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Introduction
The Robotics Institute Summer Scholars Working Papers Journal is an annual publication 
of the Robotics Institute’s Summer Scholars Program at Carnegie Mellon University. The 
journal is a medium for the undergraduate students of the summer research program to 
communicate their work in collaboration with the participating lab faculties. This journal 
encompasses the learnings and research findings of the students over the eleven-week long  
remote-engagement with the CMU community for the year 2020. 

The journal comprises 40 papers written by the scholars participating in RISS 2020. The 
papers included explore varied domains of Robotics including: Localization, Mapping, 
Computer Vision, Motion-planning, Controls, Aerial Systems, Multi-agent Systems, Machine 
Learning, and Reinforcement Learning.

The papers have been drafted by the scholars in 
collaboration with graduate student and faculty mentors. 
The scholars would like to thank all the mentors for 
their invaluable guidance and feedback throughout the 
program. Their expertise has been of immense support 
for the scholars. 

The scholars would also like to acknowledge the support provided by the Global 
Communication Center (GCC). The GCC held several workshops and one-on-one 
appointments for individual scholars throughout the program. Their assistance in guiding 
and reviewing the individual works has helped the scholars to acquire necessary skills for 
writing and presenting their work. We are grateful to Professor Joanna Wolfe and the whole 
GCC team for their support.

Finally the cohort would like to thank RISS co-directors Rachel Burcin and Dr. John M Dolan 
who have put their efforts in making this program possible even in the most difficult time 
of global pandemic. Their ability to quickly adapt the program and welcome each scholar to 
the CMU community while overcoming the barriers introduced by the virtualization of the 
program was inspiring, and the RISS experience would not have been possible without their 
hard work and coordination. We are also thankful to the whole CMU community for their 
contribution to the program. 
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The Carnegie Mellon Robotics Institute is committed to opening doors and creating opportunities for future 
leaders in robotics. The RI Summer Scholar’s Program (RISS) is a high impact student development program 
with a distinctive community & culture that is inclusive and accessible.  Through RISS, CMU welcomes 
students from across the country and world opportunities to conduct research with robotics researchers at 
the Robotics Institute. The quality and breadth of research, high level of institute and university engagement, 
and powerful professional development programming, graduate school application counseling, and alumni 
network create transformative experiences and remarkable post-program trajectories.

The RISS program immerses students in the world of robotics. The unique post-program mentoring and 
coaching provides spectacular results with more students from this program than any other at CMU (that we 
know of) successfully awarded admissions to multiple programs across the School of Computer Science. The 
scholars are innovative and talented emerging scholars. 

This year 2020 was a true challenge. But despite our borders being closed amid COVID-19, thanks to the 
support of so many, the RISS community contributions and partnership were able to create possibilities for 
undergraduate scholars. 

With 43 scholars from 11 countries and 33 
universities, the 2020 RISS cohort was the largest 
cohort since the inception of the program in 2006. 
Over forty percent of our participating scholars 
are from communities underrepresented in STEM. 
Twenty-four of the 2020 scholars are from the 
United States, a significant point that showcases a 
push in our country to support STEM research and 
education. The RISS 2020 international scholar 
community is represented by 19 scholars from 10 
different countries.

The RI scholars’ research experience is guided by outstanding research mentors that represent the incredibly 
diverse robotics research from across the Institute. This year 25 individuals and their teams undertook the 
challenge of navigating a remote experience. The RISS community welcomed eight new mentors and thanked 
the many returning mentors who have had a tremendous impact on the lives and careers of the scholars. 
Mentors guide, support, create new possibilities, and nurture students’ potential. 

Dear Colleagues

Japan

PR China

India

Pakistan

Saudi Arabia

Germany

Poland Lithuania

Brazil

Grenada

With gratitude, 

John & Rachel

Dr. John M. Dolan 
Director of RISS Program  
& Principal Systems Scientist
jdolan@andrew.cmu.edu

Ms. Rachel Burcin 
Co-Director of RISS Program & 
Global Programs Manager
rachel@cmu.edu
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As all aspects of the RISS experience moved online, the scholars of 2020 and the entire RISS community were  
especially fortunate to have a community of advocates standing with them.  We extend thanks to all who supported  
this opportunity, including the 25 RISS admissions committee members who helped to select the 2020 cohort; the RI  
graduate students and staff mentoring and guiding; presenters sharing their expertise and journeys in STEM; and the 

student affairs, university, and professional development leaders providing online professional development.

Thank You 
Program Sponsors & Partners
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Comparing State Representations for Learning Deformable Object

Manipulation Policies

Khush Agrawal1, Thomas Weng2, and David Held2

Abstract— Recent advances in object manipulation have been

largely focused on rigid-body manipulation. For tasks like

laundry folding and cable management, deformable properties

of objects cannot be ignored. Rigid body assumptions can cause

a system to fail in such scenarios. We propose a two-stage

algorithm to handle a given deformable object manipulation

task. The first stage represents a deformable object by the 3-D

coordinates of the four corners of a fabric. The second stage

learns to predict actions to manipulate a fabric. We compare

our technique with a dense representation based technique and

show that our method is able to learn lifting and folding tasks

in 13 and 36 episodes respectively.

Index Terms— Manipulation, Representation Learning, Re-

inforcement Learning

I. INTRODUCTION

Robotic manipulation of deformable objects has applica-
tions in both household tasks like bed-making and folding
laundry, as well as industrial tasks like cable management
and textile manufacturing. Knowledge of deformable objects
is vital to successfully complete such tasks. A large part
of manipulation literature focuses on rigid-body manipula-
tion [1], [2], often relying on assumptions that only hold
true for rigid objects. These rigid body assumptions make
a robot unable to handle tasks where deformations need
to be considered. Selecting an appropriate representation
for a deformable object is a key element in successfully
completing a manipulation task. Estimating the states of a
deformable object is a challenging task due to the infinite
number of possible configurations. This difficulty in state
estimation makes a manipulation task for deformable objects
like fabric more challenging compared to their rigid object
counterparts. In this paper, we decouple a manipulation task
into two stages. The first stage represents a deformable
object by the 3-D coordinates of its corners and the second
stage learns a manipulation policy using this representation.
We compare our approach, which is an oracle approach
against the descriptor-based representation described in [3]–
[5] and show that our 3-D coordinate based representation
makes policy learning more sample efficient on the simulated
folding and lifting tasks shown in Fig. 1.

1Khush Agrawal is with the Department of Electronics and Communi-
cation Engineering, Visvesvaraya National Institute of Technology, Nagpur,
India and Robotics Institute Summer Scholars, Carnegie Mellon University,
Pittsburgh, USA. khush@students.vnit.ac.in

2Thomas Weng and David Held are with the Robotics In-
stitute, Carnegie Mellon University, Pittsburgh, USA. {tweng,
dheld}@andrew.cmu.edu

Fig. 1. Task definition figures. The goal of the folding task (left) is
to perform a diagonal fold by bringing the manipulated cloth point (blue
sphere) across the cloth to the goal point (red sphere). For the lifting task
(right), the goal is to bring the manipulated cloth point to a goal pose above
it.

II. RELATED WORK
We have divided the previous work into two parts: repre-

sentation learning and policy learning for deformable object
manipulation.

A. Representation Learning for Deformable Objects

Previous methods on learning a representation for a de-
formable object used approaches like modeling the entire
cloth [6] using depth image segmentation and volumetric fu-
sion. Some methods like [1], [2] compress high dimensional
RGB images into a latent embedding which makes policy
learning sample-efficient. This method performs reasonably
on rigid body manipulation tasks like sliding a puck, opening
a door, but has difficulty capturing fine details like the folds
and wrinkles of a cloth, limiting their effectiveness for such
deformable objects. Other methods use a subset of 3-D co-
ordinates of points on a fabric [7]. This method successfully
solves simple manipulation tasks like folding, placing on a
table, etc. We build up our method on this approach and com-
pare it with higher-dimensional representations. Approaches
like [3]–[5] use high dimensional descriptor to represent
a cloth. Although it has been demonstrated for tasks like
manipulating a shoe, soft-toy, we experimentally show that
it is unable to perform well on fabric manipulation tasks.

B. Policy Learning for Deformable Objects

Some methods like [8] develop a predictive model that
learns the forward model of a fabric. The forward model
predicts the states of a deformable object by taking an action
and its previous state as an input. This can be further coupled
with a model-based planning method like Model Predictive
Control (MPC) to predict the optimum sequence of actions
to manipulate an object to the goal state. However, the
forward models can be extremely sensitive to deformation.
Other methods like [7] train a model-free algorithm like
Deep Deterministic Policy Gradient (DDPG) along with
demonstrations and solve manipulation tasks in simulation.
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Fig. 2. Diagram for the two stage framework depicting the flow of
observations, rewards and actions.

Additionally, the algorithm can solve dynamic manipulation
tasks like placing a cloth on a table where the working space
of a manipulator is constrained within certain limits. We
compare the approaches proposed in [3]–[5], [7] and evaluate
the results on folding and lifting tasks (Fig 1).

III. METHOD
We decouple the deformable object manipulation task into

two sub-tasks: representation and policy learning (Fig. 2).
The former model outputs a representation for fabric and the
latter uses this representation to predict actions to manipulate
the fabric to the goal state. The following subsections provide
details about the two models.

A. Representation Model

We demonstrate the use of 3-D coordinate based repre-
sentation for fabric and compare our method with a high-
dimensional representation based method.

1) 3-D Coordinate Representation: We simulate the ex-
periments in Blender [9], an open-source simulation and
rendering engine, which internally represents fabrics as a 3-
D polygon mesh. Blender’s API provides access to the 3-D
coordinates of the mesh vertices. We consider a subset of
these 3-D coordinates of the mesh as a representation of the
fabric as shown in Fig. 3. As proposed by [7], we concatenate
the 3-D coordinates of the corners of the fabric and use it as
a representation of the fabric. We experimentally found out
that this approach is effective in solving simple tasks like
folding and lifting.

B. Policy Model

1) Background: We frame the cloth manipulation problem
as a Partially Observable Markov Decision Process where the
environment is defined by a (S,A, P, r, O, ⇢0, �) transition
tuple. S is a set of full states of the environment, A is
a set of continuous actions, P : S ⇥ A ⇥ S ! R, is
the transition probability distribution, r : S ⇥ A ! R is
the reward function, ⇢0 is the initial state distribution, and
� 2 (0, 1] is the discount factor. The decision process is
partially observable and the agent receives observations o (3-
D coordinates of four corners) from the set of observations
O (3-D coordinates of all the mesh vertices).
The goal of the agent is to maximize the multi-step return
Rt =

PT
t0=t �

t0�trt0 , where T is the fixed horizon for each
episode. The objective during learning is to find an optimal
policy ⇡⇤ : o! A.

Fig. 3. Simulator snapshot. White spheres indicate the selected points for
representing a fabric.

2) Policy Training: As shown in Fig. 2, we pass the
observation (ot) returned by the environment through the
representation model which returns a representation (zt).
zt is then passed through a policy network which predicts
three Gaussian distributions N (µ,�2) parameterized by their
mean µ and standard deviation �, corresponding to the
displacements along ~x, ~y, ~z axes at time step t. The actions
are as follows.

at = (�x,�y,�z)

�x, �y, �z are the displacements along ~x, ~y, ~z axes re-
spectively. The transition tuples (zt, at, rt, zt=1, d) generated
at every step are stored into a replay buffer R. At every step,
transition tuples are randomly sampled from R.

Policy training is performed using the DDPG algorithm
[10] with Adam [11] as the optimizer. We considered four
networks: actor-target, actor-behavior, critic-target and critic-
behaviour parameterized by ✓µ

0
, ✓µ, ✓Q

0
, ✓Q, respectively

that are updated as follows. Critic-behavior parameters are
updated to minimize the following loss.

L =
1

N

X

i

(ri+�Q0(si+1, µ
0(si+1|✓µ

0
)|✓Q

0
)�Q(si, ai|✓Q))2

Actor-behavior parameters are updated using the chain rule.

r✓µJ(✓) ⇡ raQ(s, a)r✓µµ(s|✓µ)

Target network parameters are updated as follows.

✓Q
0
 ⌧✓Q + (1� ⌧)✓Q

0

✓µ
0
 ⌧✓µ + (1� ⌧)✓µ

0

where ⌧ << 1.

IV. EXPERIMENTS

We compare the 3-D coordinate representation against
a method that uses dense descriptors as the representation
[3]. The dense descriptor network takes an image as input
and outputs per-pixel latent descriptors. This representation
must be learned, and we discuss the training procedure
in the following subsection. As the 3-D coordinate based
representation is an oracle representation, we expect it to
outperform the dense descriptor based representation and the
results align with our hypothesis.
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Fig. 4. Overview of extraction of sparse keypoints from a dense descriptor
by comparing with an initial descriptor set.

A. Dense Descriptor Representation

We use the Blender simulator described previously to cre-
ate a synthetic dataset for training the descriptors. We gather
trajectories of random cloth movements, with the simulator
providing a RGB image at every time step. We obtain the
ground truth pixel correspondences between images of the
cloth in different configurations directly from the simulator.
Using this dataset of images and corresponding pixels, we
train a 34-layer, stride-8 ResNet in Siamese fashion to
bring corresponding pixels closer in descriptor space, while
pushing non-corresponding pixels further away. As shown
in Fig. 4, the H ⇥W ⇥ C RGB image is passed through
a representation network f✓D which outputs a H ⇥W ⇥D
descriptor, where C denotes the number of image channels,
and D is the length of the descriptors. Training a policy on
this higher dimensional representation is challenging due to
the curse of dimensionality, which motivates us to perform
sparse keypoint extraction. We follow [4], where the dense
descriptor output is compared with an initial sparse descriptor
set at every time step using a correspondence function fC
to produce (u, v, z) representation of the fabric, where u, v
are the image coordinates of the corresponding descriptor
pixels and z is the depth coordinate. Results for the descriptor
training can be seen in the Appendix.

B. Policy Learning

We create an OpenAI-Gym like environment using
Blender to return a (observation, reward, done) tuple at every
time step. The specifics of (observation, reward, done) are
mentioned in the following section.

For evaluating our method, we consider the following
tasks.

1) Lifting to location: As shown in Fig. 1, a cloth placed
on a table is to be lifted to a goal location. The goal state
is achieved if the L2 norm between the four corners of
the present state and the goal state is less than a threshold
distance (� = 0.02m). The horizon T is set to 20 steps. The
results are visualized in Fig. 5.

2) Diagonal Folding: As shown in Fig. 1, a cloth placed
on a table is to be folded diagonally to a specified location.
The goal state is achieved if the L2 norm between the four
corners of the present state and the goal state is less than a

Fig. 5. Rewards collected over an episode. The policy network is able to
learn the lifting tasks in 13 and 52 episodes for 3-D coordinate and dense
descriptor based representations respectively. Left figure denotes rewards
for 3-D coordinate based training. Right figure denotes rewards for dense
descriptor based training.

Fig. 6. Rewards collected over an episode. The policy network is
able to learn the folding task in 36 episodes using 3-D coordinate based
representation (left) whereas it fails for dense descriptor based representation
(right).

threshold distance (� = 0.02m). The horizon T is set to 40
steps. The results are visualized in Fig. 6.

We evaluate the performance with the following reward
function.

1) L2 Norm: At every time step t, we provide the follow-
ing reward.

rt = �k(ct � g)k

where ct, g corresponds to the 3-D coordinates of the corners
of the fabric at time step t and goal state respectively.
We experimentally observed that the 3-D coordinate based
representation perform better with squared L2 norm rewards.

V. DISCUSSION
We described an algorithm to learn a deformable object

manipulation policy using a two-stage approach and demon-
strated it on diagonal folding and lifting tasks. When dealing
with tasks which involve multiple folds and highly crum-
pled configurations, however, we suspect that the proposed
method can fail. Four corner coordinates for a deformable
object are likely insufficient to describe a crumpled cloth.
Further investigation is required to determine if a more robust
method is necessary for more difficult tasks. As proposed in
as [7], we plan to train a policy for more complex tasks
like placing a cloth on a table, where the working space of
a manipulator is constrained and it needs to learn to swing
the cloth to place it on a table. This can also be potentially
transferred to the real-world by learning a model for 3-D
keypoint estimation in the real-world.

APPENDIX
This section consists of results from the training procedure

of a 3 channel dense descriptor for fabric evaluated on a set
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of 100 pairs of held-out set of validation images with 100
annotations in each pair.

Fig. 7. CDF plot of the fraction of pixels in image pairs which are closer
in descriptor space than the true match.

Fig. 8. CDF plot of the L2 distance between predicted match and ground
truth label normalized by 800 (diagonal length for a 640 ⇥ 480 image).

Fig. 9. Heatmap visualization of the three channel descriptors for a fabric.

Fig. 10. Correspondence matching of 20 pixel pairs randomly sampled
inside the fabric closest in the descriptor space between two configurations
of a fabric.
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Rock Detection and Accurate Boundary Localization Through
Non-Learning Based Superpixel Optimization

Ali Albazroun1, Raewyn Duvall2, and William L. Whittaker2

Abstract— Rock detection is of high importance in lunar
surface navigation and study. Many different rock detection
methods were formulated over the years. Most recently, region-
based methods that segment images into regions that share
common characteristics have been used to find rocks and
accurately localize their boundaries. However, these recent
methods have primarily used learning algorithms to classify
the generated regions into rocks or background, and these
algorithms require fairly large image sets to train them which
are not available for the lunar surface. To compensate for
this, we propose the use of a hybrid approach that uses
edge-detection to identify rocks in conjugation with superpixel
segmentation to accurately localize the boundaries of said rocks
by solving an optimization problem. We tested our method on
real lunar images from the Chang’e 3 lunar mission and we
will be evaluating its performance in the Iris lunar Mission.

Index Terms— Object Detection, Segmentation and Catego-
rization, Space Robotics, Superpixels.

I. INTRODUCTION

Rock detection is an essential feature for rover navigation
and is important in the collection and study of geological
features during space missions. While accurate rock detec-
tion is of high importance it is difficult to achieve due to
the diverse morphological features such as size, texture, and
color exhibited by rocks. Multiple vision based techniques
have been developed over the last few decades to accurately
detect rocks such as edge-based and region-based methods.
Recently, region-based methods [1]–[4] have garnered a lot
of attention due to their ability to generate accurate rock
boundaries. These region-based methods rely on the use
of learning algorithms [1]–[4] to classify the regions (most
commonly superpixels) into rock or background. However,
these classification techniques require large image sets to
achieve adequate detection accuracy. This poses a problem in
the case of lunar exploration and space exploration in general
where such large accurately labeled image sets are not readily
available. To address this problem, we propose a hybrid
method that uses edge-detection and superpixels to detect
rocks and localize boundaries without the need of learning
algorithms. To do so we start by creating regions of interest
using BLOB (Binary Large OBject) analysis on a binary
image produced by the Prewitt edge detection method/range
filtering that roughly estimates the shape and the positions
of the rocks. Then using a SLIC (Simple Linear Iterative

1Ali Albazroun is with the Mechanical Engineering Department, Uni-
versity of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
aia@illinois.net

2Raewyn Duvall and William L. Whittaker are with the Field Robotics
Center, The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA
15213, USA {rduvall,red}@andrew.cmu.edu.

Clustering) based superpixel segmentation [5] of the image
we compute the mean features (such as intensity, texture,
etc.) in each of the superpixels then use thresholding to create
binary images of possible rock outlines which we could use
to solve for the best rock outline through an optimization
problem.

Fig. 1. An image of rocks on the moon from the Artificial Lunar Landscape
Dataset [6]

Fig. 2. Bounding Boxes created with the help of the prewitt edge detection
method and BLOB detection

II. RELATED WORK

This section is a brief overview of previously used rock
detection and outline localization methods.

A. Edge Based Methods

Edge based methods like in [7]–[9] use edge detection
algorithms like the Canny or Sobel algorithms to find edges
in an image, then a series of edge cleaning and closing
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Fig. 3. Rock outlines produced by our optimization method

operations are performed to create a set of closed contours
which can be classified as rocks. These methods have the
advantage of not relying on learning algorithms which allows
them to be used without any prior training while also
attempting to localize the boundary of the rock. However,
edge detection methods have the possibility of introducing
false edges and/or missing edges which could substantially
affect the accuracy of the rock boundary localization.

B. Region Based Methods

Region based methods like [1], [3], [4] start by partitioning
the image into regions that share similar characteristics then
use a classification algorithm to classify each region into rock
or background. Most recently these methods have used super-
pixels which rely on K-means clustering to divide the images
into segments and learning algorithms such as AdaBoost [2].
Similar to the edge based methods, region based methods are
able to localize the boundaries of the rocks. However, due
to their reliance on learning algorithms, they require training
which as mentioned before need sufficiently large enough
data sets to achieve ample rock detection accuracy.

C. Stereo Vision Based Methods

Stereo based methods rely on the use of LIDARS [10] or
multiple cameras [11]–[13] to estimate a ground plane from
which significant protrusions are classified as rocks. These
methods are not used as much as the previously mentioned
methods because they require the use of more hardware such
as LIDARS or multiple cameras which come with extra costs,
set up and maintenance.

D. Shadow Based Methods

Shadow based methods such as [14] depend on a given sun
angle from which the location of rocks could be estimated
using their shadows. Shadow based methods are not used as
often as the others due to their inability to find the outline
of the rocks detected.

Our work attempts to create a hybrid approach between
Edge Based Methods like [7]–[9] and Region Based Meth-
ods such as [1], [3], [4] that accurately detects rocks and
localizes their boundaries while avoiding the use of learning
algorithms that require significant training.

III. METHODS

To give an overview of our proposed method, we begin
by creating a mask for the ground to simplify the detection
process. After that, we use Prewitt edge detection/range
filtering in conjunction with Gaussian filtering to create a
rough estimate of where the rocks are located and their
shape. Using that rough estimate we create bounding boxes
for each rock through BLOB analysis, and create a superpixel
segmentation of that said box based on the number of
pixels in the bounding box. Next, using that superpixel
segmentation we can create different possible rock outlines
through thresholding. We then rate each outline based on
how much it resembles the rough rock estimate we got using
edge detection. We then select the outline with the best rating
and repeat the process on different versions of the image to
improve the outline quality. Finally, we perform some post
processing operations to get rid of holes and smooth out the
rock boundary.

A. Preprocessing

Before starting the segmentation process we resize the
image to double its size, this is done to improve the rock
detection and outline localization process. After that we
create multiple versions of the image to measure different
features of the image such as texture through entropy filters
or different color spaces. Performing the optimization pro-
cess on this different versions of the image will improve the
quality of the rock boundaries.

B. Ground Mask

Since we plan on using edge detection in our method, we
have to make sure that the edges we detect are not of the
boundary of the sky and the ground or of objects that might
be in the sky. For this purpose we utilize two methods to
create a ground mask to ensure all the objects we detect are
on the ground.

1) Thresholding using Otsu’s Method: We compute a
threshold using Otsu’s method [15] that minimizes the in-
traclass variance between the pixels above and below the
threshold. If the sky is present in the image, the threshold is
able to divide the image into the ground minus the shadows
in white, along with the sky and the shadows in black. We
can easily determine the largest object in the binary image
(the sky presumably) and remove all other smaller objects
(shadows), to get a mask for the sky whose complement is
the ground mask. This method has the benefits of being fast
and able to detect the shadows in the image at the same
time, but it has its downsides. For example, it assumes that
a sky is present in the image which is not always the case
like in figure 1. Moreover, it assumes that the sky is the
largest object in the binary image which is not always the
case depending on the camera angle and the how big the
shadows are. That’s why we are using two methods that are
able to complement each other.
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Fig. 4. The ground mask created using Otsu’s method of thresholding
overlaid on the original image

2) Gaussian Filtering and Edge Detection: An alternative
method of determining the ground mask is to use Gaussian
filtering on the image to remove the texture from both the sky
and the ground then using the prewitt edge detection method
to find the horizon line after removing all the smaller edges.
If the horizon line is found we take the region below it as
the ground mask, otherwise we assume that there is no sky
in the image since both methods have failed to find one.

C. Shadow Detection

In this section we detect the shadows in a image in
order to improve with outline creation and rock detection
process later. Using the ground mask we got from the last
section along with Otsu’s thresholding method/MATLAB’s
imbinarize we can create a binary mask that outlines
the shadows in the image. Note that we performed some
morphological opening and closing operations on the image
to ensure that the shadows are separated from the sky in case
they were connected to each other in the image.

Fig. 5. Shadow mask created using Otsu’s method

D. Edge Based BLOB Analysis

To create a rough binary image suitable for rock detection
we use edge detection alongside range filtering. First we
apply a Gaussian filter to smooth out the grayscale image
and remove any unnecessary texture. After that we use the
Prewitt edge detection method and/or a thresholded range
filter image to detect the rock edges, then apply a Gaussian
filter again to smooth out the results and to create a more
rounded shape. The result is shown in figure 4. Finally we
create a binary image of the result and apply the ground mask

to it to make sure the BLOBS detected are on the ground.
For the BLOB analysis we used MATLAB’s regionprops
function to detect the BLOBs and create bounding boxes
similar to figure 2 for BLOBs of at least a 800 square pixel
area and a 25 pixel side length.

Fig. 6. Rough rock image produced by through edge detection and Gaussian
filtering on figure 1

E. Superpixelization

For each bounding box from the previous step we create
a superpixel segmentation using the SLIC0 algorithm [5] to
be used for thresholding. We are using a variable number of
superpixels depending on the number of pixels in the image
to speed up the performance and to ensure that we are not
over segmenting the image cropped using the bounding box.
The number of superpixels is determined by the following
equation:

Nsuperpixels = 5
jp

Npixels

k
(1)

This equation ensures that the number of superpixels will
always be less than the number of normal pixels while also
having a greater number of superpixels for larger images to
ensure it can capture all the details of the rock boundary.

Fig. 7. Superpixels produced by the SLIC algorithm overlaid on the
cropped image of a rock from figure 1

F. Threshold Optimization

To determine which superpixels belong to a rock and
which do not, we use thresholding on the multiple versions
of the image created in the preprocessing step. The deter-
mination of the best threshold is framed as an optimization
problem where we are maximizing the number of superpixels
inside the rock boundary and minimizing the number of
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superpixels outside. To do this we created a metric that is
able approximate the difference between those quantities.
Given a cropped image I using a bounding box with m
rows and n columns from a version of the original image
and a threshold T . We can create a binary image IT by
assigning a 1 to each superpixel with a mean value greater
than the threshold T and a 0 to the other superpixels. To
approximate the actual binary image of the rock we can use
the rough rock estimate we got using edge detection with the
shadows removed from it, which we will denote with IBLOB .
We can then perform pixel wise multiplication denoted by *
on each IT with IBLOB to determine the number of pixels
equal to 1 inside the rock boundary Nin and its complement
(IBLOB)C to determine the number of pixels outside the
rock boundary Nout by summing over the rows and columns
of the corresponding product images.

Nin(T ) =
mX

i=1

nX

j=1

(IT ⇤ IBLOB)(i, j) (2)

Nout(T ) =
mX

i=1

nX

j=1

(IT ⇤ (IBLOB)
C)(i, j) (3)

Lastly, the rating metric E(T ) we are maximizing is then:

E(T ) = Nin(T )� r[Nout(T )] (4)

r =

mP
i=1

nP
j=1

IBLOB(i, j)

mP
i=1

nP
j=1

(IBLOB(i, j))C
(5)

where r is a normalization ratio equal to the ratio between the
number of 1’s in IBLOB over the number of 1’s in IBLOB

C

to ensure that both parts of the expression are weighted
equally. This formulation of the problem assumes a threshold
value Tabove where superpixels with mean values greater than
Tabove are assigned a 1, but we could assume that superpixels
with mean values less than Tbelow are assigned 1’s instead.
This definition results in an image that is the complement
of IT from before, IT

C . This alternative definition of the
threshold could in fact result in a better way to segment
the image since it could result in binary images with higher
values of E(T ). We can address this problem by replacing IT
with IT

C in the optimization function E(T ) and simplifying
to get the following result:

E(Tabove) = �E(Tbelow) (6)

This implies that:

max(E(Tbelow)) = �min(E(Tabove)) (7)

This fact means that we only need to use the first threshold
definition, we just need to compare the maximum value of
E(T ) and the negative of the minimum value of E(T ) to
find the optimum binary image for the rock outline.

After repeating the optimization process for each version
of the image we created in the preprocessing section and

Fig. 8. An example of a rating curve E(T ) where the optimum threshold
coincides with the maximum value of E(T )

Fig. 9. An example of a rating curve E(T ) where the optimum threshold
coincides with the negative of the minimum value of E(T )

finding the optimum threshold for each, we use those thresh-
olds and the corresponding binary images to count how many
times each superpixel has been assigned a 1 in a binary image
and compare to the average number of times the superpixels
have been assigned a 1. If a superpixel has been assigned a
1 more than the average of all the superpixels it is included
in the final binary image. This procedure is done to give
certainty to the final segmentation because by choosing the
superpixels that were assigned a 1 an above average number
of times we eliminate most of the superpixels that were
assigned a 1 by chance in any of the binary images created
by the thresholds.

Fig. 10. The binary image created after running the threshold optimization
process on all versions of the image
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G. Post Processing

To create better looking outline we perform a series of
operations to fill any holes and get rid of any small objects
present in the binary image.

Fig. 11. The final binary image of the rock after post processing

IV. RESULTS
To test the results of our method we use the real moon

images provided in the Kaggle Artificial Lunar Landscape
Dataset [6] alongside their ground truth labels for the rocks in
the images. The images we used in our testing came from the
Chang’e 3 rover’s panoramic camera (PCAM) and lander’s
terrain camera (TCAM). We adopt accuracy criteria similar
to the ones presented in [4] to test our method. We use an
Intel CORE I5 1.6 GHz processor with 8 GB of RAM.

A. Region Labeling Accuracy

This criterion is calculated by taking the ratio of the
number of pixels correctly assigned to a rocks divided by
the number of pixels that truly belong to rocks using the
ground truth image as a reference. We tested our method on
15 images from the dataset (7 PCAM images and 8 TCAM
images).

TABLE I
REGION LABELING ACCURACY RESULTS

Image Source PCAM TCAM Both
Accuracy 81.03% 95.03% 88.50%

We are able to consistently achieve a region labeling
accuracy of above 90% for the TCAM images and around 77-
88% for the PCAM images. The difference in accuracy can
be attributed to the PCAM images being panoramic which
lowers the quality of the images.

B. Rock Detection Accuracy

This criterion is concerned with the number of rocks
detected correctly in an image. We define a correctly detected
rock if it has over 50% area overlap with a rock in the ground
truth image. We measure precision (the ratio of correctly
detected rocks to all detected rocks) and recall (the ratio of
correctly detected rocks to number of rocks in the ground
truth image).

Notice that the precision value are very low which we
mainly attribute to our method detecting more rocks than
the rocks labeled in the ground truth data which artificially
increases the number of ”false positive” results leading to
lower precision values just like in the figure below. Our

Fig. 12. Rock Detection Precision vs Recall

method achieves on average a recall value of 92.3% which
shows that we are able detect almost all the rocks labeled in
the ground truth image correctly.

Fig. 13. Rocks detected by our method outlined in red vs rocks in the
ground truth image

C. Execution Time

We measure the time it takes to run the code on a single
image using MATLAB’s tic and toc to time it.

TABLE II
AVERAGE EXECUTION TIMES

Image Source PCAM TCAM Both
Time (in Seconds) 261.40 144.40 199.00

V. FUTURE WORK
Some adjustments could be made to improve the accuracy

and performance of our method. We observed that the accu-
racy is lowered in grayscale images so in order to improve
the accuracy in these images we suggest introducing different
versions of the image in the optimization process that are
less sensitive to color and more sensitive to other features.
Another improvement that could be done is to the execution
time. In the testing we observed that a significant amount of
time is devoted to creating a version of the image that assigns
the mean value of each superpixel to it so it can be used for
thresholding. A way that the performance can be improved is
by finding a way to threshold the superpixels without creating
a new image that assigns the mean value to each superpixel.
Also, the number of superpixels used in each bounding box
could be further optimized to enhance performance, but not
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lose accuracy. Further testing and evaluation of this method
will be done in the future during the Iris moon rover mission.
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Evaluating Parameters in Successful Goal from Gaze Predictions

Nadia Almutlak1, Reuben Aronson2 and Henny Admoni3

Abstract— Human- Robot collaboration systems enable peo-

ple to complete activities that would otherwise be difficult. These

systems provide assistance with the knowledge of a user’s goals.

Recent work has suggested that eye gaze can be a powerful

signal in predicting a user’s goal early in the progressions of a

collaborative task. We previously developed a model to predict

a user’s goal from their gaze throughout a task. However, this

model can be weak when gaze information is not available or

inaccurate at different stages of the task. This problem may

be exasperated as the robots relying on this system transition

to online delivery. The goal of this research was to analyze

the relationship between different available parameters, such

as distance from the target, and an increase the the accuracy

of the gaze prediction model. We evaluated these parameters

using previously collected data of users operating a robot in an

eating task.

Index Terms— Eye Gaze, Shared Control, Human-Robot

Collaboration, HMM, Intent Prediction

I. INTRODUCTION

Human Robot collaboration systems enable users to com-
plete activities which otherwise might be difficult or im-
possible. An application of these systems can be found
in the domain of assistive robotics. These robots aid in
complex tasks like eating, ultimately restoring autonomy to
individuals with disabilities. These systems provide useful
assistance by engaging both the user’s high-level task plan-
ning abilities and the robot’s precision in a form of shared
control to complete these tasks. However, they also rely on
the knowledge of the user’s goal in the task. [1] A number
of approaches have utilized controller input to generate these
goal predictions, but are often impeded by the difficulty of
using these controllers and teleoperating robots. [1]–[3] This
has spurred a growth in the body of work that explores more
natural signals in generating goal predictions, specifically eye
gaze.

Eye gaze is highly informative signal which produces
different types of useful data. [4], [5] As such, more recent
work has explored eye gaze as a promising addition to
generating goal predictions in a collaboration system. [6], [7]
Unlike controller input, eye gaze is continuously provided by
the user and does not require explicit input into the system.
It also has the ability to indicate the user’s goal early in
the progression of the task, which the controller input may
struggle with. [1] Eye gaze can also be used to indicate

1N. Almutlak studies mechanical engineering at Columbia University in
New York. na2736@columbia.edu

2 R. Aronson a Ph.D. student in Carnegie Mellon’s Robotics Institute.
reubena@andrew.cmu.edu

3 H. Admoni is an Assistant Professor in Carnegie Mellon’s Robotics
Institute and leads the Human and Robot Partners (HARP) lab.
Henny@Andrew.cmu.edu

difficulties faced by the user in the progression of the task.
[8]

While gaze has been explored in predicting a user’s goal, it
can be a difficult signal to use as it is susceptible to interpre-
tive errors. Natural eye gaze does not provide much context
about the scene without undergoing labeling processes. It is
also not always a reliable signal as users react to different
scenes and tasks with non-identical behaviours. For example,
some users may rely on peripheral vision to to gauge the
general location of their goal. This approach minimizes the
availability of high quality gaze points directed at the user’s
target, making models that rely on those specific points
not as ideal. Users will also exhibit gaze points scattered
through the scene as the robot moves and they navigate
it to the goal. Here, gaze labels may be misidentified and
lead to inaccurate predictions. While these scenarios occur
in controlled lab environment, they will only be intensified
in different environments as the use of these systems become
more common and begin to rely on online delivery.

To alleviate some of those issues, a model is currently be-
ing developed to predict the user’s goal from their sequential
gaze points. [9] However, the accuracy of those predictions
need to be further evaluated for the cases where the limita-
tions mentioned above apply. From this ongoing work, there
seems to be promising evidence that the progression of the
task impacts the accuracy of the goal predictions. It stands to
reason that parameters with relation to the progression of the
task may be able to act as proxy signal for accurate goal from
gaze predictions. In this research, we focus specifically on
evaluating how the accuracy of an eye-gaze prediction model
changes with respect to these parameters. We ask when is a
gaze based prediction most accurate? and what changes in a
system are indicators of that accuracy?

To answer these questions, we:
• Defined some initial parameters:

– Distance to target
– Robot Mode

• Established a metric for evaluation: The change in
probability of accurate goal predictions

• Analyzed the parameters with respect to the goal predic-
tions generated by our model [9] and the HARMONIC
dataset [10] according to the metric.

This work is ongoing and the results were inconclusive at
the time of this submission.

II. RELATED WORK

This work builds on previous work on shared control with
eye gaze [1], [6], [11] It utilizes a prediction model that is
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currently under development that builds on previous work on
gaze based predictions. [7], [9]

A. Shared Control
Shared control is an approach to teleoperation which

engages both the user’s high-level planning abilities and
the robot’s precision to complete a task. This collaboration
relies on prior knowledge of the user’s goal which allows an
autonomous system to provide assistance with path planning.
[1].

These systems work by continuously updating the prob-
ability of a goal’s location, and planning with respect to
those updates. The predictions that these system rely on have
been generated in a number of ways from using Maximum
Entropy inverse models to fit a user’s actions to models
[1] to using partially observable Markov decision process
(POMDPs) to generate goal probabilities over a location
[12]. These systems have shown improved task success rates,
reducing task time and providing better user experiences.
They required less physical effort and achieved greater
precision with the user’s input. As a result, systems using
shared control could easily be integrated into robotic arms,
wheelchairs and more for better overall experiences [1], [3],
[12].

B. Eye Gaze for Goal Predictions
Eye gaze has been extensively documented as a useful

source of information. Eye gaze is highly informative signal,
with the ability to learn about a scene and convey user’s
intentions without much effort from the user. [2], [13], [14]
When a user is performing a task, they broadcast their
intentions to manipulate certain objects based on where they
are looking. For example, a person making tea looks at a
kettle before picking it up [15], or a person looks at a morsel
on a plate before using a robotic arm to spear it with a fork.
[2]

These observations in hand-eye correlated behavior has
allowed researchers to document patterns associated with
gaze and task completion. These patterns and behaviours
can signify important information about a task such as what
may be important or irrelevent in a scene. [?], [4]. These
behaviours can also indicate the user’s planning as gaze was
also established to occur in a dynamic orders useful to the
task at hand. [13]

While these behaviors were observed in direct hand ma-
nipulation, Aronson et al [2] were able to confirm that these
patterns also occurred during robot teleoperation. Consider-
ing further work that has documented robot usage and eye
gaze [16], the premise that gaze could be a useful prediction
source for assistive robots became more popular. [13] A few
models have been developed or are currently in development
for predicting the user’s goal from gaze in a robotic task.
One model approached gaze from a categorical standpoint,
using the foundation that user’s look at their goals more
than anything in a scene. [7], [14] While this approach may
outperform models that only rely on joystick inputs, it relies
on the presence of enough gaze data and does not deliver a

prediction from the beginning of the task. This has prompted
further development of models that would use sequential
gaze data to generate probabilities as a faster and more
accurate approach. [9] These models still require evaluation
which is what this paper sets out to do.

III. APPROACH

A. Problem Statement

In this work, we try to understand how the model’s pre-
dictive abilities change as the task parameters change. To
do this, we evaluate the incremental probability gain when
given a set of accurate goal prediction probabilities along the
progression of a task. These gains are calculated using the
following metric:

log pt+1(goal)� log pt(goal) (1)

The results produced by this metric are categorized by the
desired parameters that we set out to evaluate.

B. Parameter Selection

In choosing parameters to evaluate as proxies for accurate
predictions, it was essential to select parameters that were:

• accessible in both online and offline running systems
• related to the progression of the task
The first parameter we examine is distance from the

target. From our ongoing work with the model, there are
indications that the probability of an accurate goal prediction
is higher with gaze at the beginning of the task than with
other prediction models using different signals. [9] An early
prediction is key to delivering assistance in the task, making
gaze an ideal approach for the predictions. However, since
users approach the task differently, time cannot be used
as a parameter. Instead, we can select parameters that are
analogous to the task progression like the distance from the
target.

As the user navigates the robot end effector to the target,
they are likely to examine the scene as they plan their path. It
would be interesting to see if there are certain points at which
these glances happen and in turn increase the probability
of an accurate goal prediction. We chose to approach this
parameter by using both Euclidean and Manhattan distances
to gain insight on how different distances respond to the
metrics set worth.

The second parameter is Robot Mode. Early work with
gaze and shared control showed that users tend to look at
the vicinity of the target when switching modes on their
controllers. [2] These controllers allow the user to move in 6
Degrees of Freedom (DOFs), made possible through 3 modes
of control, which can be seen in Fig. 1

We anticipated that as the user switches modes and looks
at the region, certain modes would reflect higher accurate
goal from gaze probabilities. This was assumed to be in the
X-Y mode as previous work noted that users relied on seeing
the target in that mode the most.
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Fig. 1. The three possible Robot Modes and their directions of motion [2]

C. Evaluation

The parameters were evaluated using a goal from gaze pre-
diction model (from [9]) that was based on the HARMONIC
dataset. [10]

This dataset features video and gaze data from users
working with a Kinova robotic arm on a food-spearing task.
The experiment designed in this dataset can be seen Fig. 2,
and asks users to spear one of three morsels on a plate using
different modes of autonomy including manual teleoperation
and shared control. This dataset also contains segmented and
filtered gaze data while also providing processed joystick
input mode and robot joint information.

From this dataset, we took into consideration the infor-
mation of 64 teleoperation trials. These trials only included
successful attempts at spearing the morsel as to understand
how the parameters responses in an ideal scenario.

Fig. 2. Overview of the task in the dataset

A program was constructed to accept input for any type
of parameter and output the results defined by our metric.

IV. DISCUSSION

This work presents a preliminary evaluation of how a goal
from gaze prediction model’s predictive abilities change as
the task parameters change. Currently, we have no conclusive
results but provide a short discussion on some interesting
notes.

Fig. 3. Distance from the target’s interaction with the
incremental probability gain for the correct goal

A. Distances

In fig. 3, we can see a general representation of how
distance from the target interacts with the probability change
for the correct goal. The parameter may be capturing some-
thing useful but needs further evaluation. Since distance acts
as a proxy for time, its likely that it will reflect the same
features that progression of the task will. In a follow up,
we will compare the incremental probability gain across the
progression of the task and compare it to the distance results.
This will either confirm that distance can be considered
independently of time or that the two parameters are too
similar and not appropriate for our intended use.

Fig. 4. Robot mode’s interaction with the incremental probability for the
correct goal
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B. Modes

In fig. 4, there is no clear differentiation between the
incremental probability changes in any of the mode. This
was interesting considering our initial assumption that the
X-Y mode would outperform the other modes given its use.
This may indicate that on its own, robot mode may not be
a reliable proxy. However, it may be interesting to evaluate
mode with some other parameter to see if that changes.
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“Using gaze patterns to predict task intent in collaboration,”
Frontiers in Psychology, vol. 6, July 2015. [Online]. Available:
http://journal.frontiersin.org/Article/10.3389/fpsyg.2015.01049/abstract

[21] B. Ziebart, A. Dey, and J. A. Bagnell, “Probabilistic pointing target
prediction via inverse optimal control,” in Proceedings of the 2012
ACM international conference on Intelligent User Interfaces - IUI
’12. Lisbon, Portugal: ACM Press, 2012, p. 1. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2166966.2166968

[22] A. Fagg, M. Rosenstein, R. Platt, and R. Grupen, “Extracting
User Intent in Mixed Initiative Teleoperator Control,” in AIAA
1st Intelligent Systems Technical Conference. Chicago, Illinois:
American Institute of Aeronautics and Astronautics, Sept. 2004.
[Online]. Available: http://arc.aiaa.org/doi/10.2514/6.2004-6309

[23] S. Jain and B. Argall, “Recursive Bayesian Human Intent
Recognition in Shared-Control Robotics,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
Madrid: IEEE, Oct. 2018, pp. 3905–3912. [Online]. Available:
https://ieeexplore.ieee.org/document/8593766/

[24] M. Bernhard, E. Stavrakis, M. Hecher, and M. Wimmer,
“Gaze-to-Object Mapping during Visual Search in 3D Virtual
Environments,” ACM Transactions on Applied Perception,
vol. 11, no. 3, pp. 1–17, Aug. 2014. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2663596.2644812

[25] R. M. Aronson and H. Admoni, “Semantic gaze labeling for
human-robot shared manipulation,” in Proceedings of the 11th ACM
Symposium on Eye Tracking Research & Applications - ETRA ’19.
Denver, Colorado: ACM Press, 2019, pp. 1–9. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=3314111.3319840

[26] M. M. Hayhoe, A. Shrivastava, R. Mruczek, and J. B. Pelz,
“Visual memory and motor planning in a natural task,” Journal
of Vision, vol. 3, no. 1, p. 6, Feb. 2003. [Online]. Available:
http://jov.arvojournals.org/article.aspx?doi=10.1167/3.1.6

[27] L. V. Herlant, R. M. Holladay, and S. S. Srinivasa,
“Assistive teleoperation of robot arms via automatic time-
optimal mode switching,” in 2016 11th ACM/IEEE International
Conference on Human-Robot Interaction (HRI). Christchurch,
New Zealand: IEEE, Mar. 2016, pp. 35–42. [Online]. Available:
http://ieeexplore.ieee.org/document/7451731/

23



[28] “How do I use Zotero with Overleaf? - LibAnswers.” [Online].
Available: https://libanswers.caltech.edu/faq/204206

[29] Kinova, “Robotic arm series.” [Online]. Available:
https://www.kinovarobotics.com/en/products/robotic-arm-series

[30] C.-M. Huang and B. Mutlu, “Anticipatory robot control for efficient
human-robot collaboration,” in 2016 11th ACM/IEEE International
Conference on Human-Robot Interaction (HRI). Christchurch,
New Zealand: IEEE, Mar. 2016, pp. 83–90. [Online]. Available:
http://ieeexplore.ieee.org/document/7451737/

[31] A. D. Dragan and S. S. Srinivasa, “A policy-blending formalism
for shared control,” The International Journal of Robotics Research,
vol. 32, no. 7, pp. 790–805, June 2013. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/0278364913490324

[32] E. C. Grigore, O. Mangin, A. Roncone, and B. Scassellati, “Predicting
Supportive Behaviors for Human-Robot Collaboration,” p. 3, 2018.

[33] M. D. Jagli and P. Shetty, “18 Human Emotion Recognition Using
Machine Learning,” p. 3, 2019.

[34] K. Mohan, “Automated Facial Expression Detection using Machine
Learning Algorithm,” p. 22.

[35] “Recognizing human facial expressions with machine learn-
ing,” library Catalog: www.thoughtworks.com. [Online]. Avail-
able: https://www.thoughtworks.com/insights/articles/recognizing-
human-facial-expressions-machine-learning

[36] M. Saxena, R. K. Pillai, and J. Mostow, “Relating Children’s Automat-
ically Detected Facial Expressions To Their Behavior in RoboTutor,”
p. 2.

[37] Y. Wang, Y. Li, Y. Song, and X. Rong, “Facial Expression
Recognition Based on Auxiliary Models,” Algorithms, vol. 12, no. 11,
p. 227, Oct. 2019. [Online]. Available: https://www.mdpi.com/1999-
4893/12/11/227

[38] M. Hayhoe and D. Ballard, “Eye movements in nat-
ural behavior,” Trends in Cognitive Sciences, vol. 9,
no. 4, pp. 188–194, Apr. 2005. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S1364661305000598

24



Kinematic Modeling of The Rolling Star Soft Robot

Samuel C. Alvares*1, Andrew P. Sabelhaus2, Carmel Majidi2

Abstract— Bio-inspired soft robots have flexible limbs that

allow them to navigate diverse terrain. A clear model of where

the robot and its limbs exist in space is important for it to

adapt its shape and locomotion to such varying environments.

However, complexities in their mechanics make onboard state

estimation of the robot’s pose and autonomous closed-loop

position control challenging. Such functionality is desirable for

trajectory following, disturbance rejection, and more robust

behaviors. With the intent of progressing towards the first

soft robot capable of onboard state estimation, we develop

a novel kinematic model to describe the pose of The Rolling

Star, a mobile, soft robot made of seven shape-memory alloy

(SMA) arms. The model assumes knowledge (via sensors) of the

curvature, as well as the length, of each arm. With these inputs,

we model the robot as a single, planar loop of seven rigid bars.

Using data from a full dynamics simulation as ground-truth,

we demonstrate low error in the model with estimates of less

than 2% error through various robot motions.

Index Terms— Kinematics, Soft Sensors and Actuators, Mod-

eling, Control, Learning for Soft Robots, Soft Robot Applica-

tions

I. INTRODUCTION

Robotic systems with high accuracy, precision, and power
have long been fabricated using rigid materials [1]. How-
ever, these robots are generally very specialized, and their
functionality is limited by their rigidity [2]. Bio-inspired soft
robots with flexible limbs are capable of multifunctionality
far richer than their rigid counterparts. Soft robots can
operate in diverse environments, including uneven, narrow,
or rocky terrain, or even underwater [3]. In addition, they are
much safer for humans to interact with due to their soft limbs
which deform upon contact, a concept called morphological
intelligence [4].

Currently, most soft robots operate without onboard state
estimation, meaning that they lack position feedback from
sensors [5], [6]. Some progress has been made in the field to
implement state estimation and closed-loop position control
on a soft robot. Prior work has involved offboard computer
vision [7], [8], feedback via acoustics [9], and a number of
other efforts [10], [11]. However, none have used onboard
sensors for full state estimation of the robot’s pose. Such
a robot would be progress towards autonomous closed-
loop control which permits trajectory following, disturbance
rejection, and more robust behaviors.
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1 S.C. Alvares is with the Robotics Institute Summer School at

Carnegie Mellon University, Pittsburgh, PA 15213, USA and also with
Rose-Hulman Institute of Technology, Terre Haute, IN 47803, USA
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In this paper, we discuss how we create a kinematics
algorithm to define the pose of a soft robot, an important
advancement towards onboard state estimation. We model
The Rolling Star, which is formed by a closed loop of seven
shape-memory alloy (SMA) arms that actuate with the input
of current. Progress in the development of a liquid metal
capacitive curvature sensor capable of collecting live curva-
ture data inspired the following kinematic model. Assuming
the arms have approximately constant curvature, the sensor
data, in combination with the arc-length, allow us to model
the robot as a planar, single-loop mechanism composed of
seven straight bars connecting the tips of the robot’s curved
sections. As the limbs of the robot actuate, the lengths of the
straight bars change as functions of curvature. This model
provides the first closed-form solution to the kinematics of
single-loop, closed-chain, N -bar, planar mechanisms. We
model the kinematics of the straight sections as rigid bars that
bisect the curved sections. Our model demonstrates low error
in the locations of the center of mass, the tips of the curved
sections, and the outer tips when compared with ground-truth
simulation data from a dynamics model of The Rolling Star
[12].

II. BACKGROUND AND RELATED WORK

State estimation, dynamic modeling, and closed-loop po-
sition control depend on clearly defined kinematics. Various
kinematic models have been created for soft and curved
robots [13], but none describe closed-chains of curved limbs,
nor do they accommodate curvature as a main input. Kine-
matic models of straight-bar, planar, closed-chain mecha-
nisms are well-known [14]–[16]. However, we discovered
no literature on the kinematics of a single-loop, planar
mechanism with greater than six bars [14], [15]. Also,
previous models of single loop mechanisms are concerned
with stationary robots, and they mainly consider the pose of
an end-effector or the location of a single joint.

Huang et al. created a dynamic simulation of The Rolling
Star, a mobile soft robot that has previously demonstrated
locomotion [2]. They verified their simulation by showing
quantitative agreement between their simulation and hard-
ware experiments. The numerical simulation uses a technique
called discrete differential geometry (DDG) [12], and the
locations of discretized points describing the robot’s pose are
available as outputs from the simulation. Although the DDG
simulation is not applicable to real-time state estimation as
it is too computationally expensive, the data output is useful
for testing the reduced-order kinematics model we develop.
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(a) The Rolling Star hardware, with seven limbed actuators.

(b) Kinematic approximation of the robot, with constant curvatures,
i, for each limb and angles, ✓i, between virtual‘bars’. The arc-length
of the curved sections and the length of the straight sections are
represented by Ls and L, respectively.

Fig. 1: The Rolling Star in hardware and its kinematic
approximation of curved and straight sections.

III. METHODOLOGY

In light of the previous work on kinematic models of
curved robots and on The Rolling Star’s dynamic simulation,
we aim to develop a novel kinematic model for a soft robot
composed of multiple, curved limbs. Since The Rolling Star
is a mobile robot, our kinematic model must establish the
locations of all external tips to determine environmental
contact. The center of mass location must also be calculated
because of its importance in future work on control as well
as static and dynamic modeling. Additionally, we intend for
the kinematics algorithm to be capable of determining the
robot’s pose in real time on future hardware experiments.

Although The Rolling Star has seven limbs, we develop a
more general N -arm model. The model first determines the
pose of the curved-section tips, or the points where curved
sections join. Then, knowing the curved-section kinematics,
it calculates the location of the outer tips of the robot, or the
straight-section tips. In the final subsection, we discuss the
process for determining the performance of our model.

A. Curved-Section Kinematics

Knowing the curvature and arc-length of a curved section
and by making a constant curvature assumption, we can

Fig. 2: Curved section kinematics for an N -arm robot. Red
lines represent the virtual four-bar mechanism expressed with
the final bars, allowing arbitrary N -bar mechanisms to be
modeled analytically.

calculate the chord length between the tips of a curved
sections, ai, by

ai =
2 sin (Li

2 )

i
(1)

where i is the curvature of the limb and L is the arc-
length. As motivated by [13], we first convert our model
into an approximation of virtual straight bars as shown by
the heptagon of dashed, gray lines in Fig. 1b. It is important
to note that as the SMA arms actuate, the bar lengths will
vary as a functions of curvature.

Considering the curved sections of the robot as a series of
straight bars, we establish coordinate frames at each joint
in accordance with the Denavit-Hartenberg convention as
shown in Fig. 2. We determine the transformation matrices
from the base frame to each joint in terms of all joint angles,
✓1...✓n�1, ✓10 , and the bar lengths a1...an�1, a10 , by

T0
n =

nY

i=1

Tn�1
n , (2)

where

Tn�1
n =

2

664

cos (✓n) � sin (✓n) 0 an cos (✓n)
sin (✓n) cos (✓n) 0 an sin (✓n)

0 0 1 0
0 0 0 1

3

775 . (3)

To fully define the pose of the robot, the forward kine-
matics need to be in terms of a subset of all joint angles,
✓1...✓n�1, ✓10 . Gruebler’s formula can be simplified for a
single-loop, planar mechanism to

F = l � 3 (4)

where F is the degrees of freedom of the mechanism and
l is the number of links. Thus, to fully define the robot’s
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pose, the kinematics must be in terms of F joint angles not
including ✓1 which is assumed to be 0.

In the simplified case of the four-bar mechanism which
has one degree-of-freedom, we can solve for all joint angles
in terms a single angle by using law of cosines and law of
sines. As shown by the red quadrilateral in Fig. 2, we are
able to apply similar mathematics to the four-bar mechanism
created by the final three bars of the N -bar mechanism and
the bar extending from the base frame to the (l � 3) frame.
We use law of cosines to solve for the distance between
frames (l� 1) and (l� 3). Law of cosines and law of sines
are used to determine unknown internal angles, ✓l�2 and
✓l�1, in terms of F joint angles, ✓2...✓l�3, ✓10 . Setting the
transformation matrices in terms of the known joint angles,
the pose of each of the curved-section tips is fully defined
in terms of the appropriate number of angles.

B. Straight-Section Kinematics

We assume that the straight sections are rigid, have a fixed
length, and that they bisect adjacent curved sections at the
curved-section tips (Fig. 3). The slope of the bisecting line
is

ms =
mnmn+1 � 1 +

q
(m2

n + 1)
�
m2

n+1 + 1
�

mn +mn+1
(5)

where mn and mn+1 are the slopes of adjacent curved
sections at their junction.

Although two adjacent curved sections come together into
one straight section, the curved sections are not assumed
to be tangent at their junctions. This constraint would limit
the number of other inputs, such as curvatures, that aid in
accurately and full defining the pose of the robot’s hardware.

Knowing the results of the forward kinematics of the
curved sections, the slopes of the straight sections, ms, and
the length of the straight sections, Ls, the location of the tips
are

xtn =

2

4 xn +
q

L2
s

1+m2
s

yn +ms

q
L2

s
1+m2

s

3

5 (6)

where [xtn , ytn ] = xtn 2 R2.

C. Kinematics Verification

We compare the results of our model to data from the same
simulation as was used in [12]. Outputs from the simulation
represent the curved and straight sections with discretized
points. Because hardware was not available at the time of
writing this paper, we create a virtual curvature sensor by
performing a least squares estimate and fitting a curve to the
curved-sections of the simulation data. By applying law of
cosines to the curved-section tips of the simulation data, we
are able to determine F joint angles necessary to fully define
the robot’s pose. The curvature and joint angle calculations
occur at each time step, and their results are used as inputs
to the kinematic model.

To qualitatively verify our model, we plot an overlay of the
simulation and model data as shown in Fig. 4. To quantify

Fig. 3: Straight-section geometry for the nth straight section.
Straight sections are assumed to exit the closed chain at an
angle, ms, that bisects the tangent lines to adjacent curved
segments.

the error in our model, we calculate

✏ = ||xsim � xmodel||2 (7)

where [xi, yi] = xi 2 R2 and xsim and xmodel represent the
locations of features from the DDG simulation and from the
kinematics model, respectively. By normalizing the error, ✏,
by the height of the robot, h, we get a better sense of the
magnitude of model error relative to the size of the robot.
The three equations that we use to quantify the results of the
model are

Errorcom =
✏com
h

(8)

Errortip =
✏tip
h

(9)

Errorcurve =
✏curve
h

(10)

where ✏com is error in the location of the center of mass,
✏tip is the average error in the locations of all outer tips, and
✏curve is the average error of the locations of all curved-
section tips, all of which are calculated at one timestep.
Note that we calculate the model prediction of the center
of mass by averaging the location of the center of mass of
each curved and straight section. From the simulation data,
the location of the center of mass is calculated by averaging
the x- and y-locations of each discretized point.

IV. RESULTS AND DISCUSSION
The outputs from the kinematic model align closely with

the DDG simulation with a normalized error in the location
of all features less than 2%. Fig. 5 shows a comparison of
all error terms throughout the simulation. At the start of
the simulation, the robot is not actuated, and gravity has
not yet taken effect, so there is little error. Error across
all terms increases a small amount shortly thereafter as
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Fig. 4: Comparison for the kinematic algorithm output to
the simulation data (a) at t = 0 seconds when no limbs are
actuated and (b) at t = 0.24 seconds when two of the robot
arms are actuating (arms 2 and 1’). Coordinate estimates via
the kinematics approximation are low-error in all poses.

gravity deforms the robot. Around 0.24 seconds, two of the
arms (10 and 2) are actuating, and all errors spike. As the
limbs actuate, the curvatures of the arms likely deviate from
constant, and Errorcurve spikes since the model assumed
constant curvature.

There are three main factors that may contribute to the
spike in Errortips. As the robot’s limbs actuate, it has
a clockwise rotation. Inertial effects are likely causing the
straight sections not contacting the ground to lag behind their
predicted locations. In addition, the straight sections likely
have slight curvatures induced from inertial effects and from
ground frictional contact forces that bend the outer tips away
from the model’s predictions. Finally, since the locations
of the curved-section tips are an input to determine the
locations of the straight-section tips, it follows that a spike
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Fig. 5: Comparison of the average error in the location of the
straight-section tips, curved-section tips and the error in the
location of the center of mass. Error peaks as the robot limbs
actuate (0.24 seconds) and various kinematic assumptions
become less valid, though errors are still extremely small.

in Errorcurve contributes to a higher value of Errortips.
Errorcom also spikes when the robot arms actuate. Since

the model’s center of mass calculation depends on the
location of the curved- and straight-section tips, high values
of Errortips and Errorcurve contribute to a high value of
Errorcom. The symmetry of the robot causes error in the
location of the straight-section tips and curved-section tips
to negate, and thus, Errorcom is consistently lower than the
other two error terms.

Towards the end of the simulation, the robot approaches
steady state. Due to supporting the weight of the robot and
frictional contact forces, the straight sections of the robot
contacting the ground likely have induced curvature. Since
the kinematic model assumes perfectly rigid straight sections,
the error in the average location of the outer tips stays higher
than the other terms towards the end of the simulation.

Although we could reduce error by modeling the bending
in the straight sections due to contact friction, gravity and
inertial effects, error in the location of all features is quite
low throughout the entire simulation. Even at the peak of
actuation, we see location errors that are well under 2% of
the height of the robot, a very small error.

V. CONCLUSIONS AND FUTURE WORK

The development of a soft robot capable of full onboard
state estimation of the robot’s pose and autonomous closed-
loop position control would allow for a wide range of robust
behaviors. In this paper, progress towards this functionality
by developing a kinematic model for the soft robot, The
Rolling Star.

Knowing the curvature of each of the limbs, we simplified
the kinematics of the curved sections of the robot by model-
ing them as straight bars. Then, we determined the location
of the outer tips of the robot by finding the bisecting slope
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of adjacent curved sections and by knowing the length of the
straight sections. The error of our model peaked when the
robot actuated two of its limbs. The largest error observed
was in the location of the external tips of the robot. In
particular, inertial effects and bending in the straight sections
were main causes for error in the locations of the outer
tips. Any deviation from constant curvature induced error
in the location of the curved-section tips. Finally error in the
location of the center of mass was the smallest since some
of the errors in the robot’s features negated due to symmetry.
Despite these sources of error, the kinematic model that
we presented provides accurate results as measured by a
normalized percent error of less than 2% for the center of
mass, straight-section tips, and curved-section tips.

To progress closer towards onboard state estimation of
this robot, a next step would be to develop a static model.
Modeling the robot as a series of straight bars with torsional
springs at the joints would allow one to solve for l� 3 joint
angles and achieve pseudo-static state estimation. Another
step is to implement this work on hardware which would
provide another level of model verification. Liquid metal
capacitive sensors could provide curvature readings, and an
on-board micro-controller and battery could untether the
robot. Also, since The Rolling Star is mobile, another critical
step is to model the robot’s kinematics as it takes a step, as
well as its dynamics.
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Continuous Design Variable Optimization in Modular Robot Design
through Deep Reinforcement Learning

Max Asselmeier1, Julian Whitman2 and Howie Choset2

Abstract— Modular robots allow for a robust method of
catering a robotic system to the task, or tasks, that it is to
complete. However, many of the methods that develop ways to
generate modular robot designs do so with a finite, discrete
pool of modules to pick from. The methods that are able
to handle continuous design parameters for these modular
arms do not currently leverage the efficiency afforded by deep
reinforcement learning algorithms. Continuous design variables
would offer another level of versatility and customization with
regards to the creation of modular robotic systems. Addi-
tionally, reinforcement learning is a computationally efficient
way of evaluating modules that can be added to an existing
modular arrangement, which is normally an exponentially
complex problem. In this work, we offer forth a framework that
allows for the combination of the discrete decision of selecting
a module group to add to an arrangement through a Deep-Q
Network with a continuous decision that optimizes the design
variables for the given module group through the Soft Actor-
Critic algorithm. We then provide results for the training of
the Deep-Q Network on a set of finite modules along with
the training of the Soft Actor-Critic algorithm on a relaxed
constraint problem.

Index Terms— Kinematics, Novel Deep Learning Methods,
Reinforcement Learning, Task Planning

I. INTRODUCTION

The modular design of robotic arms allows for the special-
ization of a robot to the task that it is to complete. However,
this specialization hinges upon the ability to identify an
optimal design, or the proper sequence of modules used to
create a robotic arm. This process allows for an expansive
amount of creative choices and a high degree of optimization
with regards to the specific application of a robotic arm: the
more modules that are available to use, the more types of
arms that can be generated and the more types of tasks that
can be completed. Human experts are capable of generating
these optimal robotic arm designs, but this greatly restricts
the types of users that can create these arms. Developing a
tool capable of learning how to design a modular arm would
allow a layperson to engage with this design process and
potentially even create a design that an expert user could
not conceive of. Additionally, this tool would be useful in
situations where the task at hand changes frequently over
time. Each unique task would require a re-design from an
expert user whereas this tool would be able to produce a
useful design in a much quicker fashion.

1Max Asselmeier is with the Department of Mechanical Science and
Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
ma53@illinois.edu

2Julian Whitman and Howie Choset are with The Robotics Institute,
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA jwhitman,
choset@cmu.edu

The recent advancements in deep learning have allowed
for the utilization of reinforcement learning (RL) as a tool
for facilitating search problems such as modular robot design
[1], [2]. Computational complexity and time are severe lim-
itations to how large search trees can be, and deep learning
provides heuristics for solving these search problems. For
modular robot design, the variations of the arrangements
of modular arms grow exponentially with the number of
different modules that can be added, but deep reinforcement
learning provides ways to evaluate module arrangements and
focus on those that may be of interest. With this being said,
reinforcement learning tools like neural networks also have
limitations on how they generate these evaluations. Prior
work [1] on this project has employed the use of a Deep-
Q Network (DQN), a popular tool in reinforcement learning
which requires a finite output space. This type of network
provides state-action values known as Q-values that function
as scores for each possible action that can be taken from
a given state. This works well for modular robot design,
but only if we sample from a discrete pool of modules.
If we want to adjust design parameters such as the length
or mass of a link, then we will end up with an infinitely
large action space with each action representing a link of
an infinitesimally smaller or larger length or mass, and our
problem quickly becomes intractable. This option to tweak
design parameters for a robotic arm provides more freedom
and flexibility for automated modular robot design, but a
different approach that is specifically designed for continuous
action spaces must be used.

In this paper, we build on prior methods of modular
robot design [1] and develop a framework that would allow
for the utilization of a continuous action space. We also
initiate work on training a deep RL algorithm that can output
the optimal continuous design variables for a certain task.
Our framework involves a hierarchical structure of neural
networks separating the task of adding a new module to an
already existent arrangement of modules into two sub-tasks.
A primary network would first choose the discrete type of
module to be added to a modular arm such as a link or
bracket. Then, a secondary network would set the module
type’s corresponding design variables. Setting these design
variables could be a discrete decision such as choosing if
a bracket will be pointed either towards or away from the
robotic arm, or it could be a continuous decision such as
setting the length of a link. The ability to set or alter these
continuous design variables, and more so to do this in the
same networks that set the discrete design variables, would
allow for a much greater breadth of options when it comes
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to which modules are being added to the robotic arm and
what characteristics these modules possess.

In this paper, Section II will detail literature and concepts
that are related to the work discussed in this paper. Section
III will explain the potential methodology of our hierarchical
neural networks along with supplementary information for
our tasks and solutions. Section IV will present our results,
Section V will involve closing remarks on this research, and
finally, Section VI will provide limitations of this work along
with directions for future research.

II. BACKGROUND

A. Related Works

Previous implementations of modular design synthesis
exist, but these methods typically utilize a discrete set of
modules. Tools ranging from interactive design systems to
best-first graph searches make use of libraries of standard
modular components from which complete arrangements
for modular robots are created [2], [3], [4]. Evolutionary
algorithms are also used to compose robot designs from
a finite set of modules [5]. However, these methods all
select from a finite number of modules. Genetic algorithms
have been able to optimize a mixture of both discrete and
continuous design variables [6], but this work does not
leverage the deep learning algorithms frequently used now.

Deep learning within robot design has been employed in
other forms. For instance, deep learning tools have been
utilized to jointly learn not only the structure or design of a
robot, but also the robot’s motion control policy [7], [8].
Also, prior work on this project has involved utilizing a
Deep-Q Network to generate efficient designs for modular
serial manipulators [1]. The synthesis of robot designs from
a discrete pool of modules allows for the development of
robotic systems that are customized towards their given
tasks. However, confining modular design synthesis to a
set of modules does enforce restrictions on both the types
of robots that can be created and the types of tasks that
can be accomplished. Continuous design variables would
allow for much more freedom when it comes to creating
modular robots, and multiple deep learning algorithms that
are applicable to continuous action spaces have already been
developed.

B. Deep learning in continuous output spaces

Several deep learning algorithms are able to be utilized
within continuous output spaces. One way that these algo-
rithms can produce continuous outputs is through methods
such as using soft bounding functions to limit the regular
outputs of a network’s layer to the desired bounds of a given
action. The Deep Deterministic Policy Gradients (DDPG)
algorithm [9], the deep version of the previously developed
Deterministic Policy Gradients [10]. DDPG is a model-free,
off-policy algorithm that learns a deterministic policy by
using the aforementioned bounding functions. The Twin De-
layed Deep Deterministic (TD3) policy gradients algorithm
is a modification to DDPG that also does this.

Algorithms can also generate these continuous outputs by
producing the mean and standard deviation for a distribution
and sampling from this distribution to obtain values. The
Soft Actor-Critic (SAC) algorithm [11] is a model-free, off-
policy algorithm that performs this idea of sampling from a
distribution.

Prior work has used these deep learning algorithms within
continuous action spaces to have robot platforms learn simple
and compound abstract tasks [12] as well as learn complex
manipulation tasks [13]. Deep RL has also been used to learn
motion planners with continuous outputs for robotic systems
as well. However, no prior work has incorporated continuous
action spaces into modular robot design. Our work on this
project has initiated the exploration of the optimization of
continuous actions within modular design synthesis.

C. Deep learning for Modular Robot Design

Our modular design problem is treated as a finite Markov
Decision Process where modules that are to be serially
added to an arrangement are evaluated based on the current
arrangement as well as the goal position of the episode.
The module currently being added to the arrangement is
connected to the module that was previously added.

Therefore, the state st of this problem is comprised of
the active arrangement of the arm, or what modules are
currently within the arm along with the goal position that
is to be reached. An action at is referred to as the process of
appending a new module onto the arrangement, and a reward
rt is obtained from the environment at each step based on
both the state and the action that is taken. Further information
on discrete Q-learning for modular robot design can be found
in the previous work on this project [1].

The Soft Actor-Critic algorithm is employed in this project
to begin work on the implementation of deep RL on contin-
uous design variables in modular robot design. While most
other algorithms only attempt to maximize the expected re-
wards achieved throughout training, SAC seeks to maximize
the expected reward of the actor while also maximizing the
entropy of the actor. This means that SAC attempts to have
the actor succeed at the given task as frequently as possible
while varying its actions as much as possible as well. This
idea is evident when viewing the objective function used for
the previously discussed algorithms such as DDPG or TD3

J(⇡) = ⌃tE(st,at)⇠p⇡
[r(st, at)], (1)

where st, at, and r(st, at) are our state, action, and reward
respectively at a certain step, and p⇡ is our policy. This
objective function can then be compared to the augmented
objective function that is used for SAC

J(⇡) =
T�1X

t=0

E(st,at)⇠p⇡
[r(st, at) + ↵H(⇡(·|st))]. (2)

We can see that an entropy term denoted by H is added to
the reward, and the importance of the entropy term is decided
by the temperature parameter ↵. If ↵ is set to zero, then
the traditional objective function based solely on expected
rewards is recovered.
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With our objective function in mind, the soft Bellman
Equation that is used to estimate the state-action value
function Q⇡ can be formulated as:

Q⇡(st, at) = r(st, at) + �Est+1⇠ps [V
⇡(st+1)] (3)

where the soft value V ⇡(st) is equal to

V ⇡(st) = Eat⇠⇡[Q
⇡(st, at)� ↵ log ⇡(at|st)]. (4)

Here it can be seen that the entropy term for SAC is
defined as the negative log of the current policy.

SAC adapts the double-Q learning trick used in TD3 where
two critic networks are trained. Once an action is taken, both
critics will evaluate the action and return their respective Q-
values. When the networks are being trained, the lesser of
the two Q-values between the two critics is taken to reduce
overestimation bias. SAC also uses target networks [14] and
experience replay [15] to facilitate and stabilize the training
of the networks. Furthermore, we use Hindsight Experience
Replay (HER) [16] which is a data augmentation technique
applied to the replay buffer during training to help with the
sparse reward function that is used as part of this work.

III. METHODS
This project adapts much of its framework from prior

work on this project [1]. We previously utilized a DQN
to approximate the state-action values for a set of modules
that can be added to a robotic arm. However, since one
of the core ideas of this project is the implementation of
continuous action spaces which are incompatible with DQNs,
the framework that we developed plans on using our DQN
in a slightly different way. For this framework, our DQN
would instead select the type of module to be added. For
instance, instead of selecting a link with predetermined
design variables, the DQN selects the overall module group
of “link”, and the variables would be set later on in the
architecture of the problem. This combination of discrete and
continuous decisions was not achieved during this project,
and plans to implement it are detailed in section VI. The
desired framework for this hierarchy is detailed below.

