that the robot’s next location at each time
step would form a Gaussian distribution. After learning
an optimal Q function, sample trajectories were generated
using a greedy policy. At each time step, the robot’s initial
state and next location were recorded. These examples were
used to train a predictor network which has the same
architecture as the policy_model and target_model
but only five outputs. These five outputs correspond to µx,
µy , ln(σx), ln(σy), and tanh−1(ρ) which characterize a
two-dimensional Gaussian distribution of possible locations
the robot could end up in. The network was then trained on
the sample trajectories using a negative log-likelihood loss
to find the maximum likelihood estimates for the parameters
conditioned on the initial state of the scene.

IV. RESULTS

A. Simulation

To evaluate the final network, variants of its training
environment were generated by randomly perturbing the
locations and shape of the corridor, the number of humans
in the scene, the starting locations and radii of the robot and
humans, and the goals the humans try to reach. Trajectories
such as the one shown in Figure 3 were first qualitatively
evaluated for reasonableness. In general, we would like the

Fig. 3: Example trajectory generated by our failure controller.

robot to move smoothly away from humans coming towards
it while simultaneously stopping as soon as it safely can.
These criteria are quantified by the metrics we used to
evaluate each path.

B. Metrics

Other methods of social navigation were implemented for
comparison with the result presented in this paper. To the
authors’ knowledge, the vast majority of existing controllers
for navigation require that some external agent (either a
planner or a human operator) provide a goal. Because of
this, our selection of competing methods was rather limited.
It was decided to compare to a social forces controller and
a controller which simply has the robot hold its position
when it fails. These methods were chosen because the social
forces model has demonstrated success in the past for some
social navigation problems [13] and provides a simple means
of operating without an explicit goal (i.e., simply do not
compute a force directed towards the goal). Doing nothing
was chosen because it is an intuitively appealing heuristic
solution to this problem and is often times used when
traditional planners are replanning.

All three controllers were run in 100 randomly generated
variants of the barge in scenario for 10 seconds before being
cut off. Their trajectories were then evaluated on: length,
time elapsed, angular distance, number of collisions, and
number of intrusions. The time elapsed for a trajectory was
computed as the time between the start of the episode and
when the robot makes its final move (which could happen
before 10 seconds). Angular distance was computed as the
sum of differences in headings between consecutive time
steps and is used to give a sense of path smoothness. The
number of collisions was calculated by accumulating the
number of obstacles and agents the robot was in collision
with in each time step. Similarly, for each time step, the
number of agents and obstacles for which the robot was
within the intrusion threshold was counted to find the number
of intrusions a trajectory incurred. These metrics are based on
those used in [14] to evaluate robots designed to navigate in
human crowds. Table I summarizes these results and Figure
4 provides examples of the observed trajectories.

In general, the social forces model did a very good job
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(c)
(d)

(e) (f)

Fig. 4: Sample trajectories for: our controller (a, b), a social
forces controller (c, d), and a do nothing controller (e, f).
The initial and final locations of the robot and all the humans
are shown except for the social forces trajectories because
their final locations are so far away. They continue in an
approximately straight line away from the humans until they
reach their time-out.

TABLE I: Comparison between the presented controller, a
social forces controller, and a do nothing controller. The
mean of each metric over 100 runs is presented with the
standard deviation in parentheses. Note that although the
“do nothing” controller attempts to hold its position the
underlying simulator will sometimes force it to move if an
agent moves towards it so that its distance travelled is not
always 0.

Mean (Standard Deviation)

RL (Ours) Social Forces Do Nothing

Path Length 1.23 (0.74) 14.70 (0.00) 0.07 (0.12)
Angular
Distance

21.15(13.27) 4.18 (1.47) 10.28 (6.95)

Time 5.61 (2.96) 10.00 (0.00) 3.39 (3.45)
Collisions 0.02 (0.14) 0.00 (0.00) 0.75 (4.74)
Intrusions 34.72(47.11) 0.76 (2.41) 190.58(60.71)

of avoiding people and obstacles but has no real notion of
when to stop. This behavior is expected because without a
goal attracting it the controller simply attempts to move as far
away from everything as possible as quickly as possible. This
causes it to use all of its available time and travel a rather
excessive distance. On the opposite end of the spectrum,
having the robot hold its position unsurprisingly causes it
to travel very little distance and finish its trajectory quite
quickly, but also generates many collisions and intrusions.

C. Predictor

For the predictor, we did not benchmark it against anything
because we simply wished to show that it produces reason-
able estimates with relative uncertainties that correspond to
how chaotic the environment is. Namely, we wish to show
that the uncertainty in situations that are relatively stable and
predictable is lower than in situations with a high amount
of movement, and that the predicted distribution tends to
reflect the actual next location of the robot. As can be seen
in Figure 5, evaluations at time steps in which the robot
moves very little or not at all tend to have lower uncertainty
and higher accuracy than evaluations when the robot makes
large motions. This is expected and reflects the fact that the
predictor is less confident when the robot moves because
it has much more potential variability than when remaining
in place. Note additionally that the axis along which the
predictor is most uncertain tends to align with the direction
the robot is most likely to move. This is most apparent in
Figure 5d where the robot is more likely to move horizontally
rather than vertically to distance itself from the people.

V. CONCLUSION

This paper uses a reinforcement learning based approach
to develop a failure controller which guides a robot along
a trajectory in cases when its original waypoint becomes
unreachable. We also develop a predictor to forecast the dis-
tribution of next locations the robot will occupy at any given
time step at planning time. This failure controller effectively
balances the extremely cautious behavior of moving as far
away from humans and obstacles as possible with the time
and distance optimality of simply doing nothing. The specific
point at which our controller lies along this spectrum is
dictated by the relative magnitudes of the penalties specified
in the reward function. The predictor generates satisfactory
forecasts with uncertainties that tend to reflect the variability
of the robot’s options at any given time step.

An clear future direction for this research is to test this
method on other controllers to, for example, overtake or
cross trajectories with a person. Another useful extension
would address the issue of when, during execution time, the
robot should switch from its original planned trajectory to
the failure controller presented here. The choice of when to
do this could substantially impact how effective the failure
controller is. Similarly, rigorously determining when the
failure controller should give control back to the planner
rather than simply always cutting it off after a timeout would
likely result in more efficient and robust plans.
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(a) (b)

(c) (d)

Fig. 5: An example of predictions made by the predictor
network for different trajectories. The light green dashed
ellipse shows the region where the predictor is 99% confident
the robot will be in the next time step. The actual location
of the robot in the next time step is denoted by the black
square.
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Multitask Learning combining Detection, Segmentation, Tracking and
Forecasting

Vivek Roy1, Luis E. Navarro-Serment2, Martial Hebert3

Abstract— Object detection, segmentation, tracking and mo-
tion forecasting are fundamental tasks for robotic applications
in dynamic scenarios, such as self driving cars planning
their motion, or industrial robot arms. But in the perception
community they have mostly been seen as independent tasks.
Recent works have tried to combine detection and segmentation
with tracking, claiming that the three tasks are fundamentally
similar and can increase their accuracy if done using one
single end-to-end trained network. Motion forecasting and
tracking are two related problems demanding temporal con-
sistency; thus approaching them with a single architecture is
mutually beneficial. This paper describes a proposed method
that combines the tasks of detection, segmentation, tracking
and forecasting, approaching them with one single temporally
consistent network. Experimental results on the KITTI MOTS
dataset show a decrease in false negatives and an overall
improvement in tracking accuracy.

I. INTRODUCTION

In the context of static images, object detection and semantic
segmentation are high-level tasks that pave the path towards
complete scene understanding. In the case of videos, the
tasks of tracking and forecasting become fundamentally
important for image sequence understanding. The four tasks
together can contribute greatly to the vision and perception
community by helping us to better understand the world
around.

Detection and segmentation has for long been done to-
gether on static images. Sharing weights between the de-
tection and segmentation modules allows them to capture
knowledge not possible individually.

In the case of object detection and tracking in videos, ap-
proaches have mostly used detection as a first step, followed
by post-processing methods such as applying a tracker to
propagate detection scores over time, known as tracking by
detection. Drifting is an inherent problem with visual track-
ers. Tracking by detection mitigates this problem resetting
the tracker to the detection. On the other hand the tracker
can help the detector be more confident in localization.

Motion forecasting is tracking in the future. It is typically
done by using a network trained on the location of the object
in multiple past frames to give the location in future frames.
The expectation is that the network will be able to capture
the motion model of the concerned object and predict its
motion.

1 Vivek Roy is a student of the Department of Computer
Science and Engineering at Jadavpur University, Kolkata, India.
vivek@vivekroy.com

2,3Luis E. Navarro-Serment and Martial Hebert are with the Robotics
Institute at Carnegie Mellon University. luisn@andrew.cmu.edu;
mhebert@andrew.cmu.edu

Fig. 1: Sample visualizations showing segmentation masks
as well as forecasts. Colored squares represent the location
of the centroid in the past frames. Solid circles represent the
predicted centroid positions.

Multi-task learning approaches have numerous times
proven that sharing weights between related tasks can help
make individual tasks more robust. We use the idea of multi-
task learning and argue that the tracking and forecasting
modules convey the temporal context that the detection
and segmentation modules can further utilise to refine their
outputs. We use 3D convolutions to capture spatio-temporal
information which is then used to perform all four tasks.
Leveraging tracking and prediction information can reduce
detection false negatives when dealing with occluded or
far away objects. False positives can also be reduced by
accumulating evidence over time.

In this paper we extend multi-object tracking and segmen-
tation (MOTS) [1] by adding a forecasting module to their
architecture. We further use the output of the forecasting
module to boost the region proposals around the forecasts,
preventing the non-maximum suppression (NMS) step from
removing those proposals. The image features for the pro-
posals and their positions in the coordinate system of the
image are then passed to the various heads. Similar to Mask
RCNN [2] the localization, classification and segmentation
modules work on the image features, but on the full stack
of features instead of just one feature frame at a time. The
association and forecast heads work towards tracking and
forecasting respectively.

We use the weights published by [1]. The forecasting
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module is further trained on the KITTI and MOT Challenge
datasets. We demonstrate the effectiveness of our approach
comparing it to [1].

II. RELATED WORK

Detection: Over the last few years, many methods have been
deployed that use convolutional neural networks for object
detection and localization. These typically work with RGB
images in a two-stage fashion [2], [3], [4] – the first stage
is dedicated to a region proposal network (RPN) to generate
regions of interest (RoIs) where potential objects are located.
In the second stage final bounding box locations are predicted
from average-pooled features over the proposed RoIs. This
two-stage approach eliminates the need for multiple runs of
a sliding window object detector with different sizes and
aspect ratios, which are computationally heavy.

Detection on videos is accomplished by sampling a video
into a sequence of image frames and running a per-image
object detection network on a per-frame basis. The detector
has no temporal context to consider when detecting the
objects – every frame is considered independent of other
frames.

Segmentation: In recent years, detection and localization
have often been done in tandem with semantic segmentation
– the idea of multitask learning claims that similar tasks
when done together helps capture more meaningful features
than individually possible. Sharing weights between the
tasks of detection and segmentation was popularised by
Fast-RCNN [5] and has since been adopted by numerous
architectures evolving over the years. Instance level semantic
segmentation with the introduction of Mask-RCNN [2] has
shown to be a simple yet effective way of guiding the
network in learning meaningful features.

Tracking: The task of visual object tracking requires
following an object which has been marked in the first
frame of an image sequence. Works like [6] correlate visual
cues between image frames to perform class-less object
tracking. Recent works like [7], [8] solve the problem
with the help of object detectors, known as tracking by
detection. The task of tracking is boiled down to associating
detections across time – an object detector is used to get
per frame detections which are then matched using class
information or, in case of multi-instance tracking, heuristics
such as distance and intersection-over-union (IoU). MOTS
[1] extends on the Mask-RCNN architecture by introducing
an association head which is trained to learn instance
identification vectors in high dimensional space to be able
to associate detections across time.

Forecasting: Related to tracking, motion forecasting is
an important temporal task that uses the past location
of the object to anticipate its future path. [9] have tried
to learn the motion model of the objects from the past
motion and forecasts the motion. [10] [11] used LSTMs
of some form to model interactions, while [12] used

game theoretical concepts to do so. SocialGAN [?] uses
generative adversarial networks to generate all possible
”socially acceptable” trajectories.

Detection Segmentation Tracking Forecasting

Mask RCNN
[2]

D D - -

People Track-
ing by Detec-
tion [7]

D - D -

Track-RNN
[8]

D - D -

Motion
prediction
for people-
tracking
[7]

- - D D

MOTS [1] D D D -

Ours D D D D
TABLE I: Different papers have combined tasks in different
ways. Our approach tries to combine all of the tasks into one
network.

Multi-task learning: Detection and segmentation has been
combined by [2], [4], [5] . Detection and tracking has been
combined by [7], [8]. [9] combines tracking and motion
forecasting. [1] combines detection and segmentation with
tracking.

Different from all the above works, the proposed approach
combines all four tasks into a single weight-sharing network
as shown in table I. Being able to take advantage of temporal
information should improve our ability in non-temporal tasks
as well.

III. APPROACH

In this work, we combine the tasks of detection, segmenta-
tion and mask generation with the temporally consistent tasks
of tracking and motion forecasting. Towards this goal, we
build on top of the architecture proposed by [1] which in turn
builds on top of the popular Mask-RCNN [2] architecture by
adding an association head to Mask-RCNN. The association
head is used to learn an association vector which clusters
instances of the same object closer together and different in-
stances of the same or different classes into farther clusters in
high dimensional space. Taking a similar approach of having
3D Convolutions to learn temporal context into the image
features and adding heads to the Mask-RCNN architecture,
we add a forecasting head to learn the motion model across
time and predict the location in the frame following the input
batch. These predictions are employed to boost the scores of
the region proposals in the next frame. Boosting the RPN’s
scores biases the detector making it give more attention to the
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Fig. 2: A high-level diagram of our system architecture.

neighbourhood of the location of the predicted center under
the assumption that a good prediction module will greatly
help restrict the region of possible appearance of the object
under consideration in the next frame. This mechanism helps
boost detection and segmentation accuracy by providing
temporal context augmented to the otherwise independent
video frames.

Our input representation is a 3D tensor of video frames
across time. 3D convolutions are employed to learn image
features. We call these temporally enhanced as they augment
temporal context from the video frames into the learnt image
features. These enhanced features are passed to a RPN to
generate per-frame region proposals while also taking into
account the temporal information. These region proposals
then pass through a boosting network which essentially is a
fully-connected layer with input being the predictions for
the current set of frames, the region proposals and their
corresponding scores and output being the captured motion
model boosted region proposals. The image features are then
cropped on the proposals obtained after running non-max
suppression on the boosted region proposals. Cropped region
proposal are sent to the different heads for detection, segmen-
tation and mask-generation as well as to the association and
prediction heads for associating the regions across time and
generate the centroid prediction for the frame following the
input batch frames respectively.

The motion forecasting head is modelled as a fully-
connected layer with the input being the centroids of the
region proposals across the input batch and output being the
centroid of each of them in the following frame. We use a
weighted smooth L1 loss for training the module given by:

smoothL1(x̂, x) =

{
1
2 (x̂− x)2 if |x̂− x| < 1

|x̂− x| − 1
2 otherwise

(1)

where x is the output of the model and x̂ is the true label

corresponding to the output.

IV. RESULTS

[1] proposes three new metrics for simultaneous detec-
tion, tracking and segmentation – MOTSA, MOTSP and
sMOTSA. We use these metrics to evaluate our work. They
are defined as follows:

Multi-object tracking and segmentation accuracy
(MOTSA) is given by

MOTSA = 1− |FN |+ |FP |+ |IDS|
|M |

=
|TP | − |FP | − |IDS|

|M |

(2)

where FN is the number of false negatives, FP is the
number of false positives, IDS is the number of ID switches,
TP is the number of true positives and M is the total set
of all masks. Each object is assigned an ID. If an object is
not detected for a significant amount of frames, a new ID is
assigned to the same object. This is what we refer to as ID
switching.

Multi-object tracking and segmentation precision
(MOTSP) is given by

MOTSP =
T̃P

|TP |
(3)

where T̃P is the soft version of number of true positives
given by

T̃P =
∑

h∈TP

IoU(h, c(h)) (4)

Finally, soft multi-object tracking and segmentation accu-
racy is given by
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sMOTSA =
T̃P − |FP | − |IDS|

|M |
(5)

Table II compares the performance of our model in
comparison to MOTS in the three metrics proposed in that
paper. Table III shows our performance in the number of
False Positives (FP), False Negatives (FN) and IDS (ID-
switches). Table IV shows the number of Mostly Tracked
(MT), Partially Tracked (PT) and Mostly Lost (ML) of our
model.

MOTSA MOTSP sMOTSA

Car Ped Car Ped Car Ped

TrackR-CNN 87.8 65.1 87.2 75.7 76.2 46.8

Ours (without boosting) 88.2 64.8 87.5 75.1 77.5 46.1

Ours (with boosting) 91.2 66.3 88.5 76.3 78.6 47.0

GT Boxes 95.3 71.1 86.9 77.4 82.5 50.0

TABLE II: Quantitative results in the three metrics on the
KITTI MOTS dataset.

FP FN IDS

Car Ped Car Ped Car Ped

TrackR-CNN 134 267 753 822 93 78

Ours (without boosting) 176 317 370 650 53 91

Ours (with boosting) 151 282 377 647 46 65

TABLE III: Number of false positives (FP), false negatives
(FN) and identity switches (IDS) in the KITTI MOTS
dataset.

MT PT ML

Car Ped Car Ped Car Ped

TrackR-CNN 87.4 61.8 11.3 32.4 1.3 5.9

Ours (without boosting) 88.1 62.1 10.6 32.0 1.3 5.9

Ours (with boosting) 90.2 63.1 8.6 31.1 1.2 5.8

TABLE IV: Percentage of mostly tracked (MT), partially
tracked (PT) and mostly lost (ML) in KITTI MOTS dataset.

The number of false negatives have greatly been reduced
while also keeping the number of false positives in control.
We see a significant increase in the case of cars, but not as
much improvement in the case of pedestrians. This is because
large objects like cars do not maneuver nearly as much or
as unpredictably as pedestrians do; consequently, predicting
their motion is less challenging than that of humans.

Object identities are better maintained. This can be at-
tributed to the fact that the forecasting module in combina-
tion with the NMS score booster helps to detect the objects
which were skipped by previous models. A few undetected
frames between two detections can lead to an object switch.
The forecaster reduces the number of undetected frames

Fig. 3: Here we see a bicyclist cutting across the street and
then moving forward. When the person just starts moving
forward, the history comprises of centroids of the person
cutting across the street and thus the model predicts in line
with that. The model gives equal importance to the whole
history.

Fig. 4: We can see two people sitting next to each other,
but only one of them is detected. The score boosting module
boosts the region proposals of the one that was detected and
as a side-effect suppressing the region proposals correspond-
ing to the other person. Thus, if an object is not detected in
the first few frames, it is not detected at all.

between two detected frames and thus improves the ID
switching performance.

Our model fails to detect more than one object when
they are too close. We can attribute this to the NMS score
boosting. Hence, there is not much improvement in the
mostly lost percentage. Figure 4 illustrates the same. Objects
undetected in the first frame they appear are not detected
ever.

Finally, the model tends to give equal importance to
all past frames. Giving more importance to recent history
can arguably be better for pedestrians for example in the
case of sharp turns and sudden motion. This can be seen
in figure 3. But these cases do not arise nearly as much
in the case of vehicles. The dataset is biased, containing
approximately 2.5 times more vehicles than pedestrians.
There are approximately 8 thousand vehicles and 3 thousand
3 hundred pedestrians. As a result, the network learned to
give equal importance.

V. CONCLUSION

Until now people have combined one or two tasks into
multi-task learning problems. This work further proves that
multi-task learning can help capture information that would
otherwise be really difficult for individual modules to figure
out. Tracking and forecasting being related tasks can really
benefit from each other. The forecasting module can help the
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detector localize objects and thus also improving segmenta-
tion performance. Thus combining more related tasks keeps
improving performance. The more the merrier.
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Systems Development for Aerial Manipulation Tasks

Andrew Saba1, Oliver Kroemer2 and Sebastian Scherer3

Abstract— Unmanned aerial vehicles (UAVs) have become
increasingly capable over the past decade, rising from hobbyist
projects to commercial products and industrial tools. As aerial
robotics in general develops, UAV systems are increasingly
found helping human operators in dangerous situations, such as
inspecting infrastructure that is too high or dangerous to access,
and entering or flying over burning buildings. However, in a lot
of cases, these systems take on the role of mobile eyes for human
operators and are not able to manipulate their environment nor
navigate without a human aid in these unstructured, dangerous
environments. Recent research looks to bridge this gap by
developing aerial platforms capable of taking on more aerial
manipulation tasks fully- or semi-autonomously. This work
covers one such developed system that is robust enough to
operate in these environments while also being relatively low-
cost and utilizing a number of off-the-shelf sensors.

I. INTRODUCTION

With modern advances in robotics, robots are becoming
increasingly capable of performing tasks that were once
delegated to humans. Aerial Manipulation tasks, such as
infrastructure contact inspection, construction, and search
and rescue tasks, are often dangerous for humans. For
example, in [1], a 2 degree of freedom manipulator is
mounted onto a quad copter for the purpose of performing
dynamic contact interactions, such as in contact inspections
or object manipulation. The goal is that unmanned aerial
vehicles (UAVs) can replace or augment humans in these
dangerous situations to reduce injury or even avoid death.
However, due to the unstructured and dangerous nature of
these environments, several problems arise that hinder the
capability of autonomous UAVs.

Aerial manipulation tasks for aerial vehicles are difficult
for several reasons. Firstly, any object or surface being
manipulated or made contact with can obstruct any onboard
sensors. Additionally, the environment might be obstructing
the vehicle’s sensors through magnetic or other interference,
such as poor GPS signal below tall structures. This is
especially important if the systems are relying on said sensors
for state estimation, for example, for the autonomy is unable
to know where it is in the world and may act inappropriately
(i.e. cash, fly erratically). Secondly, the act of making contact
impacts the dynamics of the vehicle and imparts a force into
the system that must be counteracted. Spikes associated with

1Andrew Saba is a senior computer engineering student at the University
of Pittsburgh, Swanson School of Engineering in Pittsburgh, Pennsylvania
asaba96@pitt.edu

2Dr. Oliver Kroemer is an Assistant Professor in the Robotics
Institute at Carnegie Mellon University in Pittsburgh, Pennsylvania
okroemer@andrew.cmu.edu

3Dr. Sebastian Scherer is an Associate Research Professor in the
Robotics Institute at Carnegie Mellon University in Pittsburgh, Pennsylvania
basti@andrew.cmu.edu;

(a)

(b)

Fig. 1: (a) Left shows the current camera feed, where a user
selects a bounding box of interest. Right shows the selected
bounding box. Bottom row lets user switch autonomy modes.
(b) Output of a CSRT feature tracker, tracking the user-
selected bounding box

contact can impact controllers and again cause the vehicle to
fly erratically as it corrects. Additionally, if the motors and
propellers are not capable of providing the thrust response
needed to overcome the contacts, then the overall system
can become unstable, since now the impulse can never be
countered completely. Finally, there are unknown constraints
when the system is interacting in unstructured environments.
Objects could or could not be compliant, for example.

This works addresses some of these problems, namely
sensor obstruction, especially in the case of GPS obstruction,
and force impulses impacting the system dynamics. Addi-
tionally, this work also demonstrates a process for optimizing
an aerial platform for agility and flight time. Agility is
important for reacting to unknown constraints or contact
impulse forces and a long enough flight time is needed for
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the platform to be useful to the operator. Finally, the solutions
developed in this work utilizes off the shelf components and
software packages, where possible, to minimize cost and
reduce risk in the event of crashes, since replacement parts
are readily available.

II. HARDWARE PLATFORM

A. System Requirements

Aerial manipulation tasks are demanding and require a
rugged, robust, customizable, and powerful platform. The
platform must be capable of operating in an outdoor environ-
ment under and over various forms of infrastructure (bridges,
roadways, towers, etc.). It must be robust enough to make
up to thousands of repeated contacts with infrastructure or
other objects in its lifetime. The platform must also be able
to support various sensors, some of which may be relatively
heavy (2 to 5 kilograms). The platform must also be able
to accelerate rapidly in the event of safety maneuvers, such
as accelerating away from an obstacle that was recently
discovered, which can happen if something is dislodged
during the contact. Additionally, in order to be useful for an
operator, the vehicle must be capable of flying for a relatively
long time (at least 15 minutes).

Fig. 2: Top View of the developed UAV system

B. Frame, Motors, and Compute

To solve this problems, a hexarotor platform was devel-
oped that uses a Tarot X6 frame, with a 0.96m motor-
to-motor diameter and a maximum payload of 7.5kg (see
Figure 2). The frame can be size-adjusted for specific tasks.
Propulsion is achieved with six KDE Direct KDE4215XF-
465 brushless motors and KDEXF-UAS55HVC electronic
speed controllers (ESC). The flight controller is a Pixhawk 2
Cube running a modified version of the PX4 flight stack [2].
Compute and sensor payload can be seen in Figure 5. On-
board computation is achieved using an Intel NUC computer.
An Intel T265 RealSense Camera is used to provide visual
odometry information and a D435 RealSense Camera is used

for RGB-D imaging, and an SF30 Laser Rangefinder is used
to provide accurate height estimation.

The frame is relatively large (96cm motor to motor),
allowing for a large payload (over 5kg) and numerous cus-
tomization options (i.e. ability to mount different arms, end
effectors, or various sensors. Additionally, the motors and
propellers chosen allow for about 20 minutes of flight, while
also providing almost 29kg of peak thrust. Additionally, by
utilizing the sensors listed above, reliable state estimation in
a GPS-denied environment was achieved at a relatively low-
cost (less than 500 dollars) and with little addition weight or
power requirements.

Fig. 3: Thrust stand setup

C. Thrust Testing

To ensure that the motors and propellers selected could
provide the necessary flight time, static and dynamic thrust
tests were conducted with a thrust stand (see Figure 3).
This builds on previous works, such as in [3], which used
a thrust stand to characterize various motor and propeller
configurations and determine the most optimal configura-
tions. By thrust testing, experimental data is collected to
guide engineering decisions and provide guidance on the best
propulsion designs.

The motor and several propeller comparisons were made.
Figure 4 has a comparison between two propeller sizes
that were considered, with data collected with the same
motor (KDE 4215XF) with a static thrust sweep test, which
involves ramping thrust from 0% to 100%, holding, and
ramping back down to 0. Propellers were both T-Motor
polished carbon fiber, one being 13” long and the other 12”.
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On the left of Figure 4 is a graph of the current measured,
in amperes, versus the thrust generated, in Newtons. On the
right is a graph of the electrical power measured (voltage
times current draw) versus thrust generated, again in New-
tons. There are several important points to note here when
picking the best propeller for a motors.

Fig. 4: Thrust data collected for two propeller sizes

Firstly, the propeller cannot cause the motor to draw
more current than what it is rated for. In this case, neither
propeller does so. Secondly, the best propeller generates
more thrust with less current and power drawn. In this
particular comparison, the 13 inch propeller generated more
thrust for the same amount of current and power. Finally,
the best propeller generates a peak thrust that is at least one
and a half to two times the mass of the vehicle and payload
being carried. For example, if the vehicle and payload weight
6kgs, then the total thrust generated by all the motors and
propellers should be at least 9 to 12kgs. In this particular
case, the 12 inch propeller generated about 7-8 N fewer
of thrust when compared to the 13 inch. In this particular
comparison, the winner is clear; however, there are cases
where peak thrust might need to be traded for efficiency,
depending on the propeller and motor choices.

The result of this work is a vehicle capable of flying for
roughly 20 minutes while carrying a one kilogram payload.
Additionally, as mentioned earlier, the platform can generate
over 29kgs of thrust, resulting in very agile movement
for such a large vehicle. Finally, the components used are
relatively cheap and easy to replace, as mostly off the shelf
components were utilized.

III. STATE ESTIMATION

In order to robustly control the vehicle when manipulating
the environment, localization in the world needs to be robust
and locally accurate. In the long-term, some positional drift is
acceptable. Visual servoing techniques correct for long-term
drift by estimating the target’s position relative to the body
and transforming the target point into the map (global) frame.
However, an accurate state estimate is needed to precisely
control the vehicle to reach the target position.

Fig. 5: Sensor and compute payload

Bridges, buildings, and other large structures often block
GPS signals and interfere with other sensors, rendering
most off-the-shelf localization solutions inoperable for aerial
manipulation platforms. To solve this problem, an Intel T265
RealSense tracking camera is utilized, along with an SF30
Laser Rangefinder and the onboard IMU (see Figure 5).
The T265 RealSense tracking camera utilizes a proprietary
SLAM algorithm to generate a 6 degree of freedom pose.

Readings from the onboard sensors are fused in a 15
degree of freedom Extended Kalman Filter (EKF) node
provided by Robot Localization [4]. Utilizing the flexibility
of the filter, the tracking camera was utilized for position and
velocity in the horizontal plane and for absolute orientation.
The SF30 provided an accurate measure (within +-10cm)
of the vehicle’s altitude. Finally, the IMU provided linear
and angular acceleration and orientation measurements. This
particular configuration provided the best performance in test
flights.

A few alternative approaches to the problem were at-
tempted, all of which using the T265 tracking camera.
Originally, the tracking camera’s velocity estimate was fused
with the rangefinder and IMU. However, through field testing
it was found that fusing velocities alone caused significant
drift (greater than roughly 20cm positional drift within less
than 5 minutes of flight).

Fig. 6: Thrust data collected for two propeller sizes
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Additionally, it was discovered that no absolute orientation
could be measured on-site, due to high magnetic interference
with the onboard magnetometer from large nearby metal
structures. As a result, it was decided to fuse the absolute
position and orientation estimates provided by the T265. This
approach eliminated most of the drift while maintaining a
locally accurate estimate.

IV. FIELD TESTING

Overall, reliable localization and state estimation was
achieved utilizing the onboard sensor suite, despite the lack
of conventional means of localization, such as GPS. This
was demonstrated and tested on-site at the Charles Anderson
Bridge in Schenley Park, Pittsburgh, PA, with manual flights
and on the Carnegie Mellon University football field with
autonomous flights. In Figure 6, on the left is a visualization
of where the drone thinks it is in the world and the target
point where the vehicle is to make contact (purple sphere).
On the right is an image from an onboard region of interest
tracker that is tracking the region the vehicle is to make
contact with. The localization is consistent with where the
drone actually was in real life. Additionally, the state estimate
worked reliably enough for the vehicle to maintain its
position while waiting for a region of interest to servo to
and for using to estimate where the target is in the world
and moving towards that point.

Fig. 7: Side by side comparison of raw GPS readings and
state estimation

Data was also collected during additional field testing
on the Carnegie Mellon University football field, where the
vehicle was autonomously flying in a 21m by 15m rectangle
while utilizing GPS. Sensor data was later run through the
developed state estimation systems and compared against
GPS in 7. The largest two takeaways from this comparison
are that the state estimate drifted by less than 1 meter after
flying for over 80m, meaning that the final estimate in flight
was within one meter of the starting point, which is roughly
where the vehicle landed. Secondly, the GPS estimates for
distance traveled down each side and back is consistent and
within a meter or two of what the state estimate is outputting.

This all indicates that the estimate is consistent with GPS,
even after such a long and fast flight. Additionally, this level
of accuracy and consistency is more than acceptable for
aerial manipulation tasks, where often the autonomy system

is able to re-orient itself relative to the target despite its state
estimate drifting using techniques such as visual servoing
. Finally, the developed system, unlike other off the shelf
solutions that depend on GPS alone, can work in significantly
more environments.

Fig. 8: Fully actuated hexarotor with tilted propellers

V. CONCLUSION AND FUTURE WORK

Thrust testing has been used to develop smaller platforms
than the one in this work as well as a fully actuated hexarotor
platform (Figure 8) that is capable of moving in 6 degrees of
freedom without rolling or pitching. The state estimation and
use of the T265 camera are also being used on these smaller
vehicles, demonstrating the transfer-ability of the developed
work. The hope is to expand the use of these systems, build
on top of them, and provide a set of base platforms for more
projects to come.

The systems developed in this work are robust, powerful,
able to work in unstructured, GPS-denied environment, and
utilize off-the-shelf solutions. These systems will be utilized
in numerous projects, including for infrastructure inspection,
construction, and fire fighting. This work sought to develop
a robust platform that multiple projects will be able to utilize
and build on top of.
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Motion Planning for Urban Driving Including Evasive Maneuvers Using
Iterative LQR

Het Shah1, Yanjun Pan2 and John Dolan3

Abstract— There exist a lot of challenges in motion planning
for autonomous driving, especially in the case of sudden motion
of dynamic obstacles. A real-time implementation of spatial and
temporal planning that can handle nonlinear vehicle model
and dynamic obstacle avoidance is needed. Iterative Linear
Quadratic Regulator (iLQR) solves predictive optimal control
with non-linear systems. In this paper, we use Constrained
Iterative Linear Quadratic Regulator for motion planning for
urban areas in highly dynamic environments and deal with sce-
narios such as sudden movement of a pedestrian/animal/other
vehicles on the road which usually leads to an evasive maneuver.
State dependent auto tuning of cost weights has been proposed
to deal with multiple scenarios.

I. INTRODUCTION
It is estimated that self-driving cars will have a significant

impact on the road transportation in the near future, and
there is currently a lot of related research going on in
academia as well as industry. However, they need to deal
with certain emergency situations caused by other vehicles,
pedestrians and wildlife. Motion Planning and Control is
one of the most important modules in autonomous vehicles
which takes information of the outside environment, plans a
trajectory to execute and give commands to the actuators of
the vehicle. Figueiredo et al. [1] shows challenges for motion
planning due to factors such as steep roads, curves, surface
uncertainties, etc.

Path planning approaches can be divided into three cate-
gories: 1) Search-based planning 2) Sampling-based planning
3) Optimization-based planning [2]. Search based planners
like A*, D*, etc. give globally optimal solutions but they are
inefficient when dealing with dynamic obstacles. Also, find-
ing a good heuristic function is a challenge. Sampling-based
planners result in sub-optimal solutions and are inefficient
in collision avoidance. Also, as these both are performed in
discrete space, the trajectories are not smooth and compu-
tational efficiency is affected. Optimization-based methods
formulate the motion planning as an optimization problem
and result in continuous and spatiotemporal trajectories.

A. Related Works

The problem of trajectory planning and tracking through
control of vehicle steering and acceleration has been widely
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studied over years. Trajectory optimization can be formulated
as a quadratically constrained quadratic program [3]. Ziegler
et al. [4] used Sequential Quadratic Programming (SQP)
to solve the nonlinear and non-convex problem, but the
computation time is around 0.5s, which is not suitable for
real-time implementation. Xu et al. [5] proposed an efficient
real-time motion planner with trajectory optimization that
discretizes the plan space and selects the best trajectory based
on a cost function.

Control methods such as LQR and Model Predictive
Control (MPC) have also been used for this purpose. Two
layer MPC which reduces the computation cost as compared
to one layer MPC has been proposed for motion planning
with obstacle avoidance [6]. Arab et al. [7] presented a
Sparse-RRT* and nonlinear MPC based motion planner for
aggressive maneuvers. Ji et al. [8] presents a path planning
and tracking framework using 3D potential fields and multi-
constrained MPC. In [9] an nonlinear MPC has been imple-
mented to stabilize the vehicle along a desired path, but there
has been a trade off between vehicle speed and the prediction
horizon. As a result, heavy computation still stands as a
barrier for nonlinear MPC. Iterative linear quadratic regulator
is an optimization-based method for nonlinear systems with
lower computation time. However, very few works have con-
sidered constraints in iLQR. The control-limited differential
dynamic programming (DDP) was proposed in [10], deals
with constraints of upper and lower bound on control inputs.
Extended LQR [11] - [12] works with collision avoidance for
circular obstacles, penalizing the distance from the center of
the obstacle.

B. Our Contribution

This paper presents a motion planning approach for au-
tonomous vehicles which can generate the trajectory and
plan the control inputs which can track the trajectory. The
majority of road accidents are caused by vehicle collision.
The aim of the collision avoidance system is to avoid
imminent accidents using longitudinal (emergency braking)
or lateral control (active steering). However, emergency
braking is not possible for every situation as there might
not be enough distance or time to stop before an obstacle.
Our approach focuses on integration of emergency obstacle
avoidance scenarios.

Iterative Linear Quadratic Regulator (iLQR) [13], an algo-
rithm based on Linear Quadratic Regulator is used to solve
unconstrained optimization problems with nonlinear system
dynamics. However, it has not seen much appearance in the
field of motion planning for autonomous vehicles as it does
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not deal with the constraints and constraints are inevitable for
autonomous driving. But, the authors in [14] have shown that
constraints can be embedded in the cost function and can be
used for the motion planning problem but does not deal with
obstacles moving in lateral direction. It deals with dynamic
obstacles just by re-planning and using a closed loop control.
Also, tuning a set of universal cost weights is difficult which
works efficiently with multiple different scenarios. In this
paper, we have used constrained iLQR to specifically deal
with scenarios of dynamic sudden obstacles like sudden
animal crossing the vehicle and other vehicles cutting in
the ego vehicle’s lane. A constant acceleration model of
dynamic obstacles is considered while adding them in the
cost function which allows the ego vehicle to efficiently make
evasive maneuvers. We also propose a state dependent tuning
of cost weights which can handle multiple scenarios.

II. SYSTEM DESCRIPTION

A. System Dynamics

The kinematic bicycle model as shown in Fig. 1 is used
in this paper. The kinematic model considers a single pair
of wheels at the center of front and rear axles instead of left
and right pairs. The zero lateral slip assumption is taken. The
state consists of x = [px, py, v, θ]

T and the control input is
u = [v̇, θ̇], where px, py represent the position coordinates,
v is the vehicle velocity, θ is the orientation of the vehicle,
v̇ and θ̇ are the acceleration and yaw rate of the vehicle
respectively. The equation 1 represents the vehicle dynamics.

Fig. 1: Vehicle Kinematic Model

ẋ =


vcosθ
vsinθ
0
0

+


0 0
0 0
1 0
0 1

[v̇θ̇
]
= g(x, u) (1)

Since, we would be dealing with the discrete time domain,
this model is transformed to discrete time form as described
in equation 2, where Ts is the sampling time.

xk+1 =


px,k + cosθk(vkTs +

1
2 v̇kT

2
s )

py,k + sinθk(vkTs +
1
2 v̇kT

2
s )

vk + v̇kTs
θk + θ̇kTs

 = f(xk, uk) (2)

B. Constraints

There are some essential constraints that are to be obeyed
by the autonomous vehicle while driving on road. Here are
the 3 constraints that are to be considered.