The DQN and SAC networks will still be used to design an
optimal modular arm design given a goal position in space.
The inputs to the networks would aim to represent the current
state of the arm along with the goal position that the arm is
to reach. The outputs of these networks would aim to select
the best possible module that could be appended to the arm
in order to reach the goal position. A reward is given to the
networks if the arm is able to get within a certain distance
to the goal position, and the networks selects modules to
maximize both the amount of rewards obtained along with
the randomness of the modules chosen.

The task space for this problem is limited to one position
p 2 R3 where p = [px,py ,pz]. This means that during each
episode of training, inverse kinematics (IK) is performed on
the end-effector of the arrangement with the respective point
p of that episode as the goal position. Inverse kinematics is
solved through the module PyBullet [17] with the Damped
Least Squares method [18]. A tolerance ✏p is set so that

a reachability function for an arrangement A 2 RNmax⇥Nm

where Nmax is the maximum number of modules allowed in
an arrangement and Nm is the number of modules to choose
from and target position T 2 R3 can be defined as follows:

reach(A, T ) =

(
1 || p� pEE || < ✏p
0 otherwise.

(5)

Where pEE is the location of the end-effector of the
arrangement in space after forward kinematics has been
performed on the arrangement using the angles obtained
through inverse kinematics. These modular arrangements are
also evaluated on other non-terminal conditions such as the
mass and complexity of the arrangement. The mass of the
arrangement M(A) is simply calculated by summing up the
masses of the individual modules in the arrangement, and the
complexity of the arrangement is represented by the number
of actuated joints in the arrangement NJ(A). An objective
function for these conditions can be defined as

F (A, T ) = �wJNJ(A)� wMM(A) + reach(A, T ). (6)

Weights wJ and wM are determined by the user based on
how important the mass and complexity of the arrangements
are. Therefore, it follows that an optimal arrangement is
capable of maximizing this function for its singular goal
position:

A⇤ = argmax
A

F (A, T ) (7)

Now, we outline the proposed way to train these networks
to discover and select these optimal arrangements.

A. DQN for module group selection

The actions from our DQN are chosen from a set of
four options: actuators, brackets, links, and end-effectors. As
of now, the links are the only module group that support
continuous design variables. For the other three module
types, the DQN simply would select from a discrete pool
of modules with predetermined design variables.

The arrangement of each modular arm would be repre-
sented through a list of one-hot vectors such that each index
of a vector indicates either the discrete module chosen for
the arrangement or the module group selected in the case of
a link.

The design variables for the arrangement would be rep-
resented through a list of vectors where each index of the
vectors represents a singular design variable for the module
that is at the position in the arrangement of the corresponding
index of the vector within the list. If a module within the
arrangement were to be chosen from a discrete set and
therefore not possess any continuous design variables, then
its vector of design variables would simply consist of all
zeroes. Also, if an arrangement would be to end with less
than the maximum number of modules, then the vectors
occupying the empty indices of the list would also contain
all zeroes.

The design variables would be passed through a pre-
processing layer for the module type that is to be added so
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that even if the numbers of design variables for two types of
modules are different, the outputs of the pre-processing layer
are still the same size. For instance, a pre-processing layer for
links would accept as its input the design variables for a link,
a pre-processing layer for brackets would accept as its input
the design variables for a bracket, and both of these layers
would have the same size outputs. All of these outputs can
be appended for a given arrangement so that the processed
design variable list is the same size for all arrangements. The
structure of the networks is further detailed in Figure 1.

At each step within an episode, the DQN would either
select a discrete module or a module group. If a discrete
module is chosen, then this module would just be appended
to the arrangement and there would be no more activity
from the networks for the duration of this step. However,
if a module group were to be chosen, then the state of the
arrangement along with the module group to be added would
be passed to the SAC networks.

The reward function would be identical for all arrange-
ments and it would consist of non-terminal and terminal
components. The non-terminal penalties would come from
the mass and complexity of the module m that is to be added
to the arrangement:

r(m) = �wJNJ(m)� wMM(m) (8)

If the module that is chosen by the DQN were to be an
end-effector, then the action as well as the next state of
the arrangement would be terminal, and a terminal reward
would be returned. The terminal reward function evaluates
two features of the arrangement. If the maximum number
of modules for an arrangement is reached without an end-
effector being added to the arm, then a terminal reward of -1
would be returned. Otherwise, if an end-effector were to be
added at any point along the arrangement, then the previously
detailed reachability function for the arrangement would be
evaluated

rterminal =

8
><

>:

�1 length(A’) == Nmax

and m is not an EE
reach(A0, T ) m is an EE

(9)

where A0 is the arrangement after the action has been taken
and EE is an end-effector.

B. SAC for design variable selection

SAC consists of an actor-critic framework where a single
actor network learns a stochastic Gaussian policy by out-
putting mean and standard deviation values that can be used
to create a Gaussian distribution. Actions are then sampled
from this distribution. Two critic networks evaluate and
return Q-values for the actions taken by the actor network.
The actor network accepts the state as its input and outputs
actions, and the critic networks accept the state as well as
the current actions and outputs a Q-value that evaluates the
action taken.

Fig. 1. The structures that we used for our DQN and SAC networks. A.)
shows our DQN, B.) shows the actor network for SAC, and C.) shows the
critic network for SAC. These networks use fully connected (FC) layers,
concatenations, rectified linear units (ReLU), and clamps between minimum
and maximum values. The DQN accepts an arrangement A and a target
position p as its input and outputs a Q-value for each discrete module or
module group. The Q-values span the number of modules or module groups
Nm. The SAC actor takes A and p as inputs as well, but also takes in our
processed design variables V of length na, the maximum number of design
variables in an arrangement. The actor outputs a mean µ and a logarithm
of a standard deviation log � which are both used to calculate the action.
The critic for SAC takes in the same inputs as the actor while also taking
in the action a chosen by the actor. The critic outputs Q-values for each
design variable set by the action.

The state for the SAC algorithm would consist of the same
elements as the DQN: the current arrangement of the arm
along with the goal position that the arm is to reach, but
then we would also incorporate the design variables that are
set for each module.

In our work, the SAC networks were not configured to
train on the IK problems, and they were instead trained on a
variable range problem where the sum of the lengths as well
as the sum of the twists of all the links in the arrangement
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had to fall within a randomly generated range. The twist of
a link is the angular difference between the two joint axes
at both ends of the link.

Since our SAC networks have only been adapted to links
within our arrangements, the reward function only consists of
one non-terminal component which penalizes for the mass
of a link. The mass is penalized to encourage lighter and
cheaper arrangements.

r(m) = �wMM(m) (10)

C. Training the neural network architecture

For this project, the DQN was trained on a finite module
set to determine that the network functioned properly. At the
beginning of each episode, the target position is generated
from a random uniform distribution. The X and Y indices of
the target position are generated from the range [-0.5, 0.5]
whereas the Z index is generated from the range [0.0, 0.5].

As an episode progresses, the arrangement grows by
appending a module after each step. At each step, the DQN
outputs Q-values for each possible discrete module. The pro-
posed continuous framework would have the DQN instead
output a Q-value for each module group. The masking of cer-
tain actions is performed to ensure that each type of module
can only connect to a certain subset of modules. For example,
two actuators cannot be connected and two non-actuators can
be connected. Q-values are learned for all actions, but only
the Q-values for valid actions are evaluated when selecting an
action. The Boltzmann exploration strategy is employed for
the DQN in order to handle exploration and exploitation [19].
Often times when building an arrangement for a modular
robot, multiple modules represent valid additions that can
lead to high-reward states. With this in mind, a method
such as ✏-greedy fails to account for the exploration of
multiple valuable actions since ✏-greedy will either pick an
action at random or choose the single most valuable action.
Boltzmann exploration makes the process of choosing an
action stochastic by creating a probability distribution across
all valid actions. This allows higher value actions to still be
selected more often while also ensuring that no single action
is repeatedly exploited. A temperature parameter can also be
adjusted to make the probability distribution more or less
skewed towards higher value actions.

For the SAC networks, the actions are bounded by prede-
fined action limits. The length of a link is restricted to the
range of [0.0, 0.75] and the twist of a link is restricted to
the range of [0.0, 2⇡]. Exploration is encouraged through
the entropy term that is added to the objective function of
the SAC networks, and exploration is automatically added
through the random sampling of the Gaussian policy that is
generated by the actor network.

While training the SAC networks, actions are sampled
randomly from a uniform distribution for the first predefined
number of steps. This is done to ensure a proper amount of
initial exploration and to also allow for more uniformity with
respect to the initial weights of the network across separate
trials.

A replay buffer is utilized to allow for off-policy learning.
At each step, the state, action, reward, and next state are all
added to the replay buffer along with a variable signaling
if the action taken was a terminal one. Since the reward
function for our IK-based tasks is quite sparse, hindsight
experience replay (HER) is implemented [16] to ensure that
high-reward states are always existent within the buffer that
training batches are sampled from. If an episode terminates
and the end-effector of the arrangement is not within the
distance threshold ✏p of the goal position to earn the terminal
reward of one, then the same exact tuples of the state, action,
reward, next state, and terminal variable are added to the
replay buffer again, but now with their goal position as
the point in space that the end-effector ended up reaching.
However, if the final position of the end-effector lies outside
of our original goal ranges, then the tuples are not added to
the replay buffer.

Validation checks are also made at certain intervals of
training to determine how the policy is being updated
throughout training. These validation checks are made by
simply having the policy construct an arrangement with
solely exploitative actions.

IV. RESULTS
The results of this project contain results obtained from

training the DQN on a finite set of modules as well as
results from training the SAC networks on a relaxed problem
that requires the design variables of the links within an
arrangement to fall within certain goal thresholds. Both of
these training series occurred separately, and the DQN and
SAC networks were not trained together.

Figure 2 shows the total rewards earned from the DQN
arrangements during training. These results were tabulated
over three trials. It can be seen that for roughly the first
500 episodes of training, the total rewards are negative. This
is due to the fact that at the beginning of our training, our
Boltzmann exploration tends to select actions uniformly, so
modules that are less helpful for reaching a goal position
will be selected more often. Also, the network has only
just started to train, and it has not seen enough high-reward
states to learn what arrangements are able to reach the goal
positions.

Figure 3 demonstrates the total rewards earned for the
simplified SAC training. These results were also obtained
over three trials, and similar trends to the rewards for the
DQN training can be observed. The total rewards are negative
for roughly the first 500 episodes for the same reasons
provided for the DQN training, and soon after this the
networks are able to select states that earn positive rewards
which leads to a positive, linear increase in total rewards for
the remainder of the training.

Figures 4 - 8 demonstrate the evolution of arrangements
throughout the validation checks. Earlier arrangements are
frequently much too short to reach goals, and as more
training episodes are done, these arrangements tend to have
the proper number of modules to allow the end-effector to
reach the goal. Later on in training, the DQN also learns to
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Fig. 2. A plot of the total rewards earned from the DQN over all of the
training episodes. These results are averaged over three training trials, and
a reward of one was given if the arrangement was able to get within two
centimeters of the goal position while minor penalties were given for the
mass and complexity of the arrangement at all steps.

Fig. 3. A plot of the total rewards earned from the SAC networks over
all of the training episodes. These results are averaged over three training
trials, and a reward of one was given if both the length and twist totals fell
within the randomized goal thresholds while a minor penalty was given for
the mass of the arrangement at all steps.

select efficient arrangements by choosing arrangements that
reach goals with the minimum amount of modules required.

V. CONCLUSIONS
Through this project, we have initiated work towards

deep learning in continuous action spaces for modular robot
design. We adapted a previous framework for deep RL from
this project [1] and developed a plan for a hierarchical
structure of neural networks that segments the process of
adding a module to a current arrangement of an arm into a
primary discrete section and a secondary continuous section.

We developed a potential structure for designing a modular
arm arrangement where we would use a Deep-Q Network
(DQN) to select either a discrete module to be added or a
module group that is to be optimized for the arrangement. If
a module group is selected, then the Soft Actor-Critic (SAC)
algorithm would then be employed to set the continuous
design variables for the type of module that is to be added
to the arm.

We found that the Soft Actor-Critic (SAC) algorithm
allowed us to successfully optimize continuous design vari-
ables when trained on a simplified version of our inverse
kinematics tasks, and this algorithm has also led to promising
results for our inverse kinematics tasks as well.

While the training of these hierarchical networks is not
entirely finished, we plan on continuing to work on this
project in the future. In Section 6, we go into more detail
about current limitations for this work as well as our plans
for this project in the future.

VI. LIMITATIONS AND FUTURE WORK

One limitation for our current work is that the SAC
networks have only been trained on the length and twist
variables for links. It is quite possible that different design
variables that possess different action limits will require
different amounts of training, and training our SAC networks
on more of these design variables could help us fine tune our
training. For instance, design variables could potentially be
introduced to our brackets to allow for another module group
that can be implemented into our SAC networks.

Looking forward, we want to optimize our SAC networks
to work for the inverse kinematics tasks that we utilize for
our modular robots. Once these networks would be able
to return optimal design variables for a single, constrained
arrangement, we would then want to integrate our SAC
networks into our DQN and simultaneously train the two
groups of networks at the same time. Being able to train
both the DQN and SAC networks would then allow us to
construct modular arrangements by selecting a module or
module group through our DQN and then having our SAC
networks optimize the design variables for the module that
is to be added.

Beyond this, we also want to incorporate target orienta-
tions into our target positions to allow for more challenging
or selective tasks. Having our modular arms satisfy both
position and orientation requirements allows our arms to
complete more tasks than if they were to just satisfy po-
sition constraints. For even a simple pick-and-place task, the
orientation of the end-effector of a gripper or robotic arm
is critical when it comes to properly picking up and setting
down objects. We also want to incorporate obstacles into our
environments to allow our networks to be more realistic and
versatile. Forcing our modular arms to satisfy position and
orientation constraints while also avoiding obstacles allows
for the more robust modular designs to stand out and obtain
higher rewards while also penalizing the more rigid designs
that cannot adapt to obstacles.
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Fig. 4. Validation arrangements for the goal [0.1, 0.1, 0.1]. The numbers below the arrangements are the episodes at which these arrangements were
made. Notice how at the beginning of training, the network simply outputs a single actuator which is unable to reach any positions in space. However,
after only 250 episodes of training, the network is able to produce a more pragmatic design.

Fig. 5. Validation arrangements for the goal [0.2, 0.2, 0.2]. By episode 475, the network is able to produce an arrangement that can reach the desired
goal position. However, by the end of the training the network has learned that only two links are needed to reach the goal instead of three.

Fig. 6. Validation arrangements for the goal [0.3, 0.3, 0.3]. The arrangements for this goal actually follow a similar trajectory as those for the first
validation goal. However, the arrangements for this goal end with three links instead of two for the first goal.

Fig. 7. Validation arrangements for the goal [0.4, 0.4, 0.4]. The first few arrangements for this goal strictly use brackets which are not very effective for
reaching positions in space all by themselves. However, later on in the training the networks are able to use both links and brackets to reach the desired
goal position.

Fig. 8. Validation arrangements for the goal [0.5, 0.5, 0.5]. The network appears to learn at an early point in the training that several links will be required
to reach this goal position. This can be seen in the longer arrangement shown at episode 75. By the end of the training, the network still uses the same
number of links as it did at episode 75, but it has moved the bracket to be earlier on in the arrangement which allows the arrangement to be more flexible.
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Multi Drone Autonomous Cinematography for Unscripted Applications

Arthur F. C. Bucker1, Rogerio Bonatti2, Sebastian Scherer2

Abstract— Aerial cinematography is expanding the capabili-
ties of professional and amateur film-makers. However, safely
piloting a single drone while filming a moving target in the
presence of obstacles is immensely taxing, often requiring
multiple highly trained human operators. The complexity of
this task grows exponentially in a multi-drone system since,
besides challenges regarding obstacle avoidance and artistic
actor framing, factors as (1) shot diversity, (2) inter-drone
collision, and (3) inter-drone visibility must be considered.
Current approaches to control multiple aerial cameras presents
severe real-life limitations, such as depending on fully scripted
scenes or predefined shot types.

In this work, we overcome these limitations by proposing
a planning system to autonomously coordinate multiple aerial
cameras for partially or unscripted applications. Our approach
computes sequences of desired camera views for multiple drones
around a moving target, optimizing each drone’s trajectories to
create diverse and artistic shots in real-time. The system was
validated in a photorealistic simulator in cluttered and open
environments. The results show that our system is able to attend
all the requirements with an extremely low computational cost.

Index Terms— Motion and Path Planning, Aerial Systems,
Multi-Robot Systems

I. INTRODUCTION
Flying Cameras are revolutionizing industries that require

live and dynamic camera viewpoints such as entertainment,
sports, and security. The use of autonomous drones to
perform tasks in these areas demonstrates several advantages
in terms of cost, efficiency and safety [1] [2].

However, even with intelligent autonomous systems, these
vehicles are susceptible to physical and dynamic constraints
(speed, acceleration). Therefore, individual flying cameras
often face challenges when dealing with unpredictable mo-
tions or cluttered environments. Shot diversity is also an
inherent problem for single flying cameras, as long as
invariant shots might appear ‘unexciting’ for the final viewer.
A current solution to this problem is to record multiple takes,
but it can be laborious, expensive or even infeasible in some
applications. These challenges are intensified in real-world
scenes, such as sports or journalistic coverage, that usually
don’t follow a script, and therefore cannot be reenacted. For
these reasons, having access to multiple camera views can
significantly improve the quality of the final video.

Currently, solutions for multi drone cinematography are
scarce. Existing approaches focus mainly on coordinating
vehicles to follow predefined shot types [3] or pre-planned
filming missions [4] [5], restricting the use of this technology

1Arthur F. C. Bucker is with Escola Politécnica, Universidade de São
Paulo, São Paulo, SP, Brazil arthur.bucker@usp.br

2 Rogerio Bonatti and Sebastian Scherer are with Robotics
Institute, Carnegie Mellon University, Pittsburgh, PA, USA
{rbonatti,basti}@cs.cmu.edu

to scripted applications. Another solution in this area focuses
on maximizing the 2D coverage over static targets [6], par-
tially solving the “shot diversity” problem but only in 2D and
static applications. However, none of the existing systems
autonomously coordinate multiple cameras in dynamic and
unscripted applications.

Aiming to address this problem and empower any individ-
ual with full artistic capabilities, we propose an autonomous
multi drone system to generate diverse and artistic shots in
real-time. The main contributions of this work are:

• A new framework to coordinate multiple aerial vehicles
around a moving actor.

• An artistic metric for multi aerial cinematographers.
• A high-level shot type planner for autonomous filming

drones.
As input, our method combines a predefined artistic prin-

ciple, for example given by a certain director style, with the
occupancy map of the environment and a predicted trajectory
of the actor. The optimization is done using a centralized
greedy planner in an actor-centered discrete spherical domain
for each time step of the foreseen actor’s path (figure 3). For a
set of optimized high-level trajectories, each drone computes
its own desired trajectory by optimizing in real-time a set of
cost functions using covariant gradient descent [7].

Our approach was validated in a photorealistic simulator
in cluttered and open environments, with groups of 2 to 5
drones.

The results show that our system was able to successfully
coordinate the drones, safely generating diverse and
pleasurable shots. Furthermore, the high-level planner
demanded extremely low computational cost, optimizing
each trajectory in approximately 400us.

II. PROBLEM FORMULATION

The multi-camera problem can be divided into 2 main
steps: (1) Generating the videos and (2) editing them. The
first one consists of a np-hard optimization problem, and
because of that, an optimal path for the cameras can not be
guaranteed in a reasonable time. But, assuming that quality
of all possible viewpoints of the actor can be described as a
shot quality function, and that this function is monotonic and
submodular, a greedy placement of the cameras has bounded
sub-optimality guarantees [8] [9]. The second part of the
problem consists of choosing a shot sequence among the
generated videos. To do that a few artistic principles must
be taken into considerations: first, the selected videos must
have a good shot quality, and second, the transition between
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Fig. 1: Overall architecture

viewpoints must be pleasurable (e.g avoid too fast transition
and also monotonous continuous viewpoints).

The shot quality function is qualitative and directly re-
lated to the Artistic principle followed and the spectator’s
taste. However, the cinematography literature presents sev-
eral guidelines that can help to quantify the quality of a shot
[10] [11] and the transitions between them.

Considering these artistic guidelines and safety concerns,
we established a few requirements for the multi drone
system:

1) Must explore shot diversity
2) Must avoid Inter-drone visibility
3) Must avoid obstacles collision and occlusion
4) Must avoid Inter-drone collision
5) Must consider artistic inputs from the user

III. RELATED WORK

A. Autonomous aerial cinematography

There is vast literature and products that address au-
tonomous aerial cinematography. Several works and products
(e.g DJI Mavic [12] and Skydio [13] [14]) focus on following
user-specific artistic guidelines [7], [15]–[20], successfully
controlling single flying cameras, and reducing the com-
plexity of the filming task. However, depending on direct
user input on unscripted applications can be challenging,
demanding from the user continuous awareness of the scene
to properly control the artistic guide-line that the drone
should follow. This issue is intensified when scaling to a
multi-drone system. The work [21] successfully automates
this input process using deep RL, taking a step toward a
fully autonomous single-drone system.

B. Multi-drone coordination

There is a rich selection of work on multi-robot systems,
ranging from safety and controls, planning, target localiza-
tion, exploration, and even theatrical performances. However,
multi-drones solutions applied to aerial cinematography are
still scarce. Current approaches address the filming task as
over different optics. [3] proposes an algorithm to optimize
the trajectories of multiple drones with dynamic constraints
and inter-drone interactions (collision and visibility). But,
similarly to the single-vehicle systems, it depends on specific
user-inputted guidelines.

Another solution [5] aims to optimize a group of drones
to follow a filming given mission, coordinating the vehicles
considering battery and dynamic constraints. With that fo-
cusing on scripted applications.

A different approach considers the filming task as a 2D
coverage problem, where shot diversity can be obtained
by maximizing the visible area of the target actors [6].
Also focusing on coverage, [22] optimizes multiple flying
cameras trajectories for efficiently generate datasets for 3D
reconstruction.

In the context of filming outdoor events with moving
targets, [4] provides an overview of the cinematography
principles and existing techniques to perform filming tasks
with multiple drones.

IV. APPROACH

A. Proposed solution

In this work, we propose a multi drone system capable of
coordinating multiple aerial cameras around a moving actor
in cluttered environments without any scripts.
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The system’s pipeline consists of 2 planners, the first is a
centralized greedy planner that assigns high-level trajectories
to the vehicles trying to optimize a handcrafted shot quality
function. During the optimization, it also outputs a proposed
timeline for real-time editing. It takes into consideration
inter-drone interactions, obstacles, and artistic principles,
acting as a media director. (figure 1).

The second planner, described in detail in [7], consists of
an onboard planner that optimizes a single drone trajectory
using covariant gradient descent and taking the high-level
path as a baseline. This planner controls the fine motion
of the drone in order to keep its movement smooth, ensure
obstacle avoidance, and reduce occlusions.

The high-level planner preforms the optimization consid-
ering a Artistic map (V ) that represents the shot quality of
the possible viewpoints along the inferred actor’s trajectory
(⇠a(t)).

B. High-Level Planner

1) Viewpoint and shot definition: Based on cinematography
literature [10] [11], we select a minimal set of parameters that
compose most of the possible shots for single-actor, single-
camera scenarios. We define a shot ⌦art as a set of three
parameters: ⌦art = {✓,�, r}, where:

• ✓ is the relative yaw angle between actors direction and
camera (✓ 2 [0, 2⇡])

• � l is the relative tilt angle between the actor’s current
height plane and the camera (� 2 [0,⇡/2])

• r is the shot scale which can be mapped to the distance
between actor and camera (r 2 [rmin, rmax])

Fig. 2: Shot parameters

2) Actor trajectory definition: Let ⇠a(t) : [0, tf ] !
R

3 ⇥ SO(2) be the trajectory of the actor as a map-
ping from time to a position and heading (i.e., ⇠a(t) =
{xa(t), ya(t), za(t), ✓a(t)}), and let ⇠a represent the same
trajectory in a finite discrete form.

3) Drone trajectory definition: We assume that our drones
have a gimbal controller that can orient the camera inde-
pendently of the drone’s body motion. Therefore, we can
purposefully decouple the drone’s heading from the main
motion planning algorithm. Now, let ⇠q(t) : [0, tf ] ! R

3 be
the trajectory of the drone as a mapping from continuous-
time to a position (i.e., ⇠q(t) = {xq(t), yq(t), zq(t)}), and let
⇠q represent the same trajectory in a finite discrete form.

for a given drone i, let its sequence of shots be ⌦qi(t) :
[0 : tf ] ! ⌦art (i.e. ⌦qi(t) = ✓rel(t),�(t), r(t)). Then, the
desired artistic trajectory ⇠shots of the drone can be defined
as:

⇠shots(t) = T (⌦qi(t)) (1)

Where T : ⌦art[0, tf ] ! R3, such that for a given actor’s
path ⇠a and shot ⌦ = {✓,�, r}, T (⌦, t) is defined as:

T (⌦, t) = ⇠a(t) + r(t)

2

4
cos(✓a(t) + ✓rel(t))sin(�(t))
sin(✓a(t) + ✓rel(t))cos(�(t))

cos(�)

3

5

(2)
4) state space definition: Let A be the state space of

possible shots ⌦art. Such as A is a half spherical discrete
domain centered and oriented on each point of the foreseen
actor’s path ⇠a, i.e. A = {⌦, t} = {✓rel,�, r, t} (figure 3).
Where n✓, n�, nr, nt 2 N>0 are the discretization factors of
each degree of freedom.

Fig. 3: State space - discrete spherical domain centered on
each position of the actor’s future path

We tested few sets of discretization factors and achieved
satisfactory results with the following values:

n✓ = 16 n� = 6 nr = 6 nt = 5

With this coordinate system, is possible to drastically
reduce the complexity of the planning problem.

V. SHOT QUALITY COST FUNCTION

Let V : A ! [0, 1] be the shot quality function that maps a
given shot and time to an artistic value. V applied in every
region of A denotes what we defined as the Artistic map.
The high-level planner uses this Artistic map to optimize the
camera’s trajectories.

Considering the requirements for the system, we define V

a linear combination of 6 costs:
• Shot diversity(Jd)
• Inter-drone collision (Jic)
• Inter-drone visibility one to others(Jiv1)
• Inter-drone visibility others to one(Jiv2)
• Artistic principle prior(Jp)
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• occupancy and occlusion(Jocc)

V =
⇥
wd wic wiv1 wiv2 wp wocc

⇤

2

6666664

Jd

Jic

Jiv1

Jiv2

Jp

Jocc

3

7777775
(3)

The weights of this combination are fully dependent on
the application. For example, in journalistic coverage, it
is probably more important to avoid inter-drone visibility
than if the final application is to generate films for 3d
reconstruction of the actor.

In the following section, we are going to define each
component of this cost.

A. Shot diversity cost

The shot diversity cost Jd : A ! [0, 1] was defined as
a function of the absolute distance d of a point p in space
to the position of each of the drones that have already been
optimized (index i 2 [1, noptimized]).

Jd(t) =

noptimizedX

i=1

J
0
d(p, ⇠qi(t)) (4)

Where:

J
0
d(p1, p2) =

8
><

>:

1 if d < dmin

d/(dmax � dmin) if dmin < d < dmax

0 if d > dmax

(5)

with: d =
p
(p1x � p2x)2 + (p1y � p2y)2 + (p1z � p2z)2

This cost prevents the planner to allocate the drones too
close to each other.

B. inter-drone collision cost

Similarly to Jd, the inter-drone collision cost was defined
as a function of the absolute distance d of a point in the
space and all the drones that have already been optimized.
Where

Jic =

noptimizedX

i=0

Jic(p, ⇠qi(t)) (6)

Where:

Jic(p1, p2) =

(
1 if d < dmin

0 if d > dmin
(7)

The distinction between Jd and Jic is necessary to allow the
control of both requirements independently.

C. Inter-drone visibility
The inter-drone visibility cost can be defined by 2 distinct

components, (1) that checks if a given point p in the space
would visible by a drone that was already optimized, and (2)
that checks if a drone allocated in p would be able to see
any of the other drones that were already optimized.

Jiv1 =

noptimizedX

i=0

Jiv(p, ⇠qi(t)) (8)

Jiv2 =

noptimizedX

i=0

Jiv(⇠qi(t), p) (9)

Jiv(p1, p2) =

(
1 if p1 is visible by p2

0 otherwise
(10)

Considering the approximation of the camera’s field of
view to a cone with the top angle equals to the diagonal
FOV of the camera. A given point p1 in the space would be
visible by a shot of the actor at time t from p2 if

\(������!(p2, ⇠a(t)),
����!
(p2, p1))  FOV (11)

Assuming that the gimbal controller of the cameras keeps
the actor centered in frame, then it is possible to say that the
inter-drone visibility depends entirely on the position of the
drones and the camera’s FOV.

Because of that, given a discrete state-space A, the inter-
drone visibility relation between 2 points can be precomputed
and stored in a matrix of m⇥m (where m = n✓ · n� · nr).
With that reducing the computational time demanded by each
optimization cycle.

D. Occupancy and occlusion cost
Because of safety and artistic reasons, it is desirable that

the artistic path of the drone should not be assigned inside or
behind obstacles. Therefore, given an occupancy grid (G) of
the environment, the occupancy and occlusion cost Jocc of a
shot ⌦ (⌦ = ✓rel,�, r) at the time t was defined as follows:

Jocc(t) =

Z r

rmin

G(T (⌦, t))dr (12)

Where G : R3 ! [0, 1] is a function that maps a point in
space with the occupancy of the environment at that point
(0 = free, 1 = occupied)

computed in the discrete domain A:

Jocc(t) =
rX

i=0

G
0(⌦i, t) (13)

With: i 2 N>0 such that ⌦0 = {⇥rel,�, rmin} and ⌦nr =
{⇥rel,�, rmax}.

and
G

0 : A ! [0, 1] is the function that maps a region of
the space c with its relative volumetric occupancy (0 = 0%
occupied and 1=100% occupied). The region c is a section
of A centered in T (⌦, t) as represented by the red cell in
the figure 3.
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Fig. 4: Occupancy and occlusion transform (G0) from a
Cartesian occupancy grid to the artistic map domain A

E. Artistic principle cost (prior)
The artistic principle was defined as a user-inputted cost

to penalize or give preference to specific shot types. For
example, the figure 5 represents an artistic principle that
penalizes shots straight from the top. With that, the planner
will avoid allocating drones in these regions.

Fig. 5: Example of a artistic principle (prior) that penalizes
shots straight from the top, red spheres represents regions
with low artistic value

VI. GREEDY PLANNER

The high-level planner performs greedy the optimization
one drone at a time based on a completely known Artistic
Map (defined by the shot quality cost V applied at all points
of the domain A).

Initially, for the first drone, the Artistic map is computed
based only on the occupancy, occlusion, and Artistic princi-
ples. Then, for the next vehicles, the artistic map is updated
with the inter-drone costs. (figure 6)

In order to compute the optimal path for each drone
given an updated Artistic map, the planner computes the
cumulative shot quality cost V ⇤ of each shot (⌦) and time
step, considering the next best shot (⌦0) under the dynamic
constraints of the drone.

V
⇤(⌦, ti) = V (!, ti) +min(V ⇤(⌦0

, ti+1)) (14)

Fig. 6: Greedy planner over the Artistic map

Where, assuming the dynamic constraint that allows the
drones to move only on position in the artistic domain A

at a time. Then for a given shot ⌦ijk = {✓i,�j , rk}, ⌦0 is:

⌦0
ijk =

2

66666666666666664

{✓i,�j , rk}
{✓i,�j , rk+1}

{✓i,�j+1, rk+1}
{✓i+1,�j , rk+1}
{✓i+1,�j+1, rk}

{✓i+1,�j+1, rk+1}
{✓i,�j , rk�1}

{✓i,�j�1, rk�1}
{✓i�1,�j , rk�1}
{✓i�1,�j�1, rk}

{✓i�1,�j�1, rk�1}

3

77777777777777775

(15)

VII. LOCAL PLANNER
After receiving a high-level trajectory, each drone opti-

mizes its own path onboard using covariant gradient descent.
The objective function, as described in detail in [7], consists
of 4 costs: smoothness, shot quality, obstacle avoidance, and
occlusion avoidance.

• The first one measure smoothness as the cumulative sum
of n-th order derivatives of the trajectory.

• The shot quality cost function is given by the distance
between the current camera trajectory and the desired
artistic path given by the high-level planner.

• The obstacle avoidance is computed considering a
truncated signed distance (TSDT) map, that contains
the distance and direction of any point to the nearest
obstacle.

• The occlusion avoidance cost measures how much ob-
stacle blockage the light rays connecting the camera’s
and actor’s trajectories would have to go through.

A contribution of this work is to consider inter-drone
collision in the local planner. To do that we treat each vehicle
as a moving spherical obstacle with radius of 2 meters.

VIII. EXPERIMENTS AND RESULTS
The approach was implemented using ROS and tested in

a photo-realistic simulator (Airsim).
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The tests were conducted in 2 main environments with
cluttered and open regions: a forest and a neighborhood. In
both setups the simulators provided a ground true position
of the animated virtual actor walking close to obstacles and
performing abrupt motion changes (90o turns). The drone’s
states were also provided by the simulator.

We tested groups from 2 to 5 drones (with FOV of 90o)
in both environments.

The state space was defined with the follow discretization
factors: n✓ = 16, n� = 6, nr = 6, nt = 5. Considering
a time window tf of 10s , minimal and maximum radius
of rmin = 2m and rmax = 5m. The inferred actor’s path
was computed base only on the position, speed and heading
of the actor. The artistic principle was defined as shown in
the figure 5. For test purposes, we assumed the weight of
the shot quality function as wiv2 = wiv2 = 0.5 and wd =
wic = wocc = 1 and shot-diversity parameters dmin = 1 and
dmax = 5

The figure 8 shows some shots captured simultaneously
by the drones in these tests.

In order to evaluate the performance of the system, in
addition to a qualitative analysis of the requirements estab-
lished, we computed the average planning time to optimize
each drone:

Fig. 7: Time required by the High-level planner to compute
each drone’s trajectory given a number of states in the artistic
domain (n✓ · n� · nr · nt) - CPU: i7-8700

The low planning time indicates that the high-level planner
could easily be implemented onboard.

A qualitative analysis of generated scenes suggests that the
system was able to fulfill all the requirements established:

1) Shot diversity was explored in all tests
2) Inter-drone visibility was avoided with no problems for

the first 3 optimized drones. The fourth and fifth vehi-
cles struggled to attend these criteria. The main reasons
found to explain this behavior are: first, that there is a
geometric limitation for the number of viewpoints that
completely avoids inter-drone visibility; and second,
due to a trade-off between shot diversity and inter-
drone visibility, where higher a shot diversity weight
increases the chance of inter-drone visibility.

3) Obstacles collision and occlusion were avoided, both

(a) drone 1

(b) drone 2

(c) drone 3

(d) Drone positions

Fig. 8: simultaneous shots from 3 drones in a forest environ-
ment
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by the high-level trajectories and also by the trajecto-
ries followed by the drones.

4) Inter-drone collisions didn’t occur in any of the tests.
5) The Artistic principle Inputted (figure 5) was followed,

in a way that the top regions were only occupied by
drones for less than 3 seconds in cluttered regions of
the environments.

IX. FUTURE WORKS

This work takes a step towards a fully autonomous system
for multi-camera aerial cinematography. Thought the pro-
cesses, we raised a few questions about possible improve-
ments in this area.

The first of them is about the viability of such a system
in real-life scenarios. Our previous works [2], [7], [23]
successfully evaluated single-drone systems using a similar
onboard pipeline as the one here described. Showing that
the setup is capable of following desired artistic paths in
cluttered environments and with that establishing a solid base
for the real-life validation of our multi-drone solution.

The low computing time demanded by the planner is a
strong indication that the system could be implemented fully
onboard and also that more exhaustive approaches could be
tested. A future step for this research is to compare the
greedy planner’s performance against a distributed approach
and a centralized optimal approach.

Another relevant question to be answered regards the
artistic improvement of such a multi-camera system in di-
verse applications. Such a question is directly related to
the editing step of the generated videos. Because of that,
one future step for this work is to implement different
editing algorithms and conduct user studies to quantify the
artistic performance of this autonomous system. Possible
comparison baselines might be videos generated with single-
drone systems, human-controlled vehicles, and random shot
selections.

One last point that deserves attention is the possibility
of expanding the artistic capabilities of the system. Either
from extracting artistic principles from existing drone-filmed
scenes or though image-based algorithms to learn preferred
shot types [21].
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Few-shot Learning for Interesting Scene Prediction

Yaqian Chen1, Chen Wang2, Yuheng Qiu2, and Sebastian Scherer2

Abstract— Interesting scene prediction is currently under

explored but is crucial for many practical applications such as

autonomous exploration and decision making. For example, the

subterranean autonomous exploration robots may find it inter-

esting to have a hole in the wall; the aerial robots exploring in

underground mines may change its future trajectory planning

due to the discovery of a door. However, it is extremely hard for

robots to decide which scenes are more likely to be interesting

without human supervision. In this project, we deliver a few-

shot classifier using VGG16 as a backbone and NetVLAD

as data encoder. The majority voting algorithm is used to

remove the annotation outliers/errors. It is demonstrated that

our approach is able to find interesting scenes for practical

exploration tasks in different environments like urban areas

and subterranean environments. It also increases the average

prediction accuracy by 13% compared to the state-of-the-art

classifiers including the prototypical and matching network on

very challenging robotic interestingness prediction datasets.

Index Terms— Interesting Scene Prediction, Few-shot Learn-

ing, Triplet Loss, and VLAD Network

I. INTRODUCTION

Interesting scene prediction is crucial for autonomous ex-
ploration, which is one of the most fundamental capabilities
of mobile robots [1]. For example, rescue robots may need to
explore an unknown environment and return all the images
containing mankind to assist the rescue team. Autonomous
driving systems may need to slow down the car when there
is a close pedestrian or a speed limit sign. However, prior
classification algorithms often have difficulties when they are
deployed to unknown environments.

Most of the state-of-art classifiers fail the task due to four
reasons: limited training dataset, undetermined interesting
objects, expectation of working under different given envi-
ronments and huge gap among interesting images. First, the
number of training dataset is limited. Exploration robots are
often required to predict interesting scenes online. For an
online prediction, users are only able to give a few labeled
images to tell their preferences. However, most of the prior
classification algorithms require a large amount of training
images. Second, interesting objects are not determined. For
example, for underground autonomous exploration robots,
some users may find bulldozers interesting. However, other
users may not be quite interested in vehicles and pay
more attention to scenes with construction workers. Most of
previous detection systems like autonomous driving detection

1The author is with the Department of Computer Science and Engineer-
ing, The Chinese University of Hong Kong, Shenzhen, China. email:
yaqianchen@link.cuhk.edu.cn

2The authors are with the Robotics Institute, Carnegie Mellon Uni-
versity, Pittsburgh, PA 15213, USA. email: chenwang@dr.com;
{yuhengq, basti}@andrew.cmu.edu

systems are very mature and often accomplish the accuracy
near a hundred percent. However, they are only able to
detect certain objects given by system builders in advance
like cars or pedestrians [2]–[4]. Third, in this project we
expect our system to be robust enough and will work under
different environments. Take autonomous driving detection
systems again for an example. It may achieve high accuracy
in urban areas. However, it may not work underwater. Last
but not least, the huge gap among positive images may
sometimes confuse the classifiers. For example, an image
with a construction worker may be considered as interesting
and a photo containing an electric box may also be interest-
ing. However, two images are far from similar, most of the
classification algorithms will not classify them into the same
group.

To this end, instead of detecting objects that users may
be interested in, we choose to classify the robots’ input
images by comparing the distance between each input and
each training image. We propose to build a few-shot classifier
using VGG16 as backbone and VLAD network as encoder.
Majority voting algorithm is used to remove the annotation
outliers.

In summary, our contributions are:
• We propose a classification algorithm which is able

to assist the interestingness prediction system to detect
interesting scenes according to users’ preference.

• We extend the state-of-art classifiers to be robust enough
to work under different unknown environments.

• We propose a classification algorithm to do the few-
shot classification which achieves higher accuracy on
challenging robotic interestingness prediction datasets
than the state-of-art few-shot learning algorithms.

II. RELATED WORK
Few-shot learning refers to the practice of feeding a

learning model with a very small amount of training data,
contrary to the normal practice of using a large amount
of data. While there have been many improvements in
designing better few-shot classifier, few works are designed
for interesting scene prediction under different environments.
There are mainly four different approaches to handle the few-
shot learning problems, namely, model-based [5], [6], [6]–
[10], optimization-based [11], [12], Bayes-algorithm-based
[13], [14] and metric-based algorithms [15]–[19].

The general idea of model-based algorithms is to design
the model structure to quickly update the parameters on a
small number of samples and directly establish the mapping
function between the input x and the predicted value P.
In 2016, the Santoro’s group proposed a way to solve the

45



few-shot learning task using memory enhancement algorithm
based on Long Short Term Memory (LSTM) networks [5].

Meanwhile, some people paid more attention to train a
meta-learner to predict the parameters of the task-specific
classifiers. In 2016, Ravi and his group studied on why the
gradient-based optimization algorithms fail under a small
amount of data and brought out a new algorithm with an
update function or update rule of model parameters [11].
The system learns a specific model in each episode instead
of learning a single model in multiple episodes to enable
the training model to converge. Building on the success of
previous few-shot learning systems, in 2017, Munkhdalai
[20] brought out the Meta Network which consists of a meta
learner and a base learner. In his work, meta learner is used
to learn the generalized information among meta tasks and
save this information through memory mechanism. The base
learner is used to quickly adapt to new tasks and interact
with the meta learner to generate prediction output.

The Bayes-algorithm-based approach has relatively little
connection with the above two approaches, the models are
often trained by simple maximization of an evidence lower-
bound using stochastic back propagation. Since variational
Bayes Neural Networks (BNN) are able to approximately
model the posterior over weights of a neural network, they
are a natural fit for estimating the posterior over weights of
a neural network that is being trained for few-shot learning
[14].

The metric-based approach has been frequently used in
few-shot learning area recently and most of them achieved
high accuracy on different testing datasets [15] [16] [17]. The
metric-based models learn one task in variant metric for all
the tasks. Its basic idea is to do classification by constructing
the distance between the support set and the test set. Most of
the metric-based few-shot learning networks like prototypical
network and matching network are composed of two parts:
an encoder to extract the image feature and a classifier to
calculate the distances between query dataset and support
dataset.

Since metric-based approach is currently the most fre-
quently used one in few-shot learning problems, in this
project we chose to use the metric-based approach and
developed an encoder and a classifier for our model.

III. METHOD OVERVIEW
As mentioned above, due to the four difficulties, namely,

limited training datasets, undetermined interesting objects,
expectation of working under different given environments
and huge gap among interesting images, instead of using
the detection models, we choose to classify the robots’ input
images by comparing the distances between query dataset
and support dataset.

Building on current metric-based few-shot learning sys-
tems, our model mainly has three modules: clustering, train-
ing and testing. First, use the K-means algorithm to cluster
the images to initialize the input image data and centroids
for VLAD layer. Then, in the training process, we put the
initialized images into the VLAD network and move pictures

belonging to the same class closer through back propagation.
Last, put in the testing dataset and get the predicted classes
simply using the majority voting algorithm.

A. Clustering

For the clustering process. We use VGG16 as a backbone
to encode the input raw data. Then use the K-means cluster-
ing to group image data. The output of the clustering process
is regarded as the initial training data. The class centroids
given by clustering will be the initial parameters for VLAD
layer.

B. Training

In the training process, the system will sequentially pick
one image from the training dataset to be the query dataset.
Then randomly choose one image from the class of query
dataset and three images from the other class as support
dataset. Encode both query and support images through
VLAD network. The VLAD network used in the training
process consists of two parts, VGG16 and an extra VLAD
layer. As the main component of VLAD network, VLAD
layer is inspired by the ”Vector of Locally Aggregated
Descriptors” image representation commonly used in image
retrieval and image classification. We also choose to use
triplet loss function which separate pictures belonging to
different classes and move pictures belonging to the same
class closer. The detailed VLAD and VGG16 architecture
as well as the formula for triplet loss function will be later
introduced in Section 4.

C. Testing

In testing process, we first use the VLAD network to
encode input testing image and training dataset. Through
comparing the Euclidean distance between each encoded
training image and the input testing data, we will find the
top 5 images which are closest to the input test image.
Comparing the proportion of candidate images in each class
with the fixed threshold, we get the prediction.

IV. DEEP ARCHITECTURE FOR ENCODING

According to current metric-based few-shot learning sys-
tems, most works are composed of two parts: an encoder
to extract the image feature and a classifier to calculate the
distances between query dataset and support dataset. In this
project we choose NetVLAD [21] as our encoder due to
its significant robustness to translation and partial occlusion.
VLAD network is based on extracting local descriptors,
which are then pooled in an orderless manner. Its robustness
to lighting and viewpoint changes is provided by descriptors
themselves, and scale invariance is ensured through extract-
ing descriptors at multiple scales.

VLAD network consists two parts: a dense descriptor
extractor and a VLAD layer. The dense descriptor extractor
is obtained by cropping the VGG16 at the last convolutional
layer. Namely, the output of the last convolutional layer is a
H ⇥ W ⇥ D map which can be considered as a set of D-
dimensional descriptors extracted at H⇥W spatial locations.
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The Vector of Locally Aggregated Descriptor (VLAD) is
considered as a pooling layer that pools extracted descriptors
into a fixed image representation and its parameters are learn-
able via back-propagation. The detailed VGG16 architecture
and VLAD layer are in the next sections.

A. VGG16

Visual Geometry Group 16 (VGG16) is a convolutional
neutral network with 16 layers whose architecture is shown
in Fig. 1. It is proposed by K. Simonyan and A. Zisserman
from the University of Oxford in the paper “Very Deep
Convolutional Networks for Large-Scale Image Recognition”
[22]. The model achieves 92.7 percent top-5 test accuracy
in ImageNet, which is a dataset of over 14 million images
belonging to 1000 classes. It makes the improvement over
AlexNet [23] by replacing large kernel-sized filters (11 and 5
in the first and second convolutional layer, respectively) with
multiple 3⇥3 kernel-sized filters one after another. VGG16
was trained for weeks and was using NVIDIA Titan Black
GPU’s. Since VGG16 is often more robust in classification
tasks and achieves better accuracy than AlexNet in most of
the cases, we choose VGG16 as our encoder backbone in
our project.

Fig. 1: VGG16 architecture

B. VLAD layer

Vector of Locally Aggregated Descriptors (VLAD) is a
popular descriptor pooling method for both instance level re-
trieval and image classification. It captures information about
the statistics of local descriptors aggregated over the image.
Whereas bag-of-visual-words aggregation keeps counts of
visual words, VLAD stores the sum of residuals (difference
vector between the descriptor and its corresponding cluster
centre) for each visual word.

VLAD layer is often regarded as a pooling layer. Given
N D-dimensional local image descriptors xi as input, and K
cluster centres ck, the layer will output the feature vector V
for the input image. V is originally a K ⇥D matrix, which
is then flattened into a vector. The formula to calculate the
matrix element of V in jth row and ith column is shown in
the eq. (1). where xi(j) and ck(j) are the jth dimensions of

the ith descriptor and kth cluster centre, respectively.

V (j, k) =
NX

i=1

ak(xi)(xi(j)� ck(j)), (1)

ak(xi) denotes the soft assignment of descriptors to multiple
clusters which is defined the eq. (2).

ak(xi) =
e
wT

k xi+bk

P
k0 e

wT
k
xi+bk

, (2)

ak(xi) assigns the weight of descriptor xi to cluster ck

proportional to their proximity, but relative to proximities
to other cluster centres. It ranges between 0 and 1, with the
highest weight assigned to the closest cluster centre. ↵ is
a parameter (positive constant) that controls the decay of
the response with the magnitude of the distance. To further
simplify the above formula, we set vector wk = 2↵ck and
scalar bk = �↵||ck||2 and get the another form of ak(xi)
shown in eq. (3).

ak(xi) =
e
wT

k xi+bk

P
k0 e

wT
k
xi+bk

, (3)

Then plugging the soft-assignment eq.(3) into the VLAD
descriptor eq.(1), we get the final formula for matrix V :

V (j, k) =
NX

i=1

e
wT

k xi+bk

P
k0 e

wT
k
xi+bk

(xi(j)� ck(j)), (4)

where wk, bk and ck are sets of trainable parameters for each
cluster k.

V. TRIPLET LOSS
The choice of loss function is significant for classifica-

tions. Building on the current successful metric-based few-
shot classifiers, triplet loss function is chosen in this project
since, like Siamese networks [17], our model is also sensitive
to calibration in the sense that the motion of similarity vs
dissimilarity requires context. A scene is deemed interesting
as long as it is more similar to the images labelled interesting
compared with the images labelled uninteresting.

A triplet loss function is comprised of 3 instances with
shared parameters. Input with three samples, denoted as x,
x
+ and x

� where x
+ belongs to the same class as x and

x
� belongs to the other, the function will output the relative

similarity between x and x
+ which is defined in eq. (5):

V (j, k) =
NX

i=1

e
wT

k xi+bk

P
k0 e

wT
k
xi+bk

(xi(j)� ck(j)), (5)

where d is the cosine similarity between the output flattened
descriptors. The margin m is a hyper parameter which
enforces a minimum margin between the d

2(x, x+) and
d
2(x, x�) and is set to 0.5.
Note that, for each input query dataset x, the loss function

L is zero if the distance between the query x and x
+ is

greater by a margin than the distance between x and x
�. On

the other hand, if the distance between x and x
� is great

than the distance between x and x
�, the result of the loss

function is proportional to the amount of violation, namely,
d
2(x, x+)� d

2(x, x+).
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Fig. 2: NetVLAD architecture

VI. EXPERIMENTS
A. Dataset

To test the online performance on robotic systems for
visual interesting scene prediction, we choose two datasets
recorded by fully autonomous robots, i.e., the SubT dataset
for unmanned ground vehicles (UGV) and the Cityscapes
Dataset for autonomous driving system.

B. SubT Dataset
The SubT [24] is a very challenging dataset for UGV,

which is based on the DARPA Subterranean Challenge
(SubT) and is pre-processed via an unsupervised interesting
scene prediction system [1]. The dataset environments pose
significant challenges, including a lack of lighting, lack
of GPS and wireless communication, dripping water, thick
smoke, and cluttered or irregularly shaped environments.
Each of the tunnels has a cumulative linear distance of
4-8 km. The dataset is generated from seven long videos
taken by two unmanned ground vehicles (UGV), the detail
information for seven videos and the dataset generated from
each sequence is in table 1. Part of the interesting and
uninteresting scenes taken from the dataset are showed in
Fig. 3. The left two columns are the training images labelled
as uninteresting and the right three columns are labelled as
interesting. Each sequence is evaluated by at least 3 persons.

Fig. 3: Interesting and Uninteresting Scenes in SubT Dataset

C. Cityscapes Dataset
The Cityscapes Dataset [25] focuses on semantic under-

standing of urban street scenes with totally 30 classes. The
dataset is challenging for the classification task, collecting
images from fifty different countries and under various
weather conditions. The image labelling is based on the
principle that only images with close enough (with distances

no more than three meters) vehicles and pedestrians are
labelled as interesting. The dataset is evaluated by two people
and only 22.8 percent of the images are labeled as interesting
by both persons. Some interesting and uninteresting scenes
taken from the Cityscapes dataset are displyed in Fig. 4.
The left two columns are the training images labelled as
uninteresting and the right three columns are labelled as
interesting.

Fig. 4: Interesting and Uninteresting Scenes in Cityscapes
Dataset

D. Implementation
We train the model using the Adam optimizer with a

learning rate of 0.0001 and set the learning rate step to be
5. Two base architectures which are extended with VLAD
layer are used in the project: AlexNet and VGG16. Both of
them are cropped at the last convolutional layer before ReLU.
For NetVLAD we set the number of cluster to 2 resulting
in 1024 and 512-D image representations for the two base
architectures, respectively. We train the parameters of the
model using Stochastic Gradient Descent (SGD) on tuples
(x, x�

, x
+) which are generated from training dataset. In the

majority voting process we set the threshold based on the
priori probability. For example, if the uninteresting images
takes around 60 percent in the training dataset, the query
dataset will only be deemed as uninteresting when more than
60 percent of candidates are predicted to be uninteresting.

E. Results
Baselines and state-of-the-art. In order to evaluate the

performance of our model, we compare our classifier with
the “off-the-shelf” few-shot learning classifiers on interesting
scene prediction. Matching network [16], published in 2017,
has shown an excellent performance in classification on both
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TABLE I: The information of the SubT dataset.

Video I II III IV V VI VII Overall

Length(min) 53.1 55.7 79.4 80.0 59.0 57.5 83.0 467.7
Interesting(%) 31.5 56.0 37.0 26.0 27.0 53.5 16 35.2

Omniglot and miniImageNet datasets. Prototypical network
[15] learns a metric space in which classification can be per-
formed by computing distances to prototype representations
of each class. The comparison result of our method vs. off-
the-shelf networks is shown in Fig. 5.

Fig. 5: Comparison of our methods versus

off-the-shelf networks: our few-shot classifier
(R@1,R@5,R@10,R@15,R@20 which are circled out
and denote VLAD model using top1, top5, top10, top15
and top20 candidates for majority voting respectively)
outperform by a large margin off-the-shelf ones(matching
network, prototypical network and CNN)

As we can interpret from the histogram, our few-shot clas-
sifier outperform off-the-shelf ones by a large margin. The
model based on NetVLAD increases the average accuracy by
roughly 13 percent on SubT and by 10 percent on Cityscapes
datasets. The best performance often occurs when we use the
top five candidates to do the majority voting and matching
network has higher prediction accuracy on these two datasets
than the prototypical network.

Furthermore, we compare our model performances with
different backbones, namely, Alexnet and VGG16. The best
performances on both datasets are given based on VGG16.
However, the results are various from dataset to dataset.

VII. CONCLUSION

In this project, we have designed a new few-shot classifier
that is trained for interesting scene prediction in an end-
to-end manner. Our model outperforms off-the-shelf few-
shot learning models like prototypical network and matching
network on the challenging SubT dataset, as well as on
Cityscape dataset. Building on the current successful few-
shot learning models, our algorithm mainly has two parts:
an encoder based on NetVLAD and a classifier to perform
the majority voting algorithm. In the experiment section, we
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Fig. 6: Comparison of VGG16 versus Alexnet as Backbone

proved that our model is able to obtain a relatively high
accuracy under different environments.
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Trajectory Planning for Self-Driving Using Reinforcement Learning

Josiah Coad1, Zhiqian Qiao2, John Dolan2

Abstract— Controlling autonomous vehicles on roads in com-
plex environments is a difficult task. Complexity for self-driving
comes in the form of a large state space, multiple objectives and
the many other stochastic obstacles involved. Reinforcement
learning has been proposed to produce controllers for self-
driving cars. However, for some tasks, generating a control di-
rectly cannot guarantee the smoothness and safety in a desirable
manner. Our work proposes a model-free deep reinforcement
learning trajectory planner that exhibits safe, comfortable and
generalizable behavior. We evaluate the performance of the
ego car on overtaking behavior in dynamic urban environ-
ments. From our results we show that our method exhibits
fewer crashes and less unnecessary acceleration and steering
compared to RL controller methods.

Index Terms— Autonomous Driving, Trajectory Planning,
Motion Planning, Reinforcement Learning

I. INTRODUCTION

Research in autonomous driving is a rapidly developing
field in academia and industry because of its potential to
reduce traffic accidents and congestion and increase mobility.
However, controlling autonomous vehicles in a safe and
comfortable manner on roads in dynamic environments is
an open problem. We measure safety by lack of collisions
and comfort by lack of unnecessary vehicle controls. Current
approaches to vehicle control either lack in generalizability
or their ability to handle dynamic environments, or they
produce jerky and unsafe driving.

Fig. 1. Comparison of common approaches to self-driving. Green rep-
resents learning components. (a) Maps sensors (such as RGB camera) to
actions (such as throttle, steer and brake) through a modular pipeline. (b)
Maps sensors to actions directly by manipulating the car controls. (c) A
hybrid approach which uses deep learning to map sensors to a planned
trajectory and then passes the trajectory onto a controller. Figure adapted
from NeuroTrajectory [1].

Traditionally, autonomous driving has been addressed
through a modular pipeline of perception, route planning,

1Josiah Coad is with The Department of Computer Science and
Engineering, Texas A&M University, College Station, TX, USA,
josiahcoad@tamu.edu

2Zhiqian Qiao and John Dolan are with The Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA, USA, {zhiqianq,
john}@andrew.cmu.edu

behavior decision-making, trajectory planning and finally,
control [2], shown in Fig. 1(a).

Traditional approaches to the trajectory planning module,
such as spline or lattice planners, have been proposed.
However, these systems require hand engineered policies and
cost structures which limit their generalization in complex
environments.

End-to-end deep learning approaches to vehicle control,
as shown in Fig. 1(b), have been proposed using imitation
learning (IL) [3]–[6], reinforcement learning (RL) [6]–[10]
and a combination of the two, inverse reinforcement learning
[11]. However, directly mapping a large state space to con-
trols is a hard problem. End-to-end systems have a hard time
ensuring functional safety — because machine learning is
tasked with optimizing an expectation over many instances.
In other words, these end-to-end models are generally not
very interpretable, so it can be difficult to understand how a
control decision was made for evaluation and debugging the
system. Furthermore, using deep learning to directly control
the vehicle is reactive and thus tends to be unsafe and jerky.

Because of the limitations of traditional (non-deep learn-
ing) trajectory planning in complex environments, and the
safety and comfort concerns of end-to-end systems, research
in recent years has turned to planning a trajectory via deep
learning, as seen in Fig. 1(c). By using deep learning, this
approach has the potential to behave well in environments
defined by a large state space, multiple objectives and
many stochastic moving obstacles. And by separating the
control module, and allowing the same to be executed by
a non-machine learning based controller allows for more
interpretability and safety constraints [12].

Predominantly, IL has been proposed as the deep learning
approach for the task of trajectory planning [1], [4], [10],
[13]–[15]. IL learns to imitate the trajectories of an expert
driver. Issues arise with using IL for this task, however, in
handling edge cases such as near-crash scenarios, general-
izing to unseen cases and the need for large amounts of
labor-intensive hand-collected training data.

In this paper, we propose that instead of using IL to
plan a trajectory, we use reinforcement learning. RL has an
advantage over IL in that it learns by playing in a simulation.
By doing so, RL explores the simulated driving environment
in many more edge cases than IL and does not require any
hand-collected training data. Thus, RL is better equipped
to handle edge case scenarios. In addition, the ability for
RL to perform better than human experts has been widely
demonstrated on tasks such as playing Atari Games and
controlling robots [16]. Most vehicle accidents today happen
due to human driving error which begs the question if a
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human driver is really an expert driver that we want to
emulate. RL could theoretically perform better than human
drivers.

We propose a method to adapt a Proximal Policy Opti-
mization model-free reinforcement learning algorithm [17]
to generate a trajectory of waypoints for the ego vehicle to
track with a PID controller. Our learned policy generates
trajectories which are safe, comfortable, and efficient and
respect traffic rules.

The structure of this paper is as follows: in Section II we
present related works and how they motivate our approach.
In Section III we formalize the problem and our solution. In
Section IV, we explain our custom environment and how
we collect our results. In Section V we demonstrate our
algorithm in our simulated driving environment and show
that compared to control-based RL, our approach results
in fewer crashes and less acceleration and steering. Finally,
in Section VI and VII we summarize our contribution and
provide direction for further work.

II. RELATED WORK

A. Non-Deep Learning Trajectory Planning

A trajectory is a sequence of local states, such as cartesian
coordinates and velocity, parameterized by time, to be visited
by the vehicle. Trajectory planning is the task of planning
a feasible trajectory within some lookahead distance of the
vehicle that does not result in a collision and moves towards
a goal. An optimal trajectory should avoid obstacles such
as other cars and pedestrians, adhere to a set of motion
constraints and respect traffic rules [18].

Many non-deep learning approaches to trajectory planning
have been proposed as part of the modular pipeline. Typical
approaches involve rapidly expanding trees [19] or lattice
sampling [20]. However, many of these systems make strong
simplifying assumptions about the environment, such as no
uncertainty in an obstacle’s motions or ignoring motorcycles
and non-motorized traffic participants or limiting the vehicle
movement [18]. These systems also require extensive human
engineering to tune. Thus, many of the traditional trajec-
tory planners are not able to handle complex environments
defined by a larger state space such as RGB images, multi-
faceted objectives and many stochastically moving obstacles.

For a full review of non-deep learning methods to trajec-
tory planning and their limitations, refer to the surveys [18],
[21].

B. End-to-End Reinforcement Learning Methods

In End-to-End Race Driving with Deep Reinforcement [7],
the authors train an RL agent to drive a race car around a
track by directly controlling the car with the agent. They
train and test their performance on a simulator with three
high fidelity tracks across varying terrain. However, the ego
vehicle exhibits aggressive unnecessary steering behavior and
is not tested in any environment that includes other vehicles.

In the release of the CARLA simulator [10], the authors
introduce a baseline end-to-end RL system that they used to
compare in urban driving performance to a module pipeline

approach and an end-to-end IL approach. In their results, they
found the end-to-end RL control approach to have inferior
performance to the other approaches.

In the recent work [9], the authors separately train the
perception module to derive high level features about the
world and then a world-to-control module to control the
vehicle. In CIRL [6] and [9] a gating unit is used to choose
which high-level behavior to follow (lane-following, left,
right or straight) in urban driving. However, even in their
best results, the authors still report crashes, motivating the
need for future work. They do not report on the smoothness
of the driving policy. In [22], the authors use a PPO RL agent
to control the derivative of acceleration and steer, which is
jerk and steering rate. They claim this increases the comfort
of the ride by reducing oscillatory and jerky behavior.

For a complete review of end-to-end controllers, refer to
the surveys [23], [24].

C. Imitation Learning-Based Trajectory Planning

In trajectory planning, the system is forced to plan ahead
by outputting a sequence of waypoints, i.e. a trajectory,
instead of simply choosing the next steering and accelera-
tion commands, like in end-to-end systems. Waypoints are
independent of car geometry and waypoint-based trajectories
are easier to interpret and analyze than low-level network
outputs such as steering commands. [24] This means we can
know ahead of time where the car is planning to move and
add safety constraints to the path as in [12].

The predominant deep learning-based approach to do
trajectory planning is imitation learning. In [13], the authors
propose a deep imitation learning trajectory planner. Here,
the authors aim to learn the parameters of distribution which
maximize the likelihood of an expert path conditioned on
the agent’s observation. They fit the imitative model in
a supervised manner using a recurrent neural network. In
a subsequent paper, NeuroTrajectory: A Neuroevolution-
ary Approach to Local State Trajectory Learning for Au-
tonomous Vehicles [1], the authors use imitation learning and
evolutionary methods to produce trajectories by learning to
imitate expert drivers. Recently, Learning by Cheating [14]
learned to extract a high level state space before training
the imitation learning planner. ChauffeurNet [15] proposed
imitation learning trajectory planning with the addition of
perturbations to the experienced trajectories for the sake
of robustness. [12] proposed using a feed forward neural
network to generate a trajectory with an output layer of
size 2H where H is the size of the horizon. The output
represents a trajectory [xt+1, yt+1, . . . , xt+H , yt+H ]. Their
goal is to minimize the displacement dt+i between the
expert’s actual trajectory point (xt+i, yt+i) and the predicted
point (x̂t+i, ŷt+i):

dt+i = ((xt+i � x̂t+i)
2 + (yt+i � ŷt+i)

2)
1
2

Their overall loss function is defined as

L =
1

H

HX

i=1

d2
t+i
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Imitation learning still faces limitations, however, in that it
requires large amounts of human driver training data, which
is laborious to collect. Furthermore, the learned policy tends
to overfit to the environment which it was trained on and
could fail if presented with a vastly different situation, such
as recovering from a near-crash scenario, if this scenario
was not well covered in the training data. Thus, the trained
algorithm may not react appropriately in these conditions
in deployment. A recent paper argues that even with tens
of millions of examples, direct imitation learning sometimes
does not yield satisfactory driving policies [15].

D. Inverse Reinforcement Learning For Cost Maps

Watch This [25] uses inverse reinforcement learning (IRL)
to produce cost maps from camera input based on one
year’s worth of trajectory information. Trajectories are then
produced from the cost map by taking a soft argmax. The
authors demonstrate that IRL achieves better performance
than manually constructed cost functions for their purpose.
However, as the algorithm is still dependent upon large
amounts of data, it still suffers from similar drawbacks of
imitation learning as discussed in Section II-C.

E. Reinforcement Learning Trajectory Planning

We have found three works that have proposed methods
similar to reinforcement learning trajectory planning, but
none have done it successfully in environments involving
other moving obstacles. Deep imitative models for flexible
inference, planning, and control [13] proposes a model-based
reinforcement learning control planner as an aside to com-
pare with their imitation learning algorithm. They perform a
breadth first search cost minimization in a reachability tree
through free-space. However, the planner exhibits inferior
performance compared to their other methods, especially in
dynamic environments. One reason for the inferior perfor-
mance is that they explicitly predict that each car in the
ego vehicle’s view has a constant velocity and straight-ahead
direction, which is an oversimplifying assumption.

In [26], the authors propose a method for using RL for
trajectory planning in static environments via a transfer
model. The transfer model is used to make a world model.
The RL agent then interacts with the world model by
directly controlling a virtual car equipped with bicycle
dynamics. The resulting trajectory of the virtual vehicle is
recorded and mapped back to the real world frame. A PID
controller is then used to control the real car and track the
trajectory. The limitation with this is that the transfer model,
which is the bottleneck for the performance of the system,
does not scale well to complex environments and dynamic
obstacles. Indeed, the system was only tested on simple
static environments and demonstrated in real life on a single
turn. Thus, the need for a RL trajectory planner that is able
to handle dynamic environments is not yet satisfied.

In [27], the authors train a DDPG model to plan a trajec-
tory for a constant-speed ego vehicle. Their method uses the
current ego-vehicle state (x,y,speed,heading) and goal state

as the observation. The DDPG action is two dimensional and
represents two consecutive relative y values in front of the
vehicle between the current state and goal state. They then
fit a spline to these four points. The main objective of the
training is to learn to plan a feasible trajectory. Thus, the
reward structure focuses on reachability. Road dynamics and
moving obstacle vehicles are not considered.

We note that non-machine learning-based trajectory plan-
ning performs well in simple environments but does not scale
well. We further note that trajectory planning using imitation
learning has achieved state-of-the-art results thus far but
suffers from being data hungry. Finally, we see the progress
that reinforcement learning has found in directly controlling
a car, although so far, it has not been used successfully
for trajectory planning in dynamic environments. Thus, we
wish to take inspiration from all these approaches to propose
a novel solution. We propose a method to use model-free
reinforcement learning to perform trajectory planning in
dynamic environments involving other moving obstacles.

III. METHODS

The goal of trajectory planning is to find a se-
quence of points ~� = h�1,�2, ...�ni where �i =
(x, y, speed, heading) indicates the path that the ego vehicle
should travel to avoid obstacles, respect road rules and
maximize comfort and efficiency towards a goal. Once we
obtain ~�, we can pass it on to a controller, such as a
PID controller. The PID outputs a control c where c =
(steering, throttle, brake) which is applied directly to the
actuators of the car.

Reinforcement learning seeks to learn an optimal policy
⇡ parameterized by ✓ which maps a state (observation) s
in the observation space O to an action a in the action
space A, i.e. ⇡✓(a|s). In deep RL, ✓ are the weights to
a neural network. Unlike supervised learning, RL does not
require any labelled training data. Instead, RL interacts with
an environment by being presented with st and choosing at
according to its policy ⇡. Under the assumption of full ob-
servability, RL operates on the premise that the environment
can be viewed as a Markov decision process (MDP) with a
(possibly stochastic) transition function T (st+1|st, at). The
environment also returns a reward R(st, at) and a binary
signal, done. The process of observing st, getting action
at according to the policy ⇡, and executing at in the
environment is called a step. The reinforcement algorithm
works to find the policy parameterization that maximizes the
expected reward over the episode, i.e.

argmax✓E[R(st, at)|at ⇠ ⇡✓(st), st ⇠ T (st�1, at�1)]

Both continuous and discrete actions are possible with
reinforcement learning, depending on the RL algorithm used.
In the case of discrete, A is a (generally small) finite action
space. In the case of continuous, A has a shape of [�1, 1]n
where n is the number of controls contained in one action.
The constraint to [�1, 1] is trivial since we can scale the
action once inside the step function. However, empirically
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Fig. 2. Our approach to trajectory planning with reinforcement learning

this constraint is better for convergence. In the case of end-
to-end or control-based RL, we may have n = 3 controls
such as steering, throttle and brake. However, finding a way
to produce a trajectory ~� from a is not trivial and is the main
contribution of this paper.

A. Trajectory Generation

To convert an action produced by our policy to a
trajectory, the policy chooses an a 2 [�1, 1]2n where n
is the number of points we plan in the trajectory. This
action can be thought of as a sequence of n “long range
control” (acceleration, turn), i.e. (↵, �) tuples, denoted
~c⇤. However, ~c⇤ is not used to directly control the car.
Instead, in the planning procedure, we iterate through each
c⇤ := (↵, �) 2 ~c⇤ and use the PID controller along with a
bicycle dynamics model to extrapolate what would be the
resulting state � = (x, y, speed, heading) of applying these
controls for a constant “long range” time ⌧⇤. Thus, a is
converted to the trajectory ~�. Then, in the control procedure,
~� is fed to the PID controller to produce “short range”
controls ~c which gets applied to the car at “short range”
time ⌧ for each c 2 ~c. This is one step of the RL agent.
Thus, in total, one step of the RL agent takes n⌧⇤ time in
the environment. Fig 2 shows this procedure, Algorithm
1 formalizes this RL-step and Algorithm 2 formalizes the
planning procedure. For our experiments, we assume ⌧⇤
is a multiple of ⌧ . Note that if the ego vehicle adheres to
the bicycle model, the trajectory will be entirely reachable.
Table I conveys the parameter settings we used in our
implementation of Algorithm 2.

Algorithm 1 RL-Step
1: procedure RL-STEP
2: s observe . Observe environment state
3: �, · · · s . Extract ego’s current state
4: ~c⇤  ⇡(s) . Get long range controls
5: ~� RL-Plan(~c⇤,�) . Transform ~c⇤ to trajectory
6: . Control Stage

7: for � in ~� do
8: for ⌧⇤/⌧ iterations do
9: c PID(�, ⌧ )

10: drive(c, ⌧ ) . Apply c to actuators for ⌧ time
11: end for
12: end for
13: end procedure

By requiring the RL algorithm to plan multiple steps into
the future, we force it to account for the dynamics of other
vehicles. Thus, our agent inherently learns to plan in dynamic
environments such as urban conditions.

Algorithm 2 RL-Based Trajectory Planner
1: procedure RL-PLAN(~c⇤,�)
2: ~� empty array . Initialize trajectory
3: for c⇤ in ~c⇤ do
4: �0  bicycle(c⇤,�, ⌧⇤) . Use bicycle model to

calculate outcome of applying “long range” control
5: for ⌧⇤/⌧ iterations do . Adjust for motion

constraints imposed by the PID controller
6: c PID(�0, ⌧ )
7: � bicycle(c,�, ⌧ )
8: end for
9: ~�.append(�)

10: end for
11: return ~�
12: end procedure

TABLE I
ALGORITHM PARAMETER SETTINGS

Parameter Value
Waypoints (n) 2

Time Between Points (⌧⇤) 0.3 s
Time Between PID Controls (⌧ ) 0.05 s

B. Reward Structure

Reinforcement learning learns a policy which maximizes
a reward (i.e. minimizes a cost) over an episode. We choose
a reward/cost structure for the agent which is designed to
promote desirable driving behavior. We consider driving
off the road or crashing into a vehicle (using a circular
collision boundary around each car) a failure. Reaching the
end of the road segment is considered a success. A failure
or success terminates the episode. We assign a cost to the
normalized distance from the center of the closest lane. To
avoid unnecessary lane changes, we assign a constant cost
to each lane switch. Finally, in an effort to respect road
rules, we assign a coefficient cost for normalized error off the
target speed. Our reward function is thus a linear combination
r(s, a) = wx. Refer to Table II for w and x definitions.

C. Observation Space

The agent is equipped with ray casting object detec-
tion, which we implement as k rays (in this paper, k=51)
spread equally in some field of view (FOV) (in this paper,
FOV=±90°) to detect distance to the closest obstacle (or
some max lookahead distance, whichever is less). For graph-
ical representation, refer to Fig. 5. The agent also knows the

TABLE II
REWARD STRUCTURE SETTINGS

Measure (x) Range Coefficient (w)
fail (crash / offroad) {0,1} -50

success {0,1} 10
lane cross {0,1} -5
speed error {0,1} -0.8

off current lane center [0,1] -0.8
tailgating [0,1] -1
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TABLE III
HYPERPARMETER SETTINGS FOR PPO

PPO Paper Name SB PPO2 Name Value
Number of actors n envs 32
Horizon (T) n steps 64
Minibatch size1 nminibatches 64
Discount (�) gamma 0.999
Adam stepsize learning rate 2e�4

Entropy coefficient (c2) ent coef 0.01
Clipping epsilon cliprange 0.4
Num. Epochs noptepochs 25
GAE parameter (�) lam 0.99
Policy network net arch vf FC: [64, 64]
Value network net arch pi FC: [64, 64]
1 nminibatches was set to 64 in the SB PPO2 implementation.

However, this equals a minibatch size of 32 since mini-
batch size = (n envs*n steps)/nminibatches.

ego vehicle speed, ego target speed, ego heading and the
lateral displacement from the center of the road. Currently,
the other vehicles have a constant speed and direction, so
the agent does not need to learn to extract this information.
To generalize our approach to work with variable speeds and
directions of other vehicles, we believe that using an LSTM
could be a promising research direction (see Section VII for
more details).

IV. EXPERIMENTS

A. Network Architecture

To represent the policy, we used a fully-connected (FC)
multilayer perception network with two hidden layers of
64 units, and tanh nonlinearities, outputting the mean of
a Gaussian distribution, with variable standard deviations.
We don’t share parameters between the policy and value
function (so coefficient c1 from the original PPO paper [17]
is irrelevant).

Hyperparameter tuning was found to help PPO reach better
performance. We performed hyperparameter tuning with the
Python package Optuna [28]. In Table III we outline the
hyperparameter settings we found to work best via a hyper-
parameter search. We used the Python package called stable
baselines (SB) version 2.1 [29] for their implementation of
PPO called PPO2.

B. Training details

In Fig. 3 we show some of the episode rewards during
training from 2M steps. The training was run on a Tesla
K80 GPU with 32 parallelized environments and took about
4 hours of wall time in our custom environment.

Each episode in training was initialized with one obstacle
vehicle placed randomly on the road segment and the ego
vehicle placed randomly in one of the three lanes. The agent
was limited to highway speed (54 to 209 kmh). See Table
IV for more details on the environment settings that were
used during training.

C. Custom Environment

We implemented a custom environment which contained
all the components we needed for proof of concept. This

Fig. 3. Episode rewards from 200,000 steps during training. Visualization
produced from tensorboard with 0.93 smoothing.

allowed us to quickly run experimental iterations. The simu-
lation environment consists of a straight-road segment with
three constant width lanes. The sim. cars move with constant
direction and speed. The purpose behind this setup is to
give the agent adequate room to learn to switch lanes
and demonstrate behaviors of overtaking. See Fig. 5 for
demonstrations of our environment. Table IV reports the
parameters we used in our simulated environment along with
their setting (if constant) or settings (if variable). In the
future, we wish to move to a more high fidelity driving
simulator (refer to Section VII for further discussion on this).

D. Control-based RL

In our experiments, we compare our RL trajectory plan-
ning method to a direct RL control method. The control
method mirrors the common approach to self-driving using
an RL policy to directly control the actuators of the vehicle as
in [6]–[10]. In the control-based method, Algorithm 2 is not
required. Instead, the RL policy directly outputs the control
c to be directly applied to the car.

To emphasise the advantage of our trajectory method over
control, we keep nearly everything about the experimental
setup to be the same when comparing the two. Specifically,
everything about the observation space and reward structure
is kept constant between the two, with the exception of
control getting a +50 reward for success, instead of +10.
Additionally, all hyperparameter settings shown in Table III
and all algorithm parameter settings shown in Table I are
kept constant between the two.

V. RESULTS

The main advantage of the trajectory planning approach
that we demonstrate here is safety and comfort. That is, we
hypothesized that by planning trajectories instead of directly
controlling the car, we would simplify the learning process
and experience fewer failures; and by using a PID controller
to control the car, we would create a smoother drive than
end-to-end control RL methods. We see from the results
following that our hypothesis was correct.
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TABLE IV
EXPERIMENTAL SIMULATION ENVIRONMENT PARAMETER SETTINGS

Parameter Constant (C)
or Variable (V)

Value(s)

Ego initial lane V {1, 2, 3}
Sim. Lane V {1, 2, 3}
Sim. initial x V [20, 60] m
Sim. heading C with traffic
Ego target speed C 72 km/h
Sim. speed C 36 km/h
Road length C 120 m
Vehicle length C 5 m
Number sim. cars V {0,1,2}
Lane width C 6 m
Number of lanes C 3
Road geometry C straight

TABLE V
FAILURE RATE IN 100 STOCHASTIC EPISODES

Num. Sim. Cars Control Plan (Ours)
0 0% 0%
1 15% 0%
2 32% 7%

A. Safety

To showcase the safety improvement of our system, we run
100 stochastic (refer to Table IV for what was randomized)
episodes with 0, 1 and 2 obstacle cars. We report the failure
percent, which is any episode terminating in driving off
the road or colliding with another vehicle. The results are
reported in Table V. From these experiments, we see a
dramatic increase in safety in our plan-based method over
the direct control-based method. Both the control and plan-
based method were trained on 2M steps.

One of the advantages of planning ahead is that we
could theoretically apply higher-level logic to avoid failure
scenarios. One way we could do this is to force the planner
to replan if we foresee a dangerous outcome of following
the trajectory. This we could do by resampling from the
stochastic policy. Another possible way to ensure safe driving
was proposed in an imitation learning trajectory planner
proposal [12]. Here, the authors propose a projection of the
chosen trajectory onto free space such that the change by
projection is minimized. We believe incorporating a safety
module into our approach could further decrease the failure
rate and we leave this open to future work.

B. Comfort

By planning a trajectory and letting PID control the
vehicle, we achieve lower average turning and acceleration
than end-to-end control, as seen in Fig. 4. This translates into
a smoother, more comfortable ride. These results are from
the same experiments that produced Table V.

C. Demonstrations

Fig. 5 shows our simulation environment and demonstrates
the capabilities of the system to plan within dynamic en-
vironments. Fig. 6 reveals some of the failure cases still
experienced from the RL planner.

Fig. 4. Trajectory planning reduces unnecessary controls such as steering
and acceleration. Control is the method which uses RL to directly control
the vehicle. Note that some steer and acceleration is necessary for avoiding
obstacles. The numbers above the Control bars represent by what factor
Control exhibits more of the control than Trajectory.

Fig. 5. Four dynamic environment instantiations demonstrating the agents
ability to successfully overtake in traffic using our RL trajectory planner
approach. Visualizations are shown at various progression of their episodes.

Fig. 6. Most common failure cases of our RL trajectory planner. Agent
does not turn soon enough and so gets trapped (a). The agent wants to give
the vehicles on both sides of it space and in the process, collides with one
of them (b). Visualizations are shown near the end of their episodes (before
failure).

Visit our website1 for moving demonstrations.

VI. CONCLUSION

In this work, we propose a planning structure that com-
bines the reinforcement learning-based trajectory planning
and a PID controller for self-driving vehicles in dynamic
environments. Instead of controlling the car using deep
reinforcement learning directly, a higher level trajectory is
generated by RL and then optimized through a lower level
PID controller. We test the proposed approach in various
scenarios and achieve a safer and more comfortable driving
profile in the simulation.

VII. FUTURE WORK

In future work, we would like to generalize our approach
to allow the agent to plan under varying settings of all

1https://sites.google.com/coad.net/riss/home
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parameters outlined in Table IV. We believe that incorpo-
rating an LSTM into our approach would allow capturing
the partially observable (POMDP) nature of driving and
would generalize our approach. We also wish to extend our
approach to incorporate a perception module directly into
our policy via a CNN, as in the hybrid approach shown
in Fig. 1(c), which would better take full advantage of the
high capacity of our machine learning approach. We also
believe that implementing the safe PID from [12] would
further improve the safety of our system. For a more robust
comparison of our work, we wish in future work to directly
compare our results to imitation learning-based and non-deep
learning (traditional) trajectory planning. Finally, we wish to
apply our algorithm to the CARLA driving simulator and
report our performance on the CARLA baselines.

VIII. ACKNOWLEDGEMENTS

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 1659774. We
would like to thank the organizers of the Carnegie Mellon
Robotics Institute Summer Scholars (RISS) program for
making this experience possible.

REFERENCES

[1] S. M. Grigorescu, B. Trasnea, L. Marina, A. Vasilcoi, and T. T.
Cocias, “Neurotrajectory: A neuroevolutionary approach to local
state trajectory learning for autonomous vehicles,” CoRR, vol.
abs/1906.10971, 2019. [Online]. Available: http://arxiv.org/abs/1906.
10971

[2] C. Badue, R. Guidolini, R. V. Carneiro, P. Azevedo, V. B. Cardoso,
A. Forechi, L. F. R. Jesus, R. F. Berriel, T. M. Paixão, F. W.
Mutz, T. Oliveira-Santos, and A. F. de Souza, “Self-driving cars:
A survey,” CoRR, vol. abs/1901.04407, 2019. [Online]. Available:
http://arxiv.org/abs/1901.04407

[3] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang,
X. Zhang, J. Zhao, and K. Zieba, “End to end learning for self-
driving cars,” CoRR, vol. abs/1604.07316, 2016. [Online]. Available:
http://arxiv.org/abs/1604.07316

[4] F. Codevilla, E. Santana, A. M. López, and A. Gaidon, “Exploring
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Traffic Sign Detection and Localization on the Edge
for HD Map Updating

Hunter Damron1 and Christoph Mertz2

Abstract— In this paper, we present methods for traffic sign
detection and localization which will be used to determine when
traffic signs have been added or removed since the creation of a
known high definition (HD) map. This work is part of a larger
project which will use cameras on public buses to continuously
monitor for HD map changes and update the map to reflect
those changes. Our system uses a MobileNetV1 Single Shot
Multibox Detector (SSD) to detect traffic signs and is designed
to run in real time on the edge. We also use Colmap Structure
from Motion (SfM) to localize the camera in a known HD
map. Our object detector achieves 96.2% precision per real-
world occurrence with 96.2% recall for sign detection in the
Argoverse dataset. Together with the localization component,
the detector can be used to identify video frames which contain
map changes. When implemented on a public bus, this system
will provide temporal guarantees of the traffic signs labelled in
an HD map, and improve the safety of autonomous driving.

Index Terms— Intelligent Transportation Systems, Localiza-
tion and Mapping, Computer Vision

I. INTRODUCTION

Self-driving cars have shown promise in improving the
safety and efficiency of transportation [1]. In order to safely
navigate, autonomous cars must obey posted signage and
lane markings while also avoiding obstacles such as pedes-
trians and other cars. Dynamic obstacles have to be detected
at runtime, but road signs and markings can be included in
high definition (HD) maps, such as Argoverse [2], which
provide precise information about the drivable area.

HD maps can improve the safety of self-driving cars by
providing additional context for navigation. However, these
maps are expensive and time consuming to construct because
a sensor-laden vehicle must drive every street in the map.
Additionally, because the highway infrastructure can change,
these maps must be updated regularly to reflect changes.

Between map updates, outdated road artifacts can exist
in the map for days to years, depending on the frequency of
remapping. To solve this, the Carnegie Mellon NavLab group
is developing a method to detect HD map changes using
cameras onboard public buses [3]. Because these vehicles
patrol the streets regularly, changes can be detected within
days or even hours.

We aim for near real-time processing of the image streams
provided by the bus, but we cannot sacrifice accuracy for
speed. Hence, we use a two-step system which separates
the analysis between the bus’s computation-limited onboard

1Hunter Damron is with the Computer Science and Engineer-
ing Department, University of South Carolina, Columbia, SC, USA.
hdamron@email.sc.edu

2Christoph Mertz is with the Robotics Institute, Carnegie Mellon Uni-
versity, Pittsburgh, PA, USA cmertz@andrew.cmu.edu

computer and a nearby cloudlet server [4] which provides
powerful computation resources. The onboard computer per-
forms a quick comparison between the collected images
and the existing map to determine if the map has changed.
Images which contain map changes can be uploaded to the
cloudlet for a more precise remapping or prioritized in future
remapping efforts.

In this paper, we propose the detection and localization
methods for one such onboard data filter which would locate
new or removed traffic signs in the current map. We detect
signs using a Single Shot Multibox Detector (SSD) [5]
with a MobileNetV1 [6] backbone implemented by the
TensorFlow [7] Object Detection API [8] and trained on the
Mapillary Traffic Sign Dataset [9]. We then align images to
the existing map using Colmap [10] to match detected signs
with known signs in the map.

Because this stage acts as a preliminary filter, we require
high recall to ensure the connected cloudlet is provided
images of all possible map changes. False positive detections
are of less concern because they will likely be removed by
the second stage of the pipeline. However, we are restricted
by the bandwidth of the connection between the bus, and
false positives increase burden on the network. Therefore, we
must discard enough frames to avoid overloading the network
while also retaining enough information for the cloudlet to
determine the location of all sign changes.

Instead of the recall in each individual frame, we leverage
the temporal stability of the video streams from the bus
and consider recall per real-world occurrence. The SSD is
known to be weaker at detecting small objects [5] and would
have difficulty detecting far away signs. However, as the
bus approaches these signs they get larger in the image
and, hence, easier to detect. Additionally, because buses
make several loops of their route each day, we can combine
multiple iterations for improved accuracy. This is especially
important for differentiating if a sign has been removed or
is just occluded.

The rest of this paper continues with a discussion of
related work. Section III provides a detailed overview of the
proposed approach. Experimental results of the system and
each of its components are presented in Section IV. The
paper concludes with a discussion of future work and the
implications of the project.

II. RELATED WORK
Traffic sign change detection relies on two distinct compo-

nents: localization and sign detection. Many solutions have
been proposed for each.
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For localization, Colmap [10] provides state of the art
structure from motion and allows registration of new images
in an existing map while ORB-SLAM2 [11] allows real-
time simultaneous localization and mapping (SLAM). Other
techniques incorporate data from other sensors such as
LIDAR [12] and sonar [13]. Recently, deep learning has been
used to augment SLAM techniques by extracting more robust
features [14] and estimating scale for monocular SLAM [15].
In this paper, we use Colmap because we require features
which can handle changes in scale and illumination.

Deep learning techniques have also proven successful
in the object detection necessary for identifying traffic
signs [16], people [17], and cars [18]. Transfer learning
frameworks such as Detectron2 [19] make it easy to perform
object detection by fine-tuning common models like Faster
R-CNN [20] which are trained on standard datasets such as
COCO [21] or ImageNet [22].

To achieve real-time object detection on embedded com-
puters, simpler neural networks like YOLO (You Only Look
Once) [23], [24] and the SSD (Single Shot MultiBox Detec-
tor) [5] are more efficient because they combine the region
proposal and classification stages. Performance on mobile
processors is further improved by using a MobileNetV1 [6]
feature extractor as the backbone. However, these approaches
sacrifice accuracy for efficiency. Arcos-Garcı́a et al. provide
an extensive comparison of the accuracy and efficiency of
the state of art object detectors in [25]. Here, we use a
MobileNetV1 SSD because it provides a suitable tradeoff
between efficiency and accuracy. We also benefit from the
availability of models pre-trained on the COCO dataset
because we can fine tune an existing model rather than
starting from scratch.

Automatic road change detection was first performed using
satellite imagery [26]. However, modern methods use more
precise sensors, typically vehicle mounted, to obtain the
detail needed for autonomous driving. In [27], Pannen et al.
use a particle filter to continuously monitor changes in road
geometry using anonymized floating car data (FCD) provided
by the car manufacturer. In [28], smartphones are mounted
in service vehicles to continuously monitor for road distress.

III. SYSTEM OVERVIEW
A. Preprocessing of Argoverse HD Map

The Argoverse dataset [2] provides lane-level geometry
and other information about the drivable area in Pittsburgh,
PA and Miami, FL. Argoverse also provides data from nine
cameras and a 3D LIDAR sensor mounted on the roof of an
autonomous vehicle as it drives. Figure 2 shows a sample
image included in the Argoverse dataset.

Because the bus route is known ahead of time, we first
reduce the Argoverse dataset to a subset containing only the
route. We then use Colmap [10] to create a sparse 3D model
of that route using seven of the nine cameras, as in Figure 3.
We also annotate each image with its GPS location and
include SIFT features [29] so future images can be quickly
localized in the map. Additionally, in order to reduce the size
of the model, we downsample the 30Hz image stream so that

GPS

Sign Detection Localization

Image FilteringKnown Map

30Hz
10Hz

Our
contribution

Bus

Map Change UpdateKnown Map

Limited bandwidth

Cloudlet

Fig. 1: System overview

Fig. 2: Sample Argoverse image in Pittsburgh

consecutive images are at least 5m apart. For convenience,
we align the model to the Argoverse coordinate system.

Next, we detect traffic signs in each image using Faster
R-CNN [20] with Detectron2 [19] and add them to the map
as in [30]. Although we could label these images manually,
we follow [30] because their work will be the basis of the
map update process running on the cloudlet server. The 3D
map from Colmap along with the annotated signs will be
used by the online filter to determine which signs are missing
in the map and which signs have been removed.

B. Setup of Real-time Replay

In this paper, we simulate the conditions of the bus by
performing real-time replay of a subset of the Argoverse data
which was not used to build the map. To be consistent with
the sensory input collected by the bus, we consider only one
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Fig. 3: Sparse reconstruction of a subset of the Argoverse
dataset. Camera positions are shown in red.

of the nine cameras and reduce the resolution to 1920⇥1080.
To simulate GPS, we add normally distributed noise to
the Argoverse positions with average absolute deviation of
4.9m [31]. Images are played back at 30Hz and GPS at
10Hz. For compatibility with the bus computer, we use
ROS [32] to manage the communication between the sensors
and the detection node. As a result, our real-time replay is
simply a ROS bag file.

C. Localization in HD Map
The first step in determining if any signs have been added

or removed since the creation of the map is to localize the
bus in the map. We do this by extracting features from
incoming images and registering those features into the map
using Colmap [2]. This would normally require an exhaustive
comparison to every image in the map, but using the bus’s
GPS location as a hint we instead only consider several of
the nearest images. Experimentally, 10 candidate images are
usually sufficient, but we allow up to 30 candidates to be
checked before moving to the next image.

D. Sign Detection
For real-time sign detection, we use a MobileNetV1 [6]

SSD [5] implemented by the TensorFlow [7] Object Detec-
tion API [8]. In order to speed up training, we start with
a model which has already been trained on the Microsoft
COCO dataset [21]. Then, to detect traffic signs, we fine
tune the model by training on the Mapillary Traffic Sign
Dataset [9] for 100000 steps.

IV. EXPERIMENTAL RESULTS
A. Evaluation Criteria

In order to verify the project’s success, we present specific
constraints which must be satisfied by the system.
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Fig. 4: Precision on Mapillary validation set objects larger
than 225 sq px - AP 50.3%

The limited bandwidth of the connection between the bus
and the cloudlet provides a lower bound on the system’s
precision. Specifically, considering a typical 10 Mbps 4G
network and 1920⇥1080 resolution images with JPEG com-
pression to 10%, we can upload at most 2 images per second
in the ideal case. However, the bus will be running up to 4

tasks in parallel and the connection may only be available say
80% of the time. As a result, the upload allowance is cut to
roughly 0.4 images per second. In contrast, in the Argoverse
dataset, 26 signs (excluding parking and street signs) are
counted along a 544m path, leading to an estimate of 0.7
required uploads per second. Hence it is impossible to upload
images of every traffic sign in our setup. This discrepancy is
the motivation for filtering sign changes on the bus.

One way of reducing the number of uploads is to upload
a few views of each sign rather than uploading every image
which contains a sign. This also allows us to consider only
large signs in our evaluation because far away signs will
get closer in later frames. We use a threshold of 225 square
pixels (in 300⇥300 image), which corresponds to a distance
of roughly 8.5m for a 75 cm stop sign in our setup.

Lastly, we want to ensure all relevant images are uploaded
to the cloudlet. As an estimate of the allowed tolerance,
we consider the 1.13 fatalities per 100 million vehicle
miles travelled reported by National Highway Traffic Safety
Administration in 2018 [33]. Assuming for the sake of an
estimate that every death corresponds to a missed traffic sign,
this means traffic signs are missed with probability on the
order of 10�16.

B. Sign Detection
We evaluate the sign detection system in two ways. First

we consider the average precision (AP) of our detector on the
Mapillary validation set with IoU = 0.5. For all signs larger
than 225 square pixels, the detector yields 50.3% average
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(a) Our detector

(b) Ground Truth

Fig. 5: Sample sign detection on MTSD validation set

precision, and Figure 4 shows the precision-recall curve.
Figure 5 shows the detections on a sample image from the
MTSD validation set.

Because we are primarily concerned with AP per real-
world occurrence, we count the number of detections across
frames in a small subset of the Argoverse dataset, considering
an object detected if it is detected in at least one frame.
Using this metric the system detects 46 of the 94 signs,
yielding a recall of 90.2% with precision 48.9%. However,
when we restrict the evaluation to take into account only
signs larger than 225 square pixels (of which there are 26),
this is improved to 96.2% recall with 96.2% precision.

As a result, after the bus route is cycled 12 times (1 � 2

days), the probability of a sign being missed is reduced to the
order of 10�18, lower than the estimated 10

�16 threshold.

C. Localization

In its current state, localization takes roughly 13 s per
image on a single CPU core, which is too slow for near
real-time processing. To demonstrate the current capabilities,

Ground Truth
GPS
Estimated Position

15 m

Fig. 6: Colmap localization on Argoverse dataset played at
5% speed

0 5 10 15 20 25 30

Time (s)

Fig. 7: Distribution of registration times on a single CPU
core for a sample Argoverse segment with 74 images. The
median time needed for image registration is 12.8 s.

we reduce the playback speed to 5%. Figure 6 shows the
calculated trajectory compared with ground truth provided by
Argoverse. The distribution of registration times are shown
in Figure 7. Although the bus’s onboard computer does not
currently have GPU, we plan to add one in the future. With
a GPU, the localization subsystem would benefit from a
roughly 10⇥ speedup and be usable in near real-time.

V. FUTURE WORKS AND CONCLUSIONS

In this paper we present a sign detection filter which fits
into the larger “Bus on Edge” project of the NavLab group.
The obvious next step is to implement this filter on the bus
computer and integrate it with the more powerful sign change
detection node running on the cloudlet server.

In order to improve the localization presented in this
paper, we hope to streamline the system in C++ and avoid
reloading the current map unnecessarily. We also plan to
explore alternative localization techniques and offload some
computation onto the cloudlet computer. For the detection
subsystem, we plan to increase performance by tracking
signs between frames.

Once our system is running on the bus and working with
the cloudlet server, we will be able to provide continuous
sign change monitoring of the roads patrolled by buses
with minimal maintenance cost. The system could also be
extended to other service vehicles which are confined to a
specific route, such as garbage trucks and postal vehicles. By
expanding the training dataset, other classes of map changes
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could also be added to the detection process. Providing
temporal guarantees on HD map features makes them much
more reliable and useful for autonomous navigation.
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Three-stage 3D Shape Completion for Autonomous Vehicles

Sombit Dey1, Chen Fu2 and John Dolan3

Abstract— Scene understanding, which includes shape com-

pletion, is one of the major perception tasks for autonomous

vehicles. 3D LIDAR algorithms provide crucial information

about the surroundings in changing lighting and weather

conditions. Having a complete shape of the object allows us to

obtain high-level knowledge of the surrounding, which can be

used for planning in complex scenarios and improving detection

algorithms. Previous research use a object detector to extract

the object point, but our work adds to this attempt to improve

the accuracy using semantic masks and depth completion. We

propose a three-stage deep regression model for 3D object

detection and shape completion using sensor fusion from

monocular images and sparse LIDAR data. Previous research

on 3D object detection and completion is performed directly

on sparse LIDAR data. The core novelty of our approach is

the usage of depth completion and image features in our shape

completion approach on KITTI dataset using weights trained

on a synthetic dataset. We also demonstrate the ability of the

method to generate realistic shapes of vehicles.

Index Terms— RGB-D Perception, Deep Learning for Visual

Perception

I. INTRODUCTION
Scene understanding with dynamic obstacles for au-

tonomous vehicles has been a long-time research problem.
It is necessary for autonomous vehicles to improve their
perception algorithms for real-life application and to deal
with challenging and unpredictable situations. Autonomous
vehicles need to sense both visual and geometric aspects of
the environment to infer the semantic information required
for driving. To make informed decisions (such as planning
and behaviour prediction), it is of utmost importance to
establish as thorough scene understanding as possible. It is
imperative to have an accurate pose and heading angle about
the other vehicles for an ego vehicle, which is crucial for path
planning tasks.

Shape completion of obstacles can come into use for
a high-level understanding of the scene. Shape completion
helps the ego-vehicle to have a better understanding of the
behaviour of the other cars in the scene. However, shape
completion is a very challenging task for several reasons.
Firstly, the LIDAR(Light Detection and Ranging) scans are
highly sparse and irregular. Moreover, it is a non-trivial task
to improve the accuracy of detection and shape completion
without ground truth annotation of the 3D shape. In this
paper, we focus on the specific problem of shape completion

1Sombit Dey is a 2020 Robotics Institute Summer Scholar and a student
at Indian Institute of Technology, Kharagpur, India
sombitdey888@@iitkgp.ac.in
2Chen Fu is a PhD student at Carnegie Mellon University

cfu1@andrew.cmu.edu
3John Dolan is a professor at Robotics Institute, Carnegie Mellon

University jdolan@andrew.cmu.edu

of objects using monocular images and sparse LIDAR data
for autonomous vehicles.

A. Related Work

1) Shape Completion: 3D shapes are complicated entities,
unlike images, which can be expressed using a fixed matrix.
3D shape perception is long-standing and fundamental in
computer vision. A large amount of work is focused on 3D
reconstruction using multi-view images, which is an ill-posed
problem as many different input data with different shape
and texture generate the same image. Shape completion has
been tried as an optimization problem using energy functions
for shape estimation [1], but lacks to ability to generate
a variety of shapes. But with the recent development in
deep-learning, 3D shape completion can be formulated as a
data-driven or learning-driven problem. The former usually
rely on learned shape priors and formulate shape completion
as an optimization problem over the corresponding input.
Learning-based approaches [8], on the other hand, often learn
the shape in a supervised manner from synthetic data. Shape
completion [3,9,10] has been used recently for predicting the
shape of a 3D object from 2.5D LIDAR scans. All previous
research involves shape completion [1]–[3] on sparse LIDAR
data. The results obtained using sparse data fail to generalize
the shapes and have lower precision in case of occlusion.
D. Stutz et al. [3] used variational auto-encoder network
for shape completion. They introduced the notion of using
two networks for shape completion, with weights learned in
a synthetic dataset, which is then transferred to real-world
scenarios.

2) Semantic Segmentation: Image segmentation is es-
sential for visual understanding with various applications.
Semantics segmentation has been carried out using deep
learning models, assigning a class to each pixel. Many related
works [4], [5] focus on the segmentation of monocular
images using CNNs for image segmentation. O. Ronneberger
et al. [6] have proposed a Unet architecture for image
segmentation.

3) Sparse LIDAR Depth Completion: Depth completion
aims to recover dense depth maps from sparse depth mea-
surements. Depth Estimation from monocular images has
been proposed using Deep CNN’s [7], [8]. These methods
suffer from over-fitting and do not generalize well in other
scenes than the training data. LIDAR-based supervision im-
proves depth image consistency [9]. Depth completion from a
single RGB and sparse LIDAR scan has been proposed using
a self-supervised method [10]. Features from both image and
LIDAR are concatenated to achieve feature aggregation; thus
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Fig. 1: Pipeline Description.

Fig. 2: Dense 2.5D LIDAR Data from RGB and Sparse LIDAR

the network is able to interpolate the data between the sparse
depth maps from LIDAR scans.

B. Our Contribution

LIDAR can sense the scene geometry and depth accu-
rately, whereas RGB images gather the texture and semantic
information. Therefore, we propose a novel pipeline for ob-
ject detection using shape completion with both RGB images
and LIDAR scan. Our 3D shape completion model leverages
pixel-level segmentation of RGB images and depth comple-
tion of the LIDAR scans. Our three-step network firstly uses
instance segmentation on the RGB for mask generation of
the objects using an encoder-decoder network. Secondly, the
network also provides depth estimation using sensor fusion
of the RGB and LIDAR data, allowing us to generate a
semi-dense point cloud representation of the surroundings.
Lastly, a shape completion model is used, converting the
semi-dense point cloud to a complete 3D model, by learning
a latent representation of the objects. Using a more dense
point cloud along with additional RGB information makes

the prediction more robust to noisy data and achieves more
accurate depiction of the object. We apply a semantic mask
from image data instead of the traditional bounding box, to
obtain the partial shape of the object, thus reducing noise, as
depicted in Fig.1 with relevant modules and outputs. We also
propose a transfer-learning methodology for shape prediction
of the depth-completed objects’ shape using shapes of CAD
models, which allows us to transfer knowledge to real-life
scenarios. In brief, our contributions are 1) Leveraging image
information for densification of LIDAR data, further used
for shape completion; 2) Fusing sensor data from image and
LIDAR data for shape completion of objects; 3) Utilizing
semantic information rather than a bounding box for 3D
shape prediction.

II. OVERVIEW OF THE METHOD

We propose a three-stage object shape completion, illus-
trated in Fig.1 and Fig.2. A variational autoencoder net-
work is used to learn the synthetic shapes. This shape-
prior network is able to predict shape using occupancy grid
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Fig. 3: Unet Architecture

Fig. 4: Output of Unet, for mask generation

Fig. 5: Overview of Depth Completion pipeline Fig. 6: Output of Depth Completion

representation, learning a latent space representation which
can be used to generate new outputs. A shape-inference
model is used to transfer these weights from synthetic data
to the KITTI dataset. A densified point cloud representation
of shapes is obtained using depth completion. The input
RGB+LIDAR data is used to predict a depth map which
is then re-projected into the world frame to obtain a dense
pointcloud. The loss function for depth completion is mod-
elled using the equation below a) L1 Loss : Calculated on
data points where ground truth depth from the LIDAR depth
map is available. b) Photo-metric Loss: The relative rotation
and translation vectors are estimated between two nearby
images using the predicted depth maps using SURF feature
matching. c) Smoothness Loss : A Sobel edge filter is used to
calculate the edges in the depth map. For ensuring a smooth
depth map, a loss is associated with edges in the depth map.

L = ↵1LL1 + ↵2Lphotometric + ↵3Lsmoothness

We apply an encoder-decoder network for pixel-level seg-
mentation of the image using a Unet Architecture. The main
advantage of Unet architecture is the shorter inference time
and its ease of modification according to the need. The image
is used to generate a high-dimensional feature vector, with
features aggregated at multiple levels. The decoder takes a
high dimensional vector to generate a semantic segmentation
mask. Fig.3 shows the network architecture with feature size.
Semantic masks from RGB images are used to segment
out objects in the scene, reducing the noisy data points
when compared to 3D bounding box segmentation of objects,
shown in Fig.4 with mask in pink. Reduction of noise in the
input data makes the observation more structured, resulting

in better convergence to a latent space. A good convergence
to a latent space is very crucial for the decoder, to ensure the
generated models are sensible and follow a given structure.
We train a new encoder to inlay the observation into the
latent space from using a new network, called the shape-
inference network. The shape-inference network is trained
to learn the new embedding from the densified LIDAR data-
set to the latent space. The encoder, z(x,w), is updated to
learn weights w from observation set x to generate the latent
variable z. The decoder network is represented by p(y|z),
where y is the predicted shape with latent variable z. The
loss function while training shape inference is

L = �
X

x

ln(p(y = x|z))� ln(p(z))

where x is the voxels which are observed in the observation
sample. The prior p(z) follows a gaussian distribution, and
the negative log of the probability function is representative
of the variance of the distribution. This term is responsible
for the regression for the latent space distribution.

A. Data

The Unet encoder-decoder architecture is trained on 8000
images on the KITTI-Tracking Dataset with 90:5:5 ratio of
split data for training, validation and testing. The depth com-
pletion network is trained on the KITTI-Odometry dataset on
20,000 images without using the ground truth annotations of
KITTI dataset [11]. The LIDAR data are filtered, keeping
the points in the field of view of the camera, and rejecting
the points that are far away and have low reflective values.
The dense pointcloud data are obtained using the mask from
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Fig. 7: Shape Completion Results

the instance segmentation model (Fig 4). A nearest neighbor
clustering method is used to filter out the noise points due
to erroneous depth values on the edges of the objects. The
pointcloud is then normalized and voxelized into resolution
24 x 54 x 24. The angle is extracted from ground truth
annotation, due to lack of a detection module. The generated
occupancy grid is used as training dataset. The total number
of 3000 cars are extracted for the shape completion model.

B. Training

1) Unet: The Unet Architecture is trained on the KITTI
data set, with cross-entropy loss functions. The car weight
in the loss function is higher than background resulting in
under-segmentation during the calculation of cross-entropy
loss function. The model is trained using batch-size 6 using
SGD optimization. Data augmentation and learning rate
decay is carried for better generalization of the model.

2) Depth Completion: The shape completion network by
Fanchama et al [12] is trained on RGB-D input using batch
size 4. The weights are initialized with the parameters of
the ResNet-34 model. The network is trained using the self-
supervised method, using images chosen randomly from 6
nearest images, excluding the current frame in the KITTI
training sequence. During the training sequence, the input
to the network is RGBt + D and RGBt�1 but during the
inference time only RGBt +D is required.

3) Shape Completion: As proposed by D. Stutz et al., we
use a shape prior in our network architecture for learning
shape completion. We train the shape inference model on
the densified LIDAR dataset (Fig. 4). The decoder part of the
network is retained from the shape-prior pre-trained model
and is frozen during the training process. An additional
space representation is provided to the network for better
convergence. Due to the lack of ground truth shape, using a
signed distance field is difficult. A 3D space representation
of the points is provided to the encoder. The loss is calculated
on the points observed in the predicted shape. A latent space
regularization term is added to the loss equation to restrict
the decoder to predict shapes alike to the shape-prior.

III. RESULTS

The pixel level segmentation using the Unet architecture
from the above methodology is tested against Mask-RCNN,
in the table below.

Time (ms) Accuracy

Unet architecture 68 85.3
Mask-RCNN 220 90.

Mask-RCNN has better accuracy in predicting pixel-level
segmentation for cars than Unet, inferred from the table
above. But the Unet architecture has smaller inference time
and can be easily modified for the training without bounding
box annotations. The depth completion results are shown in
Fig.7. The depth images lack consistency on the edges or
during abrupt changes in the depth. Therefore the resultant
point cloud often is noisy, which is rectified by a nearest-
neighbour clustering algorithm. A careful selection of hyper-
parameters is necessary to avoid high-level image features in
the depth-image.

RMSE

Dense Dataset 0.63
Sparse Dataset 0.69

It is very challenging to compare shape completion due
to lack to ground truth annotations. The RMSE values are
calculated using the fact that the points in the observation
should be on the surface of the predicted 3D shape. The
error function is calculated using distance of the points to
the surface of the predicted shape. Our approach has a
better RMSE values compared to the earlier approach using
sparse LIDAR scan even though the number of points in our
observations is much higher. Hence we can conclude that
our approach can generalize better when compared to the
network when trained on a sparse LIDAR scan dataset.

IV. CONCLUSION AND FUTURE WORKS

In this work, we propose a methodology using both
LIDAR and image features to generate a 2.5D point cloud
representation of objects. A variational autoencoder network
is used to learn the new weights to generate 3D shapes of
objects using the generating model trained on a synthetic
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dataset.
As part of future work, the integration of a 3D shape de-
tector can be considered to make the pipeline not dependent
on ground truth annotations. Along with object detection,
insertion of the completed shape of the vehicle into the point
cloud would be another important aspect of this research to
allow these detected shape to be used for path planning.
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Extracting Vital Waveforms from Microvascular Videos

Emma Erickson1, Robert Edman2, Micheal Pinsky3, Hernando Gomez3, and Artur Dubrawski2

Abstract— We introduce a machine learning method for un-

covering underlying signals common to concurrently collected

videos and vital signs. Sublingual microvascular videos are

one method for monitoring patients undergoing surgery. These

videos display red blood cell movement in the capillary bed

beneath the tongue, analysis of which may indicate patient

status and predict negative outcomes such as hemorrhage.

Likewise, sensors both invasive and noninvasive can predict

the onset of undesirable outcomes using collected metrics such

as heart rate, blood pressure, and cardiac output. Because

microvascular data is optical and therefore noninvasive, being

able to predict invasive measurements or limit the number

of necessary sensors by replacing them with a single video is

desirable. We trained a set of random forest regressors using

various featurizations of microvascular video data paired with

a set of target vital waveforms. The models are trained and

tested on a dataset of microvascular videos and vital waveforms

collected from pigs exposed to hemorrhage in a laboratory

setting. R2
scores reveal motion features in the videos could

explain 10-15% of variance in invasively measured blood

pressure, and 15-20% of variance in continuous cardiac output

and Sv02. Heart rate and cardiac output variance could be

predicted at 57% and 41% respectively using frequency analysis

of pixel intensities. In total our contributions are threefold, and

include uncovering key meta information to synchronize the

existing dataset, extracting information on invasive vital signs

using only noninvasive videos, and identifying the predictability

of particular vital signs through microvascular videos.

Index Terms— Medical Systems, Micro-circulatory Analysis,

Video Processing, Critical Care

I. INTRODUCTION

More than 50 million surgeries are performed annually
in the United States [1]. Some of these procedures, though
common or even routine, will result in hemorrhaging, or
unwanted bleeding. Hemorrhage during surgery is associated
with worse outcomes: increased mortality, longer hospital
stays and greater financial cost [2]. To preemptively predict
these outcomes, sensors both invasive and noninvasive are
used to track a patient’s status. Collected waveforms such as
those collected from arterial (ART) and central venous (CVP)
catheters, as well as derived metrics such as cardiac output
(CO), can indicate the onset of this undesirable outcome so
that it may be quickly addressed [3].
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Fig. 1. A screenshot of a sublingual capillary bed from a microvascular
video collected on an SDF device.

Microcirculatory monitoring is a technique for measuring
the perfusion of small vessels, used to shed insight into the
status of critically-ill patients. In normal, healthy patients,
the capillaries display near constant perfusion [4]. Stopped
or intermittent flow can indicate hemorrhaging, sepsis and
other organ dysfunction, while homogeneous flow is linked
to successful resuscitation and improved outcomes [5], [6].
Realtime bedside evaluation of microcirculatory flow is de-
sirable to predict and respond to changes in patient status.

Sidestream dark field (SDF) imaging is one technique for
monitoring microvascular blood flow. Using an RGB video
camera, magnifying lens, and green LED ring for optimal red
blood cell absorption, sidestream dark field imaging captures
a network of perfused capillaries with varying levels of red
blood cell flow. These videos are difficult to analyze due to
noise, sensor drift, defocusing and the subsurface scattering
of light. As a result, though real-time computer aided analysis
of vessels is possible, it is limited by manual or semi-manual
oversight [7]. In practice the gold standard remains manual
evaluation. Existing and proposed techniques which have
automated microvascular analysis focus on vessel extraction
and classification (i.e. no flow, intermittent, continuous)
without additional links to physiological states.

Optical instrumentation and subsequent video processing
is a noninvasive way to collect medical data. From apps
capable of detecting heart rate from cell phone video to
red light sensors in health trackers monitoring blood oxygen
levels, these trends indicate that common vital waveforms are
embedded within noisy visual data. Metrics proven useful in
revealing patient status, such as cardiac output and blood
pressure, are commonly measured on other sensors along-
side microvascular monitoring. In this paper we investigate
directly connecting these two measurements. By featurizing
both the blood flow videos (Fig. 1) and simultaneously
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collected vital sign measurements, we implement random
forest regressor models to understand the predictability of
waveform data from video.

II. RELATED WORK

A. Signal Analysis

Machine learning has been leveraged in the medical field
to make sense of the immense amount of data medical profes-
sionals are asked to interpret. Automated analysis of signals
is of particular interest, as such processes save time, reduce
manual errors, and eliminate subjectivity. Electroencephalo-
gram (EEG) analysis is one area of research exemplifying
this trend. For example, the problem of classifying an EEG
waveform as normal or abnormal has been addressed in the
past both by traditional machine learning tactics (RF, kNN)
as well as with deep learning models [8], [9]. Both strategies
outperform random guessing, though the standard remains
analysis by trained clinicians.

Similar random forest methods have been utilized with
success for hemorrhage prediction. In particular, invasive
measurements reliant on catheters to measure blood pres-
sure outperform noninvasive methods in how quickly they
detect hemorrhage [3]. Being able to predict and respond
to negative outcomes is critical to successful care, and vital
signs offer this utility at bedside.

B. Video Analysis

It is understood that microvascular perfusion is altered
in patients in critical condition [10]. Though not as mature
as vital analysis in its bedside applications, microvascular
analysis has revealed information in its own right. Studies in
sepsis and shock show microcirculatory changes to be related
to adverse outcomes [11]. To this end, the automation of
microvascular analysis is a desirable goal.

Research on microcirculation is generally focused on
vessel extraction and the quantification of perfusion. AVA
Microtools has presented a real-time point of care tool for
these analyses, but the gold standard still relies on manual
aid [7]. Microvascular video data from hemorrhaging exper-
iments has been analyzed with a focus on automating vessel
extraction and flow type (absent, sluggish, continuous, etc.)
[12]. But as a side product of the video stabilization process,
this work also was able to recover some information on
physiological measurements [13]. Namely, pixel intensities
over time could be decomposed into frequencies representing
the heart rate and respiratory rate of the subject. Figure
2 demonstrates results of repetition of these experiments,
where a random forest regressor trained on microvascular
videos is able to for the vast majority of samples predict
heart rate within 10% accuracy.

Despite interest in and intuition that both microvascular
video data and time series vital data contain relevant infor-
mation to patient status, analysis has remained an either/or
with connections between the two arising as side effects,
without exploration into whether vitals beyond heart rate and
respiratory rate are attainable visually.

Fig. 2. Percent error in extraction of HR from pixel intensity frequencies
of microvascular videos. The values are the percent errors sorted lowest to
highest. The blue line shows error when the mean value is predicted each
time, the orange are predictions made by the random forest regressor.

III. METHODS

A. Description of Data

To examine the recovery of a latent variable common to
microvascular videos and vitals recorded in parallel, we used
a dataset collected through a critical care experiment on
hemorrhaging. Healthy pigs were anesthetized and then kept
stable for a 30 minute baseline period. This is followed by
induced bleeding at a rate of 20 ml/min for approximately 2
hours, and then by resuscitation. Sublingual microvascular
videos are captured using the SDF device several times
across these stages. In total, the video dataset consists of
52 480 x 720 pixel videos, approximately 20 seconds each
at 30 fps.

In addition to the videos, CSV files record time series
data through the duration of the experiment. ‘Waveform’
files include directly measured vitals such as ECGs and
arterial pressure, and are collected throughout the experiment
at 250Hz. ‘LiDCO’ files contain metrics calculated beat-
to-beat (approximately 1-2Hz) from the waveform data.
Tested waveform metrics are the arterial catheter (ART),
electrocardiogram (ECG), continuous cardiac output (CCO),
central venous pressure (CVP), pulmonary artery pressure
(PAP), plethysmographic (Pleth), mixed venous oxygen satu-
ration (SvO2), and oxygen saturation (SpO2). Tested LiDCO
metrics are mean arterial pressure (MAP), systolic pressure
(Sys), diastolic pressure (Dia), pulse pressure (PP), cardiac
output (CO), stroke volume (SV), heart rate (HR), heart rate
variability (HRV), systolic pressure variation (SPV), stroke
volume variation (SVV), pulse pressure variation (PPV) and
dynamic arterial elastance (PPV/SVV).

B. Synchronization

Video and vital timestamps were aligned so each 20-30
second video was matched with the corresponding measured
vitals. The dataset was unpaired prior to these experiments,
and time synchronization was necessary between the two.

69



Videos included a timestamp based on the 24-hr clock. Wave-
form data included a time column relative to the beginning
of the 30 minute baseline period. Alignment was based off of
a stabilization offset documented in experiment annotation.

C. Data Preprocessing and Featurization

In order to connect the microvascular videos to the vital
signs through a machine learning model, the data was first
translated into a more readily usable format. Two strategies
were used to featurize the videos, which were all at least of
size (480, 720, 600).

First, a three-dimensional convolutional method was used
to extract the motion features of the videos. This pipeline had
previously been used to classify microvessels by their level of
perfusion [12]. Accepting the (480, 720, 600) videos as input,
it generates a (480, 720, 100) histogram map, describing the
motion features as a 100 bin histogram per pixel. Examining
this output, pixels with higher total values summed across
the bins of the histogram corresponded to moving pixels
rather than background. These histogram sums describing
motion features were used to train and test the first round of
experiments.

The second strategy of video featurization revolved around
pixel intensity. Throughout the video, the average of both
background and vessel pixels per frame oscillated over the
total run-time. These oscillations could be decomposed into
frequencies in ranges corresponding to reasonable respiratory
rate [0.1, 0.5] Hz and heart rate [0.5, 5] Hz. Both the raw
average of pixel intensity per frame and its Fourier transform
were used as video features in experiments.

The waveform and LiDCO data also required considera-
tions. Because of the short time frame of the videos and the
limited changes occurring in that window, the full videos
were mapped to a single vital data point. This was chosen
to be the average of the vital over a 1 minute interval
beginning 20 seconds prior to the start of the video. While
this made some vitals, namely ECG which encodes important
information in the period between spikes, useless, for the
majority it was necessary to smooth out fluctuations in the
data due to respiration, heart beat, or gaps in the data.

Two videos contained completely invalid vital sign data
during the minute surrounding their capture. They were
removed from the experiments because they did not have
these vital truth values.

D. Experimental Setup

Three experiments were set up to test each waveform
and LiDCO vital. In each a random forest regressor was
implemnented via scikit-learn. The regressors were trained
to predict a target vital sign’s average value at the time of
the video recording. Each random forest regressor contained
100 trees with no specified maximum depth.

In the first experiments - motion features - each his-
togram map corresponded to one video. The histograms
were summed into the total of the motion features for each
pixel, and then these pixel values served as the input for
the regressor. The next experiments examined the average

pixel intensities over time, so each frame was described by
its average pixel intensity, and each video was described
by that value per frame. The final set of experiments took
the time series nature of the video into account by running
the regressor on the FFT of the averaged pixel intensity
per frame series composed in the previous experiment. The
complete fast Fourier transform, as well as the highest energy
frequency over the total frequency range, the respiratory rate
range - [0.1, 0.5] Hz, and the heart rate range - [0.5, 5] Hz
were all tested.

The models were trained and tested on a one category of
video features with the vital signs serving as truth data. Each
experiment utilized 5-fold cross validation. The data was
tested on each fold after being trained on the remaining four.
The resulting predictions were scored using R2 to determine
the percentage of variance in the dependent variable which
the independent variable could explain. An R2 = 0 indicates
guessing a constant each time, and R2 = 1 would be a
perfect regressor. The R2 score may be negative for worse
than random performance. The R2 score was averaged across
folds to produce the final score for a given type of video
feature on each vital sign.

IV. RESULTS
The contributions of this project are threefold. Past re-

search using the critical care pig bleed dataset has involved
either analysis of microvascular videos or the analysis of
the time series vital signs on their own, so synchronization
has improved the dataset for future work combining videos
with vital signs. Next, exploration of the 20 vital signs
collected in parallel with the videos makes a case for the
visual predictability of specific signs. Finally, the extent of
prediction of these key vitals using the specified methods
and featurizations is quantified.

A. Motion Features

The outcome of the motion feature models are summarized
in the second column of Table 1. Overall, a large majority of
the variance was not accounted for by these motion features
across target vitals. The vitals that did have an R2 value
greater than 0 (some percentage of variance accounted for)
were ART, CVP, MAP, systolic pressure, diastolic pressure,
CCO and SvO2. The majority of these vital signs are col-
lected from the arterial or venous pressure, which at present
is measured using invasive catheters inserted into arteries
or veins. MAP, systolic pressure, and diastolic pressure are
directly calculated from ART, as the mean, maximum, and
minimum values respectively. The fact that each of them
had an R2 score greater than 0 for models trained on
motion features indicates some level of predictability in
blood pressure from perfusion motion.

B. Pixel Intensity Values

The outcome of the pixel intensity models are summarized
in third column of Table 1. The pixel intensities of microvas-
cular videos on their own are not useful for predicting vital
signs, with only a few percentage points of variance being
accounted for by only three out of 20 vital signs.
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TABLE I
R2 RESULTS OF VITAL PREDICTION

Vital Sign Motion Feature R2 Pixel Intensity R2 Frequency R2

ART 0.136 -0.015 -0.376
ECG -0.039 -0.714 -1.091
CCO 0.160 -0.014 -0.325
CVP 0.100 0.048 -0.690
PAP -0.276 -0.690 -0.348
Pleth -1478 -1216 -1706
SvO2 0.192 0.034 -0.592
SpO2 -371.7 -383.1 -469.9
MAP 0.114 -0.022 -0.374
Sys 0.076 0.012 -0.459
Dia 0.126 -0.126 -0.298
PP -0.230 -0.147 -0.476
HR -0.020 -0.507 0.568
SV -0.020 -0.416 -0.530
CO -0.093 -0.673 0.406

HRV -1.729 -2.502 -4.968
SPV -0.806 -1.726 -0.450
SVV -0.771 -1.171 -0.879
PPV -0.582 -1.157 -1.012

PPV/SVV -0.980 -1.421 -0.277

C. Pixel Intensity Frequencies

The outcome of the pixel intensity HR frequency models
are summarized in the fourth column of Table 1. Frequencies
outside the [0.5, 5] Hz region did not in any vitals correspond
to a better than random R2 score. Unsurprisingly, this range
tuned to the heart rate showed the highest R2 score for
the heart rate, confirming past observations of heart rate in
microvascular videos [13]. It also performed better than any
other model at predicting cardiac output, a vital of interest
due to the necessity of a partial anesthesia to measure it.

V. DISCUSSION
A. Value and Applicability

Invasiveness in surgical monitoring methods delays proce-
dures and carries risks in its own right, so there is incentive
to avoid invasive measurements in favor of other methods
where possible. The model in this paper, trained on a con-
trolled critical care experiment data set, indicates that several
invasive vitals important in critical care are predictable from
a purely visual data source. Blood pressure is amongst the
most invasively measured, and in motion feature experiments
we found evidence of predictability in venous (CVP, SVO2)
and arterial (ART, MAP, Sys, Dia, CCO) pressure measures.
Future work further investigating retrieving these signals
visually would be clinically valuable to circumvent these
more risky methods of data collection.

In frequency experiments, it should be noted that cardiac
output, the volume of blood pumped by the heart per minute,
is directly related to heart rate, so this predictive power can
mostly be attributed to this model’s success at identifying
heart rate. This is also confirmed because this model does
not predict stroke volume, which when multiplied by heart
rate yields cardiac output.

Experiments on appearance features for heart rate pre-
diction saw no change in performance between background

and vessel pixels. There are several possible causes for this,
including the heart rate causing physical disturbances to the
microvascular monitoring camera. Alternatively, subsurface
scattering of light under the skin medium may cause infor-
mation to be diffused even to non vessel pixels.

B. Limitations and Future Work

This work was challenged by several limitations. Despite
the critical care pig bleed dataset carefully controlling for
many variables and offering a wealth of key information,
it is at the time of writing almost seven years old, and is
noisier and lower quality than more modern methods of
microvascular video collection. It was also limited to 52
videos over 16 pigs. Finally, the videos themselves were
not precisely timed with events, but rather taken during
specific periods of the surgery (baseline, during bleed, after
resuscitation), so synchronization between vitals and videos
is imperfect. Using newer and more AI-ready datasets may
improve results. Ideally this type of medical data would be
less sporadically measured across subjects and surgeries, of
higher quality, and better synchronized.

With regards to how the current dataset might be further
utilized, only the frequency analysis examined the tempo-
ral aspect of the video data. Motion features compressed
several hundred frames into a single histogram map. Future
experimentation could examine several consecutive motion
featurizations to better leverage temporal information.

Finally, vitals are valuable because they predict outcomes,
so future work might investigate predicting outcomes directly
from videos, skipping the intermediate step of vital recon-
struction.
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Planning using Physics-Based Simulation for Contact-Rich Assembly
Tasks with Environmental Uncertainty

Ethan Fahnestock1, Shivam Vats2, and Maxim Likhachev2

Abstract— The task of parts assembly is a contact-rich
manipulation task that is sensitive to environmental uncertainty,
motivating the traditionally structured and controlled factory
environment. However, assembly tasks are common in unstruc-
tured environments where robots do not know exact locations
of objects. Recent approaches have demonstrated that policies
to solve assembly tasks with environmental uncertainty can be
found, but at a potentially prohibitive computational cost that
makes these approaches slow to adapt to new problems. In this
paper, we propose a method to generate robust policies for parts
assembly in an attempt to address this limitation. We evaluate
this method in simulation on the “board insertion task”. We
quantify performance of the proposed method against a metric
planner baseline and demonstrate improved task completion
rates at lower environmental uncertainties.

Index Terms— assembly, physics-based simulation, contact-
rich manipulation

I. INTRODUCTION
Robot manipulators are used for assembly tasks with

increasing frequency to improve efficiency of production
lines across industries in structured factory environments.
However, assembly tasks are not unique to factories or
assembly lines, and frequently occur in unstructured en-
vironments. Any manipulation task that requires arranging
two or more items within relative poses of each other can
be classified as an assembly task. These tasks are typically
contact rich, which makes solving these manipulation tasks
sensitive to environmental uncertainty.

For example, take the jar and lid shown in Figure 1.
This common household task of screwing on a lid to a
jar demonstrates the contact-rich nature of assembly tasks,
as completing the task necessarily involves contact between
the lid and the jar. This example also illustrates the task’s
sensitivity to environmental uncertainty. For instance, if
the lid is slightly off-center because of error in the pose
estimation of the jar, it will not screw on and the assembly
task will fail.

This sensitivity to environmental uncertainty motivates
robot assembly to traditionally occur in highly structured
environments. Industrial robots, like those used on car assem-
bly lines, are expensive and typically rely on their precision,
repeatability, and low noise environment to complete steps in
pre-programmed sequences designed to complete the specific
assembly task at hand. These pre-programmed sequences

1 Ethan Fahnestock is with the Hajim School of Engineering
and Applied Sciences, University of Rochester, Rochester, NY 14627
efahnest@u.rochester.edu

2 Shivam Vats and Maxim Likhachev are with the School of Computer
Science, Carnagie Mellon University, Pittsburgh, PA 15213 {svats,
mlikhach}@andrew.cmu.edu

Fig. 1. An example of a household contact-rich assembly task

are fragile and cannot adapt to even small changes in the
environment.

As robots are deployed in less structured environments
where they must plan in novel surroundings they require
new methods of manipulation that can better handle the un-
certainty inherited from perception to successfully complete
assembly tasks. Further, these methods need to be able to
handle contact, unlike traditional motion planners that avoid
contact with the world. Contact complicates the planning
problem, as contact forces are non-linear and predicting
their effects on a robot’s action is difficult. Additionally,
manipulators must not damage themselves, or the objects
they are manipulating, while executing a solution generated
by a planner involving contact. Introducing compliance in
the manipulator is a popular technique to make interactions
between the robot and the world safer by limiting the
maximum contact force. It allows manipulators to adapt
to external forces (i.e. can be pushed around) instead of
executing a sequence of positional waypoints in a non-
back-drivable manner. Compliant manipulators can either be
actively compliant, where the compliance is implemented
in software controllers, or passively compliant, where the
manipulator itself is constructed with elastic elements that
can absorb energy [1]. In this work, we aim to utilize active
compliance to support contact during manipulation.

Although contact introduces complications into planning,
it can also be exploited to learn about a robot’s environment.
Humans utilize contact daily to complete precise assembly
tasks that would be difficult otherwise. For example, while
attempting to use a key in the dark, a person may first
introduce contact between the key and the lock to localize
features before trying to insert the key [2].
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Approaches have demonstrated that contact can be utilized
by a robot manipulator to generate more robust solutions
to assembly tasks, but these approaches either execute pre-
programmed action sequences, or if they do plan, usually
have runtime requirements that limit their use to scenarios
where the robot has extended periods of time to plan when
faced with a novel environment or manipulation task. When
operating in unstructured environments, the specifics of a
manipulation tasks can change on a timescale too rapid for
these approaches to keep up.

In this work we aim to develop a planner that addresses
this issue while leveraging contact to create plans robust to
environmental uncertainty. We utilize parallelized physics-
based simulation [3] and impedance-based control to incor-
porate contact in planning. We demonstrate our algorithm in
simulation on the “board insertion task” and compare our
approach against a metric planner baseline.

The structure of this paper is as follows: in Section II we
review related works, Section III formalizes the problem and
our proposed method, Section IV describes our experimental
evaluation which produces the results found in Section V.
Finally, we conclude in Section VI with a discussion of the
results and future directions for this work.

II. RELATED WORKS
Many approaches have utilized contact to their advantage

in manipulation tasks. Contact in [2] is used in programmed
routines to assist visual sensors in localizing objects impor-
tant for manipulation to complete tasks like key-insertion and
picking up a screwdriver from a table.

Other approaches that focus specifically on parts assembly
also utilize contact. For example, [4] treats parts assem-
bly as a planning under uncertainty problem and utilizes
contact while planning actions for a compliant manipulator
by formulating the problem as a Markov Decision Process
(MDP) with uncertainty in action execution. Like our work,
this approach also makes use of physics-based simulation
and impedance-based control. However, this work does not
consider environmental uncertainty, only uncertainty in the
robot’s action.

In recent years numerous approaches have combined ma-
chine learning based approaches with impedance control for
manipulation tasks, some involving contact and assembly.
[5] demonstrates that the gain schedule (or stiffness of the
controller over time) for an impedance controller can be
learned to complete manipulation tasks involving contact
while decreasing stiffness when it is not required, making
operation safer.

In [6], a high-level policy is learned through reinforcement
learning (RL) with contact states as context to chain low-
level skills in a way that enables a manipulator to attempt
to recover when an error is made. Like this approach, ours
uses hand-designed “skills”, or motion primitives, as well
as executes actions with an impedance controller to achieve
compliance.

Most relevant to our work in the learning space is [7].
This work models the problem of parts assembly with

environmental uncertainty as a Partially-Observable Markov
Decision Process (POMDP), modeling environmental uncer-
tainty with a particle filter from which a Gaussian Mixture
Model (GMM) is extracted. An RL agent operates on this
compressed representation of the belief space to switch
between goal-directed impedance controllers.

A limiting factor of POMDP-based approaches is that
they don’t scale with the dimensionality of the configuration
space. [8] introduces a method that avoids this scalability
issue by only considering reachable contact events and
discretizing the state space during planning. This method
utilizes stochastic Rapidly-exploring Random Tree (RRT)
planning and contact feedback from sensors on the end
effector to plan and execute contingencies based on contact
states. Our work differs in our use of deterministic sampling
methods.

Most similar to our work in this respect is [9], which uses
deterministic sampling in planning for parts assembly with
environmental uncertainty. Our work differs in our use of
impedance-based control.

III. TECHNICAL APPROACH

A. Problem Definition and Assumptions

We aim to find a sequence of actions A = {a1, a2, ..., an}
that when executed by a manipulator achieve a goal relative
pose pg 2 SE(3) between two objects involved in an assem-
bly task within some tolerance �pg. We assume knowledge
of the object’s geometry and physical properties to enable
physics-based simulation of the object, and accurate state
feedback from the manipulator to perform the task space
impedance control. Finally, we assume knowledge of the
expected pose of the assembly object not held by the robot’s
gripper during the task.

B. Overview

Our approach first constructs a finite action space for
the robot using a set of hand-designed controllers. These
controllers are then used to build a graph G, the nodes of
which represent a state in the robot’s configuration space. A
traditional A* graph search [10] with an inflated heuristic is
used to search and construct G. During node expansion, the
actions are applied to the parent node’s state and forward-
simulated in a physics-based simulator. The states resulting
from these actions, if valid, are returned as successors to
the parent state. Search continues until the relative transform
between assembly objects lies within �pg, or a time limit is
exceeded. The details of this approach are described in the
following sections.

C. State Lattice with Controllers

We utilize State Lattice with Controllers (SLC) [11] to
construct our graph in configuration space. Instead of tradi-
tional motion primitives that modify the robot’s configuration
in a fixed way, the employed motion primitives are con-
trollers that operate on the current robot’s state. As described
in the previous section, these controllers are then simulated
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Algorithm 1: GetSuccs
Input: Parent state sp, vector of motion primitives M
Output: A set of successor states S

1 S = ;;
2 for envidx,mp 2 enumerate(M) do
3 SetRobotState(envidx, sp);
4 Gi  ApplyCartesianTransform(sp, mp);
5 SetAttractorPose(envidx, Gi);
6 end
7 while False 2 {x.complete | x 2M} do
8 for envidx,mp 2 enumerate(M) do
9 complete  CheckComplete(envidx, mp);

10 if complete and not mp.complete then
11 if CheckValidConfiguration(envidx) then
12 s GetRobotState(envidx);
13 S .append(s);
14 end
15 mp.complete  complete;
16 end
17 end
18 StepSimulation();
19 end
20 return S

to produce successor states. This is illustrated in Algorithm
1.

The controllers are made up of two components: a termi-
nation condition and a relative transform. The termination
condition checks for completion of the action after each
simulation step. The relative transform is applied to the end
effector pose at the beginning of an action to generate a
target pose in SE(3) that is fed to a task space impedance
controller, described in the following section.

D. Task Space Impedance Control

Like [12], we employ a task space impedance controller
with attractor states. This controller achieves active com-
pliance and allows for better integration of contact into
planning. The controller follows a spring-damper model,
illustrated in Equation 1 [13]. Here, Md is the mass matrix of
the manipulator, ¨̃x is the operational space error, KD is the
damping matrix, KP is the stiffness matrix, and hd

e are the
contact forces exerted on the environment by the end effector.
The attractor pose that is used to define ¨̃x creates a spring-
like attraction between the end effector and the attractor state
that “pulls” the end effector until an equilibrium position is
reached.

Md
¨̃x+KD

˙̃x+KPx̃ = hd
e (1)

E. Termination Conditions

Two termination conditions are explored in this work.
The first monitors the maximum linear and angular end
effect velocity components, and after a brief period to allow
ramp-up, terminates the action after the maximum linear and

angular velocity components drop below their corresponding
thresholds.

The second monitors for the detection of contact between
the object and the environment. In our experiments, contact
information was extracted from the simulator, while in the
real world this could be estimated using a force-torque
sensor. Unlike actions with velocity termination conditions,
where the relative transform is used to set the attractor state
once at the beginning of the action, actions with contact
termination conditions update their attractor state after every
simulation step. This allows these actions to “move until
contact” without setting distant attractor states that would
cause the impedance controller to generate large forces and
move quickly.

All actions, regardless of their termination condition, are
terminated after the number of simulation steps exceeds a
set threshold.

Once a termination condition is reached in simulation, the
attractor state is removed and the robot’s configuration is
immediately captured and eventually returned as a successor
state to a node expansion if valid.

F. Valid Configuration Checking

The simulation of controllers in certain scenarios can
result in invalid states where the object held by the robot’s
gripper is displaced through interaction with its environment.
To prevent these states from influencing search, they are
discarded if determined invalid, as outlined in Algorithm 1
on line 11. The CheckValidConfiguration function checks the
relative transform between the robot’s gripper and the object
it is holding, and discards the state if the relative pose has
shifted translationally or rotationally from its initial value
before controller simulation by more than set thresholds for
each.

G. Physics-Based Simulation for Node Expansion

Accounting for contact dynamics using physics-based sim-
ulation comes at a high computational cost. To mitigate this,
we utilize Nvidia’s Isaac Gym [3], a GPU-based physics
simulator that can efficiently parallelize the simulation of
individual environments. We simulate environments for each
controller to parallelize the collection of successor states as
shown in Algorithm 1 and visualized in Figure 2.

Fig. 2. A depiction of parallel motion primitive simulation for the “board
insertion task” described in Section IV
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H. Heuristic and Edge Cost
To compute a heuristic for the A* search we took the

norm of the differences between the XYZ positions of the
current state and goal state, and summed it in a weighted
fashion with the angle between each state’s orientation. For
this work, we weighted the cartesian offset (in meters) to
angle (in radians) at a ratio of 10:3. A fixed edge cost was
used during planning.

I. Solution Execution
If a solution is found by the planner, the sequence of

actions A is constructed from the ordered sequence of motion
primitives extracted from the solution path’s edges. A is
executed in-sequence in simulation.

J. Metric Planner Baseline
We compare our results against a traditional metric planner

baseline that avoids collisions and executes actions with a
non-compliant controller. This planner does not use physics-
based simulation during node expansion, instead using a set
of metric motion primitives that directly modify the joint
state of the robot. These metric primitives add or subtract a
fixed value from a DOF of the manipulator. Additionally
a “snapping” motion primitive is applied, using inverse
kinematics to find joint states resulting in the goal end
effector pose. The planner uses a spheres model, consisting
of of the robot and board, as well as an occupancy grid
representation of the slot during search to check for collisions
in the child states generated in an expansion, discarding them
if they are invalid. These collision models can be seen in
Figure 3. The metric planner was implemented using the
Search-Based Motion Planning Library [14].

Fig. 3. Visualization of the occupancy grid and spheres collision model
used by the metric planner

As physics-based simulation was not used, the board
was fixed to the end effector. The same euclidean distance
heuristic with orientation was used for the metric planner
as described in III-H but with a ratio of cartesian offset
to angle of 10:1. The vertical component of the cartesian

displacement was also reduced by half before computing the
offset to prioritize errors in the plane of the table. A constant
edge cost was applied in an identical manner to the SLC
method.

IV. EXPERIMENTAL SETUP
We evaluate our planner in simulation on the “board

insertion” assembly task. The environment for this task can
be seen in Figure 4 with the board in red and slot in blue.
The board starts in the robot’s gripper. There is a 0.5mm
clearance on all sides between the board and slot. Although
with no environmental uncertainty this assembly task can
be solved without contact, we consider this a contact rich
assembly task because the introduction of environmental
uncertainty above clearance levels makes solutions that do
not involve contact improbable.

Fig. 4. An image of the simulation environment for the “board insertion
task”

We simulate a FRANKA EMIKA Panda 7DOF manipula-
tor with a 2-finger prismatic gripper. For the 7 planning joints
(excluding the gripper), a stiffness of 2000Nm/rad and
damping of 100 Nm/(rad/s) are applied, with an attractor
stiffness of 100N/m and damping of 250N/(m/s).

Experiments for all planners are performed on the same
machine running Ubuntu 16.04 with an Nvidia GeFORCE
1050ti GPU, 8GB of RAM, and a 4 core processor.

In total, 19 motion primitives are used by the SLC
approach. One “move until contact” primitive was used that
moves the gripper down towards the slot. The remaining
18 primitives used end effector velocity termination condi-
tions. End effector linear and angular velocity thresholds of
0.01m/s and 0.01rad/s are used. Twelve of these primitives
have relative transforms that apply ±0.1m and ±0.4m
offsets to each of the three cartesian DOFs. The remaining
six primitives contain relative transforms that apply ±0.3rad
offsets to roll, pitch, and yaw. The simulation step threshold
for all actions is set to 300 steps, corresponding to 3 seconds
of simulated time at 0.01 seconds per step.
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For checking the validity of successor states for the SLC
planner, the linear displacement threshold is set to 1mm and
angular displacement threshold is set to 0.1rad.

The metric planner used 23 motion primitives. Fourteen
of these applied ±0.02rad to each DOF, eight applied
±0.14rad to the first four DOFs (starting at the base of
the arm), and the last motion primitive was a “snapping”
primitive active only when the end effector was within 0.2
meters of the goal.

As the metric planner did not utilize impedance control,
contact with the environment could be damaging to the robot
and its surroundings. Thus, solutions generated by the metric
planner were deemed invalid if contact was detected between
the robot and its surroundings during path execution. To
determine success rates for the metric planner noise was
added to the slot position. Every state in the path generated
by the planner for the original slot position was then checked
for collisions, and the trial was identified as successful if no
state in the path resulted in collision.

To compare the considered approaches, we gather statistics
on planner performance and then execute the generated
solutions in 300 environments with added gaussian noise
to four of the six degrees of freedom (X, Y, Z and yaw)
of the slot. We perform this evaluation with the standard
deviations of these distributions varying between 1 mm/mrad
to 5mm/mrad in 1mm/mrad increments.

V. RESULTS
Figure 5 compares the success rates of the baseline and

proposed approach as environmental uncertainty is increased.
Planning statistics for both approaches can be seen in Table
I.

Fig. 5. Performance of planners with increasing environmental uncertainty

As can be seen in Table I, the cost of physics-based sim-
ulation is obvious in the planning time differences between
approaches. Our proposed method successfully completes the
assembly task at twice the rate of the metric planner with
low (1mm) variance in environmental noise. This quickly
changes with increased environmental uncertainty, with our
proposed approach being surpassed by the metric planner
above standard deviations of 3mm.

TABLE I
PLANNER PERFORMANCE

Planner Metric SLC
Planning time (s) 43 388
Node expansions 3040 14

Time per node expansion (s) 0.014 27.7
Solution path size (actions) 137 14

VI. CONCLUSIONS

This preliminary work was able to demonstrate that the use
of physics-based simulation and impedance control alone,
without explicitly considering environmental uncertainty, can
increase the success rate of assembly tasks with limited
environmental uncertainty over a metric planner baseline in
exchange for a respectable additional computational cost.

Planning time still sits as a clear limitation of the proposed
approach. With its current design, node expansion is as slow
as its slowest controller. If the proposed approach could
be modified to return successor states asynchronously, this
constraint could be relaxed as search could continue while
integrating successor states as they were produced. This may
reduce the time cost of search, and make this approach viable
for faster-changing environments.

An additional limitation of the proposed approach is its
reliance on hand-designed controllers, such as the vertical
“move until contact” controller, that while beneficial for
board insertion, is unlikely to generalize well and generate
useful actions for other classes of assembly tasks like key
insertion. Future work should look to address this issue and
evaluate the performance of the proposed method across a
variety of manipulation tasks.

The method proposed in this work does not explic-
itly reason about environmental uncertainty, and relies on
impedance-based control to implicitly adapt when objects
are not at their expected positions. An extension to this
method is being explored that samples environmental con-
figurations from a noise model during planning and biases
search towards actions that reduce the variance in resulting
successor states with respect to the other assembly object.
It is hypothesized that this approach will generate solutions
more robust to environmental uncertainty, but at the cost of
longer planning times.

There also remains significant work in evaluating the
proposed approach on a physical robot. Tuning of simulator
parameters is likely required to get plans found in simulation
to translate effectively to a physical platform. Additionally,
contact detection using a force-torque sensor would have to
be implemented for contact termination conditions.