1) Control Input Constraints: The control inputs i.e.
acceleration and yaw rate are bounded by some upper
and lower limits. The acceleration is bounded due to the
engine power and braking torques for tires. The yaw rate is
bounded due to the constraints in steering angle and vehicle
longitudinal velocity.

amin < a < amax (3)
δmin < δ < δmax (4)

2) Position Constraints: The vehicle needs to be bounded
between the specific lanes and avoid the curbs at the side
of the road. Also, there are a lot of scenarios which have
boundary constraints in longitudinal direction [14], i.e. stop
sign scenario or a car following scenario.

3) Obstacle Avoidance: The obstacle avoidance deals
with static and dynamic obstacles. Two type of dynamic
obstacles are considered: 1. Other cars moving along the
ego vehicle in the same or adjacent lane 2. Obstacles such
as human or wildlife crossing the road in front of ego vehicle.
As it is difficult to deal with convex obstacle (e.g. rectangle
representing a car), all the obstacles are modeled as ellipse.
The authors in [14] has also shown more advantages of using
ellipse for representation of obstacles.

The long and short axis are formulated according to the
obstacle’s shape, current velocity and acceleration. The long
axis of the ellipse may be set as a = (l+vxtsafe+ssafe) and
b = (w+vytsafe+ssafe), where l and w are the length and
width of obstacle, vx and vy are the longitudinal and lateral
velocity of obstacle, tsafe and ssafe are the safe headway
and safety margin. A constant vehicle acceleration model is
assumed for the obstacles, so vx and vy of the future time
step should be considered for the cost function.

III. OVERVIEW OF METHOD

A. iLQR

The iterative LQR algorithm is used to solve for non linear
systems. The problem formulated is as follows

min
u0,...,uN−1
x0,...,xN

J =
1

2
xTNQNxN + xTNpNxN + qN+

N−1∑
t=0

(
1

2
xTt Qtxt+x

T
k p+

1

2
uTt Rtut+u

T
k r+q)+x

T
HPHxH

(5)

s.t. xk+1 = f(xk, uk), k = 0, 1, ..., N − 1 (6)
x0 = xstart (7)

where Qn, pn, qn, Q, p, R, r, q are the parameters
describing the cost function. The dynamic function in the
equation (6) can be non linear.

Following are the steps to solve the above problem:
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1) Start with a feasible initial guess ût = u0 and obtain
x̂t = x0 using equation 6.

2) Calculate the derivatives of dynamic and cost function
about the previous trajectory.

Ft = ∇xt,ut
f(x̂t, ût) (8)

jt = ∇xt,ut
J(x̂t, ût) (9)

Jt = ∇2
xt,ut

J(x̂t, ût) (10)

3) Run LQR backward pass on state δxt = xt − x̂t and
action δut = ut − ût.

4) Run forward pass with real nonlinear dynamics.
5) Update x̂t and ût based on states and actions in

forward pass.
6) Iterate the whole process until the cost value converges.

B. Cost Function
The cost function for the optimization problem contains

the following terms:

J =

N∑
t=0

(ccontrolk + c∆control
k + crefk + cvelk + cconstraintsk )

(11)
The description of the computation of each term is given

below:
1) Control input: The control inputs and changes in

control inputs are penalized to avoid excess use and
sudden change of acceleration and yaw rate giving the
passengers a comfortable ride.

ccontrolk = ωaccu
T
k

[
1 0
0 0

]
uk + ωyawu

T
k

[
0 0
0 1

]
uk

(12)

c∆control
k = ω∆acc(uk−uk−1)

T

[
1 0
0 0

]
(uk−uk−1)+

ω∆yaw(uk − uk−1)
T

[
0 0
0 1

]
(uk − uk−1) (13)

2) Reference Offset: This term penalizes the distance
from the reference. The distance from the nearest point
on the reference path is considered.

3) Velocity Difference: The velocity difference term is
added to achieve the desired velocity along the trajec-
tory.

cvelk = ωvel(vdes − v) (14)

4) Constraints: The constraints equations are embedded
in the iLQR as a cost function to the optimization
problem. It has been shown that constraints can be
effectively added as barrier function in the cost func-
tion [13]. The constraint function fxk can be converted
to the barrier function bxk using the equation 15. The
barrier function can be quadratized by using Taylor
series expansion as shown in the equation 16.

bxk = q1exp(q2f
x
k ) (15)

bxk(xk + δxk) ≈ δxTk∇2bxk(xk)δxk+

δxTk∇bxk(xk) + bxk(xk) (16)

By applying chain rule, we have:

∇bxk(xk) = q1q2exp(q2c
x
k(xk)) (17)

∇2bxk(xk) = q1q
2
2exp(q2c

x
k(xk))(∇cxk(xk))(∇cxk(xk))T

(18)

C. Cost Weights

Tuning a set of universal cost weight that gives optimal
results for all the scenarios is difficult. Keeping the cost
weights like cvel and cref same for various scenarios does
not work efficiently. We come up with a state dependent
tuning of cost weights which can be generalized for more
scenarios.

The higher the value of cvel is, the more encouraged
the ego vehicle is to track the reference path with the
desired velocity, whereas the higher value of cref is, the
more encouraged the ego vehicle is to follow the path
with minimum reference offset. So, with obstacles far away
from ego vehicle, the ego vehicle do not need to perform
an obstacle avoidance task, and therby track the trajectory.
Whereas when the distance between the obstacle and ego
vehicle is decreasing it is desired that the vehicle should
overtake or perform avoidance maneuver depending upon the
current velocity and states. In this case the reference tracking
can be relaxed. A linear function for both cost weights is used
as shown in the equation 19-20. Both weights are clipped at
some minimum and maximum values tuned at extreme cases.

cvel = cv1 − dobscv2 (19)
cref = cr1 + dobscr2 (20)

IV. EXPERIMENTAL RESULTS

The experiments were carried out and simulated on
MATLAB. Results for various test cases for urban driving
are shown. Especially the effect of tuning weights have
been shown for normal scenarios and scenarios with evasive
maneuvers.

A. Static Obstacles

The figure 2 shows the ego vehicle avoiding the static
obstacles on the way. The sequence of black boxes shows
the ego vehicle at each time step and the blue path shows
the trajectory followed by the vehicle

Fig. 2: Static obstacle avoidance

B. Dynamic Obstacles

Several types of dynamic obstacles are considered for
the test cases. Figure 3 shows the dynamic obstacle like
pedestrian suddenly crossing the road at various speeds.

The sequence of boxes of yellow to red color shows
represents the pedestrian (gradient shows the movement at
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(a) Pedestrian moving at 1 m/s (b) Pedestrian moving at 2 m/s

(c) Pedestrian moving at 4 m/s

Fig. 3: Dynamic obstacle like pedestrian moving in the lateral direction at different velocities

each time step) and the sequence of boxes of yellow to green
color shows the ego vehicle smoothly avoiding the obstacle.

Fig. 4: Obstacle vehicle cutting into the lane of ego vehicle

Fig. 5: Obstacle vehicle cutting into the lane of ego vehicle

Figure 4 shows the ego vehicle overtaking a slow moving
vehicle ahead of the ego vehicle. The sequence of boxes of
yellow to green color shows represents the obstacle vehicle
(gradient shows the movement at each time step) and the
sequence of boxes of brown color shows the ego vehicle’s
trajectory for overtaking task.

Figure 5 shows another vehicle suddenly cutting into the
ego vehicle’s lane. The sequence of boxes of color yellow to
green shows represents the obstacle vehicle (gradient shows
the movement at each time step) and the sequence of boxes
of black color shows the ego vehicle smoothly avoiding the
obstacle.

V. CONCLUSIONS

In this paper, We have shown that the Iterative LQR
is capable of motion planning for urban areas including
evasive maneuvers and emergency situations. Moreover, We
have shown the effects of the cost weights on the type of
maneuvers autonomous vehicles need to make.

As a part of future work, tuning the cost weights efficiently
or having adaptive weights can be considered. Also, the

dynamic model of the vehicle needs to be considered for bet-
ter implementation at high speeds, but solving for dynamic
model needs efficient solvers for real-time implementation
which has further research scope.
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Maximizing Agent Utility in Human-Robot
Collaborative Assembly Tasks

Kenneth Shaw, Jaskaran Grover, Changliu Liu

Abstract—Human-robot collaboration (HRC) is increasingly
important in assembly line tasks as humans and robots have
varied strengths that can cooperate safely together to increase
efficiency. However, due to the time-varying nature of human
collaborators, it is challenging for the robot to efficiently identify
the ideal response to the human plan. Currently, most solutions
use the trajectory of the human arm as the primary detection
method for the human’s underlying plan and respond with
one appropriate robot action to maximize the utility given the
situation. Neither the human nor the robot is expected to provide
further help if the task is proving difficult for the other agent,
therefore not maximizing the utility of each agent. In this paper,
we will improve upon this by grouping robot tasks with the same
underlying goal together, allowing the robot to switch between
them to maximize the utility of each agent.

I. INTRODUCTION

In factories and many other industrial settings, robots have
proven to be efficient at many repetitive tasks. That being
said there are also many cases such as small assembly where
robots aren’t capable of completing the task as effectively.
Human-robot collaboration has shown much promise in areas
such as manufacturing and has caught the continued interest of
academia and industry alike to fill this gap. In a collaborative
human-robot environment, physical safety is combined with
software checks to ensure comprehensive, guaranteed safety.
Software also facilitates the tasks allocated to each agent,
robot, and human. This combination can allow robots and
humans to work in close proximity together to complete the
task, using their complementary strengths most efficiently.
This paper examines the allocation strategy of these tasks and
proposes one such method.

This allocation strategy must find the proper robot action
to match that of the human’s that maximizes the utility of
the human and the robot. For example, if one were placing a
window seal on a car with an assistive robot, there are many
different actions the robot and the human could take with
various success rates, durations and strain on the human. The
robot could attempt to do it fully autonomously but possibly
run into issues of alignment and placement. The human could
assist the robot through the path, helping it place the door seal.
Additionally, the human could complete the whole action by
itself. This places a large strain on the human but has a higher
guaranteed success rate. There are existing various strategies
for this task allocation problem that will be explained below.

II. RELATED WORK

Much work has been previously done on the task allocation
problem with a variety of applications. In human-robot collab-
oration, one common way is by using advanced planners to

decide which task to match to the human based on the status
of the objects and obstacles in the environment. One such
implementation is SHARY, which uses a hierarchy of shared
agent tasks and communication mechanisms between the two
agents. It uses a human aware task planner that incorporates
the feasibility of the task and human load to decide on the
correct task to assign. It also maintains a list of suspended
and currently active tasks to more efficiently manage the next
upcoming tasks for the human-robot team [4].

Additionally, the Berkeley MSC lab has specified human-
robot tasks as part of a hierarchy of sub-tasks that can be
completed sequentially together to fulfill one larger task. This
hierarchy enables the robot to better predict the next action
and trajectory of the human which therefore enables the robot
to predict and respond earlier to the status of the task [3].

Theory of Mind paradigms use cues from the human, envi-
ronment, and goals to better estimate the mental state of the
human [11]. For instance, eye gaze has already shown promise
in finding a target object that a person is looking at [2].
Additionally, inverse planning looks to understand the human’s
goals based on their abilities in perception, in this case using
a supervisor to keep track of the human’s understanding and
facilitates communication between the agents [5].

In these previously explained human-robot collaborative
environments, the robot is responsive to the action of the
human and meets it with a singular action that is programmed
offline to help the human achieve the underlying intention,
where the intention is the underlying goal that would be
achieved by conducting such a task. However, when examining
human-human teams, this is largely not true. For instance,
when human-human teams work together on intentions such
as lifting heavy objects, each human monitors the success of
the other one and adapts to help and improve the success of
the whole team. When playing a game such as soccer, players
are constantly monitoring the success of others to improve
their own actions and the success of the team. The focus of
this paper will be to model this in human-robot collaboration.

In this new human-robot collaborative environment, when a
human is struggling on a task the robot will perform further
actions to help assist the human. This can better efficiently
utilize the resources of the robot as well as the human. In this
case, there is an intention or underlying mission that the human
must complete. One intention can then have many different
tasks that will complete this same end result. The human will
provide the initial intention with its first task, but then the robot
will decide continued shared tasks to minimize the expected
completion time of the intention and maximize the resources
available to it.
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To ensure safety and allow for trajectory and task functional-
ity, SERoCS (Safe and Efficient Robot Collaboration System)
will be used as the underlying basis for the experiments.
The robust cognition algorithms monitor the environment
and track the human using a Kinect camera by using joint
positions and then infer a plan of the human. Once that is
understood, an efficient task planning algorithm based on the
CFS algorithm dictates the robot plan the long term trajectory.
Finally, a safe motion planning and control algorithm for safe
human-robot interaction ensures that the long term goal and
safety constraints are met. This framework addresses the broad
challenges in a human-robot collaborative environment [7].

The structure of the rest of the paper is as follows. In Section
III, the mathematical framework of robot task allocation is
proposed. In Section IV, the SERoCS framework modifications
are discussed. Section V concludes the paper.

Fig. 1: RoboGuide FANUC Robot Simulator

III. PROBLEM FRAMEWORK

In a typical human-robot collaborative environment, the
robot’s task allocation strategy must decide which task to
conduct to help the human. This task should attempt to
maximize the utility, or usefulness of each agent at completing
the task. In this paper, the task that the human is trying to
complete is tied closely with the trajectory or action that the
human is conducting. Each task, however, will now have an
underlying intention. This intention is the desired goal state of
the target objects at the end of the successful completion of
the tasks. The robot will try to switch tasks to complete the
intention faster.

Each intention will have a group of synonymous tasks that
can be conducted to achieve the same end intention. As an
example, placing a car seal onto a door can be done in three
ways, (1) by placing the seal completely automatically with
the robot, (2) by having the human help align the robot and
door together to complete the task or (3) completely by human
action alone. Each of these n tasks within the intention will be
defined as a tuple < Pn, Tn,Kn > where P is the probability
of success, T is the task time completion distribution, and K is
an empirical understanding of the strain and unpleasantness on

the human of the action and the process of switching actions.
In the same example as above, the completely autonomous
procedure might have a fast completion time and little strain on
the human, but the success rate could be low. The completely
human operated procedure would have a greater amount of
human strain but also a higher completion rate and consistent
completion time.

Focusing on the task completion time aspect, independent
trials can be conducted to gather data and understand this ran-
dom variable. From prior industrial engineering research, task
completion time of tasks such as factory assembly tasks can
typically be modelled and fitted to a Weibull distribution [9].
The Weibull distribution is a right skewed distribution, where
most tasks will likely be completed earlier rather than later
and is defined as follows where k > 0 is the shape parameter
and λ > 0 is the scale parameter of the probability density
function:

f(x;λ, k) =

{
k
λ

(
x
λ

)k−1
e−(x/λ)k x ≥ 0

0 x < 0

Once the completion time is fit to this distribution, the
distribution’s cumulative distribution function is useful to find
the area under the curve or the probability of completing the
task within a certain amount of time. The CDF is as follows[6]:

1− e−(x/λ)k x ≥ 0

However, the completion time is only one part of the
characteristics that define the cost of the task. Each task has a
total success rate over a long period of time as well as a cost
of the human strain of conducting and switching to the task.
Therefore the total cost can be defined as follows, where there
are l task pairs, pn is the probability of reaching this point, xn
is the duration, and cn is the cost function of switching tasks.

min :
l∑

n=0

pn ∗ xn ∗ cn (1)

The probability of reaching this point or pn is the sum of the
probability of not completing the previous trials.

pn = 1−
n−1∑
m=0

(1− e−(xm/λm)km
) (2)

Combining these we obtain:

min :
l∑

n=0

(1−
n−1∑
m=0

(1− e−(xm/λm)km
) ∗ xn ∗ cn) (3)

Therefore, the goal of the robot will be to minimize inten-
tion cost or the above function which consequently minimizes
the strain on the human as well as task completion time but
also guaranteeing task completion, assuming the final pl = 0.
It will do this by finding the correct time to switch tasks,
or finding the proper vector of xn to pursue the tasks for.
Intuitively, once the success rate of the current task becomes
low over time (e.g., the robot is trying to put a window seal
on a car door and is failing) then the actions of the robot will
switch to a task that will be more likely to be completed.

138



To organize the relationship between these task tuples,
a sequence structure can be proposed. Continuing on the
previous example, it is likely that the robot should try to
completely autonomously add the door seal to the car first,
but then when time dictates it’s failing and getting stuck, it
should then increasingly allow the human to intervene and
complete the action together. Like in this example, the general
structure of the net can be understood solely by domain
knowledge of the task at hand. Many different permutations
can be confidently ignored, and a general sequential structure
can be easily presented. A convenient way to represent this is
as a Petri Net as below.

Each tasks’ forward progress within them are not considered
online. For example, if the robot was halfway across the door,
that information won’t be considered. Only time elapsed on
the task will be used as information to minimize the expected
cost based on the offline model.

In summary, once the switching times xn are calculated
offline, these will be stored by the robot and can be used at
each intention to minimize the estimated cost to complete it.
The robot will create an offline compiled list that will dictate
which task the robot should complete and when to minimize
the total cost of completing the goal or intention, therefore
maximizing the utility of the agent team.

Fig. 2: Petri Net showing an example intention and task
sequence, where the robot actions are in yellow, the transitions
are in red, and the human actions are in blue.

IV. EXPERIMENT SETUP

As mentioned previously, SERoCS provided the basic
framework for the human-robot collaboration paradigm. Im-
portantly, it provides the ability to set and carry out cartesian
goals which are converted into joint based long term trajecto-
ries using the CFS algorithm. It uses Kinect environment data
and a short term safety planner to keep the robot and human
safe together [7]. When SERoCS was used at Berkeley, the
MSC lab used FANUC robots along with two computers. To
communicate with the robot, a FANUC system called DSA
was used, where the desired motions were converted into
torque commands and provided to the robot using EtherCat.
One host computer ran the longer term plan and trajectory
optimization, where a second target computer ran the safety
controller as well as communicated with the robots. At CMU,
even if the one physical robot we have is similar, the control
mechanism for the robot is different and only one PC was
desired. In this case, a UDP protocol called StreamMotion
is used to command angle positions for each of the six

Fig. 3: Final Matlab to StreamMotion Trajectory Framework

joints of the FANUC robot or the accompanying simulator.
Within every 8ms, the computer must respond with a target
trajectory before the next status packet is received from the
robot, which consists of the position and other diagnostic
data. This immediately posed significant problems to the
implementation because the long term planner can only be
solved at a frequency of 30Hz.

To solve this problem, first, an experimental interface and
a decoder for StreamMotion packets was created with Mat-
lab and used to communicate with the FANUC robot. The
intention was to integrate this with SERoCS since it was also
written in Matlab and Simulink. After much experimentation,
however, it continued to result in a MOTN-604 error because
Matlab was not expedient enough to satisfy the 8ms constraint
consistently. To avoid this issue, a Python-based UDP library
was trialed. Thankfully, the Python provided bytes object
was very useful for decoding and prototyping could be done
very quickly. By itself, Python could easily keep up with
the StreamMotion packets from the robot simulator. However,
Python must now also communicate with the Matlab code
running at approximately 30Hz. To architect this, a Matlab
wrapper for the Python terminal was used to communicate
positions in joint space to Python. To allow for the Stream-
Motion packets to be sent out possibly simultaneously and
allow for Matlab to open the Python terminal when desired,
the StreamMotion portion of the Python code was placed in
its own high priority thread. Initially, the Matlab data was
simply cached and repeated to the robot, effectively a zero
hold method.

It was then found that the trajectory plan must be smoothed
online to follow manufacturer-defined jerk, acceleration and
velocity constraints before sending them to the robot. First, it
was thought that a trajectory generation method like polynomi-
als splines or lines could be used to smooth out the trajectory
and avoid those constraints [1] [8]. To maintain expedient
calculations, a line generation method was tried between the
current point and next target point at each time the data was
received from Matlab, where the expected amount of time
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between each Matlab command was used to determine the
number of points to generate. If a point from Matlab was
received earlier than expected, the line would be redrawn to
the new target position. If it was received later, then the robot
would enter a zero order hold until the point was received.
However, the constraint on jerk was still exceeded very often.
Therefore, to meet this restriction, it was decided to attempt
to apply these constraints online at 125 Hz and constrain
the trajectory before sending it to the robot. The velocity,
acceleration, and jerk was calculated as follows, where δt is
the constant step size between two consecutive time intervals
i.e. δt = tk − tk−1

v(tk) =
q(tk)− q(tk−1)

δt
,

a(tk) =
v(tk)− v(tk−1)

δt
=
q(tk)− 2q(tk−1) + q(tk−2)

δt2
,

j(tk) =
a(tk)− a(tk−1)

δt
=

q(tk)− 3q(tk−1) + 3q(tk−2)− q(tk−3)

δt3

and these constraints were applied:

vmin ≤ v(t) ≤ vmax,
amin ≤ a(t) ≤ amax,
jmin ≤ j(t) ≤ jmax ∀t

where vmin, vmax are the minimum and maximum limits on
the velocity allowed by the robot manufacturer and accelera-
tion and jerk are a and j respectively.

For instance, the application of the constraints was done as
below for jerk:

a (t)max = jmax + a (t− 1) ,

v (t)max = a (t)max + v (t− 1) ,

d (t+ 1) = d (t) + v (t)max

for acceleration:

v(t)max = amax + v(t− 1),

d(t+ 1) = d(t) + v(t)max

and for the velocity:

d(t+ 1) = d(t) + vmax

However, this proved to be unstable. For example, in a
ramp input, the actual position would initially be much below
the desired position. The robot will maximize the jerk and
acceleration constraints to meet the desired positional trajec-
tory. Once meeting the trajectory, the velocity and acceleration
would be much larger than that of the ramp input. The robot
would then use a maximum negative jerk, attempting to correct
itself. However, then the velocity and acceleration would be
much lower than the ramp input. This process would repeat
throughout the trajectory and become unstable under larger
inputs.

To improve the stability, a PI controller was tried to facil-
itate the tracking of the robot to the desired trajectory. This
promised to easily smooth out the trajectory, be stable and

minimize error while being fast enough for online use. In this
case, let qd(t) be the desired angle at the current timestep, and
qd(t−1) be the previously desired angle. The error is defined
as e(t) = qd(t) − qd(t − 1). A feedback and feedforward
controller where PI is the feedback component was then used
as follows:

qd(t) = qd(t− 1) +Kpe(t) +Ki

∫ t

0

e(t)dt (4)

As demonstrated by the plot attached, this fulfilled the
requirements for the robot trajectory.

This work completed on the FANUC robot will be integral
to future work on the robot in the lab for human-robot
collaboration and other experiments. Further research in task
assignment will be conducted on the robot in the future.

V. CONCLUSION

The work completed on the FANUC robot as explained in
the previous section will be very helpful for future projects
in the lab. We have also theoretically shown that this task as-
signment paradigm has the ability to more efficiently optimize
a human-robot collaborative assembly task and maximize the
utility of each agent. However, in the future, additional work
must be done on experimental situations. This will enable a
better understanding of various task types and their cost and
duration distributions. As for other research directions, this
basic assignment structure could use additional data to make
decisions on what the robot needs to accomplish, including
verbal communication, eye gaze and other Theory of Mind
type body cues. One could evaluate the skill and fatigue level
of the human and adjust the degree of robot collaboration
and automation in this case extending to different task action
pairs online [10]. The robot could also provide additional
information to help the human orient in the task. Finally, there
was an assumption that forward progress to one task will be
ignored when deciding whether to move to the next one. This
was chosen to simplify the calculations of the issue but either
a more advanced model or reinforcement learning could be
considered to choose the optimal time to switch between tasks.
Again, the framework designed here in the experiment section
will be useful with SERoCS and many other experiments in
the lab for the future.
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Degeneracy Detection for RGB-D Odometry

Zilin Si1, Ming Hsiao2 and Michael Kaess3

Abstract— In this work, we propose an online degeneracy
detection algorithm for RGB-D odometry estimation. In the
environments with insufficient visual textures or geometric
structures, most localization systems may find it difficult to
estimate accurate motions due to the lack of information for
full 6 DoF pose constraint. To achieve better robustness for state
estimation, is it crucial to detect and handle these degeneracy
situations. Our method is developed basing on a real-time
CPU-based fast RGB-D odometry method [1] that uses both
photometric and geometric information. Within the underlying
nonlinear optimization process, our solution determines the
well-constrained and degenerated dimensions based on dynamic
thresholds for both the photometric and geometric parts, and
combine them together to find the degenerate directions of the
overall system. We evaluate our approach using both online
datasets and self-recorded datasets and demonstrate its ability
of detecting degenerate situations accurately.

I. INTRODUCTION

Visual odometry has been studied for a long time in the
SLAM community. Cameras is an essential and useful sensor
for SLAM systems, which can provide high resolution visual
information. With sufficient textures detected by camera,
feature-based visual odometry has been developed to offer
accurate localization, such as monocular visual odometry [2]
and ORB SLAM [3]. On the other hand, range sensors can be
used to estimate motion, such as applying ICP algorithm [4]
directly. Using RGB-D cameras which combines vision and
range sensing in SLAM system becomes commonplace in
recent years. By expanding information captured by RGB-D
camera, algorithms have been designed for RGB-D odom-
etry which can provide more accurate results. For instance,
beyond the indirect methods which mostly refer to sparse
feature-based odometry [5], dense RGB-D odometry has
been developed by minimizing the photometric error of each
pixel [6]. This method incorporates each pixel’s intensity
as well as depth information into optimization, which can
provide more accurate camera ego-motion estimation.

Most RGB-D odometry methods can perform well in
environments with adequate visual features and geometric
structures. However, imperfect conditions of the environment
can result in bad localization. Degeneracy is one of the
most common problem that plagues reliable localization.
Generally, the degeneracy can be considered as losing partial
constraints for estimation. For instance, in Figure 1, if we

1Zilin Si is with the School of Information Science
and Technology, ShanghaiTech University, Shanghai, China
sizl@shanghaitech.edu.cn

2Ming Hsiao is with the Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, USA mhsiao@andrew.cmu.edu

3Michael Kaess is with the Robotics Institute, Carnegie Mellon Univer-
sity, Pittsburgh, PA, USA kaess@cmu.edu

walk along the corridor and holding the camera which only
captures the wall and floor, it is hard to know whether
the camera is moving forward, backward, or staying static
only from the input sequence of images. So in this case,
the translation direction along the corridor is degenerated.
Basically, there are two common ways to handle degeneracy
situations: One is to offer more constraints by providing
a multi-sensor system like visual inertial odometry [7],
in which the measurements from an inertial measurement
unit (IMU) can compensate the lack of visual information.
The other is actively detecting and handling degeneracy
to make more reliable prediction and update. [8] proposed
a method to handle environmental degeneracy, in which
they analyze and separate well-constrained directions from
degenerate directions. This method can be used for the
general optimization-based system.

(a) Trajectory and captured im-
age

(b) Mapping from degeneracy
case

Fig. 1. This is an example of degeneracy. If the camera only captures the
wall and floor as (a), for two frames, no matter we slide along the translation
direction parallel to two planes or not, we can always align them. Thus this
direction is degenerate. As a result, the trajectory of motion is not accurate
and (b) shows the overlap of wall and door because of the incorrect motion
estimation.

In this paper, we actively analyze and detect degeneracy
situations in an online localization system. Our proposed
degeneracy detection method for RGB-D odometry is based
on the fast RGB-D odometry proposed in [1], which already
combines a geometric-based method called iterative pro-
jected planes and two photometric-based methods to estimate
the odometry of the sensor for better robustness. If only one
part has degenerate directions, the other part can compensate
for it directly under its joint optimization framework. How-
ever, if both parts run into degeneracy, the algorithm cannot
estimate the odometry accurately. Therefore, our proposed
method detects the degeneracy separately in each part, and
finds the best constraints for both of them together. Only
when both parts degenerate in the same directions, we regard
them as the degenerate directions of the overall system.
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Our contributions in this paper are as follows:
• Detecting the degeneracy on both parts (geometric and

photometric) online.
• Combining two parts together and find the common

degenerate directions.
This paper is organized as follows. The next section

discusses related work. The basic RGB-D odometry system
is introduced in Section III. We present and analyze the
approach of degeneracy detection in Section IV. Experiments
and results are provided in Section V. Finally, we draw the
conclusion and discuss future work in Section VI.

II. RELATED WORK
Our degeneracy detection algorithm works on RGB-D

odometry which is well studied in two different ways. RGB-
D odometry can be realized with feature-based method, such
as [5] presented a fast RGB-D system that reached real-time
frequency by aligning sparse features. Features can typically
represent the image, and due to the reasonable calculation
workload, the system can achieve real-time localization ef-
ficiently. On the other hand, color information with depth
information makes the direct motion estimation method more
robust. ICP [9] is widely used in SLAM, including RGB-
D camera implementation. [10] proposed semi-dense visual
odometry for RGB-D camera which registers 2D semi-
dense region with 3D semi-dense map by implementing
approximate nearest neighbor fields. As [11] presented the
energy-based approach to RGB-D odometry, they estimated
the motion by minimizing the photometric errors in a coarse-
to-fine manner.

Being Robust to various environments including but not
limited to degeneracy is essential to RGB-D odometry. To
make odometry robust in a wider environment, [12] bases on
directly minimizing photometric error method, and provides
the robust error function to reduce the influence of noise
and outliers. Also, it can be realized in real-time with only
CPU computational source. [13] proposed a robust RGB-D
SLAM algorithm by heuristically switching between RGB-
BA and RGB-D-BA to handle the inaccurate estimation from
depth information in poor geometric structure environment
or other failure modes. This algorithm makes the system
perform well in a general environment. In [1], authors
developed a keyframe-based dense planar SLAM (KDP-
SLAM) system. This system provided a fast dense RGB-
D odometry which combines the geometric estimation with
photometric estimation. By minimizing the residual of the
energy function, motion can be recovered more accurately
due to incorporating the measurement of geometric structure
and photo intensity alignment.

Under the poor geometric structure and insufficient texture
environment, it is hard to align two frames regardless of
using either feature-based method or direct method. Degen-
eracy is a kind of poor situations which affect the accuracy
of motion estimation profoundly. To handle this issue, [8]
proposed an online approach to analyze and separate the
well-constrained and degenerate directions in optimization-
based problems. Even though some directions are under

degeneracy, there are still other directions that can provide
correct estimation and be used to update the state of space.
We adopt this idea in our work to divide all directions to
well-conditioned and degenerate directions. Moreover, [14]
proposed a degeneracy detection method for plane feature-
based measurement and then use inertial measurement unit
(IMU)’s information to compensate for the lack of con-
straints. The experiments were conducted on an RGB-D-
inertial integrated system. In our geometric part, we use
planar-based method to detect the number of degenerate
directions.

III. PRELIMINARIES

As the foundation of our degeneracy detection algorithm,
we work on fast dense odometry [1] mentioned in Section II.
Since RGB-D camera can offer depth information with scale
as well as intensity information, we can optimize the problem
from both geometric and photometric views to improve
the robustness. Similar to ICP algorithm, the geometric
optimization is achieved with iterative projected plane (IPP)
approach. And we minimize the photometric errors to align
two frames as photomeric optimization, which is similar
to [11]. The total energy function can be represented as
follows:

Etotal = Egeo + λEpho (1)

where λ is used to adjust the relative weighting of two terms
in the optimization.

This system balances between computational efficiency
and accuracy. To achieve this goal, we set two kinds of
frames: reference frame and general frame. All the general
frames’ transformation is related to the nearest reference
frame, and only rough estimation is provided to save calcu-
lation source. The rough estimation is achieved by IPP and
dense RGB-D odometry in a pyramid way. We set the output
of IPP to the input of the first level of pyramid dense RGB-
D odometry. Also, each level’s output is the initialization of
the next level.

A new reference frame Rj is decided when its location is
far from the last reference frame Rj−1. And the reference
frame’s motion has to be estimated with a precise transfor-
mation to make sure the accuracy of the whole system. The
precise estimation is implemented by IPP and semi-dense
RGB-D odometry. For the semi-dense part, it is mostly in the
same way as rough estimation, but with one more semi-dense
level at the bottom of pyramid as Figure 2. Each frame’s
pose is initialized with the last frame’s pose to speed up the
convergence of optimization.
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Fig. 2. Pyramid/Semi-dense structure. In our course-to-fine manner, the
upper three levels are used for pyramid dense method to estimate rough
motion. The bottom level has the original size of image, so we cannot
realize real-time calculation by using dense method. Therefore, we apply
semi-dense method to the bottom level. Based on rough motion estimation,
the precise motion estimate is recovered by adding semi-dense approach.

The next part will introduce IPP, pyramid dense RGB-D
odometry and semi-dense odometry individually.

A. Iterative Projected Plane(IPP)

IPP algorithm is similar to ICP point-to-plane method,
but it bases on iteratively energy minimization to find the
association between two frames’ sub planes, which are the
small planar patches extracted from the depth image. Assume
now we want to associate the reference frame Rr and current
frame Fn. From the raw depth data, it is hard to extract
accurate planar patches due to the noise, so we smooth the
planar areas of image with low-intensity gradients at the
beginning. After the preprocessing, a set of sub planes {pFi }
and {pRj } can be extracted by finding patches in which ma-
jority of points’ normal vectors have the uniform direction.
Each plane pi can be represented by the center point ci =
[xi, yi, zi]

> and normal vector ni = [ai, bi, ci]
>. Given the

current prediction of transformation, we can project each sub
plane pFi of current frame Fn to reference frame Rr. The
sub plane pFi is associated with pRj if the center point cFi
can be projected onto the pRj . In each iteration, the energy
function with m couples of sub planes found is:

Egeo =

m∑
i=1

||(R(ξ)cFi + t(ξ))>nRi + dRi ||2

≈
m∑
i=1

||Aiξ − ei||2
(2)

where ξ = [β, γ, α, tx, ty, tz]> is the optimization object
of three rotations(β, γ, α) and three translations(tx, ty, tz);
R(ξ) and t(ξ) are the corresponding rotation matrix and
translation vector of ξ; dRi is the distance parameter of the
plane pRi :

aRi x+ bRi y + cRi z + dRi = 0 (3)

Then the update of state vector is:

∆ξ = (A>A)−1A>e (4)

where A is the stack of all Ai.
IPP algorithm can only perform well in the environment

with sufficient and unique sub planes matched. If in the
complex surrounding without enough planes or in contrast,
in the environment with simple structures where most of
the sub planes are indistinguishable, the algorithm cannot

provide accurate estimation. Therefore we have to incorpo-
rate photometric optimization to improve the accuracy and
robustness of algorithm.

B. Pyramid Dense RGB-D Odometry

The pyramid dense RGB-D odometry method mostly
follows [11] and [12] by minimizing the photometric error
in a coarse-to-fine manner except that here we utilize the
Laplacian of the images instead of grayscale images to mit-
igate the assumption of brightness consistency. We optimize
the energy function from the coarsest level, and each time
we initial the next level with the output of the last level
to accelerate computation. In each iteration, with the known
temporarily-estimated motion ξ, the photometric error can be
computed as:

Epho =
n∑

i=1

||IF (xi)− IR(w(ξ, xi)||2

≈
n∑

i=1

||Jiξ − ri||2
(5)

where IF and IR are the Laplacian images of current frame
Fn and reference frame Rr; w is the warping function that
project a valid pixel xi from Fn given the motion ξ to
reference frame; Ji is the Jacobian of the pixel xi in the
downsampled Laplacian image of Rr with respect to a 6
DoF perturbation, and ri is the residual between each valid
pixel pair of xi in Rr and projected pixel from Fn; n is the
number of valid pixel pairs that are used in each iteration.
Then we can obtain the updating of ξ:

∆ξ = (J>J)−1J>r (6)

where J is the stack of all Ji.

C. Semi-dense RGB-D Odometry

The semi-dense RGB-D odometry is the bottom level
of the pyramid dense RGB-D odometry which uses the
information of the entire image. However, the huge number
of pixels’ calculations can not be achieved fast on CPU. To
reduce the burden of calculation, we only use pixel with high-
intensity gradients to typically represent the image. One issue
is that usually pixels with high gradients are located at the
discontinuous in 3D world frame, the depth measurements of
these places are often inaccurate. Thereby, we pick the pixels
with better depth measurements nearby these pixels to form
the energy function. Then apply the same method used for
pyramid-dense part to solve the transformation estimation
iteratively. The semi-dense method only works on reference
frames to refine the motion.

D. Joint Odometry Estimation

No matter for reference frames or general frames, they
both use the conjunct method of geometric and photometric
parts, and solve the non-linear least-squares optimization
problem via Levenberg Marquardt method. The architecture
of the whole system is depicted in Figure 3.
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Fig. 3. The overall system. The transformation of each frame is related
to the nearest reference frame. Reference frame’s motions are estimated
precisely, and general frame’s motions are estimated roughly.

IV. METHODOLOGY

A. Problem Statement

The energy-based method is widely used in motion es-
timation. By iteratively linearizing the non-linear problem
and minimizing the residuals, the transformation between
two frames can be recovered. Generally, we can represent
the linearized formula in each iteration as

E ≈ ||Jx− r||2 (7)

where J is the Jacobian matrix, x is update state vector of
six degree of freedom, and r is the residual. Then apply first
order optimization to solve it:

J>Jx = J>r

x = (J>J)−1J>r
(8)

To analysis the property of degeneracy, do eigenvalue de-
composition to J>J :

J>J = V ΛV >

= [v1, v2, ..., vn]


λ1 0 ... 0
0 λ2 ... 0
0 0 ... 0
0 0 ... λn

V > (9)

where vi is one of the eigen vectors, and λi is the correspond-
ing eigenvalue. Also, here we arrange the eigenvalues λ1, λ2,
..., λn in increase order, such that λ1 ≤ λ2 ≤ ... ≤ λn. By
decomposing the x onto eigen vectors, we can represent x
as:

x = [v1, v2, ..., vn][a1, a2, ..., an]> (10)

where v1, v2, ..., vn are the same set of eigen vectors of
J>J , a1, a2, ..., an are the linear combination coefficients.
Thus when multiply J>J on x, it works as doing shrink or

stretch on each eigen vector direction:

J>Jx = (V ΛV >)(V [a1, a2, ..., an]>)

= [v1, v2, ..., vn]


λ1 0 ... 0
0 λ2 ... 0
0 0 ... 0
0 0 ... λn

 I[a1, a2, ..., an]>

= [v1, v2, ..., vn][λ1a1, λ2a2, ..., λnan]>

(11)

If the problem is solved under the well-constrained en-
vironment, J>J is fully ranked and invertible since all
eigenvalues are positive, which can give us a confident and
right solution to estimate state vector x. However, if one
or more directions loses the constraint, the corresponding
eigenvalues become zero, and the matrix J>J is degenerate.
We notice that in reality, eigenvalues are not exactly equal
to zero but approach to zero due to the noise of data.
If assuming there is one degenerate direction, λ1 ≈ 0,
under this situation, a1 can be an arbitrary value that is not
constrained, which leads to an incorrect solution to x.

From the analysis above, the degeneracy situation leads to
ill-conditioned matrix J>J and affects the accuracy of the
solution. However, it is evident that after decomposing the
solution onto eigen vectors, only degenerate directions are
not well estimated, but other constrained directions are not
affected and still can be used to update state vector. Based
on that, we can detect the degeneracy directions first, then
partially update the transformation only on well-constrained
directions.

Based on our RGB-D odometry, the degeneracy may arise
in diverse directions for the geometric part and photometric
part. Since IPP algorithm relies on planar detection, detecting
a surrounding which is lack of sufficient geometric structures
will lead to degeneracy. However, in the photometric part,
degeneracy or not depends on the pattern of pixels with
large intensity gradients. If there are not enough patterns
to constrain all directions, the pyramid/semi-dense odometry
suffers from degeneracy. So degeneracy may occurs in both
parts but in different directions. We propose to detect the
degenerate directions separately and then combine them to
get the smallest number of degeneracy directions.

B. Degeneracy Detection for IPP

As mentioned in Section III A, IPP algorithm works on
plane detection and matching. Since we need to estimate the
transformation with six degree of freedom, three for rotations
and three for translations, at least three sets of planes that
are not parallel to each other can constrain all directions.
As shown in Figure 4 (c), if all the planes detected are
parallel, three degrees are free including one rotation in the
normal vector’s direction of planes and two translations of
the directions parallel to the plane; if planes detected are in
two direction groups as Figure 4 (b), one translation degree
is free; only when there are three or more direction groups
as Figure 4 (a), this problem can be fully constrained. Each
plane can be represented by the center point ci and normal
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(a) Fully constrained case

(b) Insufficient constrained case with one free directions

(c) Insufficient constrained case with three free directions

Fig. 4. General constrained/unconstrained cases are shown on the left
and the equivalent representation on the right. (a) is fully constrained in
all directions; (b) has one free direction (for translation); (c) has three free
directions(one for rotation and two for translations).

vector ni which is perpendicular to the plane. In order to
detect the number of degenerate directions, we construct
matrix N with all sub planes’ normal vector ni of the current
frame Fn:

N = [n1, n2, ..., nN ] (12)

Then conduct eigenvalue decomposition to matrix M =
NN>:

M = V ΛV > = [v1, v2, v3]

λ1 0 0
0 λ2 0
0 0 λ3

V > (13)

where V is the orthonormal matrix whose columns are eigen
vectors vi, and Λ is the diagonal matrix whose diagonal
elements are eigenvalues λi (i = 1,2,3).

The number of degenerate directions can be decided by the
effective rank. For the case in Figure 4 (b), the rank of matrix
M should be 2 ideally. However, with the noise of data, the
matrix M always has full rank and we have to discriminate
the false rank with a threshold. In our experiment, the ratio of
the largest and the smallest eigenvalue is a proper threshold
which can be achieved online. Therefore, the number of
eigenvalues who are less than threshold can indicate the
number of degenerate directions. The cases in Figure 4 (a),
(b), (c) correspond to 0, 1, 2 eigenvalues that are less than
threshold respectively.

Besides the number of degenerate directions, we also have
to know which directions are degenerate. We assume there
are m degenerate directions. Back to the IPP algorithm,

in each iteration we have the matrix A>A in Eq. 4, and
conducting eigenvalue decomposition on A>A gives us a set
of eigenvalues {vAi }. The smallest m eigen vectors represent
the degenerate directions.

C. Degeneracy Detection for Pyramid/Semi-Dense RGB-D
Odometry

Also, we need to detect degeneracy for the photometric
part. Different from the geometric part, the pyramid/semi-
dense RGB-D odometry uses intensity alignment to optimize
the problem. We have the Jacobian matrix of all selected pix-
els and try to minimize error function between two frames.
Therefore we can apply the method in [8] to the matrix JTJ
and analyze eigenvalues to find the number of degeneracy
as well as the corresponding directions. In [8], they use
a predefined threshold to distinguish degenerate and well-
constrained direction groups. In our case, we set the threshold
with a dynamic ratio of the maximum eigenvalue and the
minimum eigenvalue as same as the threshold of degeneracy
detection on IPP algorithm. The number of eigenvalues that
are less than threshold is the number of degenerate directions.
And the corresponding eigen vectors for these eigenvalues
represent the degenerate directions.

D. Combination and Updating

After the geometric and photometric degeneracy detection
via planar-based and energy-based methods, we have the
number and the directions of degeneracy for both parts
respectively. However, they may degenerate in different
directions and sometimes compensate each other in some
directions. So integration of two parts is necessary to find
the common degenerate directions.

The six degrees of freedom can be seen as a <6 space
which is composed by two perpendicular subspaces. And
the subspace spanned by degenerate eigen vectors and the
subspace spanned by well-constrained eigen vectors can be
seen as these two subspaces. Therefore, the idea is to find
the NULL space of the constrained subspaces. One way is
to stack all constrained eigen vectors from both parts, as
[vA1 , v

A
2 , ..., v

A
n ] and [vJ1 , v

J
2 , ..., v

J
m], where n and m are

the number of well-constrained eigen vectors for geometric
part and photometric part. Then conduct eigenvalue decom-
position to the matrix W>W where

W = [vA1 , ..., v
A
n , v

J
1 , ..., v

J
m] (14)

If eigenvalue λi is close to zero, the corresponding eigen
vector vWi is one of the overall degenerate directions. This
method outputs all degenerate directions for the system. After
that, the update of state vector can be projected onto well-
constrained directions as

V = [vW1 , ..., vWm , vWm+1, ..., v
W
n ]>

Vf = [vW1 , ..., vWm , 0, ..., 0]>

∆ξ = V −1Vf∆ξ

(15)

where the last n−m eigen vectors are close to zero.
The total degeneracy detection algorithm can be summa-

rized as:
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• For geometric part, detect the number of degenerate
directions via planar-based method.

• For photometric part, detect the number of degenerate
directions via energy-based method.

• Find the total degenerate directions as well as its num-
ber.

• Project the update of state vector onto well-constrained
directions.

V. EXPERIMENTS AND RESULTS

A. Degeneracy of IPP

We have tested the geometric part’s degeneracy situation
on self-recorded datasets and tum datasets. As shown in
Figure 5, 6, 7, three different situations are covered in.

The first one is recorded in the room, and one corner can
constrain motion in all dimensions. Figure 5 (b) shows the
normal vectors of all extracted planes in Figure 5 (a) marked
with dots (center points), which have at least three different
directions. Also, eigenvalues of the normal matrix can be
seen in Figure 5 (c). All eigenvalues are above the threshold
means no degenerate direction.

The second dataset is recorded along the corridor, so only
one floor and one wall can be seen. As Figure 6 (b) shows,
normal vectors can be separated in two groups of directions,
and the minimum eigenvalue is below the threshold in
Figure 6 (c) which means one direction is degenerate.

The third case comes from the tum dataset,
freiburg3 nostructure notexture far. It only includes one
whiteboard so all the normal vectors are in one direction.
Two eigenvalues are below the threshold since three
degenerate dimensions.

(a) Original image
with captured planes

(b) Normal vectors (c) Eigen values and
threshold

Fig. 5. There are more than three direction groups of planes, so all
directions are constrained and all the eigen values are above the threshold.

(a) Original image
with captured planes

(b) Normal vectors (c) Eigen values and
threshold

Fig. 6. There are only two direction groups of planes, so one dimension
is degenerate and one eigen value is below the threshold.

(a) Original image
with captured planes

(b) Normal vectors (c) Eigen values and
threshold

Fig. 7. Only one direction group is found for planes, so three dimensions
are unconstrained and two eigen values are below threshold.

B. Degeneracy of Dense/Semi-dense Odometry

We test the photometric degeneracy detection on several
datasets, and depict the typical results in Figure 8 and 9.

(a) Original image (b) Laplacian image

(c) Eigen vectors
and threshold for
geometric part

(d) Eigen vectors
and threshold for
photometric part

(e) Eigen vectors
and threshold for
overall system

Fig. 8. One direction degeneracy. For the photometric part, the eigen vector
in the first row is dominated by the combination of rotation of y-axis and
translation of x-axis.

(a) Original image (b) Laplacian image

(c) Eigen vectors
and threshold for
geometric part

(d) Eigen vectors
and threshold for
photometric part

(e) Eigen vectors
and threshold for
overall system

Fig. 9. Fake degeneracy. For the photometric part, the combination of
rotation of y-axis and translation of x-axis as well as the combination of
rotation of x-axis and translation of y-axis will lead to fake degeneracy.
However, from (e) we can see that this kind of fake degeneracy will be
compensated by geometric part.

For Figure 8 (a), there is one white wall with two
parallel lines captured and one direction is degenerate as
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shown in Figure 8 (d). In the eigen vectors matrix, the red
block represents negative value, the blue block represents
positive value, and the lighter block means the larger absolute
value and vice versa. Since the eigenvalues are arranged in
increasing order, the smallest eigenvalue corresponds to the
first row. Also the order of elements in one eigen vector
is pith, yaw, roll for rotation, tx, ty , tz for translation as
Figure 10. So the combination of rotation around y-axis
and translation on x-axis dominants the degeneracy. The
reason behind is that when current frame slides on x-axis,
the two parallel lines can always overlap with the reference
frame’s pattern. Therefore, it degenerates in translation of
x-axis direction. For the rotation around y-axis, since we
use numerical differentiation to build Jacobian matrix, when
adding a small perturbation on the rotation of y-axis, it
performs the same as translating on x-axis.

(a) Coordinate system (b) Matrix of eigen vectors

Fig. 10. The coordinate system is on the left. The matrix of eigen vectors
is on the right. The order of six direction in one eigen vector is pitch, yaw,
roll, x, y, z. And each row represents one eigen vector, all eigen vectors are
arranged in increasing order from top to bottom.

As for Figure 9, at the first glance we think it should
perform well and constrain all the directions. However, there
are two degenerate directions. By looking at the eigen vectors
matrix in Figure 9 (d), we found that from the first row,
rotation of y-axis and translation of x-axis dominants the
degeneracy. This comes from the way to build Jacobian
matrix and capture the image. When the pattern of pixels
with large gradients is in the middle of the image, adding
the perturb to the translation on x-axis has the same affect
as adding the perturb to the rotation on y-axis. So when
they combine together in opposite way, the residual does
not change and this leads to the ”fake” degeneracy. Also for
the second row, the combination of rotation of x-axis and
translation of y-axis has the same effect. But this will not
affect the overall degeneracy detection as shown in Figure 9
(e), because none of geometric part’s degenerate directions
is the linear combination of them, so it will be compensated
when integrating geometric detection method.

C. Combination

From the previous section we can get different degenerate
directions for both parts. However, it does not mean all
these directions from two parts are degenerate since they
can compensate each other in some directions. As Figure 11
shows, although there is only one plane with one line in the
image which leads to three degenerate directions detected
from IPP algorithm as Figure 11 (c) and three degenerate
directions detected from photometric approach as Figure 11

(d), only one direction is degenerate for the system. In the
Figure 11 (e), we can see the first row is dominated by the
translation of x-axis which conforms to the fact.

In another case, when we consider an extreme situation
where there is only one whiteboard in the scene as Figure 12,
both methods detect three degenerate directions and after the
combination, there are still two degenerate directions which
are dominated by translation of x-axis and y-axis. Without
enough information provided, it is hard to localize accurately.

(a) Original image (b) Laplacian image

(c) Eigen vectors
and threshold for
geometric part

(d) Eigen vectors
and threshold for
photometric part

(e) Eigen vectors
and threshold for
overall system

Fig. 11. Totally, there is one degenerate direction which is the translation
of x-axis.

(a) Original image (b) Laplacian image

(c) Eigen vectors
and threshold for
geometric part

(d) Eigen vectors
and threshold for
photometric part

(e) Eigen vectors
and threshold for
overall system

Fig. 12. When the camera only captures one blank place, it will degenerate
in the translation of x-axis and y-axis for the system.

VI. DISCUSSIONS AND CONCLUSIONS
Robust to all kinds of environments, especially poorly con-

ditioned situations, is essential to motion estimation. Once
the wrong estimation is accumulated on the whole tracking, it
will lead to large drift until optimization such as loop closure
is applied. As the first step to robustly handle degeneracy sit-
uation, we propose a method to detect degeneracy for RGB-D
odometry which bases on eigenvalue decomposition. Diverse
detection algorithms are implemented for the geometric part
and photometric part and then we integrate two parts to get
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the overall degeneracy. The experiments on various datasets
have shown the ability to detect the degeneracy.

Although the degeneracy can be detected by this algo-
rithm, without a good initialization, updating state vector
only in well-conditioned directions and ignoring the degen-
erate directions is not enough to solve this problem since
we still do not have sufficient information. For the future
work, it is possible to combine this algorithm with the factor
graph optimization, which can serve as partial factors and
use loop closure to refine the motion. Or add more sensors
like IMU. When degeneracy happening, we can rely more
on IMU measurement to avoid the degeneracy influence.
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Deep Spatio-Temporal Video Based Analysis for
Shoulder Pain Intensity Measurement

Maimoon Siddiqui1, Diyala Erekat1 Hamdi Dibeklioglu2 and Zakia Hammal3

Abstract—The standard clinical assessment of pain is limited
primarily to self reported pain (e.g., using Visual Analog Scale
(VAS)). While self reported measurement of pain is useful, it
has notable limitations including inconsistent metric, reactivity
to suggestion, and susceptibility to impression management and
deception. Moreover, in some circumstances self reported pain
is not possible to obtain (e.g., young children and unconscious
patients). Automatic facial expression analysis has emerged as
a potential solution for objective, reliable, and valid pain mea-
surement. We proposed an automatic approach for pain intensity
measurement from the dynamics of facial movement. To do so,
we trained automatic classifiers to measure pain intensity scores
consistent with both self-reported VAS and objective Observer
Pain Intensity (OPI) separately and in combination. Participants
were 25 subjects with previous shoulder injury (The UNBC-
McMaster Pain Archive). Participants were video recorded while
they completed a series of movements of their affected and
unaffected shoulders. Using the recorded videos, we investigated
the contribution of spatio-temporal dynamics of facial expression
for pain intensity measurement using a CNN-RNN model. From
the video recordings, normalized appearance of the face was
extracted using active appearance model AAM. The normalized
face appearance was then fed to train an end-to-end CNN-RNN
model to measure pain intensity from the video. Using two-level
five fold cross-validation, the proposed model was more accurate
for OPI than OPI and VAS; and each was more accurate than
that for VAS only.

Index Terms—Pain, Facial Expression, Visual Analogue Scale,
Convolutional Neural Network, Recurrent Neural Network.

I. INTRODUCTION

Pain is a source of human suffering, a symptom and
consequence of numerous disorders, and a contributing factor
in medical and surgical treatment [2]. The standard clinical
assessment for pain includes using various uni-dimensional
tools such as Visual Analogue Scale to record self-reported
pain. While useful, self-reported pain has notable limitations
including inconsistent metric properties across scale dimen-
sions, reactivity to suggestion, and susceptibility to impression
management [2]. The clinician’s and patient’s perception of
an abstract concept of pain might not always align and could
influence one another [5]. Given these limitations pain is often
poorly assessed, underestimated, and inadequately treated.

1Maimoon Siddiqui is a senior student at School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
maimoons@andrew.cmu.edu

1,2Diyala Erekat, Hamdi Dibeklioglu are with Com-
puter Engineering Department, Bilkent University, Ankara,
Turkey diyala.erekat@bilkent.edu.tr,
dibeklioglu@cs.bilkent.edu.tr

3Zakia Hammal is a Senior Project Scientist at Robotics
Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
zhammal@andrew.cmu.edu

With the release of publicly available pain database and
advancements in computer vision and machine learning, au-
tomatic pain assessment from facial expressions has emerged
as a possible solution for automatic and objective assessment
of pain [2]. Most previous efforts for automatic pain assess-
ment have focused on frame-level pain intensity measurement
consistent with Prkachin and Solomon Pain Intensity (PSPI)
scores, which codes movement of facial action units from
static facial images (for a detailed description of the state of
the art efforts for automatic pain assessment please see [2]).
Despite VAS being gold standard in clinical practice, previous
efforts focused on static frame-level pain estimation. One ex-
ception is Liu and colleagues [1] that proposed a personalized
model for automatic assessment of VAS pain scores from
videos. The authors combined facial shape with predefined
personalized features (i.e., age range, gender, complexion)
to train an end-to-end combination of neural network and
Gaussian Regression model for VAS pain intensity.

However, Liu and colleagues [1] explored pain related
spatial information in static images and did not investigate
the contribution of dynamic changes of facial expressions in
consecutive frames. Pain communication is dynamic. Dynam-
ics of pain warrants explicit attention because it furthers our
understanding of the pain experience [2]. As a contribution
to previous efforts, we propose a spatiotemporal end-to-end
CNN-RNN model for pain intensity measurement in video
sequences. Because some gradations of pain intensities were
sparsely represented, a stratification technique was performed
during the training to improve the model performances. Strat-
ification divided the data into folds for training, validation and
testing such that each division ensured the classifier saw each
pain intensity level at least once for each fold.

II. METHODS

The goal of this paper is to automatically estimate pain
intensity from the spatiotemporal changes in facial expression
during pain video sequences.

A. Face and Facial Features Extraction

The first step in automatic pain intensity measurement from
facial expression is the automatic detection of face and facial
features in video sequences. To do so, we used the 66 facial
points tracked using Active Appearance Model (AAM) and
distributed with the database (see Fig.1) [12]. The tracked
facial points were then used to extract the appearance of the
face from each video frame (see Fig.3). To remove non-rigid
head variation, tracked faces were registered to a reference
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face using Delaunay Triangulation1 as described in sections B
and C.

Fig. 1: 66 facial landmark points

B. Average Facial Landmarks Computation

Initially, the input frames in the video sequences were scaled
and centered to a predefined inter pupillary distance. This was
done because the input frames were not of the same dimension
and the faces in those images were not frontal and centered
at the same height on the frame. The scaled ad centred facial
frames were then used to find the average facial landmark
points.

As a first step to normalize and center images, all the input
images were transformed to output images of fixed size (e.g.,
(w × h) as (1500× 1500)).

The (x,y) coordinates were available for all 66 facial points
L = [(x1, y1), (x2, y2)...(x66, y66)]. The input images were
transformed so that they were centered to a fixed size (e.g., 1

3
of the height of the output images), maintaining a fixed inter-
pupillary distance (e.g., 600 pixels) in all the output images
of the predefined face size (i.e., (width×height) as (1500×
1500)). This was done by aligning the landmark points # 36
and # 45 associated with the corner of the left and right eyes
to be transformed from:

src1 =

[
x1

y1

]
−→ dst1 =

[
3
10 × w
1
3 × h

]
(1)

src2 =

[
x1

y1

]
−→ dst2 =

[
7
10 × w
1
3 × h

]
(2)

where (x1, y1) are the input coordinates of the landmark points
of corner of the eyes.

A transformation matrix is then found to map the source
coordinates to the destination coordinates.

f : transform matrix = (src, dst) (3)

All the remaining landmark points L were then transformed
with the transformation matrix and an affine transformation
is performed on the input image with the transform matrix
f(Image)

1https://www.learnopencv.com/average-face-opencv-c-python-tutorial/

(a) Original Image (b) Centered Image

Fig. 2: The figure shows how the frames were initially registered.

The resulting images then have the same dimension and
are centered on the same height. The landmark points for
the average face were found by taking an average of all the
landmark points in the centered, normalised input frames.

L∑
l=1

1

F

F∑
f=1

(xL, yL) (4)

where F is the total number of frames and (x,y) are the
coordinates of each of the 66 landmark points in L.

C. Warping centered images to the Average Landmarks using
Delaunay Triangulation

After the computation of average landmarks, the pixels of
each video frame were warped using Delaunay Triangulation.
The 66 landmark points were used to perform the Delaunay
triangulation that divides the average face landmark points
into the triangles as shown in Fig 3. This is done so that
later similarity transform could be performed for every pair of
triangle to warp input images to the average facial landmark
points.

The 66 landmark points were divided into triangles where
each triangle is a list of three points. For every triangle
in average facial landmark points and every corresponding
triangle in the input image, an affine transformation matrix
was needed to perform the transformation of the three corners
of the triangle of the input image to the three corners of
the triangle of the average facial landmark points. Delaunay
Triangulation was used to find the transformation matrix from
all corresponding triangles in the input image to the average
facial landmark points. The learned transformation matrix is
then used to wrap the entire image triangle by triangle.

The faces are then cropped out by forming a mask with the
convex hull of the landmark points (see Fig.3.b).

D. End-to-End Spatio-Temporal Pain Intensity Measurement

The warped face images were used to train a spatio-temporal
model to estimate pain intensity from video sequences (see
Fig. 4). Convolutional Neural Network (CNN) was trained
to learn the spatial features from the video frames followed
by a Recurrent Neural Network (RNN) trained to learn the
dynamics changes in the extracted spatial features between
consecutive video frames. Unlike most state of the art work
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(a) Triangulation applied
on facial landmarks.

(b) Face warped to the av-
erage face.

Fig. 3: Face registration using Delaunay triangulation; (a), (b).

that models automatic pain assessment as a classification task,
we used regression to estimate pain intensity scores.

1) Spatial Representation: CNN is a feed forward deep
neural network that learns spatial features from the images
with regard to the output task through back propagation of
the loss function [11]. CNN allows networks to be deep with
reduced number of learnable parameters by sharing weights
in a layer. We used the pre-trained AlexNet2. AlexNet was
used as a feature extractor at the frame-by-frame level (the last
fully connected layer, 4096D feature). AlexNet was fine-tuned
when the end-to-end spatio-temporal model was trained (and
the weights were updated by continuing the back propagation
[9]) to estimate pain intensity scores from the video.

2) Temporal Representation: RNN are neural network
where outputs from previous steps are fed as inputs to current
step. This allows RNN to have ”memory” of past information.
Therefore, RNN was used because of their successful learning
of sequential data. RNN was trained to learn the temporal
changes in the spatial information learned through CNN. To do
so, the 4096D feature vectors from consecutive video frames
outputted from the CNN were directly fed into the RNN. To
remember possible long-term temporal dependencies we used
Gated Recurrent Network [13] (GRU). GRU works similarly
to LSTM without an additional forget gate and so have fewer
parameters to learn and a simpler architecture which made it
more suitable and computationally easier for small database
(200 videos in our case). That ensured that we do not over
fit and still generalize well. This also helped us to tackle
the problem of the gradient vanishing over long sequences
of videos. We used a 2 layers GRU model with 64 hidden
units.

The output X = {x1, x2..., x64} of the RNN was passed
through a multivariate linear regression layer to estimate pain
intensity scores Y as shown in equation 5

Y =W ×X +B (5)

where X is the 64 × n output vector from the RNN being
fed into the multivariate linear regression layer, W is 1 × 64
the weight coefficient vector for regression, B is the bias term
and Y is the pain intensity score.

2https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth

The number of layers in RNN, and other hyper parameters
for the proposed model were determined by minimizing the
validation error during the training process. The different hyper
parameters tuned during the process are shown in Table 1.

TABLE I: The different hyper parameters that were tuned during the training
process

Hyperparameter Values
Number of hidden layers {2,3,4}
Learning rate {0.00001,0.0001}
Dropout factor {0.1,0.2,0.3}
Regularization rate {0.000001,0.000005}
α custom loss factor {0.3}
The best parameters were chosen from here

III. DATABASE

Automatic pain assessment has many limitations and avail-
ability of well annotated pain databases is one of them.
Training a deep model requires a large volume of reliably
annotated data. Data annotation is a tedious task and there is
a lack of proper training and availability of public databases
specifically for pain. The UNBC McMaster Pain Archive [12]
was the first effort to address the needs for well annotated
facial expression database for acute pain [2].

The Pain Archive database consists of 129 participants (63
males and 66 females) who self-identified as having shoulder
pain and were recruited from physiotherapy clinics and
through advertisements [12]. Participants were video recorded
during different exercise routines to test their affected and
unaffected shoulder. The archive which is publicly available
consists of 200 video sequences from 25 different participants
(with 48398 frames [12]). For each video sequence, the data
contains three self-reported pain scores and one observer pain
intensity score. After each test, participants self-reported the
maximum pain they experienced using three different scales
[12]. The first two self reported scales were sensory scale
(SEN) and affective motivational scale (AFF). Those two
were performed on a 15 point likert-type scale which ranged
from 0-14. SEN ranged from ”extremely weak” to ”extremely
insane” and AFF ranged from ”bearable” to ”excruciating”.
The third self reported scale was Visual Analogue Scale
VAS which was a 10 cm long scale anchored at each end
with words ”No pain” and ”Pain as bad as it could be”.
Additionally, a fourth independent and offline observer pain
intensity (OPI) was collected from the recorded videos. OPI
was measured on a 6 point likert-type scale that ranged from
”no pain” to ”strong pain”. Finally, each of the 48398 video
frames had 66 facial landmark points tracked using AAM
(see Fig.1). Fig. 5 shows the data distribution of Pain Archive
per pain intensity per label.
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Fig. 4: The architecture of the proposed model a) The Convolutional Neural Network: AlexNet trained to learn frame-by-frame spatial feature (4096D per
frame and b) Recurrent Neural Network: 2-layer GRU4 trained to learn per-video temporal dynamics of facial features.

Fig. 5: Pain intensity distribution across the 4 scales for the entire database.
VAS scale 0-10, SEN scale 0-10, AFF scale 0-10,(where any value above 10
has been clipped off as an outlier), OPI scale 0-5.

IV. EXPERIMENTAL RESULTS

Two level nested cross-validation was used to test the
proposed spatiotemporal model for pain intensity measurement
(see Algorithm1). That included running an outer cross vali-
dation for splitting the data into test and training folds. Then
running the inner loop to select the best parameters based on
minimum validation loss (see Table 1) through another cross
validation on the training fold.

In the outer 5 folds cross validation, the data was divided
into 5 independent subsets. For each run of the outer cross
validation, one subset was kept as test-set and the rest were
provided to the inner loop for training and validation. In the
outer loop, every subset got to be part of testing exactly
once using the remaining 4 subsets for training and validating.
Every test value was an independent evaluation of the model
and an average of those test errors represented how the model

Data: Pain Archive
Result: Test loss for 5 folds
params = [num layers, dropouts, learning rate, λ]
for outer fold (5) do

min valid loss = infinity;
test data = data[outer fold];
train val data = data - test data;
for inner folds do

val data = data[inner fold];
train data = train val data - val data;
net.init(params[inner fold]);
net.fit(train data);
valid loss = net.history[’valid loss’];
if valod loss < min valid loss then

net.save params(params[inner fold]);
min valid loss = valid loss;
best param idx = params[inner fold];

end
test net = net.init(params[best param idx]);
test net.fit(train val database);
test loss = evaluate(test net,test data);

end
end

Algorithm 1: Nested two level cross validation

would generalize. After the outer test holdout subset, the
remaining folds were passed onto the inner loop. In the
inner loop every subset got to be part of validation exactly
once, using the other remaining folds as training. The inner
cross validation was used to train and search for best hyper
parameters. The hyper parameters tuned were: the drop out
factor, the learning rate, and the λ regualrizer rate for the loss
function.
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Test error for the 5 test folds of the stratified distribution

(a) MSE error. The range of the normalized training score is [0-1] (b) MAE error. The range of the normalized training score is [0-1]

(a) MSE error per intensity label in original range (b) MAE error per intensity label in the original range.

Fig. 7: (a) Mean squared error (MSE) (b) Mean Absolute Error (MAE) for the 5 test folds of the stratified distribution of the database. The original range:
VAS scale 0-10, SEN scale 0-10, AFF scale 0-10, OPI scale 0-5

A. Loss Function and Test Metric

The proposed model predicts pain intensity labels. We
evaluated the significance of the self reported pain labels and
observer rating by training different models. The models were
trained on individual pain labels and different combination of
pain labels (VAS alone; OPI alone; OPI and VAS; AFF, OPI,
VAS, SEN).

A custom loss function (see equation 6) with an inter label
variance factor and regularization (β) was used to train the
CNN-RNN model. The custom loss was used for models
trained on combined pain labels. The three self reported labels
including VAS, AFF and SEN are highly co-related and the
only observer reported label which is OPI has lower correlation
to the other three labels. Looking at the correlation between

the labels, we wanted our model to learn from both the self-
reported and observer reported labels. To counter the problem
of low correlation between the two types of reported pain and
penalize the difference between the two, an additional term for
the inter class variability V ar(Ŷ ) was added. This ensured that
the model tried to minimize the inter class variability and this
Gaussian noise between some uncorrelated labels was reduced.
This modification of the loss function ensured that we only
identified meaningful minute differences and learned a better
relationship between the data and the labels.

CustomLoss =
α

n

n∑
i=1

(yi−ŷi)2+(1−α)V ar(Ŷ )+λ
P∑

p=1

(βp)

(6)
Where n are the number of instances the loss was averaged
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over, yi is the observed pain intensity vector and ŷi is the
predicted pain intensity vector and V ar(Ŷ ) is the inter class
variability term added to custom loss with a multiplicative
factor of α. For individual pain scores estimation (e.g.,
VAS alone), α was set to 1, in the case of combined pain
scores optimization α was chosen during the CNN-RNN
training process. To help the model generalize better on
unseen test data, the custom loss equation has an additive
factor for L2 regularization where β is the regularization term.

We evaluated the model with Mean Absolute Error and
Mean Square Error while testing for generalizability (see
equations 7 and 8 and Table II). During the test phase,
the obtained error scores were rescaled from 0-1 to their
original range of 0-10 and 0-5 for AFF, VAS, SEN and OPI,
respectively. Normalized mean errors were used to assess
similarity between individual folds with the entire database
for each of the 4 pain intensity measures individually and in
combination.

MSE =
1

n

n∑
i=1

(yi − ŷi)2 (7)

MAE =
1

n

n∑
i=1

|yi − ŷi| (8)

TABLE II: The average test error comparison between random and startified
distribution of data of VAS and OPI in 4 settings.

Random Distribution Stratified Distribution

Pain Scale MAE
(VAS)

MAE
(OPI)

MAE
(VAS)

MAE
(OPI)

VAS 2.98 - 2.57 -
OPI - 1.46 - 1.33
VAS, OPI 2.06 1.63 2.25 1.72
VAS, OPI,AFF, SEN 3.09 1.48 2.54 1.39

B. Stratified distribution of data

Because some gradations of pain intensity were sparsely
represented, we performed a stratification to distribute the
database into 5 folds of well balanced pain intensity scores
per fold in the two-fold cross validation process. This was
to ensure that the distribution of the classes in the training
folds was well balanced leading to a better generalization to
unseen data. To do so, for each of the 4 pain intensity metrics,
the frequency F = {f1, f2....f5/f10} of the intensities (0-10
for VAS, SEN and AFF, and 0-5 for OPI) were normalized.
Then mean square error was computed between these nor-
malized frequencies with the normalized frequencies of the
entire database D = {d1, d2....d5 or d10}. The similarity was
calculated as 1 minus the normalised mean square error in
equation 9.

1−
I∑

i=1

(di − fi)2 (9)

TABLE III: The similarity of data distribution of the 5 folds to the entire
database

Fold # AFF VAS OPI SEN
Fold 1 97.47 97.6 93.86 97.95

Fold 2 98.93 99.42 99.45 98.41

Fold 3 97.89 98.28 98.33 97.86

Fold 4 98.39 98.28 99.25 97.96

Fold 5 93.92 96.79 98.37 96.23
aMean square similarity with the entire Pain Archive

The test error results for average and each pain intensity
across the five folds found with this stratification technique
are shown in Fig 7. Results are reported using MSE (Fig.
7(a)) and MAE (Fig. 7(b)). The test errors across 5 folds
for both MSE and MAE have high consistency due to the
balanced stratification of the folds. We trained our model on
stratified distribution with custom loss and regularization. We
used four different settings in which we trained on 1) One pain
intensity level-VAS 2) One pain intensity level-OPI 3) Two
pain intensity levels- VAS,OPI and 4) All four pain intensity
levels- AFF, OPI, VAS, SEN. Table III shows a comparison
between the average MAE and MSE test errors for random
and stratified distribution strategies. Better results were found
using stratified distribution.

C. Comparison With the State of the Art

We compared our model to DeepFaceLift (LIFT = Learning
Important Features) [1], which is a two staged personalized
deep neural network. DeepFaceLift is the only available model
for self reported pain intensity measurement from videos. The
first stage DeepFaceLift model is a fully connected neural
network that takes AAM facial landmarks as input. The second
stage is a Gaussian Processs Regression model that takes the
output of the first stage as input and outputs VAS scores.
The two settings which we compared to were when personal
features were inserted in 1) 3rd Neural Net Layer and 2)
Neural Net Input. For comparison purpose with DeepFaceLift,
the model was tested with MAE which measures the average
absolute distance between the estimated and true values.

Method Setting Pain Scores Output VAS
MAE

Our Model

One label VAS 2.57

One label OPI
(Output:OPI) 1.33

Two labels VAS,OPI 2.25

Four labels AFF, OPI,
VAS, SEN 2.54

DeepFaceLift

3rd Neural Net
Layer

VAS,OPI 2.34
VAS,OPI/VAS 2.18

VAS 2.24

Neural Net Input
VAS,OPI 2.41

VAS,OPI/VAS 2.22
VAS 2.22

TABLE IV: Error comparison with DeepFacelLift [1] with Mean Absolute
Error in the original scale of 0-10 (0-5 in the case of OPI)

The lowest reported MAE for VAS which is 2.25 (See
Table IV) is comparable to the state of the art DeepFaceLift.
While they passed on a summary measure of the video
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sequences to their regression layer as well as personalized
features, we only explored the temporal dynamics of the
videos. This comparable result shows how temporal dynamics
convey important and equally beneficial information for the
course of pain experience. I addition, we reported for the
first time in the state of the art results on OPI pain intensity
measurement.The lowest error reported was 1.33 (for a range
of 0-5) for OPI alone, which indicates that OPI offers more
reliable, and objective pain assessment.

V. CONCLUSION

We proposed a spatio-temporal approach for pain intensity
measurement of self reported and observer’s reported pain
intensity scores from video sequences. CNN was used for
spatial representation and RNN for temporal information in
the course of a pain experience. For future work, we will test
the generalizability of our model on a larger database, and
will investigate adding facial shape movement in addition to
the appearance.
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Adaptive Multimodal Fusion for Grasping Transparent and Specular
Objects*

Yimin Tang1,3 Thomas Weng2 David Held2

Abstract— Intelligent grasping robots can help humans in
many situations like our homes, hospitals, and factories. State
of the art methods for grasping use depth images captured by
depth sensors like time-of-flight, structured light, and stereo
cameras. Depth images are effective for grasping opaque
objects; however, they are problematic for transparent and
specular objects, like the ones in Fig. 1. These objects do not
appear in depth images, but do appear in RGB images. To
improve grasping performance on transparent and specular
objects, we learn a network that takes RGB images as input
from an existing depth image network, and then combine the
two networks together. We achieve a 60.0%, 50.7% success rate
for transparent and specular objects compared to the state of
the art(FC-GQCNN) 20.0%, 49.3%.

I. INTRODUCTION
One of the fundamental problems for robotics is object

grasping. Many scenarios can make use of robotic grasping to
help people complete tasks. For example, we can use robots
to grasp medicine for motor-impaired individuals or sort
products in supermarkets. However, the diversity in object
materials and geometries makes robotic grasping a difficult
task.

Many existing grasping methods rely on depth images
to plan grasp strategies. There are many ways to generate
depth images like 1) time-of-flight (ToF), 2) structured light,
and 3) stereo cameras. ToF cameras send pulses to calculate
each point distance of an image like radars [24]. Structured
light cameras project light patterns to get depth images
[23]. Stereo cameras are a particular case of light fields
and use two standard parallel cameras’ figures to calculate
final depth images by comparing disparities [11], [22]. The
first two methods have excellent performance for opaque
objects in indoor environments. But for transparent and
specular objects, these three depth detection methods fail to
get adequate depth information. These failures can occur as
incorrect depth values in the case of transparent objects, and
as missing depth readings for specular objects [9]. Existing
depth-based grasping methods fail to grasp objects with these
properties.

In this paper, we propose a new approach that adds RGB
images and an RGB-based model to state-of-the-art depth-
based model to achieve robust grasping performance on
transparent and specular objects. We provide a new method
for robust grasping on transparent and specular objects based

*This work was supported by Carnegie Mellon’s Robotics Institute
Summer Scholars (RISS) program, Robots Perceiving and Doing(R-Pad)
Lab, Carnegie Mellon University and ShanghaiTech University

1ShanghaiTech University tangym@shanghaitech.edu.cn
2Carnegie Mellon University tweng,dheld@andrew.cmu.edu
3Carnegie Mellon’s Robotics Institute Summer Scholars (RISS) program

on existing depth-based and RGB-based models. Our goal is
to combine the output of the RGB and depth models by
training a third model that weights their grasp prediction
outputs. For example, for opaque objects in normal light
conditions, we want the model more rely on depth models
in the image regions because, in these conditions, depth-
based models have better performance. And for transparent
objects, the depth images are not good enough that objects
are invisible. And ideally, the combined model will give the
RGB models more priorities. We evaluate our method on
transparent, specular, and opaque objects and show that it
outperforms existing methods.

II. RELATED WORK

A. Grasping

Robotic grasping is a challenging area for robotics and
has been studied extensively by many researchers.[2], [1],
[14], [19]. Grasping methodologies are divided into two main
categories: analytic and empirical[16]. Analytic approaches
often use physics-based contact models choose a grasp, but
these methods are both computationally expensive and sen-
sitive to dynamics like contact friction. Recent advances in
grasping make use of data-driven methods to achieve better
grasping performance [1], [14], [5]. Data-driven models are
used to capture uncertainties of object parameters like shape
and friction[17]. However, these depth-based data-driven
models fail to detect transparent and specular objects which
we consider. Our recent work demonstrates that learning
an RGB-based model from an existing depth-based model
can achieve better performance on transparent and specular
objects [21].