Another area of potential future work is using the solutions
generated with the proposed method to seed training for
RL agents attempting to learn policies to solve contact-rich
assembly tasks. This may benefit the agents by reducing
required training time compared to agents that start with
random policies.
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Planning for Real-time Blocking Flying Objects with a Redundant
Manipulator

Zeyuan Feng1, Ramkumar Natarajan2 and Maxim Likhachev2

Abstract— We consider the task of autonomously blocking
flying objects for “robotcops” who are capable of guarding in
cities. Such ability could be further applied to robots in partial-
controlled scenarios, such as building sites, for self-protection.
There already exist various algorithms which generate motion
plans for high-dimensional manipulators. However, none of
them can be applied in our domain due to two main challenges.
As robots need to block objects in a short limited time, the
motion planner is required to plan in real-time to get a
time-optimal or suboptimal plan. In addition, as objects are
often thrown from distance, robot’s perception system would
gradually get better estimation when an object is getting closer.
Consequently, the proposed planner should be able to adjust its
motion plans when the estimation is updated. We present a new
approach to meet those requirements by using offline auxiliary
information. In simulation, We validate the performance of the
proposed motion planner under different cases.

I. INTRODUCTION

In the modern times robots are expected to be deployed in
unknown or complex scenarios to decrease workload and risk
of human workers. The ability of self-protection is essential
for robot in such real-world tasks since it prevents robots
from damage to dramatically trim unnecessary cost of money
and time. Such ability is also necessary for those robots
which involve training in physical world since it prevents
naive actions in early learning phase from hurting robot
bodies. Existing work on robot self-protection focused on
different aspects of the problem ranging from protecting
fragile robot actuation [1], mechanical overload protection
[2] and fall down protection [3]. However, using robot
manipulator to block flying object, which is important for
robot body protection, is still understudied. In this work,
we consider the problem of motion planning for shielding
off flying objects in a predefined surface in front of robots.
Specifically, a robot will move an attached shield by its
manipulator to a goal pose, which lies on a predefined
surface, to block objects flying toward it.

To the best of our knowledge, there is no previous work
on blocking object with manipulator. Although our task
is similar with motion planning for reaching process of a
pickup-object mission, the existing planners could be applied
to our task directly. [4] use a kinodynamic motion planner
to smoothly reach the moving objects. However, this planner
cannot be used online while an object in flying imposes

1Zeyuan Feng is with the Department of Electronic Information En-
gineering, The Chinese University of Hong Kong, Shenzhen, China
zeyuanfeng@link.cuhk.edu.cn

2Ramkumar Natarajan and Maxim Likhachev are with the School of
Computer Science, Carnagie Mellon University, Pittsburgh, PA 15213
{rnataraj,mlikhach}@andrew.cmu.edu

Fig. 1. The task is to generate a motion plan for manipulator to shield
flying objects in a predefined surface around robot body

the requirement of short planning and reaching time. Apart
from this, our problem can be modeled as a Moving Target
Search problem as well. Existing approaches [5], [6] consider
the case of heuristic search in 2D where an agent (hunter)
is to catch a moving target (prey). Nevertheless, they are
too computationally expensive to be applied to our task due
to our high-dimensional property. [7] presented an efficient
CNN architecture for real-time manipulator grasping. How-
ever, such learning approach is expensive to be implemented
when various shields are attached.

The shielding process highly relies on quality detection
and localization of flying objects since we use the object’s
pose to compute its landing pose, namely our goal state, in
the predefined surface. Unfortunately, the initial perception
estimates of the object’s pose are inevitably inaccurate due
to perception noise. What is worse, as the object is far from
robot initially, a slight error of the object’s pose will lead to
a large error for its landing pose. A proper filter can help
to reduce the detection error gradually. Thus, the landing
point estimation becomes fairly accurate only if the object
moves closer as well as the filter error decreases. However,
if the robot waits too long to get an accurate estimate, the
delay in starting plan execution could cause the shield to
miss the object. The robot therefore should start executing
a plan computed for the initial goal pose. In addition, when
the robot gets better estimation for the goal states, it should
repeatedly replan for the new goals. For every replanning
query, the time window for shielding shrinks. This makes
the time for each planning step even less. Since planning
problem is high-dimensional and requires collision avoidance
as well, it’s infeasible to purely plan online. [8] proposed
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a planner that leverages offline preprocessing to provide
bounds on the planning time when the planner is invoked
online. However, this approach relies on the assumption that
there’s a replan cutoff time. In our task, the time for a object
to hit the surface depends on the initial pose and velocity
of the object. Consequently, for every case the robot should
reach its goal state as soon as possible and we cannot assume
a fixed cutoff time for it. This suggests the experience-
compressing technique in [8] cannot be applied directly in
our task. To the best of our knowledge, there is no planner
satisfies our specific task.

In this work, we only consider the real-time challenge
of planning and blocking. Our planning algorithm based on
a provable real-time planner [9] that leverages compressed
offline experience for only blocking. This real-time planner is
used in pre-processing phase to compute and store important
paths to so-called ”attractors”. An attractor is matched to a
”subregions” where we can find a collision-free path from
any state inside to the attractor by greedy search. We finely
define the problem and present how to apply this planner
to a goal region that the shield is on a curved surface.
We complete the query algorithm that finds goal states and
generates motion plans by combining the pre-computed path
from initial state to the attractor and greedy path from
attractor to goal state. The effectiveness of our algorithm
is demonstrated in simulation on a PR2 robot.

II. PROBLEM DEFINITION

The task presented in this paper is to generate collision-
free motion plans for a robot to block objects flying toward
it for self-protection. We define the world state W to be
comprised of a robot, an attached shield and an object O.
The shield is a cylinder with negligible height hs and a radius
rs. At every point of time, there is at most one object in the
scene attacking the front side of the robot. The pose of the
object go are detected by robot’s perception system.

Our planner P takes go as input. If O is going to hit
the robot body, its landing pose gl = [pl, vl], at which O

will land on a predefined surface, will be determined. Then
P will output a collision-free motion plan for the robot’s
manipulator R to move to a valid goal configuration sgoal

for defense. In fact, the robot can use its shield to block an
object at different positions and orientations thanks to the
shield’s area. Namely, at sgoal, the position of the shield ps

can be slightly deviated from pl and the normal vector of
shield surface vs can be slightly unparalleled to vl as long
as they guarantee successful blocking. Hence, given an g, P
probably generates a set of goal configurations. It will try
them out until successfully query a plan for R to execute.
Apart from this, we assume R starts from an fixed initial
configuration shome in each blocking process. shome is a
predefined configuration where R can reach any sgoal in goal
region G within a relatively fixed and small amount of time.
We emphasize that all poses in this paper are represented
in robot’s body frame, which can be directly measured by
attached sensors.

A. Surface Definition

The surface should be defined to offer sufficient protection
to the front of the robot. Compared to a plane, a curved
surface is more reasonable to be adopted. Further considering
the simplicity, we define the surface as a spherical cap.
⇢

(x� xorg)2 + (y � yorg)2 + (z � zorg)2 = r
2

Angle((x� xorg, y � yorg, z � zorg), (1, 0, 0)) < ↵
(1)

Where x axis is positive forward and negative backward
while z axis is positive upward and negative downward.
Typically xorg < 0, yorg = 0 and zorg = hrobot

2 .

(a) (b)

Fig. 2. The orange region is a cross section of the surface. Each blue
dot in the figure represents several goal configurations of R where shield’s
positions are the same with dot’s position in the cross section and shield’s
orientations are different. Blue lines state if there are any two configurations
in two blue dots connected. (a) When ✏ <

p
2�max

2 , we cannot implicitly
build the graph of goal region since the graph of goal region is not
connected. (b) When ✏ >

p
2�max

2 , the graph of goal region is guaranteed
to be strong connected.

B. Goal Region Definition

We discretize the manipulator’s configuration space C into
a state lattice S. In addition, each state is connected to its
successors and predecessors by a set of motion primitives.
The motion planning problem can therefore be transferred
to a graph search problem. That is, the planner can search a
path between two states on the graph for motion planning.
However, the constructed graph may not be strong connected
due to the curved surface setting, which means we may not
find a path from one state to another, unless we enlarge G to
be the set of sgoal at which distance between shield position
and the surface is under a threshold ✏ >

p
2�max

2 ), where
�max is the maximum displacement of motion primitives
(see Fig. 2). The region of shield’s goal positions is actually
several discrete rings on different planes. Lastly, the set of
sgoal within C is denoted by GS = C \G

III. METHOD
A provably indefinite-horizon real-time planning algorithm

was proposed in [9]. Based on the same thought of paths-
compression mechanism, our algorithm framework includes
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an offline preprocessing phase and an online object-blocking
phase. The planner generates paths to the goal region and
stores them in computer memory in the preprocessing phase
while queries paths from memory to speedup planning pro-
cess in the object-blocking phase.

A. Preprocessing Phase

We employ the preprocessing algorithm, which is pre-
sented in details in [9]. The preprocessing phase takes as
input the initial configuration shome, the surface definition
and a conventional motion planner, and outputs a set of
subregions and the corresponding library of paths from
shome to each s

i
attractor. Before explaining the algorithm,

we introduce two definitions.
• A configuration is valid if the manipulator does not

collide with itself and the robot body under this config-
uration.

• A configuration is invalid if the manipulator collides
with itself or the robot body under this configuration.

The algorithm maintains a set of frontier valid states V

and a set of frontier invalid states I to help finding uncovered
valid states and invalid states, respectively. Both V and I are
empty at the beginning. The preprocessing phase initiates
with sampling a state in GS and push it into V . Then it
covers the whole GS with subregions by repeating following
pipeline until both V and I get empty.

• Find a state s not covered by any subregion as i
th

attractor siattractor:
– If V is not empty, repeatedly pop the first state

from V until the state s is uncovered yet. Set s as
s
i
attractor.

– Otherwise, “go through” invalid regions to find a
uncovered valid state and push it into V. Then jump
to the next round.

• Compute a hyperball subregion Gi center at siattractor
with a radius ri by the algorithm ReachabilitySearch

to cover surrounding states.
• Generate a path ⇧i for R to reach the s

i
attractor

from shome. Store the path, attractor number and the
subregion’s radius.

• Get corresponding frontier states, which are just outside
Gi, and push them into V and I according to whether
valid or not.

When the iteration stops, all attractors with their corre-
sponding paths and radius are stored in computer memory.
Some further explanation may help understanding the algo-
rithm. When we ”go through” invalid regions, invalid states
will be popped out after checking in order to make sure I

ends up to be empty. Gi includes and only includes states
that have a heuristic value h(s, siattractor) < ri. A collision
free path from any state to the attractor of its subregion can
be found by a simple greedy search.

B. Object-Blocking Phase

In Object-blocking phase, the robot keeps sensing the
environment. When a new object is detected, the algorithm

calls the procedure BlockObject once. The precedure takes
go = [po, vo] as input. It starts by predicting gl and produce a
stack of manipulator’s goal configurations Gs that contains
multiple choices for blocking. Poping the first sgoal from
Gs, it then finds an attractor to which the heuristic value
of goal configuration h(sgoal, siattractor) < ri. If there is no
such attractor or sgoal is invalid, the planner will recover by
popping next sgoal to query unless the stack gets empty. After
getting the corresponding attractor siattractor, a greedy search
is employed to give the path from sgoal to s

i
attractor. We

reverse the greedy path and append it into the pre-computed
path ⇡i to get the completed path for R to execute.

Algorithm 1 BlockObject
1: procedure BLOCKOBJECT(p, v) . Pose of the object
2: Gc = GetGoalConfigurations(p, v)
3: ⇡  Ø
4: while !Gc.empty() & ⇡ = Ø do
5: sgoal = Gc.Pop()
6: for each Ri 2 R do
7: if h(sgoal, si) < ri then
8: ⇡  GetGreedyPath(sgoal, si)
9: ⇡  ⇡i.Append(⇡.Reverse())

10: break
11: if ⇡ 6= Ø then
12: Execute(⇡)

1) Goal state prediction: In this preliminary work, the
object is modeled as a mass point without any aerodynamics
characteristics. Hence, the its trajectory is a parabola

8
<

:

x = x0 + vxt

y = y0 + vyt

z = z0 + vzt� gt2

2

(2)

Combine the trajectory with the surface representation (1),
we get a quartic equation of t

at
4 + bt

3 + ct
2 + dt+ e = r

2 (3)

where

a =
1

4
g
2

b = �gvz
c = v

2
x + v

2
y + v

2
z � gz0 + zorgg

d = 2(x0vx � xorgvx + y0vy � yorgvy + z0vz � zorgvz)

e = (x0 � xorg)
2 + (y0 � yorg)

2 + (z0 � zorg)
2

We apply Ferrari’s method to solve the equation. We take
the minimum real root as object’s landing time and use it to
compute go. The object will not hit the surface if there is no
real root or

Angle((xl � xorg, yl � yorg, zl � zorg), (1, 0, 0)) > ↵ (4)

To generate Gc, we compute all possible poses of the
shield, solve their inverse kinematics and push them into Gc.
Specifically, we first find the best shield pose, then we find
all shield poses having same position and similar orientation
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(�roll < ✏roll, �yaw < ✏yaw, �pitch < ✏pitch) and push their
configurations into Gc. The best position is the same with
pl. The best shield orientation is defined to be opposite to
vl, namely the shield surface is perpendicular to vl.

C. Detail Adjustment

As a whole motion plan is composed of a path from initial
state to the attractor and a path from the attractor to goal
state, it is a sub-optimal solution. What’s more, the longer
the second path is, the longer the extra execution time will
be. We therefore restrict the radius of subregions with a
maximum value rmax by adding pseudo code between line
7 and 8 in procedure ComputeReachability

Algorithm 2 Added Part

1: if h(s, si) > rmax then
2: ri  rmax

3: OPEN.push(s)
4: return (OPEN, ri)

(a) (b)

Fig. 3. When the radius of a subregion is too large, the greedy path (b)
may be large compared to the pre-computed path (a), which means the path
is far not optimal.

IV. SIMULATION

TABLE I
LIST OF MOTION PRIMITIVES IN SIMULATION

x y z yaw pitch roll free angle
±0.02 0.00 0.00 0 0 0 0.0
0.00 ±0.02 0.00 0 0 0 0.0
0.00 0.00 ±0.02 0 0 0 0.0
0.00 0.00 0.00 ±10 0 0 0.0
0.00 0.00 0.00 0 ±10 0 0.0
0.00 0.00 0.00 0 0 ±10 0.0
0.00 0.00 0.00 0 0 0 ±2.5

We performed simulations on PR2 robot to evaluate our
algorithm. The algorithm and simulation environment are
implemented using C++ on ROS. An Intel Core i7-7700HQ
2.80GHz CPU machine is employed for simulation. We
discretize our graph with a resolution of 2cm in position axes,
10 degrees in Euler axes and 2.5 degrees for the redundant

joint. The primitives are defined as subtle movements of
the shield in position axes (x, y, z) and orientation axes
of Euler angles (roll, pitch, yaw) and subtle movements of
the redundant joint (shown in Table I). To be clear, the
deviation between poses of the shield under a state and its
predecessor/successor is one of the motion primitives. The
heuristic function is the Euclidean distance in joint space
and the maximum radius of subregion is 0.06. We design
the shield to have a radius of 8cm and negligible inertia in
Solidworks. For all tests, the surface are defined as :

⇢
(x� 0.7)2 + (y � 0)2 + (z � 0.9)2 = 1.562

Angle((x� 0.7, y � 0, z � 0.9), (1, 0, 0)) < 0.4
(5)

It’s notably that we assume our perception system to be
perfect so that we can start planning right after an object
shows up. That is, the distance between the robot and object’s
initial position, which affects accuracy of perception, can
be fixed in our simulation. To further reduce the workload,
we only plan for the right arm to block the right part of
the surface, which obviously will not lead to any impact
on results. We evaluate how optimal the overall path is by
the ratio between extra path length and total path length.
Also, We take number of subregions, planning execution
time, query time and search time as other assessment indexes.

We generate 200 random tests for each setting. In each test,
an object is initially placed randomly on an arc centered at
the PR2 robot with a radius of 8m and a radian of ↵. Its
velocity is randomly sampled within a range. The key idea
is to make sure its possible landing poses cover the whole
predefined surface. Specifically, we first randomly pick a
position on the arc and let the object flies directly to PR2
robot with a random speed in xy plane from 3m/s to 8m/s.
Then we randomly generate a pitch angle from -50 degrees
to 50 degrees and height from 0.4m to 1.6m for the object
to land on. Lastly, the initial height and velocity along z-
axis are determined by simulate the movement backward.
The preprocessing takes about two hours and there are in
total 6534 subregions. We present the results under different
initial poses of the shield in Table II. The succesful rate of
planning is 100%.

V. CONCLUSIONS
In this work, we have presented a preprocessing-based

kinodynamic motion planning algorithm that generates col-
lision free trajectories for a manipulator to block flying
objects. We build our algorithm on a provable real-time
planning algorithm to deal with the high dimensionality and
time restraint of our task. We conduct simulation on PR2
robot to show that our algorithm is capable of planning an
acceptable path within a short time window. In future work,
we will consider uncertainty in the perception system, which
involves replanning problem. And we will setup real-world
experiment for evaluation.
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Initial pose Query time[ms] Search time[ms] Execution time[ms] Extra path length
Path length
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[0.60, 0.00, 0.90, 0.00, 0.00, 0.00] 0.82(1.52) 13(21) 1000(1500) 0.150
[0.70, 0.00, 0.90, 0.00, 0.00, 0.00] 0.79(1.44) 13(21) 1100(1800) 0.143

TABLE II
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Sun Sensor Absolute Heading Determination for Lunar Micro Rover

Thomas Galligani1, William “Red” Whittaker2, and Heather Jones2

Abstract— Planetary rovers estimate their map position by

integrating incremental pose using wheel encoding, inertial

measurements, and perception of terrain. However, any such

dead reckoning method is prone to drift over time; imperfect

sensing, calibration and imprecisions in perception and navi-

gation calculations accumulate, creating inaccuracy in the pose

estimation that increases with distance traveled. This concern

is even greater for smaller rovers such as the MoonRanger

rover, which is of particular interest in this research. Smaller

rovers are buffeted more, steer with less authority, and cannot

incorporate the superior sensors of their larger counterparts.

Therefore, a method to accurately sense absolute heading

incorporate this into the overall method of position estimation

would greatly improve the rover’s autonomous relyability. This

research formulates and models the means for such sensing

of absolute robot heading on the moon by sensing sun angles

and utilizing an ephemeris for computing sun-moon orientation

variations with time. The technique will vastly reduce direc-

tional drift and thereby enable reliable previously unachievable

multi-kilometer autonomous lunar rover treks. Since the moon

is an airless body, its sun is never diffracted by atmosphere or

interrupted by cloud cover - ensuring that observations can be

precise. The lack of atmosphere allows for constantly accurate

measurements by sun sensors. Fusing absolute pose estimates

from sun sensor measurements with inertial measurement

unit (IMU) data and other dead reckoning methods provides

superior, stable, absolute bearing estimation not possible by

any other means. Especially prone to accumulated error is the

yaw or heading since errors in the estimate of yaw results in

disproportionate drift relative to longitudinal errors. In this

paper, we develop a method for pose estimation using sun

sensor data for MoonRanger, an autonomous lunar rover that

will search for water ice in the south pole of the Moon in

2022. We develop a corresponding simulated sun sensor to

aid in validation for MoonRanger’s autonomous navigation

capabilities.

Index Terms— Autonomous Vehicle Navigation, Space

Robotics and Automation, Sensor Fusion

I. INTRODUCTION
A. Overview

MoonRanger is a small, fast, autonomous lunar rover
designed to search for ice in the South Pole region of the
Moon. Traditional planetary rovers – controlled by humans
throughout the mission – rely on long mission durations
(about ten years) to compensate for relatively slow opera-
tions. Designed for an eight-day mission, MoonRanger is
able to explore much more efficiently by keeping direct
human control to a minimum. MoonRanger’s small scale,
however, exacerbates its slippage and buffeting which incur
greater error in achieving its commanded motions than

1Thomas is a cadet at the Air Force Academy, USAF Academy, CO
c21thomas.galligani@afacademy.af.edu

1Red and Heather are with the Robotics Institute, Carnegie Mellon Uni-
versity, Pittsburgh, PA, USA {red, hjones}@andrew.cmu.edu

experienced by larger rovers. With these mobility shortfalls
MoonRanger’s long, autonomous treks without contact with
a ground station creates significantly more risk and reliance
on the rover’s own navigation and control systems. Even
more than a traditional planetary rover, it is vital that
MoonRanger is able to maintain an accurate estimate of its
position and orientation on the lunar surface.

It is common for planetary rovers to rely on a method
of dead reckoning for navigation and pose estimation. Dead
reckoning is a recursive method of pose estimation, deter-
mining the next estimate based on the previous estimate and
a measured change. For example, starting from an initial state
estimate, accelerometer measurements can be numerically
integrated over time and added to the last state estimate.
Similar methods using visual and wheel encoder odometry
can be used (and combined) to get a more accurate state
estimation. However, the primary issue with these dead
reckoning methods is drift; due to the additive nature of
these methods, errors accumulate, resulting in large error as
the distance traveled grows. By fusing one or more dead
reckoning methods with an absolute navigation method, this
error can be limited substantially.

Unfortunately, many common absolute navigation methods
available on Earth are not available to a lunar rover. GPS
is unavailable beyond Earth and the lunar magnetic field is
not strong and consistent enough to use for navigation [1].
One absolute reference that can be used for pose estimation
and navigation is the sun. In fact, using solar navigation
is even more suited for the lunar environment than it is

Fig. 1: Basic algorithm flow, using ephemeris and sensor
measurements to calculate heading ( )
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(a) The NAV frame is a fixed rotation
from the ME frame

(b) Heading  is the difference be-
tween the ROVF and NAV frames

(c) The SSR and SSL frames are a
fixed relative the ROV frame

Fig. 2: Visual definition for various reference frames

on Earth, since the lack of atmosphere permits consistent,
reliable measurements without interference from clouds or
other atmospheric phenomena. It has been shown that sun
sensors can effectively estimate heading for planetary rovers
[2] [3] [4]; in this paper, we formulate such an algorithm
(visually depicted in Figure 1) for the MoonRanger lunar
rover and validate it through simulation.

B. Notation
To describe the pose of the rover, we will rely on rotation

matrices, in addition to Euler angles as an intermediary. We
will denote a rotation matrix such that RFR2,FR1 2 IR3,3,
transforming a vector from the FR1 reference frame to the
FR2 reference frame. We use Yaw( ), Roll(✓), Pitch(�) to
mean the rotation matrices corresponding respectively to a
rotation of  around the z-axis, ✓ around the y-axis, and �
around the x-axis. We use the notation s FR to mean a unit
sun vector in the FR frame.

II. PROBLEM SETUP
A. Relevant Mission Parameters

MoonRanger’s primary objectives are to explore the region
around the lunar South Pole over an eight-day mission
to demonstrate autonomous microrover capabilities and to
characterize water ice using a Neutron Spectrometer System
(NSS). The polar location means that over the mission
duration, the elevation angle of the sun will be close to
zero (but remain above the horizon) and will change very
little [5]. The implications of this is that MoonRanger will
rely on almost constant illumination of a vertical solar
panel, preferring to travel roughly normal to the sun vector.
Therefore, optimizing the sun sensor measurement coverage,
two Solar MEMS nanoSSOC-D60 sun sensors located on the
top of the solar panel, facing horizontal to the rover body.

B. Reference Frames and Rover Geometry
Here, we define six reference frames. First, the Moon

Mean Earth (ME) frame, with an origin at the Moon’s center,
has a z-axis in line with the lunar rotational pole and an x-
axis pointing towards the average “sub-Earth point” - the

point on the lunar surface closest to Earth [6]. Next, we
define the Navigation (NAV) frame, a topocentric frame
which is centered at the lunar coordinates of the landing
site with its x-axis pointing due north and its y-axis pointing
due west. The transformation from the ME frame to the NAV
frame is given by

RNAV,ME = Yaw(Lon)Pitch(Lat� 90�)Roll(180�) (1)

where Lon and Lat are the lunar longitude and latitude of
the landing site. Figure 2a provides a visual definition of the
relationship between these two frames. Note that we consider
only the rotation, not the translation when transforming
between frames. Since the distances involved are negligible
compared to the radius of the Sun and its distance from the
Moon, we can treat light from the Sun as directional across
our entire area of interest. Next, the Rover (ROV) frame is
centered on the body of the MoonRanger. The y-axis points
at the solar panel and the z-axis points up, normal to the
surface of the rover body. The Rover Flat (ROVF) frame
shares the origin of the ROV frame but shares a z-axis with
the NAV frame. The transformation from the ROV to the
ROVF frame is given by

RROVF,ROV = Yaw(0)Pitch(✓)Roll(�) (2)

where ✓ and � are the pitch and roll measured by on-board
inclinometers. The fact that the ROVF and NAV frames share
a z-axis means that they differ from each other by a simple
rotation about that axis. Figure 2b shows that this offset is the
rover’s heading. Finally, the Left Sun Sensor and Right Sun
Sensor (SSL and SSR) frames are oriented in the with the
z-axes pointing 30� right or left of normal to the solar panel
surface and a y-axis pointing down. The transformations
from the sun sensor frames to the ROV frame are given by

RSSR,ROV = Roll(�180�)Pitch(0)Yaw(�180� � 30�) (3)

RSSL,ROV = Roll(�180�)Pitch(0)Yaw(�180� + 30�). (4)

Figure 2c depicts the relationship between the sun sensor
and rover body frames, while Figure 3 shows the overlapping
fields of view for the two sensors.
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Fig. 3: The field of view for the two sun sensors overlap by
60 degrees in the center of the solar panel

III. HEADING ESTIMATION

A. Heading Determination

To estimate the current heading, we will ultimately com-
pare the sun vector in the ROVF frame, based on the sun
sensor and inclinometer measurements, to the sun vector
in the NAV frame, calculated from ephemeris data and the
current coordinates and time. We begin by computing and
normalizing the position vector of the Sun’s center relative
to the Moon’s center in the ME frame; this is our sun unit
vector s ME in the ME frame. We can then rotate s ME into
the NAV frame as follows

s NAV = RNAV,MEs ME . (5)

Before we consider the sun sensor measurements, we need to
consider three different cases. First, the sun could be out of
the field of view of both sun sensors - clearly, in this case, we
cannot estimate the heading using the sun sensors. However,
this case should be fairly limited for MoonRanger, based on
its projected mission design (ie, keeping the sun in the range
of the solar panel, and thus sun sensors, will be the preferred
mode of travel). Next, the sun could be in the view of only a
single sun sensor. In this case, we will estimate the heading
with only the measurement from that sensor. Our final case
is when the sun is within the FOV of both sensors. In this
case, we average the measured sun vectors. For now, we will
assume that the sun is in view of only the right sun sensor.
Then, we calculate s SSR from the measurement taken by the
right sun sensor, m SSR = [↵,�]T . We see that based on the
geometry in Figure 4 and the restriction ||s SSR || = 1, we
can calculate our sun vector

s SSR =

2

64
sin(↵)
sin(�)q

1� sin2(↵)� sin2(�)

3

75 . (6)

Next, we construct the transformation from the ROV to the
ROVF using the inclinometer measurement mINC = [�, ✓]T

RROVF,ROV = Yaw(0)Pitch(✓)Roll(�) (7)

where � and ✓ are the inclinometer pitch and roll measure-
ments. Now, we can rotate our measured sun vector into the

ROVF frame

sROVF = RROVF,ROVRROV,SSRs SSR . (8)

Note that we replace RROV,SSR with RROV,SSL if the measure-
ment was taken by the left sun sensor.

Next, we calculate the the azimuth of the sun vector in
both the NAV and ROVF frames. We see that

 NAV = atan2(sNAV,x, sNAV,y) (8)

 ROVF = atan2(sROVF,x, sROVF,y) (9)

where sNAV,x is the x coordinate of the s vector in the NAV
frame. Finally, to determine the estimated heading for the
rover,  , we consider two cases

 =

(
 ROVF �  NAV if  ROVF < 0

 NAV � ROVF if  ROVF � 0
. (10)

B. Implementation
We implemented this algorithm in the C++ version of the

Robot Operating System (ROS). The primary functionality
of this algorithm is contained in two nodes: one dealt with
ephemeris data and determined the sun vector in the NAV
frame and one which used this data along with the sensor
measurements to determine the heading. The ephemeris node
uses JPL’s CSPICE toolkit, a C implementation of the SPICE
observation geometry system. This toolkit provides a method
of interfacing with precise navigational data compiled by
NASA for planetary exploration missions. We use this
ephemeris data to determine the location of the Sun relative
to the Moon. Our second node performs the comparison from
this known relative positional data and sensor observations
to estimate MoonRanger’s heading.

IV. VALIDATION
To validate our method, we turn to simulation. The sun

sensors which will fly on MoonRanger are high precision,
high cost, and high lead time - their use is unnecessary for
the proposes of this work. However, the previous simulation
used for testing the software for autonomous navigation
included most relevant sensors (stereo cameras, IMU, wheel

Fig. 4: Measurement angles are based on the angular distance
of the sun vector from the z-axis [7]
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Fig. 5: Error increases sharply at the edges of sensor range, but is controlled within the region where both sensors overlap

encoders, etc) but was lacking simulated sun sensors. The
Gazebo robotics simulator - used for this purpose - lacks an
easily applied simulated sun sensor, unlike many other, more
common sensors. To fix this, we developed a simulated sun
sensor in ROS, using SPICE ephemeris data and a knowledge
of the simulated rover’s true orientation relative to the global
frame of the simulation.

A. Simulated Sensors

First, the ROS sensor receives s NAV for the particular
landing site and time from the ephemeris interface node and
rotates it into the ROV frame using the known simulated
rover orientation. Next, we can rotate this vector into the
SSL and SSR frames (both known, static transformations)
and calculate the nominal sun sensor measurements for the
left and right sensors. We simply compute

mn =


arcsin(sssn,y)
arcsin(sssn,y)

�
(11)

where sssn,y and sssn,y are the x and y components of our
sun vector in the n sun sensor frame and mn is our nominal
measurement. We can then add some Gaussian white noise,
with the precision of MoonRanger’s flight sun sensors. Then
our simulated measurements become

mn = mn +


v↵
v�

�
(12)

where v↵, v� ⇠ N (0, 1
6 ). Note that we measure angles in

degrees. The last step is to simulate sun sensor error codes.
The nanoSSOC gives a code 0 for a normal, successful
observation. The sensor gives a code 11 if the measured light
intensity is less 80 percent of the expected value of 1366 W

m2

(ie, the light being measured is reflected or from a different
source and cannot be assumed to be a correct sun vector.
To simulate this situation, we set our error code to 11 when
the sun vector is out of the view of the sensor - when either
simulated measurement angle has a magnitude greater than
60o [7]. Therefore, our simulated sun sensor node publishes

six values: two simulated measurement angles and one error
code for each sensor.

B. Testing

With our simulated sensor, we can test the heading de-
termination method over a representative domain of rover
orientations. We step over the ephemeris calculation and
choose s NAV = [1, 0, 0]T (ie, the sun points due West). This
means that when rover heading is zero, the sunlight is normal
to the solar panel (the same situation depicted earlier in
Figure 3). We simulate sensor readings with heading ranging
from �90o to 90o (the combined range of the sensors) and
roll ranging from �20o to 20o.

C. Results

Figure 5 shows the heading determination error for various
true rover headings. We have divided this plot into 3 regions,
based on the upper bound of the error they experienced.
In the center, bounded by vertical red lines, is the region
where the field of view of the two sensors overlap. Here, the
error remains controlled, unlike other regions. Beyond the
overlapping region, the error begins to grow slightly - the
green vertical lines mark the point where (on both the positve
and negative sides) the error reaches 0.1 degrees. Beyond this
boundary - where heading is ±60� - error increases sharply -
maxing out at over 1 degree for the outer limit of the sensors’
view. This implies that the overlap of the sensors in the center
region effectively controls the error which is inherent to the
edge of a particular sensor’s view. While the error in the outer
region increases to unacceptable levels to be trusted by the
overall pose estimation method, knowledge of this increased
error at the edges can inform the way this method interfaces
with the overall position estimation algorithm. Giving less
weight these edge case measurements, we can benefit from
the method when it performs well (in the central regions) and
avoid projecting its limitations (at the edges) to the overall
pose estimation method.
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V. FURTHER WORK
To further validate this method, it would be valuable to

conduct testing with real, physical sun sensors. Additionally,
an important next step for this work is integrating the
solar heading determination algorithm to the greater pose
estimation EKF; this involves mathematically formulating
the heading determination error to fuse it with the wheel
encoder and accelerometer measurements. With these two
methods integrated together, MoonRanger’s pose estimation
method will be significantly more stable and reliable over
long autonomous treks.
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Using Process Mining to Analyze Children’s Interactions with

RoboTutor

Tianjian Huang1 and Jack Mostow2

Abstract— When using an Intelligent Tutoring System (ITS),

ideally students are engaged while interacting with it. From the

developer’s perspective, detecting how engaged or disengaged

students are when interacting with ITS provides clues to im-

prove the software. This paper presents an approach to analyze

student-tutor interaction behaviors by applying Educational

Process Mining (EPM) techniques to log data from RoboTutor,

a Swahili literacy and numeracy tablet tutor for children.

The results show that process mining (PM) methods can

extract information from the log data to help in understanding

student-tutor interaction patterns and discovering potential

improvements.

Index Terms— Process Mining, Educational Data Mining,

Intelligent Tutoring System, Disco

I. INTRODUCTION AND RELATION TO PRIOR
WORK

An ITS is an adaptive system that provides a learning
environment to students, monitors and analyzes their actions
to detect if they are learning the knowledge being taught,
and provides feedback [1]. One focus in the field of ITS
is engagement. The definition of engagement remains elu-
sive, or at least it is a broad and complex concept [2].
To simplify our study, we only consider behavioral and
cognitive components of engagement proposed by Fredricks,
Blumenfeld, and Paris, which encompass students’ partic-
ipation and performance in learning [3]. Engagement is a
generally acknowledged critical factor in learning. Studies
show that engagement is positively correlated with learning,
while disengagement is negatively correlated with learning
and will significantly reduce learning outcomes [4], [5].
The importance of engagement motivates scientists to detect
engagement or disengagement behaviors. Prior studies used
facial expressions, posture, response time, task performance
and problem-specific features as well as mouse movements
for automatic detection of disengagement behaviors in ITS
such as off-task behavior and gaming [6]–[10]. Particularly,
[8], [9] and [10] applied machine learning methods to ITS
log data and obtained promising results. However, those
approaches have non-negligible limitations; they depend on
various hardware sensors (e.g. camera, Body Pressure Mea-
surement System [7]), and require accurately labeled training
data.

As a new technology emerging from Educational Data
Mining (EDM), EPM analyzes log data gathered from edu-

1Tianjian Huang is a senior undergraduate in the School of
Data Science, Chinese University of Hong Kong, Shenzhen, China.
117010099@link.cuhk.edu.cn

2Jack Mostow is with the Robotics Institute at Carnegie Mellon Univer-
sity, Pittsburgh, PA 15213. mostow@cs.cmu.edu

cational environments and provides insights into educational
processes by discovering sequential patterns in them [11].
This paper illustrates an EPM approach to analyzing stu-
dent behaviors that underlie RoboTutor log data. We first
extract behavioral and performance information from the
log data. Based on the extracted information, we create an
abstract model of the underlying real-life process. Using
this process model, we infer and predict engagement and
disengagement. In contrast to the approaches mentioned
before, EPM provides a data-driven way to reveal behavioral
patterns underlying ITS log data without hardware sensors
or manually labeled training data.

The rest of the paper is organized as follows: Section 2
describes the RoboTutor log data we analyzed. Section 3
specifies our EPM methodology for analyzing student-tutor
interactions. Section 4 reports our results. Finally, section 5
summarizes contributions, limitations, and future work.

II. DATA SET

The present study used RoboTutor log data collected by
Global Learning XPRIZE field staff from 28 villages in
Tanzania between 01/18/2019 and 03/01/2019. RoboTutor
is an Android tablet tutoring app in the Global Learning
XPRIZE competition [12]. A RoboTutor session starts when
RoboTutor launches and ends when it exits (or crashes).
RoboTutor contains thousands of tutors to teach various
literacy and numeracy skills. A tutor instance (“instance”
for short) spans the time interval from starting a tutor to
either completing it or backing out without completing it (or
crashing). Thus, a session contains zero or more instances.
For example, Bubble Pop tutors teach children to recognize
numbers, letters or words. Fig. 1 is a screenshot of a Bubble
Pop tutor call Bpop.wrd. The tutoring problem consists of an
audio prompt and three “bubbles” representing three choices.
To give an answer children need to tap on one of the bubbles,
and the correct answer is the bubble corresponding to the
audio prompt.

RoboTutor creates different types of log data during each
session, namely PERF logs, VERBOSE logs, and CRASH
logs. A PERF or VERBOSE log is a JSON file containing a
sequence of JSON objects, each of which records an action
by a student or the RoboTutor. As Fig. 2 shows, a JSON
object is a sequence {...} of one or more key-value pairs. The
value can be a literal “...”, a sequence [...], or another JSON
object (e.g. the value of the key “data”). PERF logs and
VERBOSE logs are similar in structure but contain different
kinds of records. PERF logs just record user actions, such as
switching to another tutor or solving a problem. VERBOSE
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Fig. 1. A screenshot of Bpop.wrd tutor (on an undersized screen that
distorts the layout). This tutor teaches children to recognize words.

logs additionally record internal RoboTutor actions invisible
to users, such as switching process context from one tutor
to another, or calling Java code to display a new problem.
As a result, the VERBOSE logs are about 5 times as long as
PERF logs. Finally, CRASH logs are generated only when
RoboTutor crashes, and contain the error message and stack
trace to aid in debugging.

{

"type": "LOG_DATA",

"tutor": "bpop.wrd:m2M.show.mc",

"class": "INFO",

"tag": "RTag",

"time": "1596523024338",

"data": {

"target": "node.root",

"name": "INTRO_STATE",

"start State": "null",

"mapType": "moduleMap",

"mapName": "INTROSTATE"

}

}

Fig. 2. An example of a JSON object in Bpop.wrd VERBOSE log.

To analyze student-tutor interactions, we need records
of both user and RoboTutor actions. Therefore, we chose
to analyze VERBOSE logs rather than PERF logs. Given
the amount of data (12.7 GB, with over 20,000 files), we
selected a random sample of all VERBOSE log files, thereby
obtaining 5,000 files to analyze. RoboTutor has different
types of tutors. To simplify our study, we focused on just
three of the most common ones:

• Bubble Pop is illustrated in Fig. 1.
• Akira is a time-pressured multiple choice activity in the

form of a race car game.
• Story tutors display picture stories for RoboTutor or the

child to read aloud.

III. APPROACH AND ANALYSIS

Our approach has four stages:

1) Specify a research goal.
2) Extract data from RoboTutor VERBOSE logs into an

event log.
3) Create a control flow model of the process from the

event log.
4) Use the model to analyze the data from the process.
We now describe each stage in more detail.

A. Specify a Research Goal
We started with planning research goals and questions, a

prerequisite for applying any process mining methods [13].
To discover how EPM can analyze RoboTutor log data and
infer engagement or disengagement, we used the following
criteria as our definition of engagement and disengagement
behaviors:

Engagement:
1. The tutoring instance is completed, as signified by a

program-defined, tutor-specific normal final step. For
example, a Bubble Pop tutoring instance normally ends
with the FINAL SCORE step, which displays the final
score.

Disengagement:

1. Incompletion of a tutoring instance, signified by a
BACKBUTTON ending step triggered when the child
taps the “Back” arrow icon at the top left of the
screen, which terminates the instance and returns to
RoboTutor’s menu for selecting a tutor.

2. Taking too long according to a heuristic criterion,
namely lasting longer than 95% of instances of the
same tutor type in the sample, whether due to pro-
longed inactivity or excessive random guessing.

After operationalizing engagement and disengagement, we
formulated questions about three aspects of tutor instances:

1. Completion/incompletion status:

How many completions and incompletions does each
tutor have? How many incompletions end with BACK-
BUTTON? How many incompletions have other end-
ing steps?

2. Duration of tutoring instances:

For each tutor, what is the distribution of instance dura-
tions? Does it differ for completion vs. incompletion?

3. Path patterns:

What is the most frequent sequence of steps in each
tutor? What is its most frequent ending step? Does it
have any other ending steps?

B. Extract Data from RoboTutor VERBOSE Logs into an
Event Log

This stage aims to convert nested JSON log files into
a uniform event log. In the terminology of PM, an event
log corresponds to a single process, and each event refers
to a single process instance call case, where each case
consists of one or more activities [13]. In a PM perspective,
a specific type of tutor (e.g. Bpop.wrd which teaches word
recognition) is considered a single process. Fig. 3 illustrates
the control flow of all Bubble Pop tutors as a directed graph.
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Each node represents a basic action, either a user action
(e.g. PLAY CORRECT or PLAY WRONG) or a RoboTu-
tor action (e.g. UPDATE STIMULUS, which sets the next
problem). Each tutor instance corresponds to one event in the
event log. Each basic action constitutes an event log activity.

Fig. 3. Control flow design of Bubble Pop tutors.

Fig. 4. Illustration of JSON-CSV conversion.

The PM tool cannot directly read JSON, so we wrote
a Python 3.8 script to convert JSON files into CSV files,
extract data necessary for analysis, and format it to be
readable by PM tools. RoboTutor logged millions of actions
in VERBOSE log files. As Fig. 4 shows, the conversion
script kept only records of tutoring instances, filtering out
records of backend actions such as context switching. Then
we grouped cases by tutor type, and stored cases of each type
into a separate CSV file for each type (e.g. bpop.wrd.csv,
story.read.csv, etc.). We thereby obtained 96 MB of CSV
event log files.

C. Create a Control Flow Model of the Process from the
Event Log

To describe the process underlying an event log, we used
the PM tool Disco to create a control flow model of it.
Disco is a general purpose commercial process mining tool
that has been used in many studies [11]. Fig. 5 and Fig. 6
display Disco’s GUI importing an event log for Bpop.wrd
and converting it into a process model. Basically, a process
model is a control flow diagram inferred from the event log
that describes the activity sequence pattern of the process.

Fig. 5. Example of event log imported from Bpop.wrd.CSV.

Fig. 6. Example of process model mined from Bpop.wrd event log.

D. Use the Model to Analyze the Data from the Process

Disco can enhance the process model by integrating it
with event log statistics such as case duration and activity
frequency. We used three filters provided by Disco to gener-
ate integrated process models:
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1. Variation filters group cases according to path pattern,
treating cases with the same activity sequence as one
variation.

2. Attribute filters select cases with or without certain
activities, e.g. all cases that contain scoring activities.

3. Endpoint filters select cases according to their starting
or ending activities, e.g. all cases ending with BACK-
BUTTON.

The integrated process model enabled us to analyze
student-tutor interaction behavior in RoboTutor and answer
the research questions, as we now describe.

IV. RESULTS

A. Completion/Incompletion Analysis
The endpoint filter of Disco can disaggregate the event

log by ending activities, separating cases in each event log
into three completion status categories: complete with the
normal ending activity (defined by RoboTutor developers),
incomplete ending with BACKBUTTON, and incomplete
with other endings. Fig. 7 and Table I display statistics for
six types of Bubble Pop tutors and four types of story tutors.

Fig. 7. Completion/incompletion rate of different tutors.

a) Completion rate:

The average completion rate is 24.3% for Bubble Pop
tutors, versus only 21.7% for Story tutors. We infer
that children are likelier to complete Bpop tutors than
story tutors.

b) Incompletion rate:

Average total incompletion rates are nearly three times
higher than completion rates, which indicates that most
instances of these tutors were not completed. Of the
incompletions, over 80% ended with BACKBUTTON,
i.e. most of them occurred because children actively
backed out of the tutor.

c) Outliers:

From Fig. 7 we observed that Bpop.addsub has a
noticeably higher ratio of incompletion with other
ending activities. Such endings are not normal, but
occur when RoboTutor crashes or the tablet battery
runs out due to prolonged use without recharging.
The maximum case duration of analyzed Bpop.addsub
instances was 7 mins 52 secs, which is not long enough

for the battery to run out. Therefore, we infer that the
Bpop.addsub tutor suffers from a high crash rate likely
caused by a software bug.
Fig. 7 also shows that Story.read tutors have a high
incidence of incompletion via BACKBUTTON, with
90% of children choosing to quit and only 1.8%
completing the story. Path pattern analysis in part D
of this section also indicates that backing out of story
tutors occurred mostly at the beginning of the story.
Story.read tutors prompt the child to read aloud. The
difficulty of this task for young or struggling readers
is compounded by RoboTutor’s high rejection rate of
words read aloud, which evidently frustrated children
so much that they quickly learned to back out of such
tutors. In contrast, incompletion was much lower for
story.hear tutors, which read aloud to the child, and
story.parrot tutors, which prompt the child to “repeat
after me.” Incompletion was somewhere in between for
story.echo tutors, which prompt the child to read aloud,
but respond after each sentence by reading it fluently
to the child.

B. Case Duration Analysis

Fig. 8 illustrates the case duration distribution of four
tutors Bpop.num, Bpop.wrd, Akira and Story.read. We ob-
served that:

a) For completed cases, distributions of case durations
have clear concentrations, but their location differs
by tutor. Case durations peak around 1.5 minutes for
Bpop.num, Bpop.wrd, and Akira, and at around 5
minutes and 20 minutes for Story.read.

b) For incomplete cases, case duration distributions are
very similar. There are two distinctive features. First,
most of the cases ended almost immediately, since
there is a high peak at around 0 minutes. Specifically,
most of the cases ended within a few seconds. Second,
a few extreme outliers have very long durations, since
there is a long tail with almost no cases.

C. Path Pattern

Disco can organize cases according to the path pattern of
a process. Fig. 9 shows an example of applying the variation
filter to identify the most frequent path in Bpop.wrd, shown
on the right.

a) For completed cases of Bpop.num, Bpop.wrd and
Akira, we discovered that “straight corrects” (no wrong
answer during the entire instance) are the most fre-
quent path, accounting for 53.7%, 41.4%, and 35.5%
of cases, respectively. However, straight corrects in
Story.read account for only 5% of all completed cases.
The low straight correct rate in Story.read may indicate
a high rate of false rejections.

b) For incomplete cases ending with BACKBUTTON, we
observed that the most frequent path ends before prac-
tice begins: 71.2% for Bpop.num, 55.6% for Bpop.wrd,
60.1% for Akira, and 65.6% for Story.read, suggesting
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TABLE I
WEIGHTED AVERAGE COMPLETION/INCOMPLETION RATIO OF BUBBLE POP AND STORY TUTORS.

Tutor Completion
(%)

Incomplete-Total
(%)

Incomplete-BACKBUTTON
(%)

Incomplete-Others
(%)

Bpop 24.3 75.7 61.8 13.9
Story 21.7 78.3 72.9 5.4

Fig. 8. Case duration distribution of four tutors, with completed cases on the left and incomplete cases on the right. Blue vertical lines show the median
of each distribution. Notice that the medians for incomplete cases are very close to zero.

Fig. 9. An example application of variation filter on Bpop.wrd event log. The process model on the left corresponds to the original event log. The process
model on the right is generated by selecting the most frequently occurring activity sequence in the original event log.
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that children back out as soon as they recognize the
tutor.

c) Frequent ending paths for incomplete cases ending
with other activities may indicate points where crashes
tended to occur. For Bpop.num, 13 out of 15 cases
end after USER INPUT, and only 2 out of 15 cases
end after PLAY CORRECT. For Bpop.wrd, 90 out of
125 cases end after USER INPUT. This implies that
crashes happened during or after USER INPUT. For
Story.read, the session ends in 314 out of 417 cases
after LISTEN, implying that crashes tended to occur
during or after this activity.

V. CONCLUSION

Contributions: We presented an EPM method for ana-
lyzing RoboTutor log data. We showed that PM can extract
key information and help in understanding student-tutor
interaction behaviors and discovering potential aspects to be
improved. Based on our analysis results, we can infer three
recommendations for RoboTutor:

1. Bpop.addsub may suffer from high crash probability,
and developers need to test this tutor again.

2. Story.read may suffer from false rejection issues. De-
velopers should tune the speech recognizer.

3. Information from part 1, 3, and 4 indicates that the
incompletion rate is 3 times higher than the completion
rate on average, and most of the incomplete cases end
with BACKBUTTON. RoboTutor may need Bubble
Pop and story tutors redesigned so that children are
more inclined to complete them.

Limitations and future work: Our analysis used Disco
as our main tool for EPM. As a general purpose commercial
PM tool, Disco provides basic PM functions such as dis-
covering process models from historical event logs, but does
not perform all state-of-the-art PM techniques [11]. Further
analysis (e.g. dynamic data analysis of a running tutor) could
be done via ProM, a generic open-source PM tool which is
the most complete in functionality and most commonly used
[11], [14].

As our analysis displayed, EPM can obtain various results,
but their value depends on how they are interpreted. Unfor-
tunately, there is a lack of research on a universal approach
of interpreting results [14]. The lack of a portable solution
(i.e. a common methodology to apply to a wide range of real
world processes) makes EPM a case-by-case study and hard
to implement as a repeatable service [14]. Future research on
EPM can focus on finding an all-encompassing framework
which can handle the most general needs.

ACKNOWLEDGMENT
This work would not have been possible without the

support from the Fluxicon team, especially Dr. Anne Rozinat
and Dr. Christian W. Günther for generously providing an
academic license to use Disco. The author would also like
to thank Dr. Jack Mostow, Rachel Burcin, Dr. John Dolan
and RoboTutor team member Nirmal Patel for their tireless
support throughout the summer. The first author was a

Robotics Institute Summer Scholar supported by the Institute
of Artificial Intelligence and Robotics for Society (AIRS),
Chinese University of Hong Kong, Shenzhen.

REFERENCES

[1] F. Amastini, “Intelligent tutoring system,” Ultima InfoSys: Jurnal Ilmu
Sistem Informasi, vol. 5, no. 1, pp. 1–7, 2014.

[2] S. D’Mello, E. Dieterle, and A. Duckworth, “Advanced, analytic,
automated (aaa) measurement of engagement during learning,” Ed-
ucational psychologist, vol. 52, no. 2, pp. 104–123, 2017.

[3] J. A. Fredricks, P. C. Blumenfeld, and A. H. Paris, “School engage-
ment: Potential of the concept, state of the evidence,” Review of
educational research, vol. 74, no. 1, pp. 59–109, 2004.

[4] S. Craig, A. Graesser, J. Sullins, and B. Gholson, “Affect and learning:
An exploratory look into the role of affect in learning with autotutor,”
Journal of Educational Media, vol. 29, 11 2004.

[5] R. S. Baker, A. T. Corbett, K. R. Koedinger, and A. Z. Wagner, “Off-
task behavior in the cognitive tutor classroom: when students” game
the system”,” in Proceedings of the SIGCHI conference on Human
factors in computing systems, 2004, pp. 383–390.

[6] R. Sawyer, A. Smith, J. Rowe, R. Azevedo, and J. Lester, “Enhanc-
ing student models in game-based learning with facial expression
recognition,” in Proceedings of the 25th conference on user modeling,
adaptation and personalization, 2017, pp. 192–201.

[7] S. S. D’Mello, P. Chipman, and A. Graesser, “Posture as a predictor of
learner’s affective engagement,” in Proceedings of the Annual Meeting
of the Cognitive Science Society, vol. 29, no. 29, 2007.

[8] R. S. Baker, “Modeling and understanding students’ off-task behavior
in intelligent tutoring systems,” in Proceedings of the SIGCHI confer-
ence on Human factors in computing systems, 2007, pp. 1059–1068.

[9] J. E. Beck, “Using response times to model student disengagement,”
in Proceedings of the ITS2004 Workshop on Social and Emotional
Intelligence in Learning Environments, vol. 20, 2004.

[10] S. Cetintas, L. Si, Y. P. P. Xin, and C. Hord, “Automatic detection
of off-task behaviors in intelligent tutoring systems with machine
learning techniques,” IEEE Transactions on Learning Technologies,
vol. 3, no. 3, pp. 228–236, 2009.

[11] A. Bogarı́n, R. Cerezo, and C. Romero, “A survey on educational
process mining,” Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, vol. 8, no. 1, p. e1230, 2018.

[12] J. Mostow, RoboTutor - RoboTutor - Carnegie Mellon
University, 2020 (accessed August 2, 2020). [Online]. Available:
https://www.cmu.edu/scs/robotutor/

[13] W. Van Der Aalst, “Data science in action,” in Process mining.
Springer, 2016.

[14] M. A. Ghazal, O. Ibrahim, and M. A. Salama, “Educational process
mining: a systematic literature review,” in 2017 European Conference
on Electrical Engineering and Computer Science (EECS). IEEE,
2017, pp. 198–203.

94



A Machine Theory of Mind Approach to Agent Intervention

Seth Karten1, Dana Hughes2, and Katia Sycara3

Abstract— Software agents are used in a variety of scenarios

from shopping bots to emergency response operators. While

most agents are used to provide a service for humans, they are

also used to guide the actions of humans. In order to provide

informative aid to humans, agents must be able to model a

human’s mental state, which includes their desires, beliefs, and

intentions [1]. Existing methods that attempt to model humans

make use of algorithms that do not generalize well to multiple

policies. It needs to be taken into account that humans may

change their policies based on new information. By modeling

the theory of mind, agents can learn the policies of other agents,

even human agents. However, current implementations are lim-

ited when it comes to recognizing false beliefs. In this work, we

determine scenarios in a search-and-rescue problem, simulated

in Minecraft, that require interventions; that is, they require a

change in policy for agents to optimally perform. Using a theory

of mind model, our work evaluates human data to track internal

states and first-order false beliefs, and then use the information

to identify intervention scenarios. As a parallel approach, we

use curriculum-based deep reinforcement learning to train an

expert agent on the task. The agent’s learned value function is

used to determine when an intervention is necessary; that is,

the value function acts as a second-order belief predictor of the

human player’s action-policy.

I. INTRODUCTION

Using software agents to help guide human policies is
beneficial in situations where the human has forgotten infor-
mation required to complete a task or when a human chooses
an action that does not reflect their current policy. One
may use an agent to make interventions, or, more broadly,
to assist users in a variety of actions, such as emergency
response operators and search-and-rescue operations. An
intervention is an instruction to a human player that helps
them correct their behavior when they are performing a
task sub-optimally. When guiding humans, it is challenging
to understand the reasons behind their actions. However,
understanding a human’s intentions, allows one to better
guide a human’s actions. Thus, it is important for agents to
model a human’s internal mental state in order to accurately
guide a human during a task.

Inverse planning has been used to create generative models
of human action [2]. These models are able to show how
agents can infer the behavior of others given limited observa-
tions. Models have been shown to learn the behavior of other
agents by anticipating the opposing agents’ policies as an
update parameter, creating a model-free learning problem [3].

1Seth Karten is with the Department of Computer Sci-
ence, Rutgers University, New Brunswick, NJ 08854, USA
seth.karten@rutgers.edu

2,3Dana Hughes and Katia Sycara are with the Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA 15213, USA {danahugh,
sycara}@andrew.cmu.edu

Fig. 1: The player is searching through the office building
that has undergone a catastrophe, creating a need for victims
to be rescued. Above is a view of a human player triaging a
high-risk victim (yellow) in the Minecraft simulated environ-
ment. There is a low-risk victim (green) in the background.
The player is also holding a torch to light one’s surroundings
due to a loss of lighting. The time remaining before all the
victims succumb to their injuries is on the middle-right.

Generative modes split an uncertain task into an integrated
planning and execution problem [4]. However, generative
models do not adequately represent a human’s state of mind
in the approach or solution to the task. That is, generative
models do not generalize well to a variety of policies at
once. While these models intend to learn a human model,
they focus their efforts towards static artificial policies. The
models need to be retrained to account for different agent
policies or even normal shifts in a human agent’s policy.

More recent work investigates various artificial intelli-
gence methods which attempt to recognize the intent of
humans [5]. With this information, the agent must determine
what information is important and when is it necessary to
provide the human this information. The methods require
solving a new Markov Decision Process each time a new
planning behavior becomes the norm for the human [5]. The
lack of generalization makes these methods intractable.

State-of-the-art work creates a theory of mind framework
[6], which represents the mental state of humans. The theory
of mind framework creates a knowledge base that can map
observations to a latent representation, which can then be
used to determine actions and beliefs. The framework is able
to generalize an agent’s behavior based on a smaller number
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of observations than it was originally trained [6]. In this
model, the agent uses meta-learning to observe the behavior
of new agents and develop information-rich priors. While the
theory of mind model is able to learn random, algorithmic,
and deep reinforcement learning agents in a variety of tasks,
and has been able to learn agent behaviors and recognize
false beliefs, these predictions have not been used to guide
agents.

Related to the theory of mind framework, inverse rein-
forcement learning has used to train new agents to model
another observed agent. In inverse reinforcement learning,
the method extracts the reward function from data that shows
the observed agent’s policy. The reward function is then
used to train a new agent to mimic the observed agent [7].
However, this method is data heavy, and thus was not be
pursued in this work.

It has not been studied how using a theory of mind frame-
work can influence agent behavior through interventions.
One similar work evaluated whether theory of mind neural
models are able to recognize false beliefs in a question
answering model. False Beliefs can be first-order, which
occur when a player has a different belief about their
environment than what is true, or second-order, when an
agent has a different belief about the player’s internal states
than what is true [8]. However, the models are unable to
track the inconsistencies in the data.

Curriculum-based reinforcement learning has been used
to train agents to solve complex challenges with fewer iter-
ations. Curriculum-based reinforcement learning also trains
agents on a series of more complex challenges in the hopes
that the agent is able to learn the new task with the previous
learned experience [9]. In this work, we collect and analyze
human trials of a search-and-rescue simulation setup in a
Minecraft-based environment. Using this data, we are able
to determine the strategy behind the human players’ actions.
We identify human first-order false beliefs and use them to
analyze intervention scenarios that can be classified from
human data. As a parallel approach, we use curriculum-based
reinforcement learning to train an expert agent on the task.
The agent’s learned value function is used to determine when
an intervention is necessary; that is, the value function acts as
a second-order belief predictor of the human player’s action-
policy.

Section II defines the search-and-rescue problem and sets
up the human data collection pipeline and agent learning
framework. Section III describes the necessary intervention
scenarios observed in the human trials and the results of
the agent training. Section IV concludes the main takeaways
from the human trials, analyzes the challenges of agent
learning, and discusses future work.

II. METHODOLOGY
In this section, we describe the search-and-rescue problem

formalization, setup for the data collection from the human
player trials in Minecraft and the curriculum-based reinforce-
ment learning training setup for the artificial expert agent.
The human trials are setup to easily extract first-order false

Fig. 2: The player has discovered a hole in the wall of an
office that is not located of their blueprint map, influencing
their trajectory planning. For instance, a player with a greedy
triage strategy will look through the hole and immediately
triage any and all victims seen.

beliefs, which can be used to further identify intervention
scenarios. In parallel, we setup the expert agent learning to
learn a value function, which acts as a second-order belief
predictor. Online, the learned value function can be used to
determine if an intervention is necessary by comparing the
value of the player’s action and the value of the optimal
action. Both methods use theory of mind to predict player
beliefs. Their difference is in the degree of separation from
the player.

A. Problem Definition

The goal of the agent, whether it be a software agent or
human agent, is to maximize their score by rescuing victims.
We frame the search-and-rescue challenge as a Partially
Observable Markov Decision Process (POMDP), represented
as a tuple (S,A, P,R, �, O). S is our state space, where each
state consists of the (x, y) position and ✓ rotation. The other
sets are specific to either the human player trials or the expert
agent training, so they are described in each section below.

B. Data Collection

For the human data collection, human players are tasked
with searching through a simulated office building in
Minecraft and rescuing the victims by triaging them. The
human players are tasked with saving high-risk victims,
which appear as yellow blocks, and low-risk victims, which
appear as green blocks, with the goal of maximizing their
score. Players have ten minutes to complete the challenge.
The set of observations, O, consists of visual data from
Minecraft in 1st person view and a static blueprint of the
map of the office. Due to the disaster scenario that creates
the search-and-rescue mission, there may be blockage where
there is a connection on the blueprint or a hole in the wall
that allows connection between rooms. Players complete
three missions with different difficulty maps. Maps with
more environmental disturbance, i.e. blockage or holes, are
considered harder maps. High-risk victims die after five
minutes, but are worth double the points of low-risk victims.
In the human trials, the score feedback is on the screen.
Thus, the rewards are sparse and only appear when the agent
successfully triages victims. A is the set of four actions:
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(a) Easy environment. (b) Hard difficulty environment.

(c) Human-difficulty environment.

Fig. 3: The above figure shows the easy environment used
for training in figure 3a and the realistic environment used
for training in figure 3c that is the same as the one used
for human players in Minecraft. The hidden areas on the
human environment have not been seen by the agent yet.
The expert agent is trained on these environments as well as
intermediate stages between difficulties.

rotate clockwise, rotate counterclockwise, move forward, and
a toggle action. The toggle interacts with the environment,
which includes opening or closing doors, turning on or off
lights, and triaging victims. During gameplay, the player
verbally describes their state of mind and plan of action
in order to understand their internal states. A recording of
gameplay and their commentary is used for analysis.

C. Artificial Agent Training Setup

The view seen by humans has been converted into a
2D grid environment in Minigrid. The two-dimensional grid
simplifies the observation model for a learned agent. The
set of observations, O, in Minigrid is an RGB image of the
2D grid environment. Note that in the minigrid environment,
we add keys to open doors and limit the field of view
to be similar to a human’s field of view in Minecraft,
creating partial observability. A is the set of four actions:
rotate clockwise, rotate counterclockwise, move forward,
and a toggle action. The rewards R = {0, 1} are sparse,
with reward earned when the toggle action is performed
on a space with a victim or when locked doors are open.
Reward is also given when the agent enters a new room,
encouraging exploration. Note that exploration is implicit in
human agents.

Our training uses proximal policy optimization (PPO), a
form of a policy gradient method for reinforcement learning.
PPO takes multiple episodes into account using stochastic
gradient descent to perform policy updates. It has competitive
performance on 2D platform games such as the ATARI
games, making it ideal for use in a 2D Minigrid environment
[10]. The algorithm has been modified from [11], [12]. We
use our own convolutional neural network to develop the
feature space and a fully connected neural network for the
actor and critic, respectively, to do inference. Additionally,
we use an LSTM’s memory cell to represent internal states.
The memory cell data is passed as a feature to the fully
connected network.

The agent is trained in a series of environments with
difficulty relative to the size of the map, that is, the larger
maps are more difficult. The hard difficulty in figure 3c,
shows the same layout as the environment in which the
humans players were studied. The expert agent is trained
starting with the least complex environment to the most
complex environment in a curriculum learning fashion. Three
sample environments are seen in figure 3.

III. RESULTS

In this section, we describe the results of the data col-
lection from the human player trials in Minecraft and the
curriculum-based reinforcement learning training for the
expert agent. We identify first-order false beliefs found in the
human trials and identify classes of intervention scenarios.
In parallel, we learn a value function of the expert agent.
The value function can act as a second-order belief predictor.
Online, the learned value function can be used to determine
if an intervention is necessary by comparing the value of
the player’s action and the value of the optimal action. Both
methods use theory of mind to predict player beliefs. In the
case of the expert agent, it is machine theory of mind due
to the artificially-generated data.

A. Human Observational Data Results
From our observations, we can break down the interven-

tions into the following categories: triaging strategy, memory,
and terrain changes. Below we describe a series of observed
scenarios that require intervention on behalf of an agent.
These scenarios contain first-order false beliefs made by the
human player. Note that we find that the interventions may be
policy dependent, so noting the specific strategy of the human
is necessary to make and discuss appropriate interventions.

1) Triaging Interventions: First, we consider the triaging
strategy. Due to the complexity of the challenge, different
triaging strategies may be optimal, but all strategies may
yield suboptimal situations. From the observed human data,
players either consider the high-risk (yellow) victims first or
greedily triage all victims as they are found. Interventions
regarding the victims are the simplest. For both strategies,
if the yellow victims are in the player’s field of view and
the player does not immediately path to triage them then
this indicates a false first-order belief so the agent should
intervene. In a greedy strategy, a human will triage all victims
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once seen. In this case, if the human does not triage a victim,
yellow or green, which is in its field of view, the agent should
intervene.

Note that the training strategy also affects the optimal
trajectory. When following a greedy strategy and playing
optimally, the player should not revisit any rooms. If the
player must revisit a room, it is clear that they have missed
a victim during their first pass. It could be the case that
the player did not see the victim in one’s field of view or
observe the beeps, which creates a false first-order belief of
the environment. In this case, there are two new types of
interventions. The agent should intervene if the player does
not view the entire room. The agent should also intervene
if the agent receives observations such as beeps declaring
victims nearby and does not react according to their triaging
strategy. While the agent and player may not necessarily
know what new information is provided by the beeps, the
player should try to learn to use this information. This will
result in a change in the anticipated trajectory of the player.

Not all of the yellow victims may be triaged in the
greedy strategy. If the layout of the map is not favorable
for the player to find the yellow victims, e.g. all the yellow
victims are in the last room that the player looks in, the
greedy strategy is suboptimal. The challenge is for the
agent to determine that the greedy strategy is suboptimal.
Suppose that a greedy player has 30 seconds left to triage
the yellow victims, which take 15 seconds to triage, and
there is one yellow victim remaining. If there is no observed
data, field of view or otherwise, that determines the location
of the victim, the agent should intervene so that the player
switches strategies to ensure that no victims succumb to their
injuries. In this case, the player had a first-order false belief
about their environment with regard to the amount of time
remaining. Note that it may be better to switch the strategies
before 30 seconds remain. An example safe heuristic would
tell the player to switch strategies if the amount of time
remaining to run through each room, observe where the
remaining high-risk victims are, and triage them is close to
the time remaining. Of course, the previous heuristic does
not take terrain changes into account.

2) On Searching Strategies: Optimal path planning strate-
gies may not be reflected in the human data. However,
we believe that the optimal path planning strategy is not
a strategy in itself, but rather an accompaniment to the
triaging strategy. That is, certain triaging strategies should
be combined with certain searching strategies. These have
already been described and the decisions made in searching
are displayed in figure 4.

3) Memory Interventions: Memory interventions come
from the basic assumption that redundant searching is subop-
timal. When the player follows a memory-intensive searching
strategy, such as Second Sweep, where the player first locates
all the victims, triaging yellow victims greedily, and then
going back during a second sweep and triaging green victims,
there are more opportunities for the player to mess up,
leading to a first-order false belief of the environment, and
require intervention. Players may forget where the green

Fig. 4: Human observation data shows a series of fixed
searching strategies based on the triaging strategy.

victims were and end up redundantly searching. Optimally,
the agent can intervene and tell the player that they have
already been in the room before or advise the player to go
to an unvisited room. Another strategy for the agent is to
intervene earlier and develop a strategy in the player that
prevents forgetting and redundant searching. The agent can
intervene in rooms and tell the player to interact with blocks
to mark the area. This may be as simple as turning a light on
when entering the room or turning off the light and leaving
the door open when the room has been properly triaged.
The interactions with the environment acts as a signal which
creates an additional feature which helps foster correct first-
order beliefs regarding the environment.

4) Terrain and Interventions: Define terrain changes as
blockage or holes that appear in the environment. Terrain
changes require deviation from intended trajectories. Terrain
changes may cause the player to backtrack in order to
reach an unseen area of the environment or require more
exploration in order to reach unseen areas. This can again
be seen as a memory problem. The agent needs to be able to
observe blockages or holes and use this information to update
the trajectory planning strategy for the player. For example,
the agent should remember another way to reach a room
or suggest a way to explore the environment to find such
a path when blockages are seen. Terrain changes can also
affect the player’s first-order belief in one’s location. When
there is a hole, the player may choose to explore this and
take advantage of known terrain changes. This exploration
may end up being suboptimal if it slows down search overall
or necessary if that is the only way to reach a room. All these
factors depend on the triaging strategy. The important part
is for the agent to be able to take the environment changes
and triaging strategy into consideration and use them to help
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(a) Reward return max. (b) Reward return min. (c) Reward return mean.
(d) Reward return standard de-
viation.

(e) Value function loss. (f) Value function.

Fig. 5: Reinforcement training graphs over 3 seeds. The X-axis shows the frame number. The graphs show that as environment
gets more complex, the expert agent is able to still effectively complete the task, but performance decreases slightly. Once
the environment’s complexity is difficult for humans, the agent is no longer able to complete the task.

suggest changes to the triaging strategy.

B. Artificial Agent Experiments

We train an artificial expert agent in order to learn a value
function which can be used to determine when interventions
are required. Training in the easy to human-level difficulty
environments, such as the environments seen in 3, can be
seen in figure 5 with three seeds for comparison. Figure
5f shows that the value function diminishes as the agent
is trained in more challenging environments until ultimately
not being able to complete the task in the human-difficulty
environment. The value loss output in figure 5e concludes
the same result: training is successful until the environment
complexity is too great. The maximum reward return in
figure 5a shows that optimal performance can occur in
most environments. The reward minimum return in figure 5b
yields a lower bound on good performance in the first three
environments. The reward standard deviation in figure 5e
shows that beginning training in new environments is more
difficult as the complexity increases. We found that despite
curriculum-based learning, training in the human-difficulty
environment (figure 3c) yielded random performance even
with training for up to 10 million game frames.

IV. CONCLUSIONS

With respect to the human data study, the main inter-
vention strategies can be broken down into two separate
problems. The first is triaged-based: how can the agent
determine when the player should change one’s triaging strat-
egy. This recognizes a player’s first-order false beliefs. The
second is how can the agent create and make interventions
to the player’s memory. This encourages fostering first-order
correct beliefs in the player. From here, the triage-based
strategy can be recognized based on the trajectory. This
information should be passed as a feature to the intervention
agent in order to make the binary decision whether an

intervention is required. The memory intervention requires
introspection in order to correct the current saved internal
state. For the learned agent, the smaller environments were
able to be solved, but performance falls off as the grid
increases in size.

With respect for the second task of this paper, the learned
expert agent’s value function output analyzed in larger envi-
ronments shows that the agent is not able to distinguish short
term goals. Even with an LSTM, the memory of the agent
appears to be too small. The issue with training in larger
environments is that the reward signal is sparse. In future
work, this will be addressed by adding short-term rewards
for intermediate goals. Training with larger memory requires
much more RAM than was available for the experiments.
Future work will also include an analysis on human data to
see if the learned value function of the expert intervention
agent is able to correctly identify second-order beliefs of the
player; that is, the analysis will yield if the interventions
identified online are valid.
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Robotic Herding by Collision Avoidance for Robotic Swarm

Benjamin Kazules1, Dr. Katia Sycara2, and Wenhao Luo3

Abstract— The purpose of this paper is to develop a simple

algorithm to allow a number of dog robots to defend a protected

zone from adversarial sheep robots, and to provide experimen-

tal validation for the algorithm in various configurations. The

algorithm prioritizes the sheep robots based on distance from

the center of the protected zone and assigns dog robots to

intercept them. We allow a number of parameters to vary,

including numbers of sheep and dog robots as well as relative

speeds. The experiments demonstrate that any number of dog

robots greater than or equal the number of sheep robots is

sufficient to guard the protected zone. In addition, if certain

assumptions can be made about the organization of the sheep

robots, into a formation for example, fewer dog robots are

needed to fully guard the protected zone.

Index Terms— Agent-based systems, autonomous agents,

multi-robot systems, swarms.

I. INTRODUCTION
Robotic herding is very important to the military as

robotic swarms are becoming more of a reality. The United
States military maintains protected airspace around every
installation and in many operational environments. In order
to effectively defend these areas from potentially adversarial
robotic swarms, algorithms must be developed to guarantee
successful herding and defense. In this paper we develop one
such algorithm and provide examples of different scenarios
where it can be expected to succeed or fail.

II. PROBLEM STATEMENT
The problem is as follows: given N sheep robots and M

dog robots, control the dog robots to herd the sheep robots
away from a certain region, called the protected zone. For
the time being, no assumptions are made about the sheep
robot behavior or intentions. The problem is straightforward
for the case of one dog and one sheep robot, which naturally
extends to N dog and N sheep robots. We begin to examine
further scenarios, such as different numbers of sheep and dog
robots.

III. SIMULATION AND ALGORITHM DESIGN
A. Algorithm

The algorithm is made up of three main parts that are
iterated as the simulation runs. It first prioritizes the sheep
robots based on their distance from the protected zone, with

1Benjamin Kazules is a cadet at the United
States Air Force Academy, CO 80840, USA
C21Benjamin.Kazules@afacademy.af.edu

2Dr. Katia Sycara is director of the Advanced Agent - Robotics Technol-
ogy Lab in the Carnegie Mellon University Robotics Institute 5000 Forbes
Avenue, Pittsburgh, PA 15213, USA sycara@andrew.cmu.edu

3Wenhao Luo is a PhD student at the Carnegie Mellon University
Robotics Institute 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
luo@cmu.edu

the closest sheep robot being the highest priority. Next, the
dog robots are assigned to defend against individual sheep
robots in priority order. For each sheep robot, the closest
unassigned dog robot is assigned. The final step controls
the dog robots to intercept their assigned sheep robots by
moving toward the midpoint between the sheep robot and
the protected zone. The assignments are only updated every
twenty time steps in the simulations, and any extra dog robots
are sent to a staging area around the protected zone.

B. Simulation

The simulations were run in MATLAB using the robot
dynamic model as in [1] and barrier certificates to avoid
collisions [2]. The sheep robots were controlled simply by
individually moving toward a common goal. In the forma-
tion simulations, the sheep robots used a swarm formation
controller from [1] with the leader of the formation moving
toward a goal.

IV. RESULTS

The simulations overall showed that any number of dog
robots greater than or equal to the number of sheep robots
will successfully defend the protected zone given that the
sheep robots start far enough away. In real world scenarios
this will virtually always be the case, as the dog robots would
already be at the protected zone before the sheep robots
approach. However, if the dog robots have a high enough
speed, they may momentarily ward off the sheep robots with
some success. This seems to always end in failure if allowed
to continue to its conclusion, although if the protected zone
is merely in the flight path of the sheep robots then fewer
dog robots can likely be successful. In addition, if certain
assumptions are made about the sheep robots such as a
rigid formation with a single leader, then success is also
possible with fewer dog robots, even as little as one. This is
particularly useful for when the sheep robots are not strictly
adversarial and the protected zone is merely in their original
flight path.

A. One Dog, One Sheep

The case with one dog robot and one sheep robot is simple,
with the dog robot moving to intercept the sheep robot. Once
the dog robot has done so, we reach a stable state where the
dog robot is directly in between the sheep robot and the
protected zone (Fig. 1). In this state, the dog robot is able
to immediately block any attempt of the sheep robot to get
around it unless the sheep robot is significantly faster then
the dog robot. This simulation does not directly model such
a ”smart” sheep robot, but it is clear that if the dog robots
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are at least as fast as the sheep robots, then this case leads
to success.

Fig. 1. One dog, one sheep simulation

B. N Dogs, N Sheep

The case with equal numbers of dog and sheep robots is
a simple extension of the one on one case as long as there is
no significant crowding around the protected zone (Fig. 2).
This crowding is not well handled by the simple algorithm
used in this paper, but potentially could be in the future. In
practical scenarios the protected zone would be large enough
that this crowding would not be a problem however, and if
not then the dog robots could instead be made to form a tight
ring around the small protected zone, avoiding the problems
that arise from cluttering.

Fig. 2. 4 dogs, 4 sheep simulation

C. One Dog, Multi-Sheep Formation

If we assume a rigid formation or similarly any strict
leader-follower swarm behavior on the sheep robots, then
the dog robot controller may be simply adjusted to target the
leader and push it away from the protected zone to a distance
far enough that no robot in the swarm enters the zone. The
examples we have assume the formation does not break (Fig.
3). While this is not realistic, once the formation breaks the
situation becomes identical to the N dogs, M sheep case,
which is dealt with in the next section. If the sheep robots
are passing through to some other location like a flock of
birds might on a migratory path, it may be possible to use
no more than a single dog robot to herd them around the
protected zone (Fig. 4). In general, the more assumptions
are made of the sheep robots and the more specific they are,
the higher the chance a smaller number of dog robots will
be required.

Fig. 3. One dog, multi-sheep formation attacking

Fig. 4. One dog, multi-sheep formation passing through

D. N Dogs, M Sheep

This case has two distinct sub-cases, where the number of
dog robots N is either greater than or less than the number
of sheep robots M. In the case with N > M, the M dog
robots that are closest to the sheep robots act in the same
way as the N dog, N sheep case. This means that the same
guarantees will be in place. The extra dog robots are sent
to guard the protected zone where it is left open, but can
be made to do anything else that may be useful (Fig. 5). In
the case with N < M, the dog robots can be successful for
a period of time in a direct assault, but if the simulation is
allowed to run long enough, it seems to always end in failure
(Fig. 6). More dog robots will be more effective even if they
are less than the sheep robots, but having at least half the
number seems most important. In addition, increased speed
of the dog robots also makes them more effective in defense,
as they are better able to split their effort between different
sheep robots. There may be a point at which increased speed
can deliver a theoretical guarantee of success in the long
run, but the simulations do not support this as of yet. While
fewer dog robots seem to be entirely unable to defend the
protected zone from directly adversarial sheep robots, it is
often possible for them to defend against larger swarms of
sheep robots passing through the protected zone (Fig. 7).

Fig. 5. 6 dogs, 4 sheep simulation
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Fig. 6. 4 dogs, 8 sheep attacking simulation

Fig. 7. 4 dogs, 8 sheep passing through simulation

V. CONCLUSIONS
The overall results show that as long as the number

of dog robots is equal to or greater than the number of
sheep robots and there are no extreme circumstances such
as crowding or the sheep robots suddenly appearing up
close, the algorithm will be successful in defending the
protected zone. If assumptions are made about the sheep
robots movement, then the number of dog robots may often
be decreased while still effectively herding the sheep robots
away. In addition, if the sheep robots are only attempting to
pass through the protected zone to get to an outside goal,
the number of dog robots may similarly be decreased. These
results require proofs to be taken as formal guarantees, but
the simulations in this paper support them experimentally.
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Safe Planning and Control via Constrained ILQR and Robust Tube
MPC

Shivesh Khaitan1, Qin Lin2 and John M. Dolan2

Abstract— Safe planning is critical for self-driving to generate
collision-free trajectories. Recently, a safe planning framework
with safety guarantee using CILQR and reachability has been
proposed. The significance of this approach is addressing the
prediction uncertainty of surrounding vehicles while trajectory
planning. However, the uncertainty from the control level still
poses challenges to safe execution of the trajectory. For example,
the uncertainty of the dynamic model of the ego-vehicle and
disturbances in actuators, which are common, may jeopardize
the safety of the ego-vehicle. Such uncertainty can be dealt with
using a robust controller which can generate control commands
taking the uncertainty into consideration. Several variants
of Robust MPC have been extensively studied for trajectory
planning under uncertainty. However, the available literature
does not consider Robust MPC for a low-level controller in non-
linear systems capable of obstacle avoidance. In this paper, the
existing safe planning framework is extended with a low-level
robust tube MPC, which can avoid dynamic obstacles while
closely tracking the path planned by CILQR and ensuring
safety guarantees in the presence of ego-vehicle model and
control uncertainty. We also demonstrate safety, effectiveness
and real-time performance of our framework in the CARLA
simulator.

Index Terms— Autonomous Vehicle Navigation, Collision
Avoidance, Motion and Path Planning, Optimization and Op-
timal Control

I. INTRODUCTION
Self driving cars are expected to eliminate the possibil-

ity of accidents. Thus, the algorithms used in self-driving
should guarantee safety. A huge section of motion planning
autonomous driving research only deals with planning and
controls in a deterministic environment. But safety, which is
the key driving factor for introducing autonomous vehicles,
is not guaranteed in such cases. In recent decades, motion
planning research has been extended to consider uncertainty
and safety is able to be guaranteed for bounded disturbances.
Still, there does not exist a framework that comprehensively
assures safety across planning, and control layers in uncertain
environments.

One problem arises from the highly uncertain trajectories
of surrounding vehicles due to sensing, localization, ma-
neuver or intention uncertainties, etc. This has been studied
and successfully dealt with in [1]. However, similar to the
uncertainty of the environment, the uncertainty arising due
to the error in the assumed ego-vehicle’s model and control
cannot be ignored. This uncertainty can arise due to:

1Shivesh Khaitan is with the Department of Computer Science &
Engineering, Manipal Institute of Technology, Manipal, Karnataka, India
shivesh.khaitan@learner.manipal.edu

2Qin Lin and John M. Dolan are with the Robotics
Institute, Carnegie Mellon University, Pittsburgh, PA, the USA
{qinlin,jdolan}@andrew.cmu.edu

1) Error in the assumed dynamic ego-vehicle model.
2) Disturbance in the actuators while trying to achieve the

control commands.
3) Measurement noise leading to errors in state estima-

tion.

Safety of the autonomous system cannot be guaranteed
unless such noise is taken into consideration. [2] addresses a
similar problem but only has probabilistic guarantee. Model
Predictive Control (MPC) [3]–[6] is one of the most suc-
cessful approaches for system controls. The basic idea of
MPC is to repeatedly solve optimization problems on-line
to find an optimal input to the controlled system. Several
MPC variants have been studied in recent decades which are
robust to uncertainty. Majorly, the robust algorithms can be
divided into two classes of approaches: min-max techniques
and robust tube MPC approaches.

Min-max techniques optimize the worst-case performance
of the controller with respect to bounded uncertainties.
For a comprehensive literature review on min-max MPC
techniques, readers are referred to [7]. A general drawback
of this technique is its worst case consideration. This expo-
nentially increases the computational requirements, which is
not suitable for real time implementation.

The robust tube-based MPC techniques guarantee to keep
the actual state within an invariant tube around the nominal
MPC trajectory. They work by complementing the nominal
MPC with a feedback controller which tries to keep the actual
state within the tube by tracking the nominal trajectory.
Tube-based approaches have been extensively studied in
the literature [8]–[12]. However, these do not consider the
presence of obstacles, in which non-convex state constraints
need to be satisfied. [13] and [14] have proposed techniques
for collision avoidance, but [13] deals with static obstacles
only, and [14] uses invariant set computation for obstacles,
which incurs high computation costs.

In this paper, we propose a computationally efficient
unified safe planning and control framework for a non-linear
system with the ability to avoid moving obstacles. The aspect
that sets our method especially apart from existing methods
is that they mostly use robust control for high-level trajectory
planning, while we exploit the existing tube MPC as a low-
level control for a high-level trajectory planner. The main
motivations for this are:

1) Non-linearity in dynamics can be linearised in a low-
level controller using approximation since the refer-
ence point would be very close to the actual state. This
is not the case in high-level robust trajectory planners.

104



2) The moving obstacles can be considered static across
the whole planning horizon in a control cycle since the
total simulation time is minimal.

We showcase the framework by adopting the robust tube
controller proposed in [8] to guarantee control-level safety
for Safe Planning [1]. Robust tube control, however, cannot
directly deal with moving obstacles which result in a non-
convex free space. For this, we propose convexification of
the space around the ego-vehicle, which can provide the
controller with an obstacle-free convex region, with the
actual state of the ego-vehicle in its interior. This convex
constraint can then be tightened for robust control, as we
will discuss in section III. We make use of IRIS (Iterative
Regional Inflation by Semidefinite programming) [15] for
convexification of the space. Figure 1 shows a high-level
overview of the proposed framework.

Fig. 1: Overview of the framework.

The rest of this paper is organized as follows. Section
II contains necessary background of key methodologies.
Section III is about the formulation of the vehicle dynamic
model, cost function and constraints design. Section IV
presents the experimental results. The conclusion is in section
V.

II. METHODOLOGY
In this section, we will go through key techniques used

including short and long-term prediction using reachability
analysis and an adaptive filter, constrained ILQR optimiza-
tion, convexification using IRIS and constrained linear robust
tube MPC.

A. Prediction of dynamic obstacles

The state of the moving obstacles in the environment
needs to be predicted in each planning loop to generate
obstacle-free trajectories. This is achieved using the short-
term and long-term prediction model from [1]. It proposes a
combination of a safety-oriented short-term planner and an
efficiency-oriented long-term planner.

The short-term prediction considers the uncertainty of a
target vehicle’s state (e.g., sensor disturbance or localiza-
tion error) and the uncertainty of control actions over the

short-term prediction horizon under a kinematically feasible
but possibly non-deterministic assumption. The reachable
state of the target vehicle is projected to the sub-space in
the inertial frame for the min/max longitudinal and lateral
positions. The long-term predictor only predicts the target
vehicle’s single position (i.e., particle) without considering
uncertainty. For a detailed explanation of the short and long
term predictions, readers are referred to [1].

B. Constrained Iterative Linear Quadratic Regulator

(CILQR)

The robust tube low-level controller requires a reference
trajectory which it should track. To compute the reference
trajectory, we make use of CILQR [16], [17]. An obstacle-
free motion planning problem can be formulated as a stan-
dard ILQR problem with nonlinear system dynamics:

min
U

J =
N�1X

k=0

l(xk,uk) + lf (xN ) (1)

s.t. xk+1 = f(xk,uk) (2)

where xk and uk are the state and the control input at
time step k and xN is the final state. Eq. 2 is the system
dynamics constraint, which is a transition function mapping
state and control at step k to state at step k + 1. U :=
{u0,u1, · · · ,uN�1} is the control sequence, l and lf are
the cost functions.

Since the standard LQR only solves optimization problems
with quadratic cost and linear systematic constraints, this
problem can be reformulated. By linearizing the systematic
constraint at multiple points, we can relax the nonlinearity of
the ILQR problem into the linear problem required by LQR.
The steps of ILQR are listed below.

1) Start with a feasible initial guess û and obtain x̂ using
the dynamic model. A common way is using a zero
initialization. Note that feasibility of the initial guess
is important in practice. The users can either do a
sampling in the beginning or start the planning only
when the zero initialization is feasible.

2) Calculate the derivatives of the dynamics and the cost
function about the trajectory.

3) Run an LQR backward pass to obtain �u⇤. For an
ill-conditioned matrix, we increase � and restart the
backward pass, otherwise we reduce �. The details
of designing appropriate factors of increasing and
decreasing can be found in [18].

4) Run forward pass and initially set ↵ = 1 in �u =
↵k + K�x to compute a new nominal sequence. If
the cost does not converge, decrease ↵ and restart the
forward pass.

ILQR has the drawback of its constraint-free nature, which
makes it unsuitable for collision avoidance problems. The
CILQR algorithm offers the inclusion of different constraints
into the objective function through barrier functions. Ideally,
a barrier function serves as an indicator giving a huge penalty
to constraint violation and low cost to satisfied constraints.
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Constraints can be generalized into two categories by lin-
earity. First, any nonlinear constraints can be converted to
linear constraints via a second-order Taylor Expansion. Then,
a barrier function is applied and quadratized. Eq. 3 and Eq.
4 demonstrate this process. The quadratized linear barrier
function can now be incorporated into the ILQR algorithm.

An exponential barrier function is defined as

bk(g(xk)) = q1 exp(q2g(xk)) (3)

Its Jacobian and Hessian are derived as
rb = q1q2 exp (q2g(xk))rg(xk)

r2b = q1q2 exp (q2g(xk))(q2rg(xk)rg(xk)
T +r2g(xk))

(4)

where g(x) is the constraint function at time step k.

C. Obstacle-free convex state space constraint

As the robust tube MPC requires convex constraints, we
use IRIS [15] to get a convex obstacle-free region containing
the ego-vehicle. IRIS alternates between two convex opti-
mizations (A) a quadratic program that generates a set of
hyperplanes to separate a convex region of space from the
set of obstacles and (B) a semidefinite program that finds a
maximum-volume ellipsoid inside the polytope intersection
of the obstacle-free half-spaces defined by those hyperplanes.
Given the position of the ego-vehicle as an initial seed point
in space, around which the first ellipsoid is constructed, IRIS
grows the ellipsoid greedily at every iteration until it reaches
a local fixed point. The final set of separating hyperplanes
forms a convex polytope, which we use as our convex region
of obstacle-free space.

D. Constrained Linear Robust Tube MPC

A constrained linear robust tube MPC solves the optimiza-
tion problem defined as:

min
U

J =
N�1X

k=0

l(xk,uk) + lf (xN ) (5)

s.t. xk+1 = Axk +Buk +wk (6)
x 2 X (7)
u 2 U (8)

where A 2 Rm⇥m and B 2 Rm⇥n are dynamics and input
matrices respectively. xk, uk and wk are the state, control
input and disturbance respectively at time step k and xN is
the final state. U ⇢ Rm is compact, X ⇢ Rn is closed, and
each set contains the origin in its interior. The disturbance w
is assumed to be bounded as w 2 W where W is compact
and contains the origin (but may not have an interior).

Eq. 6 is the system dynamics constraint, which is a
transition function mapping state, control and disturbance at
step k to state at step k + 1. X := {x0,x1, · · · ,xN} is the
optimal state sequence. l and lf are the cost functions.

Let X̄ := {x̄0, x̄1, · · · , x̄N} be the optimal states se-
quence and Ū := {ū0, ū1, · · · , ūN�1} be the optimal
control sequence for the above problem when disturbance w
is ignored. Let K 2 Rm⇥n be such that AK = A+ BK is

stable. Let Z be a disturbance invariant set for the controlled
uncertain system x+ = AKx + w, therefore satisfying
AKZ �W ✓ Z, where � denotes Minkowski set addition.
Then, if x0 2 x̄0 � Z, a sub-optimal control is given by
u = ū + K(x � x̄) and x+ 2 x̄+ � Z for all w 2 W
where x+ = Ax + Bu + w and x̄+ = Ax̄ + Bū. This
sub-optimal control u keeps the states xk of the uncertain
system close to the states x̄k of the nominal system with no
disturbance when Eq. 11 and Eq. 12 are satisfied. The sub-
optimal control guarantees that xk will always be inside the
convex constraint set X. Thus instead of optimizing for Eq.
5, we solve for the nominal problem without disturbance as:

min
Ū

J̄ =
N�1X

k=0

l(x̄k, ūk) + lf (x̄N ) (9)

s.t. x̄k+1 = Ax̄k +Būk (10)
x̄ 2 X Z (11)

ū 2 U KZ (12)
x0 2 x̄0 � Z (13)

The applied robust control is then u = ū + K(x � x̄).
For a detailed proof and study of feasibility and stability of
the above controller, readers are referred to [8].

III. PROBLEM FORMULATION
In this section, we will go through the vehicle dynamic

model, the cost function and constraints design.

A. System Dynamics

The model used is a kinematic bicycle model as shown in
Figure 2; however, it can be replaced by a more complex dy-
namic model. Finite difference techniques can be used for the
Jacobian and Hessian calculations. The control input is uk =
[ak, �k]T , where ak and �k are the acceleration and steering
angle, respectively. Eq. 14 represents the transition function
with non-zero steering angle. The horizontal increment is
calculated by

R l
0 cos(✓k+s)ds and the vertical increment is

calculated by
R l
0 sin(✓k +s)ds.  = tan(�)

L is the curvature,
L is the vehicle length, and lk = vk�t + 1

2a�t2 is the
distance travelled at time k with discretization step �t.

px,k+1 = px,k +
sin(✓k + lk)� sin ✓k



py,k+1 = py,k +
cos ✓k � cos(✓k + lk)


vk+1 = vk + a�t

✓k+1 = ✓k + lk (14)

However, when � is zero,  will be zero, which will cause a
numerical issue in Eq. 14. Hence, a different update shown
in Eq. 15 is used.

px,k+1 = px,k + (vtdt+
1

2
a�t2) cos(✓k)

py,k+1 = py,k + (vtdt+
1

2
a�t2) sin(✓k)

vk+1 = vk + a�t

✓k+1 = ✓t (15)
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Fig. 2: Vehicle Kinematic Bicycle Model

B. Objective Function for CILQR

The general definition of the objective function in Eq. 1
can be made specific in Eq. 16. The terms in the summa-
tion represent the control effort cost, the reference position
tracking, the reference velocity tracking, and the constraints
cost (i.e., obstacle avoidance). cN is the end state cost.

J =
N�1X

k=0

⇣
cuk + crefk + cvelk + cconk

⌘
+ cN (16)

1) control effort cost: The penalty for large acceleration
and the steering angle with corresponding weights are shown
in Eq. 17.

cuk = uT
k


wa

w�

�
uk (17)

2) reference tracking and velocity cost: The reference
tracking term assigns a cost based on the distance to the
closest point of the reference trajectory. The velocity cost
penalizes the ego-vehicle for the difference between its
velocity and the reference velocity. The combined cost is
written in a matrix form in Eq. 18, where �xk is the
difference between the ego-vehicle state and the reference
state.

�xk = xk �
h
prefx,k prefy,k vrefk 0

iT

creft + cvelt = �xT

2

664

wref

wref

wvel

0

3

775�x (18)

3) constraint cost: All inequality constraints can be ex-
pressed in a negative null form shown in Eq. 19 in which
xlim is the maximum or minimum boundary value and f(x)
is some sort of function on the decision variable.

g(x) = xlim � f(x)  0 (19)

For linear constraints like acceleration and steering limits,
we can write them as for instance:

g(u) = u� umax  0 (20)

Then, a barrier function can be used as stated in Eq. 3.
For the obstacle avoidance term, we use a geometric

collision check as the inequality constraint and the problem is
formulated as a geometry-based cost function. Obstacles are

formulated as ellipses with major and minor axes adjusted
for the ego-vehicle’s shape. The inequality constraint is
shown in Eq. 21. ✓obsk is the predicted heading angle of the
obstacle at time k, a and b are semi major and minor axes’
lengths. �xk and �yk are the relative longitudinal and lateral
distance between the ego-vehicle and the predicted obstacle,
respectively. The corresponding Jacobian and the Hessian of
this term for the LQR backward pass can be found in Eq. 4.

Rk =


cos(✓obsk ) � sin(✓obsk )
sin(✓obsk ) cos(✓obsk )

�

Tk = Rk


1
a2

1
b2

�
RT

k

g([�xk,�yk]) = 1� [�xk,�yk]Tk[�xk,�yk]
T  0

(21)
C. Objective Function and Constraints for Robust Tube

MPC

The general definition of the objective function in Eq. 5
can be made specific in Eq. 22. Each term in the summation
represents the control effort cost, the reference position
tracking and the reference velocity tracking. cN is the end
state cost.

J =
N�1X

k=0

⇣
cuk + crefk + cvelk

⌘
+ cN (22)

A detailed description of the individual cost terms can be
found in the previous section.

The constraints for MPC have to be updated in each
control loop. The steps for computing the constraints are
listed below.

1) Compute the disturbance invariant set Z.
2) Using the instantaneous position of the ego-vehicle

as the seed-point for IRIS, obtain an obstacle-free
polytopic region P as:

Apx  b (23)
Apy  b (24)

3) Obtain the nominal state-space constraints, X, by ap-
pending to P the polytope of velocity and orientation
constraints:

�vmax < v < vmax (25)
�⇡ < ✓ < ⇡ (26)

4) Obtain the nominal control constraints, U by com-
puting the polytope of acceleration and steering con-
straints:

�amax < a < amax (27)
��max < � < �max (28)

5) Compute the tightened constraints for state space and
controls as:

X Z (29)
U KZ (30)

Use Eq. 29 and Eq. 30 as the constraints for MPC as
in Eq. 11 and Eq. 12.
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IV. EXPERIMENTAL RESULTS

In this section, we will present the experimental results
we have on the CARLA [19] simulator. The vehicle used in
the simulation is a Ford Mustang. We have set up experi-
ments in multiple scenarios including intersections, curves,
overtaking, and wrong-way driving. The reference velocity
for all test cases is set to 20 m/s (roughly 45mph). The
disturbance is bounded: w 2W = {w | kwk  0.075}. We
also compare the performance and safety of our framework
and the existing Safe Planning framework in similar settings.

The ego-vehicle is pictured in blue with its transparency
decreased over time (i.e. white is the frame at t0, the less
transparent the color is the later a frame is in time). Target
vehicles are depicted in red and the transparency works the
same way. The Cartesian bounds from IRIS are pictured as
polygons in green. The finite planning horizon for CILQR
is set to 3 seconds with a discretization of 0.1 seconds.
For MPC, the planning horizon is 0.25 seconds with a
discretization of 0.05 seconds.

We present the following three scenarios below:

1) The ego-vehicle is travelling behind a slow-moving
target vehicle. It safely overtakes the target vehicle in
the presence of other vehicles in the adjacent lanes.

2) The ego-vehicle is travelling through an uncontrolled
intersection. It safely maneuvers around a target vehi-
cle moving in a direction perpendicular to its motion.

3) The ego-vehicle overtakes a target vehicle on a curved
road.

The video demonstrations of the scenarios are available at:
sites.google.com/view/shiveshkhaitan-riss-2020. Fol-
lowing are the descriptions and results from the above
scenarios:

1) Overtake: In this scenario, a target vehicle is travelling
in front of the ego-vehicle at 8m/s. The ego-vehicle starts
from rest and accelerates while approaching the target vehi-
cle to achieve the target velocity of 20m/s. As seen in Figure
3, the ego-vehicle first decelerates to keep safe-distance from
the target vehicle and begins the lane change. After passing
the target vehicle it is faced by another parked vehicle. The
ego-vehicle then immediately steers back to the original lane
keeping a safe distance from the vehicle behind and finally
achieves its reference velocity 20 m/s again.

The results for the comparison are listed in Tab. I. It can
be seen that the average velocity and time to complete the
maneuver are nearly the same for both the frameworks. But,
the average distance from the obstacles is much higher with
the robust tube MPC. Thus, it can be concluded that that the
robust tube controller is safer and guarantees safety without
making the controls too conservative.

TABLE I: Comparison in overtaking scenario
Method CILQR Robust Tube MPC
Time to complete(s) 17.02 17.31
Average velocity(m/s) 13.20 12.99
Average distance from nearby obstacles(m) 0.18 0.25
Minimum distance from obstacles(m) 0.13 0.13

Fig. 3: Overtaking in the presence of obstacles in adjacent
lane

2) Intersection: In this scenario, a target vehicle is trav-
elling perpendicular to the ego-vehicle in an uncontrolled
intersection at 8m/s. The ego-vehicle starts from rest and is
accelerating while approaching the intersection to achieve
the reference velocity of 20m/s. As seen in Figure 4, at
around a perpendicular distance of 10 meters from the target
vehicle, the ego-vehicle starts to steer to avoid the target
vehicle. It drops the acceleration initially while turning but
starts increasing the acceleration again when it just nears the
target vehicle. After avoiding the vehicle, it steers towards the
reference lane and finally achieves its reference velocity 20
m/s again. The reference velocity of the ego-vehicle dictates
the controller’s behaviour regarding slowing down and letting
the target vehicle to go or steering to cross the intersection
first. In this case, the target velocity is high, thus the ego-
vehicle steers and goes first.

Fig. 4: Obstacle avoidance in intersection

The results for the comparison are listed in Tab. II. The
results are similar to the overtaking scenario and validates
them.
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TABLE II: Comparison in intersection scenario
Method CILQR Robust Tube MPC
Time to complete(s) 16.02 16.50
Average velocity(m/s) 14.04 13.63
Average distance from nearby obstacles(m) 0.22 0.31
Minimum distance from obstacles(m) 0.10 0.12

3) Curved road: All scenarios above are tested on straight
lanes. In this scenario, a slow vehicle is initially 20 meters
ahead of the ego-vehicle on a curved road. The target
vehicle is travelling at 6 m/s and the ego-vehicle successfully
overtakes the target vehicle in the curve while accelerating
to achieve the target velocity of 20 m/s. During the overtake,
the ego-vehicle is travelling at 15m/s and then it steers back
to its reference lane and accelerates to achieve the reference
velocity as seen in the velocity profile of Figure 5.

Fig. 5: Overtaking in a curved road

The MPC ensures that in all cases, the ego-vehicle is well
within the safe regions. The average loop time for the MPC is
50ms which makes it suitable for real-time implementation.
The simulation is written in Python. Gurobi [20] is used for
solving the MPC. The control framework runs on a laptop
with a 2.50GHz Intel Core i5-7200U CPU.

V. CONCLUSION

In this paper, an end-to-end framework guaranteeing safety
across planning and control layers of autonomous vehicles
is presented. The method works for non-linear systems and
is able to safely avoid dynamic obstacles. The framework is
also tested for real-time implementation in the high-fidelity
CARLA simulator. This ensures that it is applicable for real-
world applications. Experiments also show that it does not
make the behaviour much conservative.

Further work in this approach includes optimizing the
performance of the low-level controller by making it light-
weight. We also hope to reduce the jerks due to extreme
acceleration and steering commands.
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Slip Ratio Estimation for the Localization of Planetary Rovers Using
Proprioceptive Sensors

Urara Kono1, Raewyn Duvall2 and William L. Whittaker2

Abstract— This paper proposes a method for estimating the
slip ratio of planetary rovers. The estimator is designed based
on the equations of motion. Input torque, encoders, and IMU
data are used, and driving force, vehicle speed, and slip rate
are estimated. This method does not depend on cameras or the
soil parameters, and avoids the integral of IMU acceleration
with errors. Since the estimator does not use cameras, it will be
the back-up for visual odometry (VO) and effective in dark or
feature-less places. The sampling time of torque is very short,
and that allows us to obtain the slip rate much faster than VO.
The simulation in MATLAB & Simulink showed improvements
in wheel odometry. As future work, the estimator can be fused
with VO and fill the gaps between keyframes.

Index Terms— Localization, Wheeled Robots, Space Robotics
and Automation.

I. INTRODUCTION

Planetary rovers have contributed to discovering new sci-
entific knowledge and are still expected to do so. Localization
is important for the rovers to reach the destinations and
avoid the obstacles on unknown, nonhomogeneous terrain.
Autonomous driving enables a rover to cover longer distance
per sol - a Martian solar day - by minimizing communication
with operators on Earth [1].

The localization of planetary rovers is different from
that on Earth from the following points [2]: first, Global
Navigation Satellite System (GNSS) is denied in space,
which means no global, ground truth positioning; second,
rovers’ computational availability is limited compared to
current computers since they are designed to be resistant
to cosmic rays; third, it takes some time to communicate
between the Earth and any other planetary body, making
communication costly in time; These points make real-time
localization challenging.

Wheel odometry is the fundamental basis for localization.
It takes encoder data and computes how far the rover has
traversed. This method is simple, takes minimal computa-
tion, and is effective in flat and hard terrains. In the Mars
Exploration Rover (MER) mission, when the rover ran at the
flat ground for 2km, the accumulated error was only 3% [3].
However, on a sloped terrain such as 25◦, it slipped at as
much as 125% [4]. Something must be done to tackle these
errors caused by slip.

Visual odometry (VO) is currently the primary method
to minimize this error. It is considered a key technology to

1 Urara Kono is with faculty of Electrical and Electronic Engineering,
The University of Tokyo, Tokyo, Japan. urara27.k@gmail.com

2Raewyn Duvall and William L. Whittaker are with Robotics
Institute, Carnegie Mellon University, Pittsburgh, USA. {rduvall,
ww0t}@andrew.cmu.edu

Fig. 1. CMU Iris [6]

realize reliable fully-autonomous navigation. It consists of
four processes: feature detection, matching of stereo camera
based on the features, feature traction, and robust attitude
estimation [4]. VO was first implemented in MER [4]. In
NASA’s Mars Science Laboratory (MSL) mission, it was
used heavily on Curiosity to detect unexpected slip quickly,
so that the rover can traverse terrain as fast and far as possible
[5].

Although VO works well, errors still exist as cameras
cannot see well in dark places or feature-less terrains - such
as those on the Moon or Mars - and can cause feature match-
ing to fail. Terramechanics have worked on slip estimation
by making precise models of the ground and the wheel
[7], [8]. However, this uses the soil parameters, which are
unknown in new environments such as those planetary rovers
traverse. Current research tries to estimate the parameters,
but that method needs heavy computation [9]. Other research
proposes estimating slip using current, but this also uses soil
parameters [10].

This paper proposes a slip ratio estimator that does not
require cameras or soil parameters. It is model-based and
derives the equations from the motion of the rover. The
driving force is estimated from the disturbance observer [11],
and the rover speed is calculated with the angle speed from
the encoders and the input torque. This method is robust
to the noise because it does not integrate the acceleration
from the IMU with offsets. It was first developed on electric
vehicles (EVs) with In Wheel Motors (IWM) by [12], [13]
and used for the driving force control (DFC) of EVs [14],
[15]. Since no cameras or feature extractions are needed, it
can work in dark places like moon poles and holes or feature-
less terrains. This method is much less computationally
demanding than VO and will be useful for rovers with
limited processing. Since the torque response of an electric
motor is short - a few milliseconds, the slip ratio can be
obtained at higher rates than VO. Therefore, this method will
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improve the localization accuracy while the driving between
keyframes or waypoints.

This research is focused on the use case for The Carnegie
Mellon University (CMU) Iris (Fig. 1). It is a micro rover
with very limited computation power and memory. Low
resolution images and other sensor data will be sent to
Earth at a data rate of 50kbps and with a minimal delay
of 8 seconds; the state is then estimated on the ground.
Future micro-rovers, like the joint development by CMU and
Astrobotic of CubeRover and Rover Teams, will similarly
have limited onboard processing. MoonRanger is another
joint rover that will be flying to the lunar pole in 2022. It
has a GPU that handles image processing almost in real-
time. However, if the GPU fails, MoonRanger will have
to navigate back to the lander on a more limited backup
processor, with no visual input. Every piece of additional
information on the positioning or state estimation derived
with minimal computation is beneficial.

The remainder of this paper is organized as follows: In
Section 2, the rover model and slip estimation method are
described. The simulation results are presented in Section 3.
Section 4 is discussion, and Section 5 gives the conclusions.

II. MODEL AND METHOD
A. Rover model

The longitudinal motion equations of the wheels and the
body model, shown in Fig. 2, are described as

Jω̇i j = T i j − (r/G)Fi j
x , (1)

MV̇ = ΣFi j
x − Fdr, (2)

Vi j
ω = (r/G)ωi j, (3)

where J is the wheel inertia, ω is the wheel speed, T is the
motor torque, r is the radius of the wheels, G is the reduction
ratio, Fi j

x is the driving force (i = front, rear, j = left, right),
Fdr is the running resistance, M is the vehicle mass, V is
the rover speed, and Vω is the wheel speed. The slip ratio is
defined as

λi j :=
Vi j
ω − V

max(Vi j
ω ,V, ϵ)

, (4)

where ϵ ≪ 0.01 is the small constant to avoid zero denom-
inator. In this paper, the rover is running straight, and the
driving force can be described as

ΣFi j
x = µN, (5)

+
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where N is the nominal reaction force. The block diagram
of the plant is described in Fig. 3. The driving force Fi j

x is
estimated using Driving Force Observer (DFO) [11], and its
diagram is shown in Fig. 4.

In the Sections II-B and II-C, the slip estimator for driving
mode and braking mode is designed.

B. Driving mode
When the rover is driving, max(Vω,V, ϵ) = Vω. By differ-

entiating (4) and using (1) and (2), the wheel acceleration is
described as

ω̇i j =
T i j − (r/G)Fdr + (r/G)2Mωi jλ̇i j

J + (r/G)2M(1 − λi j)
. (6)

In order to estimate the slip ratio, this equation is transformed
to the differential equation of λi j:

λ̇i j = − ω̇
i j

ωi j λ
i j+

(
1 +

J
(r/G)2M

)
ω̇i j

ωi j−
T i j

(r/G)2Mωi j+
Fdr

(r/G)Mωi j .

(7)
The slip estimator is designed by putting hats on unmeasured
terms in (7):

˙̂λi j = − ω̇
i j

ωi j λ̂
i j+

(
1 +

J
(r/G)2M

)
ω̇i j

ωi j−
T i j

(r/G)2Mωi j+
F̂dr

(r/G)Mωi j .

(8)
F̂dr, with modeling errors or disturbance, can be calculated
from (2) using V̇ from the IMU and Fi j

x from the DFO.
When λ̂i j converges, the estimation error will also con-

verge, defined as
ei j = λi j − λ̂i j. (9)

By subtracing (8) from (7), this differential equation of ei j

is obtained:
ėi j = − ω̇

i j

ωi j e +
Fdr − F̂dr

(r/G)Mωi j . (10)

If Fdr = F̂dr and ω̇i j

ωi j > 0, the estimation error will converge
to zero.
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C. Braking mode
When the rover is braking, max(Vω,V, ϵ) = V . By differen-

tiating (4) and using (1) and (2), Equation (11) is obtained:

λ̇i j =
ω̇i j

ωi j

(
1 + λi j

)
−

(
T i j − Jω̇i j − (r/G)Fdr

r2Mωi j

) (
1 + λi j

)2
.

(11)
Based on (11), the slip estimator is defined as

˙̂λi j =
ω̇i j

ωi j

(
1 + λ̂i j

)
−

(
T i j − Jω̇i j − (r/G)F̂dr

(r/G)2Mωi j

) (
1 + λ̂i j

)2
.

(12)
By subtracing (12) from (11), this differential equation is
obtained:

ėi j =

{
ω̇i j

ωi j −
(

T i j − Jω̇i j − (r/G)F̂dr

r2Mωi j

)
(λi j + λ̂i j + 2)

}
ei j.

(13)
F̂dr will converge to the true value with the time constant
for DFO, and Fdr ≃ F̂dr is assumed. Using V̇ i j

ω ,V
i j
ω , and V̇ ,

(13) can also be written as

ėi j =

⎛
⎜⎜⎜⎜⎝

V̇ i j
ω

Vi j
ω

− V̇

Vi j
ω

(2 + λi j + λ̂i j)
⎞
⎟⎟⎟⎟⎠ . (14)

The error ei j will converge if V̇ i j
ω − V̇ i j(2+λi j + λ̂i j) < 0. The

block diagram of the whole localization system is represented
in Fig. 5.

III. SIMULATION
The simulation was conducted on MATLAB & Simulink.

In (5), magic formula [16] was used on the simulation and
is described as

µ(λ) = D sin
(
C tan−1

(
B(1 − E)λ + E tan−1(Bλ)

))
. (15)

The hight of the curve and the λ value where the curve gets
its peak was both set 0.2 based on [17], which conducted

TABLE I
Parameters of terramechanics of sand [17]

Terrain parameter Value
n 1.10
kc

(
kPa/mn−1

)
0.95

kϕ (kPa/mn) 1528.43
c(kPa) 1.04
ϕ (◦) 28
K(m) 0.0254

TABLE II
Rover parameters of Iris

Rover parameter Value
r(cm) 8.92
J(kgm2) 2.20×10−7

G 794
M(kg) 2.38

rover experiments with sand as depicted in Table I, where
the parameters are soil deformation index n, cohesive and
frictional moduli of deformation kc and kϕ, soil cohesion
coefficient c, soil friction angle ϕ, and soil shear modulus of
deformation K. The graph of this curve is shown on Fig. 6.
It was used to produce true speed and position data in the
simulation, not in the estimation process.

In the simulation, IMU data was not used. We assumed
that the rover is running on flat terrain, and the driving
resistance is only the rolling resistance. Since there is no
atmosphere on the moon, air resistance was neglected. The
estimated running resistance is described as

F̂dr = µrollN, (16)

where µroll is the rolling resistance coeficient, and its value is
0.02. It is based on the data from the Lunar Roving Vehicle
in Apollo mission [18].

The simulation was conducted based on Iris rover model;
its physical parameters are presented in Table II.

IV. SIMULATION RESULTS
Two different step input torques were given at t = 0.1s to

show the feasibility of the slip estimator.
First, the input torque was T = 1.9 × 10−4N ·m, which

was actually given at a flat terrain test when the rover ran
straight. The graph of the rover speed is shown in Fig. 7.
Without slip estimation, there was no slip compensation for
the encoders data. The rover hardly slipped (λ = 0.03), and
there was no significant difference in the position either as
shown in Fig. 8.

Second, the input torque was T = 9.4×10−4N ·m, which is
half the stall torque. The rover slipped a lot, and its slip ratio
was (λ = 0.41). The graphs of the rover speed and position
are shown in Fig. 9 and Fig. 10, respectively. Significant
difference was observed between with and without slip
estimation.

Single-step input does not represent the actual input, which
is complex due to PI control so that the speed of the motor
can be constant. In the next simulation, the input included
both positive and negative, which was extracted from the
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actual input given at a flat-field test, when the rover was
running straight. The input torque is shown in Fig. 11. The
speed and the position graphs are Fig. 12 and Fig. 13,
respectively. The slip estimator worked even when the input
torque changed between positive and negative.

V. DISCUSSION

In this section, the fidelity of the simulation is discussed.
As shown in Fig. 1, Iris has grousers on its wheels, which
will prevent slip to some extent. However, the equations
(1) and (2) do not consider the effect of the driving force
which work on the grousers. Since the proposed method is
not physically tested due to remote research, their effect is
unknown. Furthermore, since Iris is very small compared to
most rovers, it might be more easily affected by uneven ter-
rains, which might cause forces from unexpected directions.
In the simulation, simple equations were used that did not
factor these additional sources of error. In future modeling,
the errors and disturbances should be taken into account. For
example, the following equations based on Fig. 14 have error
terms Nm (m = 1, 2, 3, 4).

mV̇ = ΣFi j
x + N1, (17)

Jω̇i j = T i j − rFi j
x + N2, (18)

mV(
dβ
dt
+ γ) = ΣFi j

y + N3, (19)

I
dγ
dt
= 2l f F f , j

y − 2lrFr, j
y + N4, (20)
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where Fi j
y is the driving force which acts vertical to the

direction of the wheel. In [19], only yaw moment disturbance
N3 was considered and equations (19) and (20) were used
for the trajectory tracking and the stabilization of agricultural
vehicles. These error terms will not be observable due to
limited kinds of equipped sensors on rovers, but they can
be estimated using disturbance observer or appropriate ap-
proximations. N1 is the same with Fdr and can be calculated
using V̇ from the IMU and Fi j

x from the DFO. N2 ≪ Fi j
x and

N2 ≃ 0 can be approximated. Likewise, N3 can be calculated,
and N4 ≃ 0 can be approximated.

VI. CONCLUSIONS
VO has been used to improve the accuracy of localization

by wheel odometry and IMU. However, it is still important
to find methods that do not use cameras for these reasons:
• Those methods can reduce the dependence on VO for

rovers with limited computation or as a backup.
• VO sometimes cannot work well on non-feature terrain.
• Cameras cannot see anything at dark places like the

moon poles or holes.
• VO is essentially blind driving between keyframes or

waypoints.
In order to work around the limitation of or improve VO,

this paper proposed the slip ratio estimator using proprio-
ceptive sensors. It is model-based and does not use cameras
or soil parameters. It meets these demands mentioned above
and compensates for the wheel odometry error caused by slip
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on the simulation. Experiments could not be conducted due
to remote research.

In the future, if rovers run much faster, the pictures could
be blurred [20] and non-VO localization will be expected
to play a more important role in localization. The sampling
time of proprioceptive sensors and torque input is short and
a small amount of calculation is needed, so the slip estimator
can make up for the gap between keyframes.

However, the proposed method has some issues that need
to be improved: it may not model the rover well and
modeling errors need to be considered, as mentioned in
the Discussion section. Since little research has worked
on the improvement of localization using proprioceptive
sensors, it is important to find the limitation of the estimator
with experiments on inclined or uneven terrain. When the
estimator is proven to be effective, fusing the slip estimator
with Visual Inertial Odometry would minimize current errors
in planetary rovers’ localization.
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Localization for Autonomous Polar Lunar Micro Roving

Oleksandr Koreiba1, Haidar Jamal2, Heather Jones2 and William L.“Red” Whittaker2

Abstract— Autonomous traversing of the micro rovers poses
serious challenges due to limiting computational capabilities as
well as the uncontrolled and harsh environments. Rovers such
as MoonRanger will need to be capable of performing long-
range scientific missions outside of the lander’s communication
zone hence need to accurately localize themselves to allow
autonomous navigation. This research investigates implement-
ing an extended Kalman filter for accurate rover orientation
estimation and localization. The developed method consists of
two parts - attitude and heading reference system that calculates
the rover’s orientation and position estimation algorithm, that
combines the computed orientation with the data from wheel
encoders to determine the position and heading of the rover.
Testing has shown that the algorithm outperforms the dead-
reckoning method of position estimation and provides accurate
state estimation.

Index Terms— Space robotics and automation, Localization,
Wheeled Robots

I. INTRODUCTION

Recent initiatives for escalating the rate of interplanetary
exploration require a lot of research and analysis to be done
in advance. Essential data can be gathered by micro rovers
[1], as they are easier and cheaper to deploy and take less
time to develop. Most of the deployed rovers have limited
autonomy, their actions were planned in advance and con-
trolled by humans [2] [3]. Smaller rovers, like MoonRanger
(Fig. 1) will need to possess a higher degree of autonomy
as they do not have the power and space capabilities of
carrying hardware to communicate directly with Earth. Since
large portions of long traversing missions will require robots
to traverse beyond the lander communication range, micro
rovers need to have exceptional navigation to be able to
return to the ground base. Accurate localization of the rover
on both short and long traversing mission make the rover’s
ability to correctly estimate its position and heading essential.
Highly accurate data can be obtained from gyroscopes and
accelerometers in the inertial measurement unit (IMU), as
well as wheel encoders. However, they are prone to drift
and noise, gradually accumulating error and contributing to
a faulty state estimation.

One of the simplest solutions to the localization problem is
using a dead-reckoning algorithm that estimates the position
of the rover using the data from wheel encoders. Unfortu-
nately, relying solely on such estimation is impossible as

1Oleksandr Koreiba is with Faculty of Electrical and Electronics En-
gineering, Department of Automation, Kaunas University of Technology,
Kaunas, Lithuania oleksandr.koreiba@ktu.edu,

2Haidar Jamal, Heather Jones and William L. “Red” Whittaker
are with the Department of Computer Science, Carnegie Mellon
University, Pittsburgh, USA hjamal@andrew.cmu.edu,
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Fig. 1. MoonRanger rover

it drifts a lot over time. For more a robust localization
sensor fusion needs to be leveraged [4] [5]. This research
looks into developing a state estimation algorithm based on
the extended Kalman filter [6] that consists of two parts -
Attitude and heading reference system (AHRS), and position
estimation. The algorithm is tested on PowerRanger, which
is a development rover for future MoonRanger mission
designed to autonomously traverse the south pole of the
Moon in search of ice.

Section 2 of this paper presents the structure and devel-
opment of the AHRS and position estimation algorithms.
Section 3 describes tests, performed on a lunar-like terrain
with PowerRanger development rover and results. Finally,
section 4 draws conclusions and talks about the possibilities
of future work and the future improvements to the algorithm.

II. METHODS
A. Extended Kalman filter

EKF is a commonly used filter for non-linear state estima-
tion problems. The algorithm is recursive and consists of two
steps - prediction, based on the predetermined system model
and measurement update, using the input from the sensors.
The system model in the prediction step shows how the state
xt changes with time in the presence of noise:

xt = g(ut, xt�1 + ✏t) (1)

where g is a non-linear function, ut is the control input and ✏t
is white Gaussian noise. The measurement model zt relates
data received by sensors to the state:

zt = h(xt + �t) (2)

where h is a non-linear function and �t white Gaussian noise.
The beliefs about the rover’s state are represented as the

first two moments (mean and covariance) of a multivariate
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Gaussian distribution. Prediction step approximates the new
state xt+1 as well as covariance matrix (Pt+1, t) associated
with it. When the measurement is received, the Kalman
gain is calculated, which defines the relative importance
of the measurement versus state estimate. If the error in
measurement is high the gain is lower, and the systems
pays more attention to the prediction; if the gain is high-
measurements are trusted more. After this, the covariance is
updated and the previous state is assigned to the new state
in the next iteration of the algorithm.

B. AHRS
An attitude and heading reference system is a combination

of instruments capable of maintaining an accurate estimate
of the vehicle’s roll �, pitch ✓, and yaw  as the vehicle
maneuvers [7]. The development Inertial Measurement Unit
has an accelerometer, a gyroscope, and a magnetometer,
however, only data from the first two will be considered, as
flight IMU of the MoonRanger will not have magnetometer.
Data gathered from the sensors is highly accurate over the
short period of time, however, gyroscope readings drift over
time, and accelerometer is susceptible to noise, which makes
it unreliable over time. AHRS algorithm fuses measure-
ments from sensors using an extended Kalman Filter, which
significantly reduces drift and improves the estimate. State
vector is represented as following x = [b, xg, xa], where
b is orientation quaternion, xg and xa are gyroscope and
accelerometer biases respectively. Before the first iteration
of the algorithm, the initial orientation b0 and gyroscope
bias xg0 need to be determined. Gravity vector is obtained
by averaging the values of accelerometer ya over a certain
period of time T

ḡ
b =

1

T

TZ

0

�ya(⌧) d⌧ ! [ḡ1, ḡ2, ḡ3] (3)

Roll and pitch are then calculated using the following equa-
tions:

✓(T ) = atan2(ḡ2, ḡ3) (4)

 (T ) = atan2(�ḡ1,

q
ḡ
2
2 , ḡ

2
3) (5)

Initial yaw is set to zero and the orientation quaternion b is
constructed from the Euler angles values. After initialization
is complete, the prediction step of the EKF is executed,
where the state vector and the covariance matrix is being
approximated using the data from the gyroscope. The pre-
dicted estimate of the orientation is obtained from integrating
the equation:

b̂ =
1

2

2

664

�b̂2 �b̂3 �b̂4

b̂1 b̂4 �b̂3

�b̂4 b̂1 b̂2

b̂3 �b̂2 �b̂1

3

775 !̂
b
bn (6)

Body angular rate !̂
b
bn can be obtained by subtracting

gyroscope bias x̂g from it’s output u:

�!̂b
bn = u� x̂g (7)

Covariance matrix is being updated at the end as follows:

P̄t = �t�1P
+
t�1�

T
t�1 +Qdt�1 (8)

where � is a state transition matrix and Qd is a discrete-time
process noise matrix. Measurement update is only executed
when the robot is stationary, and it is possible to compare
the known gravity vector with the measured values. Kalman
gain is computed using the formula:

Kt = P̄tH
T
t (Rt +HtP̄tH

T
t )

�1 (9)

where H is an accelerometer measurement matrix and R is
the measurement covariance. The new state is obtained, then
both the covariance matrix and biases are updated.

C. Position estimation
MoonRanger is a four-wheeled skid steer rover, however,

in this research, the kinematic model was simplified to the
differential drive (Fig. 2) with the assumption that the angular
velocities of wheels on each side are the same. The state of
the rover is represented by X = [x, y, ✓], where x, y are the
position and ✓ is the heading of the rover. The predicted state
is calculated using the kinematic model and ticks from wheel
encoders. The distance travelled by each wheel is computed
by the formulas:

Dl = 2⇡R
�ticksl

N
Dr = 2⇡R

�ticksr

N
(10)

where R is the wheel radius, �ticksl and �ticksr are the
number of ticks received from encoders in the sample time
period and N is the number of ticks per meter. The distance
travelled by the center of the robot is then:

Dc =
Dr �Dl

2
(11)

Fig. 2. Differential drive model

Knowing those, the predicted state of the rover is obtained:

x
0 = x+Dccos✓ (12)

y
0 = y +Dcsin✓ (13)

✓
0 = ✓ +

Dr �Dl

L
(14)

where L is the width of the rover’s base. The covariance
matrix is updated using the following formula:

Pt+1 = FxPtF
T
x + FuUtF

T
u (15)

117



where Fx and Fu are Jacobian matrices with respect to the
state and control input respectively, and U is the noise matrix.
After the predicted state is calculated, the measurement
update is executed. The Kalman gain is calculated as follows:

K =
PtH

T
t

HtPtH
T
t +Q

(16)

where H is the measurement Jacobian and Q is measure-
ment noise. The estimated state of the rover, represented
as (x, y, z,�, ✓, ) is obtained and the covariance matrix is
updated.

III. RESULTS
A. AHRS

AHRS outputs the orientation of the rover with respect
to the world frame. Visualisation of the output was done
using the RViz tool as shown in Fig. 3. The robot frame is
transformed to the world frame and is published every time
a prediction step is executed.

Fig. 3. AHRS output

Evaluation of the position estimation was performed using
prerecorded data sets from the PowerRanger rover (Fig.
4). The testing was performed on a lunar-like terrain that
simulates traversing on the Moon. The algorithms outputs
estimate in the form of x, y, z coordinates relative to the
world frame and orientation quaternion that is obtained from
the AHRS and updated using the state approximated during
the prediction step with wheel encoders. The algorithm
generated a more accurate state estimation results when
compared to a simple dead reckoning scheme.

IV. CONCLUSIONS
A. Summary

This research looked at developing a localization algo-
rithm based on an extended Kalman filter. Developed state
estimation algorithm consists of two parts - AHRS, which
fuses data from accelerometer and gyroscope to determine
the orientation and position estimation that calculates the
state using the data from wheel encoders and orientation
from AHRS. The developed method provides superior state
estimation when compared to a dead reckoning algorithm.

Fig. 4. PowerRanger development rover

B. Future work
Future work will focus on implementing an integrated

model, that takes into account accelerometer readings in
the position estimation algorithm. To improve the AHRS,
data from sun-sensor can be fused to correct for the small
drift of yaw over time. The sun-sensor gives the global
orientation reference and could be used periodically to update
the orientation.

Considering that angular velocities of each wheel will
be different due to slippage on loose soil of the Moon,
a new kinematic model of the rover should be developed.
MoonRanger has encoders on each of the four motors and
switching to a four-wheeled skid steer kinematic model will
greatly improve the accuracy of the position estimation.
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Multi-Agent Path Finding Maximizing Inter-Agent Distance

Sahana Kumar1, Ishani Chatterjee2, Tushar Kusnur2, and Maxim Likhachev3

Abstract— The development of multi-agent robotic systems

with advanced knowledge not only of their own surroundings,

but also of each other, is an area of rising prevalence in today’s

world. Research in this area is applicable in a variety of fields

almost perfectly suited to autonomous robotic intervention,

including factories, aerial movement, or even computer games.

In the past several years, great strides have been taken in

collision-free multi-agent path planning. However, there has

not yet been an algorithm that accounts for significant distance

between agents in addition to distance from obstacles in their

path, minimizing collision risk. Here we propose a multi-agent

path planning algorithm which rewards paths with minimal

cost-to-go and maximized distance between agents, minimizing

the risk of error in path-following causing collision and thus

damage to not one but two agents. This algorithm allows multi-

agent systems to more effectively path plan and navigate around

each other in an intuitive and cost-minimal way. We saw an

increase of 2.015 units of distance on average between agents,

which is significant in preventing collisions. This effect could be

further improved by increasing the weight placed on distance-

separation between agents.

Index Terms— Multi-Agent Robotic Systems, Path Finding

I. INTRODUCTION

Recent years have seen increasing research, both in indus-
try and laboratory settings, on multi-agent systems, which
have the potential to carry out much more complex tasks in
larger spaces, such as warehouses and in video games. They
are capable of covering larger areas, executing more nuanced
tasks in less time, and allowing a diverse robotic skillset to
complete a variety of tasks. They’re also uniquely suited
to dynamic environments with changing terrain, as each
agent’s set of tasks is smaller. However, with this increased
functionality a new set of challenges are introduced, for
path-finding, control, and task management alike. One of
the largest path-finding challenges that is seen is collision
avoidance - when several agents move dynamically on a
shared field, the chance of potentially catastrophic collision
rises exponentially. It is not merely enough to ensure the
agents do not occupy exactly the same space - each agent
requires a “buffer distance” around it to avoid collisions
caused by imperfect control, error, and space constraints.
This buffer distance is difficult to predict, however, as it
depends on several factors including the speed of each
agent, difficulty of the terrain, proximity to other static
obstacles, extension of any appendages by either agent, and

1Sahana Kumar is with the Department of Biomedical Engineering, Johns
Hopkins University, Baltimore, MD, U.S.A.
skumar78@jhu.edu
2,3Ishani Chatterjee, Tushar Kusnur, and Maxim Likhachev

are with the Robotics Institute, Carnegie Mellon Uni-
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many more. Thus, it is most beneficial to ensure that each
agent has a “buffer distance” around it that is as large
as possible to prevent collisions. While collision avoidance
has been maximized by several previous approaches (as
described below), including avoiding high-density areas and
imposing kinematic constraints, an algorithm has not yet
been developed that prioritizes increased distance between
agents and increases the penalty as the agents grow closer to
one another. We present an algorithm that creates a maximum
distance buffer around agents, potentially causing a longer
path but ensuring that collision is avoided. This allows agents
to more effectively navigate around each other and ensures
that one agent’s failure won’t potentially lead to a domino
effect of collisions.

A. Related Works: Collision Avoidance

Current research efforts into collision avoidance have
primarily involved enforcing a minimum distance between
agents and otherwise allowing them to move as they will.
One key effort involved density mapping in crowded en-
vironments. This research focused on environments with
several static and dynamic obstacles and rewarded taking
a path through less densely populated areas, even if they
were longer. This not only saved collisions, it also saved
time, as agents could move quicker, stop less, and did not
require perfect precision, showing that collision optimization
can also lead to time optimization [1]. Another key effort
was a study by Hoenig et. al. which imposed kinematic
constraints on robots in close proximity to each other or
static obstacles in addition to distance constraints (limited
maximum linear and angular velocity). This led to more
precise path following in these areas and allowed collision
avoidance without decreasing velocity on clearer areas of the
path [2]. These efforts and many similar others have taken
strides towards eliminating collisions in multi-agent systems;
however, they have not yet studied the effect of rewarding
maximized distance between agents, as this study aims to
do.

II. ENVIRONMENT SETUP AND PROBLEM
STATEMENT

A. Environment

Consider a 2D 20x20 grid M populated with a team of N

independent agents ranked by priority, as well as a collection
of static obstacles. In this environment, the coordinate pair
(xAkt , yAkt) denotes the coordinate location (x, y) of agent
Ak at time t (given 0  k  N). Each of these cells has two
possible states - empty or occupied. Occupied cells can be
filled by one of two possible obstacles:
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1) Dynamic obstacles or agents, which are specified by
a start position and a goal position. Agents can move
in four possible directions (up, down, left, right) or
remain in place for each timestep. A step along any
edge has a cost of one. Dynamic obstacles can occupy
a cell for any set of times [i, j], where 0  i  j
 t and t is the total time required for all agents to
reach their goal states. Each agent moves as determined
by a modified A* prioritized planning algorithm (as
described below).

2) Static obstacles, which remain in their position for
the entirety of the time t. The positions occupied by
static obstacles are unavailable to dynamic obstacles
and steps that move onto them have a cost of infinity
and thus cannot occur.

B. Prioritized Planning

Currently, the most common approach to multi-agent path
planning is to use a prioritized planning system. This system
first separates each agent (A1-An) and ranks them based on
priority. It then computes the path of the highest priority
agent (for example, A1) using our modified A* algorithm.
It proceeds to compute the path of the next highest agent
(A2), using A1’s path as a dynamic obstacle that changes
based on time (via a x-y-time plot). This would proceed as
such until the final agent (An) is reached. The path of An

would be computing using all agents A1 to An�1 as dynamic
obstacles.

C. Cost Function

For the team of N agents described above in Section
A: Environment, maximum distance between agents and
thus minimum risk of collisions will be achieved by the
maximizing the following function for each point in the
path of each agent:

dist =
nX

i=1

nX

k=1

| xAkt � xAit | + | yAkt � yAit |

III. METHODS

A. Algorithm

In order to effectively maximize inter-agent distance, we
modify the g-value of each successor node s’ to be smaller
when the D(s’), sum of distances between s’ and other
agents at time t(s’), is greater. To prevent g(s’) from being
negative, we calculate some large constant c moving(s,
s’) and subtract D(s’) from it. This makes g(s’) = g(s) +
c moving(s, s’) - D(s’), as opposed to the g value in a
normal A* algorithm, g(s’) = g(s) + c(s, s’). This change
is shown in the pseudo-code below, with the cost function
differences highlighted in yellow. The algorithm depicted in
Fig. 1 is used for the control paths shown in Section IV:

Results, while the algorithm in Fig. 2 is used to derive the
distance-maximized paths.

Fig. 1. A* algorithm pseudocode

Fig. 2. Modified A* algorithm with distance maximization

IV. RESULTS

A. Evaluation Criteria and Experimental Setup

In order to evaluate the distance-modified A* algorithm,
we run a set of tests on a sample set of ten experiments (E1-
E10). E1-E5 are populated by two dynamic agents, while
E6-E10 are populated by four. E1, E2, E6, and E7 have
no dynamic obstacles, E3, E4, E8, and E9 have large static
obstacles composed of 5x5 square grids, and E5 and E10
both have cul-de-sacs. We run each experiment with a normal
A* algorithm, as well as a distance-modified algorithm with
weights of one to gauge the impact of the distance-modified
algorithm. The only difference between environments E1 and
E6, E2 and E7, E3 and E8, E4 and E9, and E5 and E10 are
the number of agents - each pair has an identical obstacle
setup. For each environment, we compare the total distance
of the path and the average distance between each agent
when using an A* algorithm to run it versus a distance-
modified algorithm. This contrast allows us to evaluate the
efficacy of this algorithm effectively. Each of these environ-
mental setups are run in the environment M described in the
above Environment section. The ten environments E1-10 are
summarized in Fig 3 and 4 below, along with experimental
results.
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Fig. 3. Experiments E1-E5 (two-agent experiments) with their agent paths and experimental data.

Fig. 4. Experiments E6-E10 (four-agent experiments) with their agent paths and experimental data.

B. Experimental Results

In running this sample set of environments, it was seen that
on average, the addition of the distance cost function signif-
icantly increased the distance between agents. On average,
the distance between agents was increased by 2.015 units,
which is significant in terms of ensuring lack of collision.
This effect was, as expected, lessened in environments where
the inter-agent distance was greater than 5 units even when
using solely an A* algorithm. This effect was particularly
pronounced in examples where an A* algorithm found nearly
identical paths, such as E1 (Fig. 5,6).

In contrast, two of the experiments with only 2 agents (E4
and E5) and a high number of obstacles experienced slightly
lower inter-agent distance (less that 0.2 units of difference)
with the distance-modified algorithm than with the normal
A* algorithm. An example of this is shown in Fig. 7 and
8. This is because by minimizing distance at one step, the
agent could potentially force itself into a more confined space
in the next step. While this might matter less in a more
open environment, when a high proportion of grid spaces
are occupied, this leads to a suboptimal algorithm. Further
optimization of the cost function is necessary to mitigate

this issue. Experimenting with increasing the weight on the
distance function did improve the problem, but resulted in its
own issues, increasing the time taken to complete the path
almost threefold.

V. CONCLUSIONS

The integration of distance-maximization into the A* cost
functions allows agents to find safer paths with less risk of
collision. Our sample set of experiments have demonstrated
a significant increase in inter-agent distance, significantly
minimizing collision possibility. Future steps include running
the algorithm on a greater set of sample environments that
are significantly larger, refining the algorithm to include more
advanced search methods, such as Conflict-Based Search,
and including distance from static obstacles in the cost
function.
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Fig. 5. Experiment E1 run with an A* planner. The orange lines
represent the higher priority agent A1, with the orange dot at position
(0,0) representing the start location and the magenta dot at position (19,19)
representing the goal location. The cyan lines represent the lower priority
agent A2, with the cyan dot at position (1,0) representing the starting
position and the blue dot at position (19,18) representing the ending position.

Fig. 6. Experiment E1 run with our distance-modified planner. The orange
lines represent the higher priority agent A1, with the orange dot at position
(0,0) representing the start location and the magenta dot at position (19,19)
representing the goal location. The cyan lines represent the lower priority
agent A2, with the cyan dot at position (1,0) representing the starting
position and the blue dot at position (19,18) representing the ending position.

upon work supported by the National Science Foundation

Fig. 7. Experiment E5 run with an A* planner. The orange lines
represent the higher priority agent A1, with the orange dot at position
(4,3) representing the start location and the magenta dot at position (18,10)
representing the goal location. The cyan lines represent the lower priority
agent A2, with the cyan dot at position (5,8) representing the starting
position and the blue dot at position (16,19) representing the ending position.
Each red dot represents a static obstacle.

Fig. 8. Experiment E5 run with our distance-modified planner. The orange
lines represent the higher priority agent A1, with the orange dot at position
(0,0) representing the start location and the magenta dot at position (19,19)
representing the goal location. The cyan lines represent the lower priority
agent A2, with the cyan dot at position (1,0) representing the starting
position and the blue dot at position (19,18) representing the ending position.
Each red dot represents a static obstacle.
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Legibility of Path Trajectories Personalized for Multiple Perspectives

Ellen Mamantov1, Ada Taylor2, and Henny Admoni2

Abstract— Intent-expressive (legible) motion is a key compo-
nent of human-robot interaction because it allows observers
to make inferences about a robot’s goals. Most algorithms
that generate legible motion assume that observers have an
omniscient perspective, where viewers see every change in the
robot’s configuration as it moves. However, there are potential
benefits to personalizing the robot’s motion for an observer’s
specific perspective. Furthermore, there are frequently multiple
people sharing a space with a robot that all would benefit from
being able to infer the intent of that robot. In this work, we
present a model that plans navigation path trajectories with
multiple observers’ perspectives in mind. We test our model
through video-based user studies that compare the legibility
of paths personalized for omniscient, individual, and multiple
perspectives. Our pilot user study did not provide convincing
evidence that incorporating multiple perspectives into path
planning increases legibility, but the results will inform the
design of a full user study that will be conducted in the future.

Index Terms— Social Human-Robot Interaction, Motion and
Path Planning

I. INTRODUCTION

People are well versed in understanding the intent of
another human’s actions, but it is much more difficult for
a human to understand the goals of a robot. Therefore, the
robot is responsible for conveying its intent to the humans
around it. For example, in a restaurant, people are intuitively
aware of other patrons and servers. Patrons can alter their
behavior to best coordinate with servers, such as timing a
break in their conversation for when their server arrives at
their table. Underlying this ability is the fact that the patrons
can infer the goals and intentions of the server.

A robot needs to be able to convey its intentions to its
observers, and one way to do so is to make its motion legi-
ble (intent-expressive). However, current state-of-the-art path
planning algorithms do not take into account the perspectives
of the robot’s observers, particularly when there are multiple
viewers with different perspectives. Planning movement with
observers’ perspectives in mind has the potential to make a
robot’s motion more legible overall. In turn, because people
will be better able to understand the robot’s intentions and
goals, their interactions with the robot should be safer and
more rewarding.

In this paper, we study a robot’s navigation path trajec-
tories in a complicated scenario with multiple observers:
a restaurant. The goal is to generate approach trajectories

1Ellen Mamantov is with the Computer Science and
Psychology Departments, Carleton College, Northfield, MN, USA
mamantove@carleton.edu

2Ada Taylor and Henny Admoni are with the Robotics Institute, Carnegie
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for a robot server that are more human-understandable and
informative to the customers in the restaurant. We present a
method for generating navigation paths for a robot server that
takes into account the relative visibility of the path. We test
the effect of taking into account multiple perspectives when
planning path trajectories through an online, video-based hu-
man subjects experiment. Our study compares the legibility
of trajectories that were personalized for one perspective or
two perspectives to baseline trajectories that were planned
under the assumption that observers have an omniscient
perspective. We hypothesize that:

H1 A robot that plans its path taking into account the
visibility of that path to all of its observers can create paths
in which the goal is easier for viewers to understand.

H2 A path personalized for a specific perspective will be
more legible than the average multi-perspective performance
for that perspective but will be less legible for other perspec-
tives.

Our preliminary pilot study failed to provide support for
either hypothesis and the results suggested that the paths
were not distinct enough to be more or less legible than
each other. However, the pilot study will effectively inform
the design of the full user study that will be conducted in
the future.

II. BACKGROUND

Plenty of previous studies have focused on legible motion
that conveys the robot’s intention to the observer(s). It has
been shown that people are better at inferring an approaching
agent’s end destination when the agent is a human rather
than a robot [1]. One solution that has been studied is
adding behaviors to a robot’s motion that aid in people’s
understanding of the robot. It has been shown that adding
anticipatory gestures to a robot’s motions increased people’s
ability to identify the robot’s intent [2]. Similarly, adding
forethought and reaction animations increased the readability
of robots and improved people’s perceptions of them [3].
However, these solutions are all explicit ways to express
intent. In many situations, it is valuable for a robot to be
able to convey its intent implicitly [4].

An implicit solution that has received attention in the
literature is changing robots’ motion trajectories to help
people understand what the robot is trying to accomplish,
but the findings have been mixed. While one study found
that people prefer a robot to approach them from the side
rather than approach straight at them from the front [5],
another study concluded that straight trajectories are best
[6]. Some work has found that predictability and legibility
are correlated characteristics of motion and have treated
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legibility and predictability as inseparable [6]–[9]. Other
work has found that legibility and predictability are actually
separate, sometimes contradictory, characteristics [10]–[12].
It has been shown that path trajectories that do not match
humans’ expectations but convey the motion’s goal or intent
to a human observer more successfully exist. These less-
predictable and more-legible paths allow a human observer
to infer the robot’s intent confidently and quickly [10].

Past research involving legibility of motion has utilized a
wide variety of different methods. In some, people interacted
with robots in person [1], [5], [12], [13], while in others
people viewed videos of a robot moving or a simulation
of a robot’s motion [2], [8]–[11], [13]. The robot’s tasks
also vary widely among different studies and include picking
up one of two cups [10], moving to one of three tables
[1], delivering a TV remote using three different paths
[13], and using different trajectories to avoid a collision
while crossing paths with a human [9]. However, despite
this wide variety of studies, very few have considered an
observer’s perspective when studying legibility, even though
past work has identified an observer’s viewpoint as one
important aspect that affects whether a robot’s motion is
legible [11]. Most contemporary legible motion planners
assume that human observers are omniscient and are aware
of all changes in the robot’s configuration as it moves, even
though human observers have a particular viewpoint that
does not encompass the entire scene. One previous study
investigated this assumption and introduced a model that
optimizes motions with a certain 2D-projection in mind; it
was shown that certain viewing angles can lead to depth
uncertainty and occlusions that make certain trajectories less
legible [14]. However, this technique does not deal with the
overall field of view or multiple perspectives, but instead
focuses on how motions within a field of view are perceived.

In this paper, we consider legible motion in a more
complicated scenario with multiple observers. While past
work has considered the effect of viewpoint on the legibility
of a robot’s arm movements [11], [14], we focus on the
legibility of navigation paths that a robot takes to approach
targets. For example, in a restaurant, multiple people that
are sitting at one table should all be able to recognize a
server’s intended destination. Personalizing path trajectory
for one of the diners may lead to the other diners being
unable to infer the server’s goal. To address this, we present
a method for planning paths that are personalized for multiple
observers’ perspectives. We test the effect of taking into
account multiple perspectives when planning approach tra-
jectories through a video-based human subjects experiment.
Our study compares the legibility of trajectories that were
personalized for one perspective or two perspectives to a
baseline of an omniscient perspective.

III. METHODS

To test our method for creating personalized paths for ob-
servers, we conducted a pilot user study and plan to conduct
a full-scale user study after making adjustments based on the
results and feedback gathered during the pilot. Therefore, this

work remains in progress. According to our first hypothesis,
we expect that taking into account multiple perspectives will
create more legible paths than taking into account a single
perspective and that taking into account a single perspective
will generate more legible paths than assuming an omniscient
perspective. According to our second hypothesis, we also
expect that a path personalized for a specific observer’s
perspective will be more legible for that person than the
paths generated with all perspectives or no perspectives in
mind. However, we also expect that a specific observer will
find a path generated for a different observer less legible
than a path generated with both perspectives in mind, and
the multiple-perspective path will out-perform the incorrectly
personalized one.

Fig. 1. The restaurant scene from above (top) and from the two
perspectives that participants could be assigned to: Perspective A (middle)
and Perspective B (bottom). Perspective A and B are “sitting” at Table 1

A. Task
Participants were shown videos of a robot server approach-

ing different “goal tables” in the restaurant. They were tasked
with indicating how confident they are that the server is
approaching their table.

B. Stimuli
We planned our video stimuli by manipulating several

variables. In every video, a robot moves from a starting
location to one of four goal tables: the participant’s table
(table 1) or a table in front of (table 0), across from (table
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Fig. 2. The cost functions that correspond to the four path planning method conditions. Each one is a map of the visibility of one of the four sets of
perspectives

3), or perpendicular to (table 2) the participant’s table. Given
this basic setup, we manipulate:

Perspective, by changing which of the two chairs at the
participant’s table they are watching the scene from;

Path Planning Method, by having the robot follow a path
planned for an omniscient perspective, both perspectives, an
individual perspective (A), or the other individual perspective
(B).
Given that there are four goal tables, four path planning
methods, and two perspectives, we had a total of 32 video
stimuli.