This work attempts to combine the output of these two
models to boost grasping performance beyond either of them
individually. For this work, we use a very similar represen-
tation of the Fully Convolutional Grasp Quality CNNs (FC-
GQCNN) [17] which is a state of the art depth-based model.
Our network architecture is shown in Fig. 3

FC-GQCNN learns a function G(qd, Id) and parameterizes
qd as (x, y, θ, z), where x and y represent the grasp point in
the planar coordinates, θ is the angle of the gripper and z is
the grasp depth relative to the depth camera. FC-GQCNN can
output dense predictions G(qd, Id) across the entire depth
image because of the fully convolutional design. (We will
describe the notations in APPROACH section)

B. Adaptive modality fusion

Sensor fusion has been explored for many robotics do-
mains like self-driving cars and object detection. Hand-
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(a) Grasping scene (b) RGB image (c) Depth image

Fig. 1: Transparent and specular objects provide poor depth readings with conventional depth sensors, posing a challenge
for depth-based grasping techniques. (c) Most values in the depth image are close to the table. Sawyer robot employing
proposed method to grasp transparent objects.

engineered mixtures of experts were proposed by Enzweiler
et al. [4] prior to the advent of data-driven models. Preme-
bida et al. [15] trained a fusion SVM which used designed
features to combine RGB and depth models. Late-fusion
networks have been used in computer vision tasks like
RGB-D object recognition[3], [6] and multimodal pedestrian
detection[18], [20]. Oier Mees et al. [13] propose a method
that does not use any prior information when the model
learns fusion weights and also can be used with manually de-
signed fusion features. In comparison to our fusion method,
we keep the main architecture and change the loss function,
which only updates for one single point.

III. APPROACH
In this section, we describe our approach in detail for

fusing RGB and depth models. Our model architecture is
shown in Fig. 2

A. Problem Statement

We define the input modality Md(such as depth) for a
grasp. We assume that this grasping method will output a
grasp score G(q, Id) when we give a grasp q and an image Id
such as a depth image. We wish to solve two tasks. The first
task is that we wish the knowledge based on modality Md

can be transferred to Ms when given an Image Is on a new
modality Ms (such as RGB). The second is the following:
assume we have another model and we wish this model will
output weights Wd(Id, Is) and Ws(Id, Is) when we give two
images Id on Md (such as a depth image) and Is on Ms

(such as a RGB image).
We assume each input for the second task is a pair of

two images (Id, Is). We assume that all images in each pair
were taken simultaneously and at the same resolution from
the two modalities Md and Ms.

B. Supervision Transfer for RGB model

This work has been done by [21], and we will describe
it in details for the consistency of the following fusion
method. We can quickly notice in Fig. 1 that two types
of images (RGB and depth image) have complementary
strength. It means that we have a big chance to get enough
information from one picture if the other can not provide
enough sufficient information. For example, we can get more
useful information from RGB images for a glass cup when
there are many resulting noise and missing data in our depth

images. And highly textured objects provide more difficulties
for RGB-based model, but we can ignore texture through
depth images.

Weng et al. [21] use supervision transfer [7], [8], [12] to
train a model for modalityMs (such as RGB). Their dataset
D′ uses opaque objects that depth-based grasping methods
typically perform well. For each paired image Id, Is, they
compute the score G(q, Id) forMd. And then train a model
whose output we can note as Gφ(q, Is) for the modality
Ms. If we use parameter φ to parameterize the model, their
model’s loss function can be written as

L(φ) = ||G(q, Id)−Gφ(q, Is)||2 (1)

C. Supervised Learning for Multimodal Fusion

To train a multimodal fusion model, we collect real
grasping data using a naive policy of taking the simple
average of the RGB and depth model outputs, a method we
call RGBD-M. Then we choose the grasp with max success
probability for the averaged output. There are other heuristics
which may perform better for collecting real grasp such as
using maximum between two outputs.

Gφ(q, Id, Is) = 0.5 · (G(q, Id) +Gφ(q, Is)) (2)

Using this model we can get a dataset D. For each grasp
attempt, we have G(q, Id), Gφ(q, Is), Id, Is, and the result
label t of RGBD-M grasping. We wish to use the result
label to train our multimodal fusion. We can calculate the
final result with multimodal fusion:

Gwφ(q, Id, Is) =Wd(q, Id)G(q, Id) +Ws(q, Is)Gφ(q, Is) (3)
Wd(·, ·),Ws(·, ·) ∈ [0, 1] (4)

Wd(q, Id) +Ws(q, Is) = 1 (5)

Then we define the loss function:

L(φ) =
{
cross entropy(Gwφ(q, Id, Is), t) q = qt
0 otherwise

(6)

qt = argmaxq(Gwφ(q, Id, Is)) (7)
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Fig. 2: The whole picture of our multimodal fusion(RGBD-W)

Fig. 3: Network architecture. The output is a 3D array of dense grasp predictions over (x, y, θ). Compared to FC-GQCNN,
we modify the first layer to allow the input to be either 3 or 4 channels (RGB or RGB-D) rather than just a single channel
as in the original depth-based network.

D. Implementation of Multimodal Fusion

For this work, we use a very similar representation of FC-
GQCNN. Because the RGB modality does not provide depth
information as output, we change q = (x, y, θ, z) to q =
(x, y, θ) by using the maximum z in each bin of the depth
output. Using this specification, a robot gripper starts above
the surface with objects and lowers itself until it collides
with either the surface or an object. We also modify our loss
function slightly:

q = maxz ((x, y, θ, z)) (8)

L(φ) =
{
cross entropy(Gwφ(q, Id, Is), t) q = qt
0 otherwise

(9)

qt = argmaxq(Gwφ(q, Id, Is)) (10)

Then we train the fusion model in Fig. 4 so that for a
failed grasp label, the fusion model will lower the weight of
the model that has calculated a higher probability at failed
grasp point.

IV. EXPERIMENTAL RESULTS

Our experiments are designed to answer the following
question: How does the performance of our fusion model
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Fig. 4: We train a multimodal fusion model that takes RGB and depth input by supervising the loss of the network and
backpropagate from only the single point in the output layer where a real grasp was attempted.

compare to other approaches in grasping opaque, transparent
and specular objects?

Using an overhead ASUS Xtion Pro Live RGB-D sensor,
we first collected a set of 75 opaque object images, 75
transparent object images, and 75 specular object images
that are from home and office retail stores. All images
were collected in varying degrees of clutter and lighting
conditions. These objects were distinct from those used
in the grasping evaluations below. We resized the images
to account for differences between our sensors intrinsic
parameters and those of the pre-trained FC-GQCNN model.
Second, we randomly divide each type of images into two
sets: 65 for training, 10 for evaluations. We also applied
spatial augmentation (random rotations and flips) to generate
approximately 500 paired training images.

Our networks weights are randomly initialized, and the
model is trained to convergence using an Adam optimizer
with cross-entropy loss. [10] The network architecture was
implemented in Python using Tensorflow and Keras. All
training was performed on a machine running Ubuntu 16.04
with an NVIDIA GTX 1080 Ti GPU, a 2.1 GHz Intel
Xeon CPU, and 32 GB RAM allocated per job. All robot
experiments were performed on a machine with similar
specifications. Our object set is shown in Fig. 5. We use
the same test set as [21]

The state of the art model is named “FC-GQCNN”. We
refer the RGB-only supervision transfer model as “RGB-
ST”. Our multimodal fusion is named “RGBD-W”. And we
also have other two baselines:

• Grayscale RGB (“RGB-G”): Convert the 3-channel
RGB input image to a 1-channel grayscale image and

rescale the image. The resulting input is then passed
directly through the FC-GQCNN network.

• Copy from depth (“RGB-C”). Modify the FC-GQCNN
network, which normally receives a one-channel depth
input, to receive a 3-channel RGB input by copying the
weights of the input layer three times. Rescale the RGB
image and then pass it through the modified network.

We use the same test settings as [21]. Each object has 5
real-world grasp attempts. And the results of FC-GQCNN,
RGB-C, RGB-G and RGB-ST are all directly from [21].

TABLE I: Performance on individual object grasping

Method Opaque Transparent Specular

FC-GQCNN* 0.733 0.200 0.493

RGB-G* 0.533 0.333 0.413
RGB-C* 0.147 0.240 0.240
RGB-ST*** 0.867 0.853 0.640

RGBD-W** 0.587 0.6 0.507

*Trained on simulated grasps **Trained on RGB-D images
***Trained on simulated grasps and opaque object images

Our method RGBD-W performs better than FC-GQCNN,
RGB-G and RGB-C but worse than RGB-ST. One of the
possible reasons our method did not outperform the RGB-
only method could be that our dataset is too small. Many
failures were due to noisy predictions as shown in Fig. 7.
Calibration of the robot with the RGB-D sensor was another
potential source of errors.
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Fig. 5: Data collection setup and example images from the dataset of all three types of objects (opaque, transparent, specular).

Fig. 6: Some samples for FC-GQCNN, RGB-ST and RGBD-W(Image parameters: alpha=0.3, vmin=0.0, vmax=1.0)

Fig. 7: Due to our relatively small training dataset, many grasp failures were related to the weighting model failing to ignore
noisy predictions in the FC-GQCNN output.

V. CONCLUSIONS

We present an adaptive multimodal fusion model for
grasping transparent and specular objects. Our model com-
bines depth-based and RGB-based models with supervised
learning, and learns directly from real grasps, allowing
for online learning. We show our fusion model has better
performance than the state of the art depth-only model for
transparent and specular objects and similar performance for
opaque objects.

For future work, we would like to train our method on a
larger dataset to hopefully achieve better performance. We
would also like to train and evaluate on different object sets,
and evaluate against an existing fusion baseline like Mixture
of Deep Experts (MoDE) [13].
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Learning Low-Level Continuous Control for Highway Ramp Merging
in Dense Traffic

Samuel Triest1, Adam Villaflor2 and John M. Dolan3

Abstract— Several key scenarios, such as intersection navi-
gation, lane changing, and ramp merging, are active areas of
research in autonomous driving. In order to properly navigate
these scenarios, autonomous vehicles must implicitly negotiate
with human drivers. Prior work in driving behaviors presents
reinforcement learning as a promising technique, as it can
leverage data as well as the underlying decision-making struc-
ture of driving with interaction. However, current RL-based
approaches to the ramp merging problem in particular rely on
hand-tuned reward functions and assume a fixed merge point.
In this work, we use Generative Adversarial Imitation Learning
(GAIL) to learn a low-level control policy for ramp merging
from expert demonstrations. By learning a reward function
from expert trajectories, we are able to imitate human behavior
while avoiding a hand-designed reward function. Additionally,
directly learning acceleration and heading commands allows the
policy to initiate the merge at any point. Additionally, we use a
masking mechanism based on a distance-keeping model to keep
our policy from executing some unsafe behaviors. We validate
our approach on a simulation using real-world highway data
to demonstrate our algorithm’s performance on a variety of
driving scenarios.

I. INTRODUCTION

Autonomous driving-related technology has been steadily
on the rise since the 2007 DARPA Urban Challenge. Al-
though there exist a number of commercially available
advanced driving assistance systems (ADAS) for highway
driving in today’s vehicles, there remain a number of sce-
narios that are difficult for ADAS. Such scenarios, which
include highway ramp merging, are challenging for ADAS to
properly negotiate because of the need to interact with other
vehicles. Designing agents that can successfully execute
these maneuvers in a wide variety of driving conditions
is a major challenge, as the ego-vehicle must be able to
interpret the intent of other vehicles and react accordingly.
Furthermore, the long adoption window of autonomous ve-
hicles means that autonomous vehicles will share the road
with human drivers for some time. This necessitates that
autonomous agents be able to interact with drivers in a
human-like way.

Given the above challenges, there is recent work in data-
driven approaches to designing autonomous vehicle behav-
iors. Representative data-driven techniques for designing
these agents include probabilistic graphical models [1], [2],

1Samuel Triest is an undergraduate in the Computer Science De-
partment at the University of Rochester, Rochester, NY 14627, USA
striest@u.rochester.edu

2,3Adam Villaflor and John Dolan are with the Robotics Institute at
Carnegie Mellon University, Pittsburgh, PA 15213, USA avillafl,
jdolan@andrew.cmu.edu;

reinforcement learning [3], [4], and imitation learning via
inverse reinforcement learning [5].

This paper extends previous work in ramp-merging behav-
iors by using inverse reinforcement-based imitation learning
to learn low-level control for ramp merging. In order to ad-
dress potential safety concerns, we use a masking mechanism
based on the intelligent driver model (IDM) [3], [6], [7]. Our
approach is validated on real-world highway driving data [8],
and is able to successfully execute merging behaviors using
low-level control outputs.

II. RELATED WORK

Design of effective merging behaviors has been considered
by a number of researchers. For the 2007 DARPA Urban
Challenge, Urmson et al. [9] use a slot-based approach,
where a number of potential merge slots (i.e., between
car 1 and car 2, between car 2 and car 3) are identified.
The feasibility of each slot is evaluated using a rule-based
planner, and the ego-vehicle uses a motion planner to attempt
to merge into the best slot.

More recently, a number of data-driven approaches have
been considered for the merging problem.

Dong et al. [1], [2], [10] use probabilistic graphical models
(PGMs) to estimate the host vehicle’s intent to yield. Given
the intent to yield from the PGM, the merging vehicle can
use traditional control techniques to execute the merge. The
design of the PGM relies on observed velocity data from a
fixed number of past timesteps, as well as the time-to-arrival
to a fixed merge point. By encoding the relationship between
these observations and intent to yield in a PGM, the authors
are able to predict a given host vehicle’s intent to yield to a
given merge vehicle [1]. The authors extend this framework
to apply to multiple host and merge vehicles and without the
assumption of a fixed merge point [2], [10].

Kuefler et al. [5] and Bhattacharyya et al. [11], [12] use
imitation learning to generate highway driving behaviors in
general. These approaches all rely on using variations of the
GAIL algorithm [13] on the NGSIM dataset [8] to construct
policies that can replicate the behavior of the original human-
driven vehicle. Kuefler et al. consider the single-agent case,
while Bhattacharyya et al. extend the work of Kuefler et al.
by extending GAIL to the multi-agent case and augmenting
the imitation learning with additional hand-tuned constraints.
While these authors have shown that imitation learning-based
approaches work well when applied to general highway
driving (i.e., no particular focus on a given scenario) it is
unclear how effective they are on the more difficult merging
scenario.
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Fig. 1: The merging problem - the ego vehicle (in red) needs
to move from the merging lane to the host lane without
disrupting the host vehicles (in blue). Two ramp geometries
are shown - the top geometry does not contain an auxiliary
lane, while the bottom one does.

Hu et al. [3] and Bouton et al. [4] use reinforcement
learning to solve the merging problem. Hu et al. employ
a multi-agent actor-critic approach. Specifically, they use a
decentralized-actor, centralized-critic approach, where actors
are limited to their own observations, but the critic is able
to observe all actors’ observations. Such a model allows for
better updates at training time while allowing agents to learn
policies that use a realistic set of observations. Bouton et al.
employ a single-agent approach that uses an additional PGM
to estimate driver intent to yield. The output of the PGM
is used as input to the learned policy. Both reinforcement
learning-based approaches have the distinct advantage of
being able to function end-to-end; the learned policies are
able to take observations from sensors as input and output
specific driving commands (i.e., acceleration). However, both
approaches assume the agent follows a given path to a fixed
merge point, where the policy uses its observations to output
an acceleration along this given path. As a result of these
assumptions, generalizing these approaches to arbitrary ramp
geometries is potentially challenging. Furthermore, even in
cases with a traditional on-ramp structure (as illustrated in
figure 1), there is a significant amount of longitudinal space
to execute a merge [14], thus making a path to a fixed merge
point potentially limiting.

III. PROBLEM FORMULATION

We formulate highway merging as a partially observable
Markov decision process. Using this formulation, we are
able to use reinforcement learning and imitation learning
techniques in order to design effective merging behaviors.

A. The Merging Problem

For this paper, we consider the merging problem to be
one in which a merging vehicle is attempting to enter the
lane of a host vehicle. The merging problem is illustrated
in figure 1. In general, the host vehicle has right-of-way
and the merging vehicle is expected to yield to the host
vehicle. A behavior that is able to successfully negotiate the
merging problem will allow the merging vehicle to safely

enter the host vehicle’s lane with minimal disruption to the
host vehicle. For this work, we will consider the ego-vehicle
to be a merging vehicle.

B. Markov Decision Processes

A Markov decision process (MDP), formally defined as
a tuple (S,A, P,R, γ, d0), is a theoretical framework for
describing sequential decision problems. In an MDP, an agent
or policy, typically denoted as π, must interact with some
environment (characterized by the state space S) by taking
some action (selected from the action space A). By doing so,
the policy will transition the environment to a new state s′εS
according to the transition model P : S ×A×S 7 −→ [0, 1],
which outputs a probability distribution over states, given
the previous state and action. Given the transition model, the
reward R can be calculated as R(s, a, s′) where s, s′εS, aεA.
The discount factor γ defines the relative value of future
rewards to current rewards. d0 is the initial state distribution
of the MDP.

The efficacy of an MDP policy π can be determined
through its expected sum of discounted rewards (also called
return). Rewards r are multiplied by γt where t is the number
of timesteps in the future r is accrued. By using discounted
sums, return is finite even in MDPs with an infinite horizon.
In general, we will consider MDP agents to be stochastic
policies. That is, π : S ×A 7 −→ [0, 1] outputs a probability
distribution over A, given a state sεS. Given this, we can
define the expected sum of discounted rewards to be:

J(π) = E
s0∼d0,at∼π(st,·),
st+1∼P (st,at,·)

[ΣTt=0γ
tR(st, at, st+1)]

Along with MDPs are partially observable MDPs
(POMDPs), where the agent is unable to observe the en-
tire state. Agents instead receive an observation o from
observation space O according to the emission probabil-
ity, which depends on the underlying state (S × O 7 −→
[0, 1]). The policy acts according to the observation o,
but still transitions the underlying state s, i.e., st+1 =
Eot∼O(st),at∼π(ot,·)[P (st, at, ·)].

C. Reinforcement Learning

The general goal of reinforcement learning is to provide
a principled way of solving MDPs and POMDPs by param-
eterizing the policy π according to some parameter vector
θ (such a policy is denoted as πθ). In many cases, this θ
refers to the weights of a neural network. Reinforcement
learning algorithms attempt to find the parameterization of π
that yields the highest return. That is, reinforcement learning
algorithms solve:

θ∗ = arg max
θ

E
s0∼d0,at∼π(st,·),
st+1∼P (st,at,·)

[ΣTt=0γ
tR(st, at, st+1)]

.
Central to many reinforcement learning algorithms are

state value, state-action value, and advantage functions
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(V π(s), Qπ(s, a) and Aπ(s, a), respectively). Many foun-
dational reinforcement learning algorithms, including vanilla
policy gradient [15] and actor-critic [16], directly compute
the gradient of the return with respect to the policy parame-
ters and perform gradient ascent in order to compute updates
to the policy. This gradient takes the form:

∇θJ(θ) = E
τ∼π

[ΣTt=t′∇θ log π(at|st)Qπ(st, at)] (1)

Qπ(s, a) can be substituted for Aπ(s, a) [17] or a Monte-
Carlo sample of trajectory returns [15]. In the case of
Qπ(s, a) or Aπ(s, a), an additional critic network is often
used to estimate Qπ(s, a) or V π(s) to yield the family of
actor-critic algorithms. [16]–[19]

We refer the reader to [20] as a general reinforcement
learning resource.

IV. METHODOLOGY

We use an inverse reinforcement learning-based approach
using GAIL [13] to generate merging trajectories. We give
the ego vehicle access to the kinematic information of its
nearest neighbors; the vehicles immediately in front of it in
the on-ramp, and the three closest vehicles in the host lane.

A. Trust Region Policy Optimization

In this work, we use Trust Region Policy Optimization
(TRPO) [21] to train our policy. We choose to use TRPO
because of its theoretical justification to provide monotonic
increases to policy performance [21], and because of the
existing body of work that uses TRPO effectively in au-
tonomous driving [5], [11], [12].

Since TRPO is a conventional reinforcement learning
algorithm, it requires a reward function in order to optimize
the policy. While reward functions for the merging problem
can be designed heuristically by rewarding good behavior
such as successful merging, and penalizing bad behavior such
as colliding and going offroad, finding an optimal reward
function is challenging. This is especially true, given the
higher degree of interaction in merging compared to classical
reinforcement learning problems or even regular highway
driving.

B. Generative Adversarial Imitation Learning

To avoid the need for a hand-designed reward function,
we use Generative Adversarial Imitation Learning (GAIL)
[13]. GAIL is an imitation learning algorithm that uses a
discriminator network to discriminate between state-action
pairs (si, ai) sampled from expert trajectories τE and the
trajectories τθ produced by the current policy πθ. That is,
the discriminator Dψ (parameterized by ψ) attempts to solve
the following:

arg max
ψ

E
(s,a)∼τE

[log(Dψ(s, a))]+ E
(s,a)∼τθ

[log(1−Dψ(s, a))]

In this example, we consider the objective of the discrim-
inator to be outputting 1 for state-action pairs sampled from

τE and 0 for state-action pairs sampled from τθ. The policy
can then be trained using traditional reinforcement learning,
using Dψ(s, a) as a reward signal. That is, the policy gradient
update can be taken as:

E
(s,a)∼τθ

[∇θ log(πθ(a|s)) E
τθ

[log(Dψ(s, a|s = s, a = a))]]−∇θH(πθ)

where λ∇θH(πθ) is an additional entropy term that encour-
ages randomness in the policy, thus increasing exploration
of states.

Since the policy receives reward based on how effectively
it “fools” the discriminator, convergence is achieved when
the discriminator is no longer able to distinguish between
the state-action pairs of the expert and those produced by
the policy. Essentially, the discriminator serves as a surrogate
reward function, where higher reward is given to state-
action pairs that closely resemble state-action pairs from
τE . Because of this, we can use almost any reinforcement
learning algorithm to update our policy πθ. We choose to use
TRPO, per the original GAIL implementation. Ultimately,
this allows us to train a policy to learn correct merging
behaviors by imitating human merging behaviors.

C. Sensitivity to Discount Factor

We find that the discount factor plays a significant role
in policy learning. We find that traditional discount factor
of 0.99 produces extremely aggressive and unsafe merging
behaviors due to the fairly high frequency of the simulation
(10Hz) causing lengthy simulation horizons. To quantify the
effect of the discount factor, consider a desirable state s (e.g.
a state where the ego-vehicle has successfully moved into
the host lane). At time t, the reward for the given state
will be r(s). If the ego-vehicle were to arrive at state s
at timestep t + k, the reward will be γkr(s). For nearly
any k, the discounting as a result of merging at a later,
potentially safer timestep will be enough to incentivise the
optimal policy to drive aggressively and risk collisions, as the
return for reaching ideal states quickly outweighs potential
risks. (0.9920 ≈ .81, so a policy will be willing to risk a 19%
chance of colliding with another vehicle if it can receive
a point of reward 2s earlier). To avoid this issue, we set
γ ≈ 0.9999, or even 1.0.

D. Masking with IDM

Learning low-level control using reinforcement learning
algorithms has the potential risk of the policy producing
unsafe actions, especially in states that the imitation learning
may not have visited. As such, we implement a masking
mechanism for distance-keeping based on IDM [6].

IDM is a distance-keeping mechanism that guarantees
collision-free driving to a leading vehicle within a single
lane. The IDM controls acceleration of a vehicle by setting
the acceleration to the following:

aIDM = amax(1− (
vα
v0

)4 − (
s∗(vα,∆vα)

sα
)2)
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Term Description Value Aggregator

amax Ego-vehicle max acceleration 4.6m/s2 max
v0 Speed of free traffic 12.2m/s max
s0 Minimum desired distance 0.24m min
T Minimum desired headway 0.7s min
b Maximum comfortable braking

acceleration
−2.0m/s2 from [22]

TABLE I: IDM parameters

where s∗(vα,∆vα) = s0 + vαT +
vα∆vα

2
√
amaxb

sα, vα,∆vα are the distance to the leading vehicle, velocity
of the ego-vehicle, and velocity difference between the ego-
vehicle and leading vehicle, respectively.

Using the acceleration given by the IDM as an up-
per bound on the acceleration given by the policy, i.e.
πmask(s) = min(π(s), aIDM ), we can significantly reduce
collisions with the leading vehicle.

Our IDM parameters are obtained via aggregation of the
merge scenarios extracted from the NGSIM dataset to yield
the values in Table I. We choose the 99th/1st percentile value
for max and min respectively. By doing so, our distance
keeping mechanism resembles the emergent characteristics
of the expert trajectories.

V. DATASET

We validate our algorithm on the NGSIM dataset [8].
NGSIM contains 45 minutes of highway driving at 10Hz for
US Highway 101 and Interstate 80 in California. Highway
101 contains five main lanes for highway driving, and an
on-ramp that becomes a sixth auxiliary lane. Interstate 80
contains six lanes for highway driving, and an on-ramp that
does not become an auxiliary lane. As the geometry of
Highway 101 does not necessitate a merge, we consider only
the I80 dataset for our validation.

Both datasets contain driving with a high degree of inter-
action. As such, successful merging necessitates that agents
learn a variety of interactions between multiple vehicles near
the merge points.

VI. EXPERIMENT SETUP

We implemented an environment to simulate the on-ramp
for Interstate 80, and used it as a basis to implement GAIL.
The simulation was based on the SISL NGSIM environ-
ment [23], and the reinforcement learning algorithms were
extended from the rllab framework [24].

A. Environment
Experiments were conducted by randomly selecting a

vehicle in the on-ramp to control using the current policy.
The remaining vehicles are played back from NGSIM. Our
policy is a fully-connected neural network with hidden layer
dimensions (256, 256, 128). At every timestep, the policy
takes in observations by querying the current set of vehicles
and outputs an acceleration and heading. The ego vehicle is
transitioned according to the policy output, and the non-ego-
vehicles are transitioned according to the NGSIM dataset.

Fig. 2: The ego-vehicle is controlled using a deep neural
network that controls the vehicle’s heading and acceleration,
given an observation. The policy output is verified using a
distance-keeping model based on IDM.

Fig. 3: Diagram of the vehicles that the ego-vehicle has
access to - two in the the merging lane and four in the host
lane. The ego-vehicle is in blue, the merging neighbors are
in yellow, and the host neighbors are in orange. The leading
vehicle that IDM is distance-keeping to is in purple. Green
vehicles are unobserved by the ego-vehicle.

B. Features

Features for the policy include the kinematic information
of the ego-vehicle and its five nearest neighbors: the vehicles
immediately in front and behind the ego-vehicle in the merge
lane, and the four nearest vehicles by longitudinal distance in
the host lane. Higher-order kinematic features are calculated
by averaging over a number of previous timesteps. Overall,
this amounts to a 93-dimensional feature vector as input to
our policy. A complete list of features is provided in Tables
II and III.

C. Policy Output

We choose to use a low-level control scheme for our
policy by directly outputting the acceleration and heading
commands of the ego-vehicle, given its observations. Unlike
past approaches, which use some external module to decide
the ego-vehicle’s trajectory, this approach allows the ego-
vehicle more flexibility over its potential merging behaviors.

VII. RESULTS

We validate our results on real-world highway driving
data collected from U.S. freeway I-80 [8]. The efficacy of
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Feature Units Description

Vehicle Length m Length of the vehicle
Vehicle Width m Width of the vehicle
Lane Offset m Lateral dist. from centerline
Lane-relative Heading rad Heading from centerline
Lane-relative Speed m/s Speed along centerline
Lane-relative Acceleration m/s2 Acceleration along center-

line
Lane-relative Jerk m/s3 Jerk along centerline
Marker Dist Left m Distance to the left lane line
Marker Dist Right m Distance to the right lane

line
Y Displacement to Merge
Point

m Longitudinal dist. to the
merge point

X Displacement to Merge
Point

m Lateral dist. to merge point

Merge Completion Boolean Indicator of passing merge
point

Time To Collision s Time until the ego-vehicle
collides with the vehicle in
front of it, given their cur-
rent velocities

Is Colliding Boolean Indicator of vehicle colli-
sion

Off Road Boolean Indicator of off-road
Negative Velocity Boolean Indicator of driving back-

ward

TABLE II: Ego-vehicle Features

Feature Units Description

Vehicle Length m Length of the vehicle
Vehicle Width m Width of the vehicle
Lane Offset m Lateral dist. from centerline
Lane-relative Heading rad Heading from centerline
Lane-relative Speed m/s Speed along centerline
Lane-relative Acceleration m/s2 Accleration along centerline
Lane-relative Jerk m/s3 Jerk along centerline
X Displacement to Ego-
vehicle

m Lateral dist. to the ego-
vehicle

Y Displacement to Ego-
vehicle

m Longitudinal dist. to the ego-
vehicle

TABLE III: Neighboring vehicle Features

our algorithms is measured by playing back the vehicle
trajectories collected, selecting a car at the entrance of the
highway’s on-ramp, and controlling it using our trained
policy (with the frequency of control inputs at 10Hz). The
simulation ends if the merge is successfully completed, r if
the vehicle collides with another vehicle. We observe the
collision rate of the ego-vehicle and use it as our primary
metric of success.

VIII. CONCLUSION

This paper presents an effective method for learning ramp
merging behaviors via inverse reinforcement learning-based
imitation learning. Through a fairly straightforward imple-
mentation of GAIL with some additional safety mechanisms
via action masking, we are able to achieve reasonable success

Algorithm Slot-based iPCB MML-
PGM

GAIL+IDM

Success
Rate

85.5% 84.2% 92.4% 90.4%

TABLE IV: Results

in highway merging.
A major limitation of the NGSIM dataset is that non-

ego-vehicles are controlled via replay. As a result, vehicles
don’t properly respond to the trained policy. By incorporating
more advanced driving models into our simulation, as well
as methods for multi-agent reinforcement learning and data
augmentation into our training procedures, we believe that
we can get improved results.
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Efficient Dynamic Replanning for Risk Aware Graph Search

Simran Virk1, Sha Yi2, Sumit Kumar3, Jaskaran Singh Grover4, and Katia Sycara5

Abstract— Robots are increasingly being used for missions
in dangerous environments where risks may be dynamic or
uncertain. In this paper, we introduce an algorithm that plans
the safest possible path in an environment with dynamic and
uncertain risk. Previous work introduced the algorithm Risk
Aware Graph Search (RAGS) that is able to plan a low risk
path within uncertain environments. Similar to that approach,
this work models uncertainty as stochastic path traversal costs
i.e edge costs that are normally distributed. Deterministic costs
are revealed for edges once their sources are reached. To adapt
this method to an uncertain environment that is also dynamic
(due to moving elements or updates from robot sensors) where
the expected cost of traversing paths is subject to change, we
introduce a principled method to plan a path called dynamic
Risk Aware Graph Search (d-RAGS). This method replans by
updating a set of candidate paths computed in the first planning
phase rather than recomputing the paths from scratch. We show
that d-RAGS is able to compute low risk paths more efficiently
on various graph sizes when updates come from a two step
lookahead from the current position.

I. INTRODUCTION

Search and rescue missions provide an important applica-
tion area for robots. They have been used in rescue missions
to perform various tasks like mapping, rubble removal,
structural inspection and in situ medical assessment and
intervention. We consider the scenario of non combatant
evacuation. In such missions, the goal is to find the safest
path out of the environment to evacuate the non combatants.
This problem becomes harder if the environment is uncertain
and dynamic. For example, this may be due to moving
obstacles/adversaries or updates from robot sensors regarding
the environment. In order to use multi-agent systems for such
a task, we would especially want to be able to incorporate
various updates occurring throughout the graph as robot sub-
teams explore the environment.

Previous work [1] introduced Risk Aware Graph Search
(RAGS) which plans a low risk path to a goal by modelling
it as a path search problem in a graph with uncertain edge
weights. They model uncertainty by having edge weights
represented by normal distributions of possible edge traversal
costs rather than having a deterministic cost. The true cost
of traversing an edge is only revealed dynamically once that
edge is reached.

This is a useful construct to model the risk in an uncertain
environment, especially if we have no model for the behavior
of dynamic obstacles. However, it is possible that initial

1 Simran Virk, Rice University simran.k.virk@rice.edu
2,3,4,5Sha Yi, Sumit Kumar, Jaskaran Singh Grover and Prof.

Katia Sycara are with Advanced Agent-Robotics Technolgy Lab,
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213,
USA shayi@andrew.cmu.edu; sumitsk@cmu.edu;
jaskarag@andrew.cmu.edu; katia@cs.cmu.edu

estimates of risk turn out to be inaccurate - based on sensor
information from robot subteams, for example. In this case
the planned path may need to be updated dynamically.
Rather than repeatedly running RAGS to solve this problem,
this paper explores the more efficient method of saving
information gained in phase 1 (as described earlier) of the
first search and updating that as required to avoid having to
recompute the entire subset of paths again.

Experiments are conducted on graph sizes of 60,70,80 and
90 nodes, and various edge update frequencies to compare
the runtimes, number of algorithm operations (for a platform
independent comparison of compute requirements) and path
costs (i.e risk) to show that d-RAGS is able to compute low
risk paths more efficiently in the presence of dynamic edge
weight updates.

II. RELATED WORK

Planning paths through an uncertain environment is a diffi-
cult problem. Many fundamental existing path planning algo-
rithms, for example A* [2] do not include any assumptions of
stochasticity in the planning process. Uncertainty in planning
may be a result of the external environment or of robot sensor
and action uncertainty. Methods for dealing with uncertainty
in the environment usually must deal with some tradeoff
between risk and rewards. For example [3] which solves risk-
sensitive MDPs to minimize distance travelled as well and
[4] which considers risk associated with entire paths rather
than sub-paths in order to maintain optimal viewpoints of the
environment while also minimizing risk. When dealing with
exclusively positive edge weights, RAGS makes a tradeoff
between minimizing distance and risk as well as between
paths with lower mean costs and paths with higher means
but also higher variances that may be more desirable one
true edge costs are sampled. The ability to make this tradeoff
relies on RAGS incorporation of dynamically revealed local
edge costs into its path selection.
When planning for a dynamic environment, there are two
heavily explored classes of methods to deal with this. The
first is to plan in a joint time and space configuration so
as to include information about the possible trajectories of
dynamic elements as is seen in [5] and [6] However, these
require significant computation time and so can only handle
lower dimensional configuration spaces.
Another way is to treat the environment as static, plan
accordingly and then efficiently update the plan when new
information is received due to the dynamic nature of the
environment as in [7], [8] and [9] These methods are
usually more efficient, however they may suffer from some
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overall suboptimality when dealing with dynamic obstacles
as compared to the first class of methods as they do not
incorporate motion models for the dynamic elements.
This paper implements and tests an algorithm, d-RAGS or
dynamic RAGS that builds on RAGS. RAGS consists of
two phases. In phase 1, it searches the graph for a subset
of paths likely to yield a low cost path to the goal and in
phase 2, it follows a path from this subset while incorporating
the edge costs obtained by advancing to new nodes in the
graph. d-RAGS, in addition to this, efficiently repairs the
solution set computed by the first phase of RAGS to deal
with dynamic edge weight updates. In this scenario, the
efficiency gain allows us to frequently update paths which
reduces suboptimality concerns mentioned earlier.

III. PROBLEM FORMULATION

The problem considered by this paper is very similar to
the one considered by RAGS, i.e finding and executing a
risk aware path from a given start vertex to a goal vertex
in a graph G = (V,E), where the cost of traversing an
edge e ∈ E is drawn from a normal distribution N(µE , σ

2
E).

Further, because each edge cost is represented by a normal
distribution, the cost of a path P ⊂ E, which is the sum of
the edge traversal costs, is represented by N(µP , σ

2
P ) where

µP = ΣPµE and σ2
P = ΣPσ

2
E .

The cost of an edge is revealed only when the edge is
reached, i.e the current node is one of the vertices of the edge.
Thus the problem at a given node consists of comparing the
available revealed transitions costs and the subsequent set of
paths to the goal associated with each of those transitions.
To traverse the path of least risk, each edge transition must
select the next vertex Vmin ∈ Vt+1 such that the following
probability holds

P (cVmin < cX) ≥ 0.5 ∀X ∈ Vt+1/Vmin

In other words, transitioning to the neighbor Vmin has
a higher probability of returning a low cost path than
transitioning to any other neighbor. Here the cost cN
of travelling to the goal through the neighbor N must
incorporate both the known cost of travelling to the
neighbor N and the cost distributions of all the acyclic
paths from N to the goal Vg .
In addition to the above described problem, this paper
considers the case where, due to some reason, an edge cost
distribution may be updated to a new normal distribution
N(µ′E , σ

2
E
′). Here, by updating the pruned portion of the

graph computed in phase 1 of a previous iteration, we can
reduce compute time in updating the planned path. This
paper does not consider the cause of the update and assumes
that the update reveals the parameters of the expected edge
cost, i.e the mean and variance.

IV. RAGS

To solve the above described problem, RAGS follows a
two phase approach. First, it computes a set of candidate
paths to the goal. Each of these paths is at least a threshold

probability i.e dthresh likelier than any other excluded path
to yield a low cost of travelling to the goal, where the dthresh
is a user defined parameter. In Fig 1, this set is shown in red.
In the second phase of the algorithm, it computes the best
path step by step based on the local revealed edge costs and
the candidate path sets to the goal. In the Fig 1, this path is
shown in blue.

Fig. 1: The above graphs show the set of candidate (non
dominated) paths to the goal in red. The final path chosen is
shown in blue

A. Phase 1: Non dominated path set

Here a path is considered to ’dominate’ another path if it is
likelier than some user defined threshold dthresh ∈ [0.5, 1)
that the first path will yield a lower cost to travel to the
goal than the second path will. In this phase, the algorithm
computes a non-dominated path set to the goal, i.e the set
of paths which are more than dthresh likelier to yield a low
cost of travelling to the goal than any other path not included
in this non dominated set.
As described in [1], a path A is said to dominate a path B,
i.e A � B if

A � B ⇐⇒ P (cA < cB) > dthresh

We can use the fact that

P (cA < cB) = 1− P (cB − cA ≤ 0)

which becomes

P (cA < cB) = 1−
( µA − µB√

σ2
A + σ2

A

)
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where is the cdf of the normal function and path A has
mean and variance µA, σ2

A and path B has mean and variance
µB , σ

2
B . This equation finally becomes

A � B ⇐⇒ µA < µB+
√

2(σ2
B + σ2

A)erf−1(1−2dthresh)
(1)

The inverse error function produces a value between (−∞, 0]
which scales the contribution of the variances in the path
domination comparison. As dthresh → 1, the non dominated
path set will grow to contain most of the graph as it will
need to be almost certain that a path will be more expensive
for it to be excluded from the non-dominated set.

B. Phase 2: Quantifying path risk

Considering two neighbors of the current position, nodes
C and D, in order to choose one to travel to, we would like
to have a pairwise comparison P (cCmin

< cDmin
) which

describes the probability that the lowest cost path from C to
the goal will be cheaper than the lowest cost path from D
to the goal. This is expanded to

P (cCmin
< cDmin

) =

∫ ∞
−∞

P (cDmin
= x).P (cCmin

< x)dx

Again, as shown in Chung et al [1], this can be solved by
using

P (cCmin
< x) = 1−Πm

i=1

1

2
erfc(d(Ai))) (2)

(cDmin
= x) = Σnj=1

[
1√

2πσBj

exp(−d(Bj)
2).Πn

k=1k 6=j
1
2erfc(d(Bk))

]
(3)

where
d(Xi) =

x− cX0 − µXi√
2σXi

(4)

Here X is a node in the graph, cX0
is the dynamically

revealed cost and µXi
and σ2

Xi
are the mean and variance

of the ith path from X to the goal.
As seen in equation 1, bounding the path set by consid-

ering only non dominated paths (from phase 1) is crucial
since this pairwise comparison has a complexity of O(n2m)
where n and m are the sizes of the path sets to the goal from
the two nodes under consideration.

C. RAGS algorithm

The RAGS algorithm is shown in Fig 2

V. D-RAGS

Phase 1 of RAGS is similar to A* [2], a fundamental path
planning algorithm that computes the shortest path to a single
goal by computing the shortest path to intermediate nodes.
In RAGS the set closed contains the set of non dominated
paths to the goal as well as each intermediate node. This is
similar to how A* stores as g(n) for a node n, the optimal
cost of reaching that node. In RAGS, since we are computing
a path set rather than a single optimal path in phase1, closed
holds a set as opposed to a single cost or path as in g(n)
in A*. With this point of view, the non dominated set in

RAGS is simply closed(goal) As mentioned earlier, efficient
replanning methods for A* have already been developed
by Likhachev and Stentz in [9] in which they save the g
information computed for each node and during replanning
and update the nodes that require updation.

The following sections describe the extensions made to
RAGS for efficient dynamic replanning.

A. Reversal of the Planning Direction
As shown in Fig 3, the non dominated path set has a

large similar portion between replans after taking a step.
Reversing the search direction in phase 1 of the RAGS
search, i.e the pruning phase would mean that the root and
base of the search tree remain the same between replans.
(This is as opposed to searching from the current position,
where the root of the tree changes, so all of the path means
and variances calculated in one plan will no longer be valid
in another plan.) So, the phase1 function mentioned in the
dRAGS algorithm before performs the same operations as
phase1 of RAGS, but it performs the search in the backward
direction. This way the information stored in closed and open
can be updated effectively. With this direction reversal, the
non dominated set will be closed(start).

B. Updation of non dominated path set
When an edge is updated, all the paths containing that

edge need to be re-checked for the non Dominance property
within closed. If the edge became better, then we may need
to remove some other paths from closed and if it became
worse, we may need to add in some other paths from closed.
In very simple terms, the strategy in d-RAGS is to first delete
all the information that could possibly be invalidated by the
change - i.e any paths in open or closed that contain the
edge; and then, to decide based on the dominance property,
which paths should now be added to the open priority queue.
Finally, phase1 is rerun to expand the required paths to get
the non dominated path set.
The algorithm UpdateEdge performs the necessary updations
to the closed and open sets so that phase1 can be rerun until
we get all the new non Dominated paths from goal to start
(because of the reverse direction in phase1). As mentioned,
it deletes all paths containing the updated edge from closed
and open. Then, it checks all paths in closed incoming (in
reverse) into the source u of the updated edge through the
target v of the updated edge and either adds them to closed
(lines 10-15) (if there are no paths from goal to u dominating
it), ejecting any newly dominated paths from closed and
open, or it does not add it to closed if the path is dominated
(lines 6- 8). Finally, if this process has resulted in the net
removal of a path incoming (in reverse) to u through v, i.e
the edge (u, v) got worse and a path was removed, we need
to check all paths incoming (in reverse) to u for whether
they should now be added to closed and open since they are
no longer dominated. (lines 16-21)

C. d-RAGS algorithm
The dynamic rags algorithm is shown in Algorithm 2. Here

the functions phase1() and phase2() within the main d-RAGS
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Fig. 2: The RAGS algorithm

algorithm correspond to phase1 and phase2 of the RAGS
algorithm. However, phase1() now searches backwards with
the start as the goal rather than the current position. Further,
phase2() no longer steps until the goal is reached, but takes
a single step towards the goal and returns the node it travels
to. The while loop allows us to check for updates after each
step, and if seen, we run the UpdateEdge algorithm for every
updated edge followed by another run of phase1 to add the
required paths to the non dominated set.

VI. EXPERIMENTS

To compare the performance of RAGS and dRAGS,
graphs of various sizes, i.e number of nodes, were generated
with position coordinates. The nodes were connected by an
edge if the distance between them was below a user defined
distance parameter. The variance of each edge was chosen
as a random integer between 1 and 10, and the mean of
each edge was the sum of the distance between the two
nodes and a random integer from 0 to 10.

Algorithm 2: d-RAGS
Input: Graph G, start, goal

1 Initialize open, closed, PND
2 initialPath ← [goal]
3 open.push(initialPath)
4 cur ← start
5 Phase1()
6 while cur 6= goal do
7 if seenUpdates then
8 for edge in updates do
9 UpdateEdge(edge.source, edge.target)

10 Phase1()

11 cur ← Phase2()

12
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Fig. 3: Much of the searched portion (red) remains the same
between replans. In this case, it can improve efficiency to
update stored search information rather than recomputing it
from scratch

Algorithm 3: UpdateEdge
Input: u, v

1 DeleteFromClosed(u,v)
2 DeleteFromOpen(u,v)
3 removals ← False
4 foreach path in closed[v] do
5 newpath ← path + (u,v)
6 if not nonDom(closed, newpath) then
7 if newpath in old(closed) then
8 removals ← True

9 else
10 Pd ←paths in closed dominated by newpath
11 edges← last edge for p in Pd
12 for edge in edges
13 DeleteFromClosed(edge.source, edge.target)
14 DeleteFromOpen(edge.source, edge.target)

closed.push(newpath)
15 open.push(newpath)

16 if removals then
17 P

← paths incoming to successors(u) in closed
18 for p in P do
19 if p not in closed and nonDom(p, closed) then
20 closed.push(p)
21 open.push(p)

We used a set of 20 graphs for each size and varied the
edge updation frequency. In these trials, edge updates came
from upto a 2 step lookahead, i.e edges emanating from a
neighbor of a neighbor of the current node. We used two
edge updation frequencies, in which one in 5 or one in 20
of the edges of the graph would be updated from the initial
normal distribution if they fell within the range of updation
lookahead.

To compare the performance in a platform independent
manner, we compared the number of algorithm operations
performed by both RAGS and d-RAGS and plotted the
percentage of extra operations performed by RAGS.
Here, we plot path expansions and heap operations. Path
expansions correspond to line x of the d-RAGS algorithm.
They represent the scenario where we find that a path to an
intermediate node is non dominated and continue to follow
the path. These plots are shown in Fig 4
As we can see, the performance gain is more pronounced
for larger graphs, and in this case for the lower frequency
of edge changes - this is because a very high edge change
frequency means that very little information remains the
same between runs. This is because the path set becomes
more expensive to recompute. Further, heap operations
is a better metric as it is able to account for the extra
updation work that d-RAGS performs, and so does not
provide too optimistic an estimate of d-RAGS’s performance.

Fig. 4: The above graphs show the percentage of extra
algorithm operations that RAGS performs over d-RAGS
when replanning for various graph sizes and edge update
frequencies. The legend applies to both graphs. For both
frequencies, we see that benefit is more pronounced as graph
size increases

The difference in computation time and cost for d-RAGS
and RAGS is show in Fig 5. These trials were run on an
Hp Pavilion laptop with 7.5 GiB ram, 8 cores and intel i5
processor running ubuntu 18.04.

From the above plots and experiments, we find that d-
RAGS is able to produce paths of comparable cost to RAGS
with much fewer operations.
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Fig. 5: The graphs above show comparisons of compute time
and cost for RAGS and d-RAGS. The first two graphs are
for edge update frequency of one in 5 and the lower two
graphs are for the frequency of one in 20

VII. CONCLUSIONS

Through our experiments we have shown that d-RAGS
is able to find a low risk path through a graph with fewer
algorithm operations than RAGS in the case of updates
coming from 2 steps away from the current position. A
good extension of this work would be to further optimize
it so that it is efficient in the case of updates coming from
anywhere in the graph. This would be useful in a multi agent
scenario where a subteam is scouting ahead and updating risk
estimates.
This could be achieved by reacting to edge updates more
selectively. For example, reacting to an edge update only
if the magnitude of the update would produce significant
changes in the solution and if the edge update lies in a region
of the graph that we are likely to traverse in travelling to the
graph. We would not, for example want to react to changes
coming from distant or previously traversed areas of the
graph, which we would be likely to receive in a multi-agent
rescue scenario where sub-teams are exploring different areas
of the graph.
Further, as mentioned in [1], this strategy of updating a
solution efficiently would also be applicable to the problem
of planning a path for information gain. Here edge weight
distributions would represent expected information gain from
traversing the edge and these would change as the graph
is traversed due to submodularity of the data. Information
theoretic concepts could be applied here to find the changes
in expected information gain and they could be efficiently

accounted for using updating of the path using the methods
described in this paper.
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Trajectory Tracking for Aggressive Quadrotor Flights Using
L1-Adaptive Controller

Sushant Uttam Wadavkar1, Ramkumar Natarajan2 and Maxim Likhachev3

Abstract— Trajectory optimization techniques are used to
exploit large computational dimensions and complex systems,
but these techniques result in locally optimal solutions. On
the other hand, discrete graph search techniques which pro-
vide bounded suboptimality guarantees, suffer the curse of
dimensionality. The success of this research would pave the
way to reasoning complex planning problems involving high
dimensional dynamical systems like aggressive quadrotor flights
which give access to their competitive capabilities. Despite the
many applications of quadrotors, their full potential, especially
in terms of autonomy and agility, has not been exploited yet.
Making quadrotors more autonomous and more agile brings the
benefit of requiring fewer operators and completing tasks faster,
which makes them more useful and increases their profitability.
However, making quadrotor platforms more agile, e.g. by mak-
ing them smaller, also makes them more difficult to control due
to faster dynamics. Such applications require precise control
mechanism to track those complex plans (or trajectories). This
study focuses on controller synthesis for one representative and
other significant domains (aggressive quadrotor flight). Since
this environment involves smaller ultimate bounds on tracking
errors and variable uncertainties, we have come up with the
controller which provides robust performance and stabilization
for dynamic uncertain disturbances. The method that comes
close to achieving this is H∞ loop-shaping. Along with the
robustness we also aim to demonstrate the L1- Adaptive Control
strategy which makes the system adaptive to unmodelled
disturbances. L1- Adaptive Control tries to compensate for the
uncertainties within the control bandwidth of the actuator. The
developed control strategy is benchmarked against standard
techniques in the literature for quadrotor control like PID and
MPC. In this paper we present such a scheme that guarantees
good transient performance and robustness.

I. INTRODUCTION

Currently, the quadrotors are being actively experimented
upon instead of helicopters or other aerial vehicles. This can
be easily reason based on the facts that the kinetics energy
required for UAV flight rotors is much lesser than other aerial
vehicles, the landing and taking off of quadrotors can happen
in compact places and safely, no additional mechanism is
needed for changing the blades pitch during their flight,
also quadrotors provide several applications in defense and
industrial fields. In this work, we are especially focusing
on quadrotor flights in aggressive maneuvers and cluttered
environments. Quadrotor flights for such environments can
closely be related to real-life environments.

1Sushant Uttam Wadavkar is a senior student of Mechanical Engineering
Department at Indian Institute of Technology Madras, Chennai-600036,
India me16b172@smail.iitm.ac.in

2,3Ramkumar Natarajan, Maxim Likhachev are with Search Based
Planning Laboratory, Robotics Institute, Carnegie Mellon Univer-
sity, Pittsburgh, PA 15213, USA rnataraj@andrew.cmu.edu;
maxim@cs.cmu.edu

In this research work, we are considering four-rotor air-
craft for flight control. Quadrotor has six degrees of freedom
and has four input parameters viz. Three rotational moments
and one parameter for thrust value. UAVs used are under-
actuated and non-linear coupled systems that raise the prob-
lem of its flight control [1]. Many control system models
have been proposed over last two decades. Earlier in the case
of other aerial vehicles, linear control systems have been
successfully developed [2] [3] [4]. The area of non-linear
control systems has recently started expanding capabilities of
quadrotors. The non-linear control scheme focuses on three
main techniques: sliding mode control, backstepping control,
and adaptive control scheme.

Unlike this research work, many models eliminate the
disturbances and the uncertainties for simplicity viz. PID
[5], sliding mode [6] or robust controllers [7]. A backstep-
ping control method is proposed in [8] by considering an
aggressive perturbation with bounded signals. This approach
of sliding mode controller causes chattering problems that
may excite high-frequency unmodeled dynamics. This results
in certain limitations on handling uncertainties. Widely, PID
controllers are adopted, but it is required that uncertainties
are fixed. Because of the limitations mentioned above, adap-
tive controllers have been developed and are very popular
for tracking the trajectories in existence of disturbances and
uncertainties. In this study, we are considering the L1-AC
[9] which is an ad hoc modification of a standard Model
Reference Adaptive Control (MRAC) for plants whose full
state is available by inserting a low pass filter at its input.

Due to the limitations mentioned above, adaptive con-
trollers have been developed and are very popular for track-
ing desired trajectories in existence of disturbances and un-
certainties [10] [11] [12] [13]. Although adaptive controllers
are very robust for quadrotors trajectory tracking in existence
of disturbances and uncertainties, most of the studies are
based on linearization [10] [11] or simplification [12] [13].
In [12] only the constant external disturbances is considered
into the system dynamics and the stability analysis. In [13]
an adaptive block backstepping controller is presented to
stabilize the attitude of a quadrotor, however this method
only guarantees the boundedness of errors.

II. MODELING AND SYSTEM IDENTIFICATION

A. Quadrotor - System Description

The autonomous aerial vehicle used in this paper is a
four rotor helicopter. The quadrotor is propelled by four
rotors. The motion of this vehicle is controlled by changing
the speed of rotation of the four rotors. The quadrotor
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is a typical under-actuated, non-linear coupled system as
shown in Fig.(1). In order to obtain forward motion, the
speed of rotation of the rear rotor must be increased and,
simultaneously, the front rotor velocity must be decreased.
The lateral motion is achieved with the same strategy but
using the right and left motors. Yaw rotation is results from
the difference in the counter-torque between each pair of
propellers, i.e., accelerating the two clockwise turning rotors
while decelerating the counterclockwise turning rotors, and
vice-versa.

Fig. 1: Coordinate systems and forces/moments acting on the
quadrotor

The acting forces and moments applied onto a rotating
propeller can be described as shown in Fig.(1). The object
coordinates system is related to the translational positions
(x, y, z) and the attitude described by three angular Cartesian
axes (θ, φ, ψ), respectively. We assume that the propeller jth

rotates in the XY plane, the rotating speed is ωj , the propeller
is moving sideways through the air with velocity V, and the
propeller rotates about a particular axis of angular velocity α.
Thrust force (upward) is the result of drag torque Qj (inverse
direction with ωj) on the rotor shaft, which is generated by
the power applied to each motor. Sideways movement with
velocity V generates hub force Hj (inverse direction with V)
and hub moment Rj (unbalanced lift between advancing and
retreating blades). The gyroscopic effect of a rotary propeller
produces a gyroscopic moment Gj corresponding to angular
velocity Ω.

The dynamic model of the system is obtained under
several reasonable assumptions. First, the vehicle is a rigid
body in space and therefore, Newton-Euler equations can
be used to describe its dynamics. Second, by reason of
linear velocities of the quadrotor (ẋ, ẏ, ż) are relatively low,
the effects of hub force and moment are assumed to be
negligible. Third, the quadrotor helicopter is symmetrical
with respect to the x, y, and z axes

B. Quadrotor Kinematics Model

Let
{
E} = {XeYeZe} denote an earth-fixed inertial frame

of reference and {B} = {XY Z} be the body-frame whose
origin coincides with the center of mass of quadrotor. Let
the absolute position of Quadrotor be P = (x, y, z) and the
attitude be Euler angle Θ = (φ, θ, ψ). Using a rotation matrix

R, airframe orientation in space can be achieved from inertial
frame to body frame, where R ∈ SO(3) is an orthogonal
matrix

Model Equations: As shown in Fig.(1), Fis are the forces
over each propeller. Thee equivalent force on the quadrotor
can be decoupled into XYZ directions. Let equivalent forces
in X, Y, Z be Fx, Fy, andFz respectively in the body axis.
So, F = [Fx, Fy, Fz]

T . And this F can be expressed as

F = m(V̇ + Ω × V )

V be the velocity of quadrotor in the body axis, can be
given as V = [u, v, w]T and Ω is the rotational velocity in the
body reference frame, which is expressed as Ω = [p, q, r]T .
m denotes the quadrotor mass. V can be expressed as

V̇t = (
F

m
−Ω × V )

where Vt denotes partial derivative of velocity vector with
respect to time. For the rotational acceleration

M = (IΩ̇ + Ω× IΩ)

where M is the vector of the moment in the body axis, I
is the inertia matrix, a symmetric positive definite constant
matrix express in frame {B}, and Ω̇ is the angular rotation
acceleration. The transformation from wind-axis to body-axis
is defined as[

u v w
]T

= V
[
c(α)c(β) s(β) s(α)c(β)

]T
where s(.)=sin(.), c(.)=cos(.). Also for inverse transformation

V =
∣∣V∣∣ =

√
u2 + v2 + w2

and α and β can be given as α = tan−1(wV ); β = sin−1 ( vV ).
Upon simplifying

V̇ =
1

m


−D
Y
Fxb
Fyb
Fzb


T 

cβ
sβ
cαcβ
sβ
sαcβ


−mg(cαcβsθ − sβsφcθ − sαcβcφcθ)

α̇ =
1

V ∗m ∗ cβ


−L
Fzb
Fxb
mg


T 

1
cα
sα

cαcφcθ + sαsθ


+q − tanβ(p ∗ cα+ r ∗ sα)

β̇ =
1

V ∗m


D
Y
−Fxb
Fyb
−Fzb


T 

sβ
cβ
cαsβ
cβ
sαsβ


+mg(cαsβsθ + cβsφcθ − sαsβcφcθ) + p ∗ sα− r ∗ cα

Where D is the aerodynamic drag, Y is the lateral side
force, L is the aero- dynamic lift and g the gravity acceler-
ation. Then Fxb, Fyb, Fzb are the propulsive forces in body
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axis. The equations regarding Ω̇ that are part of the state are
more precisely, with the assumption that the matrix of inertia
I is diagonal, the following:

ṗ =
l + (Iy − Iz)qr

Ix

q̇ =
M + (Ix − Iz)pr

Iy

ṙ =
N + (Ix − Iy)pq

Iz

The attitude in Euler’s angles can be expressed as

Ω = RΘ̇

R is the matrix that transform angular velocities in earth-
fixed axis system into body axis angular velocities. And R
can be given as

R =

1 0 −sθ
0 cφ sφcθ
0 −sφ cφcθ


Upon simplifying we get[

φ̇ θ̇ ψ̇
]

=
[
p q r

]
W

where W matrix is

W =

 1 0 0
sφ tan θ cφ sφ sec θ
cφtanθ −sφ cφsecθ


and det(W T ) = secθ. Thus, the matrix W is invertible
when the pitch angle satisfies θ 6= ±(2k + 1)π2 , k ∈ Z. The
velocities in the earth-fixed coordinate (ẋ, ẏ, ż) are related to
corresponding velocities in body-axis velocities V by[

ẋ ẏ ż
]T

= LBEV

where LBE can be given as

[
LBE

]
=

 cθcψ cθsψ −sθ
sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ
cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ


Thus we get velocity values for quadrotor in the earth
coordinate axis viz.

[
ẋ ẏ ż

]T
.

III. CONTROLLER DESIGN METHODOLOGY

The control problem presented in this work is to perform
approaching position-attitude tracking and attitude stabi-
lization of the quadrotor helicopter by trajectory tracking
controllers based on an L1-adaptive controller. Based on
the dynamical model, the control system is divided into
two subsystems: position subsystem and attitude subsystem.
The whole state equations for quadcopter model developed
in the previous system can be rewritten as the following.
x = [u, v, w, p, q, r, φ, θ, ψ, x, y, z]T

We consider the following class of plants considered by
L1-Adaptive Controller authors [14] [15]

ẋ(t) = Ax(t) +Bmu+ f

The above expression is a reference system where x ∈ Rn
is the state vector which is assumed to be measurable, u ∈ R
is the control input, f contains all the modelling uncertainties
due to unmodeled dynamics, external disturbances and com-
mands cross-coupling. The above system can be represented
as:

ẋ(t) = Amx(t) +Bm(ωuad + σ1) +Bumσ2

and the total control law is u = −Kbaselinex + uad, with
Am = A − BmKbaseline, where Bm is the control channel
matrix, σ1 also known as matched disturbance, σ2 known as
unmatched disturbance, and ω is the matrix that represents
the cross-coupling among different control input.

It is important to notice that the L1-Adaptive Controller
unlike other adaptive controllers such as MRAC, compen-
sates only the uncertainties within the controller bandwidth
by a low-pass filter D(s).

Fig. 2: Block Diagram of L1-Adaptive Controller

A. State Predictor

As shown in the Fig.(2), controller is associated with state
predictor which outputs untime estimated values of x. The
state predictor equation can be derived from system model
representation as follows

˙̂x = Amx̂+Bm(ωuad + σ̂1) +Bumσ̂2

where x̂, σ̂1 and σ̂2 denote the estimated values of states,
matched and unmatched disturbances respectively.

B. Adaptation Law

The adaptation laws are used to estimate the matched and
unmatched uncertainties. Estimated values of state are then
fed to adaptation block to find the error (x̃) with respect to
the true values of states. We then get,

x̃ = x̂− x

µ(Ts) = eAmTs x̃

φ(Ts) = A−1
m (eAmTs − In)[

σ̂1
σ̂2

]
= −

[
Im ...
... In−m

] [
Bm Bum

]−1
φ(Ts)

−1µ(Ts)

Ts is the sampling time. From equations above, we get
desired estimates of uncertainties.
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C. Control Laws

As mentioned earlier, u(t) = −Kbaselinex + uad, where
gain value is such Am = A − BKbaseline is Hurwitz. The
adaptive control law can be given as

uad = −KadD(s)η̂

η = ωouad + η̂1 + η̂2 − rg

η̂1 = σ̂1

ˆη2m(s) = H−1
m (s)Hum(s) ˆσ2(s)

rg = Kg(s)r(s)

Where D(s) and Kad are the tuning parameters that have to
be set such that

C(s) = ωuKadD(s)(Im + ωuKadD(s))−1

For all possible ωu is stable and has the gain value C(0) =
Im; also C(s)H−1

m has to be a strictly proper transfer
function. The matrices Hm and Hum are defined as

Hm(s) = C(sIn −Am)−1Bm

Hum(s) = C(sIn −Am)−1Bum

The value of feedforward prefilter Kg is chosen such that
it decouples the signals, such that M(s) = C(sIn −
Am)−1BmKg has off-diagonal elements zero DC gain and
diagonal gain one

Kg = −(CA−1
m Bm)−1

TABLE I: Quadrotor Model Parameter

Parameters m l Ix Iy Iz Kt Kf

Value 0.300 0.5 0.3352 0.3352 0.2943 0.052 0.11
Units kg m kg.m2 kg.m2 kg.m2 N.m

V 2
N
V

In the presence of unmodeled dynamics L1-Adaptive
Controller above cannot be proven to have globally bounded
solutions unless the adaptive gain has a reasonable size and
further modifications in the adaptive law are imposed. The
negative effect of high adaptive gains on robustness is well
documented in the literature of adaptive control [16]. The
negative effect of the input filter on robustness is shown
in [17]. In the following sections we present a scheme that
meets the transient performance and robustness criteria.

IV. RESULTS

An artificial trajectory was fed to the system which repli-
cated aggressive manure quadrotor flight. The 3D plot for
that trajectory is shown in Fig.(3).

Fig. 3: Sample of aggressive trajectory

Fig. 4: Comparison of control analysis around a constant
state (figure on left) and around aggressive flight (figure on
right)

(a) Position in E frame (b) Velocity in B frame

Fig. 5: Position and velocity

(a) Attitude in E frame (b) Angular velocity in B frame

Fig. 6: Attitude and angular velocity

V. NUMERICAL STUDY

System model is updated to contain bounded unmodeled
disturbance. The state predictor works in conjunction with
the measured states to estimate the state uncertainty. The
adaptation law uses the state uncertainty to update the system
and control parameters. Finally, the control law uses the
updated parameters to synthesize the control input for the
uncertain system.

• The time step used in this experiment was 0.01 seconds.
• Larger adaptive gains (of the order K = 106) lead to

numerical instability.
• In the absence of projection, all signals in the closed-

loop system go unbounded.
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Fig. 7: Error variation for input state values

Fig. 8: Angular velocities of quadrotor motors

• Non-zero steady state tracking error remains but the
high frequency oscillations are gone due to smaller step
size.

VI. CONCLUSIONS

A new nonlinear adaptive control system named as L1-
Adaptive Controller is used for trajectory tracking control of
quadrotor unmanned aerial vehicles instead of control over
stabilization around a point. Controller guarantees that in
presence of bounded uncertainties the system remains stable.
As we have seen, L1-Adaptive Controller tries to compensate
for the uncertainties within the control bandwidth of the ac-
tuator. The given controller, L1-AC guarantees good transient
performance and robustness. It is developed directly on the
special orthogonal group to avoid complexities and ambigui-
ties that are associated with Euler-angles or quaternions, and
the proposed adaptive control term guarantees almost global
attractivity for the tracking error variables in the existence

of uncertainties. These are verified by rigorous mathematical
analysis.

VII. FUTURE WORK

The future work in this research work includes compar-
ing this controller response with baseline PID and Model
predictive control (MPC) for same aggressive trajectory.
Implementing L1-Adaptive Controller for trajectory opti-
mization experiments on aggressive flights will be one of
the agendas. We are looking forward to fill the gap of
providing guarantees on robustness by integrating H2 and
H∞ controller with L1-AC to guarantee the robustness of
system.
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Developing Ethical Agents via Context-Sensitive Modular Inverse
Reinforcement Learning

Boshi Wang1, Yue Guo2, Dana Hughes3 and Katia Sycara3

Abstract— Autonomous robots will soon enter our everyday
lives and interact with people, so it is important for these agents
to be able to reason about various social norms, moral values,
legal rules, and social conventions to gain human acceptability.
One approach for this problem in the reinforcement learning
framework is through inverse reinforcement learning (IRL),
which avoids the difficult task of hand-tuning the reward
function for ethical/non-ethical behaviors by learning from
ethical demonstrations. IRL-based approaches suffer from the
fact that when there are a lot of changing contexts in the
environment, the computation would be extremely expensive.
Inspired by recent work on Modularized Normative MDPs
(MNMDP) and early work on context-sensitive RL in cognitive
science literature, we propose a new IRL framework which
we call Context-Sensitive Modular IRL (CMIRL). In this
model, we add a norm-detection layer on top of states and
contexts, resembling human’s decision process in a context-
aware environment. We assume that the expert constantly
determines the importance factor of every norm given the
current state and context, where each norm is associated
with a reward function over the domain state and the agent
chooses actions with high weighted Q-values. The trained model
recovers a set of reward parameters for each norm in the
environment, and also a module that can estimate relevant
importance for each norm under different states and contexts.
Our model is capable of handling problems with large context
space and the computational complexity is linear in the number
of norms in the environment. Simulated experiments validate
the effectiveness of our method.

I. INTRODUCTION

Autonomous robots will soon enter our everyday lives
and interact with people as co-workers, so it is important
for these agents to be able to reason about various ethical
norms, moral values, legal rules, and social conventions to
gain human acceptability. It has been justified by [1] that
the framework of reinforcement learning has the capability of
achieving an idealized ethical artificial agent. The idea is that
we can incorporate ethical norms into the decision making
process of the agent by designing reward/penalty functions
corresponding to different types of norm activation in the
environment. In this way, reinforcement learning methods
that aim to maximize the cumulative reward should enable
the agent to behave in an ethical way.

1Boshi Wang is with School of Information Science and
Technology, ShanghaiTech University, Shanghai 201210, China
wangbsh@shanghaitech.edu.cn

2Yue Guo is with the Computer Science Department, Carnegie Mellon
University, Pittsburgh 15213, USA yueguo@andrew.cmu.edu

3Dana Hughes, Katia Sycara are with the Robotics In-
stitute, Carnegie Mellon University, Pittsburgh 15213, USA
danahugh@andrew.cmu.edu, katia@cs.cmu.edu

A. Challenge of Reinforcement Learning-based Approaches

The reinforcement learning framework for developing
ethical agents has two severe challenges. First, it’s very
hard to manually design appropriate reward functions for
ethical behaviors to begin with. As stated in [2], [3], for the
agent to behave ethically, we have to enumerate all plausible
ethical/non-ethical scenarios or rules and design appropriate
and meaningful rewards to each of them. However, unlike
traditional RL problems such as chess/Go or Atari games
where the reward functions are either given (such as in Atari
games) or easy to design (in chess/Go we can give positive
reward to winning and vice versa), there’s no natural way of
designing reward functions for ethical/non-ethical behaviors,
let alone designing rewards that can appropriately describe
complex scenarios where the agent has to deal with multiple
norms at the same time. The second challenge is that, even
if we have access to fully-designed reward functions for
each scenario, computing the optimal policy for the agent
could be extremely costly under a lot of changing contexts.
For example, the computational model used in [4] adds
all relevant context information into the domain state, and
computes the optimal policy via solving the MDP with the
augmented states and norm-modified rewards. The problem
with this approach is obvious: when there are a lot of
environmental contexts, the augmented state space would be
too large and the policy computation becomes unfeasible.
This is rendered to a certain extent by [5], where they
consider the ethical decision making to be a modular process:
at each time step the agent could only take the norms that
may activate at that specific scenario into consideration, so
that although a number of different MDPs at different states
and contexts has to be solved, each of the problem would
have a smaller size than the problem with fully-augmented
state, under the assumption that the number of interacting
norms at each scenario is small relative to the full set of
possible norms in the environment.

B. Inverse RL for Ethical Learning

The first challenge mentioned above motivates the inverse
reinforcement learning (IRL)-based approaches [2], [6], [7],
where we can collect enough ethical behavior data, and then
recover the reward function which can be used for policy
computation. This bottom-up approach avoids hand-crafting
the reward functions and is also admired for the ability to
generalize to unseen states, and in fact, it’s an arguable more
natural approach for developing ethical agents: if we look
back on how we human ourselves learn to behave ethically,
we’ll find that to a larger extent, we learn to be ethical by
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mimicking what other people do, in other words, learning
from demonstrations. However, there are also several existing
concerns about IRL-based approaches.

C. Paper Contribution and Outline

The contribution of this paper is two-fold. First, we argue
that the existing concerns about IRL-based approaches for
developing ethical agents are either not well-justified to be
big concerns or able to deal with inside the IRL framework,
and instead the biggest challenge of IRL approaches is
a computational one, which is the result of the second
challenge mentioned above (in brief, if even the forward
computation is costly, of course so would the inverse process
be). Second, which is our main technical contribution, we
propose a new IRL framework which we call Context-
Sensitive Modular IRL (CMIRL) motivated from work on
Modularized Normative MDP [5], and early work on context-
sensitive RL in the cognitive science literature [8]. CMIRL
treats states and contexts separately, and assume that the
expert constantly determines the importance factor of every
possible norm in the environment, where each norm is
associated with a different reward function of the domain
state and the agent chooses the action with high weighted Q-
values. The trained model recovers a set of reward parameters
for each norm in the environment, and also a module that can
estimate relevant importance for each norm under different
states and contexts.

The outline of the paper is as following. Section II
discusses about related work on ethical decision making and
learning. In section III we introduce some basic background
and the general formulation of our problem. In section IV
we discuss about concerns and challenges of IRL-based
approaches, and section V introduces our modelling of the
ethical expert and the corresponding inverse learning method
which tackles these challenges. Section VI describes our
simulation results and section VII concludes our work and
discuss future work directions.

II. RELATED WORK

There are two main branches toward ethical decision
making and learning: rule-based approaches and learning-
based approaches.

A. Rule-Based Approaches

In rule-based approaches, ethical norms are usually repre-
sented by symbolic/logical expressions along with a set of
inference rules. For example, In [9] the authors propose using
pre-specified logical expression to reason about appropriate
ways to accomplish the assigned tasks without violating
normative principles. Methods based on Horty logic [10]
such as [11], [12] allows reasoning about multiple agents
and their actions and compose ethical semantics.

However, rule-based approaches have two severe limita-
tions. First is that uncertainty is not allowed in decision
making and norm inference, the second is all the rules must
be set in advance and active-learning of these rules from the
environment is not possible inside the framework.

B. Learning-Based Approaches

More recent materials have been focusing on methods
that allow learning of ethical norms. Work on value align-
ment [13], [14] tries to align the goals of the agent with
that of human’s. The reinforcement learning framework is
first proposed and justified in [1], where they consider the
problem of ethical learning as finding an utility (reward)
function that is over the hidden state in a Partially Observable
Markov Decision Process (POMDP). The authors of [15]
combine the strength of reinforcement learning and logical
representations, and propose a hybrid approach where agent
maximizes the reward function only over states that satisfy
the norms. Although these approaches allow ethical norms
to be represented in a much more flexible way, the utility
function that induces these ethical behaviors have to be
manually designed which could be very challenging in many
scenarios. Inverse RL (IRL) based methods that avoid hand-
crafting rewards by learning from expert demonstrations are
explored in [2], [6], [7], however none of the work focuses on
a computational perspective where big challenge lies when
IRL-based approaches are put into real applications, which
is the major focus of this paper.

III. BACKGROUND AND PROBLEM FORMULATION

A. Markov Decision Process

Definition 1 (Markov Decision Process). A Markov Decision
Process (MDP) is a tuple (S,A,R, T , γ), where S is a set
of states, A is a set of actions, R : S 7→ R is the reward
function, T (s, a, s′) = p(s′|s, a) is the probability that the
agent takes action a at state s and transits to s′ in the next
time step, and γ ∈ [0, 1] is the discount factor.

A policy, π(s, a) = p(a|s), specifies the probability of
performing action a at state s. Under a given policy π,
the value of a state V π(s) is defined by the expected total
discounted reward obtained starting from state s:

V π(s) = E[
∞∑
t=0

γtR(st)|s0 = s, π] (1)

and similarly the Q-function Qπ(s, a) is defined by the
expected total discounted reward obtained starting from state
s and performing action a:

Qπ(s, a) = E[R(s) + γ
∑
s′∈S

p(s′|s, a)V π(s′)] (2)

The advantage function of a state-action pair under policy
π is defined to be:

Aπ(s, a) = Qπ(s, a)− V π(s) (3)

which captures how much better an action a is than the
“average action” under π at state s.

The optimal policy π∗ is the policy that maximizes
the discounted reward received for any state. We denote
the corresponding value function, Q-function and advantage
function under policy π∗ as V ∗, Q∗, and A∗ respectively.
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B. Inverse Reinforcement Learning

In many problems, the reward function is very difficult
to manually specify, and instead we have access to ex-
pert demonstrations. This motivates Inverse Reinforcement
Learning (IRL). First proposed in [16], IRL aims to find
the expert’s reward function given the it’s trajectories where
each trajectory consists of a sequence of state-action pairs. It
goes one step further from imitation learning (IL) where the
objective is usually to learn a policy. The advantage of IRL
over IL is that, the reward function, rather than the policy, is
the most robust and transferable definition of the task, and
usually it takes a relatively compact structure [17] which has
very high interpretability and makes subsequent fine-tuning
easy ro perform. In contrast, the typical result of IL is a deep
policy network which is extremely hard to interpret and tune.
This is also the reason why imitation learning approaches are
generally not considered in ethics learning.

Through about 20 years of research, a big family of IRL
algorithms are developed and studied which are summarized
in [18]. This paper has no intention of improving basic IRL
methods, and instead we use them as part of the building
blocks to construct learning methods in more complicated
models. Our work is primarily based on maximum likelihood
IRL (MLIRL) [19], [20], but it should not be restricted to
other types of IRL algorithms which is not the focus of this
paper.

C. Problem Formulation

The scenario we are working with extends MDP with
additional context information. While modelling the agent’s
decision process in a context/norm-aware environment is
in fact a part of the problem solving routine, defining the
general formulation of the problem is easy and clear to begin
with. We use C to denote the context space and ct to denote
the specific context the agent observes at time step t. The
problem we study is:

We are given a set D = {τ1, ..., τN} of N ex-
pert demonstrations where τi is the ith trajectory. A
trajectory τ consists of Tτ state-context-action pairs
{(s1, c1, a1), ..., (sTτ , cTτ , aTτ )}. We are not aware of the
model of the expert, except that the expert’s action is
independent of any other information given the current state
and context. Our goal is to learn a reward function under
which the optimal policy π∗(a|s, c) induces behaviors that
are similar to the expert’s.

Note that the above definition we propose is a very general
formulation, and solving this problem in specific domains
involves appropriate modelling of the expert’s decision pro-
cess in the corresponding scenarios. This paper targets at
modelling an ethical agent in a norm-aware setting, for which
the details will be covered in later sections.

IV. IRL FOR ETHICAL AGENTS: WHAT’S THE REAL
CHALLENGE?

In this section, we argue that the existing concerns for
adopting IRL-based approaches are inadequate, and make
the point that the biggest problem of IRL approaches is the

computational cost under large context space, which is the
problem we try to tackle in section V.

• In [3], the author states that collecting a large amount
of human data toward maximizing the reward could be
costly. We believe that this is not a well-justified prob-
lem: collecting enough amount of data could indeed be
costly, but this doesn’t suggest IRL’s in-adequateness.
In analogy, the progress of deep learning-based methods
which arises dramatically these years also rely hugely
on large amount of training data, for which the collect-
ing processes were also costly. If training a successful
digit classifier would require a great amount of data,
it is natural that we should collect a lot of data for
developing an ethical agent.