C. Path Planning

Each of the four path planning methods was used to
generate paths for each of the four goal locations, creating
16 in all. All of the paths begin at the same starting position
and consisted of seventeen waypoints. All were created with
the same table layouts and observers, though not all of the
cost functions for assessing paths take these into account.

For each of the four path planning methods, we generated
a map of the visibility of each set of observers accounted for
in that path planning method. The four maps are shown in
Figure 2. For the omniscient condition, we did not record any
visibility. For each single-observer condition, we projected a
60� cone in the direction of the observer’s perspective and
another 120� cone representing their peripheral vision. Points
within the first cone were given a reward of 1 unit of vision,
points within the outer cone were given 0.5 units of vision.
For the Both Perspectives condition, we combined the two
individual mappings. A mapping of the cost to traverse points
in the scene was also generated, with obstacle points such as
tables given an infinite cost, and a buffer zone around each
to account for the navigation of the robot that was treated as
part of the obstacle.

To generate paths, we created bezier curves anchored at
the beginning and ending points of each path, sampling
additional control points from within the cones of vision.
From these generated paths, we chose those with the lowest
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Fig. 3. The paths to each of the four tables in the restaurant that were used in the user study. Blue paths were personalized for Perspective A. Green paths
were personalized for Perspective B. Pink paths were optimized while considering both observers’ perspectives, and yellow paths were not personalized
for either perspectives.

cost, as defined by:
For a path ⇠ with weight on the visibility function k (set to
3 for our experiment):

C⇠ =

Z

⇠
Cobstacles(p) + Cdistance(p) + k ⇤ Cvisibility(p)

Where

Cobstacles(p) =

8
><

>:

1, if obstacle map shows p blocked
by obstacle or buffer

0, otherwise

Cdistance(p) = 1

Given our map of the visibility from each point as V :

Cvisibility(p) =
max(V )� V (p)

max(V )

Thus, the total cost of a given path is the integral along
the path, or the sum of these values at every point. Among
the generated paths, we chose those with the lowest overall
cost for the pilot.

Intuitively, for the omniscient point of view, this results
in no waypoints and no benefit to warping the path from
a straight line, and therefore a straight line. Paths which
dip into the vision areas are longer, and their lower cost
in Cvisibility to compensates for the higher cost in Cdistance.

D. Procedure
We developed a restaurant simulator using the Unity Game

Engine software. The robot server was a model of the Kuri
Robot. We generated the stimuli by recording the simulator
as it played. The stimuli only differed by the path waypoints

that were supplied for the robot to follow and which of the
two perspectives it was recorded from.

The study was constructed and deployed online using
the open-source framework psiTurk [15] and consisted of
a tutorial that introduced the participants to the restaurant’s
layout and the mechanics of the slider that they would use to
report their confidence, the trials, and a final questionnaire.
To ensure that no participant saw the same path twice (but
from different perspectives), each participant was randomly
assigned to one of the two perspectives and shown 16 video
stimuli (4 goal tables x 4 pathing methods). We randomized
the order of the stimuli to avoid ordering biases.

During the trials, participants used a continuous slider
to report how confident they were that the server was
approaching their table on a scale from 0 to 100. They
reported their confidence continuously, and the video would
only continue playing if they were actively holding the slider.
The participants were not able to report their confidence after
the videos ended, which occurred when the server reached
its goal.

The post-study questionnaire included open-ended ques-
tions that allowed participants to provide feedback about the
task.

E. Participants

We recruited 20 participants from the community (6 male,
12 female, 2 unspecified, aged 21-29) for a pilot study. Ten
participants were randomly assigned to the Perspective A
condition, and the other ten participants were assigned to
the Perspective B condition.
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IV. ANALYSIS AND RESULTS

A. Raw Confidence Data
Confidence data were collected continuously during each

trial. Participants reported how confident they were that the
server was approaching their table on a scale of 0 to 100.
Reporting a low confidence value also meant that they were
very confident that the server was approaching a different
table. Figure 4 provides an example of this data.

Fig. 4. Average raw confidence score over time during two of the sixteen
trials shown to participants that were watching from Perspective B: the trial
during which the robot approached the participant’s table (table 1) using the
omniscient path planning method (Bottom) and the trial during which the
robot approached the participant’s table (table 1) using the both perspectives
path planning method (Top).

B. Testing Hypothesis 1
To test our first hypothesis, we compared the performance

of participants across the four different path planning
methods conditions. Because hypothesis 1 focuses on
the overall performance of all participants, regardless of
which perspective they are viewing from, we did not
keep participants separated by their perspective condition
for this analysis. We analyzed three different aspects of

performance: continuous correctness, accuracy, and number
of reversals.

1) Continuous Correctness: For analysis, we altered the
raw confidence data such that a value of 100 represents high
confidence that the server is approaching the correct table,
whether or not the correct table was the participant’s table.
We accomplished this by simply flipping the scale of the
raw confidence data whenever the goal table was not the
participant’s table. We refer to these values as continuous
correctness values. An average continuous correctness value
was calculated for every trial, with continuous correctness
values weighted by the amount of time the participant re-
ported that value. A one-way analysis of variance (ANOVA)
was calculated on the participants’ average continuous cor-
rectness value. The analysis was not significant, (f(3) =
0.555, p = 0.645).

Fig. 5. Box plot showing the distribution of participants’ average contin-
uous correctness values by path planning method condition

2) Accuracy: Accuracy values are discrete values based
on the raw confidence data. The participant was considered
accurate if their raw confidence value was over 55 and
the server’s goal was their table or if their confidence was
under 45 and the server’s goal was a different table. They
were considered unsure if their confidence was between
45 and 55. An average accuracy score was calculated for
every trial. An accurate confidence value received a score
of 1, and inaccurate confidence value received a score of
0, and an unsure confidence value received a score of 0.5.
To calculate the average accuracy of the trial, each score
was weighted by the amount of time the participant was
correct, incorrect, or unsure, respectively. A one-way analysis
of variance (ANOVA) was calculated on the participants’
average accuracy value. The analysis was not significant,
(f(3) = 0.454, p = 0.715).

3) Reversals: We defined a reversal as a participant
changing their prediction about the server’s goal. Reversal
data was also calculated from the raw confidence data. A
reversal occurred each time a participant’s confidence score
changed from below 45 to above 55 or from above 55 to
below 45. The total number of reversals was counted for
each trial, and the average number of reversals for each
path planning method was calculated. A one-way analysis of
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Fig. 6. Box plot showing the distribution of participants’ average accuracy
values by path planning method condition

variance (ANOVA) was calculated on the participant’s aver-
age number of reversals. The analysis was not significant,
(f(3) = 0.503, p = 0.681).

Fig. 7. Box plot showing the distribution of participants’ average number
of reversals by path planning method condition

Our first hypothesis was not supported by the pilot
study results due to the lack of significant improvement in
participant performance in trials that presented paths that
were personalized for both perspectives.

C. Testing Hypothesis 2

To test our second hypothesis, we compared the
performance of participants during trials that presented
paths that were personalized for the perspective they were
watching from (“matched trials”) to their performance
during trials that presented paths that were personalized for
the perspective they were not watching from (“mismatched
trials”). In other words, matched trials were those in which
participants in Perspective A watched paths personalized
for Perspective A or participants in Perspective B watched
paths personalized for Perspective B. Mismatched trials
were those in which participants in Perspective A watched
paths personalized for Perspective B and participants in
Perspective A watched paths personalized for Perspective
B. We used the same methods that are described above to

analyze continuous correctness, accuracy, and number of
reversals.

1) Continuous Correctness: A one-way analysis of vari-
ance (ANOVA) was calculated on participants’ average con-
tinuous correctness value during either matched or mis-
matched trials. The analysis was not significant, (f(1) =
0.137, p = 0.711).

Fig. 8. Box plot showing the distribution of participants’ average contin-
uous correctness values in matched trials (perspective and personalization
match) or mismatched trials (perspective and personalization differ)

2) Accuracy: A one-way analysis of variance (ANOVA)
was calculated on participants’ average accuracy value during
either matched or mismatched trials. The analysis was not
significant, (f(1) = 1.194, p = 0.276).

Fig. 9. Box plot showing the distribution of participants’ average accuracy
values in matched (perspective and personalization match) or mismatched
trials (perspective and personalization differ)

3) Reversals: A one-way analysis of variance (ANOVA)
was calculated on participants’ average number of reversals
during either matched or mismatched trials. The analysis was
not significant, (f(1) = 0.295, p = 0.588).

Our second hypothesis was also not supported by the pilot
study results because there are no significant improvements
in participant performance in matched trials.

D. Implications for Future Study
Despite the lack of significant findings, the pilot user study

described here will be used to inform the development of a
full-scale user study that will be conducted in the future.
Qualitative feedback from pilot study participants indicates

129



Fig. 10. Box plot showing the distribution of participants’ average
number of reversals in matched (perspective and personalization match) or
mismatched trials (perspective and personalization differ)

that they were not able to become comfortable with the input
range slider that we utilized to collect raw confidence data
during the task. They noted that the tutorial felt short and
wished it was more related to the real study’s task. Moving
forward, we plan to incorporate a longer tutorial that not only
introduces participants to the mechanics of the confidence
slider but also to the specific task of inferring where a
server is approaching. Their feedback also suggests that
more learning occurs throughout the task than we originally
planned for. Participants reported that they adjusted to the
task as it went on. To mitigate practice effects, we plan to
use a Latin squares design in the future study rather than
simply randomizing the presentation of the stimuli.

Other notable qualitative feedback includes the fact that
the paths appeared extremely similar to participants during
the study. Multiple participants noted that they thought that
stimuli were being repeated, even though each stimulus
was unique. The lack of statistically significant results, in
combination with the participants’ feedback, suggests that
the paths were not distinct enough from each other to
affect participants’ confidence in their inferences. We plan
to change portions of our path generation process to adjust
for this. To help us ensure that the paths we generate are
noticeably distinct, we plan to develop metrics that will allow
us to quantitatively measure how different two paths, or two
sets of paths, are.

Finally, we have realized that our performance metrics
and data analysis may not fully capture differences that
exist between the path planning methods. We found that
performance depended on which condition the participant
was in because viewing the scene from one perspective
(Perspective A) was much more difficult than viewing it
from the other perspective (Perspective B). However, our data
analysis relied on averaging over the lengths of trials and
across all participants, regardless of perspective condition.
Thus, we may have failed to identify smaller, but still
significant, trends. We plan on incorporating more nuanced
analysis into our future work.

V. CONCLUSION
In this paper, we have proposed a change to path planning

with the goal of improving the legibility of navigation paths
taken by robots to approach people. We show that taking
into account multiple observers’ perspectives when creating
trajectories results in paths that differ from ones that are
created when only taking into account one perspective or
ignoring observers’ perspectives entirely. We developed a
user study to test the legibility of different paths using a
simulated restaurant scenario and piloted it to discover its
strengths and weaknesses. The lack of significant results in
the pilot user study simply informs changes that will be made
before the full user study is conducted.
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Destination-Aware Auction Systems for Paratransit Scheduling

Rebecca Martin1, Lan Wu2, Yu Wu3, Isaac Isukapati4, and Stephen Smith4

Abstract— Paratransit systems provide an equitable transit
service to the elderly and handicapped through shared-ride,
door-to-door transportation. The main objective of the dial-
a-ride problem (DARP) is to optimally schedule and dispatch
available vehicles to satisfy ride requests between given pick-up
and drop-off locations at specified times. One type of solution to
this scheduling problem utilizes an auction system to assigning
requests to tasks. However, in these static systems, all ride
requests are known upfront, and cannot accommodate any
last minute or real time requests. In addition, these systems
do not take into account that the time costs associated with
each request are destination dependent. To remove this rigidity
and equal prioritization of requests, our research schedules
requests dynamically and assigns priorities to requests based on
their destination. To evaluate our algorithms, we simulated our
system in Python and compared it against a static optimization
algorithm [1]. Overall, the auction-based system performed
well, scheduling at least 95% of the requests more efficiently.

Index Terms— Paratransit, Dial-A-Ride Problem, Multi-
agent systems, Auction-based scheduling

I. INTRODUCTION

Dial-a-ride paratransit systems play an instrumental role in
providing equitable transportation services to special groups
of the population, such as the elderly or handicapped.
With a fare scheme comparable to that of a fixed-route
transit, paratransit provides shared-ride, door-to-door service
with flexible routes and schedules. The dial-a-ride problem
(DARP) aims to optimally schedule and dispatch transit
vehicles to satisfy requests for travel between pick-up and
drop-off locations at specified times. A typical request in this
context provides details on pick-up and drop-off locations,
number of passengers, type of request, and optimal time
windows within which it needs to be fulfilled. The scheduling
component can be static, dynamic, or a combination of both.
In the context of static DARP, all the requests and available
vehicle fleet are known well in advance. In a dynamic DARP,
the requests are serviced on an ongoing basis with an ability
to increase the fleet size as needed. In the hybrid approach,
reservations made in advance permit the construction of day-
ahead (off-line) schedules, while the same day requests and
other events such as trip cancellations, vehicle breakdowns
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etc. can be re-integrated into the current schedule (on-line
schedule).

In the real world, DARPs have limited resources, making
them suffer from over-subscription, where there is more
demand than capacity. This leads to increasing the wait time
and could even result in failure to fulfill a subset of transit
requests within the specified time windows. This requires a
careful trade-off between cost and time. A typical scenario
in this context poses challenge on vehicle utilization and task
allocation, for which an optimized destination-aware auction
system is introduced based on dynamic and heterogeneous
dial-a-ride problem (DH-DARP).

For the problem setting, we focus on the dynamic, hetero-
geneous DARP. The dynamic nature of the DH-DARP comes
from multiple sources. For example, passenger requests are
not all known in advance; they are submitted over time.
In addition, traffic conditions can affect both pick-up and
drop-off schedules so that the delay time is simulated in
a stochastic fashion. Besides that, various car types (i.e.
ambulance car and wheelchair carrier) are involved in a
heterogeneous vehicle fleet in order to meet multiple require-
ments. Considering both function and capacity difference,
requests are separately assigned to vehicles with consistent
nature.

To make as many as passengers satisfied with the sys-
tem under such a dynamic setting, we firstly propose our
destination-aware strategy, which precisely divides requests
into three priority categories: high priority goes for high-
cost appointments, such as a doctor’s appointment; medium
priority deals with pre-organized valuable activities, where
being on-time is preferable but not critical; and low priority is
assigned to daily routines, such as grocery shopping. In this
way, requests with lower level are given more relaxed time
constraints, making room for requests with higher priority.

In addition to this strategy, this paper addresses the
DH-DARP with an agent-based approach in terms of bid-
computation, auction and request swapping. Each vehicle
bids on a request based on how much it would cost the other
passengers who have assigned to the vehicle. Every time an
auction is completed, swapping is applied to improve the
overall optimality of the whole system. The centrality and
dispersion degree are also taken into consideration pursuing
a comprehensive judgement for the network’s performance.

The remainder of this paper is organized as follows. A
review of related literature is provided in section II. Section
III introduces a formal problem definition and a mathematical
programming formulation of the problem. Section IV details
the method we use, which encompasses system architecture
as well as the proposed algorithms. Section V focuses on

132



simulation result and comparison with baseline method.
Finally, a summary and suggestions for future research are
provided in section VI.

II. RELATED WORK

Since proposed by Wilson in 1971 [2], the Dial-a-Ride
Problem (DARP) has been studied extensively based on one-
to-one Pickup and Delivery Problem with Time Windows
(PDPTW). Generally, the scheduling component can be
static, dynamic, or a combination of both, like stated in
section I. In contrast to what happens in a static problem, the
planning horizon of a dynamic DARP may be unbounded.
Therefore, using gradually revealed information, it is crucial
to specify a strategy for dynamic cases.

For static DARPs, recent research mainly focuses on exact,
local neighborhood search and insertion heuristic techniques,
together with a more accurate estimation model of fuel
consumption [3] and service quality [4]. For example, exact
methods such as branch-and-cut [5] have been developed
based on mixed-integer programming for minimum cost.
While considering complex constraints from capacity, du-
ration, time window, to pairing and precedence, this method
has a long execution time for large-scale problems. To over-
come this weakness, heuristic approaches, GPU accelerated
tabu search [6] and multi-atomic annealing heuristics [7] for
instance, are presented with significantly improved efficiency
and near-optimal solutions to various degrees.

Compared to static cases, far less work has been done
for dynamic DARPs. One of the first studies on the Dy-
namic DARP was carried out by Psaraftis (1980) [8], who
considered the single vehicle case. In order to minimize the
average service period and reduce the dissatisfaction portion,
an exact O(n23n) algorithm was proposed to partially modify
prior-generated routes. Then Horn (2002) [9] came up with
strategical heuristics for large size system in software level.
It periodically operates local search and considers practical
manners like time window restriction, book cancellation,
and future request anticipation. Moreover, aiming at more
complex DARPs, Beaudry et al. (2010) have developed a
two-phase algorithm, which considers requests’ urgency level
and various modes of transportation as substantial constraints
[10].

The scheduling of the DH-DARP can be abstracted as a
dynamic multi-agent traveling salesman problem (TSP). In a
TSP, the vehicle has to find a schedule and follow it to travel
all the required locations without repeated visit and violating
any constraint. The traveling salesman problem is a well-
known NP-hard problem and many algorithms have been
proposed for solving it under different constraints. The most
popular method uses a greedy strategy with an optimization
algorithm to improve the schedule with respect to a particular
heuristic. Other less common methods utilize an auction-
based framework. In current literature, most of these methods
make overly simplifying assumptions, such as that each agent
can only carry out one job at a time, otherwise, the schedule
can only be computed off-line, which is not dynamic as we

want. Therefore, mainly lacking in the prior work is a multi-
agent scheduling system that reasons in an optimized and
stable fashion about vehicle utilization and role adoption
while maintaining the ability to respond dynamically and ef-
ficiently to unexpected requests under large size constraints.
In this paper, we demonstrate a continuous, agent-based
scheduling of trip requests with a market approach [11]
having its primary advantage in opportunistically optimizing
resource utilization. We will consider using a bidding system
to construct dynamic schedules, optimized for time and
capacity, while accounting for the different accommodations
needed for wheel-chair bound and ambulatory passengers.
Note that since each vehicle is modeled as self-interested
agent, the overall cost is minimized thus benefiting the whole
market.

III. PROBLEM FORMULATION

In the dynamic DARP, the requests r are sent continuously
along with the operation of the vehicle fleet V .

In the vehicle fleet V , there are n working vehicles, with
each one named vi, i 2 [1, n]. In each vehicle vi, there is
capacity of ↵vi for wheel-chair passengers and capacity of
�vi for ambulatory passengers. Each vehicle also has its
accepted request list Rvi and current schedule Svi where
each schedule s in it is a schedule dictionary, with key-value
pairs of trip ID js from the corresponding request, scheduled
location ls, scheduled time ts, and passenger priority ps in
them, which depends on the passengers’ destination. We set
all the vehicles to be identical on velocity and define the
expected traveling time between any two locations l1 and l2
for any vi to be E(l1, l2). This value of it is computed by a
third-party API, which is introduced more in section IV.

For any request r, jr is the unique trip ID, and the
following information is contained. l(p)r and l(d)r represent the
locations for pick up and drop off the passenger. T (p)

r and
T (d)
r stand for the allowed time windows (closed intervals

of time) for pick-up and drop-off time. xr is the number of
wheel-chair passengers and yr is the number of ambulatory
passengers. pr is the priority of the passengers.

For any certain i 2 [1, n], 8s 2 Svi and 8r 2 Rvi , it
should be satisfied that:

(js = jr)) (ls = l(p)r _ ls = l(d)r ) (1)
(js = jr)) (ps = pr) (2)

(js = jr ^ ls = l(p)r )) (ts 2 T (p)
r ) (3)

(js = jr ^ ls = l(d)r )) (ts 2 T (d)
r ) (4)

For any i 2 [n],

↵vi �
X

r2Rvi

xr (5)

�vi �
X

r2Rvi

yr (6)

For any sj and sk in any certain Svi ,

|tsj � tsk | � E(lsj , lsk) (7)
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Among all above equations, equation (1, 2, 3, 4) respec-
tively show the correspondences of the locations, priorities,
scheduled times between a schedule dictionary and a request.
Equation (5) and (6) constrain the capacity demands, and
equation (7) limits the time differences between any two
scheduled locations according to the expected time duration.

Suppose for any s the allowed time window for ls is Ts,
given the constraints above, the optimization object is by
changing Svi ’s to achieve:

min
X

i2[n]

X

s2Svi

disutil((ts �min(Ts)), ps) (8)

where disutil is defined as:

disutil(�t, p) =

8
><

>:

log2 �t p=1
�t p=2
(�t)2 p=3

(9)

The intention of disutility function disutil is to give the
requests with different priorities different non-linear weights,
which attaches high priority requests apparent importance.

In sum, given all the constraints, we want to minimize
the gap between all the scheduled time and negotiated time,
for all the vehicles, with non-linear mappings decided by
passengers’ priorities as weights.

IV. METHODS
A. External Data and Tools

In this system, we used Open Route Service to calculate
the distances and travel times between two locations. Our
simulator is based on [12]. Historical paratransit data from
Pittsburgh’s ACCESS paratransit system was used for testing.
We started out with a set of 902 paratransit ride requests for
one day. For this research, these requests were augmented
with priority tags 1, 2, or 3, uniformly at random.

Fig. 1. A sample solution to a VRP using Google OR-Tools.

We used OR-Tools from Google to compute optimal
schedule for one vehicle. The scheduling problem for a single
vehicle was modeled as a TSP with time windows, which
can be solved by adding the time matrix and time windows.
The time matrix stores the travel times between locations
and the time windows limit the allowed visiting time of
the locations. Because the original version of the tool is
for solving vehicle routing problems (VRPs), which are the

multi-agent version of TSPs, we set the vehicle number equal
to one. It is worth noting that the solver only deals with static
scheduling problems, and we invoke it repeatedly to fit our
dynamic settings. Figure 1 from OR-Tools website shows an
example of the solution to a VRP using OR-Tools with four
vehicles.

B. Scheduling Algorithm

The total procedure of assigning a new request to one of
the vehicles works like Algorithm 1. Each vehicle has the
equal right to bid for the request, and the one which expects
to be have the least cost on its previous schedule wins the
bid. When a vehicle is bidding, the virtual updated schedule
is computed using OR-Tools. The winner of the bid accepts
the request and replaces its schedule with the updated one.

Algorithm 1 Check and assign new requests to the vehicles.
Input: The new request, r; The global vehicle list, V ;

1: cmin  1;
2: vopt  None;
3: for all v in V do
4: Compute cost c supposing v accepts r;
5: if c < cmin then
6: cmin  c;
7: vopt  v;
8: end if
9: end for

10: Assign r to vopt and update vopt’s schedule;

The detailed bidding procedure is showed as algorithm 2.
If any conflict happens, the vehicle has to abandon the bid.
The updated schedule is compared with the old schedule
of the vehicle, and any additional delay on any previously
scheduled stop will accumulate the cost. In addition, the
delay of a passenger of a previously accepted request with
high priority will result in a higher cost. The vehicle which
has the lowest expected cost for the new request wins the
bid and accepts the request.

Another method applied is swapping some requests among
some vehicles when swapping can optimize the global sched-
ule, shown as algorithm 3. The swap check happens in
a stable frequency, ensuring that each swap helps reduce
the total cost and improve the dispersion and equity of
the distribution of the vehicles. Any request with too short
remaining time till pickup cannot be swapped.

It should be noted that the dispersion and equity values
are important factors calculated in the process of swapping.
The equity value considers how many vehicles are there
within the specified distance d with respect to given popular
locations Pi. In other words, we anticipate that another
passenger will dial a ride, choosing one of those popular
locations as his pick-up address. Shortly thereafter, his car
arrives with an expected travel period t̂. Then, the equity
value measures how accessible each popular location will be
at time t̂, which gives a weighted average taking the relative
popular index P index

i into consideration.
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Algorithm 2 Compute cost for a vehicle given a new request.
Input: The new request, r; The vehicle instance, v;
Output: The cost, c;

1: if v has no capacity for the passenger in r then return
1;

2: end if
3: Add r to v’s request list to get a new virtual request list

R⇤;
4: From R⇤ and v compute parameter set Param needed

for OR-Tools;
5: Call OR-Tools API with Param to get new schedule

S⇤;
6: if S⇤ == None then return 1;
7: end if
8: c 0;
9: for all schedule dictionary s in v’s old schedule S do

10: t corresponding scheduled time of s in S;
11: t⇤  corresponding scheduled time of s in S⇤;
12: delay  t⇤ � t;
13: p corresponding passenger priority of s;
14: c  c + disutil(delay, p); //disutil is shown in

section III.
15: end for
16: return c;

Similar to the equity value, the dispersion value employed
here measures the spread of the vehicle fleet over the city
according to the distance of each vehicle at some future
anticipated time t̂. At that point, the average straight-line
distance between each possible pair of vehicles is calculated
as below:

dtiv = (
2!(|v|� 2)!

|V |! )
X

i2V

X

j2(V :j 6=i)

dij (10)

ti ) N(t̂,�2) (11)

dv =
X

dtiv P (ti) (12)

V. RESULTS

To test these schedules and incorporate some of the
uncertainty present in carrying out the schedules, we used
the statistical simulator from [12]. In this simulator, the
paratransit schedules were randomized by sampling from
two uniform distributions. The first distribution determined
whether the vehicle would arrive at its stop early, on-time, or
late. If the vehicle was not on-time, the second distribution
determined how early or late the vehicle was going to be,
with a maximum of five minutes between the scheduled time
and the randomized time. However, to preserve the spatio-
temporal aspects of each trip, the randomized time between
two stops was not allowed to be less than the minimum travel
time calculated by the Open Route Service API.

The baseline schedule was created statically using a greedy
scheduling algorithm to construct an initial schedule. This
initial schedule was then given as input to Generalized Task

Swap [1], a local search algorithm, which optimized the
schedule and made sure that all requests were scheduled
within the given time constraints, if they had not managed
to fit into the initial schedule.

For our experiments, we tested to see how much the order
the requests were received in affected the performance. For
this, we had requests submitted either exactly 30 min or
randomly between 30 and 45 min before their requested
pickup time. We ran ten experiments for each condition,
while varying the random seed. These experiments were
then compared to the static optimized schedule based on
ride duration. We computed the improvement in the sum,
mean, and median of all of the ride durations for the entire
schedule. These results are shown in Table I below. We also
plotted the CDFs of the distribution of ride times to visualize
the improvement offered by the auction system. These CDFs
have been cropped at the 95th percentile to eliminate outliers.
The graphs are shown in Figures 2, 3, and 4.

From this data, we can see that the median ride durations
improved in every case for all priorities. The mean ride du-
ration also improved significantly for all requests, regardless
of the order of request arrivals. This means that the vast
majority, if not all, of the requests saw a decrease in ride
duration, with the longer rides receiving more benefit. This
improvement in ride times is because the auction system has
less interleaving of pickup and droppoffs; that is, it keeps the
ride time for each request short by making each passenger’s
trip as direct as possible, while minimizing overall system
cost.

VI. CONCLUSION
In this paper, we created an auction-based scheduling

algorithm for paratransit systems. This dynamic system han-
dled same-day ride requests and considered request priorities
based on the destination. Our scheduling algorithm was
tested in a Python simulator and compared against a static
optimization algorithm [1]. Overall, the auction-based system
performed well, with both mean and median ride durations
decreasing by at least 35%. In future work, we will test our
request swapping algorithm as an additional layer in this
auction-based system.
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Fig. 2. CDFs of the scheduled ride duration times in seconds, when request arrival is fixed at 30 minutes. Top row: All requests, Priority 1 requests;
bottom row: Priority 2 requests, Priority 3 requests.

Fig. 3. CDFs of the scheduled ride duration times in seconds, when request arrival is randomized between 30 and 45 minutes. Top row: All requests,
Priority 1 requests; bottom row: Priority 2 requests, Priority 3 requests.
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Algorithm 3 Check and swap requests.
Input: The global vehicle list, V ; Allowable minimum remaining time to begin the serving of requests, Tmin;

1: for all v in V do
2: S  the schedule of v;
3: for all schedule dictionary s in S do
4: req  corresponding request of s;
5: tp  scheduled pick up time for req;
6: if tp - current time � Tmin then
7: c0  the profit supposing v deletes req;
8: S0  the supposed new schedule of v;
9: eval0  dispersion value plus equity value of the distribution of V with S0 considered;

10: vopt  None;
11: evalmax  0;
12: for all v⇤ in V � v do
13: c the cost supposing v⇤ accepts req;
14: S⇤  the supposed new schedule of v⇤;
15: if c0 > c then
16: eval⇤  dispersion value plus equity value of the distribution of V with S0 and S⇤ considered;
17: if eval > evalmax then
18: evalmax  eval;
19: vopt  v⇤;
20: end if
21: end if
22: end for
23: if vopt 6= None then
24: Delete req from v and update v’s schedule;
25: Assign req to vopt and update vopt’s schedule;
26: return
27: end if
28: end if
29: end for
30: end for

TABLE I
ARRIVAL REQUEST FIXED AT 30 MINUTES

Sum Total Duration (sec) Mean Duration (sec) Median Duration (sec)
Scenario Auction-Based Offline Optimization % Improvement Auction-Based Offline Optimization % Improvement Auction-Based Offline Optimization % Improvement

Overall trips 507084 935460 45.79% 562.18 1037.10 45.79% 480 780 38.46%
Priority 1 175296 310260 43.50% 602.39 1066.19 43.50% 528 840 37.14%
Priority 2 165468 303360 45.45% 551.56 1011.20 45.45% 480 780 38.46%
Priority 3 166320 321840 48.32% 534.79 1034.86 48.32% 438 780 43.85%

TABLE II
ARRIVAL REQUESTS RANDOMIZED BETWEEN 30 AND 45 MINUTES

Sum Total Duration Mean Duration Median Duration
Scenario Auction-Based Offline Optimization % Improvement Auction-Based Offline Optimization % Improvement Auction-Based Offline Optimization % Improvement

Overall trips 515268 sec 935460 sec 44.92% 571.25 sec 1037.10 sec 44.92% 480 sec 780 sec 38.46%
Priority 1 177282 sec 310260 sec 42.86% 609.22 sec 1066.19 sec 42.86% 540 sec 840 sec 35.71%
Priority 2 170976 sec 303360 sec 43.64% 569.92 sec 1011.20 sec 43.64% 483 sec 780 sec 38.08%
Priority 3 167010 sec 321840 sec 48.11% 537.01 sec 1034.86 sec 48.11% 438 sec 780 sec 43.85%

TABLE III
UNCERTAINTY IN PICKUP/DROPOFF TIMES

Sum Total Duration Mean Duration Median Duration
Scenario Auction-Based Offline Optimization % Improvement Auction-Based Offline Optimization % Improvement Auction-Based Offline Optimization % Improvement

Overall trips 584417 sec 947892 sec 38.35% 647.91 sec 1050.88 sec 38.35% 565.4 sec 801.5 sec 29.46%
Priority 1 200920 sec 314189 sec 36.05% 690.45 sec 1079.69 sec 36.05% 597.9 sec 822.0 sec 27.26%
Priority 2 190632 sec 307295 sec 37.96% 635.44 sec 1024.32 sec 37.96% 565.9 sec 782.2 sec 27.65%
Priority 3 192865 sec 326407 sec 40.91% 620.15 sec 1049.54 sec 40.91% 544.8 sec 796.1 sec 31.57%
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Fig. 4. CDFs of the simulated ride duration times in seconds, when request arrival is fixed at 30 minutes. Top row: All requests, Priority 1 requests;
bottom row: Priority 2 requests, Priority 3 requests.
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Subtask Classification with Eye Gaze for Teleoperated Tasks

Kathleen Medill,1 Maggie Collier2 and Henny Admoni2

Abstract— Teleoperated robot arms can greatly improve the

quality of life for individuals with disabilities by assisting

them with everyday tasks. Although these assistive arms are

effective at some simple one-step tasks, they are difficult to use

for more complex multi-step activities. To address this chal-

lenge of teleoperation, researchers have begun experimenting

with shared autonomy, which integrates human control and

autonomous robot control to make assistive robots easier to

teleoperate. To date, however, shared autonomy has only been

used successfully with simple one-step tasks. To scale shared

autonomy to multi-step activities, it is important to identify the

current subtask the user is attempting. This work focuses on

classifying the immediate subtask within a multi-step activity by

incorporating features from the user’s eye gaze into a compact

generalized non-local (CGNL) network [1], a state-of-the-art

action recognition approach. In a pilot study, we collected eye

gaze data as a user teleoperated a robot arm to complete a food

preparation task consisting of four subtasks. Incorporating eye

gaze into the CGNL model boosted the classification accuracy

of subtasks by 9.52% for subtask sequences that followed an

uncommon order and had accurate eye gaze data. This results

indicates that including eye gaze can potentially make CGNL

more robust to multi-step tasks without a fixed subtask order.

Index Terms— Human-robot interaction, eye gaze, action

recognition

I. INTRODUCTION

Assistive technology, such as wheelchair-mounted robot
arms, has been shown to greatly improve the quality of life
for individuals with disabilities. These devices allow users
to live more independent lives by assisting them with simple
everyday tasks, such as picking up a dropped item or taking a
drink. Although assistive arms are effective at many simple
one-step tasks, they are difficult to use for more complex
multi-step activities. Typically, these robots have a high
number of degrees-of-freedom (DOF) but are teleoperated
via a low DOF interface, such as a joystick or sip-n-puff. As
a result, users must manually switch between modes to utilize
the different DOFs of the robot, thereby increasing the steps
and time required to complete a task. As a result, multi-
step activities of daily living such as food preparation or
dressing, which are simple and quick when performed with
one’s hands, are much longer and complex when completed
with a teleoperated assistive arm, often causing a frustrating
user experience.

To address this problem, researchers have investigated
ways to partially automate the controls of teleoperated robots

1Kathleen Medill is with the Electrical and Computer Engineer-
ing Department, U.S Air Force Academy, Colorado Springs, Colorado
C21Kathleen.Medill@afacademy.af.edu

2Maggie Collier and Henny Admoni are with the Robotics
Institute, Carnegie Mellon University, Pittsburgh, Pennsyvania
{macollie,hadmoni}@andrew.cmu.edu

via shared autonomy [2], [3]. Shared autonomy integrates
human control (from an input device like a joystick) and
autonomous robot control to alleviate the burden on the user
caused by manually switching between modes to access all
the necessary robot DOFs. Thus, shared autonomy has the
potential to create a system that is easier to teleoperate and
more user friendly. To date, however, shared autonomy has
only been shown to be successful with simple one-step tasks.
Shared autonomy could make many multi-step activities of
daily living significantly easier or, in some cases, possible to
be completed via teleoperation. Moreover, enhancing shared
autonomy so that it can be applied to multi-step activities
would greatly improve the usefulness of teleoperated robotic
arms and further increase the independence of their users.

To achieve scaling shared autonomy to multi-step tasks,
we can start by giving shared autonomy some notion of
which subtask within a multi-step activity the user is at-
tempting to accomplish. The user’s eye gaze could be a
valuable signal for classifying the immediate subtask. Many
psychology and hand-eye coordination studies have shown
that individuals mainly look at task-relevant objects during
object manipulation tasks, therefore indicating their future
goals with their eye gaze [4], [5]. Additionally, eye gaze is
an implicit natural behavior. Therefore, using eye gaze as an
input to a shared-autonomy system could provide valuable
information about the user’s goals without putting additional
strain on the user.

Action recognition in computer vision is a promising
avenue for subtask classification. Additionally, including eye
gaze information in action recognition has proven to be a
useful strategy for subtask classification in the context of
multi-step activities demonstrated to robots by human teach-
ers [6], and many strategies in egocentric action recognition
( [7]–[9] to name a few) often predict the user’s gaze and use
this prediction to better inform action classification . While
this field is promising, to our knowledge, none of the state-of-
the-art action recognition approaches have been evaluated in
the context of teleoperated actions. In this paper, we propose
incorporating features from the user’s eye gaze into a state-
of-the-art action recognition model to improve the classifi-
cation of subtasks completed using a teleoperated assistive
arm. More specifically, we investigated the performance of
a compact generalized non-local (CGNL) network [1] with
two different gaze featurization approaches. By including a
trial in our analysis with lower confidence gaze readings we
demonstrate the necessity of high confidence gaze readings
and discuss a potential metric for determining which gaze
data are accurate enough to be useful for classification. As
our major finding, we demonstrate that gaze data can improve
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classification on trials containing subtask sequences that are
underrepresented in the dataset, a situation that simulates a
real-world difference in user preferences and teleoperation
strategies.

II. RELATED WORK

A. Eye Gaze in Object Manipulation Tasks
Psychologists have long known that eye gaze is an im-

portant part of human-to-human interaction, particularly for
communicating about objects and locations in the environ-
ment. Prior psychological research has studied the gaze be-
havior of people performing certain manipulation tasks with
their own hands, such as moving objects around obstacles
[10] or making tea [4]. These studies show that eye gaze
follows the objects involved in the task [11] and that eye
gaze precedes hand motion [10], [12]. When people act to
manipulate objects, their gaze typically reaches the target
before they even begin moving their hands [12], and shifts
to the next target before their hands reach the current target
[10]. More recent research has studied eye gaze in the context
of teleoperated object manipulation tasks. Aronson, et al.
conducted experiments using an eye tracker to record eye
gaze during a human-robot shared manipulation activity,
both with and without shared autonomy assistance [13]. The
study identified novel patterns of gaze behavior that were
different from previous findings about eye gaze in human-
only activity. The results suggested that a user’s natural
eye gaze contain features that could be used to enhance
teleoperated manipulation tasks.

B. Action Recognition in Computer Vision
Action recognition in computer vision is an active area

of research that has experienced much recent success, and
several approaches incorporate eye gaze information to better
inform action recognition ( [7]–[9] to name a few). Of the
gaze-based approaches, many include a gaze prediction step
and add this prediction into an action recognition module.
These strategies are benchmarked on datasets of people
completing manipulation tasks with their hands, and little to
no work has attempted to evaluate state-of-the-art approaches
in different manipulation contexts. One notable work uses
two state-of-the-art approaches for subtask classification in
the domain of robot learning from demonstration [6]. In
this work, Saran, et al. studied eye gaze patterns of hu-
mans teaching tasks to robots via video and kinesthetic
demonstrations [6]. Although not explored in the context
of teleoperation, this study demonstrated that the teacher’s
eye gaze enhanced subtask classification for multi-step tasks
up to 6%. To investigate subtask classification, Saran, et
al., modified two promising action recognition approaches
from computer vision [1], [14] by adding the teacher’s
raw gaze positions before the final layer of the model.
One of the approaches, from Wang, et al., introduced the
concept of including a non-local network (NL) as a generic
component for capturing long-range dependencies in a deep
neural network [14]. Yue, et al., expanded this approach
with compact generalized non-local network (CGNL) [1],

demonstrating that CGNL is able to model more complex
interactions among features than NL. To our knowledge,
none of the state-of-the-art action recognition approaches
have been evaluated in the context of teleoperation or with
gaze features other than raw gaze positions. For the current
study, we chose to use CGNL due to Saran, et. al’s success
incorporating gaze and applying it to kinesthetic teaching
videos. In future work, we will evaluate some of the action
recognition approaches that incorporate raw gaze predictions
on our data set and investigate incorporating different gaze
features.

III. METHODS

In this study, we sought to improve the classification of
subtasks in a multi-step food preparation activity completed
with a teleoperated robot arm. Like Saran, et al [6], we
used a CGNL network [1] as our baseline approach, and
we incorporated eye gaze into CGNL in two different ways.

A. Task Design and Data Collection

Previous work from our lab included a pilot study to obtain
the data we used in our experiments. In the pilot study, the
secondary author recorded eye gaze data while teleoperating
an assistive arm to perform a multi-step food preparation task
six times. In each trial, the user teleoperated a Kinova MICO
robotic arm to accomplish the food preparation activity while
wearing a pair of Pupil Labs gaze tracking glasses [15], [16].
The Pupil Labs glasses have three cameras–a world camera
capturing the wearer’s egocentric view and two cameras
positioned on each of the wearer’s eyes. After the tracker
is calibrated, the accompanying software maps the positions
of the wearer’s pupils to a position estimate in the egocentric
camera, along with a confidence score for that estimate.

The six trials contained the same multi-step task: serving
food on a plate on a placemat. We defined four subtasks for
classification. We hand annotated the end of each subtask
using the following protocol:

• Grasp Spoon - when the fingers had closed round the
tool holding the spoon

• Scoop Food - when the spoon contained food and was
no longer inside the food container

• Dump Food - when the food first touched the plate
• Push Plate - when the plate was on the place mat and

was no longer moving

Examples of the user’s view while completing each sub-
task are shown in Fig. 1. Trials 1, 2, 4, and 5 followed a
predominant subtask order of push plate, grasp spoon, scoop
food, dump food. Trials 3 and 6 followed an alternative
subtask order: grasp spoon, scoop food, dump food, push
plate. The purpose of changing the order of the subtasks was
to represent possible differences in user preference and task
completion strategy: subtask order differences were observed
in a similar pilot study conducted in the lab that involved
multiple participants.
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Fig. 1. Still frames showing each of the four subtasks being completed.
The green and red dots are at the location of the user’s gaze. The green
dots represent higher confidence gaze readings than the red dot.

B. Subtask Classification

All approaches for our study use or modify the 2D
implementation of CGNL outlined in [1]. Thus, we use
CGNL like an image classifier, where each input consists of a
single frame from the egocentric video and is associated with
a single subask label. Action recognition takes a sequence
of frames from a video clip as a single sample, thereby
requiring a significantly larger dataset. Thus, using CGNL
like an image classifier enabled us to evaluate on our small
pilot dataset. In future work, we will expand our CGNL
implementation to accept sequences of frames sampled from
video, as traditionally done in action recognition approaches,
and collect significantly more trials to build a large enough
dataset for action recognition.

For each approach and before incorporating gaze data, we
sampled frames of the worldview video at 15 fps from the
six pilot study trials. In an additional step, we excluded any
frames that had a corresponding gaze position estimate with
a confidence score lower than 0.5. The resulting frames were
used and/or modified for all three approaches.

For all experiments, we used a ResNet-50 architecture
with one CGNL block included and used the same image
augmentations and training parameters defined in the CGNL
paper [1]. To establish a baseline, we excluded all gaze data
and only used the frames we sampled from the egocentric
camera.

We then incorporated eye gaze information from the same
six trials into the same CGNL model in two different ways.
The first approach, the raw gaze approach, is taken from
Saran, et al. [6]. In the raw gaze approach, the normalized
gaze position estimate for each input frame was added into
the final layer of the model.

For the overlay gaze approach, we added the eye gaze
information directly to the input frames. We accomplished
this by overlaying a uniquely patterned dot at the estimated

Fig. 2. Example of sampled input frame with dot overlaid at position of
eye gaze.

location of the user’s gaze for each sampled frame. Fig.
2 shows examples of frames with the gaze dot overlaid.
The gaze dot has a unique pattern to prevent the dot
from being indistinguishable after the input frames undergo
augmentations (the standard image augmentations done in
image classification and action recognition).

IV. RESULTS AND DISCUSSION

To assess each approach, we conducted 6-fold cross vali-
dations for the baseline model, the raw gaze model, and the
overlay gaze model. (In each fold, the model was trained on
samples from five trials and then tested on samples from the
remaining trial.) The accuracy averaged across the 6 folds
are as follows:

• Baseline: 91.58%
• Raw gaze: 89.29%
• Gaze overlay: 89.99%
The results shown in Fig. 3 demonstrate that adding eye

gaze (as raw positions or overlaid onto the input frame) only
slightly changed the accuracy of the baseline model for the
predominant order of subtasks in Trials 1, 2, 4, and 5. For
the other order of subtasks in Trial 3, however, the raw gaze
approach had a 4.17% improvement and the gaze overlay
approach had a 9.52% improvement. For Trial 6, adding raw
gaze and overlaid gaze resulted in a decline in accuracy from
the baseline model, which we found was caused by a high
percentage of samples having low-confidence gaze estimates.

The trials that followed the predominant subtask order–
Trials 1, 2, 4, and 5–all had very similar results. On these
trials, the raw gaze model achieved accuracies between
0.29% and 1.44% higher than the baseline model. However,
the gaze overlay model showed accuracies between 0.08%
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Fig. 3. Comparison of sub-task classification accuracies by trial and
methods. Although Trials 1, 2, 4 and 5 were barely affected by the addition
of eye gaze, Trial 3 had a 4.17% improvement for the raw gaze approach
and a 9.52% improvement for the gaze overlay approach. The decrease in
accuracy in Trial 6 can be attributed to the low confidence scores of its gaze
position estimates.

and 1.75% lower than the baseline. The results indicate
that our two approaches of adding eye gaze had a minimal
effect on the overall accuracy for trials with the predominant
ordering of the four subtasks. This result was not entirely un-
expected, however, because the baseline approach achieved
high accuracies on Trials 1, 2, 4, and 5 (84.05% to 99.18%).

The raw gaze model improved the accuracy for every trial
except Trial 6. This result was expected because of poor
quality gaze estimates in Trial 6, likely caused by an error
during the calibration of the Pupil glasses. Only 50.09% of
samples in Trial 6 had a confidence score greater than 0.90,
compared to 76.39% to 90.44% of samples for the other
five trials. Nevertheless, we still included Trial 6 to gain a
better understanding of the weaknesses of our approaches.
Including Trial 6 allows us to assess how low confidence
gaze data can adversely affect the accuracy of otherwise
high performing subtask classification approaches. We also
observed that the percentage of samples above a certain
confidence score could be used to define exclusion criteria
or a way to identify an appropriate threshold for confidence
scores.

The accuracy of Trial 6 was significantly decreased from
84.05% for the baseline model to 62.62% for the raw gaze
model, but the gaze overlay model showed less of a decrease
with 68.57% accuracy. In the future, we plan to increase
the confidence threshold to 0.85 or 0.90, based on the large
percentage of samples found above these threshold in Trials
1 through 5, to ensure better quality gaze data. Using higher
confidence gaze data, we suspect that we would see similar
gains in accuracy for Trial 6 as we saw for Trial 3, which
had the same subtask order.

Trial 3 showed the greatest improvement from the baseline
model to the raw gaze model with an improvement in
accuracy of 4.17%. Accuracy gains were even greater in

the overlay gaze model, which produced an improvement
in accuracy over the baseline model of 9.52%. Overall, Trial
3 went from an accuracy rate of 78.95% for the baseline
model to 88.47% for the overlay gaze model. This was
an especially encouraging result because Trial 3 had the
worst accuracy results of any trial for the baseline model.
We suspect that Trial 3 was the least accurate using the
baseline model because it was one of only two trials in which
the subtasks were completed in the non-predominant order.
Therefore, there was only one trial (Trial 6) completed in the
same order included the training set for that fold.

Fig. 4. Qualitative view of baseline model predictions. Trial 1 is shown
at the top and Trial 6 at the bottom.

Fig. 5. Qualitative view of raw gaze model predictions. Trial 1 is shown
at the top and Trial 6 at the bottom.

Fig. 6. Qualitative view of gaze overlay model predictions. Trial 1 is shown
at the top and Trial 6 at the bottom.

Figs. 4, 5, and 6 show the predictions for the baseline, raw
gaze, and overlay gaze models, respectively, along a time
axis for each trial. In Figs. 4, 5, and 6, each row represents
a different trial and each subtask is represented by a different
color. The solid bottom line in each timeline is the ground
truth and the prediction for each frame is represented above.

These plots provide qualitative insights regarding when in
the trial and which subtasks the models performed poorly.
Figs. 4, 5, and 6 show similarities and differences in the
classification errors across the models. For example, in Trial
6 both gaze approaches commonly misclassified scoop food
as dump food. On the other hand, the baseline approach
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struggled to classify dump food correctly in the same trial.
This example further emphasizes that, in order for gaze data
to be useful for subtask classification, there must be sufficient
quality control through careful gaze tracker calibration and
confidence thresholding.

These figures also show where the addition of eye gaze
improved the accuracy of subtask classification. For example,
in Trial 3 the classification of the grasp spoon subtask
improves for the raw gaze model, and improves even more
for the overlay gaze model. We surmise from this result
that the incorporation of eye gaze may produce the greatest
improvement in accuracy in situations where the CGNL
model on its own does not perform well, such as when
a task is performed in an uncommon way. In real world
applications, users are not confined to a set subtask order. To
be useful in the context of shared-autonomy, the classification
model must be robust to differences in user preferences and
strategies.

V. LIMITATIONS AND FUTURE WORK

A weakness of our study is the limited dataset used to
evaluate our methods. This pilot study only had six trials
from one able-bodied participant using only one kind of
input interface. Within the context of teleoperation assis-
tive robots, there is a large amount of variability in the
strategies that individuals employ that our dataset did not
address. These strategies vary based on many factors, such
as user preferences, user experience, user’s level of motor
impairment, and the input interface (e.g. joystick, sip-n-
puff, head array) [17]. For example, Javaremi et al found
usage differences across groups using different input inter-
faces while completing the same teleoperated task, a result
confirmed for both uninjured participants and participants
with spinal cord injury. Future work should expand on
our work by collecting and using a dataset that includes
trials from multiple participants (uninjured and spinal cord
injured) using a variety of input interfaces. We want subtask
classification for shared autonomy to be robust to these real-
world differences commonly seen in teleoperation.

Future work should also further investigate the effect of
subtask order on the accuracy of each approach. It would be
useful to compare the performance of each approach on sev-
eral larger datasets that vary the ratio of trials with different
subtask orders. This analysis would provide more insight into
the effects of subtask order on classification accuracy and
how eye gaze can potentially improve the classification of
subtasks completed in a non-predominant order. We believe
that continuing to investigate the accuracy gains produced
for classification of non-predominant subtasks is important
because we expect that users will have different preferences
about subtask order. Thus, our models should be stress tested
with datasets that have a variety of subtask orders.

Additionally, future work should explore other ways to
featurize eye gaze. Our study was limited to two ways of
incorporating eye gaze into the CGNL model. In future
work, we plan to incorporate semantic gaze features into
CGNL. Additionally, once we have collected a larger dataset,

we want to implement and evaluate the 3D version of the
CGNL model intended for action recognition along with
other action recognition approaches. We chose to use CGNL
as a starting point due to Saran et al’s success incorporating
raw gaze into it. However, we would like to explore other
recent approaches in egocentric action recognition, especially
ones that involve a gaze prediction step to better inform the
final action classification. To our knowledge, none of these
approaches have been evaluated on teleoperated tasks. We are
interested to find a state-of-the-art approach that generalizes
well or can made to generalize well to teleoperated activities,
and we hope to investigate how different gaze features can
make these approaches robust to the common differences in
teleoperation that occur across users.

In conclusion, this work investigated using a promising
action recognition approach with eye gaze data to classify
subtasks in a multi-stage teleoperation task. We found that
gaze data might make the approach robust to subtask orders
that are underrepresented in the training data. These results
have potentially significant real world applications because
users of robot arms are unlikely to follow the same ordering
of the subtasks required in a multi-task activity. Improving
subtask classification, particularly to account for potential
differences across users, is an important step towards scaling
shared autonomy algorithms to multi-step activities. A shared
control approach that can be used in multi-step tasks could
make many activities of daily significantly easier to complete
with an assistive robot and, in turn, increase the quality of
life of its user.
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Trajectory Planning for Autonomous Vehicles Using Hierarchical
Reinforcement Learning Under Noisy Observations

Kaleb Ben Naveed1, Zhiqian Qiao2 and John M. Dolan2

Abstract— Trajectory planning for autonomous vehicles is the
process of computing the sequence of positions, velocities, and
acceleration through space. Planning safe trajectories under
uncertain conditions make the autonomous driving problem
significantly complex. Current sampling-based methods such as
Rapidly Exploring Random Trees (RRTs) are not well suited
for the problem because of their high computational cost.
Supervised learning methods such as Imitation Learning lack
generalization and safety guarantees. To address these problems
and in order to ensure a robust framework, we propose a
Long-Short-Term-Memory (LSTM)-based Hierarchical Rein-
forcement Learning (HRL) structure for trajectory planning.
Through HRL, the task of autonomous vehicle driving is divided
into sub-goals and the network learns policies for both high-
level options and low-level trajectory planner choices. The in-
troduction of sub-goals decreases convergence time and enables
the policies learned to be reused for other scenarios. In addition,
the proposed planner is made robust by guaranteeing smooth
trajectories and by considering the incomplete observations
which result from the noisy perception system of the ego-car.
Proportional–integral–derivative (PID) controller is used for
tracking the points which helps to make the trajectory smooth
and the problem of incomplete observations is dealt by using
the LSTM layer in the network. We tested our framework in
the high-fidelity CARLA simulator.

Index Terms— Planning, Hierarchical Reinforcement Learn-
ing, Partially Observable MDPS, Lane Change.

I. INTRODUCTION
Planning safe trajectories for autonomous vehicles is a

challenging problem. In reality, this problem is particularly
difficult because of the maneuver planning complexities
and the incomplete observations coming from the noisy
perception system of the car. While performing trajectory
planning, autonomous car has to plan different maneuvers
which might include following lane, waiting, changing lanes,
and traversing intersections.

The existing methods for trajectory planning either re-
lies on traditional classical planners or machine learning
methods. Some of the state-of-the-art traditional planners
include sampling-based planners, such as rapidly exploring
random trees (RRTs) and lattice planners. RRTs randomly
build a space-filling tree through space and are well suited
for an environment with obstacles and differential constraints
[1]. However, their computational complexity increases as
the environment becomes more complex. Moreover, the
trajectories generated are often not smooth for the ego-car to

1Kaleb Ben Naveed is with the Department of Electronic and Infor-
mation Engineering, The Hong Kong Polytechnic University, Hong Kong
kaleb-ben.naveed@connect.polyu.hk

2Zhiqian Qiao and John M. Dolan are with the Robotics Insti-
tute, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, USA
{zhiqianq, jdolan}@andrew.cmu.edu

Fig. 1. The overview of the HRL structure and the scenario of lane change.
The HRL structure has two two high-level options and a low-level trajectory
planner for each high-level option. PID controller is used for following the
planned trajectory

follow [2][3]. On the other hand, lattice planners are great at
generating feasible paths and can incorporate constraints but
graphs created might be incomplete, which leads to curvature
discontinuity [2]. The other way of planning trajectories is
through machine learning methods. The supervised learning
method called Imitation learning [4] has shown some promis-
ing results. However, this method might not generalize well
to the complex conditions and also there is no guarantee of
stability and optimum solution [5].

An alternative approach to the classical planners and data-
robust methods is reinforcement learning (RL) [6]. The RL
framework works on the principle of maximizing reward
for a particular action at a given state. Existing RL work
has shown promising results for an ego-car to learn policies
for multiple scenarios. However, traditional RL methods for
autonomous driving are less sample-efficient and less stable,
especially for tasks with multiple sub-goals. In compari-
son to traditional RL, Hierarchical Reinforcement Learning
(HRL) [7] allows model to learn policies for multiple sub-
goals, which allows the policies learned to be reused for
any other scenario. Furthermore, HRL has shown faster
convergence rate which decreases training time for model to
learn optimal policy. In this paper, we propose a Long-Short-
Term-Memory (LSTM)-based HRL structure for trajectory
planning. We choose the scenario of lane change shown in
Figure 1 and give our structure two high-level options, which
include Lane follow/Wait and Lane change. For each high-
level planner, there is a separate low-level trajectory planner.
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The detailed description of low-level planner for each high-
level option can be found in the methodology section. In
order to make the proposed HRL trajectory planner more
robust, we mainly worked on two problems.

• Planning safe and smooth trajectories: We used the pro-
portional–integral–derivative (PID) controller for track-
ing trajectories instead of directly using low-level ac-
tions: throttle, steer, and brake

• Dealing with Noisy Observations: We used an LSTM
layer in the network to help the model learn from
sequences of observations, which compensated for miss-
ing observations and also helped to learn in more
dynamic surroundings

II. RELATED WORK

A. Hierarchical Reinforcement Learning

By extending the framework of RL, [7] proposed the idea
of hierarchical DQN in which the action value functions were
integrated to operate at two levels of abstraction and learned
a policy over meta goals and low-level actions. [8] proposed
the concept of the Hierarchical Q-learning called MAXQ
and showed that it produces better results than Q learning
alone. In order to make the framework of hierarchical Q-
learning more robust, [9] combined the R-MAX algorithm
with MAXQ. This amalgamation added the safe exploration
dimension of the model-based approach into the MAXQ.
In the autonomous vehicle’s domain, [10] used the three-
layer HRL structure for options, low-level actions, and Q
network for the decision making problem for traversing
intersections. They showed faster convergence and improved
results compared to non-hierarchical approaches. In order
to further improve the sample efficiency and the reward
structure, [11] proposed the state-attention model, the hybrid
reward mechanism, and hierarchical prioritized experience
replay. All these extensions improved sample efficiency and
yielded higher results.

B. Work on Trajectory Planning and Prediction

Existing work on Trajectory Planning includes both classi-
cal traditional planners and planners using machine learning
principles. One of the state-of-the-art sampling-based planner
used in autonomous driving planning is RRTs [1]. RRTs
generate trajectories by constructing a tree-like structure
through the space. RRTs are proven good for environments
with obstacles but might not converge to the optimal solu-
tion. [12] solved this problem by introducing RRT*, which
showed optimal convergence and shorter routes. Another
approach introduced was optimization-based lattice planners
[2]. These planners were able to incorporate constraints and
produce feasible paths. An alternative approach to classical
planners includes supervised learning, which can be divided
into imitation learning and trajectory prediction. [13] used a
Deep Imitation learning framework to learn a driving policy
for the urban scenarios through offline learning. They also
added a safety controller module which increased the safety
while testing.

For trajectory prediction, [14] proposed a system called
UrbanFlow which consisted of a complete pipeline from
collecting raw data to the final processing of trajectories.
They used the UrbanFlow pipeline for trajectory prediction
based on human drivers’ driving behavior, which allowed the
ego-car to make better decisions. Another approach that has
produced significant results in trajectory prediction is Inverse
Reinforcement Learning (IRL). IRL works on the principle
of extracting the reward structure by observing an optimal
trajectory of an expert agent. By building on IRL approach,
[15] proposed a framework for predicting off-road vehicle
trajectories by integrating kinematics and environment to
recover the reward structure.

C. Partially Observable Markov Decision Processes
(POMDP)

In order to deal with the incomplete observations from
a noisy perception system, we model the problem as a
POMDP. Some of the methods used for solving partially
observable MDPs include finite state controllers, recurrent
neural networks, and multi-agent reinforcement learning.
Finite State controller [16] is a state-of-the-art rule-based
method to solve POMDPs and has shown great ability to
extract valuable information from the past noisy observation
sequence. In the reinforcement learning domain, [17] ex-
tended the Deep Q-learning (DQN) model to Deep Recurrent
Q-learning (DRQN) by replacing a fully connected layer
with a LSTM layer. Moreover, they proposed bootstrapped
random updates to train from a n-step sample from the replay
memory. [18] further improved the DRQN model by adding
the previous action to the tuple. This resulted in the Action
DRQN (ADRQN) algorithm. By training from a previous
action and observation pair, the results were improved for
POMDPS. [19] used an alternative approach and solved
POMDP using multi agents. They proposed the Multi Agent
Deep Deterministic Policy Gradient method enhanced by a
communication medium so that multiple agents can share
their experiences and compensate for the missing information
in other agents’ observations.

D. Our Contribution

In this paper, we make the RL framework for trajectory
planning more robust. The proposed HRL framework for tra-
jectory planning gives the ego-car two high-level options and
three low-level planner choices for each high-level option.
We build our model on the works of [10][11] but instead of
directly using throttle, steer, brake, we use a PID controller
for tracking selected low-level trajectory choice. The HRL
modular structure ensures reusability for the policies learned
and has shown faster convergence rate. Trajectory tracking
through PID resulted in smooth and stable maneuvers. In
addition, in order to mitigate the problem of incomplete or
inaccurate observations and more dynamic environments, we
borrowed the idea of DRQN[17] and added LSTM layer in
the hierarchical network structure.

146



III. PRELIMINARIES
A. Dueling and Double Deep Q-Learning

Double Q-learning is an extension of the state-of-the-art
Deep Q Learning algorithm. The Q-learning algorithm in
Reinforcement Learning is used to find an optimal action-
selection policy ⇡ using a Q function which is used to
maximize the action-value function Q

⇤(s, a).
Deep Q-learning uses neural networks to update network

parameter ✓ through minimizing the loss function between
predicted action-value Q and the target action-value Y

Q.
Deep Q learning uses the same values to select and evaluate
an action, which results in overestimation.

Double Deep Q-learning solves the problem of overesti-
mation by revising the target action updates from another
target Q0 network with different weights, which is shown in
the Equation 1.

Y
Q

t
= Rt+1 + �Q(St+1, argmax

a

Q(St+1, a|✓t)|✓
0

t
) (1)

The Dueling Networks breaks the evaluation of the Q
function into two quantities: the value of being in state V (s)
and the advantage of taking action in state s, A(s, a). After
this the advantage function is normalized to address the issue
of identifiability, as there is no unique way to identify V or
A. This results in the Equation 2.
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B. Hierarchical Reinforcement Learning
HRL learns a policy at multiple levels as meta controller

Q
1 generates the sub-goal g for the following steps and a

controller Q
2 outputs the action a based on the sub-goal

selected until the next sub-goal is generated by the meta-
controller.
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C. Partially Observable Markov Decision Processes
(POMDP)

In the real world, the autonomous vehicles might have
incomplete observations because of the noisy perception
system of the car. This directly impacts the ability of system
to plan trajectories. The POMDP is an extension of the
MDP. An MDP is defined as a tuple {S,A,R, T, �}. S
is the state space, A is the available actions, R defines
the immediate reward for each state-action pair. T is the
transition probability that maps an action pair (s, a) to a
new state and gamma is the discount factor between [0, 1].
POMDP is defined as tuple {S,A,R, T,⇡, V, �}; it adds the
set of environment observations ⇡ and a set of conditional
observations V.

IV. METHODOLOGY
A. Scenario and Problem Description

In this paper, we chose the scenario of lane change with
added complexity. The high-level overview of the scenario
can be seen in Figure 1. The ego-car (green car) starts in the
ego-lane (lane that has the ego-car) and is required to do a
lane change, as there is an obstacle (blue car) in front of it.
But the target-lane (the lane where the ego-car chooses to go)
has an inflow of traffic in it. In our case, we are using two
cars, colored in yellow to represent the surrounding traffic.
This scenario can be easily broken down into tasks with
multiple sub-goals which explains our reason for choosing
this scenario. In this problem we are providing our car with
two high-level options for the maneuver. The first option is
lane follow/wait and the second option for the ego-car is
the lane change maneuver. The high-level structure of the
proposed HRL trajectory planner can be seen in Figure 1.

B. HRL-based Trajectory Planner
Through HRL we divide the task of lane change into

two high-level options: lane follow/wait and lane change.
This helps us to plan trajectories for each option separately.
Through HRL, the ego-car learns a policy for both high-
level options and for the low-level trajectory planners. The
network used is Deep Dueling Double Q Network for both
the high level options network and the low level trajectory
planner network. The LSTM-layer is used alongside fully-
connected layer in both the networks. The detailed working
of the high-level options network and the low-level planner
network is mentioned below:

Fig. 2. The overview of lane follow/wait option

1) Lane Follow/Wait: Once the ego-car selects the lane
follow/wait option, the low-level trajectory planner is used
to plan the path. The low-level planner has three choices
for the trajectory, as shown in the form of coloured lines in
Figure 2. The green line represents the choice in which the
ego-car can lane-follow for greater distance. This choice is
rewarded when the ego-car does not observe any obstacle
within certain radius of its current position in the ego-lane.
The yellow line represents a trajectory choice under which
the ego-car can lane-follow for a shorter distance. This choice
is beneficial when ego-car observes an obstacle car in the
ego-lane at some distance and avoids getting close to it. On
the other hand, if the red line trajectory is chosen by the ego-
car, it will decelerate to the wait option. Once the trajectory
selection is made, the PID controller will be used to complete
the path planned. In order to reduce jerk resulting from
poor selection of low-level trajectory choices, we tailored
the reward structure mechanism, which can be found in the
subsequent section.
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Fig. 3. The overview of lane change option

2) Lane Change: For the lane change option, the ego-car
is given three points as low-level choices for the trajectory.
The overview of this option can be seen in Figure 3. Each
different point represents a different velocity profile the ego-
car may choose to make a lane change. This ensures safety
and stability while planning for the lane change maneuver.
The green point is selected if the ego-car is required to do
a faster lane change because of the higher speed in the ego-
lane. The yellow point is for the normal velocity profile
trajectory. The red point selection helps the ego-car to take
sharper turns, which might be needed when the velocity of
the ego-car is significantly less or it was in the wait option.
The RL selects one point between the three points through
low-level planner network. Once the policy selects the point,
a black point is generated at some distance in the target lane.
This black point is a safety follow point which helps the
ego-car to reorient itself before the lane follow/wait option
is activated again.

C. Dealing with Noisy Observation
In order for our model to consider incomplete observations

and random scenarios, we added a LSTM layer for both
options and the low-level planner network. We used three
time steps as an input to the LSTM layer. In order to sample
experiences from replay memory, we used the approach of
bootstrapped random updates proposed by [17]. This strategy
randomly samples an n step sequence from the batch of
episodes drawn from experience replay and then trains the
neural network. In order to test our model with incomplete
observations, we added noise to the state space, which
includes the information of other cars available to the ego-
car.

D. State Space
In order to formulate the state space for our Hierarchical

Structure, we used information from the ego-car (e), obstacle
car (o), target car A (a), and target car B (b) in the given
scenario. This can be seen in the tuple given below. The safe
range for the ego-car is x >= 16 for the stopped vehicle
and x >= 7 for the moving vehicles, where x is the ego-
car distance to other vehicles. The state space consists of 18
parameters. The tuple contains the state information where
f 2 {o, a, b}.

s = [ve, laneide, vf , def , dcf , dcxr, laneidf , deg]

• ve = Ego-car velocity
• laneide = Lane ID for ego-car
• vf = Velocities of other vehicles
• def = Ego-car distance to other vehicles

• dcf = Ego-car chase distance to other vehicles
• dcxr = Ratio of chase distance to safety threshold
• laneidf = Lane ID for other vehicles
• deg = Ego-car distance to goal position

E. Reward Structure
We build our reward structure on the hybrid reward struc-

ture proposed by [11]. Under the hybrid reward structure, a
separate reward is given for high-level option selection and
low-level trajectory choice. The ego-car gets penalised for
choosing wrong option and choosing wrong low-level trajec-
tory choice separately. The low-level choice gets penalised if
the chosen trajectory leads to unsuccessful completion of the
sub-goal, which in our case is collision with one of the target
cars or the obstacle car. Moreover, in order to plan safer and
smoother trajectory, low-level choices were penalised if they
were not required. For example, under option 1, low-level
wait choice gets penalised if it is selected unnecessarily. Also
ego-car is given positive reward for maintaining safe distance
to the ego-car. The safe distance is the minimum distance,
which ego-car has to maintain from the obstacle car. Ego
car is expected to plan a longer trajectory if it does not see
any obstacle in the ego lane within certain radius. For lane
change maneuver, ego-car gets a reward for the safest point
selected based on its past velocity profile. For example, if the
ego-car has a higher velocity in the target-lane, it is given
higher reward to do a faster lane change; otherwise if ego-car
was waiting in the ego lane, it is expected to do a slower turn.
These different low-level point choices prevent lane-invasion
and unnecessary jerk.

V. EXPERIMENTS

In this section, we apply the proposed LSTM-based HRL
algorithm to the scenario shown in Figure 1. in the CARLA
simulator with 30 fps. The scenario is the lane change
scenario with added complexity. The ego-car is expected
to perform either the lane-follow or lane-change maneuver
when required. The ego-car has to avoid collision with the
obstacle in the ego-lane and the traffic in the target-lane. In
order to test the generality and safety of our approach, we
made surroundings of the ego-car more dynamic. Following
two points describe details about how we made the environ-
ment dynamic.

• Randomly changing the target cars’ velocity
• Randomly changing the position of the Obstacle car

over a certain distance
In addition, in order to evaluate the performance of our

algorithm with inaccurate or incomplete observations, we
added noise to the state space. In particular, the noise
was added to the ego-car distance to the target cars and
the obstacle car. Mentioned below are the two proposed
algorithms responsible for selecting options and for plan-
ning trajectory under each high-level option. Algorithm 1
describes the proposed LSTM-based Hierarchical Structure.
Algorithm 2 describes the low-level trajectory planner, which
is responsible for selecting low-level trajectory choice given
high-level option.
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Algorithm 1 LSTM-based HRL
1: Initialize options and planner network Q

o, Q
p with

weights ✓
o, ✓p

2: Initialize target options and target planner network Q
o
0
,

Q
p
0

with weights ✓
o
0
, ✓P

0
.

3: Construct empty replay buffer B with max memory
length lb

4: for 0 to E training episodes do
5: Get Initial States S.
6: Reset hidden state for options network h

O  � 0.
7: Reset hidden state for planner network h

P  � 0.
8: while s is not terminal state do
9: Ot and h

O = argmaxo Q(hO
t�1, St) based on the

✏� greedy, where Ot is the option.
10: Pt and h

P = argmaxp Q(hP
t�1, St, Ot) based on

the ✏� greedy, where Pt is planner choice.
11: Pass option and planner choice to

TrajectoryP lanner(Ot, Pt).
12: Get new state St+1.
13: Get Ro

t+1, Rp

t+1, where R
o is the option reward and

R
p is the planner reward.

14: Store transition T into B: T =
{St, Ot, Pt, R

o
t+1, R

p

t+1, St+1}.
15: end while
16: Train with Buffer RelayBuffer(e).
17: end for

Algorithm 2 TrajectoryPlanner
if Option == LaneFollow/Wait then

2: if planner == 1 then
Wait

4: else if planner == 2 then
follow lane for m distance

6: else if planner == 3 then
follow lane for n distance, where n < m

8: end if
else if Option == LaneChange then

10: if planner == 1 then
Slower lane change

12: else if planner == 2 then
Normal speed lane change

14: else if planner == 3 then
Fast Lane Change

16: end if
end if

VI. RESULTS

The advantages of the proposed HRL-based planner in-
clude safety and reusability of low-level planner under a
given option. The safety in our approach was achieved
through the HRL modular structure and the use of the PID
controller. The demonstration of the ego-car trajectory is
shown in figure 4. The policy learned is from the incomplete
observations which resulted from missing information of
other cars in the state tuple.

Fig. 4. It is the sequence of four image frames representing different
time steps (from top to bottom) of the ego-car’s trajectory in the CARLA
simulator. In the first frame a, the ego-car is performing lane-follow. In
the next couple of frames, b and c, the ego-car is performing lane change
maneuver. In frame d, the ego-car again starts to follow the lane.

Fig. 5. Reward Graph for the test run for 140 episodes. The blue line
shows the average reward and orange line shows the episode reward.

The red line trajectory shows that the car is in the lane
follow/wait option while the yellow color trajectory shows
the lane change maneuver. The red line at the start of the
trajectory shows that car choose to follow lane for longer
distance as the obstacle car is far from the ego-car current
position. As soon as ego-car observed that the distance to
the obstacle is decreasing and the target lane is also free
for a lane change, it opted for the lane change option.
For the lane change, the yellow-coloured line trajectory is
generated, which was followed by the ego-car. Another thing
to consider in this scenario is that once the ego-car does a
lane change it ends in between two target cars. In this case,
ego-car is expected to adjust its speed in order to safely
complete a lane change and then to follow the lane. It is
shown in Figure 4 that right after changing lane, the ego-
car started to decelerate in order for the front target car
to move some distance. Then after this, ego-car started to
plan longer trajectories as distance between front and ego-
car increased. The deceleration after lane change ensured
safety and prevented the ego-car from crashing into the front
vehicle.

The preliminary results suggest that the proposed approach
guarantees safety by selecting different low level trajectories
choices. The PID controller helped car to have stable and tra-
jectories and smooth maneuvers as the lane-invasion readings
were almost zero with final policy after 1600 episodes.
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After training for 1600 episodes, the policies learned for
both high-level network and low-level planner network were
tested. The test run included 140 episodes. Figure 5 shows
the graph of the episode and average reward. The overall
success rate during the test run was almost 95 percent.

VII. FUTURE WORK

The future work for the proposed LSTM-based HRL
planner include extensive testing with more dynamic sur-
roundings and more noise in the state space. Preliminary
results suggest that the proposed planner can handle dynamic
surroundings but the collision rate is still high. Some of the
areas for improvement include reward structure and network
structure. In addition, we also hope to evaluate the possibility
of combining the already learned policies with the new
scenarios, which might include traversing intersections and
lane merging. Moreover, we hope to do extensive testing in
the partially observable environments so that our approach
can be verified in more dynamic and real world settings.
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Development and Analysis of a Multi-Agent Incomplete Information
Task with the Multi-Agent Deep Deterministic Policy Gradient

Algorithm

Beverley-Claire Okogwu1, Mengdi Xu2, and Ding Zhao3

Abstract— Deep Reinforcement Learning (DRL)[1] has be-
come a popular Machine Learning property in recent years
due to the establishment of Deep Neural Networks [2]. DRL
has also been introduced into numerous applications which span
across various fields such as healthcare, industry, computer
vision, natural language processing, and machine translation
[3]. However, as it is a rather new field, DRL is prone to
certain biases and unprecedented situations. One of these
uncertain properties is ambiguity in a multi agent system, such
as with Human-Robot Interaction (HRI) [4]. In this paper, we
look at how DRL algorithms are applied in HRI using Deep
Learning techniques such as the Actor-Critic algorithm and the
Multi Agent Deep Deterministic Policy Gradient (MADDPG)
algorithm. We will then utilize this algorithm to train agents
in our newly proposed multi agent environment that supports
this model in HRI. Furthermore, we consider training via
an ensemble of Neural Networks to examine uncertainty and
establish consistency.

Index Terms— Deep Reinforcement Learning, Human-Robot
Interaction, MADDPG, Soft Actor-Critic, Multi-Agent Systems.

I. INTRODUCTION
In recent years, Deep Reinforcement Learning (DRL)

has played a significant role in Human-Robot Interaction,
particularly with the ability for a robot to emulate certain
social skills such as communication, navigation, coopera-
tion, and coordination [1]. In developing such skills, the
behavior of the robot must be controlled via a system of
rewards/punishments, which follow a variety of DRL frame-
works and predictive models like the intrinsically motivated
rewards system [5].

There exist a variety of DRL algorithms, some of which
include Deep Q Neural Networks, Policy Gradient, and Q-
learning algorithms [2]. These algorithms each have different
effects on the system, which depend on changes to factors
such as the definition of the agents’ reward, state, action, and
policy.

However, since DRL is a relatively new field, it is prone
to certain biases and unforeseen situations. The novelty
of these DRL algorithms leads to natural limitations and

1Beverley-Claire Okogwu is with the Department of
Computer Science and Mathematics, Dickinson College,
Carlisle, Pennsylvania okogwub@dickinson.edu,
beverley.okogwu@gmail.com

2Mengdi Xu is with the Department of Mechanical Engi-
neering, Carnegie Mellon University, Pittsburgh, Pennsylvania
mengdixu@andrew.cmu.edu

3Ding Zhao is with the Department of Mechanical Engi-
neering, Carnegie Mellon University, Pittsburgh, Pennsylvania
dingzhao@andrew.cmu.edu

biases, hindering their ability to predict ambiguity. This
particularly impacts multi agent environments[6] with respect
to cooperative, competitive, and mixed environments [7].
Addressing this issue is important to ensure the system is
void of errors and works at the optimal level.

There exist numerous literature that have looked into ways
to solve such problems, and the Actor Critic algorithms
have emerged as a first step in overcoming the errors.
The Soft Actor-Critic (SAC) algorithm [8], mainly used in
Human-Robot Collaboration via Deep Learning [9], stands
out among RL algorithms due to its automatic temperature
tuning. With this tuning, the number of trials in a testing
period are significantly reduced, thus minimizing the total
time taken to completely train an Artificially Intelligent agent
to perform a certain task.

Although SAC is a popular algorithm in a single agent
system, it is still prone to errors in a complex multi-agent
system [10], especially where some degree of communication
is required for the system to work. Lowe et al [11] overcome
this by developing a new kind of algorithm, the Multi Agent
Deep Deterministic Policy Gradient (MADDPG) algorithm,
adapted from the SAC. MADDPG differs from the Deep De-
terministic Policy Gradient (DDPG) algorithm with respect
to the type of critic used: MADDPG uses a centralized critic
with a decentralized action, as opposed to DDPG. With this
setup in MADDPG, the critic has access to more than enough
information regarding the policies of additional agents in the
multi-agent system.

In this paper, we adapt the MADDPG algorithm and build
a new environment. What makes our environment different
from [11] lies in the definition of the agents. In [11],
two main types of agents are defined: the regular agents,
which cooperate, and the adversaries, which try to hinder
or compete with the agents. In our environment, we define
two types of sub-agents that either cooperate or compete
with the adversary itself: the ally and the enemy. We will
be using these “sub-agents” to experiment and test with
the MADDPG to ensure consistent results. In addition to
the vanilla MADDPG, we will thus propose a way to train
our agents via an ensemble of Neural Networks(NN)[12] to
further analyze uncertainty.

SUMMARY OF CONTRIBUTIONS

• II. We address important background information rele-
vant to paper.
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• III. We outline and describe the steps taken in construct-
ing the environment.

• IV. We analyze the results from training our agents via
the MADDPG algorithm.

• V-VI. We propose ensemble NN in training.

II. BACKGROUND

In order to fully comprehend the techniques involved
behind the environment, we must first address certain Re-
inforcement Learning concepts:

A. Reinforcement Learning, RL

We can think of Reinforcement Learning as a re-
ward/penalty system as shown in Figure 1 below:

Fig 1: General Reward/Punishment scheme for
Reinforcement Learning [13].

Here, each agent performs a given action in an environ-
ment. The agent, in turn, is rewarded or penalized based on
the action performed. This is repeated at every state until
the return/goal is maximized. We can thus think of RL as a
way in which the agent continuously explores and exploits
the environment to obtain the highest return. This can be
formalized as a finite Markov Decision Process (MDP),
where the sets of states, actions, and rewards all have finite
number of elements.

Appendix A addresses the formalization of a finite MDP
[13].

B. Ambiguity

To elucidate the concept of ambiguity, we must first
describe how an ambiguous situation is met. If the robot
is given a set of instructions/information, it will carry out its
tasks ad hoc. However, there are instances where the robot
is given incomplete or no information at all. In this case, the
robot will rely on ambiguous uncertainty [14]. Analogously,
the same behavior is observed in humans: if a person is
travelling on a known route and unexpectedly arrives at an
unknown fork, the individual would have to make a judge-
ment on which path to take, which may be open to multiple
interpretations. Note that there are differences in how each
individual would handle these ambiguous situations, hence
the ambiguity sensitivity [15].

In this paper, ambiguity will refer to the adversary agent’s
uncertainty about the type of the other agents. This will be
discussed in detail in the methods section of this paper.

C. MADDPG

Originally proposed by Lowe et al [11], the MADDPG
algorithm as shown in Figure 2, makes use of a centralized
critic with the addition of a decentralized execution. This
simply means that the policies can use additional information
relating to other agents in the system to make the training
much easier. This is done while still independently taking
actions and recording observations.

Fig 2: The MADDPG Algorithm [11].

[8] then experiment with their algorithm on a variety of
Cooperative, Competitive, and mixed environments as shown
in Figure 3, which run against other RL algorithms as well.
Their results show the superiority of the MADDPG algorithm
over the DDPG and similar algorithms.

Fig 3: Results from running MADDPG Algorithm [11].

D. Neural Networks

Following the training of agents in our newly built en-
vironment, we would also train via an ensemble of Neural
Networks (NN). This simply means that we will run multiple
instances of the MADDPG algorithm on the environment and
take an average of the results. This process is shown in Figure
4:
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Fig 4: Big Picture behind Neural Network Ensembles.

III. METHODS
In developing our environment, a few factors were con-

sidered:
• The platform to be used
• The behavior of the agents
• The reward of the agents

A. Platform
For our environment, we used AI Gym, a free open

source application available online. In addition to Gym, we
utilized a pyTorch implementation of the maddpg algorithm
[16] in training and experimenting with the environment.
All codes were done in Python. Additional requirements
included TensorFlow and OpenAI baselines.

B. Agent Behaviors
After determining suitable platforms, we then proposed

ways by which the agents would interact with each other, as
well as the general outlook of the environment:

• The environment takes two agents at a time.
• One agent is always an adversary (colored blue).
• The other agent can either be an enemy or an ally to

the adversary.
• There is a 50 percent chance of the agent being an

enemy and a 50 percent chance of the agent being an
ally.

• If the agent is an ally, the agent will be colored green,
and its goal is the green landmark.

• If the agent is an enemy, the agent will be colored red,
and its goal is the red landmark.

Recall, from our definition of ambiguity, that the adversary
remains unaware of the type of sub agent (ally or enemy).
This is where the adversary has to make guesses and infer
information based on the behavior of the sub agents.

C. Rewards
In each episode of the environment, the agent made an

attempt to reach its target goal (red or green as described in
part B). Thus, the agents were rewarded according to their
performance in attaining the desired goal. However, there
were additional factors to consider while rewarding agents:

If the agent was an ally, the agent did not need to avoid
the adversary; it only needed to reach the green goal. Thus,

the agent and adversary were both rewarded by minimizing
the distance between themselves and the landmark. Figures
5a and b show snapshots of the environment being run where
the sub agent is an ally and an enemy respectively.

Fig 5a: Environment with an adversary and its ally

Fig 5b: Environment with an adversary and its enemy

If the agent was an enemy, then the reward system
differed slightly. The adversary was positively rewarded by
minimizing the distance between itself and the enemy. The
enemy was positively rewarded by minimizing the distance
between itself and the red landmark while maximizing the
distance between itself and the adversary. In this case, the
system became similar to the predator-prey model discussed
in [11].

Note that the enemy’s reward system prioritizes avoiding
the adversary over reaching the red landmark similar to a
rabbit evading a fox before going home.

IV. RESULTS

Results showed the environment worked well with
the agent pairs (adversary, ally) and (adversary,
enemy). All codes and videos of the environments
being run can be seen on our google sites:
https://sites.google.com/view/riss2020multiagentenv/home

While the environment was running, we recorded the
average reward of each agent plotted against the number of
episodes as shown in Figure 6. For training purposes, the
environment was run for 25,000 episodes.

Note that agent0 (purple) is the adversary and
agent1(orange) is the sub agent.
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Fig 6: Agents’ Reward vs Total number of episodes run

From the graph, we can infer the following:
• An increasing slope in the first few episodes show both

agents’ improvement while learning.
• The sub agent learns better than the adversary. This is

because the adversary has to make more guesses about
the sub agent’s type, which leads to a slower and more
hindered learning process.

• For both agents 0 and 1, there is an obvious fluctuation
gap observed between 20,000 and 25,000 episodes. An
investigation into the cause of such fluctuation is outside
the scope of this paper.

V. CONCLUSION AND FUTURE WORK
We have seen how Deep Reinforcement Learning algo-

rithms like MADDPG help improve the performance of
multi-agent systems, and we have built and ran our environ-
ment on this algorithm to further analyze if sub agents can
adapt as well. We have also further analyzed our environment
to understand how the adversary agent deals with ambiguity
in the environment. We have thus shown that using purely
MADDPG is not sufficient to handle the ambiguity about
the agent types in incomplete information games. We will
leave the development of MADDPG-based algorithm that
can safely handle the ambiguity for future work.

In addition, we hope to further analyze more of such sub
agents that when applied to our NN ensemble, would get an
uncertainty score very close to 0.

APPENDIX
A. Formalization of a Finite Markov Decision Process

Let the set of states, actions, and rewards be expressed as
thus (S, A, R). We can further state that the set contains a
finite number of elements.

Therefore, for certain values of some random values Rt

and St, namely some s0 2 St and r 2 Rt, there exist a
probability for those values to occur at a time, t with respect
to a certain preceding state, s and action, a:

p(s0, r|s, a) = Pr(St = s0, Rt = r|St�1 = s,At�1 = a)

Note that in an MDP, the probability of each possible
value for Rt and St solely depends on only the preceding
state and action.

p(s0|s, a) = Pr(St = s0|St � 1 = s,At � 1 = a) =P
r2R

p(s0, r|s, a)

Similarly, the expected returns/rewards for state-action pairs
can be computed as a two argument function
r : S ⇥A⇥ S �! R

r(s, a) = E(Rt|St � 1 = s,At � 1 = a) =P
r2R

r
P
r2R

p(s0, r|s, a)
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Open-World 3D Detection and Tracking in Autonomous Driving

Neehar Peri1, Achal Dave2, Deva Ramanan2,3 and Shu Kong2

Abstract— Safety-critical perception systems, such as au-

tonomous vehicles, must be aware of a diverse number of

objects for safe operation in the open-world. Multi-object

detection and tracking (MOT) is a key component in such

systems, and is typically instantiated by training on a closed set

of known categories (e.g., pedestrians and vehicles). As a result,

the trained MOT model cannot detect and track unknown
objects belonging to other classes not seen during training. For

operational safety, detecting and tracking these salient unknown

objects is undoubtedly crucial. Therefore, we study open-world

MOT in that we train a MOT model to detect and track

objects not only from known classes (as is typically done in

literature) but also unknown objects belonging to other open-

world classes. Specifically, we focus on 3D MOT using LiDAR

point clouds that provide direct and accurate 3D measurements.

We extend existing 3D MOT evaluation protocols to this open-

world setting by additionally evaluating on an open-world

“unknown” super-class. We re-purpose annotated uncommon

classes (that are typically not used in either training or testing)

in the nuScenes dataset to benchmark performance on open-

world “unknown” objects. We demonstrate that our approach

significantly improves MOT robustness on unknown objects,

while also improving state-of-the-art performance on known

classes. We also qualitatively show that our proposed method

is able to detect real unknown objects (e.g., temporary signs).

Index Terms— Open-World Perception, LiDAR, 3D Detection,

Multi-Object Tracking, Autonomous Vehicles.

I. INTRODUCTION

Safety-critical systems such as autonomous vehicles must
reliably understand the surrounding environment for safe and
accurate operation in the open-world [1], [2]. Multi-object
detection and tracking (MOT) is a critical first step for many
perception pipelines, enabling higher-level modules such as
motion forecasting and planning [3].

MOT has seen significant progress in recent years [4]–[7],
driven by state-of-the-art (SOTA) approaches based on neural
networks that learn directly from sensor data (e.g., LiDAR
and radar for 3D MOT in autonomous driving) [3], [6], [7].
However, such models train on and operate in a “closed-world”
that consists of only a selected number of common classes [4],
[5], which are believed to be safety-critical (e.g., pedestrians
and vehicles). Inevitably, MOT models that are trained using
a limited “closed-world” ontology cannot detect and track
objects from previously unseen (i.e unknown) objects [2].
Identifying and tracking these unknown instances, as shown
in Fig. 1, can be critical to safe operation.

1 Neehar Peri is with the Center for Automation Research, University of
Maryland peri@umiacs.umd.edu

2 Achal Dave, Deva Ramanan, and Shu Kong are with the
Robotics Institute, Carnegie Mellon University {achald, deva,
shukong}@andrew.cmu.edu

3 Deva Ramanan is with ArgoAI

Motivation. To address such unknown objects, we study
MOT in the open-world: we train models with both closed-
world, known classes (as typically done in literature) and
a limited number of unknown objects to define a catchall
class and evaluate performance on both known classes and
unseen unknown objects. Admittedly, enumerating unknown

taxonomic classes for evaluation is prohibitively challenging,
as there may not be enough examples due to the long-tail
distribution encountered in natural data [8]. Therefore, we
can instead evaluate over an “unknown” super-class, which
captures other meaningful objects not included in traditional
closed-world MOT and are thought to be critical. To explore
this novel open-world setup, we establish formal evaluation
protocols, introduce a benchmark setup over an existing well-
curated dataset (nuScenes [6]), and present a simple yet
effective method that not only improves upon SOTA MOT
performance on closed-world classes, but also faciltates the
ability to detect and track unknown objects.
Contribution 1: We explore open-world 3D MOT under

a realistic and practically meaningful scenario, considering

both known and unknown objects in the context of autonomous

driving. Typically, open-world problems are studied using
synthetic setups, such as image classification on MNIST with
unknown testing examples [9], [10]. Within such synthetic
setups, it is hard to draw meaningful conclusions applicable
to real-world scenarios. In contrast, we place ourselves in the
open 3D world, and explore open-world 3D MOT (based on
LiDAR input), which embraces 3D detection and tracking.
Studying open-world MOT cannot be trivially extended from
typical (closed-world) MOT due to some inherent challenges,
as it requires careful consideration of the definition and
evaluation of open-world unknown objects.
Contribution 2: We introduce meaningful evaluation metrics

and benchmarking protocols for open-world MOT. By design,
MOT methods search spatially over the input data (stacked
LiDAR sweeps in our case), and localize objects of interest
according to some predefined closed-world classes. Therefore,
the first challenge in open-world MOT is to define the set of
open-world unknown objects. While it is straightforward to
collect examples from closed-world classes, it is not trivial to
curate open-world unknown objects, which should not be from
either closed-world classes or the background class, but rather
should be from other classes of interest (e.g., animals, movable
objects and debris on the road). Interestingly, we realize
that modern datasets such as nuScenes [6] already annotate
such classes (e.g., animals, debris and other movable objects)
but never exploit them for training and testing, presumably
because there are not enough examples to train class specific
detectors. (cf. Fig. 3). In order to effectively study open-
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Fig. 1: Motivating examples of “unknown” objects in the nuScenes dataset. Left: emergency vehicles are annotated but
never used in either training or testing 3D MOT systems, likely due to the sparsity of such examples (cf. Fig. 3). Therefore,
a system trained on nuScenes closed-world data will either ignore, or misidentify this unknown object. Center: debris
is annotated in nuScences, but like emergency vehicles, it is also not used in either training or testing. debris is
itself a super-class that contains different objects of various shapes and sizes. Right: By manual inspection, we find other
important objects like a road sign that are not annotated. Such objects are important for driving safety but too sparsely
found to be annotated. Through qualitative visualization, we demonstrate that our method can detect and track some “true
unknowns” (these are detection/tracking results from our model).

world MOT, we collectively group these hitherto ignored
classes into a single open-world unknown super-class. We
take inspiration from SOTA MOT methods and train using
closed-world (i.e., known) classes and a small number of
unknown objects necessary to define an “unknown” object
catchall, but we evaluate the trained MOT model on testing
examples from both closed-world (i.e., known) classes and
unseen objects from the open-world (i.e., unknown) superclass.
Therefore, we can naturally adopt the established evaluation
protocols for closed-world data, and extend them with care
to the open-world super-class.

II. RELATED WORKS

Open-World Perception. There are multiple lines of work
addressing open-world perception, such as anomaly de-
tection [9], [11], out-of-distribution detection [12], outlier
detection [13], and open-set recognition [14]. These open-
world problems can be crisply extended from closed-world
image classification by evaluating a model in terms of its
ability to reject outliers or unknown testing examples. Open-
world image classification problems are typically explored
in synthetic setups such as classification on the small-scale
datasets (MNIST or CIFAR [10], [12]). In contrast, it is non-
trivial to study open-world detection and open-world tracking,
both of which are important modules in the autonomy stack.
One exception is [2] that explores LiDAR-based open-set
instance segmentation by simply learning a class-agnostic
grouping model. However, [2] simplifies the study and only
evaluates on two super-classes, known and unknown, without
explicitly studying how the trained model performs on crucial
closed-world classes. In literature, it appears that instance
grouping methods do not perform as well as the class-aware
detection methods [15], [16]. In contrast, we study open-
world MOT and establish a more realistic setup where we
consider performance on both closed-world known classes as
well as open-world unknown classes, and show our method
achieves SOTA performance on the closed-world with a

strongly improved ability to detect and track unknown objects.
3D MOT for Autonomous Driving. 3D object detection
and tracking are core vision problems and form important
modules in autonomous driving. These two problems can be
elegantly explored in the context of 3D MOT, which has been
greatly advanced thanks to recent large-scale datasets [3], [6],
[7]. In these datasets, LiDAR point clouds are a common
input format that gives accurate 3D measurements which are
crucial to an autonomous vehicle driving in the 3D world.

However, LiDAR data is sparse, which make it inefficient
as input into the same 2D convolutional neural networks
(CNN) that show great success on images [17], [18]. To
efficiently learn from LiDAR data, some methods propose
learning-friendly representations that convert LiDAR data
into pseudo-images (e.g., bird-eye-view (BEV) images [19],
[20]) and voxel-grid tensors [19]), which naturally embrace
the established 2D detectors (based on CNN) for 3D object
detection. Others adopt 3D sparse convolutions directly on the
LiDAR point clouds, and achieve state-of-the-art 3D detection
performance [4], [5].

Tracking-by-detection, a popular MOT paradigm, directly
leverages bounding boxes from a detector and performs
temporal association. Accordingly, [21] extends SORT [22]
for 3D MOT, establishing a natural baseline. The tracking-
by-detection framework illustrates that better 3D MOT
performance can be achieved by independently using better
3D detector [21] and better data aggregation methods [23].
While using better detectors and trackers can surely improve
3D MOT, learning an end-to-end model for joint detection
and tracking has shown promising results [5], [24], [25].
CenterPoint [5] is an innovative track-by-detection mehod that
factorizes 3D objects into locations and appearance (i.e., shape
and size). It learns a 3D model that jointly localizes the points
(that represent objects for detection) and predicting points’
velocity (which is used for tracking). For 3D object detection,
CenterPoint further learns to regress object attributes including
size and orientation. As previously noted, CenterPoint, as well
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as other 3D MOT methods, are limited to only several known
classes and cannot detect and track objects from open-world
other classes. We address open-world 3D MOT in this work.

III. 3D OPEN-WORLD DETECTION AND TRACKING

MOT is comprised of two distinct modules: object detection
and tracking. Typically, MOT is explored in the closed world,
and SOTA methods unanimously train models over some
fixed set of known classes. By design, a closed-world MOT
model is class-aware such that it only fires on spatial locations
when it identifies an object as one of its known classes. As
a result, closed-world MOT methods cannot detect and track
unknown objects from novel classes. As we study open-world
MOT, we first address the challenge of designing a model
that is able to detect and track unknown objects.

In this section, we first review a SOTA MOT method,
CenterPoint [5], and explain why fails to detect unknown
objects.1 Next, we introduce a naive post-hoc approach that
detects unknown classes by filtering the detection results from
CenterPoint. We extend this idea of creating a catchall class
by retraining CenterPoint with an additional regression head
for unknown objects and show that we can improve upon
SOTA MOT performance on closed-world classes, as well as
detecting and tracking in the open world.

A. A SOTA Method for Closed-World MOT

CenterPoint [5] is a SOTA tracking-by-detection method
for closed-world MOT. In contrast with other MOT methods
that detect objects (by predicting their shape), CenterPoint
factorizes objects into location and shape. Such a factorization
allows for exclusively training a detector and tracker by
treating objects as points on spatial locations, diminishing
the effects caused by object appearance variations. For each
detected point representing an object, CenterPoint learns to
regress the corresponding object size, orientation and velocity
(which are directly used as location offsets for tracking).
This keypoint regression based method shows superior MOT
performance over other MOT methods that are trained on
objects with entangled location and appearance/shape [4],
[21]. However, similar to other methods, CenterPoint learns
a class-aware detector (and tracker), meaning that it searches
candidate objects spatially for each of the defined closed-
world classes. As a result, CenterPoint, as well as other
closed-world MOT methods, is inherently unable to detect
unknown objects, which are not listed in any known classes
used for training. We start by exploring open-world MOT
with a naive modification to CenterPoint that allows us to
localize some unknown objects, as elaborated below.

B. A Training-Free Baseline for Open-World MOT

We present a naive modification on the CenterPoint network
towards a baseline for open-world MOT. We simply threshold

the detection results for each class class based on the

confidence scores computed by the CenterPoint network and

1Note that our method is model-agnostic that can work with other SOTA
tracking-by-detection methods. We use CenterPoint in this work for its SOTA
performance.

treat the filtered-out or low-confidence detection as unknown

objects. While this threholding-based method is simple, it
has solid foundations from the following three lines of work.
In object detection, thresholding serves as a common post-
processing step to filter out low-confidence results [18], [26].
Since low confidence results are often (but not always) false
positives, thresholding tends to remove such errors [18].
It is worth noting the empirical success reveals that the
inductive bias from closed-world classes causes the model
to produce “false negatives” which look like objects from
these classes [26]–[28]. For example, even though an object
detection system might not explicitly model “emergency
vehicles” as a dedicated class during training, its possible
that a trained car detector might localize emergency vehicles.
In this way, thresholding false positive “errors” in detection
can be used to increase performance on both the car and
unknown object classes. We highlight that CenterPoint’s
outputs inevitably contain MOT results for some unknown
objects. This thresholding method serves as a viable way to
localize unknown objects without retraining.
In open-world recognition, the confidence scores can largely
tell whether a testing example is known or unknown [29]–[31].
In particular, a rather simple method for open-world recog-
nition is just to threshold the classification softmax scores,
treating the low-confident ones as open-world/unknown exam-
ples [30]. Therefore, the filtered-out results from CenterPoint
reasonably contain MOT results for unknown objects (as well
as for the true negatives, e.g., background regions).

We find an appropriate threshold through a per class
parameter sweep on our small validation set as described
in Section V

C. A Stronger Baseline for Open-World MOT

We explore a straightforward extension of the the Center-
Point network by adding an additional regression head to
directly identify unknown objects. We freeze the weights of
the SOTA CenterPoint backbone, as well as the closed-world
class detector heads and train an unknown object branch from
scratch. Despite the simplicity of the threshold approach,
an explicit regression head for unknown objects helps to
indirectly regularize the closed-world regression heads from
falsely detecting and classifying annotated unknown bounding
boxes in the training set. We can think of this baseline
as defining a non-linear learnable threshold that separates
known-objects from unknown-objects. Through experimental
validation, we find that this simple modification slightly
improves performance on closed-world classes, while also
providing a substantial boost in performance for unknown
objects.

Importantly, this baseline defines a concrete decision
boundary for unknown objects, and broadens the vocabulary
of the detector, better generalizing to true unknown objects.
Our proposed method leverages both the stronger baseline and
thresholding trick to further improve tracking performance.

IV. EVALUATION PROTOCOLS

Evaluating MOT in the open-world is non-trivial due to
the complex definition of an open-world object. In particular,

157



C
la

ss
-A

w
ar

e 
R

eg
re

ss
or

s

Po
in

t C
lo

ud
 In

pu
t

G
re

ed
y 

Po
in

t-
Ba

se
d 

A
ss

oc
ia

tio
n

O
pe

n-
W

or
ld

 T
ra

ck
le

ts

O
pe

n-
W

or
ld

 D
et

ec
tio

ns

CenterPoint
3D Detector

Add to 
Unknown 

Bucket

Confidence 
Filter

Duplicate 
Filter

C < T

C > T

Fig. 2: Our proposed model is able to improve performance
on closed world classes, while also improving robustness on
open world previously unseen objects.

nuScenes only annotates a select number of unknown classes,
making it difficult to evaluate open-world performance exactly
as other known classes. As seen in Figure 1, there are also a
number of unlabeled unknown objects of interest. We adapt
the nuScenes evaluation protocol for evaluating open-world
MOT. We first briefly describe the pertinent metrics used in the
standard evaluation protocol, and then introduce modifications
for the open world setting. Primarily, we focus on evaluating
recall for open-world classes, since penalizing false positives
according to the limited open-world annotations overlooks
the unlabeled unknown instances.

A. Standard Evaluation Protocol

The standard nuScenes evaluation protocol evaluates detec-
tion and tracking performance on a fixed set of closed-world
classes which models are explicitly trained on (Cknown).
Models are evaluated on these classes using various metrics
which separately assess different aspects of object detection

and tracking quality. We briefly introduce these metrics here,
and refer the reader to [6] for further details.

For object detection, we report three metrics from the
standard protocol: mean average precision (mAP), mean av-
erage translation error (mATE) and mean average orientation
error (mAOE). The mAP metric is inspired by metrics for
2D object detection [32]. This metric first matches predicted
objects for a class c with nearby groundtruth objects of the
same class which have the smallest center-distance, up to a
certain matching threshold. Given this matching, the metric
computes the Average Precision (AP) at varying recall and
matching thresholds for each class, and averages these across
classes to compute the “mean average precision” (mAP).
mATE and mAOE first compute the Euclidean distance (in
meters) and the smallest yaw angle, respectively, between
predicted objects and their corresponding matched groundtruth
objects of the same class (at a matching threshold of 2
meters center-distance). These values are then averaged
across recall thresholds (10%, 20%, . . . 90%) and classes.
Importantly, “mATE” and “mAOE” are computed only for
true positive predictions which are within the match threshold
to a groundtruth bounding box, ignoring false positives, while

“mAP” explicitly penalizes false positives.
For tracking, we report two additional metrics: Aver-

age Multi-Object Tracking Accuracy (AMOTA) and Iden-
tity F1 (ID-F1). AMOTA computes MOTA with a recall-
normalization term, averaged across multiple recall thresholds.
Specifically, for a single class, AMOTA is defined as

AMOTA =
1

n� 1

X

r2{ 1
n�1 , 2

n�1 ,...1}

MOTAR(r)

MOTAR(r) = max
✓
0, 1� IDSr + FPr + FNr � (1� r) ⇤ P

r ⇤ P

◆
,

where IDSr, FNr, FPr refers to the number of identity-
switches, false-negatives and false-positives, r is the recall
threshold varied over n = 40 different points, and P is the
number of groundtruth objects. These 40 points are evenly
space 2.5% apart between a recall of 2.5% and 100% inclusive
[21]. If a MOT system is unable to reach a certain recall, the
associated MOTAR score used in approximating the AMOTA
integral is set to 0. This metric is computed per class, then
averaged across all classes. AMOTA is conceptually similar
to other integral metrics like average precision used for object
detection.

ID-F1 [33] is not a part of the NuScenes protocol, but is
a commonly used alternative metric to MOTA. ID-F1 more
appropriately assesses tracking quality, while MOTA focuses
primarily on detection quality. Intuitively, ID-F1 aims to
evaluate trackers as instance-specific detectors: each predicted
track id is assigned to a groundtruth track id, and evaluated
as a detector for the assigned groundtruth object. Formally,
ID-F1 is defined as

ID-F1 =
2IDTP

2IDTP + IDFP + IDFN

where IDTP (IDFN) is the number of groundtruth objects
which are (not) correctly identified, while IDFP is the number
of predicted objects which are correctly identified.

B. Extensions to the Open-World

Next, we introduce three extensions to the standard tracking
metrics for open-world evaluation. Evaluating in the open-
world is challenging, as the definition of a generic object is
elusive and may be ambiguous [34]. For example, should an
open-world detector treat each leaf on a tree as an individual
object, or consider the entire tree as one object?

However, while designing a precise definition of objects
(and by extension, non-objects) is challenging, it is easy to
specify that certain regions of the world are objects, such
as those in Fig. 1. To leverage this insight, we follow a rich
line of prior work in 2D object detection [34], [35], focusing
instead on the recall of unseen objects.

We supplement existing detection metrics in nuScenes by
introducing the idea of mean average recall. Much like mAP,
the mean average recall metric is inspired by 2D object
detection [32]. This metric is similar to mAP, but does not
consider false positives. This is ideal for our study of open-
world classes since it is improper to penalize unlabeled “true
unknown” objects. When evaluating the unknown class, we
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restrict the number of predictions by only evaluating on the
top K (K = 100) detections by confidence score.

In order to effectively evaluate open world tracking, we first
define “MOTA recall in the open world” (MOTAROW ), which
adapts MOTA to measure only recall and identity-switches:

MOTAROW = 1� FN + IDS

N
(1)

where, as before, FN is the number of false negatives and
IDS is the number of identity switches. If we remove IDS,
this reduces to classic recall.

Additionally, we use the ID-recall metric (IDR, [33])
as a supplement to ID-F1, which computes the portion of
groundtruth tracklets which are correctly identified:

IDR =
IDTP

IDTP + IDFN
(2)

We simplify evaluation by considering all unknown objects
to belong to the same class. This allows the unknown class
to be treated just like a closed-world object category.

C. Frame-wise Matching for MOT Evaluation on Unknowns

Directly evaluating on unknown object proposals will
inevitably lead to poor performance due to an asymmetry
between the number of annotated unknown objects and
unlabeled unknown objects. Taking inspiration from single
object tracking literature, we propose a first frame matching
criterion to bridge the gap between closed-world and open
world tracking. However, unlike single object tracking, we
still detect and link frames together using a multi-object
tracker. Our proposed matching algorithm has two criteria:
(1) Every ground-truth object must be uniquely matched to a
predicted tracklet, and both the ground-truth and predictions
must be used at most once. This prevents multiple tracklets
being generated for a single ground truth object. (2) We
must match using only the first frame of the ground-truth.
This approach to only using one frame of annotated ground-
truth to bootstrap evaluation is well founded in literature,
particularly in Video Object Tracking (VOT). Leveraging
the first ground truth frame of an unknown object tracklet
bootstraps the matching process and helps remove spurious
tracklets. Additionally, using the first frame penalizes late
detections (i.e. if the first instance that an object is annotated
is at time t, we want to penalize trackers that only pick up this
detection at time t + 10). A tracklet is not considered if it does
not have a detection at the first frame of the ground truth. As
a result, we indirectly bias towards early detections, which we
argue is an important consideration to improve downstream
task performance and overall system safety. Given these two
criteria, we implement this first frame matching as shown in
Algorithm 1.

D. nuScenes Dataset

We benchmark open-world MOT on the nuScenes
dataset [6], a well-established and large-scale dataset that
contains 3D annotations on LiDAR point clouds of diverse
classes, and supports self-driving research on 3D detection
and tracking.

Algorithm 1: Frame-wise Filtering Predictions for
MOT Evaluation on Unknowns
Result: Set of IDs P corresponding to predicted

tracklets that satisfy the maximal bipartite
match.

GT  ;, P  ;,M<K, V > {}
// Collect first-frame of tracks.
for t 2 timestamps do

Let BoxGT represent ground truth bounding
boxes at time t, BoxP predicted bounding boxes
at time t

for box 2 BoxGT do

if box.IDtracklet /2 GT then

GT  box.IDtracklet [ GT

M [t].add(box)
end

end

end

for t 2 M.keys() do

Let L2 be a function that finds the pairwise
center-distance between two sets of boxes.

Affinity = L2(M[t], BoxP [t])
for box in M[t] do

Let Proposals represent the set of boxes in
BoxP [t] that are within m meters of box that
are sorted in order of detection confidence.

for box 2 Proposals do

if box.IDtracklet /2 P then

P  box.IDtracklet [ P

break
end

end

end

end

Since the standard test protocol does not support open-
world evaluation, we maintain the original train split, but
devise a new validation and test split derived from the official
validation set. These new splits partition the 150 scenes
allocated to the traditional validation splits into 50 and 100
fixed scenes respectively for our open-world validation and
test sets.

V. EXPERIMENTS

We benchmark the effectiveness of our proposed open-
world MOT pipeline through extensive experimentation on
our proposed nuScenes validation and test splits.

A. Implementation

We implement our methods on top of the released Cen-
terPoint code, written in PyTorch. Similarly, we modify the
nuScenes evaluation toolkit to facilitate both open-world and
closed-world evaluation. We use a pre-trained CenterPoint
model in all of our models to ensure the they minimally
maintain SOTA closed-world performance.

We train our stronger baseline model for 20 epochs using
an Adam optimizer [36] and use a one-cycle learning rate
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Closed-World Detection Car, Pedestrian, Truck, Bicycle,
Motorcycle, Trailer, Bus, Con-
struction Vehicle, Barrier, Traf-
fic Cone

Closed-World Tracking Car, Pedestrian, Truck, Bicycle,
Motorcycle, Trailer, Bus

Open-World MOT Emergency Vehicles, Strollers,
Personal Mobility, Debris, Push-
able Pullable, Animal

Fig. 3: We plot the distribution of all annotated classes (left) in the nuScenes dataset. As with many real world datasets, the
number of annotations per class follows the long-tail distribution. Classes traditionally used for closed-world detection and
tracking (right) are well represented in the dataset. In this closed-world setting, MOT models are trained and evaluated on
the same fixed set of classes. Current MOT tracking-by-detection pipelines are typically designed for the closed-world. It is
important to note that closed-world tracking is interested in moving objects, and therefore does not evaluate barriers, traffic
cones, or construction vehicles.

scheduler [37]. After training CenterPoint with the additional
unknown object branch, we leverage the thresholding trick (as
detailed in Fig. 2) to remove less-confident detected objects
before generating detection results and tracklets.

B. Ablation Study

We study the effect of thresholding on the overall perfor-
mance of our proposed open-world MOT model. We quantify
our findings in Table I on both CenterPoint and our improved
baseline.

Our thresholding strategy (Sec. III-B) slightly improves the
AMOTA score of known classes for CenterPoint. However,
we note that known classes perform slightly worse on
MOTAROW , IDF1, and IDR. Intuitively, as we reduce
the number of predicted tracklets, recall based metrics are
more likely to get lower. Unlike our initial prediction, simply
thresholding low confidence predictions from known classes
does not seem to impact unknown object performance. Both of
these trends can be explained by the quality of low confidence
detections. Although our initial hypothesis that low confidence
detections from known classes correspond to false positives
is substantiated by our experimental results, we find that
these thresholded detections represent fragmented tracklets
that cannot be properly linked by a tracker.

Our stronger baseline model that trains an extra unknown
object regression head (Sec. III-C) performs slightly better on
known classes, and significantly better on unknown objects.
Interestingly, thresholding known class results from our
stronger baseline model increases known class performance
on all metrics, but significantly reduces unknown object
performance. This suggests that when we explicitly train
a regression head for unknown objects, we should leverage
thresholding as a means to improve known class performance,

but not use these thresholded results to supplement the
unknown object. Training an unknown object regressor acts
as a regularization method such that known class predictions
are less likely to detect unknown objects, ensuring that
thresholded predictions correspond to true false positives.

C. 3D Detection in the Open-World

Robust 3D detection is the backbone of MOT pipelines.
In most cases, better detections result in better tracklet
generation. Given the importance of 3D detection, we are
interested in evaluating the performance of our proposed
method against CenterPoint. Specifically, we are interested
in determining the additional benefit provided by training
on a small number of unknown objects, and using a per-
class threshold to filter low confidence detections. We note
that our proposed method has slightly higher performance on
known classes, as expected. In Table II, we report the average
translation error (ATE) and average orientation error (AOE),
two key metrics in measuring the effectiveness of bounding
box localization. We find that both ATE and AOE slightly
improve for known objects, and additionally see significant
improvement across all metrics for unknown object detection
performance.

D. 3D Tracking in the Open-World

After detecting open-world unknown objects, tracking
follows as a natural extension. Utilizing the same baseline and
proposed models as in the previous section, we evaluate their
performance on both closed-world and open-world tracking
metrics. Specifically, we evaluate unknown objects using our
first-frame matching protocol as defined in Algorithm 1. Table
III highlights the per-class performance of both our models.
Impressively, we find that training an additional unknown
object branch without modifying the weights for the backbone
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Known / Unknown AMOTA " MOTAROW " IDF1 " IDR "
CenterPoint 0.604 / 0 0.671 / 0 0.713 / 0 0.659 / 0
CenterPoint
+ Threshold 0.609 / 0 0.652 / 0 0.708 / 0 0.642 / 0

CenterPoint
+ Unknown 0.605 / 0.476 0.657 / 0.564 0.707 / 0.690 0.648 / 0.564

CenterPoint
+ Unknown
+ Threshold

0.608 / 0.437 0.661 / 0.518 0.712 / 0.656 0.651 / 0.518

TABLE I: Summary of different baseline models to evaluate the effectiveness of thresholding on the open world test split. We
average performance over the 10 closed-world classes to report known-object performance, and separately report performance
on the unknown super-class. Training an additional regression head improves unknown object performance, while thresholding
improves known class performance.

Model Class mAP " mAR " mATE # mAOE #

CenterPoint

Bicycle 0.315 0.814 0.178 0.381
Bus 0.727 0.810 0.278 0.023
Car 0.855 0.923 0.174 0.107

Motorcycle 0.576 0.847 0.195 0.252
Pedestrian 0.848 0.962 0.144 0.384

Trailer 0.389 0.615 0.495 0.390
Truck 0.566 0.809 0.311 0.052
Barrier 0.672 0.885 0.189 0.060

Construction Vehicle 0.216 0.504 0.706 0.953
Traffic Cone 0.687 0.926 0.131 N/A

Known Objects 0.585 0.809 0.280 0.289
Unknown Objects 0 0 1 1

Summary 0.532 0.736 0.346 0.360

CenterPoint
+ Unknown
+ Threshold

Bicycle 0.312 0.805 0.177 0.362
Bus 0.727 0.806 0.276 0.018
Car 0.852 0.915 0.172 0.105

Motorcycle 0.576 0.818 0.192 0.255
Pedestrian 0.844 0.951 0.143 0.382

Trailer 0.389 0.604 0.493 0.397
Truck 0.569 0.809 0.312 0.053
Barrier 0.671 0.879 0.188 0.061

Construction Vehicle 0.214 0.5 0.709 0.952
Traffic Cone 0.686 0.914 0.129 N/A

Known Objects 0.584 0.800 0.279 0.287
Unknown Objects 0.119 0.885 0.230 0.627

Summary 0.542 0.808 0.275 0.321

TABLE II: We compare our proposed open-world detection performance with CenterPoint, a SOTA MOT method on our
open world test split. Our proposed method significantly improves on all metrics for unknown objects while maintaining
closed-world performance.

network indirectly improves known object AMOTA for most
classes.

VI. CONCLUSION

In this paper, we have extensively explored the task of
open-world MOT, and have established simple yet effective
ways of endowing SOTA closed-world MOT systems with
open-world robustness. For future work, we will train a two-
stream model that provide SOTA closed-world performance
by one stream and unknown MOT by the other. Additionally,

we will annotate some real unknown objects (e.g., temporary
signs) as test-set to gauge how our model can detect and
track these crucial unknown objects.
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Model Class AMOTA " MOTAROW " IDF1 " IDR "

CenterPoint

Bicycle 0.356 0.519 0.589 0.515
Bus 0.835 0.822 0.872 0.822
Car 0.839 0.844 0.839 0.828

Motorcycle 0.559 0.603 0.685 0.589
Pedestrian 0.765 0.815 0.786 0.794

Trailer 0.486 0.555 0.629 0.528
Truck 0.643 0.703 0.743 0.697
Barrier 0.627 0.692 0.720 0.681

Construction Vehicle 0.323 0.473 0.553 0.457
Traffic Cone 0.614 0.691 0.722 0.683

Known Objects 0.605 0.672 0.714 0.660
Unknown Objects 0 0 0 0

Summary 0.550 0.611 0.649 0.600

CenterPoint
+ Unknown
+ Threshold

Bicycle 0.329 0.476 0.566 0.470
Bus 0.833 0.818 0.871 0.819
Car 0.842 0.819 0.841 0.807

Motorcycle 0.608 0.652 0.722 0.643
Pedestrian 0.776 0.805 0.791 0.785

Trailer 0.495 0.480 0.606 0.469
Truck 0.648 0.728 0.751 0.329
Barrier 0.635 0.689 0.720 0.678

Construction Vehicle 0.306 0.433 0.523 0.417
Traffic Cone 0.615 0.713 0.733 0.706

Known Objects 0.609 0.661 0.712 0.651
Unknown Objects 0.437 0.518 0.656 0.518

Summary 0.593 0.648 0.707 0.639

TABLE III: We compare our proposed open-world tracking performance with CenterPoint, a SOTA MOT method on our
open world test split. Our proposed method slightly improves AMOTA on known classes and significantly improves open
world robustness.
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Dynamic Differentiation between Leading Indicators of Hemorrhagic

and Septic Shock

Ernest Pokropek1, Xinyu Li2, Michael R. Pinsky3 and Artur Dubrawski2

Abstract— Distinction between hemorrhage and sepsis still

poses a challenge in early diagnosis, as both medical conditions

share drop of the blood pressure, and consequently hypotension

as one of the initial symptoms. What is crucial, they require

vastly different medical treatments; if timely therapy or resus-

citation is missing, both conditions could lead to adverse patient

outcomes, or even death. Currently, distinguishing between the

two highly depends on the qualifications and promptness of

the medical staff, making it challenging even in controlled

environments. We utilize a Random Forest Classifier model

capable of differentiating between hemorrhage and endotoxin-

induced sepsis at both early and late stages of decreasing

blood pressure, based on arterial pressure measurements. Both

the training and the evaluation of our classifier is conducted

on different stages of the aforementioned phenomena, using

laboratory data collected from pigs exposed to bleeding or

endotoxin infusion.

Index Terms— Machine learning, Medical diagnosis, Decision

support systems

I. INTRODUCTION
Hemorrhage is the process of blood escaping the circu-

latory system via damaged blood vessels, either outside of
the body (external) or inside it (internal). In the first case,
detection of this condition might seem straightforward, due
to factors such as visible wounds or the blood itself, yet
for the latter, the diagnosis becomes more complicated, with
necessity of higher clinical suspicion. This includes various
methods of evaluation of the presumptions related to bleeding
including CT, X-ray, or ultrasound scans [1], of which
selection highly depends on the suspected placement of the
traumatic wound. The treatment varies on factors such as
anatomic location and extent of the injury, including methods
such as resuscitation and transfusion. Where most of adults
could tolerate loss of blood up to 14% of its total volume,
without prompt diagnosis it may later lead to organ failure,
coma, and death. Hemorrhage, although preventable, when
untreated might be fatal [2], with approximately 2 million
deaths annually (worldwide) as a result of this medical
condition [3].

Most potent trigger of sepsis are endotoxins - lipopolysac-
charides (LPS), which contribute to the major part of the
outer membrane of gram-negative bacteria. Their presence
in the blood, caused by the bacterial infection, might lead

1Ernest Pokropek is with Faculty of Electronics and Informa-
tion Technology, Warsaw University of Technology, Warsaw, Poland
ernest.pokropek.stud@pw.edu.pl

2Xinyu Li and Artur Dubrawski are with the Auton Lab,
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xinyul2@andrew.cmu.edu, awd@cs.cmu.edu

3Michael R. Pinsky is with Department of Critical Care Medicine,
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to septic reactions and even end in death of the patient
due to endotoxic shock [4]. Sepsis is usually diagnosed
by presence of endotoxin in the blood stream, and it is
most commonly performed using the different variations of
Limulus Amoebocyte Lysate (LAL) assay. This technique
utilizes the protein from blood of the horseshoe crab, Limulus

polyphemus, which makes it clot in the presence of LPS. This
method requires taking a blood sample from the patient in
order to perform the diagnosis. Rapid treatment here is of
extreme importance, given that some of the infecting bacteria
might be resistant to antibiotics. This is especially present
in Healthcare-Acquired Infections (HAIs), often involving
life-threatening gram-negative bacteria such as Escherichia

coli or Pseudomonas aeruginosa. HAIs are responsible for
approximately 1.7 million deaths each year in the United
States alone [5].

Both of the aforementioned phenomena share one of the
initial symptoms, which is hypotension [2], [6]. It may
be caused by hypovolemia (reduced blood volume) which
occurs when exposed to hemorrhage or sepsis (which most
commonly is triggered by LPS) [7]. Both medical conditions
may lead to development of lethal inflammatory responses
or life-threatening systemic inflammatory response syndrome
(SIRS) capable of irreversible end-organ dysfunction [8].
Given an automated method for distinction between these
two medical conditions based on blood pressure alone, it
would drastically improve the medical resilience for quick
and proper treatment, especially when there is no possibility
to inquire about patient’s recent history. This could also serve
as a great support for current methods of distinction, as
they are usually costly and time consuming. This approach
would utilize already available data, given that some of the
patients are constantly monitored for vital signs. In this
study, we develop a Random Forest Classifier model that is
able to distinguish between the two aforementioned medical
conditions in different time intervals of their presence, based
on the arterial pressure (describing the pressure exerted by
the blood in large arteries).

II. PRIOR WORK

With the enormous amounts of data being collected from
the patients, including the vital signs, their interpretation is
becoming more troubling for human eye. This is an excellent
opportunity to apply the machine learning (ML) models,
which can quickly estimate, or act as a support of the medical
diagnosis. ML has been successfully used for various tasks
addressing this opportunity, including cardiovascular diseases
or cancer [9].
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Application of ML in the medical diagnosis may vary
from using computer vision to analyze the MRI scans to
multi-dimensional regression models examining the raw vital
signs. ML approach has been also used for detection of
hemorrhage: Kuo et al. [10] proposed a convolutional neural
network being able to detect different types of intracranial
hemorrhage based on CT scans of human head. Their ap-
proach outperformed some of the professional radiologists in
accuracy of detecting the aforementioned medical condition.
Furthermore, Nagpal et al. [11] presented a model being
able to dynamically detect hemorrhage by using waveform
of Central Venous Pressure (CVP), outperforming previous
ML approaches addressing this problem in terms of speed
of detection and providing better foundations for further
evaluation of patient’s health for clinicians.

There is little prior work related to automated and dynamic
detection of endotoxin in blood due to the necessity of
performing exhaustive blood tests for majority of current
methods. However, one of the most important consequences
of LPS presence in blood is sepsis, and consequently septic
shock. Detection of this critical condition has been success-
fully performed by utilizing long short-term memory neural
network in [12]. This model is able to detect majority of
potential septic shock onsets about 40 hours prior to them,
basing on not only vital signs, but also laboratory tests,
medical procedures, medications, diagnoses and demograph-
ics. For the sepsis alone, Lauritsen et al. [13] proposed
different ML models for detection of this medical condition
based on sequential, time-stamped data including diagnoses,
procedures, treatments, various medical image data such
as CT, X-ray, ultrasound scans, and demographics. This
approach yielded an ability to detect sepsis onset 24 hours
prior to it, with substantial part of diagnoses performed
correctly. All those methods are proper and well thought,
yet do not provide a dynamic detection necessary for prompt
diagnosis basing only on the vital signs, which is especially
important for intensive care patients that have just arrived to
the medical facility. Henry et al. [14] presented an automated
method of detecting potential development of septic shock.
Based on real-time data, their model is able to detect this
medical condition approximately 28.2 hours prior to its onset.

There exist traditional methods for distinction between
hemorrhage and sepsis (or its trigger, i.e. endotoxin), but
they are usually limited to methodology of eliminating pos-
sibilities. For example, during septic shock, major blood loss
from gastrointestinal hemorrhage is uncommon [15], thus
when facing such phenomena, our intuition may lean towards
diagnosis of internal bleeding. Currently, to our knowledge,
there is no popular and reliable method for dynamic and
automated distinction between hemorrhage and sepsis.

III. DATA AND METHODOLOGY

For this study we used a real-world laboratory data col-
lected from 23 healthy Yorkshire Pigs. Animals were divided
into two groups: exposed to bleeding (15 individuals, hemor-
rhage group) and infused with LPS (8 individuals, endotoxin
group). For each of the two classes, after setting up necessary

measurement devices, pigs were undergoing the stabilization

phase, which lasted approximately 50 minutes. During this
episode, the subjects were not exposed to bleeding nor LPS
infusion. After the stabilization period, the pigs from the
first group were exposed to slow bleeding (5 milliliters per
minute), and the pigs from the second group - to the first
injection of LPS. This injection for the group exposed to
endotoxin has been performed in order to injure the subjects
immune system enough to develop septic shock symptoms
after the second infusion, which is the subject of our interest
in this study. During the experiment, the waveform of arterial
pressure has been collected at 250Hz pace. Average length
of the examined episodes are approximately 68 minutes for
the hemorrhage group (minimum 50, maximum 78, standard
deviation of approximately 8 minutes) and 58 minutes for
the endotoxin group (minimum 45, maximum 115, standard
deviation of approximately 23 minutes).

A. Pre-processing and Featurization

For every trailing time window of 4 minutes length,
statistical figures of arterial pressure have been computed:
mean, median, standard deviation and range between 5th
and 95th percentile. Together with raw measurement, those
features contribute to one point of the featurized data per
one 4 minutes window. Those features have been later
downsampled to 2Hz along with computing the Discrete
Fourier Transform (DFT) to calculate signal’s power for
different frequency bands, which could be interpreted in
medical diagnosis. Following frequency bands have been
investigated, using 250Hz sampling frequency:

• [0.04, 0.15) - Low Frequency (LF)
• [0.15, 0.4) - High Frequency (HF): corresponds to res-

piratory rate
• [0.4, 10) - Very High Frequency (VHF): corresponds to

heart rate
• [10, 125) - Very-Very High Frequency (VVHF)
Furthermore, the data for each pig has been standardized

using its stabilization phase. Given i-th feature of arterial
pressure during stabilization, Xi, the corresponding standard-
ized feature X̂i may be calculated as shown in 1.

X̂i =
Xi � eXsi

IQR(Xsi)
(1)

where:

X̂i = i-th standardized feature
Xi = original i-th feature
Xsi = i-th feature from stabilization phase
eXsi = median of the i-th feature from stabilization

phase
IQR = interquartile range,

Finally, the last task of the data pre-processing was to
overcome the problem related to episode selection. As for the
bleeding group we used the episode immediately following
the stabilization phase, for group exposed to endotoxin we
had to skip the aftermath of first LPS infusion as its purpose
was to only destroy the subject’s immune system, rather
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than develop actual septic symptoms. This resulted in the
waveform not being continuous, with more or less noticeable
change from the stabilization phase to the second episode of
LPS infusion. This change on the boundary between episodes
has mean relative magnitude (with respect to the last sample
of the stabilization phase) of 6.22%, with standard deviation
of 4.80%. This problem is illustrated on 1.

Fig. 1. Differences in transition from stabilization phase to examined
episode (first hemorrhage episode for bleeding group, second infusion of
LPS for endotoxin group) pictured using data of two individual pigs.

We overcame this difficulty by truncating the data used
later for training to fall in the time interval of [25, 40]
minutes of offset (absolute time from the beginning of the
experiment). The first few minutes correspond to beginning
of the experiment, where pigs are either exposed to bleeding,
or to second infusion of LPS. Due to the difference in
transition, we decided to skip this part of the episode in
order not to bias the model with possible outliers that
come from problems related to improper stabilization or
individual differences. Similarly, we chose the right bound
of the interval, which is 40-th minute: after such time, the
vital sign tend to diminish, so the model might be more
exposed to individual differences between the groups. This
interval yielded in highest performance scores across all
whole data set. The data for testing remains unchanged for
all the analyses.

B. Experiment setup

We used the Random Forest Classifier (RFC) model with
80 Decision Trees, where each tree had maximum depth
limited to 30. For proper performance analysis, we performed
a specific utilization of k-Fold cross validation: first, the pigs
from each group were joined into unique pairs (1 pig from
bleeding group together with 1 pig from endotoxin group),
which resulted in total of 120 such pairs. Then, for each run
of the training, one of the pairs has been used for testing the
performance, resulting in total of 15 * 8 = 120 folds of cross
validation, i.e. train-test runs. Although the training data has
been truncated, as described as in III-A, the testing has been
performed on the whole volume of the data, including the
early and late stages of the LPS infusion. In this binary

classification task, the condition of endotoxin-induced sepsis
was marked as the positive class (1), and the hemorrhage as
negative (0).

IV. RESULTS
The presented results are in form of averaged test results

from the 120 folds of cross validation, where in each fold
the data used for testing have not been influenced by any
process except normalization as in eq. 1. Each fold represents
training and evaluating the model’s performance on unique
pair of subjects, which consists of two animals from different
groups (hemorrhage, endotoxin).

A. Performance

First metric to evaluate the model, is the Receiver Op-
erating Characteristic (ROC) curve. This plot, having the
True Positive Rate (TPR) on the y-axis, and False Positive
Rate (FPR) on the x-axis describes the trade-off between
accuracy and sensitivity of the model, which especially in
medical diagnosis, is crucial for proper analysis. Figure 3,
presents classifier’s ability to distinguish between endotoxin
and hemorrhage for the model, which at the lowest False
Positive Ratio (FPR) can detect on average over 60% of
endotoxin (positive class) occurrences. This provides appro-
priate metric for medical diagnosis, as this corresponds to
60% rate of detection without making a single mistake. The
standard deviation of the ROCs across all the pairs from
cross validation is constantly above the random line, which
implies that on average, for each test run the model has been
better than random prediction.

Fig. 2. Comparison of average AUC (left side y-axis, red color) and True
Positive Ratio at constant False Positive Ratio equal to 0.1 (right side y-
axis, blue color) for given intervals of time offset. Each of the intervals
are left-side inclusive and right-side exclusive. Scores are computed on the
testing data at each fold, and then averaged. Data used for testing have not
been truncated.

Even with a truncated data with respect to the [25, 40]
minute time interval, the RFC model performs reasonably
well on the beginning of the experiment, with increasing
trend towards the later moments. This is illustrated on 2,
where the average AUC (Area Under (ROC) Curve) and TPR
at FPR=0.01 are calculated for each minute of the experi-
ment. Intuitively, the RFC model is confused at the begin-
ning, where both of the medical conditions have just started
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Fig. 3. ROC curves calculated in each fold of the cross validation, based on two pigs from opposite group and then averaged (after interpolating for all
possible FPR values). Positive class corresponds to LPS infused group (endotoxin) and negative for animals exposed to bleeding (hemorrhage). Second
plot presents the same data as first one, yet it has x-axis in the logarythmic scale. The third plot pictures True Negative Ratio (TNR) to False Negative
Ratio (FNR). The confidence of average AUC has been calculated using 95% confidence interval (z = 1.96).

to set in. With slower changes and healthier physiology
of the subject, the distinction between two life-threatening
conditions becomes more difficult. With progress of time,
the predictions are more confident and correct, just to reach
and optimal decisive properties around 25th minute of the
progressing medical condition. This analysis demonstrates
that our solution for distinction between hemorrhage and
endotoxin could serve as a really useful support for medical
diagnosis even on the very first stages of aforementioned
medical conditions.

Lastly, a cumulative confusion matrix has been calculated
by calculating it based on predictions made at each of 120
folds of cross-validation. The calculated metrics obtained
from it are presented in I, where: TP - True Positive, TN
- True Negative, FP - False Positive, FN - False Negative.

Furthermore, the cumulative confusion matrix is presented
graphically on 4.

Fig. 4. Cumulative confusion matrix based on predictions of each fold of
the cross validation. The percentages correspond to the portion of classified
samples in respect to total number of values in each of the examined groups
(hemorrhage, endotoxin) and the values in parenthesis to the number of
predictions.

Metric Definition Value

Accuracy TP+TN
TP+TN+FP+FN 81.82%

F-1 Score 2TP
2TP+FP+FN 81.01%

Sensitivity TP
TP+FN 85.24%

Specificity TN
TN+FP 78.95%

Precision TP
TP+FP 77.18%

Miss Rate FN
FN+TP 14.76%

Fall-out FP
FP+TN 21.05%

False Discovery Rate FP
FP+TP 22.82%

False Omission Rate FN
FN+TN 13.50%

TABLE I
AVERAGE METRICS OBTAINED FROM THE CUMULATIVE CONFUSION

MATRIX SHOWN.

The tendency of model classifying rather the negative class
(bleeding) comes from the fact, that there are 15 pigs exposed
to hemorrhage, compared to only 8 infused with LPS - that
is why the the sensitivity (recall) has smaller magnitude
than precision. In general, the model has the right tendency
when making decisions, with majority (82.06%) of samples
classified correctly. It is worth to emphasize, that those scores
come from the whole duration of the examined episode, and
they are influenced by the poorer performance of the models
at the beginning.

Although the general performance of the model is impor-
tant, in medical diagnosis for critical care we are especially
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interested in low false alarm ratio. Sometimes we may want
our model to classify even only 20% of the insets of given
medical condition while having a really small False Positive
Ratio, than have a model performing random guesses and
thus detecting around 50% of the target. To illustrate the
dexterity of our solution with respect to aforementioned
reasoning, Fig. 5 presents the confusion matrix calculated
for probability threshold of 0.01 (if the model predicted
probability larger or equal to 0.01 for certain sample it got
classified as positive class, otherwise as negative). For such
tuning the model makes only about 3 mistakes per each
100 decisions when detecting sepsis, given that it makes 2
predictions per second.

Fig. 5. Cumulative confusion matrix with probability threshold equal to
0.1. Percentages correspond to the the portion of whole class population
that has been detected.

B. Decision making

To have an insight on how the model is making decisions,
we analyzed the feature importance of trained RFCs.
Importance of given feature is defined as how much it
contributes to the final prediction, i.e. how important it
is. Here, we considered attributes with importance higher
than 8% to be informative, that is that they have a notable
influence on the prediction. Figure 6 shows, that the most
important feature is the one corresponding to respiratory
rate of the subject (28.99%), which is one of the most
important vital signs. Consequently, very important is also
the one corresponding to heart rate (28.10%). This is quite
intuitive and expected, as the arterial pressure is directly
linked to this vital sign. The standard deviation (16.52%)
resembles the dynamics and scale of changes of the subjects
anatomical responses, which are directly referring to how
stable the actual patient is - with more prompt changes,
that is more rapid response to anatomical state, we may
expect the patient to be healthier, i.e. the bleeding or sepsis
have not influenced it much yet. With notable influence on
the decision, there are as well features which represent the
magnitude of the arterial pressure itself.

Fig. 6. Average feature importances from 120 models trained during the
cross-validation, where informative features are marked with red colour.

V. DISCUSSION

Measurement of arterial pressure is one of the most
invasive methods for vital sign monitoring. At the beginning
of the research, we wanted to incorporate Pulse Oximeter
Pleth (Plethysmograph) into the feature set as well, with
same methodology as described as in III-A. Together with
calculated Pleth Variability Index (PVI), it could provide a
great opportunity for distinction between hemorrhage and
endotoxin for patients which state is not critical, as it is a
non-invasive method of measuring the hearth rhythm. This
method of measuring the vital signs is also easier to set up.
However, there is a trade-off between simplicity, easiness of
use, and precision. The problem we faced, that compared
to arterial pressure recordings, Pleth had incredible high
variability between the groups - based on only median of the
Pleth signal, the model was able to distinguish between the
two medical conditions with incredible confidence. After a
throughout distribution analysis, measuring performance for
different offsets and thresholds of variables, we discovered
that the Pleth signal brought too much differences based on
the selected groups, instead of the medical condition, thus
it would be useless in real world applications. Due to this
fact, we decided to use only the arterial pressure for this
study. For future work and potential development, different
vital sign measurements might be taken into account, with
respect to their invasiveness.

It is worth to mention, that the data set is quite small in
terms of individuals - having only 25 different animals, it is
quite challenging to provide a model that will perform well
on whole population. Future work might involve analysis
of larger groups, with more focus put into diminishing the
problems related to individual differences. The next steps of
this study should involve validation of presented reasoning
on human vital sign data, in order to confirm the reliability
of our solution.

One of the limitations of this study is the fact, that in
order to utilize the presented solution, one needs to know if
either hemorrhage or endotoxin-induced sepsis is happening
in the first place. This could be overcome with proper design
of the fully functional predictive system, after evaluation
of our approach on subjects exposed to different medical
conditions contributing to changes of the arterial pressure.
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Such system could compute predictions for a specific interval
of time, e.g. 1 minute, and then produce a decision using
weighted average. Another limitation worth mentioning is
that the presented approach cannot be utilized in autopsy
related analyses, as it is based on vital sign measurement.
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Abstract— Acute renal failure is a serious medical com-

plication that can occur following coronary artery bypass

grafting (CABG) surgery and can pose other serious medical

complications if left undiagnosed and untreated. Risk models

based on logistic regression were developed by the Society

of Thoracic Surgeons (STS) to provide information on the

potential mortality and morbidity outcomes of patients for

cardiac surgeries. Previous work strove to improve the STS risk

models with machine learning algorithms using pre-operative

data similar to that used to develop the STS risk models. In

this research, an intra-operative dataset with data obtained

during CABG surgery was analyzed that is separate from

that used to develop the STS risk models and previous work.

The focus of this research was to determine through intra-

operative data analysis whether surgical procedures and/or

patient condition changes during surgery are associated with

acute renal failure outcomes. Information from the analysis was

used to generate a binary classification model for the purpose

of assisting the pre-operative model in identifying patients’

risk of developing renal failure following CABG surgery. The

research identified 20 features of interest with significant (p-

value < 0.05) deviations between renal failure (RF) and non-

renal failure (NRF) patients during CABG surgery. The model

accurately identifies approximately 10 percent of RF patients

at a false positive rate (FPR) of 1 percent and approximately 22

percent at a higher FPR of 10 percent based on their surgical

parameter and patient condition measurements. The model has

the potential to be used as an overlay to the pre-operative model

and current practices to help identify patients with higher risk

of RF, thereby allowing clinicians to increase preventative care

measures for these patients.

I. INTRODUCTION

Coronary artery bypass grafting (CABG) is the most
common type of heart surgery in the U.S. [1]. Approximately
340,000 procedures are performed each year [2]. Serious
medical complications from CABG surgery can occur, in-
cluding stroke, heart attack, acute renal failure, and death.
This project focuses on acute renal failure, which is defined
as a significant post-operative increase in serum creatinine
or the post-operative requirement for dialysis [3, 4]. The
complication of acute renal failure was chosen to analyze for

1Willa Potosnak is a student in her 3rd year in the Biomedical
Engineering Department at Duquesne University, Pittsburgh, PA, USA
potosnakw@duq.edu
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this project due to a request from cardiothoracic surgeons for
a predictive model that could provide additional insight for
improving surgical parameters during and following CABG
surgery for patients classified as likely to develop renal
failure. Acute renal failure reduces the kidneys’ ability to
filter waste products and balance fluid and electrolytes. It also
increases risks associated with other serious health compli-
cations, such as permanent kidney damage, if not diagnosed
and treated immediately [5]. Because of the importance
of renal function in maintaining homeostasis in the body,
acute renal failure is an independent risk factor for post-
operative mortality for patients requiring dialysis or other
renal replacement therapies [3, 4].

Risk models based on logistic regression were developed
by the Society of Thoracic Surgeons (STS) to provide infor-
mation on the potential mortality and morbidity outcomes of
cardiac surgery patients. The STS risk models provide a risk
assessment capability based on patients’ characteristics that
enables doctors to better judge patients’ fitness for specific
types of cardiac surgeries. Previous work [3, 6] strove to
improve predictions for 7 outcomes of the STS risk models,
including post-operative acute renal failure and mortality,
using pre-operative data similar to that used to develop the
STS risk models. This previous work used the machine
learning algorithm Extreme Gradient Boosting (XGBoost) to
develop models which showed improved classification results
for acute renal failure and modest improvement for mortality
compared with results based on the existing STS models [3,
6].

The focus of this research was to determine through intra-
operative data analysis whether surgical procedures and/or
patient condition changes during surgery are associated with
acute renal failure outcomes. Intra-operative data, which
consist of data collected during CABG surgeries separate
from the data used in developing the STS risk models and
previous work, are used in the analysis. The intra-operative
data employed in this project consist of patient demographics
as well as surgical medications and surgical parameters
recorded during CABG surgery for 362 patients.

This work is novel because it focused on identifying
intra-operative feature differences between the renal failure
(RF) and non-renal failure (NRF) patient classes for use
in generating a binary classification model to predict post-
operative acute renal failure outcomes. A binary classifi-
cation model using solely intra-operative features has the
potential to be used as an overlay to the pre-operative
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model and current practices to help identify potential RF
patients. The intra-operative data used in this project con-
tain time-series features (i.e., surgical/patient measurements),
many of which are different from those collected prior to
surgery. Information on the minute discrepancies in surgical
parameters and patient condition changes between RF and
NRF patients during surgery can be discerned through time-
series analysis. Time-series analysis results can influence
medication and procedures applied during and following
CABG surgery to mitigate the risk of RF. Patient condition
changes, especially those recorded just prior to, during and
directly after cardiopulmonary bypass time, are of special
interest for identifying the best surgical parameters.

The objectives of this research were to: 1) analyze intra-
operative data from patients undergoing CABG surgery; 2)
determine whether surgical procedures and patient condition
changes are associated with renal failure outcomes; and 3)
model determined features related to renal failure outcomes
in an explainable format for better prediction and prevention
of renal failure.

II. DATA

The data used in this research consist of 362 patients who
underwent isolated CABG surgery, meaning CABG is the
only performed procedure. There is 4:1 propensity matching
(4 NRF patients are present for every 1 RF patient) based on
pre-operative risk scores generated from the STS risk model.
Propensity matching is used to help remove potential bias
that could cause a classification model to overfit the data
and perform sub-optimally when applied to patients external
to the project data. 75 patients developed acute renal failure
following surgery and comprise the test group while the other
287 patients did not develop acute renal failure and comprise
the control group. It is important to note that surgery duration
varies for each patient and only half of the patients in the
data have surgery durations that exceed approximately 4.5
hours as shown in Figure 4. Furthermore, CABG surgical
procedures are not time-specific, but depend on the condi-
tion of the individual patient. The data subset used in the
analysis consists of patient condition measurements, surgical
parameters, and the top 5 medication features that affect
heart rate and blood pressure. Negative time values indicate
that the measurement was recorded prior to the first incision
which occurs at 0 minutes and is specified in Figures 3
and 4. Patient condition measurement and surgical parameter
data were forward filled for each patient by propagating the
last valid measurement forward to avoid data sparsity given
these features are continuous [7]. Medication features were
incorporated into the dataset for the specified infusion start
and stop times.

III. ANALYSIS METHODS

Patient condition, surgical parameter and medication mea-
surements were incorporated into a dataset as individual fea-
tures. An analysis of these features was conducted to discern
if feature values differed between RF and NRF patients.
Several methods were used for the analysis. Median value

time-series plots were generated for features that showed
distinct value separation for RF and NRF patients. P-values
were generated for each feature using the Kolmogorov-
Smirnov test on the distributions for RF and NRF patients.
This tests the null hypothesis that two independent samples
are drawn from the same continuous distribution. Features
with significant (p-value < 0.05) deviations between classes
indicate that only less than 5 percent of the time would the
same distribution generate the two class samples. P-values
less than 0.05 were used to help confirm features of interest
and are shown in Table I. Time-series p-value plots were also
generated for each feature using the Kolmogorov-Smirnov
test for the two patient class distributions at each minute.
These provide more minute visualizations of significant
deviations between classes throughout surgery duration.

A separate analysis of medication features was conducted
using the Fisher Exact test to determine if there is 1) a
statistically significant association between patient class and
the presence of specific medication features; and/or 2) a
statistically significant association between patient class and
the 20 percent highest and lowest total medication amounts
administered. The p-values for these tests are shown in Table
II. Medication features were not used to train the model due
to their sparsity and poor effect on model performance.

6 classifiers were tested with various dataset adjustments.
The classifiers tested include Logistic Regression, Random
Forest, Extremely Randomized Trees (Extra Trees), Gaussian
Naïve Bayes, K-Nearest Neighbors (KNN), and Quadratic
Discriminant Analysis (QDA). Logistic Regression has been
the model of choice for cardiac surgery risk modeling, such
as the STS models [7, 8]. Even with the high calibration seen
with the STS models using logistic regression [14], there
are downsides to logistic regression as it requires a linear
relationship between covariates and is prone to overfitting
for multicollinear and large datasets like the one used in
this research [9]. For these reasons, additional classifiers
were tested to determine the most optimal classifier for this
dataset. 10-fold cross-validation was applied to the data when
training and testing the model: the dataset was split into 10
groups, the model was trained on 9 groups, and then tested
on 1 group with this this process repeating a total of 10
times.