• Both [3] and [15] mentioned that the data may be biased
and if an IRL agent learns from unethical behavior, it
will learn to behave unethically. We don’t consider this
to be an appropriate concern especially in the context of
developing ethical agents. The reason is simple: unlike
in many traditional RL problems where the optimal
behavior is given by the environment which could be out
of human’s controls, whether a behavior is ethical or not
is entirely up to ourselves. Therefore we are completely
able to tell what behaviors are ethical and what are not
and provide fully ethical behavior data. If we ourselves
don’t even make the efforts to show the agent what
we consider to be ethical, we can’t expect the agent
to learn to behave in our desired way. This argument
also justifies that IRL is a desirable approach toward
developing ethical agents, since in this case we human
are able to provide optimal demonstrations unlike many
other problems.

• The author of [21] mentioned that IRL is not able to
infer temporally complex norms since it’s based on
the Markovian assumption, namely the activation of
norms only depends on the current state and contexts.
The author also stated that this could be handled by
using models with internal memory such as recurrent
neural networks to remove the Markov assumption,
but the lack of interpretability of this approach may
make it unsuitable for ethics. While the interpretability
of deep networks is still an active area of research,
these networks are computationally scalable in a prac-
tical perspective and have good performance in many
fields. In contrast, methods using symbolic inference
such as the one proposed by the same author are not
computationally scalable and therefore couldn’t work in
large scale applications. As we will show, norms that
are non-Markovian can be dealt with by a very simple
modification to our proposed model.

The above arguments eliminate the existing concerns of
IRL framework for developing an ethical agent. However,
we’d like to make the point that the biggest challenge of
IRL is its computational complexity under the environment
with a lot of different and maybe irrelevant contexts.

Specifically, given the problem defined in section III, a
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direct model of the expert would be the one given in [4],
which assumes that the expert treats the state and context
as a whole, called augmented state, and follows the optimal
policy induced by some reward function in this “augmented”
MDP. This model of the expert reduces our problem of study
to a simple basic IRL problem and can be solved via any
existing IRL method. When the augmented state space is
small, this method works perfectly; however in scenarios
where the agent have to deal with a lot of changing context
information, this approach is clearly intractable. Therefore
we have to make a more compact model about how the
context involves in the expert’s decision process. We make
a first attempt in this problem which is described in section
V.

V. TECHNICAL APPROACH

A. Modelling the Expert: Context-Sensitive Modular MDP

We first discuss about how essentially can we achieve
reduction of computational complexity. To summarize this
at a high level, the reduction could be made by sacrificing
the prediction of future contexts, which also is the essential
idea (although not explicitly stated by the author) of the
modularity in [5]. Recall the naive approach mentioned
earlier. Running IRL on the “augmented” MDP would im-
plicitly involve estimating the transition probabilities with the
augmented states, which includes the transition of contexts.
However, sacrificing this part shouldn’t harm much the
performance. If we think back about the decision process of
ourselves in daily lives, for example, when we are walking
towards some destination and suddenly we notice that a
person (not necessarily on our path) is in trouble and needs
help, so we abandon the original route and instead go and
help that person. Do we constantly calculate the probability
that there will be a person who needs help in the next
time step, or do we simply react on what we observe? It’s
obvious that the latter one fits better to our own experience.
Another consideration is, in certain scenarios the contexts are
simply not predictable so estimating the context transitions
are not helpful, for example when a car suddenly runs
into someone’s sight, the person stops immediately to avoid
crashing. These all suggests that an intuitive model is to
treat the contexts as something that we just observe and not
predict, and that the expert’s entire current policy should be,
in some sense, conditioned on the current state and context
so it becomes a modular decision process where the policy
of the agent changes when the states/contexts change.

Now we add the notion of ethical norms into consideration.
It is often that the expert have to deal with multiple norms
at the same time. For example, when we are on the way
helping someone, we also have to be careful not to crash
into people, so two completely different norms (“help” and
“avoid”) must be simultaneously considered. Therefore, the
priority of norms must be taken into account, and we also
need to learn this priority from the expert’s behaviors.

Two existing work are most closely related to the above
intuitions. The first one is Contextual MDP (CMDP) [22].
In CMDP there is a mapping M which maps a context c to

an MDP with its own reward functions and transitions. In
our problem this mapping should also take current domain
state into consideration. The second one is Modular MDP
[23]–[26] where the reward function is usually expressed
as a convex combination (with fixed weights) of a set of
reward modules. In our problem, each module in Modular
RL could be regarded as describing a certain type of norm
in the environment, but the contexts are not considered and
the weights are fixed which is a severe limitation.

While CMDP is a too general model and Modular MDP is
too limited for our problem, we perform an elegant combina-
tion of these two models with appropriate modifications. The
new model of the expert, which we call Context-Sensitive
Modular MDP, generalizes Modular MDP with dynamic
weights determined by a mappingM from current state and
context:

Definition 2 (Context-Sensitive Modular MDP). A Context-
Sensitive Markov Decision Process is a tuple (C,
S,A, T ,M, {Rk}k=1,..,K , γ), where besides the compo-
nents in MDP (now with K reward functions instead of 1),
C is the context space and M(s, c) maps a (state, context)
tuple to a vector of importance factorsM(s, c) ∈ RK where
M(s, c) � 0 and 1TM(s, c) = 1. Under state s and context
c, the agent acts in an MDP with reward function defined
by

∑K
k=1M(s, c)kRk, and after each action new state and

context are observed.

Intuitively, in our problem, each reward function corre-
sponds to a norm in the environment, and the mapping M
decides each norm’s relevant importance given the state and
context. Note that for norms that are non-Markovian [21],
we can simply alter the mapping M to depend on historical
information such as all past states and contexts, which can
be represented by, for example, recurrent networks.

We assume that the expert demonstrations described in
section III are generated from this process, and our goal is
to learn, from these demonstrations, the reward functions and
the mapping M.

B. Inverse Learning via Maximum Likelihood Estimate

We use parametrized function approximators to represent
each reward function and the mapping M. We will call
the reward parameters θ1, ..., θK (θk corresponds to reward
function Rθk ), and the mapping Mα(s, c) with parameters
α. θ is shorthand for {θ1, ..., θK}.

Following the tradition in IRL methods we use Boltzmann
distribution for the expert’s policy [27]. Illustration of the
expert’s whole decision process is depicted in Fig.1.

We use the principle of maximum likelihood to estimate
the parameters in the model. Assuming the trajectories
are generated independently, we can write the total log-
likelihood of D:

logL(D) =
∑
τ∈D

log p(τ) (4)

where for τ = {(s1, c1, a1), ..., (sTτ , cTτ , aTτ )}:
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Fig. 1: Illustration of Context-Sensitive Modular Markov Decision Process. At first, the agent perceives the current state s
and environmental context c. Then, the agent estimates each norm’s importance factor given s, c using the norm-detection
module, which results in a vector of importance factors M(s, c). Then the agent computes the weight Q-value map and
chooses action with Boltzmann policy, and transits to a new environment where the process goes on repeatedly.

p(τ) =p(s1)p(c1)p(a1|s1, c1)

∗
Tτ∏
t=2

p(st|st−1, at−1)p(ct)p(at|st, ct)
(5)

Let Q̄(s, a|c) be the weighted optimal Q-value of (s, a)
when the agent is at state s with context c:

Q̄(s, a|c) =

K∑
k=1

Mα(s, c)k ·Q∗θk(s, a) (6)

the probability that the agent will perform action a is given
by:

p(a|s, c) =
eβQ̄(s,a|c)∑
a′ e

βQ̄(s,a′|c)
(7)

where β controls the extent to which the agent prefers
actions with high Q-values. When β →∞, this policy selects
the action with maximum Q-value, and when β = 0, this
policy chooses actions at uniform. The summation in the
denominator is over valid actions (a′ in the above formula)
at state s, which is dropped for simplicity.

Now we can write down the log-likelihood of demonstra-
tions D:

logL(D;α, θ)

=
∑
τ∈D

log p(s1) (a)

+
∑
τ∈D

Tτ∑
t=1

log p(ct) (b)

+
∑
τ∈D

Tτ∑
t=2

log p(st|st−1, at−1) (c)

+
∑
τ∈D

Tτ∑
t=1

log pα,θ(at|st, ct) (d)

(8)

Terms (a), (b), (c) each concerns a unique parameter type
and therefore these parameters can be estimated in separate
very easily. Therefore we assume we have access to the initial
state distribution p(s1), the context probabilities p(ct), and
the transition probabilities p(st|st−1, at−1). By our former
argument, although we can estimate p(ct), it shouldn’t be
used which is indeed the case in our approach.

Concerning only term (d), we need to calculate the gradi-
ent of log pα,θ(at|st, ct) with respect to each θk and α so that
we can perform gradient ascent. For the reward parameters
θk, expanding out the terms in Equation (6) and (7) and with
some simplifications we have:

∇θk log pα,θ(at|st, ct) =βMα(st, ct)k(∇θkQ∗θk(st, at)

−
∑
a′t

pα,θ(a
′
t|st, ct)∇θkQ∗θk(st, a

′
t))

(9)
From this we can see that we need to compute

∇θkQ∗θk(s, a) for each k, which can be estimated by solv-
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ing a set of fixed-point equations similar to the Bellman-
optimality equations [28]:

∇θkQ∗θk(s, a) = ∇θkRθk(s)

+ γEs′∼p(s′|s,a)

∑
a′

π∗θk(s′, a′)∇θkQ∗θk(s′, a′)

(10)
For α we have:

∇α log pα,θ(at|st, ct) = β
∑
zk

(Q∗θk(st, at)

−
∑
a′t

pα,θ(a
′
t|st, ct)Q∗θk(st, a

′
t))∇αMα(st, ct)k

(11)
where computation of∇αMα(st, ct)k depends on specific

models being used, for example whenMα is represented by
a neural network, this gradient can be computed by standard
back propagation.

An insightful observation from equation (11) is that, the
term (Q∗θk(st, at)−

∑
a′t
pα,θ(a

′
t|st, ct)Q∗θk(st, a

′
t)) is exactly

the conditional advantage under context ct corresponding to
the kth reward function: Aπθk (st, at|ct). Therefore we can
rewrite this gradient by:

∇α log pα,θ(at|st, ct) = β∇α
K∑
k=1

Aπθk (st, at|ct)Mα(st, ct)k

(12)
which is a very intuitive formulation of what gradient

ascent on α does under our model: at each step, α is opti-
mized so as to maximize the sum of weighted conditional
advantage of all (s, a, c) pairs in the expert trajectories under
current parameters.

VI. SIMULATIONS AND RESULTS

We validate the effectiveness of our method using simu-
lated experiments. Note that we have no intention of per-
forming large-scale simulations, and instead we try to stress
the core challenge (large number of changing contexts) and
make other components as simple as possible to emphasize
the central spirit of our model.

A. Setup

In the experiment, we extend scenario “Grab a Milk” in
[3] to a dynamic setting which is a lot more challenging and
realistic. In a 15 by 15 map, the agent starts from (4, 0) and
the domain task is to go to the goal position (14, 14) (the
upper right corner) to get milk. The agent can move in 4
directions (except in sides/corners) and we use deterministic
transitions for simplicity. There are a number of babies on
the map and they may start crying at random time steps. The
agent has to help (soothe) the babies who are crying by going
to the babies’ locations. For each time step, the domain state
is the agent’s location, and the context is each baby’s status
(1 for crying and 0 for being quiet) and position (fixed). If no
babies are crying, the expert would go to the goal position
and try to avoid the babies (the reward is +1 at goal, -1 at

baby locations and 0 for others); otherwise the expert will
always go help the nearest crying baby (the reward is +3
at nearest baby’s location, -1 for other babies, +1 at goal
and 0 for others). We set β = 7. Note that in this setting,
the size of context space is exponential in the number of
babies and the context are almost constantly changing, but
the number of reward functions is small: the agent is either
helping one of the babies or going to the goal, so the number
of reward functions K grows linearly with the number of
babies put into the map. Fig.2 shows two expert behaviors
under different scenarios, with a setting of 8 babies that are
located at random positions.

(a) Initially, no baby is crying, so
the expert goes toward the goal
(upper right corner) while trying
to avoid crashing into the babies.

(b) In this case, two babies
are crying (represented by white
dots). The expert goes toward the
nearest baby to help while also
trying to avoid crashing into other
babies. The two blue babies on
the agent’s trajectory have been
soothed by the expert (instead of
crashed into).

Fig. 2: Example of the expert’s decisions in different sce-
narios used for generating demonstration trajectories. States
with light color have relatively high rewards and states with
darker color have lower rewards. The red line shows the
trajectory of the agent and red dot is the current position of
the agent.

We set each reward function to take the form Rθk(s) =
θTk φ(s), where φ(s) is a binary vector consisting of whether
the agent is at each baby’s position and goal position, so the
dimension of φ(s) is (number of babies + 1). We simulate
using 8 babies on the map (as the one in Fig.2), where the
time step that each baby begins crying is chosen uniformly
from 0 to 40. 500 expert trajectories are generated. We
set K = 10 and the architecture of Mα to be 16-20-
10 (number of units in different layers) with L2 regularity
factor of 10−5 on the weight matrices, where the input to
the network consists of each baby’s crying status and its
Euclidean distance to the agent. Again, in real applications,
these models can be easily changed to be very complicated
with large scale.

B. Evaluation Metrics and Results

We evaluate the similarity of the learned behavior and the
expert’s behavior by calculating the average number of times
the agent helps and crashes into babies during one task. For
every 10 iterations of training, we sample 500 trajectories
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Fig. 3: Average number of times the agent helps/crashes
into the babies in the environment during different training
iterations, compared with the expert’s.

using the parameters and compute these numbers, which are
plotted in Fig.3 together with the expert’s average number
of helps and crashes.

It can be seen from Fig.3 that the average number of
helping steadily increases during training, and although at
first the agent doesn’t pay attention to avoid crashing into
babies (which may be because the agent tries very hard
to help babies and ignores other factors), this is taken into
account after a number of iterations. The agent’s behavior is
ultimately aligned with the expert’s, showing our method’s
capability of learning ethical behaviors under big amount of
changing contexts.

VII. CONCLUSION AND FUTURE WORK

We propose Context-Sensitive Modular Inverse Reinforce-
ment Learning, a framework for developing ethical agents
through learning from expert demonstration in an environ-
ment with large number of changing contexts. In the future
work, we intend to implement our methods in real and large
scale applications, and perform sample complexity analysis
of our model.
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Traversability Analysis for Highly Maneuverable Wheeled Robots

Letong Wang1, Sean Wang2 and Aaron Johnson3

Abstract— Outdoor robots capable of traversing over rough
terrain could play an essential role in tasks such as field rescue,
oil prospecting, and exploration of abandoned mines. Many
algorithms currently enable robots to autonomously navigate
through outdoor terrains, such as city roads and country trails.
However, most methodologies for navigation are designed for
robots working in structured environments or based on existing
maps. In this project, we use a highly maneuverable wheeled
robot that can go over unstructured outdoor environments,
such as off-road and off-trail environment, where there might
be small holes and grooves. For off-trail navigation, terrain
traversability analysis is crucial for safety and efficiency. To
accomplish this, some methods are proposed that are based on
geometry-based, appearance-based, and robot-based features.
However, small negative objects (e.g. small holes), that do not
affect the robot’s traversability, are incorrectly diagnosed as
untraversable. We propose the “wheel dropping” model, which
considers both geometric features and the robot’s capabilities,
to smooth the original elevation map. Then, a series of filters
are applied to the elevation map to extract geometric features,
such as slopes and roughness, to construct the traversability
map. This new “wheel-dropping” method allows the robot to
traverse over small negative objects that were falsely identified
as untraversable by previous traversability analysis methods.

I. INTRODUCTION

Autonomous navigation in off-trail environments has many
applications, such as field rescue, oil prospecting and explo-
ration of abandoned mines. Despite recent advances, navi-
gating in unstructured outdoor environments for autonomous
mobile robots remains a significant challenge due to the
complexity of the environment. To avoid collisions, robots
need local maps to tell themselves the location of obstacles
and free space. In indoor environments, the grounds on
which robots are running are assumed to be planar, and a
2D local map can be constructed by projecting the range
scans to the ground. In outdoor environments, 3D analysis of
terrains and the capacity of robots are required to determine
the probable places through which the robot could traverse.
Particular difficulties are negative obstacles (characterized by
absence of supporting ground, e.g. holes), hanging obstacles
(whose projection onto the ground stands inside the robot’s
region but far above the robot, e.g. overhangs) and vegetation
obstacles (which are flexible so that they can be rolled over,
e.g. high grass). Since our robot is meant to operate in a
rocky desert environment, the last one is ignored.

1L. Wang is with the School of Information Science
and Technology, ShanghaiTech University, Shanghai, China
wanglt@shanghaitech.edu.cn

2S. Wang is with the Department of Mechanical Engineering, Carnegie
Mellon University, Pittsburgh, PA, USA seanjwang@cmu.edu

3A. Johnson is with the Department of Mechanical Engineering, Carnegie
Mellon University, Pittsburgh, PA, USA amj1@cmu.edu

Traversability analysis of the terrain is critical for navig-
tion in unstructured outdoor environments. Traversability is
generally defined as an affordance that is jointly determined
by the robot’s capabilities and its environment’s charac-
teristics. The traversability of a particular terrain describes
probability for a specified robot to safely maneuver over it.
The estimation of traversability is vital for outdoor naviga-
tion. If the terrain traversability is underestimated, the robot
may have to do unnecessary bypasses or even be trapped,
while if the traversability is overestimated, the robot may go
somewhere dangerous and damage itself.

In this project, we are given a highly maneuverable four
wheel steering robot, shown in figure Fig.1(a), tasked with
travelings over unstructured rocky desert terrain to reach
target locations. This paper focuses on the real-time con-
struction of the traversability map used for local guidance.
A typical way to determine whether an area is traversable is
to analyze geometric features, such as slopes and roughness.
One common feature in rocky desert terrain are holes and
grooves. These features may either have a height significantly
lower than its surroundings, or be represented as “empty”
due to occlusion of the sensor. If a hole is small compared
to the size of the robot wheel, the robot could go over it
smoothly. However, because of the “empty” reading or the
high slope and roughness around the hole, the hole will likely
be classified as untraversable by traditional methods. In this
paper, we propose the “wheel dropping” model, which is
used to smooth the original elevation map before computing
its slopes and roughness. Instead of calculating slopes and
roughness based on the actual elevation of the terrain, this
model considers the elevation of the center of the wheel as
it would sit on the terrain.

We evaluate our methods both on simulated data and real-
world data. Compared with methods without “wheel drop-
ping” model, our method diagnoses small negative objects
more traversable, which is closer to the reality.

II. RELATED WORK

Lots of traversability analysis methodologies are based
on an assumption that the ground is roughly flat, at most
has modest dips and rises. The authors in [3] proposed a
system that utilized this analysis tool to review the terrain.
Firstly, they segment pixels by planes belonging to the same
obstacle according to RGB information. Then, they use depth
information to determine the plane most likely to be the
ground. After that, they set a threshold and considers all
pixels with distances to the ground less than the threshold
belonging to the ground, which means these points are
traversable. Yet, this method does not consider the robot’s
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Fig. 1. Robot system configuration

capability parameters. The authors in [7] set the threshold
according to the maximum height the robot can go over,
which depends on the motor torque, wheel diameter, and
robot weight. Furthermore, they remove out some outlayers,
such as fallen leaves, by their features observed in laser scan
data. The authors in [1], besides ground detection and setting
two thresholds for objects identify, also detect free sight line
in disparity space.

The assumption that the ground is roughly flat does not
hold when working with uneven terrains, such as rocky
deserts, which has steep hills and grooves. Instead of mod-
eling the ground as a flat plate, some approaches refined
the modeling by considering geometric features, such as
roughness and slopes. The authors in [2] think a robot’s
traversability mainly depends on three factors: the maximum
step height that the robot can climb, the maximum the
slope the robot can climb or descend and the height of
the platform. Therefore, they try to extract height difference
features and slopes. They firstly compute the norm for every
3D point using the depth image, and then store the data
via a two-layer hash-table like structure. Then they take
the platform height into account, by diagnosing any points
whose difference in z coordinate to the previous obstacle
is larger than the platform’s height as traversable. They
detect untraversable steps by analyzing the height differences
between neighbours and they extract slopes by the norm
computed before. This approach labels points as traversable,
untraversable and uncertain, which works well for stairs, little
rocky surface, and niches. In this approach, for v-shaped
valley whose slope is traversable expect a corner-shaped
bottom, which should not be untraversable. The authors in
[6] also consider slopes, edges and roughness as important
geometric factors for traversability. Instead of storing data in
a particular data structure for efficient access to neighbours,
they convert raw 3D point cloud data to elevation maps and
store them in a universal grid map. They compute the slopes
and roughness according to the elevation map, and use a
weighted sum of these two features as the traversability.

According to the paper, this approach works well in the
unstructured indoor environment. However, we find that, as
shown in Fig.2, as long as the grooves are deep enough,
the algorithm will diagnose them as untraversable no matter
how small the gaps are, because they have significant slopes
and roughness. Although geometric features are vital for
traversability, it is determined jointly by geometry features
and the robot’s capabilities. Some gaps are small compared
to the size of the robot’s wheel, which should be diagnosed
as traversable, as the robot could go over them easily.

(a) color norm (b) traversability (c) grid map

Fig. 2. some grooves are diagnosed as untraversable, although their widths
are small compared to the robot’s wheel and the robot can easily go over
them.

Negative objects are crucial for outdoor navigation, which
may lead to hazards. The authors in [8] consider gaps in
outdoor terrain traversability. Their methodology has two
steps: the first is to detect gaps, the second is to analyze the
traversability of gaps individually. They detect gaps based
on the assumption that the gap contour satisfies a plane up
to a constant error in terms of its distance to the ground.
Firstly, they find out the ground equation in front of the
robot, and then, for every point in the 3D point cloud,
they determine whether a point belongs to the ground, a
positive object, or a negative object. Then they uses a contour
detecting algorithm to detect gap contours, and assembles the
gap point clouds Gj . For the traversability part, they apply
Principle Component Analysis (PCA) to help determining
the narrowest width of the gap and evaluates traversability
for every gap based on the robot’s capability. Each gap Gj
is represented by four parameters: the center of the gap,
whether it is traversable, the start and end points for the
traverse path if it is traversable. However, the assumption
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this method based may not be satisfied in pretty uneven
terrain, and the method separates the traversability analysis
for gaps from the whole terrain, which brings in additional
computation.

III. METHOD

Our approach is based on [6], but dealing with the negative
object issue. Instead of detecting holes and analyzing them
individually as in [8], we apply a wheel-based filter to “fill”
small holes. As the robot can move in any direction, we
model the wheel to a ball, which is a simplified model.
The algorithm works like dropping balls on the ground, and
generating a new surface consisting of the center of balls.

Fig. 3. The wheel’s center surface is much smoother than the raw terrain
surface, where small holes are “filled”.

A. “Wheel Dropping” Model

As shown in Fig.3, we observe that the surface consisting
of the centers of the robot’s wheels as they would sit on
the ground, is much smoother than the raw terrain surface,
where small holes disappear. Inspired by that, we build a new
surface based on the actual position of the robot’s wheel on
the ground.
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Fig. 4. “wheel dropping” model

The actual location of the robot’s wheel as it would sit
at a certain point on the ground, is the same as that of a
wheel dropped along the z-axis at that point. And because
the wheel can move in any direction, we simplify it to a ball
with the same radius r.

The algorithm diagram is shown in Fig.4. For a certain
position P in the grid map, consider dropping a ball along
the z-axis at P , and the ball touching the ground at its
neighbor Pi. The height of the ball’s center is computed by
terrain(Pi) +

√
r2 − distance(P, Pi)2. When dropping a

ball, we image that the ball will stop the first time it touches
the ground, so that the maximum height computed among

all the neighbors in radius r is the actual height the dropped
ball.

new(P ) = max
Pi∈C(P,r)

terrain(Pi) +
√
r2 − dist(P, P i)2

where terrain(P ) represents the height of P in the raw
elevation map, new(P ) represents the height of P in the
“wheel dropping” surface. C(P, r) represents a circle-shaped
sliding window in the raw elevation map, whose center is P
and the radius is r.

Use this window sliding all over the original terrain map,
we get a smoother surface, where small holes are “filled”.

B. Traversability Analysis

Given an elevation map smoothed by the “wheel dropping”
model, a series of filters are applied to the map to extract
geometric features and calculate the traversability.
• mean in radius filter:

Compute the average height within a circle-shaped
window as the value of the center point, which smooths
the map and will be used to extract the roughness
feature.

• surface norm:
The surface norm is generated by computing the eigen-
vector within a sliding window corresponding to small-
est eigenvalue, which is used for extracting the slope
feature.

• roughness:
roughness is computed by

roughness = ‖smoothed− non-smoothed‖

where “non-smoothed” represents the layer before ap-
plying “mean-in-radius” filter, and “smoothed” repre-
sents the layer after applying that filter. The greater the
roughness is, the less traversable the terrain is.

• slope:
The slope is computed by

slope = arccos(normz)

where the slope here is represented by the angle
between the surface norm and the z-axis, which is
computed by the arccos value of the norm vector in
z coordinate. Slopes range from 0 to π

2 , and the smaller
the slope value is, the easier it is for the robot to pass
through.

• traversability:
Based on the features generated above, the traversability
map is computed by

1− a ∗ slope− b ∗ roughness

where a and b are positive parameters for slope and
roughness, which depends on the robot’s capabilities,
including the maximum step height that the robot can
climb and the maximum the slope the robot can climb
or descend.
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IV. SIMULATION EXPERIMENTS AND RESULTS

We use gray-scale images to generate simulation elevation
maps, by linearly mapping gray value to the elevation value.
We apply the traversability analysis on different terrains, and
compare the result with and without the “wheel dropping”
model.

(a) color norm (b) traversability (c) grid map

Fig. 5. the simulation result without “wheel dropping” model

(a) color norm (b) traversability (c) grid map

Fig. 6. the simulation result with “wheel dropping model”

1) a hole and a pole: In this simulation terrain, there is a
hole and a pole with the same radius(10cm). The radius of the
robot’s wheel is greater(15cm), and the robot could pass the
hole easily, but it should avoid the pole. Without the “wheel
dropping” model, as shown in Fig.5(c), the traversability
for the pole and the hole are the same, which are both
untraversable. Fortunately, as shown in Fig.5(a), the hole
was “filled” after filtered by the “wheel dropping” model.
In Fig.6(c), the traversability for the pole and the hole are
different, and the hole is diagnosed as traversable.

(a) color norm (b) traversability (c) grid map

Fig. 7. the simulation result without “wheel dropping” model

(a) color norm (b) traversability (c) grid map

Fig. 8. the simulation result with “wheel dropping” model

2) stairs: In this simulation terrain, there are stairs, whose
height is the same as the radius of the wheel, and our
robot could go over them. Nevertheless, without the “wheel
dropping” model, as shown in Fig.7(c), the edges of the stairs
are diagnosed as untraversable, as they have great slopes. In
Fig.8(c), the edges of the stairs look more traversable after
filtered by the “wheel dropping model.

V. REAL-WORLD EXPERIMENTS AND RESULTS

A. System Architecture

We did experiments on the real robot. The system archi-
tecture and the results are shown in this section.

1) Hardware: The robot platform we use is designed by
our lab, which is small, light and highly maneuverable. More
details about the outlook about the robot could be seen in
Fig.1(a).

The robot’s motion pattern is special, which is like a four
wheels steering car, so that it can drive sideways. The robot
has four motors, two for throttle and two for steering. The
movement of the robot is control by three signals: throttle,
steering and the motion pattern, which determines whether
the front and back wheels move in the same direction, in
opposite direction, or which end of wheels steering. Because
it is highly maneuverable and has different motion patterns
than the general ground mobile robots, such as car-like robots
and differential-driven robots, its traversability analysis and
motion planning will be different from typical ones.

The robot has two computing resources, one is a Jetson
TX2 board, which is responsible for main jobs of the
system, such as processing camera data, and analyze terrain
traversability. The other one is a Raspberry Pi board, which
controls motors by pulse width modulation(PWM) through
pins on the board. Besides, a WIFI router is mounted
on the robot in order to provide a local network for the
communication between different processing nodes.

For the sensor, the robot uses one ZED stereo camera on
the top front, facing forward and downward. In this direction,
although the camera has a smaller field of view compared to
facing forward, it collects denser point cloud data.

The robot has lots of electronic components driven on
various voltage. In order to make the hardware system
compact,the robot’s circuit uses many voltage regulators,
therefor, it can only use one 7.4V battery for power supply.
For details of hardware configuration, refer to Fig.1(c).

2) Software: In this project, we use ROS(robotic operat-
ing system) as a software platform, as it provides convenient
ways for different processes to cooperate. In ROS, each
node is a process that could run independently. This system
has many nodes performing different functions, but it is
mainly composed of three parts: sensor driving, traversability
analysis, and motion control. The details of the software
architecture could be seen in Fig.1(b).
• sensor driving: The stereo camera driving node provides

3D point cloud data, the robots position estimate, and
the transforms between different coordinate systems(tf
information in ROS). The robot does not have an IMU,
but it uses computer vision algorithms to track the
robot’s position changing.

• Traversability analysis part consists of two nodes, one
is for 2D map generation [5] [4], which converts 3D
point cloud data to 2D elevation map; the other one is
for traversability analysis. The pipeline for traversability
analysis is shown in Fig.9. Firstly, smooth the elevation
map by the “wheel dropping” model, then extracting
geometry features, such as roughness and slopes, then
calculate the traversability according to the geometry
features as well as the robot’s capability. Finally convert
the traversability map to grid map for navigation.

• For motion control parts, the most basic process is
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to transfer steering and throttle messages to voltage
outputs. The robot could either be controlled by a
joystick, which needs a node to map joystick message to
steering and throttle message; or it could be controlled
by navigation planners, which will be implemented in
the future.

Fig. 9. Pipeline for the traversability analysis

B. Real-World Results

The robot go outside recording some videos, then apply
the traversability algorithm on the videos. Here are the
results.

(a) image (b) elevation map

Fig. 10. rocky ground terrain

(a) without filter (b) with filter

Fig. 11. the traversability maps with and without the “wheel dropping”
model

1) Rocky Ground: As shown in Fig.10, the ground is
covered many stones, and looks rough, but as the stones
are small, the robot could traverse on it easily. Without the
“wheel dropping” model, there are some hot spots that looks
not so traversable, see Fig.11(a), but with the filter, see
Fig.11(b), the hot spots disappeared and the surface looks
more traversable.

2) Manhole Cover: Then manhole cover has many small
holes, as seen in Fig.12. The holes are very small compared
to the robot’s wheel, and have no influence on the robot’s
traverse. Without the “wheel dropping” model filter, the
traversability of the hole looks different from the that of
the surroundings, see Fig.13(a). However, with the filter, as
seen in Fig.13(b), the holes do not look obvious, and the
traversability map is smoother.

(a) image (b) elevation map

Fig. 12. Manhole Cover terrain

(a) without filter (b) with filter

Fig. 13. the traversability maps with and without the “wheel dropping”
model

VI. FUTURE WORK

The future work mainly includes two parts, the first is to
refine the traversability calculation formula. The traversabil-
ity depends on both geometric features and the robot’s capa-
bilities. Now, the traversability is calculated by a weighted
sum of roughness and slopes, and the parameter are manually
set. There needs more work to refine the formula’s form and
parameters.

To really implement autonomous off-trial navigation, local
and global planners need to be implemented. The robot
will use GPS for localization and goal position setting,
which are used for global planning. Traversability maps
are converted to grid maps by setting an upper and lower
threshold on traversability, which can be used for local
planning. All points whose traversability are greater than
the upper threshold are considered as free space, and all
points that are smaller than the lower threshold are consid-
ered untraversable. For points between the lower threshold
and upper threshold, they are traversable, but need more
effort, for example, more power would be applied to the
motors when executing a motion. Furthermore, the robot
has different motion patterns from traditional car-like or
differential-driven robots. The front wheels and back wheels
are controlled separately, but the wheels on the same ends are
controlled together. Although a car-like local planner could
be used for this robot, to optimize its mobility, a new local
planner that satisfies the robot is required.

Once these planners are complicated, the robot could
autonomously navigate from one point to the other point in
uneven outdoor terrains. This system could be applied to a lot
of applications, such as oil exploration. People specify where
they want to explore oil indoor and put the robots outdoor
to autonomously explore, which can reduce the number of
people sent to the field.

VII. CONCLUSION

Traversability analysis is crucial for robots working in
unstructured outdoor environments to avoid collision and
traver efficiently. Negative objects, such as holes and grooves
need to pay attention in uneven terrains. Some negative
objects are small compared to the robot’s wheel, and will
not cause hazards to the robot. They should be diagnosed
as traversable even they have great height difference and
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slopes. In this paper, we propose a “wheel dropping” model,
which considering the actual location of the robot’s wheel
as it would sit on the ground. In this way, small negative
objects are ’filled’, which allows the robot to traverse over
them that were falsely identified as untraversable by previous
traversability analysis methods.
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Following Social Groups: Socially Compliant Autonomous
Navigation in Dense Crowds

Xinjie Yao1, Ji Zhang2 and Jean Oh2

Abstract— In densely populated environments, socially com-
pliant navigation is critical for autonomous robots as driving
close to people is unavoidable. This manner of social navigation
is challenging given the constraints of human comfort and social
rules. Traditional methods based on hand-craft cost functions
to achieve this task have difficulties to operate in the complex
real world. Other learning-based approaches fail to address the
naturalness aspect from the perspective of collective formation
behaviors. We present an autonomous navigation system capa-
ble of operating in dense crowds and utilizing information of
social groups. The underlying system incorporates a deep neural
network to track social groups and join the flow of a social
group in facilitating the navigation. A collision avoidance layer
in the system further ensures navigation safety. In experiments,
our method generates socially compliant behaviors as state-of-
the-art methods. More importantly, the system is capable of
navigating safely in a densely populated area (10+ people in a
10m× 20m area) following crowd flows to reach the goal.

I. INTRODUCTION

The ability to safely navigate in populated scenes, e.g.
airports, shopping malls, and social events, is essential for
autonomous robots. The difficulty comes from the fact that
people walk closely to the robot cutting ways in front of
the robot or between the robot and the goal point. The
safety margin for the robot to drive in crowded scenes is
pushed to the minimum. In such a case, the navigation system
has to trade-off between driving safely close to people and
reaching the goal quickly. Further, previous study of socially
compliant navigation [1] states three aspects in terms of
the robot behaviors – comfort as the absence of annoyance
and stress for humans in interaction with robots, naturalness
as the similarity between the robot and human behaviors,
and sociability as to abide by general cultural conventions.
Among these three aspects, the first aspect essentially reflects
safety of the navigation.

Previous studies on socially compliant navigation attempt
to solve the problem with various methods, including data-
driven approaches for human trajectory prediction [2], [3],
potential field-based [4] and social force model-based [5] ap-
proaches. In particular, reinforcement learning-based meth-
ods use reward functions to penalizes improper robot be-
haviors eliminating the cause of discomfort [6], [7]. Inverse
reinforcement learning based-methods learn from expert
demonstrations [8]. These methods are hard to generalize due

1X. Yao is with the Department of Electronic and Computer En-
gineering, Hong Kong University of Science and Technology. Email:
xyaoab@ust.hk

2J. Zhang and J. Oh are with the Robotics Institute, Carnegie Mellon
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to that a large set of comprehensive expert demonstrations
are hard to acquire.

The study of this paper is based on our previous work
which uses deep learning in solving the socially compliant
navigation problem [9]. This paper extends the work in
two ways. First, we consider the findings from a previous
study [10] that 70% of people walk in social groups. Crowd
behavior can be summarized as flows of social groups, and
humans tend to move along the flow. It is our understanding
that the behavior of joining the flow that shares similar
heading direction is more socially compliant, causing fewer
collisions and disturbances to surrounding pedestrians. Our
method recognizes social groups and selects the flow to fol-
low. Second, we ensure safety with a multi-layer navigation
system. In this system, a deep learning-based global planning
layer makes high-level socially compliant behavioral deci-
sions while a geometry-based local planning layer handles
collision avoidance at a low-level.

The paper is further related to previous work on modeling
aggregate interactions among social groups [10] and leverag-
ing learned social relations in tracking group formations [11].
Our main contributions are a deep learning-based method for
socially compliant navigation with an emphasis on tracking
and joining the crowd flow and an overall system integrated
with the deep leaning method capable of safe autonomous
navigation in dense crowds.

II. METHOD

A. System Overview

Fig. 1 gives an overview of the autonomous navigation
system which consists of three subsystems as follows.
• State Estimation Subsystem involves a multi-layer

data processing pipeline which leverages lidar, vision,
and inertial sensing [12]. The subsystem computes the
6-DOF pose of the vehicle as well as registers laser scan
data with the computed pose.

• Local Planning Subsystem is a low-level planning sub-
system in charge of obstacle avoidance in the vicinity of

Fig. 1: Navigation software system diagram.
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the vehicle. The planning algorithm involves a trajectory
library and computes collision-free paths for the vehicle
to navigate [13].

• Social Navigation Planning Subsystem takes in obser-
vations only consisting of pedestrians by subtracting the
prior map. The subsystem tracks pedestrians in the sur-
roundings of the vehicle, and then extracts the grouping
information from the pedestrian walking patterns, with
which, the subsystem generates way-points (as input of
the Local Planning Subsystem), leveraging Group-Navi
GAN, a generative planning algorithm in an adversarial
training framework based on a deep neural network,
Navi-GAN [9].

B. Group-Navi GAN

Following the extended social force model [10], we pro-
pose Group-Navi GAN, a framework to jointly address the
safety and naturalness aspects at a group’s level. Group-
Navi GAN is inspired by our previous work Navi-GAN
[9] which models social forces at an individual’s level.
An intention-force generator in the Group-Navi GAN deep
network models the driving force as

#»

fi
0 for target agent i

to move toward the goal. A group-force generator models
the repulsive force from other pedestrians j as

#  »

fij and the
interaction force from other group members as

#»

fi
group. The

joint output of the intention-force generator and group-force
generator defines the path for the robot to navigate.

In the group-force generator, a group pooling module first
associates the target agent to a group based on the motion
information (see Fig. 2). Then, the group pooling module
computes path adjustments which essentially guide the robot
to follow the group. We apply a support vector machine
classifier [14] trained by [11] to determine if two agents
belong to the same group. This uses the local spatio-temporal
relation to cluster the agents with similar motions based on
the coherent motion indicators, i.e. the differences in walking
speed, spatial locations, and headings.

We use the following equation to aggregate the hidden
state from htj to h′j

t,

h′j
t = Iij [si = sj ] ∗ cos(θi − θj) ∗ htj , (1)

where Iij [si = sj ] indicates if two agents are in the same
group,

Iij [si = sj ] =

{
1, if i and j are in the same group
0, otherwise

(2)

θi and θj are the agent headings. The resulting embedding
Ht

i of hidden state h′j
t is computed as a row vector which

consists of the maximum elements from all other agents. The
embedding is further concatenated for decoding,

H ′i
t = [Ht

i , h
t
i, ni] (3)

where ni is random noise drawn from N (0, 1) .

Fig. 2: Group pooling module in the Group-Navi GAN deep
network. The input of the module is the relative displacements of
the surrounding pedestrians w.r.t. the target agent. The module as-
sociates the target agent to a group based on the motion information
and outputs path adjustments for the robot to follow the group.

III. EXPERIMENTS

A. Social Compliance Evaluation

We evaluate our method on two publicly available datasets:
ETH [15] and UCY [16]. These datasets include rich social
interactions in real-world scenarios. We follow the same
evaluation methodology as the leave-one-out approach and
the error metrics used in the prior work [3]:

1) Average Displacement Error: The average L2 distance
between predicted way-points and ground-truth trajec-
tories over the predicted time steps.

2) Final Displacement Error: The L2 distance between
the predicted way-point and true final position at the
last predicted time step.

We compare against a linear regressor that only predicts
straight paths, Social-GAN(SGAN) [3], and Navi-GAN [9].
We use the past eight time steps to predict the future
eight time steps. As shown in TABLE I, our method yields
considerable accuracy improvements for some of the datasets
where rich group interactions are prevalent. In particular,
UNIV and ZARA1 have more than 70% of the pedestrians
moving in social groups, and thus our model performs better.
Our model performs slightly worse than the state-of-the-
art approaches with the ETH and HOTEL datasets due to
the lack of social group interactions. Further, our method
assumes the existence of a goal point for each person in the
dataset. Lacking precise goal point information results in a
relative low accuracy. In the next experiments, we will show
results with author-collected data where the strength of our
method is more obvious.

Metric Dataset Group Percentage Linear SGAN [3] Navi-GAN [9] Group-Navi GAN

ADE

ETH [15] 18% 0.84 0.60 0.95 1.33
HOTEL [15] 19% 0.35 0.48 0.43 0.39
UNIV [16] 73% 0.56 0.36 0.85 0.29

ZARA1 [16] 70% 0.41 0.21 0.40 0.21
ZARA2 [16] 69% 0.53 0.27 0.47 0.30

AVG 50% 0.54 0.39 0.62 0.50

FDE

ETH [15] 18% 1.60 1.22 1.64 1.98
HOTEL [15] 19% 0.60 0.95 0.74 0.93
UNIV [16] 73% 1.01 0.75 1.36 0.68

ZARA1 [16] 70% 0.74 0.42 0.66 0.40
ZARA2 [16] 69% 0.95 0.54 0.72 0.85

AVG 50% 0.98 0.78 1.02 0.96

TABLE I: Social compliance evaluation of Group-Navi GAN and
other baseline approaches. Two error metrics, Average Displace-
ment Error and Final Displacement Error are reported (in meters)
for tobs = 8 and tpred = 8. We manually count the number of
pedestrians moving in social groups. Our method outperforms the
prior work with the UNIV and ZARA1 datasets where social groups
are richly available.
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Fig. 4: Simulation results in a 10m × 20m area. The tests involve 18 people walking in 6 groups. Each group moves in a different
direction. The three columns present three representative cases. The first and second rows show screenshots of the simulation environment.
The coordinate frame indicates the robot. The goal point is marked as the magenta dot. The red dots are the tracked pedestrians using
laser scan data. The third row displays the trajectories of the pedestrians (gray and green) and the robot (yellow and red). The dots are
the start points and the star is the goal point of the robot. When using Navigation without Social Model, the robot produces the yellow
path. When using Navigation with Social Model, the robot follows the group in green color and produces the red path. A blue square is
labeled on each robot path where the corresponding screenshot is captured on the first and second rows. Specifically, on the first row, the
screenshots show the moments when the robot drives overly close to people due to not using the social model. On the second row, the
screenshots are taken while the robot follows a group during the navigation.

B. Group Following Evaluation

We further evaluate the method with a robot vehicle as
shown in Fig. 3. The robot is equipped with a Velodyne Puck
laser scanner for collision avoidance and pedestrian tracking.
Our method is evaluated in two configurations – Navigation
with Social Model refers to the full navigation system as
shown in Fig. 1, and Navigation without Social Model
has the Social Navigation Planning Subsystem removed.
The State Estimation Subsystem and the Local Planning
Subsystem are directly coupled. The robot navigates directly
toward the goal and uses the Local Planning Subsystem to
avoid collisions locally.

We show results in both simulation and real-work exper-
iments with pedestrian data collected by the robot. In sim-
ulation, we show scenarios with 18 people walking around
the robot in 6 groups. In real-work experiments, we have
6 people walking in 2 groups. One group moves along the
robot navigation direction and the other group moves in the
opposite direction. The results are shown in Fig. 4 and Fig. 5.
In each scenario, the robot selects a group to follow with
the full navigation system (Navigation with Social Model).
If using Navigation without Social Model, the robot drives
directly toward the goal and results in interactions with

groups moving in other directions.
Finally, we conduct an Amazon Mechanical Turk (AMT)

study to further understand the safety and naturalness of the
robot navigation. A total of 466 participants evaluate the
simulation and real-world results. As shown in Table II, >
90% of the participants consider Navigation without Social
Model to be unsafe (with collisions) while the ratio reduces
to < 40% using Navigation with Social Model. With the

Fig. 3: Experiment platform. A wheelchair-based robot carries a
sensor pack on the top. The sensor pack consists of a Velodyne
Puck laser scanner, a camera, and a low-grade IMU. The scan data
is used for collision avoidance and pedestrian tracking. A laptop
computer carries out all onboard processing.
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(a) Without Social Model (b) With Social Model

Fig. 5: Real-world experiments in a 10m × 20m area. The first row
shows photos of 6 people walking in 2 groups. One group moves
along the robot navigation direction and the other group moves in
the opposite direction. The second row shows the corresponding
trajectories of the people (blue and green) and the robot (orange).
Dots indicate the start points and the star indicates the goal point
of the robot. In (a), when using Navigation without Social Model,
the robot drives directly toward the goal point and results in cutting
through the group on the left that moves against the robot. In (b),
when using Navigation with Social Model, the robot follows the
group on the right and avoids disturbances to the pedestrians.

real-world results, 95% of the participants report that the
robot forces other pedestrians to change their paths if using
Navigation without Social Model. When using Navigation
with Social Model, the ratio reduces to 4%. The survey result
validates that our method helps reduce disturbances to other
pedestrians as well as improves safety of the navigation.
A video of these results can be seen at www.youtube.com/

watch?v=I_SkA9rmxYE.

IV. CONCLUSION

The paper proposes an autonomous navigation system
capable of operating in dense crowds. In this system, a
Social Navigation Planning Subsystem incorporating a deep
neural network generates socially compliant behaviors. This

Metric Scene Without Social Model With Social Model

Collision (Safety)

(1) 97% 42%
(2) 92% 6%
(3) 92% 36%

AVG 93% 28%
Path Change (Naturalness) Real world 95% 4%

TABLE II: Results of survey study. A total of 466 participants
evaluate the simulation results in Fig. 4 and the real-world results
in Fig. 5. We can see that > 90% of the participants consider the
Navigation without Social Model to have collisions. For Navigation
with Social Model, the ratio reduces to < 40%. Further, 95% of the
participants report that the robot forces other pedestrians to change
their paths if using Navigation without Social Model. When using
Navigation with Social Model, the ratio reduces to 4%. The ratios
reduce by 3 times in terms of collision and 20 times in terms of path
change which validate that our method helps reduce disturbances
to other pedestrians as well as improves safety.

involves a group pooling mechanism by inferring social
relationships to encourage the autonomous navigation to
join the flow of a social group sharing the same moving
direction. We show the effectiveness of our method through
quantitative and empirical studies in both simulations and
real-world experiments. The result is that by joining the
crowd flow, the robot has fewer collisions with people
crossing sideways or walking toward the robot. Joining the
flow also creates fewer disturbances to the pedestrians. As
a result, the robot navigates in a safe and natural manner.
Since this paper focuses on human-robot interactions at a
group’s level, extension of the work in the future can model
interactions between groups and scattered individuals.
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1 Introduction

Object detection plays a significant role in the
task of perception in autonomous driving, and lays
the foundation for subsequent tasks of path planning,
decision making, and vehicle control. Some state-of-the-
art methods to perform 3D object detection over LIDAR
point clouds utilize 2D CNN or 3D CNN after bird’s-eye-
view projection or voxelization [1] [2] [3] [4], while others
directly generate 3D box proposals from point clouds
in a bottom-up manner. However, these methods may
potentially suffer from the problem of overfitting, where
the performance exhibits large variations given changes
in the datasets used or the scenes displayed.

PointRCNN is a two-stage 3D object detector proposed
by Shaoshuai Shi et al. The framework performs 3D
object detection from raw point clouds in two stages:
in stage-1, high-quality 3D proposals are generated in
a bottom-up manner by segmenting the point clouds
into foreground points and background points; in stage-
2, the proposals are refined in canonical coordinates
by combining local spatial features and global semantic
features to obtain final detection results [5]. The authors
claim that the PointRCNN architecture outperforms
state-of-the-art methods with remarkable margins when
tested on the 3D detection benchmark of KITTI dataset.

We first evaluate PointRCNN on the KITTI dataset to
verify whether the performance of the pre-trained model
matches the accuracy claimed by the author. We notice
that the running outputs of PointRCNN contain only
accuracy data given by comparison between predicted
results and known benchmarks, but the LIDAR data
scanned by our lab have not been labeled. Therefore,
we visualize the velodyne point clouds and predicted
bounding boxes in both 3D space and x-y plane using
MATLAB to check whether the bounding boxes mark
the vehicles accurately. Finally, we standardize the
data structure of our data to be consistent with KITTI
velodyne data, and test PointRCNN on our dataset.

This paper is structured as follows: Section Two
briefly introduces the structure and usage of the KITTI
3D object detection dataset, and records steps to set
up the virtual environment for PointRCNN, prepare
data, and evaluate the pre-trained model on the KITTI

dataset. Section Three discusses the details of using
MATLAB to visualize 3D point clouds and 3D bounding
boxes separately, integrate them together in Velodyne
coordinates, and project them from 3D space to the
x-y plane. Section Four focuses on converting the
data format and structure of our data into the same
as that of the KITTI velodyne data, and modifying
data split settings in PointRCNN configuration files, in
order to test the PointRCNN pre-trained model on our
data. Section Five discusses the possible directions and
expected outcomes of future work.

2 Testing PointRCNN on KITTI
Dataset

2.1 Environment Set-up

First, we build an Anaconda virtual environment
for testing PointRCNN. Since PointRCNN requires the
Python version to be 3.6 or above, we create a virtual
environment and activate it with the following lines:

conda c r e a t e −n prcnn env python =3.6
a c t i v a t e prcnn env

New packages will be installed under virtual envi-
ronment prcnn env from now on, so that the running
environment for other modules on the server will not
be affected. PointRCNN also requires PyTorch with
version 1.0, so we install PyTorch on virtual environment
prcnn env with the following line. Note that our CUDA
version is 8, for other CUDA versions, ‘cuda80’ should
be changed into the corresponding version.

conda i n s t a l l pytorch =1.0 cuda80 −c pytorch

PointRCNN also requires dependent python libraries
including easydict, tqdm, and tensorboardX. These
libraries can be installed with the following lines. Note
that if error messages given by later steps indicate the
lack of certain dependent libraries, they can be installed
in a similar way.

conda i n s t a l l −c conda−f o r g e e a s y d i c t
conda i n s t a l l −c conda−f o r g e tqdm
conda i n s t a l l −c conda−f o r g e tensorboardx
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Now the virtual environment prcnn env is ready for
installing PointRCNN. We download, build, and install
PointRCNN with the following lines.

g i t c l one −−r e c u r s i v e https : // github . com/
sshaoshua i /PointRCNN . g i t
sh b u i l d a n d i n s t a l l . sh

2.2 Dataset Preparation

The 3D object detection benchmark in the KITTI
dataset consists of 7481 training point clouds and 7518
testing point clouds [6]. Eight different classes are
labeled in the benchmark, but only the classes ‘Car’
and ‘Pedestrian’ are evaluated. The sub-folder named
velodyne/ contains the 3D laser scan data in bin format;
the sub-folder named image 2/ contains the left color
camera images in png format; the sub-folder named
label 2/ contains the left color camera label files in
txt format; the sub-folder named calib/ contains the
calibration for all four cameras in txt format. The data
structures in velodyne and label files will be introduced
in future sections.

The datasets can be downloaded from http://www.
cvlibs.net/datasets/kitti/eval object.php?obj benchmark
=3d using the ‘wget’ command. The downloaded sub-
folders calib/, velodyne/, label 2/, and image 2/ must
be arranged into the structure shown in the following
image, for the purpose of valid data retrieval.

Figure 1: KITTI dataset sub-folders structure.

2.3 Evaluating the Pre-trained Model

The pre-trained model of PointRCNN is trained on
the ‘train’ data split with 3712 samples. We evaluate the
model on the ‘val’ data split with 3769 samples with the
following line:

python eva l r cnn . py
−− c f g f i l e c f g s / d e f a u l t . yaml
−−ckpt PointRCNN . pth
−−b a t c h s i z e 1
−−eval mode rcnn
−−s e t RPN. LOC XZ FINE False

The evaluation module is borrowed from
https://github.com/traveller59/kitti-object-eval-python,
which performs fast KITTI object detection evaluation
in python and supports 2d, bev, 3d, and aos. The
evaluation metric is Average Precision(AP) with IoU
threshold set to 0.7. The performance of the pre-trained
model on the ‘val’ data split is shown as follows:

Figure 2: Performance of the pre-trained model on the
Car class of KITTI ‘val’ data split. The evaluation metric
is Average Precision(AP) with IoU threshold 0.7. For
each of 2d evaluation, bev evaluation, 3d evaluation, and
aos evaluation, the three precision numbers correspond
to easy, moderate, and hard respectively.

3 Visualization of Point Clouds
and Bounding Boxes

3.1 3D Visualization of Point Clouds

PointRCNN utilizes the velodyne 3D laser scan data in
the KITTI dataset. The scans of velodyne point clouds
are stored as an N × 4 float matrix into binary files
with names starting from 000000.bin. In the matrix,
each row contains four float values: the first three
values correspond to x, y, and z coordinates of a specific
point, while the last value corresponds to the reflectance
information of this point. Since the scans are stored
in a row-aligned manner, four consecutive float values
correspond to one measurement.

We utilize MATLAB for visualization of the velodyne
point clouds. Functions fopen() and fread() are employed
to read the binary file into a N × 1 float matrix. Note
that it’s essential to specify the data type to be float
when invoking the fread() function. Based on the data
structure of velodyne data, a simple re-shape of the
matrix is performed after retrieving the float values,
converting the N × 1 matrix into a N

4 × 4 matrix.

For each row in the N
4 ×4 matrix, the first, second, and

third entries correspond to the x, y, and z coordinates
of a point respectively. The scatter3() function is then
employed to plot the points in 3D space. Among
the three images below, the left one shows the N × 1
matrix obtained by fread(), where only the first four
measurements are included; the middle one shows the
converted N

4 × 4 matrix; and the right one shows the
plot of the overall point cloud.
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Figure 3: Visualization of 3D point clouds.

Figure 4: Data structure of result file 000001.txt.

3.2 3D Visualization of Bounding Boxes

PointRCNN performs object detection in a frame-by-
frame manner. For each frame, the prediction results
of bounding boxes are stored in a txt file, with file name
following the form of 000001.txt. To understand the data
structure of the result files, the data stored in 000001.txt
are shown in the above image (Figure 4).

In the frame labeled as 000001, four objects are
detected, each corresponding to one row in the file.
In each row, the first value describes the type of the
object; the ninth, tenth, and eleventh values describe
the dimensions of the object, corresponding to its height,
width, and length respectively; the twelfth, thirteenth,
and fourteenth values describe the location of the object,
corresponding to the x, y, and z coordinates of its center;
the fifteenth value describes the rotation ry around the
y-axis in camera coordinates.

With the information of each object’s predicted
dimensions, location, and rotation, we are able to
calculate the coordinates of its eight corners, and
subsequently plot the bounding boxes in 3D space. The
MATLAB codes for calculating corner coordinates are as
follows:

pos=[x , y , z ]
x c =[ l /2 , l /2,− l /2,− l /2 , l /2 , l /2,− l /2,− l /2 ]
y c =[0 ,0 ,0 ,0 , −h,−h,−h,−h ]
z c =[w/2,−w/2,−w/2 ,w/2 ,w/2,−w/2,−w/2 ,w/2 ]

R=[ cos ( ry ) 0 s i n ( ry ) ;
0 1 0 ;

−s i n ( ry ) 0 cos ( ry ) ]

c3d=[ x c ; y c ; z c ]
c3d=(R∗c3d ) ’
c3d=c3d+[pos ; pos ; pos ; pos ; pos ; pos ; pos ; pos ]

Here, c3d is a 8 × 3 matrix, where each row in the
matrix corresponds to one corner of the bounding box,
and the three values in one row correspond to the x, y,
and z coordinates of a corner point. The plot3() function
is then employed to connect the 8 corners and plot the
12 edges of the bounding box. The following two images
illustrate the visualization of prediction results recorded
in 000001.txt: the left one shows the c3d matrix of the
fourth predicted object (corresponding to the fourth row
in 000001.txt); the right one shows all bounding boxes
plotted in 3D space.
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Figure 5: Visualization of 3D bounding boxes.

3.3 Integrating Point Clouds with
Bounding Boxes

In the previous sections, we have implemented the
visualization of point clouds and bounding boxes. In
order to evaluate whether the predictions are accurate
(i.e., whether the bounding boxes mark the cars well),
point clouds and bounding boxes have to be integrated
together. However, it is invalid to directly plot point
clouds and bounding boxes into one plot, because their
coordinates are not consistent.

Figure 6: Relationship among Velodyne Coordinates,
Camera Coordinates, and Object Coordinates.

The x, y, and z coordinates of point clouds are in
Velodyne Coordinates, while the x, y, and z coordinates
of bounding boxes are in Camera Coordinates. The
conversion relationship between Velodyne Coordinates

and Camera Coordinates is illustrated in the above image
(Figure 6) [7]. We convert the x, y, and z coordinates of
bounding boxes from Camera Coordinates to Velodyne
Coordinates when calculating matrix c3d.

pos=[x , y , z ]
x c =[ l /2 , l /2,− l /2,− l /2 , l /2 , l /2,− l /2,− l /2 ]
y c =[0 ,0 ,0 ,0 , −h,−h,−h,−h ]
z c =[w/2,−w/2,−w/2 ,w/2 ,w/2,−w/2,−w/2 ,w/2 ]

R=[ cos ( ry ) 0 s i n ( ry ) ;
0 1 0 ;

−s i n ( ry ) 0 cos ( ry ) ]

c3d=[ x c ; y c ; z c ]
c3d=(R∗c3d ) ’
c3d=c3d+[pos ; pos ; pos ; pos ; pos ; pos ; pos ; pos ]

x c=c3d ( : , 3 )
y c=c3d ( : , 1 )∗ ( −1)
z c=c3d ( : , 2 )∗ ( −1)
c3d ve l = [ x c y c z c ]

Here, matrix c3d vel contains the locations of corners
in Velodyne Coordinates. In order to focus on objects
close to the camera, we set limitations on the x, y, and
z coordinate range. The range of the x-axis is limited
to [0, 60]; the range of the y-axis is limited to [-10, 20];
the range of the z-axis is limited to [-5, 2]. Points and
bounding boxes which exceed the limitation will not be
shown on the integrated plot.

Among the following images, the left one shows the
point cloud of the frame labeled as 000001; the middle
one shows the predicted bounding boxes of the frame
labeled as 000001 in Camera Coordinates; the right one
shows the integration of them in Velodyne Coordinates.
Note that due to the limitation on the coordinate range,
some boxes are missing or incomplete.
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Figure 7: Integrating point clouds with bounding boxes.

Figure 8: Projection of point clouds and bounding boxes from 3D space to x-y plane.

3.4 2D Visualization of Point Clouds and
Bounding Boxes

Due to potential disturbance during the LIDAR
scanning process and the complexity of point clouds,
sometimes it is difficult to distinguish a vehicle from its
background in the point clouds. We notice that a vehicle
tends to exhibit an approximate L-shape when viewed
from the top. Therefore, we project the point clouds
together with predicted bounding boxes from 3D space
to the x-y plane. In MATLAB, this projection can be
performed by changing the scatter3() function into the
scatter() function, and changing the plot3() function into
the plot() function.

Figure 8 illustrates the projection from 3D space to
the x-y plane: the left one shows the 3D point clouds and
predicted bounding boxes of the frame labeled as 000004;
the right one shows the 2D point clouds and predicted
bounding rectangles of frame 000004.

4 Testing PointRCNN on Our
Dataset

4.1 Standardizing Data Structure

In order to test PointRCNN on our own dataset, we
first convert the data structure of our data into the
same as that of the KITTI velodyne 3D laser scan data.
Our data are stored in csv format, with each frame
corresponding to one csv file. In the file, each row stores
the scanned information of one point. The eighth, ninth,
and tenth columns store x, y, and z coordinates of the
point, which correspond to the first three columns in
the KITTI velodyne data; the first column stores the
reflectance information of this point, which corresponds
to the last column in the KITTI velodyne data. The data
structure of our data is shown in the following image.
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Figure 9: Data structure of our data. In csv format.

We utilize MATLAB to perform the conversion of the
data structure. The csvread() function is employed to
read the raw data into a N×11 matrix. The first, eighth,
ninth, and tenth columns are selected and arranged in
order, forming a N × 4 matrix. Since in KITTI velodyne
data, the scans are stored in a row-aligned manner,
the N × 4 matrix has to be re-shaped into a 4N × 1
matrix, with four consecutive values corresponding to
one measurement. Functions fopen() and fwrite() are
then employed to write the matrix values into a binary
file. Note that it’s essential to specify the data type to
be float when invoking the fwrite() function.

4.2 Testing the Pre-trained Model

After standardizing the data structure of our
data, we replace the KITTI velodyne data in the
/testing/velodyne/ directory with our data. When
running the pre-trained model, the default data split is
set to be the ‘val’ data split with 3769 samples. In order
to test the model on our data, we modify two settings
in the configuration files: 1. In config.py under /lib/
directory, the default value for C.TEST.SPLIT is ‘val’,
and we modify this value into ‘test’; 2. In default.yaml
under /tools/cfgs/ directory, the default value for SPLIT
in TEST is ‘val’, and we modify this value into ‘test’. The
following two images show the places to modify.

Figure 10: Modifying data split settings in configuration
files config.py (above) and default.yaml (below).

Once the data split is set to ‘test’, data will
be loaded according to the test.txt file in the
/data/KITTI/ImageSets/ directory when running the
pre-trained model. The original test.txt file contains
numbers starting from 000000 up to 007517, which
correspond to the names of KITTI velodyne testing files.
Following this test.txt file, errors occur during the data
loading process, because we have replaced the KITTI
velodyne data in the /testing/velodyne/ directory with
our own data. Our data only contain 850 samples, so the
file names no longer match. Therefore, we update the
test.txt file into a new one containing numbers starting
from 000000 up to 000849, which correspond to the
names of our data files.

Now we can test the PointRCNN pre-trained model on
our data by running the following line:

python eva l r cnn . py
−− c f g f i l e c f g s / d e f a u l t . yaml
−−eval mode rcnn
−−t e s t

The following image (Figure 11) shows the message
printed out after executing the above test command.
According to the message, the value of cfg.TEST.SPLIT
has been set to ‘test’, and the total number of test
samples is 850, indicating that our own data are loaded
instead of the 7518 test samples in the KITTI velodyne
dataset.

Due to the absence of benchmarks to compare with,
tests of the pre-trained model on our dataset give no
precision outputs similar to those shown in Figure 2. The
tests performance can only be evaluated by visualizing
the point clouds together with predicted bounding boxes
and checking whether the bounding boxes mark the
vehicles accurately, which will be part of the future work.
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Figure 11: Testing PointRCNN pre-trained model on our dataset with 850 test samples.

5 Future Work

In the future, we will first identify situations where
prediction accuracy of PointRCNN and other 3D object
detection methods show a clear decrease, and will then
improve upon them by modifying the network structures
or introducing new ideas. We will also project the
object detection results from 3D dense LIDAR to planar
LIDAR. The resulting 3D object detection algorithm is
expected to better deal with the problem of overfitting
and be applicable over a wider range of datasets and
scenes.
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Kalman Filter-Based Real-Time Detection and Localization of Objects
on Conveyor Belt

Chenxiao Yu1, Aditya Agarwal2 and Maxim Likhachev2

Abstract— Real-time, fast recognition and continuous track-
ing of dynamic objects is a significant prerequisite for automa-
tion tasks such as conveyor belt manipulation, which requires
precise localization. There have been many achievements in
dynamic object detection. However, accurately locating mov-
ing objects in 3D space is still a challenge due to random
errors. To reduce errors, this paper makes improvement on
an existing perception system by applying Kalman filter [1]
to the localization part. The system takes its input from an
RGB-D camera, and publishes the coordinates of objects as
they are detected. In the experiment, we had the perception
system to detect one object placed on a moving conveyor belt.
The accuracy of localization was evaluated by analyzing the
errors. Then we compared the performance of the improved
system with the original one to verify the effectiveness of our
improvements. The results show that the average errors are
reduced by 36.27% on x-axis, 16.67% on y-axis, and 35.29% on
z-axis.

I. INTRODUCTION

The application of robot in automation manipulation is
mainly based on Hand-Eye Coordination [2]. Robots receive
visual information and process it through a perception system
before transmitting specific data to its controller. According
to the data, the controller drives the robot to do correspond-
ing actions. In this process, the correctness of the data is
important because it decides whether robots can complete
tasks. Therefore, improving the accuracy of data generated
from visual information, including object type, position, and
orientation, has been a significant goal.

In this paper, we are going to discuss one automation
manipulation scenario where data from perception must be
highly accurate, conveyor belt manipulation. In this situation,
the robot should continuously determine the position of the
object on a moving conveyor and plan to grab it. The input
visual information is point clouds of the object and conveyor
from an RGB-D camera, Figure 1. The perception system
then handles the information and publishes the coordinate
of the object centroid in robot’s base frame. However, the
coordinates published are usually inaccurate due to random
errors caused during the whole process. Such errors that can
be also regarded as noises are unavoidable and will affect
the followed planning and grabbing part.

To solve the problem stated above, we apply the real-time
Kalman filter to the localization, which is the final part before

1Robotics and Artificial Intelligence Laboratory, Chinese University of
Hong Kong, Shenzhen , China. This work is done during Robotics Insti-
tute Summer Scholar program in the Robotics Institute, Carnegie Mellon
University. 116010273@link.cuhk.edu.cn

2Robotics Institute, Carnegie Mellon University, USA.

Fig. 1. The point clouds of a cuboid placed on conveyor belt are took
from an RGB-D camera.

publishing data. The filter is able to estimate the values that
are closer to true ones based on the previous data from
localization. The experiment verifies that this method filters
out extreme values and greatly reduces the average errors.

The rest of the paper is organized as follows: Section II
discusses related work. Section III introduces the pipeline of
the perception system. Section IV explains the improvement
of applying Kalman filter to localization. Section V describes
the experiment process. Section VI shows the results and
analysis of the experiment.

II. RELATED WORK

Localization accuracy is highly required in multiple cases
so there have been many methods to reduce the errors. When
using a localization method based on landmarks, to solve
the data association problem, the nearest neighbor filter has
been used to correctly assign the landmarks detected by the
sensors to the landmarks present in the map [3]. In intelligent
transportation, it took the carrier-to-noise ratio (CNR) of raw
pseudorange measurements into consideration for mitigating
noises so that it can improve the accuracy of the distance
detection [4]. A method named PERCH [5] was introduced
for multi-object recognition and localization, which is able to
correctly estimate the pose of over 20 objects with translation
error under 1 cm and rotation error under 5 degrees.

Except for the methods mentioned above, Kalman filter
is also widely used in the intelligent field. In dynamic
object tracking, Kalman filter has been used for extracting
the estimate of object’s position on the table plane [6].
An extended Kalman filter (EKF)-based algorithm has been
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applied to real-time vision-aided inertial navigation [7]. A
position estimation scheme for cars based on the integration
of global positioning system (GPS) with vehicle sensors also
involved extended Kalman filter [8]. In addition, the extended
Kalman filter has been employed to identify the speed of
an induction motor and rotor flux based on the measured
quantities in a vector control [9]. Inspired by the various
application of Kalman filter, we consider to integrated it into
the existing system to improve localization accuracy.

III. PERCEPTION SYSTEM STRUCTURE

The perception system is based on RGB-D sensor data
and the base frame of UBTech’s Wheeled Walker robot,
Figure 2. The overall procedure is that input point cloud
data is transformed from camera frame to base frame. The
region without conveyor is cut out to avoid interference from
other objects. Then conveyor geometry is extracted and the
remaining points are clustered. Those clusters are recognized
and located to provide coordinates in the base frame. The
main parts of the perception system are described in detail
below.

A. Frame Transformation

Transforming the point cloud to robot base frame is
necessary here, Figure 3. First, the output of the perception
system is for robot grabbing so the coordinates should in
robot frame. Besides, making the conveyor belt parallel to
XY plane can simplify the process of cutting work region and
improve recognition performance. The transformed frame is
a right-hand coordinate system with the X-axis extending
forward from the robot, the Y-axis extending to the robots
left, and the Z-axis extending up from the base.

B. Conveyor Surface Extraction

In this step, we take advantages of the functions in PCL
segmentation package to filter the conveyor surface. We set
the model type as PLANE and using RANSAC [10] method
to search for points which belong to the conveyor. The
distance threshold, which determines how close a point must
be to the plane model in order to be considered an inlier, is
set as 0.04m. After plane extraction, the points considered as
inliers are removed. This process repeats until the number of
remaining points is less than 30% of the original one. Finally,
all the points that are not within the object are filtered out.

C. Recognition and Localization

Since the surface of the conveyor has been removed, The
remaining points form the point cloud of the object to be
detected. They are clustered using kd-tree search method.
Once a cluster is formed, we still use RANSAC method to
extract the points which are considered inliers of a cylinder.
Although what we are going to detect is not always cylinders,
this cylinder fitting method has been verified to be able
to recognize all the objects with regular shape, including
cuboids. Once a cluster is successfully fitted by a cylinder,
we can compute the centroid of the cylinder, which is exactly
the position of the object.

IV. KALMAN FILTER-BASED LOCALIZATION

The frequency of localization is about 20Hz, which is
high enough for the robot to plan to grab. However, there
exists randomness in the process of cylinder fitting process,
so that the centroid coordinates computed is not always
accurate. During the tests, when the object moves towards
the camera, the values of x, y, and z axes keeps fluctuating
and some particles obviously deviate from normal values.
These outliers will cause a bad impact on grabbing planning.
In order to optimize the localization performance, a real-
time filter is needed to prevent the position value from being
interfered by random error. Here we apply Kalman Filter
to the localization, which is suitable for linear, discrete and
finite-dimensional Systems. The filter will produce estimates
of the true coordinate values that are more accurate than
those only based on the detection. The algorithm is shown
in Algorithm 1.

Algorithm 1 Kalman Filter-Based Localization
Input: State-transition model, A

Observation model, H
Predicted error covariance, P
Covariance of the process noise, Q
Covariance of the observation noise, R
Filtered value at time step k-1, Vk−1

Detected value at time step k-1, Vd

Output: Filtered value at time step k, Vk

1: Make a prior estimate Vest = A ∗ Vk−1

2: Calculate prior mean variance P = A2 ∗ P +Q
3: Compute Kalman gain KG = P ∗H/(P ∗H2 +R)
4: Calculate posteriori estimate Vk = (Vd − Vest) ∗KG

5: Update posteriori estimate P = (1−KG ∗H) ∗ P
6: return Vk

Vd and Vk respectively denote the detected coordinate after
localization process and output one after Kalman filter. Vk is
given an initial value at the beginning according to measured
x,y, and z. The values of A, H , and P are set to certain
values based on experience. R is obtained by computing
covariance using experiment data, which reflect the noise
of the perception system. The value of Q depends on R and
the actual test situations. This algorithm is applied to x-value,
y-value, and z-value respectively. Each time the coordinate
of object centroid is obtained by detection, the values of
x,y,z are input to three filters to compute the estimates of
true value. Thus, the system is able to publish filtered values
with the same frequency as detected ones, which achieves
the goal of real-time particle filtering.

V. EXPERIMENTS

A. Notations and Parameters

In this stage, we are going to test the effectiveness of
Kalman filter. The parameter settings of the Kalman filter is
shown in Table I. Since the values of x, y, and z are input
to three filters respectively, they have different Q, R and
initial values. The value of A, H , and P are set as the same
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Fig. 2. The pipeline of the perception system. A filter is added after the localization part before it publishes coordinates.

(a) Camera Frame (b) Base Frame

Fig. 3. Frame transformation. (a) shows the point clouds in camera’s frame
and (b) shows the point clouds in base frame.

TABLE I
EXPERIMENT PARAMETERS

Parameter Definition Value

A State-transition model 1
H Observation model 1
P Predicted error covariance 2
Qx Covariance of process noise on x axis 0.005
Qy Covariance of process noise on y axis 9× 10−6

Qz Covariance of process noise on z axis 7.6× 10−7

Rx Covariance of observation noise on x axis 0.0284
Ry Covariance of observation noise on y axis 1.86× 10−4

Rz Covariance of observation noise on z axis 3.61× 10−5

V0x Value of x coordinate at time step 0 1.4 m
V0y Value of y coordinate at time step 0 -0.15m
V0z Value of z coordinate at time step 0 0.71m

because they are estimates that has little influence when the
filter works.

B. Procedure

We aim to evaluate the accuracy of Kalman filter-based
localization and compare it with the unimproved one. There-
fore, we focus on the output coordinates of only one object
and compute the error between output value and actual value.

In the beginning, a cuboid is placed at a start point on the
conveyor where the detected x value is larger than 1.25m.
Localization and filter will start working when conveyor
moves at a speed of 3.2cm/s. Both the detected coordinates
and filtered coordinates will be recorded when detected x
value is smaller than 1.25m because the perception system
has bad performance when the cuboid is too far away.
Through doing linear curve-fitting on detected data, we can

get the speed of the cuboid in x-axis direction and y-axis
direction, which are -0.0319m/s and -0.003m/s respectively.
Since the height of conveyor is fixed, we regard the speed in
z-axis direction as 0m/s. The coordinate of the start point is
measured using ”Publish Point” in RViz, which is (1.245,-
0.155, 0.71). Therefore, the actual coordinates during cuboid
moving are:

x = −0.0319t+ 1.245

y = −0.003t− 0.155

z = 0.71

(1)

where t(s) denotes the time when detected and filtered
coordinates are generated and t is 0 when the cuboid is at
start point. During the experiment, we use ROS Time to
record the time of each detection, whose frequency is about
20 Hz.In this way, we can simultaneously get detected value,
filtered value, and actual value at each time step.

VI. RESULTS AND ANALYSIS

In this section, we will analyze the experiment data to
assess the localization performance after applying Kalman
filter.

Letting the cuboid move from start point to endpoint
during the experiment, we obtained 352 sets of coordinate
values, Figure 4. According to the figure, the previous
perception system already performs well in x-axis direction
localization but not well for y-axis and z-axis. After applying
Kalman filter, the localization performance got significant
improvement. The curves generated by filter have less fluctu-
ation and deviation compared with detected ones. This means
the filter effectively filtered many extreme values and made
estimates that closer to actual values.

In order to do a more rigorous analysis of the accuracy
of the localization, we compute the error of detected values
and filtered values with regard to actual values, Figure 5.
Although the errors of filtered values are larger than errors of
detected ones in some time periods, the filter does reduce the
error by looking at the general trend. In addition, the filter
obviously reduced the maximum error value in the whole
process. We also compute the average absolute errors under
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Fig. 4. From top to bottom, x, y, and z values of detected(blue),
filtered(red), and actual(yellow) coordinates versus time are plotted.

Fig. 5. From top to bottom, errors of x, y, and z values of detected(blue),
and filtered(red) coordinates with regard to actual ones versus time are
plotted.

these two conditions, Table II. It can be calculated that the
Kalman filter reduces the average error by 36.27% on x-axis,
16.67% on y-axis, and 35.29% on z-axis. Therefore, the filter
greatly improves the accuracy of localization.

VII. CONCLUSION

We have improved the localization accuracy of an existing
perception system by applying Kalman filter, which aims to
recognize the object on a moving conveyor and compute
the position of the object. The experimental results show
that the modified system is able to locate the object much
more accurately. According to the curves of the object
position varying with time, it fluctuates less and deviates

TABLE II
AVERAGE ERRORS

Condition Error Value (m)

Detected x axis 0.0102
Filtered x axis 0.0065
Detected y axis 0.0018
Filtered y axis 0.0015
Detected z axis 0.0034
Filtered z axis 0.0022

less. Besides, most of the extreme values are filtered out and
the error between published coordinates and actual ones was
reduced by 16.67∼36.27%.

This experiment was conducted when conveyor moves
at a low speed. In the future, we will verify the system
performance when conveyor moves faster and figure out
a better solution to keep the accuracy of localization. In
addition, the detection of object orientation will be integrated
into this system for output more information of the object.
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hand coordination in object manipulation,” Journal of Neuroscience,
vol. 21, no. 17, pp. 6917–6932, 2001.

[3] D. F. Wolf and G. S. Sukhatme, “Mobile robot simultaneous local-
ization and mapping in dynamic environments,” Autonomous Robots,
vol. 19, no. 1, pp. 53–65, 2005.

[4] K. Liu, H. B. Lim, E. Frazzoli, H. Ji, and V. C. Lee, “Improving posi-
tioning accuracy using gps pseudorange measurements for cooperative
vehicular localization,” IEEE Transactions on Vehicular Technology,
vol. 63, no. 6, pp. 2544–2556, 2013.

[5] V. Narayanan and M. Likhachev, “Perch: Perception via search for
multi-object recognition and localization,” in 2016 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2016, pp.
5052–5059.

[6] A. Cowley, B. Cohen, W. Marshall, C. J. Taylor, and M. Likhachev,
“Perception and motion planning for pick-and-place of dynamic
objects,” in 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2013, pp. 816–823.

[7] A. I. Mourikis and S. I. Roumeliotis, “A multi-state constraint kalman
filter for vision-aided inertial navigation,” in Proceedings 2007 IEEE
International Conference on Robotics and Automation. IEEE, 2007,
pp. 3565–3572.

[8] S. Rezaei and R. Sengupta, “Kalman filter-based integration of dgps
and vehicle sensors for localization,” IEEE Transactions on Control
Systems Technology, vol. 15, no. 6, pp. 1080–1088, 2007.

[9] Y.-R. Kim, S.-K. Sul, and M.-H. Park, “Speed sensorless vector control
of induction motor using extended kalman filter,” IEEE Transactions
on Industry Applications, vol. 30, no. 5, pp. 1225–1233, 1994.

[10] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp. 381–395, 1981.

208



 

Abstract-- It has always been a vision in the field of 

Human-Robot Interaction for autonomous robots to be 

useful and accepted in our everyday lives. The ability of a 

social robot to engage in natural interactions and maintain 

long-term relationships thus becomes a central focus, and 

this is also the case for Victor, Carnegie Mellon 

University’s (CMU) Scrabble-playing robot. We believe 

that personalization will improve engagement and help 

establish intimate, long-term relationships. A functional 

key needed before personalization then is face recognition, 

so that Victor can recognize the players he engages with. 

While state-of-the-art face recognition is continuously 

improved in private, commercial systems, little research is 

done on local optimizations of free, open-source face 

recognition. This paper conducts a preliminary 

comparison between two open-source face recognition 

systems - OpenFace and Dlib - and moves on to optimize 

Dlib, the selected model. While the Dlib model remains 

unchanged, classifiers and additional code are put in place 

to translate the model’s inputs and outputs such that 

predicted labels are calculated differently and potentially 

overridden. Moving forward, successful implementation of 

face recognition would allow us to record interaction logs 

between each player and Victor, and the information can 

then be used to personalize subsequent interactions.  

 
Keywords—Face Recognition, Human-Robot 

Interaction, Open Source 

I. INTRODUCTION 

ome is the final frontier, as some roboticists would 

say [1]. Though many robots are currently designed 

to perform specific tasks in unmanned environments, it 

is always a goal to bring robots closer to society, to our 

daily lives. Social robots are designed to interact 

routinely with people, and they are useful in tasks where 

human labor is limited, such as in the industry, 

entertainment, education, and service sectors.  

 

Victor, Carnegie Mellon University’s Scrabble-playing 

robot, is designed to be a social gamebot. With a playful, 

sarcastic personality, Victor will readily taunt his 

opponents – “Is that all you’ve got?” – and brag about 

himself while playing a game of Scrabble.  

1 V. Zeng is studying Artificial Intelligence at Carnegie Mellon 

University, Pittsburgh, PA 15213 (vzz@andrew.cmu.edu) 

 
2  R. Simmons is a professor and director of the Artificial 

Intelligence major at Carnegie Mellon University 

  

Victor’s torso is topped with a mobile head, 

displaying his animated face on a video screen. The 

Scrabble board is displayed on a table-sized touchscreen 

around which Victor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Victor playing Scrabble with other players [2]. 

 

and three other players sit. While he has no arms, he can 

electronically move his tiles while people move the 

virtual tiles with their fingers. Players can converse with 

Victor using keyboards. Despite his being a gamebot, 

Victor is not meant to be a scrabble master – he only has 

an 8600-word vocabulary compared to the official 

Scrabble dictionary of 178000 words. His personality 

and chat feature also make him a social robot.  

 

We believe that for Victor to fit into the CMU 

community, he needs to conform to social conventions 

and not the other way around. As a result, Victor’s 

interactions with players need to be natural and long-

term. Personalizing interactions for individual players 

would be a huge step in establishing intimate, long-term 

interactions, as that will allow Victor to interact with 

each player like a friend. Before that, Victor needs to be 

able to recognize the players he interacts with. Keeping 

in mind the importance of naturalness, we look for the 

most common way a human recognizes another human – 

through face recognition [3].  

 

Given a limited budget and the expectation that 

recognition will run continually, we considered two free, 

open-source face recognition systems – OpenFace and 

Implementing Face Recognition on a Social Scrabble-Playing Robot 

Vicky Zeng1 and Reid Simmons2 

H 
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face_recognition (python wrapper library of Dlib). For 

simplicity, we will refer to face_recognition as Dlib in 

this paper. The Labeled Faces in the Wild (LFW) dataset 

is a standard benchmark in face recognition. On the 

LFW benchmark, OpenFace achieves a 92.92% 

accuracy and Dlib achieves 99.38% [4, 5]. Both are 

numbers comparable to state-of-the-art recognition 

models and thus good candidates. In this work, a 

preliminary comparison was done on the two models 

with small test sets, where OpenFace was eliminated due 

to low Asian accuracy. We then optimized Dlib by 

balancing three desired outcomes: 1) maximize accuracy 

(correctly labeling known people), 2) minimize false 

positives (wrongly labeling a known person as another 

person), and 3) maximize unknown detection (correctly 

labeling an unknown person as ‘unknown’). The Dlib 

model remained unchanged, but data analysis was done 

to manipulate the model’s inputs and outputs such that 

original decisions were calculated differently and 

potentially overridden.   

 

We used the k-nearest-neighbors algorithm for the 

model, performing a weighted majority vote on the k 

most similar face images. Different dataset size classes 

also showed different output patterns. Using these 

patterns, we generated conditions with respect to dataset 

sizes. When these conditions were met, predicted labels 

were overridden with ‘unknown’. This was useful in 

reducing false positives and increasing unknown 

detection while sacrificing a small percentage of 

accuracy.  

 

The paper is organized as follows: Section II compares 

OpenFace and Dlib (background and related work), 

section III explains the methods and evaluations of our 

optimization on Dlib, section IV shows our final results, 

and section V covers the next steps of this research.   

 

  II. PRELIMINARY COMPARISON OF OPENFACE AND DLIB 

Both face recognition systems use convolutional 

neural networks and go through similar phases. Given 

an image, face detection is run to find faces in the 

image. Next, the faces are preprocessed and fed as input 

to the neural network, which produces a low-

dimensional representation (otherwise known as an 

embedding). This embedding can then be used with 

classification techniques to eventually output a predicted 

label.  

 

For both systems, Dlib’s face landmark detection is used 

to detect faces. Preprocessing is also similar, and the 

final embeddings are both represented in 128D vector 

spaces, where distances directly correspond to a measure 

of face similarity [4, 5]. The main difference between 

OpenFace and Dlib lie in their neural networks’ 

structure, loss function, and training data. Note that the 

neural networks described below were already trained 

by their designers: our work only uses the trained 

models.   

 

OpenFace uses FaceNet’s architecture, utilizing a triplet 

loss function [4]. This triplet selection procedure picks 

two images of the same person and one image of a 

different person, and the network is repeatedly trained 

such that the numbers of the two similar images are 

closer to each other and further from that of the different 

image. Two public datasets CASIA-WebFace and 

FaceScrub are combined to form 500K images, and the 

designers trained the network with this dataset.   

 

Dlib uses a ResNet network with 29 convolutional 

layers. It is similar to ResNet-34 published in Deep 

Residual Learning for Image Recognition [6].  By the 

designer, it uses “a structured metric loss that tries to 

project all the identities into non-overlapping balls of 

radius 0.6. The loss is a type of pair-wise hinge loss that 

runs over all pairs in a mini-batch and includes hard-

negative mining at the mini-batch level” [5]. A notable 

difference between Dlib and OpenFace is that Dlib’s 

procedure runs over pairs while OpenFace’s run over 

triplets. Dlib’s network was trained from a dataset of 

about three million images (7485 identities) that was 

formed from FaceScrub, VGG, and the designer’s 

collection of images from the internet.  

 

We used a small self-collected dataset of 12 identities, 

five to eight images per identity, to test the two models. 

The dataset contained a mix of races – White, Black, 

Asian, and Multiracial. OpenFace performed 

significantly worse on the Asian faces, averaging an 

accuracy of 40% (2/5 faces) compared to Dlib’s 80%. 

We achieved similar results with bigger datasets of 30 

Asian faces. This was a problem, as nearly 30% of 

CMU’s student body was Asian in 2018 [7]. Upon 

further inspection, we noticed that the dataset used to 

train OpenFace’s neural network lacked Asian identities, 

and other users have similarly reported low Asian 

accuracy [8].  

 

The designer of OpenFace made it possible to retrain the 

neural network with our own dataset. To have an idea on 

what a good size for a training set would be, we referred 

to Facebook’s DeepFace network, which was trained on 

a private dataset of four million images [4]. 

Unfortunately, training was too computationally and 

memory expensive that it would take up to a month for a 

dataset that’s half the size of Facebook’s (at two million 

images). That made training infeasible with the time 
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constraint, so Dlib (face_recognition) was chosen over 

OpenFace.  

 

     III. METHODS AND EVALUATION 

Recall that the goal is to add optimizations that 

improve overall performance without having to modify 

the Dlib model itself. Performance is improved by 

maximizing accuracy, minimizing false positives and 

maximizing unknown detection. This was a continuous 

process, as the outcomes gradually improved for each 

new optimization introduced. This section will follow a 

similar flow, where we explain each optimization and 

the improvement brought about by that addition. For the 

final results (achieved through the combination of all 

optimizations), refer to the next section, section IV.   

A.  Datasets 

All the datasets we used to test Dlib were subsets of 

two datasets –  MS-Celeb-1M-vlc and Asian-Celeb. MS-

Celeb-1M-vlc is a cleaned subset of MS-Celeb-1M, a 

large image dataset made available to the public by 

Microsoft. It contains the top 100K celebrities, who are 

mostly western [9]. The cleaned subset MS-Celeb-1M-

vlc we used contains 86K celebrities with close to four 

million aligned images. The other dataset we looked at 

was Asian-Celeb from glint [10]. As the name suggests, 

it contains 94K Asian celebrities with around three 

million aligned images. This is the largest, free Asian 

dataset available online with a good portion of identities 

having over 25 images each, and there contains little to 

no overlap between these 2 datasets. For each of my 

dataset, half of the identities came from MS-Celeb-1M-

vlc while the other half came from Asian-Celeb, to 

reflect CMU’s race demographics.  

 

B.  First Optimization: Recalculating predicted label to 

increase accuracy 

For simplicity, our datasets only had 1 face per image. 

We define a prediction to be accurate when the model 

correctly labels the known face in the image. Accuracy 

is then calculated out of all images with known faces, 

dividing that by the number of correct labelings of 

known faces.  

 

Datasets of different sizes were used to validate 

accuracy consistency within and across datasets. They 

were also used in a later optimization to find patterns. 

The sizes were 30, 200, 400 and 600 identities 

respectively.  

 

Existing limitation 

The method provided by the model only took one 

labeled image per identity label. However, many factors 

such as light illumination and facial expression 

variations could affect the similarity between two faces, 

making one image per label potentially problematic [3]. 

When given an image to predict, it found the best image 

match and output the corresponding label as the 

prediction. With this technique, we were limited to only 

returning the top image match, since all other matches 

would be of different labels and thus add no value.  

 

 Baseline results (before any optimization) 

The default method produced 83.5% accuracy and 

11.4% false positives (the remaining 4.6% were 

incorrectly labeled as ‘unknown’). However, there was a 

high standard deviation of 2-3% across all numbers. 

Since training images were randomly chosen and there 

could only be one training image per label, the quality of 

training images varied each run, affecting the numbers.   

 

Solution 

This problem was solved by applying classifiers to the 

model – instead of having one image per label, multiple 

images could be associated with the same label. With 

this, we could meaningfully look at subsequent image 

matches after the best match, as the images after could 

be of the same label or not. This allowed us to observe 

patterns through data analysis and testing.  

 

We define the following terms for clarity. A label is 

the identity of a person (i.e. Vicky), an image is an 

instance of a label (there can be multiple images of 

Vicky in the dataset), while the distance is the distance 

between an unlabeled image and labeled image (the 

smaller the distance, the more similar the two images 

are). This distance is a numerical value calculated by the 

model.  

 

Given a dataset, we randomly split it into training and 

testing data with a 7:3 ratio. Training data were used to 

train the classifier, so each training image was labeled. 

Testing data were unlabeled where the Dlib model 

predicted the labels. Using a dataset of 200 identities, we 

compared a Support Vector Machine classifier with a K-

Nearest Neighbors classifier. An SVM classifier creates 

a hyperplane which separates images into classes [11]. 

In k-NN, the image is classified by a plurality vote of its 

k nearest neighbors and assigned to the label most 

common among these neighbors [12]. Refer to Figure 2 

for a visual representation of the classifier.  

 

The SVM classifier produced an accuracy of 91% while 

the k-NN classifier achieved 93% with k=3.  

 

Now using the k-NN classifier, we explored three 

factors: the number of training images per label 

(5,10,20), the k value (3,5, 

√#𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑖𝑒𝑠, √#𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑠𝑖𝑧𝑒), and the weights to the 
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respective neighbors ( 1,
1

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
,

1

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2)  . When 

testing a factor, other factors were kept at the optimal 

values found previously. If the factor was yet to be 

optimized, the default value was chosen.  

 

Results after the first optimization 

The best combination showed a k-NN classifier with 

10 training images per label, k=5, and a weighted vote of 
1

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2  for each neighbor. Accuracy increased by 

11.3% to 94.8%. The remaining 5.2% were false 

positives.  
 

Fig. 2: Sample run with an unlabeled image. Images 

from [9]. 

 

C.  Second Optimization: Overriding predictions to 

reduce false positives and increase unknown detection 

From the optimization in part B above, we got 94.8% 

accuracy and 5.2% false positives on the dataset of 200 

labels – 2000 training images and 600 test images. 5.2% 

false positives meant that 5.2% of the known images 

were instead labeled as another label. That was 

undesirable in a real-world application. Imagine 

recognizing a friend as another friend. Instead, it would 

be ideal that uncertain faces be labeled as ‘unknown’. 

Similarly, we want unknown faces to be labeled as 

‘unknown’. 

 

Existing limitation 

The intuitive solution was to lower the accepted 

threshold on distance, where faces were labeled 

‘unknown’ if they were above this threshold (the greater 

the distance, the more different two images were). The 

idea followed because distance was supposed to be a 

measure of similarity. Unfortunately, at this level they 

no longer were good measures of uncertainty: lowering 

the threshold compromised a significant percentage of 

accuracy, reducing up to 10% accuracy for reducing 1% 

false positives. This suggested that the model’s measure 

of similarity was inaccurate at this level.  

 

The model was also bad at detecting unknown faces. 

Two unlabeled datasets of 20 labels (60 images) and 150 

labels (300 images) were used to test unknown 

detection. At this stage, unknown detection was 64.4%.   

 

Method 

To distinguish true positives from false positives and 

correctly identify unknown faces, we needed to find 

other patterns indictable of uncertainty. Conditions 

based on such patterns could then be written to detect 

and override the model’s predicted labels to ‘unknown’. 

Large amounts of testing and data crunching were done 

on the top nearest matches to find patterns.  

 

The challenge was three-fold as there were two sources 

of information from the top 5 image matches: the 

distance values and the identity labels. This meant that 

we could find patterns from the distance, the labels or a 

combination of the two. Given the vast number of 

possible combinations to check, going through them 

systematically would be inefficient. We approached the 

problem from two directions. The first approach split the 

false positives from the true positives. Then, the same 

data collection was conducted on both pools, looking at 

the distances and labels separately. When any noticeable 

differences occurred, related combinations of distances 

and labels would then be looked at. The second direction 

started by analyzing the patterns in false positives. As 

the pool of false positives was significantly smaller, 

more pattern data could be collected at a faster rate. 

When meaningful patterns appeared, they would be 

tested against the true positives to assert viability and 

tweak condition thresholds. This was repeated for 

unknown detection, with the two pools as unknown 

faces and known faces.  

 

Solution 

The conditions written based on the patterns found 

could be described as three types. Some conditions were 

local – they were based on patterns unique to that 

dataset size range. Other conditions were an in-between 

– the pattern was repeated, but the exact threshold for 

the condition to override predictions to ‘unknown’ was 

different. The remaining conditions were universal – 

they were based on patterns repeated across all dataset 
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sizes.  

 

In consideration of the complexity and number of 

conditions, this paper will just highlight the general 

trends of different condition types and some noticeable 

differences between local conditions of different dataset 

sizes. This is our second and last optimization, and 

results will be displayed in the next section. 

 

Local conditions 

Within the top five image matches, recall that each 

match was associated with a label and a distance value. 

The patterns we found could be categorized into three 

groups: patterns on unique labels, the threshold of 

distances, and the distance difference between matches.  

 

1) Unique Labels 

One pattern we actively looked at was the number and 

order of unique labels within the five matches. For 

example, if the five matches contained three images of 

Vicky and two images of Angela, there would be two 

unique labels as the number. With the same example, we 

could list the five matches in increasing distance value: 

Angela_image_1, Angela_image_2, Vicky_image_1, 

Vicky_image_2, Vicky_image_3. Then we would 

observe that although there were more images of Vicky, 

Angela’s images were more similar to the unknown 

image, and this was an order of unique labels we would 

be concerned about. 

Smaller dataset sizes of 100 and below achieved 

better results focusing conditions around unique labels. 

As there were fewer labels stored in the dataset, it was 

less likely for a known face to be matched with multiple 

other labels. This was not true for dataset sizes of 100 

and above. As the number of labels increased, a bigger 

portion of correct predictions was also matched to 

multiple different labels, so revolving around unique 

labels was not the best approach to separating false 

positives and unknown images from true positives. 

Dataset sizes in the 100-400 range still had patterns 

partially related to unique labels, but dataset sizes above 

400 did not.  

 

 

2) Threshold on the distance value 

Threshold referred to a cutoff on the distance value. 

Recall that each matched image had a distance value, 

representing the distance between that image and the 

unlabeled image. The greater the distance, the less 

similar the two images should be. As mentioned 

previously, dataset sizes in the 100-400 range relied 

partially on the number of unique labels but their 

conditions were less strict than the smaller datasets. That 

was because a good portion of correct predictions also 

had a big number of unique labels, just like false 

positives. For these datasets, their sizes were 

manageable enough for the Dlib model such that, after 

pattern-matching on the unique labels, playing around 

with thresholds could efficiently distinguish the false 

positives and unknowns. This could not hold for dataset 

sizes above 400. Due to a large number of labels, it was 

common for unlabeled images to have close distances 

with at least some of the labeled images. 

 

3) Distance difference between matches 

 For dataset sizes above 400, the large number of 

labels and images meant that many correct predictions 

would be matched with multiple labels, and many 

unknown images also had close distance values to some 

labeled images. The tools directly provided by the model 

was thus insufficient. In this case, we found more 

success calculating distance differences between 

matches – in other words, comparing how similar each 

matched label was to the unlabeled image. As an 

example, we could have the following five image 

matches in ascending distance value: Vicky_0.40, 

Angela_0.41, Angela_0.42, Vicky_0.42, Vicky_0.43. 

Then, we would try several different calculations. We 

could take the average of each label (i.e. Vicky: 

0.4+0.42+0.42 / 3 = 0.413) and extract that difference. 

We could first categorize the examples into different 

groups (i.e. one group contained all examples where the 

first label was the majority among top five matches but a 

minority among the top 3 matches), then take the 

average of the labels. After computing the numbers, we 

would find the difference between each label pair. If the 

difference was small, then it suggested the labels had the 

same level of similarity with the unlabeled image. The 

prediction would then be overridden with ‘unknown’.  

 

In-between conditions 

 The logic for in-between conditions followed by that 

of the local conditions. From the local conditions, we 

got that there were three main factors: unique labels, the 

thresholds, and the distance differences between 

matches. In-between conditions had a good combination 

of these three factors, but the threshold for each dataset 

size range was slightly different to match their 

situations. This was the case because the greater the 

number of labels, the greater the probability of an 

unknown image having close distance values with a 

labeled image. Since we were sacrificing accuracy for 

false positives and unknown detection, we needed to 

take advantage of this probability and maximize the 

trade-off (preserve as many correct predictions as we 

could while keeping false positives and unknown 

images above the threshold). Therefore, the threshold 

value changed depending on the dataset size.  

 

Universal conditions 

213



 Although we have described the general trends for 

each dataset size range above, some patterns existed 

across. A sample condition was as follows: If the top 3 

matches were all unique labels, override the prediction 

to ‘unknown’ if the difference between the first two 

matches was lesser than 0.08. On a high level, universal 

conditions indicated an extent of reliability of the face 

recognition model itself, as it did not rely on local 

observations to fine-tune patterns.  

IV. FINAL RESULTS 

The table below displays the results before and after 

all optimization. Note that the unknown column is 

different from the unknown detection column. The 

unknown column refers to all known faces that are 

predicted as ‘unknown’. This number is a combination 

of reduced accuracy and reduced false positives. The 

unknown detection column refers to all unknown faces 

that are correctly detected as ‘unknown’. Unknown 

faces are from a separate dataset and are not included in 

the calculations you see in the accuracy, false positives 

and the unknown columns. 

 
TABLE I: Results before and after optimization.  The numbers are 

averaged from five runs of each dataset, and the numbers in 

parentheses represent their standard deviations. 
 

 
 

Compared to before optimization, there was an 

improved performance across all ends – accuracy 

increased by 5.6%, false positives reduced by 10.6%, 

and unknown detection increased by 45.2%.  

 

The high standard deviation before optimization was 

explained earlier in the paper. As only one training 

image per label was taken, a random split of training and 

testing data caused the quality of training images to vary 

each run, creating large standard deviation.  

 

After optimization, most datasets had similar standard 

deviation except for the dataset of size 20. Due to the 

small dataset, the testing set was also small, so every 

wrong labeling took up a bigger percentage compared to 

wrong labeling in dataset sizes of 200 and above. 

 

Notice that accuracy was highest with only a classifier, 

standing at 94.8% compared to the final 89.1%. This 

decrease in accuracy was the trade-off we made to 

reduce false positives from 5.2% (with classifier only) to 

0.8% (after all optimization). It was a worthwhile trade-

off.  

 

V. FUTURE DIRECTION 

Going forward, we look to integrate face recognition 

into Victor’s current system. Physical responses from 

Victor can then be considered, such as greeting and 

looking in the direction of the person.  

 

Database structures are currently set up to support 

storage of interaction logs and game data. With face 

recognition, statistics from recognized players can then 

be stored across games and be used to personalize 

subsequent interactions.  

 

The general approach is to observe patterns from a 

player’s playstyle, chat history, visit frequency and 

respond to changes in those patterns. Specifically, we 

are looking into four areas: game, time, interaction and 

external.  

 

For game-focused patterns, we can look at the player’s 

skill level (score), his response times for each turn, and 

the types of turns he makes (double, triple, passes).  For 

time-focused patterns, we can look at total game 

duration, visit frequency, and days and times of visits. 

For interaction, sentiment analysis can be done to 

change Victor’s level of snarkiness. Other ideas include 

having simple conversations on past, current or 

upcoming events. Lastly, for external areas, we are 

looking to have Victor reach out to players through 

online platforms, such as inviting them to play during 

de-stress weeks over the semester. There remains a lot 

of potential for exploration.  
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Tactile only Active Sensing using Reinforcement Learning

Ziwen Zhuang, Jianren Wang, David Held

Abstract— Human has the ability to identify and pick up
objects without seeing it, such as grabbing a pen from the school
bag instead of cellphone, book, or wallet. These functionality
requires no visual input, where there are cases when visual input
is not available for robots. Currently, researchers adopting
cross-modal network to perform classification tasks [1], [2], or
using fixed touching policy to distinguish primitive objects [3].
And in terms of touching task, current method mainly adopted
re-grasping policy [4], which start by pinch the object with
high-dimension tactile sensor, and perform grasping quality
evaluation to determine whether to pick up the object based
on current grasping pose. This work proposed a series of
neural networks that can actively touch the objects. And we
examine the availability of using depth spherical projection
as geometric feature which enables the object classification.
Also, using reinforcement learning to train the active touching
policy improves the classification prediction accuracy, which
shows the concept that active touching with only tactile sensing
information is viable in objection classification.

I. INTRODUCTION

Human beings can recognize and grasp object based on
several touch information from hand, and perform grasp from
different angle with one shot. Considering picking a cup with
rings among a groups of pen, book and other accessories,
human was able to recognize which one is the cup and pick
it up by holing the ring.

However, this ability is not well studied in robotics.
The majority of grasping policy is using a two-fingered
gripper to pick the object from the top [1], [4]. Some works
using multi-modal, which combines visual and tactile as two
inputs, to perform instance reorganization [1], re-grasping [4]
and object manipulation [5], [6]. The input tactile sensing
data are usually high dimensional which makes the sensor
data compact enough and quite informative. These training
method are mostly non-end-to-end predictors that can be
trained by supervised learning with hand-coded loss function,
where all touching and sensing policy are pre-defined.

As the target of this work, we proposed a grasp in the
dark problem. The robot has no visual input, but are asked to
recognize an object whose rough location is already known.
The input demand could be the image of the object, a
snippet of text, or simply an object class label. The robot
should control the dexterous hand with tactile sensors and
actively touch the object from different direction. The pro-
posed method would contains three modules: active touching
module, feature extraction module and discriminator module.
Active touching modules will output the touching direction in
high level, which will be executed by a low-level controller.
The touch sensors will then returns the tactile data to the
feature extraction module. The feature extraction module will
be adopting spherical projection and build a sparse depth

image as feature output. And the discriminator takes in the
feature map and make predictions.

This work proposed a depth feature map that contains the
information of object shape information. And the extracted
information is indeed helping to distinguish the class of
the object. And this work shows the benefit of using active
touching policy trained using reinforcement learning, which
improves the feature extracted by spherical projection and
improves the prediction quality of distinguish network.

II. RELATED WORKS

a) Tactile Sensing: Tactile sensors are new method
coming into robotics and they are still not well studied.
It mainly serve as the combinations with the visual input,
which are trained in the multi-modal network and perform
re-grasping [4], assessing grasping quality [7], one-shot
grasping task [2] and objection classification [1]. Also, tactile
sensing network can be tested independently while trained
by a pre-trained vision based feature extraction network, that
helps guiding the tactile feature network to generate proper
feature representation and perform objection recognition
task [8]. However, there are few works focus on active
sensing using tactile information only, but more of using
it as a method of assessing the quality of grasping and aid
the robot to perform grasping and re-grasp [9].

b) Active Learning: The main hypothesis in active
learning is that the learning algorithm is able to learn from
the history of data and determine a policy that skews the data
sample distribution, which outperforms the traditional data
collecting algorithm. Active vision input is frequently studied
starting from 2000, recognizing objects based on the history
images [10] and adopt end-to-end policy learning for active
vision [11]. Since training the classification network requires
backpropagation which is unable to be provided based on
the nature of environment noise, reinforcement learning is
a proper solution to help bridge the gap between active
sensing policy and the classification network. Previous works
mostly studied on visual input and finish the reconstruction
task using recurrent neural networks [12]. But there are still
limited work study around the active tactile sensing policy
and recognition.

III. METHOD

In this section, we described our proposed active touching
structure which forms a circle interacting with the environ-
ment. Then, in the following subsections, we described in
details how we setup feature extraction and feed the feature
to classification network as well as using the distinguish
accuracy to train the active sensing policy.
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Fig. 1. Proposed active sensing problem structure

A. Feature Extraction

Spherical Projection: In order to feed the classification
network with more reasonable feature, where the feature
can be accumulated as the new touches comes in and be
more informative, we adopted a spherical projection. By
acquiring each joints position of the dexterous hand, these
3D coordinates can be translated to spherical coordinates
as figure 3. By taking the φ and θ, we will get the pixel
coordinates in the spherical map within the 0 ∼ 2π and
0 ∼ π scale1. And the depth can be extracted directly from
the r value of the coordinates. The depth image would show
reveal the geometric awareness of the touching object. From
that perspective, each new random touch would generate
more contact points. And the new contact points are more
likely to be projected onto the pixels that there are no
projections before so that new depth information will be
added to the spherical depth map.2

Fig. 2. Spherical Projection from contact points to a predefined sphere

B. Classification Network

Classification from image has already being well studied
and generated various of application in industry. Different
types of classification network are frequently used, such as
AlexNet [13], VGG [14] and ResNet [15]. We are using
ResNet 18 to perform the classification task. The classifica-
tion network cθ would output a vector based on the input
tactile feature map f (m), which gives the score of each
possible object. And we use cross entropy loss to compute
the network classification error between the ground truth
label f (l), which then can be used to back-propagates and

1In terms of the image indices, a little shift won’t affect the image
information

2Considering the convolution layer of neural network has the ability of
doing signal filtering, the maximum depth setting won’t matter as long as
all the depth measurement is within the range.

tune the network parameters. And the algorithm is tend to
compute the following optimization problem:

minimize
θ

−
∑
i

f
(l)
i log cθ(f

(m)
i )

C. Active Sensing

We proposed an active sensing policy that would take in
the feature map and outputs the hand closing gesture as
shown in figure 3. The high-level command will be executed
by a controller described in the next section. The dexterous
hand will make contact with the given objects and return the
3D locations of each contact points as the sensor information.
And the sensor information goes to a feature extraction layer
which was described in section III-A. The output feature will
then feed into a classification network, whose accuracy can
be used as a reward for the training of active sensing policy.

D. High to Low Level Touch control

We use the South Hampton Hand Assessment Procedure
(SHAP) test suite built by Light et. al [16] and using pre-
modeled mujoco file from [17], which gives the testing
freedom we need.

The high level control command contains 1 for the hand
rotation and 2 information related to the spherical coordi-
nates, and we can denote the action input as a 3D vector a.
As shown in figure 3, we define a = (γ, θ, w). The reason
why we didn’t take in r as one dimension of input is that,
we are assuming the object size is not given to the robot;
there is not point to stop the dexterous hand at a given point;
we can keep moving the hand close to the center until the
hand’s trajectory is being blocked by the object. So, we need
only 2 Dof which gives us the closing direction of the hand.

Fig. 3. Spherical Coordinates

Also, the high-level action command gives us the expected
direction the agent wants the hand to be. It can be trans-
formed to yaw-pitch-yaw Euler angle by equation (1).
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r =

yaw1
pitch
yaw2

 =

1 0 0
0 −1 0
0 0 1

wθ
γ

 (1)

Aside from calculating the hand rotation, the high-level
action command also tells us the hand closing direction.
So, we need a formulation to keep calculating the hand
3D location and change it frame by frame to move the
dexterous hand close to the target object. Considering the
control interface only allow us to move the hand by its wrist
using motion capture, we need a kinematic tree to calculated
the actual low-level command to move the wrist.

Before that, we will calculate the palm pose in the world
frame. From the hand rotation, we can get is quaternion
(w, x, y, z) by equations (2)

w = cos
r3
2
× cos

r2
2
× cos

r1
2

+ sin
r3
2
× sin

r2
2
× sin

r1
2

x = sin
r3
2
× cos

r2
2
× cos

r1
2
− cos

r3
2
× sin

r2
2
× sin

r1
2

y = cos
r3
2
× sin

r2
2
× cos

r1
2

+ sin
r3
2
× cos

r2
2
× sin

r1
2

z = cos
r3
2
× cos

r2
2
× sin

r1
2
− sin

r3
2
× sin

r2
2
× cos

r1
2
(2)

And, since quaternion and rotation matrix serves the same
functionality, they can be transformed simply by a bi-section
function. Transforming quaternion to rotation matrix based
on hand frame, we can adopt equation

R =1− 2(y2 + z2) 2(xy − zw) 2(xz + yw)
2(xy + zw) 1− 2(x2 + z2) 2(yz − wx)
2(xz − yw) 2(yz + wx) 1− 2(x2 + y2)


(3)

Thus, we can calculate the low-level command input to
the hand control. And the sequence of putting the dexterous
hand close to the target object is described in algorithm III-D

Algorithm 1 High level to low level control
1: procedure HAND CONTROL(p,m,h)
2: calculate the expected spherical coordinates s using

equation (1) and its quaternion q
3: calculate the rotation matrix R in hand frame using

equation (3)
4: initial hand position p0 ← R[0, 0, h]>

5: calculate the wrist (mocap) position w0 ← p+Rm
6: move the hand to the top of p0 with rotation q
7: move the hand to the position p0

8: move gradually close to the object until setting the
palm location to 0

9: close all the fingers until no hand movement is
detected3

10: record and return all joints relative position in world
frame

E. Pretrain data collecting

In order to simplify the action space, we provide the
robot with 3 dimension of controlling since there are already
well designed algorithms to control robot joints in order to
reach certain pose. The control action consist of the spherical
coordinates4 and one controlling the hand yaw rotation on
the sphere. Then, the hand will get close to the given rough
center and close the hand until it cannot move closer because
of blocked by the object. The joints position can be detected
using predefined sensors, which serve as a feed back to
the feature extraction module. Considering the 3 degrees of
freedom (DoF) action space is not a infinite space, we can
sample the action directly from a uniform distribution.

We have also tested the method where there are 6 DoF for
the active sensing policy to output. The action could consist
of a 3D location related to the given object center and a
3D Euler angle that specifies the dexterous hand pose. This
gives active sensing policy more freedom to decide how to
utilize the characteristics of the dexterous hand. Same as the
3 DoF action space, we random sample the from a uniform
distribution. However, as shown in figure 5, this method
reveals a serious problem that failed in accuracy for both of
the classification method, because the hand are highly likely
to touch the object using the back of the palm or the root
of the wrist where fingers are not able to touch the object
before it close to its own limit.

F. Training Touch Agent

As described in figure 1, an active sensing policy is
designed to facilitate touching gesture and improve the
classification network accuracy. We put the active sensing
policy in the environment with the extracted feature map as
observation. We adopt Proximal Policy Optimization (PPO)
to train the policy. We designed the reward as negative
cross entropy loss output by the classification network, which
makes a dense reward. This helps avoid the sparse reward
problem where the classification network never make correct
judgment on the produced depth feature image.

G. Alternatively Training Touching Policy and Classification
Network

We proposed an alternating training method to make the
active touching policy and classification network cooperate
better. Since it is difficult to back-propagate from throughout
the entire pipeline, we train the policy network and the clas-
sification network separately. We pre-train the classification
network with feature image collected by random touch. Then,
we train the active touch policy with fixed classification
network. It would be reasonable to train the classification
network later when the active touch policy converges to some
extent. classification network training will be based on new
feature data collected while the active touching policy is
training. The training procedure is described in algorithm III-
G.

4Spherical coordinates has 2 degrees of freedom (DoF).
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Fig. 4. low-level control of hand touching the object

Fig. 5. 6DoF action space: most of the touches does not make the touch
to the object within its palm

Algorithm 2 Alternative training classification network and
active touching policy

1: procedure ALTERNATIVELY TRAINING
2: Collect feature image from random touching policy
3: Train classification network using feature map
4: for i = 1, · · · do
5: Collect feature image using active touching pol-

icy
6: Count the accuracy and loss of classification net
7: Optimize active touching policy using PPO
8: if i mod t == 1 then
9: Train classify net using latest feature image

IV. EXPERIMENT

1) Experiment setup: To build up the test environment, we
set up two sets of objects: 5 objects with primitive shapes
(displayed in figure 6), and 5 bottles with different shape in
details (displayed in figure 7).

Every time we accept a high-level command from the
random sample, we move the hand to the top of a chosen
object with given pose in case of block during the hand
moving trajectory. Then, the hand controlled by motion
capture, will go down to the given touch direction. And get
close to the object as well as close the fingers, as figure 4. We
collect entirely 1000 training touch sequence (or 1000 depth
image accumulated by the sequence of touch), where each
touch sequence contains 5 finger joints data from a complete
high level touch.

Fig. 6. 5 primitive shaped objects

Fig. 7. 10 bottles with similar shape

A. Experiment comparison

First, we compare the availability of the proposed fea-
ture map. A simple baseline could be established using
Long Short-Term Memory network. Two comparisons are
described below:

1) Using hand coded depth feature map extracted from
given times of hand touching onto the object. And feed
the feature map to the ResNet 18, using cross entropy
loss and ADAM [18] as optimizer.

2) Using Long Short Term Memory network, we feed it
a sequence of finger joins information and let it learns
the feature representation itself, which is the output of
hidden state once finish feeding the touch sequence.
Then, trained the classification neural network as a
fully connected layer, optimizing using ADAM [18]
with the target of cross entropy loss.

Then, we test the improvement using what we have
proposed. We adopt active sensing policy trained using PPO.
And test the classification network using new feature map
collect from trained active sensing policy. In order to do the
ablation test, we also test the accuracy improvement with
only trained the active sensing policy without alternatively
tune the parameters of classification network.

V. RESULTS AND DISCOVERY

We tested both using LSTM as feature extraction and hand
coded feature extraction method on 5 primitive objects and
5 similar shaped bottles. Both algorithm in both data sets
converge well as displayed in figure V

But in comparison with the two algorithm, LSTM takes
much more training epoch to reach compatible accuracy
than ResNet with hand-coded feature extraction layer. Thus,
the proposed spherical feature map is reasonable to provide
information and facilitate the training process. However,
during the test time, overfit problem is exposed when testing
both the LSTM and the ResNet classification network.
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Fig. 8. Accuracy learning curve in 5 primitive objects

Fig. 9. Accuracy learning curve in 5 similar shaped bottles

Fig. 10. Test data accuracy in 4 different combination

Fig. 11. examples of extracted feature map

As figure 11 shows, the purple part are all non-detected
direction, where pixels are initialized with zero. So the depth
image matrix might be too sparse so that where the non-zero
pixels are positioned, which should be considered as noise,
becomes the main factor that influence the classification
network output.

By testing the benefit we derived from training active
touching policy, we compared the accuracy improvement
with and without alternative training the classification net-

Fig. 12. accuracy improvement with or without alternatively training

work. As figure 12 showed, using trained active touch policy
did improve the prediction accuracy of the classification
network. But alternative training is need or there will be
no accuracy improvement.

VI. DISCUSSIONS

This work examined the idea that active touching can in-
deed improve the classification prediction accuracy with only
tactile sensors input. And there are some further directions
that we could explore. Since the active touching policy did
improve the quality of classification information, whether
such a training can also improve the quality of gathering
information for other usage, for instance, the information
to generate better grasping policy or being used for 3D
reconstruction.
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