The performance of each classifier in predicting the RF
class was assessed based on the true positive rate (TPR)
percent values at false positive rates (FPR) of 0.01 and
0.10 percent as this indicates how well the model classifies
true positives (RF patients) while still having a low FPR
(i.e., the rate of classifying NRF patients as RF patients).
The TPR at a low FPR can be seen clearly on an ROC
Curve with the x-axis set to the log10 scale as shown in
Figure 2 for the classifier with the best performance. The
true negative rate (TNR) percent value at a false negative
rate (FNR) of 0.01 percent was also taken into consideration
as to how well the model classifies true negatives (NRF
patients) while still having a low FNR (i.e., the rate of
classifying RF patients as NRF patients). While the the main
objective was to classify RF patients, a second application
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of the model for helping to clear patients from consideration
of developing RF would also be useful for this objective.
Various dataset adjustments were tested with these classifiers.
The main dataset adjustments that were used to determine the
best model are:

1) Computing a rolling standard deviation for each of the
original numeric attributes to generate new features for model
training, referred to as featurization. This serves to generate
features that indicate patient condition measurements that
deviate from the mean feature values. This technique is used
as classifiers may discern class differences better for certain
features in this format.

2) Using scikit-learn [10] Robust Scaler with pre-operative
data, or data collected in the 10-minute window prior to
each patient’s surgery start time. Robust Scaler removes the
median and scales the data to the quantile range making it
robust to outliers present in the dataset. The values from
the 10-minute windows serve as patient baseline values that
when applied to scale the dataset, result in features that
indicate patient conditions that deviate from baseline values
during surgery.

3) Applying the scikit-learn [10] Recursive Feature Elim-
ination (RFE) tool for specific classifiers and using only
the RFE-selected features when training and testing the
model. When applied to the training set of data, RFE
eliminates features that are least important to the model
and returns features with the highest importance for the
specified estimator (classifier). This tool can help improve
model performance by reducing noise in the dataset due to
sparse and/or irrelevant features.

Additional adjustments include training the model at cer-
tain time intervals that showed improved class separation.
Time intervals with improved class separation were deter-
mined through an analysis of the median predicted positive
probabilities of the patients: predicted positive probabilities
for RF patients close to 1 and a predicted positive probabili-
ties for NRF patients close to 0 is ideal. The median positive
probability plot which assessed all patients’ probabilities of
developing renal failure throughout the surgery duration for
the classifier with the best performance is shown in Figure
3.

IV. RESULTS

Features with significant (p-value < 0.05) deviations be-
tween classes, meaning that only less than 5 percent of
the time would the same distribution generate the two class
samples, are listed in Table I with their respective p-values
and difference between mean values. Classifiers trained and
tested on only features with p-values considered significant
showed poor classification performance and a low percentage
of correctly identified RF patients.

A specific analysis of medication features using p-values
generated from the Fisher Exact Test showed that the pres-
ence of medication features for either class is not statistically
significant, nor is the number of RF patients in the groups
of patients administered the 20 percent highest and lowest

total dosages/volumes. The medication features and their p-
values are shown in Table II. P-value 1 indicates statistical
significance between patient class and the presence of spe-
cific medication features. P-values 2 and 3 indicate statistical
significance between patient class and the 20 percent highest
and lowest total medication amounts administered, respect-
fully.

The classifier that showed the best model performance is
Extra Trees with additional standard deviation features for
each feature in the dataset, no scaling of the dataset with pre-
operative data and the dataset containing only RFE-selected
features. This model is shown in Figure 1. The top 30 RFE-
selected features and their feature importances as determined
by Extra Trees are shown in Figure 5. Extra Trees shows
the best model performance in terms of having the highest
TPR at an FPR of 0.01 percent out of all classifiers tested
for this combination of dataset adjustments. This classifier
accurately identifies approximately 10 percent of RF patients
at an FPR of 1 percent and approximately 22 percent at a
higher FPR of 10 percent as shown in the first plot in Figure
1, which is enlarged in Figure 2. In addition, it accurately
identifies approximately 10 percent of NRF patients at an
FNR of 1 percent as shown in the third plot of Figure 1.
The approximation in identification is due to the randomized
nature of Extra Trees in terms of selected features and cut-
point choice that is explained further in [11]. Class separation
based on the probability estimates for the positive (RF) class
as determined throughout surgery duration by the Extra Trees
classifier is shown in Figure 3. Distinct class separation,
especially in the 3-7 hour time interval, indicates that the
classifier can discern a distinction between patients, and
that other machine learning methods may improve model
performance.

Significant features were used to assess credibility of
the Extra Trees model in classifying patients based on its
ranked feature importances as shown in Figure 5. Of the
top 30 features with the largest importances out of all 54
RFE-selected features, 9 features with significant deviations
between classes were present.

V. DISCUSSION

The model has the potential to be used as an overlay to
the pre-operative model and current practices to help identify
patients with higher risk of RF, thereby allowing clinicians
to increase preventative care measures for these patients. In
addition, this classifier can help identify NRF patients, which
can allow clinicians to better allocate preventive measures to
patients who show higher risk of RF as well as those not
identified by the classifier. Moreover, the model performance
indicates that an entire intra-operative time series analysis
may not be the best approach, and that the surgery time-
series analysis should be partitioned into sections based
on surgical procedures. Because there is a large variation
in patient surgery durations as shown in Figure 4, there
could be distinct variations in patient conditions at their
respective stages. Including the entire intra-operative time
series in the analysis could be convoluting the data. So,
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Fig. 1: ROC curves for all 6 classifiers. Shaded region is the standard error.

Feature P-Value Mean Difference

Stroke Volume -7.26 0.62
RV End Diastolic Volume -6.88 2.04
Pulse Pressure-Blood -5.49 2.14
Central Venous Pressure -4.54 0.76
NIRS Cerebral Oxygenation-L -3.96 2.37
Mean Blood Pressure -3.96 0.76
SvO2 -3.69 1.12
Systolic Blood Pressure -3.69 1.45
Oxygen Percent (FiO2) -3.69 1.43
RV Ejection Fraction -3.42 0.50
Arterial Diastolic Pressure -3.17 0.70
BIS Value -3.17 1.28
Heart Rate-Pleth -2.92 3.41
Diastolic Blood Pressure -2.92 0.68
NIRS Cerebral Oxygenation-R -2.46 1.90
Heart Rate -2.24 1.78
Mean Arterial Pressure -2.24 0.55
Pulse Pressure-Arterial -2.03 1.10
Pulmonary Artery Mean -1.83 0.23
Epinephrine 64 Dose -1.64 3.13

TABLE I: log10(p-values) and mean differences between RF
and NRF patients for significant features

Feature P-value 1 P-value 2 P-value 3

Phenylephrine Volume 1.00 0.712 0.856
Phenyleprhine Dosage 1.00 0.461 0.856
Vasopressin Volume 0.007 0.545 0.360
Vasopressin Dosage 0.007 0.545 0.360
Epinephrine 10 mcg/mL Volume 0.018 0.526 1.00
Epinephrine 10 mcg/mL Dosage 0.018 0.526 1.00
Epinephrine 64 mcg/mL Volume 0.019 0.377 0.517
Epinephrine 64 mcg/mL Dosage 0.027 0.828 1.00
Norepinephrine Volume 0.005 0.450 0.450
Norepinephrine Dose 0.005 0.205 0.405
Albumin 5 percent Volume 0.007 1.00 0.819

TABLE II: P-values for medication features. None are con-
sidered statistically significant after Bonferroni correction (p-
value = 0.0045).

while the model correctly identifies approximately 10 percent
of RF patients at a FPR of 1 percent and approximately
22 percent at a higher FPR of 10 percent, partitioning the
data based on procedures within the surgery could improve

(a) Plot 1 of Figure 1 on a larger scale. Approximately 10
percent accurate identification of RF patients at a FPR of 0.01
percent and 22 percent at an FPR of 0.10 percent for Extra
Trees Classifier

’

(b) ROC curve legend

Fig. 2: Extra Trees classifier has the best ROC curve results
out of the 6 tested classifiers
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Fig. 3: Positive probability estimates for the optimal model
with Extra Trees classifier. 0 minutes indicates first incision
of surgery.

Fig. 4: The number of patients present throughout surgery.
0 minutes indicates first incision of surgery.

model performance. Partitioning may also provide results
that clinicians can more easily use to discern what and when
surgical parameters should be adjusted.

The model performance could also indicate that fea-
tures currently collected during CABG surgery may not be
representative of renal function. Collecting and evaluating
features more directly correlated to renal function during
CABG surgery could improve the intra-operative analy-
sis and, ultimately, the model performance. For example,
serum creatinine level directly indicates glomerular filtration
rate, which directly correlates to renal function [9, 13,
15]. Glomerular filtration rate decreases as renal function
decreases, leading to an increased serum creatinine level,
which is a strong risk factor for RF [16]. Creatinine level is

Fig. 5: Extra Trees RFE selected features ranked by impor-
tance determined by the classifier with respect to all features

measured pre-operatively and used in pre-operative models
to predict RF outcomes [3, 9, 12, 14, 15]; it is also measured
post-operatively to monitor RF, so its inclusion in time-
series intra-operative data could potentially improve model
performance.

VI. FUTURE WORK

Future work will involve partitioning the data for each
patient into 5 stages based on CABG surgical procedures.
Recorded features and their values will indicate the start and
end points of the 5 stages for each patient. An analysis of
patient condition, surgical parameter and medication features
will be performed for each stage to better assess patient
changes regarding specific events during CABG surgery.
Classifiers will be trained on each of the surgical stages to
refine the model and minimize possible data convolution. The
XGBoost algorithm will also be applied as it has improved
model performance as shown for work in [3, 6, 9].
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Adaptive Agent Architectures for Real-time Human-Agent Teaming

Suhas Raja1, Siddarth Agarwal2, Tianwei Ni2, Yikang Gui2, Huao Li2, Fan Jia2, Dana Hughes2, Katia Sycara2

Abstract— Various approaches have been established to cre-

ate game-playing agents. However, many of these fail to

recognize changepoints in teammate behavior or environments,

leading to suboptimal performance in games with these me-

chanics. We propose two distinct similarity mechanisms that

an intelligent agent may use to estimate the policy of others

in a real-time shared game, given a library of known policies.

Each of these mechanisms are wrapped into adaptive agents

that are then tested with anonymous human players. These

agents perform notably better than individual agents from the

library, indicating that they adapt to the human mid-game.

After establishing and analyzing each of these methods,

the authors investigate a new framework for Team Space

Fortress that leverages these mechanisms to provide a novel

layer of adaptivity. By introducing a version of Monte-Carlo

Tree Search, with substantial modifications, the authors use

the similarity mechanisms to accelerate the search for Subgame

Perfect Equilibria in a real-time strategy game. The framework

offers significant promise to create cognitive agents that reason

according to not only the behavior of their teammates, but also

to implicitly negotiate outcomes with their opponents.

I. INTRODUCTION

Multiagent systems are crucial to deploying scalable in-
telligent robotic systems. However, most real-world envi-
ronments are not exclusively composed of known agents.
For example, unmanned aerial vehicle teams may maintain
semi-autonomy, but must be capable of adapting to novel
changes in their environment. These changes may span
novel environmental stimuli to unpredictable behavior of
human agents, whether teammates or opponents. Adaptive
capabilities are essential to safely deploy and collaborate
in a real-time environment. The fundamental challenge for
a robot to work with a human, instead of simply another
robot, is that humans may have more complex and variable
behaviors or intent. To succeed, cooperative agents must be
able to estimate and predict human behavior to inform their
action accordingly.

Past research on human-agent teaming generally focuses
on processing retrospective teammate reports, where soft-
ware analyzes historical observations of humans to inform
behavior in the present. [1]–[3] These historical behaviors
may fail to capture potential changepoints in an environment
and limit the ability of software to truly adapt to the situation.
Real-time adaptation is critical in practical deployments,
particularly those for military application. In particular, the
ability to respond to real-time observations improves an

1Suhas Raja is with the Department of Electrical Engineering at The
University of Texas at Austin. sraja@utexas.edu

2Dr. Katia Sycara, Tianwei Ni, Siddharth Agarwal, and Dr. Dana Hughes
are with the Robotics Institute at Carnegie Mellon University.

agent’s ability to perform in the face of novel team structures
or situations. The fundamental goal of this research is to
define and analyze the performance of a novel adaptive
agent architecture that performs well in a nontrivial real-time
strategic game, Team Space Fortress (TSF).

In this paper, we investigate behavior cloning and clus-
tering approaches that estimate a human’s policy in real
time. We then provide an adaptive finite extensive-form
formulation of the Team Space Fortress Strategy Game that
facilitates the usage of this information to adaptively work
with a teammate. This extends our past work [4]–[6] to a
adaptive adversarial environment, requiring that prototyped
agents are fully responsive to rapidly changing states, without
explicit communication.

Our adaptive agent leverages a policy library of rule-based
and reinforcement learning (RL) agents that can perform
reasonably in TSF when paired with a human. By observing
human behavior in real-time, the agent may estimate sim-
ilarity indices between the human and each agent in the
policy library. In this policy library, there are 8 shooter
agents and 9 bait agents, each of which may be built
with rule-based logic or pretrained reinforcement learning
models. The adaptive agent must leverage these indices to
improve performance beyond that of each individual agent
selected from the library. The naive adaptive agent simply
acts according to whichever agent historically performed best
against the teammates estimated type. The Extensive-form
Monte Carlo Tree Search (FEFMCT) formulation defines
an extended version of TSF where both the fortress and
software agent leverage Monte Carlo-esque rollouts to search
for equilibria within a finite extensive-form game, given the
agent’s predictions of how the teammate will perform.

After formulating the naive and FEFMCT adaptive agents,
they will be tested by having human players play against
different agents online. These players are sourced through
Amazon’s Mechanical Turk program (a labor contracting
site) and play TSF through their internet browser. Players will
not be told which agents they are playing with and will be
rotated through different sequences of players to ensure agent
anonymity. By developing adaptive agents and analyzing
them through this framework, this paper aims to demonstrate
that our agent architecture succeeds in facilitating real-time
adaptive ability in software agents.

The primary contribution of this paper is to define, imple-
ment, and analyze the efficacy of two novel similarity mech-
anisms that can provide adaptive capability to autonomous
agents in a game. The secondary contribution is the definition
and analysis of the FEFMCT adaptive system, and the
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introduction of a new edition of TSF.

II. BACKGROUND

The following section discusses background concepts that
are necessary to understanding the approaches described in
sections (3) and (4).

A. Team Space Fortress (TSF)

The player and autonomous agent each control a ship that
moves around a low friction 2d environment. At the center
of the stage lies a rotating fortress. The fortress and ships
can all fire missiles. However, when ships fire, they incur a
score penalty of 10. Similarly, when a fortress fires it exposes
a vulnerable area on its backside, where ships may fire a
missile to earn a kill worth 110 points. Alternatively, ships
can die and lose 100 points by either being hit by a missile
or running into the fortress. Each game lasts three minutes,
with the ships goal to maximize their score. A sample screen
from the game is shown in figure 1.

Fig. 1. TSF Sample Game Screen

Once the fortress has been eliminated, both players must
leave the outer green boundaries before it respawns. The
default fortress policy is to target the first agent that entered
the boundaries, among those that are within the boundaries.

B. Monte-Carlo Tree Search

Monte-Carlo Tree Search is a widely used algorithm to
iteratively explore a tree of game states. The root node of the
tree denotes the current state. At each iteration, the algorithm
will select a node according to an external metric and expand
it by creating nodes for each potential following state. Many
selection metrics have been implemented and profiled to
examine their performance in MCTS. [7] However, in this
paper we use one of the most commonly used selection
metrics, the Upper-Confidence Bound 1 (UCB1) metric,
which is defined by the formula below. wi indicates the sum
of scores across all si trials at or below node i, with similar
variables for the parent p.

wi

si
+ c ⇤

r
ln sp
si

Note that there exists a parameter in the latter term, c,
which adjusts the algorithm’s priorities between risk and

reward— whether it should prefer to expand relatively well-
known states, or states that may have more variance in the
value estimate.

C. Extensive Form Subgame Perfect Equilibria

A Subgame Perfect Equilibrium (SPE) extends the concept
of a Nash Equilibrium to Extensive Form Games, that is,
games that have multiple steps. Extensive Form Games may
either have finite or infinite stages. The formulation in section
(3) relies on a Finite Extensive Form conceptualization.

Consider a two-agent game that takes N steps. Each player
has a predefined policy indicating how they ought to behave
at each decision node in the game tree. A subgame perfect
equilibrium requires that, at any of these decision nodes,
neither player could improve their outcome by deviating from
their policy, given that the other player maintains their policy
at all nodes. An example of an SPE in a small payoff tree
is shown in figure 2.

Fig. 2. Example Payoff Tree with Subgame Perfect Equilibria Marked [8]

Player one takes actions U and A, and player two takes
action X. The dashed lines indicate that player two cannot tell
which subtree they are in. Given these policies and payoffs,
it remains true that neither agent would want to select an
alternate action at any node. Player two could only be worse
off by selecting Y. Given player two’s behavior, no other
player one strategy can beat the payoff of three earned by
the actions (U,A).

D. Autoencoders

An autoencoder consists of two complementary neural
networks, an encoder and decoder. [9] These networks are
trained simultaneously, where the source and target data are
identical. An encoder transforms the input into a lower di-
mensional structure, and the decoder interpolates the original
data from that structure. By training the output of the decoder
based on the input to the encoder, as pictured below, the
networks capture the semantics in a low-dimensional space,
allowing generalized analysis. In TSF, the input and output
data is comprised of the players positions, statuses, and
actions.

III. METHODS

The following subsections establish the design proposed
and implemented for this research. Two similarity mecha-
nisms used in the basic adaptive agents are defined. Finally,
we define a game architecture that leads the autonomous
players to seek an equilibrium, given the policy the human
is estimated to play according to similarity metrics.
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Fig. 3. Autoencoder Layout [10]

A. Similarity Metrics

The first similarity metric is based on behavior cloning
(BC). BC applies the following equation to measure the
distance between observed human behavior, H, and an agent
policy, B.

dist(H,B) = Es,a H,B [logPB(a|s)]

The implementation of the approach functions as follows.
Each policy, B, provides an probability distribution across
actions given a particular game state. A collection of human
observations is stored, that contain the game state (s) and
the associated human action (a). For a fixed policy, B, the
average log probability that the policy would have matched
the human behavior is calculated across all observed states.
The resulting metric is considered as the policy distance
between an agent and human. The distance metric is then
used to identify the agent with the greatest average consensus
to the human (as described above), information which can
be used by an adaptive agent. The second similarity metric
is the Autoencoder Similarity Metric (ASM). ASM uses an
autoencoder trained to identify an agent given the histori-
cally observed behavior from known agents. By translating
observed behavior into the latent space of the autoencoder,
the encoder effectively generates an embedding from these
observations. ASM then uses this same encoder on the
observed human behavior from a set range of recent frames
and selects the agent with the lowest L2 regularized distance
between embeddings.

B. FEFMCT

To handle the multiagent nature of TSF, the FEFMCT edi-
tion of MCTS has notable structural adjustments. The most
novel adjustment is that both the fortress and agent share a
common game tree. To accomplish this, three modifications
are made:

• At any state, outward transitions include the product of
each pair of actions players could execute, rather than
an individual player’s action set.

• Expansions alternate between those that maximize and
minimize the UCB1 metric.

• Each expansion and rollout fixes human player’s policy
according to the chosen similarity mechanism.

The first modification transforms the game tree into a
payoff tree. Once the game tree is expanded to a reasonable
depth, established equilibrium search algorithms can be
applied to search for SPE.

The second adjustment alternates expansions between the
maximum and minimum UCB1 metric to ensure that a
relatively balanced and fair tree is generated. Such alternation
ensures that neither agent is able to expand only biased
subtrees.

The third modification ensures adaptivity. By considering
states with respect to the expected behavior by the human
teammate, the agent can conduct a strategy that maximizes
their score based on their observations. Since the human
informs the states in the tree, decisions by the agent then
account for the expected human behavior.

However, before an SPE can be found, the payoff matrix
must be adjusted. In a traditional payoff matrix, only leaf
nodes contain payoffs. In the FEFMCT tree, each decision
node includes payoffs. We introduce a parameter, �, which
allows the user to define a pruning depth. The pruning depth
causes the algorithm to remove all nodes beneath that depth
(since they remain relatively unexplored to shallower nodes),
then uses the new leaf nodes to construct an estimated payoff
tree.

If an SPE is found within this game tree, both players will
follow it. This is because no profitable deviation exists by
definition. This means that they will follow the policies that
comprise the SPE.

To handle the case where an SPE does not exist, we
introduce the concept of an approximate subgame perfect
equilibrium (ASPE). In an ASPE, agents find the deepest
route in the payoff tree that has no profitable deviations.
Given that the tree is already pruned, with values approx-
imated through Monte-Carlo simulation, approximating an
SPE does not substantially compromise the SPE’s integrity.

The FEFMCT approach leverages the following algorithm
to identify an ASPE.
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Algorithm 1: ASPE Algorithm
Result: An equilibrium path through the game state

tree.
for each leaf L do

L.value = L.score
end

updatesPossible = True
while updatesPossible do

updatesPossible = False for each node N do

if child.value exists for all children of N then

Identify 1-step Nash Equilibrium among
children.

if equilibrium exists then

updatesPossible=True
Attach equilibria score to N.value.

end

else

Prune Children. N.value = N.score
end

end

end

end

Apply Depth-First Search to find the deepest path
that meets ASPE criteria.

A critical challenge that arises when applying tree-search
to Team Space Fortress is that it rapidly becomes computa-
tionally intractable. The game runs at 30 frames per second
(fps) which means that, at a minimum, 30 expansions are
necessary to forecast moves one second in the future. The
agent simply cannot react fast enough since players score
sporadically, up to 10-20 seconds apart, and the branch factor
is inflated due to the inclusion of both players actions along
any transition.

A final pair of structural adjustments substantially alle-
viates this challenge. While the game runs at 30fps, the
tree groups frames together in sets of 10, to scale the tree
depth further by a factor of 10. Given that these agents are
performing in an adaptive environment, it is also helpful to
have the agent operate at a lower frame rate (3fps). This
ensures that the agents are less volatile, and the human player
can better adapt to their teammate.

IV. RESULTS

The following subsections discuss the data and results
associated with the approaches defined in section 3.

A. Similarity Metric Performance

Each similarity metric was packaged into an adaptive
agent, which was tested on Amazon Mechanical Turk. These
agents measured similarity between the human behavior and
each of 9 policies from the policy library to identify the
approximate policy that the human follows. These similarity
mechanisms require a parameter that adjusts the number
of recent frames used when calculating similarity, which
is tested at multiple different values. It then references a
historical performance table to see which agent best com-
plements the assumed human policy and acts according to
the complementary agent.

From this experiment, we would like to test the following
hypotheses:

• Our proposed adaptive agents outperform any single
static policy in the policy library, when paired with
human players.

• The window size parameter, which controls the agent’s
learning rate, has a significant influence on adaptive
agents’ performance.

We employed a mixed experiment design where the
between-subject variable is the adaptive agent type, and
the within-subject variable is the window size parameter of
adaptive agent. We tested three different adaptive agents in
this study: BCAgent shooter, BCAgent bait, and ASMA-
gent shooter. Participants were divided into three groups
which corresponds to three agents. Within each group,
participants will team with five variants of the designated
agent in a random sequence. The five variants include three
values of the window size parameter for adaptive agent
(150, 400, 800ms) and two best-performed static agent policy
(representing the extreme condition of 0 window size where
the adaptive agent becomes static). The team performance is
measured by number of fortress kills in each trial.

10 participants were recruited from Amazon Mechanical
Turk. They were randomly assigned into three groups and
paired with different agents. Participants were paid USD 2
for participating in the online study.

Participants were randomly assigned a role of either
shooter or bait and then teamed with artificial agents in
the corresponding role to play Team Space Fortress. Each
participant would need to complete five sessions of data
collection with three 1-min game trials in each session.
Participants teamed with different agent variants between
sessions, and played with each agent for three trials. The
approximate length of each experiment is 15 minutes.

The performance of the shooter and bait BC agents is
shown in figure 4, compared to the top two baits and top
two shooters.

Fig. 4. Performance data for best performing static agents and BC Agent

It is clear that the bait BC agent provides a notable
increase in performance over the RL3 and RL7 agents, by
approximately 20 percent. In particular, the BC bait agent
with the highest window size substantially outperformed all
other baits.

The shooter BC agent generally provides a mild improve-
ment against the other shooter agents. A lower degree of
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complexity and variance in possible shooter strategies may
account for the more mild increase, since the degree of
adaptation may be more limited.

B. FEFMCT Analysis

The FEFMCT approach cannot be benchmarked using the
same method since it relies on a different formulation of TSF.
The edition of TSF used for FEFMCT allows both the agent
and fortress to act according to variable strategies, in contrast
to the original version of TSF where the fortress follows
a static policy. Specifically, the agent and fortress each
follow the actions prescribed by the FEFMCT equilibrium
– that is, the fortress follows a more complex strategy
for FEFMCT. The value of FEFMCT is that it introduces
this more challenging version of TSF and provides a clear
cognitive agent framework to adapt to both predictions of
human behavior and negotiated outcomes with opponents.

V. FUTURE WORK

In the future, we intend on accelerating the FEFMCT
model to operate in a real-time environment. By enabling
it to run in real-time, the model can be used to command
the autonomous agents while a human agent is playing. In
contrast, we are currently using a synthetic agent that behaves
similarly to a human.

Once the model is deployed with real humans, we intend
to gather data that captures the running status of equilibria
as they are calculated during the game.
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Trajectory Optimization for the Legged System

Jiming Ren1
, Shuo Yang2, Zhaoyuan Gu2, and Howie Choset2

Abstract— This paper presents two optimization formulations

for legged systems using Direct Collocation method and iterative

Linear Quadratic Regulator (iLQR) method respectively. The

Direct Collocation-based approach generates a whole-body mo-

tion plan in a hierarchical two-phase manner, namely optimal

stance and optimal transition, with the input of state estimation

and global elevation mapping yet without prior knowledge

on footholds and step timings. Alternatively, a discrete-time,

constrained iLQR algorithm can work out an executable control

policy besides a nominal optimized trajectory, however, a gait

pattern should be pre-specified. In this work, we integrate the

optimized trajectories given by Direct Collocation approach

with the robot’s slow-level controller to enable the robot to walk

automatically on the unstructured terrains. We demonstrate

our formulation and framework running online on a hexapod

robot, Mat6, both in simulation and hardware. Our work is one

of the very few examples where Trajectory Optimization (TO)

is applied on hardware to plan dynamic whole-body motions

and maybe one of the best performances in climbing skills for

legged systems.

I. INTRODUCTION

Legged robots as versatile systems, are primarily targeted
to be deployed on unstructured terrains where they out-
perform tracked or wheeled robots. A core challenge in
this setting is a robot to automatically reach a specified
high-level goal on the terrain map without collision with
the environment. This involves the generation of feasible
body- and end effector-motions along with contact forces
that retain the balance. TO formulation leveraging whole-
body dynamics turns out to be an ideal solution as it can
determine holistic motions and forces in a general way given
the goal state, gait pattern, and terrain information. This work
presents two approaches to solve the numerical TO problems
for legged systems, namely Nonlinear Programming (NLP)
and Dynamic Programming (DP). The first part of the work
deals specifically with treating complex motion planning as
an NLP problem and using Direct Collocation to compute
the optimal trajectory. Furthermore, we realize the trajectory
by a low-level tracking controller to enable a hexapod robot
Mat6 (shown in Fig. 1) to walk on rocky lands, slopes, and
stairs.

NLP has been widely applied for complex systems with a
myriad of decision variables, and previous works on higher-
dimensional legged systems include [1]–[3]. In essence, NLP
constructs a cost function and searches for a set of decision
variables to minimize the cost function until convergence.

1 J. Ren is with the Department of Mechanical and Aerospace Engineer-
ing, The Hong Kong University of Science and Technology, Hong Kong
SAR, China. jrenaf@ust.hk

2 S. Yang, Z. Gu and H. Choset are with the Biorobotics Lab, Robotics
Institute, Carnegie Mellon University, Pittsburgh, PA, USA. {shuoyang,
zhaoyuan, choset}@andrew.cmu.edu

Fig. 1. Mat6, a hexapod testbed consisting of 18 joints actuated by series-
elastic HEBI X Modules. Each module provides measurements including
angular positions, angular velocities, and joint torques. Additionally, an Intel
Realsense D435i camera is mounted on top of the robot.

There are several methods to solve NLP and they mainly
fall into two categories: sequential methods and simultaneous
methods. Sequential methods only use the control input as a
decision variable while simultaneous methods optimize over
both state and input, which are coupled together via the sys-
tem dynamics. Though sequential methods like Direct Shoot-
ing and its extension have been used in whole-body control
of human-like robots [4], simultaneous methods are more
suitable for torque control legged robots with complicated
control inputs and path constraints. The most prominent
approach of simultaneous methods is Direct Collocation.
Direct Collocation transcribes the trajectory optimization
problem from an infinite-dimension continuous optimal con-
trol problem to a finitely parameterized NLP by discretizing
the state and control trajectories into a finite number of nodes
and then interpolating between them using polynomial spline
approximation. This approach has been widely applied to
the whole-body planning for legged robot motion control
involving both body- and end effector-motions [5], [6]. How-
ever, high dimensional optimization problems bring about the
problem of expensive computational cost, and consequently,
slow convergence rate. Besides, the outcome of the Direct
Collocation approach requires the low-level controller to
track the trajectory and transform it into joints torque to be
leveraged by the actuators.

Another approach of TO named DP can figure out a
control input in addition to an optimal nominal trajec-
tory. While directly solving a feedback policy through the
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Hamilton–Jacobi–Bellman equation could be intractable for
a high dimensional system, a variant of dynamic program-
ming called Differential Dynamics Programming (DDP) can
overcome this problem by addressing the solvable Riccati
equation. DDP starts with an initial guess on the control
sequence, proceeding by iteratively performing a backward
pass on the nominal trajectory to generate a new control
policy, and then updating a new trajectory in a forward pass
for the next cycle. In later work, DDP-based approaches
named iLQR and Sequential Linear Quadratic Control (SLQ)
are introduced to operate on a linear approximation of the
state along the trajectory rather than quadratic approximation
DDP operates on. The much faster computational speed of
DDP compared to NLP gives the possibility of being more
compatible with Model Predictive Control (MPC) settings.
The latter with separation of the low-level motion tracking
controller block from the trajectory generation block is
unable to react proactively to the deviation of proprioceptive
state estimation to the real state during the trajectory exe-
cution process. [7] has shown that SLQ in an MPC setting
frequently updating the intermediate trajectory can offset this
deviation.

However, the original DDP-style algorithm can not handle
high-level tasks for legged systems as unconstrained con-
trollers are limited in real scenarios. In the second part of
the paper, we present the discrete-time, control-constrained
iLQR algorithm which optimizes the control input given
the switching pattern. To handle the contact constraints,
one solution is taking into account the effects of control
constraints to the cost-to-go function. [8] includes contact
forces as control input variables and gradually enforces
contact constraints via the cost function. Alternatively, this
work adopts the discrete-time, constrained LQR idea initiated
in [9] and reformulates into iLQR algorithm. Similarly, [3]
has derived a continuous-time SLQ variant which allows for
including state-input constraints as hard limits. However in
this work, we loosen the constraints to control-only contact
constraints to increase the efficiency whilst collision avoiding
is considered separately for the swing legs.

The rest of this paper is organized as follows. Section
II presents the transformation of the optimal whole-body
motion planning from its specialized form into an NLP
problem and solved by an NLP solver. Section III calculates
an optimal trajectory from initial to target state using iLQR
methods. Section IV demonstrates the experimental works on
Mat6, which is realized in a hierarchical control architecture
based on the results from the NLP solver. The conclusion is
in Section V.

II. DIRECT COLLOCATION APPROACH

NLP formulation in this section consists of two-layer
nonlinear optimization programs which are periodically im-
plemented to find the optimal motion plan. After a goal is
specified in a higher level path planner, the first program
finds the optimal stance posture at the position where the
CoM is aligned with the goal. In this process, terrain map
and physical features contribute to the constraints for the

NLP solver and significantly influences the optimized state.
With the initial and final optimal stance, we find the optimal
transition between them by solving another NLP problem.
The transitional trajectory profile is parameterized as a spline
curve and is discretized with the intermediate knots where
constraints are enforced. The optimal transition logic adopts
the phase-based parameterization idea from [3].

A. Optimal Stance

The optimal stance posture is affected by the environment
in a great deal. In the following paper, terrain is presented
in GripMap [10], a data structure with 2D arrays indicating
the (G, H) location and associated height at each grid. The
terrain cost function is given by

�ter (G, H) = C4AA08=+0A (G, H) + C4AA08=⇠>E(G, H) (1)

Here C4AA08=+0A () returns the variance of height around a
grid; low variance means the terrain location is relatively
flat. C4AA08=⇠>E() indicates the confidence of the height
measurement at a spot. The robot inclines to choose areas
with low uncertainty for footholds to increase the stability
of stances.

Assume the system has = legs and < joints on each leg.
Accordingly, for 8 2 [1, =], the decision variable is defined
as

x =
⇥
rF \\\F {q8} {f8}] (2)

where rF 2 R3 and \\\F 2 R3 are the CoM position and
orientation of the robot represented in world frame; {q8 2
R3} is a set containing the angular position of each joint
and {f8 2 R3} are vectors of forces exerted on the feet,
expressed in the orthogonal projection aligned with world
reference coordinates.

To figure out an optimal stance given a designated CoM
position and terrain map surrounding that point, we formulate
the cost function to be minimized with several considera-
tions: The stance should (1) balance the joint efforts from
each leg; (2) experience small frictional forces; and (3) have
a low terrain cost. Different weights are assigned to each
term:

min
x

F1+0A (ggg) + F2
’
8

f8)&f8 + F3
’
8

�ter (?8GF , ?
8H

F
) (3)
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p8

F
= RF2� (q8) + tF2 (5)

ggg
8 = J)


p8

2
⇥ R2F f8
R2F f8

�
(6)

where +0A (ggg) evaluates the variance of torques among all
legs. p with subscript 2 and F indicates the foot position
in body frame or world frame. Torque ggg and Jaconian
transformation J is derived from forward kinematics function
� () and is based on the leg’s configuration. R and t with
subscripts are the rotation matrix and transformation matrix
from one frame to another.
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Meanwhile, the system subjects to both equality and
inequality constraints:

?
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R8

:F
f8  05⇥1 (9)

ggg < ggg<0G (10)

where ⌘() gives the corresponding height of a grid. Among
these constraints, Equation 7 restrains feet height to coincide
with terrain height. Equation 8 requires ground supporting
forces to balance the robot body weight. Equation 9 limits ev-
ery ground force within the frictional cone where D is terrain
frictional coefficient. R8

:F
is a rotational matrix transforming

foot forces from world frame to contact frame in which
origin is at the contact point and I axis is perpendicular
to the contact plane. Equation 10 enforces joint torques’
limit depends on working range of actuators. Since we
only consider a quasi-static motion throughout the process
for simplicity, the second derivative of the motion is not
appended in dynamics balance. For the hexapod 8 = 6 like
Mat6, this nonlinear program entails 42 decision variables,
12 equality constraints and 42 inequality constraints. It can
be handled by NLP solvers like FMINCON for MATLAB
and SNOPT or IPOPT for C++.

B. Optimal Transition

The methodology to find a feasible solution in optimal
transition is analogous to that in optimal stance. However,
NLP formulations do not naturally allow the objective func-
tion and constraints to be turned on or off arbitrarily during
an iteration. In other words, we have to compose a set of
continuous decision variables which can be optimized over
the cycle despite the discrete gait pattern legged robots have
to follow. The cycle is defined as a transformation from one
stance to another, where each leg goes through one swing
mode bounded by two stance modes. [3] suggests a phase-
based parameterization comprising intermediate knots and
phase knots as the junction for the trajectory profile curves
of CoM, foot positions as well as foot forces. Comparatively,
in this work we solve a minimization problem instead of a
feasibility problem which focuses on eliminating unrealistic
local minimum. The smooth connection of curves between
the knots and phases ensures that NLP solvers can be used
in our case. The constraints enforced on the knots can
be approximately considered as constraints imposed on the
whole curve, with negligible violation. This variable consists
of times and knot values of all intermediate knots and phase

knots. We take

x = [{⌦⌦⌦ 9 } {t8} {���8: } {   8;}] (11)
⌦⌦⌦ 9 = [C 9 rF (C 9 ) \\\F (C 9 ) §rF (C 9 ) §\\\F (C 9 )] 9 2 [1, >] (12)
���8: = [C8: p8

F
(C8: ) §p8

F
(C8: )] : 2 [1,<]

(13)
   8; = [C8; f8 (C8;) §f8 (C8;)] ; 2 [1, =] (14)

where 8 represents leg index and {t8} 2 R2 is a set of time
instance of phase knots (at the beginning and end of the
swing mode). ⌦⌦⌦ 9 2 R13 is the 9-th intermediate knot of
CoM positions’ and Euler angles’ trajectory spline while
���8: 2 R7 and    8; 2 R7 are the :-th and ;-th intermediate
knots of foot positions’ and forces’ trajecotry spline. >, <
and = are the number of total intermediate knots of each
parameterization respectively. To connect these knots, we
adopt the cubic Hermite splines interpolation method to
define the polynominal.

For two ajacent knots (0, G0, §G0) and (1, G1, §G1) with first-
order derivative present, we could smoothly connect two
knots and compute the curve value anywhere between C 2
[0, 1] by

G(C) = (2C3 � 3C2 + 1)G0 + (C3 � 2C3 + C) §G0

+ (�2C3 + 3C2)G1 + (C3 � C2) §G1 (15)

This method can be easily generalized to the multidimen-
sional curve and the arbitrary time interval. We assign ) as
the total length of time in a cycle. In such layout, three types
of knots are needed to fully define a cubic spline. Boundary
knots for C = 0 and C = ) : r(0), p8 (0) and f8 (0) corresponds
to their initial configurations while values at C = ) are given
from the target posture. What’s more, at phase knots, foot
forces, positions and their derivatives must be zero as shown
in Fig. 2.

Fig. 2. An example foot force trajectory profile. Top: Blue line is the force
spline curve. Red circles are locations of spline intermediate knots. Black
circles are boundary knots. Cyan circles are phase knots. Black dashlines
indicate the leg mode transition time instances. The total time of the motion
plan is 5s, and mode transitions happen at 2.5s and 4s. The force profile
has 6 intermediate knots. Bottom: Adjusting intermediate knots results in
different continuous curves in optimization.
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Fig. 3. Phase-based parameterization of feet motion {p8 } and force
{f8 } in a simulation. Each phase (swing and stance) is represented by
either a constant value or a sequence of cubic polynomials with continuous
derivatives at the junctions. Red circle dots represents the intermediate knots
either of position (Left) in swing mode or forces (Right) in stance mode.
Dashlines are the switching time after the optimization on the gait pattern.

Other approaches to interpolate the nodes using lower-
degree implicit integration rules like Euler’s rules or trape-
zoidal method, throw down the computational complexity
on one side, whereas moderate the accuracy of spline on the
other side. The shortcoming in accuracy of these approaches
can be compensated by a lower sparsity of nodes, but
reciprocally, increment in knots burdens the computation.
Overall, it is a compromise between the discretization and
efficiency of the solver to be made in choosing an ideal
interpolation tool.

The objective function enforcing optimality on knots is
defined as

min
x

F1
’
8

   8
) Q   8 + F2�

�
���, ⇤⌘(G, H)

�
(16)

reflecting a tradeoff between the first term minimizing
ground supporting forces and the second term � () penalizing
swing position below a certain level from the terrain to avoid
the collision. ⇤

⌘(G, H) is the pointer function to acquire the
terrain height at a certain position.

Optimal transition grabs the same constraints from that in
optimal stance, appended by the restriction on knots time,
which should be positive but not exceed the execution time.
In our optimal transition program, we assign 8 = 6, < = 2,
= = 6, > = 6 and # = 25. The system scales 356 decision
variables, 150 nonlinear equality constraints, and 626 linear
inequality constraints.

III. ITERATIVE LINEAR QUADRATIC REGULATOR
APPROACH

In this section, we present iLQR method in solving the
TO problem on legged systems with contact constraints. The
robot is approximately modeled in a single rigid body dy-
namics (SRBD) formulation and an implicit contact model,
which incorporates the contact force vector into control input.
In this model, the contact constraint can be directly imposed
as a control-only constraint in LQR setting, and be solved in
a recursive Riccati approach. Compared to Direct Collocation
method, iLQR requires the gait pattern to be pre-specified yet
a low-level controller is no longer needed.

A. Dynamics Model
We define a implicit contact model where contact force

vector is entailed in the control input rather than is a function
of other variables. The benefits of using the implicit contact
model over the explicit contact model is detailed in [8]. In
SRBD model, we describes the free-floating body along with
the kinematics for each leg in a form of
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where T is the rotational matrix from angular velocities in
the base frame to the Euler angles derivatives in the global
frame, g is the gravitational acceleration in the world frame,
I and < are the moment of inertia about the CoM and the
total mass respectively. The inertia is assumed to be constant
and taken at the default configuration of the robot. lll1 is the
angular rate of the body. 28 denotes whether the leg touches
the ground or not, which gives 1 if does and 0 otherwise.

We assume that the end-effector in contact with the ground
has no slippage occurred. The control-only constraints can
be expressed as

2
8 §p8

F
= 0 (19)

since when the swing foot is away from the ground, 28
equals to zeros and the left-hand side of the expression is
zero for granted. While the foot stays stationary, the position
derivative is zero and the equation still holds.

Another approach to construct the model substitutes foot
positions with joint angles in the decision variable. Though
joint angles are direct parameters to control the robot’s
actuators, a more complex format of constraints comes with
ensuing defects. A comprehensive comparison between the
two approaches and the reason why the latter overwhelms
the former are illustrated at the end of the section.
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B. Problem Formulation
In this section, we assume a non-linear discrete system of

x(= + 1) = A(=)x(=) + B(=)u(=) (20)

which is integrated from the differential form of the state
equation and is discretized by interpolation on continu-
ous x(C) and u(C). u(=) is the control policy where = 2
{0, . . . , # � 1}. Throughout the following part, total time of
one gait cycle is discretized by # � 1 time steps, each of
which spans XC = )/(# � 1). A(=) and B(=) are obtained
from linearizing around each time step along the nominal
trajectory. The control input is optimized through altering
time-varying feedback and feedforward controller by

u(=) = uref (=) + u� (=) + K(=)
�
x(=) � xref (=)

�
(21)

where K(=) and u� (=) are control gain matrix and feed-
forward control action. uref (=) is the reference state, in the
vicinity of which newly locally-optimal control is to be
found.

Compared to SLQ formulation, minimizing the cost func-
tion in a quadratic layout could notably increase the con-
vergence rate. In the following algorithm shown, the cost
function is assumed to be

� =
1
2

#�1’
==0

�
x(=)) Qx(=) + u(=)) Ru(=)

�
+

1
2
�
xref � x(#)

�
) Q 5

�
xref � x(#)

�
(22)

where xref is same the target state calculated by the optimal
stance. &, ' and & 5 are weightings for intermediate cost,
input cost and final cost.

C. Algorithm
Inside every iteration of the proposed iLQR algorithm,

we solve a constrained, finite-horizon LQR problem, which
updates an optimal control solution with a new cost. The
LQR problem is defined in the system dynamics governed by
Equation 17 and 18 and constrained by Equation 19. [9] pro-
posed the method of using distinctive Lagrange Multipliers
to handle the system dynamics, state-control, and state-only
constraints respectively and then solving the discrete Bellman
equation. In this work, we refer to the same structure but
ignore the state-only constraint.

The algorithm begins by drawing an optimal control
from the first-order necessary condition subject to a set of
constraints, expressed in linear equations. This is attained by
first solving Riccati equations and then propagating forward
to find a co-state vector sequence ___ = [___(0), . . . ,___(#)], and
a multiplier vector sequence `̀̀ = [`̀̀ (0), . . . , `̀̀ (# �1)], asso-
ciated with controls and state-control constraints respectively.
Finally, the procedure is wrapped up by a feedforward pass
to derive a full spectrum of feedforward control policy and
state setting off from the initial boundary condition towards
the end.

LQR algorithm iteratively implemented to find optimal
trajectory gives iLQR. In iLQR, we start with a guessing

Algorithm 1 LQR Algorithm with Constraints
Require:

- System Dynamics: x(= + 1) = A(=)x(=) + B(=)u(=)
- Constraints: D(=)u(=) = 0
- Cost Function:
� = 1

2
Õ

#�1
==0

�
x(=)) Qx(=) + u(C)) Ru(C)

�
+

1
2 (xref � x(#))) Q 5 (xref � x(#))

for = = 0 : # � 1 do

D̂(=) = [D(=)R�1D(=)) ]�1

R̂(=) = B(=)R�1 [I � D(=)) D̂(=)D(=)R�1]B(=))
end for

- Backward Pass
P(#) = Q 5

s(#) = �Q 5 (x(#) � xref ) ù Boundary Conditions
for = = # � 1 : 0 do

M(=) = [I + R̂(=)P(= + 1)]�1

P(=) = Q) + A(=)) P(= + 1)M(=)A(=)
s(=) = A(=)) M(=)) s(= + 1)

end for

- Forward Pass
x(0) = x0 ù Boundary Condition
for = = 0 : # � 1 do

v = �M(=)R̂(=)s(= + 1)
x(= + 1) = M(=)A(=)x(=) + v
___ = P(= + 1)x(= + 1) + s(= + 1)
`̀̀ = �D̂(=) � D(=)R�1B(=))___
u(=) = �R�1 [B(=))___ + D(=)) `̀̀]
K(=) = �RB(=)) P(= + 1)M(=)A(=)�
R�1D) (=)D̂(=)D(=)R�1B(=)�1P(= + 1)M(=)A(=)

u� (=) = R�1 [�B(=)�1 (P(= + 1)v + s(= + 1))+
D(=)�1D̂(=)D(=)R�1B(=)�1 (P(= + 1))v + s(= + 1))

end for

return

x(=) where = 2 {0, . . . , #}
u� (=),K(=) where = 2 {0, . . . , # � 1}

trajectory, which we assume the robot is standing still
throughout the duration. Given a reference trajectory, we
continue by refining the guess until the optimal trajectory
converges in a convex set. In each iteration, we linearize
around the trajectory and then execute Algorithm 1 to obtain
the feedforward control law, control gain, and new state
sequence. A cost is computed afterward given final state
and each step of the updated trajectory. Since iLQR might
have the overshoot problem, the line-search learning process
is necessary to find the local minimum. The line-search
parameter U controls the maximum rate to move along the
feedforward component of the control law update. Starting
with a full rate in the descent direction (U = 1), this
parameter progressively shrinks by a certain fraction U3 until
the cost associated with the updated controller input is lower
than the cost of full learning rate.
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Algorithm 2 iLQR Algorithm
- Initialize a stable control and state trajectory. We suppose
the robot is standing still in initialization.

x(=) where = 2 {0, . . . , #}
u(=) where = 2 {0, . . . , # � 1}

repeat

- Linearize the system along the previous (reference)
trajectory. Suppose 5 = A(C)Xx(C) + B(C)Xu(C)

A(=) = m 5

mx |x=xref (=)XC + I
B(=) = m 5

mu |u=uref (=)XC
- Execute Algorithm 1 which returns

x(=) where = 2 {0, . . . , #}
u 5 5 (=),K(=) where = 2 {0, . . . , # � 1}

- Compute the cost function
� = 1

2
Õ

#�1
==0

�
x(=)) Qx(=) + u(C)) Ru(C)

�
+

1
2 (xref � x(#))) Q 5 (xref � x(#))

- Initialize the line search
U = 1

repeat

- Under the control:
u(=) = uref (=) + Uu� (=) + K(=) (x(=) � xref (=))

- Forward simulate the system dynamics
x(=) where = 2 {0, . . . , #}
u(=) and u� (=) where = 2 {0, . . . , # � 1}

- Compute the new cost
� = ⌘(x(#)) +Õ

#�1
0 ; (x(=), u(=))3=

- Decrease U by a constant U3
U = U/U3

until lower cost found or the maximum number of line
search steps reached

until the maximum number of iterations achieved or the
cost converges

The optimal control we draw from the algorithms above
excludes the influence of terrain. Practically, in a sense that
we assume robot legs to be massless, it is feasible to change
the trajectory of swing legs on the fly to avoid obstacles,
without interfering with the dynamics of the floating body
and stance legs. Considering the obstacles avoidance sepa-
rately exempts the state-only constraint term and simplifies
the Riccati equation.

D. Comparison

In this contribution, we compare two different system
dynamics parameterizations in terms of their convergence
rates. Apart from the aforementioned foot position-based
setup, the other more straightforward parameterization takes
an executable input comprised of joints’ angular speeds.
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Note that this definition is fundamentally similar to Equation
17 and 18, both formatted in SRBD, except that the last set of
terms are represented in joints’ Euler angles. This brings the
benefit that inverse kinematics is no more necessary, averting
plural leg configurations it might potentially yield. However,
it becomes more complicated in respect of the constraints
expression

mp8

mr §r + mp8

m\\\

§
\\\ + mp8

mq §q = 0 (25)

which can be interpreted as the derivative form of
p8 (r, \\\, q) = 0, where p is obtained from the forward
kinematics. Unfortunately, it turns out to be not just a control-
only constraint but a mixed state-control constraint. As a
result, the Lagrange Multiplier expression is also subject to
the state constraint term and Algorithm 1 should be modified
accordingly.

Fig. 4. The robot is programmed to move forward on a 3-3 gait pattern.
Left: The initial pose (light) and the target pose (dark); Middle Column:
Evolution of each iteration in iLQR (from light to dark); Right Column:
Comparison between the final pose and the target pose. The Upper red
box contains the joint angles’ parameterization, which runs 7 iterations
before convergence, while the bottom blue box is parameterized in foot
positions, which needs only 3 iterations before convergence. Total runtime
of the former is 1.9 times faster than the latter using MATLAB ode45 solver.

Fig. 4 shows that both configurations can reach a stable
final pose with fine error to the target. However, we see
foot position parameterization converges nearly 2 times faster
than that in joint angles since fewer iterations are run to
convergence. Simulations display that 90% of time for each
iteration is consumed on solving for the propagation along
the trajectory. Therefore, fewer iterations and line-searching
loops would significantly lower the total duration to find an
optimal solution. When TO runs online, we hope to keep the
optimization runtime short. A quick convergence rate implies
that robots could react instantly, which is especially demand-
ing in dynamic environments. In such, iLQR approach with
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frequent updating rate can be used in an MPC fashion during
the trajectory execution to prevent the disturbance in terrain
map measurement, state estimation, and tracking execution.

IV. EXPERIMENT

A. System Overview
Fig. 5 gives an overview on the system pipeline which

comprises the main flow colored in blue and auxiliary blocks
colored in crimson. After the user specifies a goal (G, H) on
the elevation map, the planner will generate an intermediate
pose towards the user-specified goal. The distance between
the intermediate pose and the current pose is a fixed value of
one step for each foot. Next, the robot solves an optimization
problem online to select a set of footholds on the terrain map.
The initial state and final state are then transferred to the
boundary condition for a direct collocation optimizer, which
computes optimal trajectories for body pose, 6-foot positions,
and 6-foot ground reaction forces. Finally, the low-level
controller converts the whole-body motion trajectory into
joint angle trajectories and torque trajectories to command
motors. The body balance controller generates additional
controls to balance the body.

Fig. 5. Block architecture of the optimization-based controller and its
relationship with state estimation and elevation mapping.

1) State Estimation: The state estimator evaluates the
pose of COM in the inertial frame as well as the robot’s joint
angles by extracting information from proprioceptive sensors.
The common approach by estimating the displacement and
velocity of the legged robot through onboard IMU and joint
encoders is a lack of accuracy since some parameters like
yaw orientation is no way observable. Therefore, adding
visual sensors is a complementary measure to reach better
precision. We mount two Intel RealSense D435i cameras to
help with the localization and mapping. D435i is an RGBD
camera that provides visual sensing as well as the depth
measurement through a point cloud. In our state estimation
setting, we apply Unscented Kalman Filter (UKF) [11] to
fuse multiple odometry together, including the leg odometry,
Visual Inertial Odometry (VIO) [12], and IMU.

2) Elevation Map: To achieve better terrain adaptability,
we need to generate a clear local map around the robot to
enable foothold planning and trajectory generation. Local
map construction is considered a solved problem in the
SLAM community, however on legged robots, it is different
in many ways and should be treated specially. Therefore, two
visual sensors are mounted in front of the robot at distinctive
positions and pitch angles to provide a wide field of view.
One camera looks horizontally forward while the other tilts
downwards to cover the near end.

The elevation map is a robot-centric grid map [13] rep-
resenting the height of each grid in a 2D array. It updates
every time after a new estimated pose or the point cloud data
comes in, giving an up-to-date elevation as well as the trust
boundary of the terrain.

(1) (2)

(3)

Fig. 6. Real world testing under scenarioa: (1) the staircase (each step is
around 18 cm wide and 28 cm high); (2) jungle lands; (3) the 30� slope.

B. Results

We perform tasks on assorted terrains, among which stairs
climbing is an epitome to exhibit the robot’s ability to walk
on challenging terrains. The climbing is demonstrated on a
staircase in the US standard of a 7 in (17.8 cm) rise and 11
in (27.9 cm) run. The mapping of the staircase is mostly
completed through sensors on the robot being placed at
the flat platform before the staircase, refreshed concurrently
during the climbing. The trajectory of each gait is an outcome
of Direct Collocation optimization, executed by low-level
tracking controllers. The gait is set to be a conservative 2-2-2
pattern, denoting 2 legs on the fly for each time. If the real
map mismatches that from sensing, the robot will manage to
regain balance by descending the dangling leg until it touches
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Fig. 7. The target (blue) and feedback (orange) pose in G direction during
stair climbing. In our setting, G-axis is pointing forward to the rise of the
stiarcase with I-axis pointing upward. The feedback position keeps stable
for a period of time at around the 200th second since the robot pauses for
30 seconds.
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Fig. 8. The values of roll (blue), pitch (orange) and yaw (yellow) of the
body throughout climbing. The roll and yaw angles fluctuates around zero
in most of time while the pitch angle increases when robot ascends.
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Fig. 9. The angular velocities of the robot measured by onboard IMU.
Blue, orange and yellow lines feature angular velocities about the x, y, and
z axes respectively. The peak magnitude records 1.068 rad/s.

the ground. This might happen when the planning foothold
is on the verge of the stair where there is an abrupt fall on
height. Similarly, when the foot sensor or the joint encoder
detects the unexpected collision, the robot will stop the leg
from further poking into the ground.

The video clip showing the robot climbing a whole flight
of stairs has been uploaded1. In testing, the robot starts from
the flat platform at time 0 and reaches the top of the staircase
at around the 250th second, with a total displacement of
2 meters in forward direction. In Fig. 7, we compare the
feedback position and the target on G axis, and see a smooth
tracking of movement despite small fluctuation in motion
caused by the robot’s stance legs switching. Fig. 8 and Fig.
9 shows the orientation and angular velocity of the robot.
Though we do not have access to the ground truth of robot
orientation, the estimation value approximately reflects the
real motion of the robot. It can be seen that among all axes,
the maximum value of angular velocity is 1.068 rad/s, which
turns out to be a relatively small margin and implies the
fluctuation is controllable.

We later exploit its ability in climbing by deploying it on
the slope with the maximum incline. The test has been run
on a grassland slope with a 40-degree pitch. To our best
knowledge, this is the largest incline the legged system has
ever successfully climbed.

V. CONCLUSION

Direct Collocation approach adopted in this paper for-
mulates a whole-body trajectory restricted by the terrain

1https://youtu.be/98wdAfD1_2w

and physical constraints. We optimize over the discrete gait
pattern using a set of continuous decision variables. The hi-
erarchical control structure separating the foothold selection
and transition planner has proven effective in both simulation
and real-robot testing. iLQR approach, alternatively, provides
a faster solution and offers a feasible control policy together
with an optimal trajectory. Future works include applying
iLQR in MPC fashion to reject disturbance in measurements.
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On the Value of Modeling Dependencies in Weak Supervision

Salva Rühling Cachay1, Benedikt Boecking2 and Artur Dubrawski2

Abstract— Large sets of labeled data are key in supervised
machine learning methods. However, labeling by hand is ex-
pensive, both in terms of time and cost, creating a major
bottleneck when deploying such methods. Without access to
ground truth labels, weak supervision is a promising alternative
that overcomes this issue by combining the outputs of a set of
noisy, user-given heuristics. These heuristics may conflict, over-
lap, and have complex relationships. There has been extensive
work on modeling and learning these dependencies, yet the
general value of modeling dependencies to improve downstream
model performance has not been studied across a wide variety
of scenarios. In a controlled, experimental study, we explore
this gap and characterize the settings in which modeling
dependencies boosts end-model performance and quantify the
expected performance gain. Surprisingly, we find that modeling
seemingly sensible dependencies can significantly deteriorate
performance by up to 4 AUC points. Through this contribution
we hope to enhance the decision-making of practitioners as
we show that ignoring potential dependencies is a reasonable
baseline in many cases.

Index Terms— weak supervision, machine learning, graphical
models

I. INTRODUCTION
The success of supervised machine learning methods relies

on the availability of large amounts of labeled data. The
common process of manual data annotation by humans,
especially when domain experts need to be involved, is
expensive, both in terms of time and cost, and as such
presents a major bottleneck for deploying supervised learning
methods to new domains and applications.

Recently, data programming, a framework that makes use
of multiple weak supervision sources, has emerged as a
promising alternative to manual data annotation [1]. In this
framework, users need to encode domain knowledge into so-
called labeling functions (LF), the weak supervision sources,
such as domain heuristics (as in Fig. 1), knowledge bases, or
pre-trained classifiers that each noisily label a subset of the
data. Using multiple of such sources the framework learns
a generative model of the sources and the latent true label.
One can then use the learned model to estimate probabilistic

labels, which are usually used to train a downstream model

(also denoted as end-model), replacing the need to obtain
ground truth labels by manual annotation of individual
samples.

In practice, the sources of weak labels often exhibit
statistical dependencies amongst each other, such as sources

1Salva Rühling Cachay is with the Computer Science
Department, Technical University of Darmstadt, Germany
salvaruehling@gmail.com

2Benedikt Boecking and Artur Dubrawski are with the Robotics Insti-
tute, Carnegie Mellon University, Pittsburgh, PA, USA {boecking,
awd}@andrew.cmu.edu

Fig. 1. Two examples for labeling functions for a sentiment analysis task
and the corresponding toy factor graph (with a not shown, conditionally
independent, third labeling function). Here, it is natural to model a fixing

dependency between LF1 (top) and LF2 (middle). But, does it really improve
end-model performance? If, yes. how much? Or do the LFs alone provide
enough evidence to accurately estimate the latent label Y ⇤?

operating on the same or similar input, or sources deliber-
ately defined by the user to reinforce or fix (as in Fig. 1)
other, less precise, sources (some examples can be found
in Table II). For this work we use the data programming
framework as introduced in [1], where the premise is that
experts can model any higher-order dependency. We extend
it by negated, bolstering, priority dependencies, e.g. the
latter encoding the notion that one source’s vote should
be prioritized over the one from a noisier source. Newer
label models and model fitting approaches such as [2], [3]
often only allow for pairwise correlation dependencies to be
modeled.

As manually providing the dependencies to be modeled
does not scale and is prohibitive in development, past works
present methods to automatically detect these dependencies,
i.e. learn the underlying structure between the weak super-
vision sources [4] [5] [6].

The value to downstream model performance of the addi-
tional step of modeling dependencies is, however, not well
understood. In particular, we aim to identify and quantify the
impact of ignoring dependencies — a common practice in
popular libraries for practical applications [7] [8] as well as
related research [9] [10] — on the downstream model perfor-
mance. To address this gap, we characterize the settings and
circumstances under which modeling dependencies helps and
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those in which it does not, as well as quantify, for the former,
the lift in end-model performance that can be expected.

In experiments on synthetically generated data, in which
we have full control and knowledge over the number of
dependencies and their strength, we find that in settings with
uninformative, strongly dependent sources, ignoring them
leads to a loss of up to 6 ROC-AUC points in downstream
performance. On the IMDB movie review dataset we, on the
other hand, often observe marginal or worsening impacts. In
particular, we show that modeling seemingly sensible depen-
dencies — in highly relevant settings for practitioners — can,
perhaps surprisingly, deteriorate downstream performance
significantly by up to 4 ROC-AUC points.

The boosting, marginal or even worsening effects that
modeling dependencies between weak supervision sources
can have on the downstream model performance further un-
derscores the importance of our presented work to gain, and
give practitioners, a better understanding of the peculiarities
and pitfalls that can arise.

II. RELATED WORK

Recently, the data programming paradigm was introduced,
which allows users to programmatically label data through
labeling functions by treating the true label as a latent
variable of a generative model [1]. It was later extended to
an end-to-end, open-sourced system [11].

Novel methods for solving for the parameters of the model
only support the modeling of pairwise correlations [2] [3]
— as such, losing some of the expressivity of [1] regard-
ing different dependency types between weak supervision
sources. The former extends data programming to the multi-
task setting by exploiting the graph structure of the inverse
covariance matrix among the sources [2] — in particular the
fact that an entry is zero when there is no edge between
the corresponding sources in the graphical model [12]. The
latter finds a closed-form solution for a class of binary Ising
models by using triplet methods [3].

In order to automatically learn the structure between these
sources, previous work optimizes the marginal pseudolikeli-
hood of the noisy labels [4], or makes use of robust PCA to
denoise the inverse covariance matrix of the sources labels
into a graph structured term [5]. A different approach, infers
the structure through static analysis of the weak supervision
sources code definitions and thereby reduces the sample
complexity for learning the structure [6].

III. PROBLEM SETUP

In this work we make use of the data programming
framework as introduced in [1]. That is, we model the weak
supervision sources and the latent true label as variables of
a factor graph, an expressive type probabilistic graphical
model in which we can model dependencies of various
types between the variables, such as a fixing or reinforcing

dependency (Fig. 1 shows a simple factor graph). We focus
on the binary case since the points we make only depend on
the number of sources and their relationships but not on the
possible labels.

Formally, given a set of n data points {xi}ni=1 and m
sources of weak supervision {�j}mj=1 we construct the label
matrix ⇤, where ⇤i,j = �j(xi) 2 {�1, 0, 1} and 0 means
that the source refrained from labeling the data point to any
class. Only using ⇤, our goal is to obtain probabilistic labels,
the estimates of the latent, true labels Y ⇤ = {y⇤i }ni=1 2
{�1, 1}n.

As said, we model the joint distribution p✓(⇤, Y ⇤) as a
factor graph. To this end we use factor types that represent
the labeling propensity and accuracy:

�Lab
i,j = {⇤i,j 6= 0} (1)

�Acc
i,j = {⇤i,j = y⇤i }, (2)

as well as the dependency types similar, fixing, reinforcing

that we inherit from [1] and, our own types by which we
extend it, negated, bolstering, priority, e.g. for the latter:

�Prio
i,j,k,1 = {⇤i,j = �y⇤i ^ ⇤i,k = y⇤i } (3)

�Prio
i,j,k,2 = � {⇤i,j = y⇤i ^ ⇤i,k = �y⇤i }, (4)

which encodes our understanding that the vote of �k should
be given priority over �j when both differ (for the other
definitions see the appendix). For a given data point xi let
�i(⇤, Y ⇤) 2 {�1, 0, 1}M ,M � 2m denote the concatenated
vector of these factors for all sources j = 1, . . . ,m and all
k 2 {1, . . . ,m} for which a dependency shall be added.

We can then express the joint distribution as follows:

p✓(⇤, Y
⇤) =

1

Z✓
exp

 
nX

i=1

✓T�i(⇤, y
⇤
i )

!
,

where ✓ 2 RM is the corresponding parameter vector and
Z✓ is a normalizing constant. We note that other, arbitrary
dependency types can be easily modeled — the types above,
however, occur most commonly in practice.

Given the label matrix ⇤ we can now learn the parameter
✓̂ through maximum likelihood estimation, which can be
optimized for by interleaving stochastic gradient descent with
Gibbs sampling steps. Lastly, we obtain our probabilistic
training labels p✓̂(Y |⇤).

IV. METHODS
Our goal is to demonstrate the effect that modeling de-

pendencies under various settings, regarding the number of
LFs and dependencies as well as their type and strength,
has on end-model performance, at best, i.e. by modeling
those dependencies that, under a given setting, reflect the
true structure of the LFs.

A. Synthetic dependencies and labeling functions

Using synthetically generated dependencies and labeling
function outputs is attractive since we not only have full
knowledge over the true structure but also control over the
number of labeling functions as well as dependencies and
their type and strength we want to simulate.

To do so, we provide, the factor graph from section III, the
graph’s structure (i.e. the number of LFs and factors to be
modeled) and corresponding model parameters ✓. We can
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then sample synthetic values for the random variables to
generate a synthetic label matrix ⇤. In particular, we can also
provide arbitrary true labels Y ⇤, treat them as evidence (i.e.
not as a random variable) and, thus, only sample synthetic
LF votes corresponding to a true label.

The advantage of this is that we can provide labels
corresponding to real datasets, thereby essentially generate
synthetic labeling functions for this dataset and, importantly,
use the corresponding training data (not used for generation
of ⇤) to train a downstream classifier on probabilistic labels
learned, exclusively, from the synthetic label matrix ⇤ and
the structure we chose to provide.

In essence, we generate a synthetic label matrix by revers-
ing the usual process of providing an observed label matrix
to learn the model’s parameters ✓̂.

B. Finding true dependencies in real datasets

The underlying true structure of real labeling functions
is, of course, unknown. Still, we can get fairly close to it
by using true labels (together with the observed LF votes)
to compute the resulting factor values for each data point,
which we then sum up over the whole training set. For a
given factor, we then choose to model the k dependencies
with highest, positive total value. These are the dependencies
for which the true labels provide the most evidence of being
true.

For instance, with the LFs from Fig. 1, following the
definition of a fixing dependency, we would add up all the
instances where LF1 labels positively, LF2 negatively and the
true sentiment is negative and then subtract all the instances
where LF1 abstained but LF2 did not (none in this case).
Semantically, the total factor value would be equivalent to
the number of times where “wouldn’t recommend” appears
in a text sample and the corresponding sentiment is indeed
negative. We stress that we exclusively use the true training
labels for the purpose above.

V. EXPERIMENTS
For the following experiments, we use the IMDB Movie

Review Sentiment dataset1, consisting of 25k training and
test samples each [13].

A. Correlated LF cluster

We first aim to find out how much we can lose up on
downstream performance when ignoring the dependencies of
a growing cluster of correlated and less accurate LFs.

Using the method described in IV-A we first generate a
label matrix that corresponds to synthetic votes of 10 labeling
functions on the training labels of the IMDB dataset (all LFs
with coverage of 5%). Four of these labeling functions are
conditionally independent as well as fairly accurate (around
80%). The rest is a cluster of correlated LFs (i.e. we use
the similar factor) that are pretty uninformative (accuracy
between 53 and 56%). We then start with the set of four
accurate LFs to which we incrementally add one of the
inaccurate ones and model i) No, ii) All, iii) Half of all, and

1https://ai.stanford.edu/⇠amaas/data/sentiment/

(a) Large accuracy difference

(b) Small accuracy difference, but stronger correlation

Fig. 2. (a), (b) We incrementally add correlated LFs to an initial set of four,
fairly accurate, LFs. Modeling the correlatedness (the true similar factors)
keeps initial performance, while ignoring them loses up to 6 AUC points
on the right of (a).

iv) bolstering instead of similar dependencies. The plotted
results are shown in Fig. 2a.

As expected, modeling these similar dependencies im-
pedes a performance drop, regardless of the number of
correlated and inaccurate LFs we add. Even if we only
model half of the similar dependencies, we can almost keep
the initial performance, especially as the added LF cluster
becomes large. On the other hand, ignoring the dependencies
introduces their substantial noise to the factor graph and we
can lose up to 6 AUC points. Finally, if we model the LF
votes from within the cluster as bolstering each other (i.e.
we wrongly encode into the model that when many of these
LFs label equally, the true label likely is the same—green
line), we, indeed, observe the largest drop in performance,
though only as the number of uninformative LFs reaches 5.

In a similar experiment (Fig. 2b), we lower the difference
in accuracy between initial set and cluster LFs, that is, the
correlated LFs in the cluster are around 10% less accurate
(i.e. close to 70%) than the initial ones. In addition, we let the
cluster LFs be stronger correlated (with parameter weight, in
log-scale, around 0.75 instead of the previous 0.25). We again
observe a, slightly weaker, drop in performance when not
modeling any (or wrong) dependencies. Interestingly, adding
these strongly correlated but reasonably accurate LFs does
not help in performance at all.

B. IMDB experiments

For the experiments in this section we simulate the usual
data programming approach [1] [11] and manually select a
set of 135 sensible, real labeling functions (some summary
statistics are provided in Table. I). These LFs label on the
presence of a single word or a pair of words (i.e. uni-/bigram
LFs) such as the ones in Fig. 1. We deliberately choose the
bigram LFs so as to create dependencies we expect to help
with downstream model performance.

1) Effect of modeling dependencies on all 135 LFs: In
this experiment we show i) the broad impact that modeling
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TABLE I
SUMMARY STATISTICS OF THE 135 LFS WE SELECTED FOR THE IMDB
DATASET REGARDING THEIR ACCURACY (ACC.) AND COVERAGE (COV.)

Mean LF acc. LF acc. std Mean LF cov. LF cov. std
0.7787 0.1306 0.0153 0.0373

Fig. 3. Modeling more than a handful dependencies (as the ones in Table II)
significantly deteriorates ROC-AUC downstream performance as compared
to simply ignoring them (red line), which gives the baseline score of 0.8098.
This effect intensifies as we model more dependencies.
B&N — We only model the bolstering and negated dependencies.
F&P — We only model the fixing and priority dependencies.

dependencies has on end-model performance for the set of
real LFs detailed above and ii) the changing impact as we
model more and more dependencies.

We choose different k 2 {1, 3, 5, . . . , 40} and then model
the strongest, as per IV-B,  k dependencies of each factor
(we exclude the similar one in this experiment, and model
< k dependencies only when there are no more dependencies
with positive total factor value). A selection of the strongest
and weakest dependencies is shown in Table II. Note that
the weakest ones still make sense and only are modeled in
the case where we take the  40 strongest dependencies.

While we observe a marginal boost (< 0.005) in perfor-
mance when modeling the strongest k = 1, 3 dependencies
of each factor (i.e. 5, 15 in total), the main take-away is the
following:

We surprisingly find that modeling more than a handful
dependencies significantly deteriorates the downstream per-
formance (by up to 4 ROC-AUC points) as compared to
simply ignoring them (Fig. 3). Moreover, the performance
worsening intensifies as we increase k, i.e. as we model
more, slightly weaker, dependencies. We reiterate that these
additional dependencies still, semantically, make sense (as
depicted in Table II, where the weakest ones are modeled for
the case where k = 40 / number of dependencies = 122),
and indeed have positive factor values, which indicates that
they provide positive evidence for the true labels we aim
to estimate. Even though this result and insight is highly
relevant for practitioners, it has, to the best of our knowledge,
not been known or researched. It comes as a surprise that
modeling seemingly sensible dependencies can significantly
deteriorate the targeted downstream model performance.

TABLE II
THE STRONGEST AND WEAKEST DEPENDENCIES FOR THE IMDB LFS

LFj LFk factor value factor

best great 801 bolstering
bad don’t waste 110 bolstering
worth not worth 238 fixing
great nothing great 15 fixing
worth not worth 219 negated
special not special 8 negated
original bad 327 priority
recommend terrible 53 priority
recommend highly recommend 226 reinforcing
bad absolutely horrible 7 reinforcing

2) Repeatedly subsampling from the 135 LFs: In this set
of experiments, we repeatedly subsample 10 to 70 LFs out
of the 135 we selected above. For each such subset, we again
model different numbers of dependencies as before.

While for some subsets we observe (Fig. 4) lifts as well
as drops in performance (of at most 3% each), most often
the impact of modeling dependencies is only marginal. We
identify the baseline performance of not modeling depen-
dencies as a factor for the observed lifts. That is, when
the labeling functions alone do not provide enough evidence
for strong downstream model performance, the addition of
modeling dependencies may potentially help. Conversely, we
find that modeling dependencies can only provide marginal

additional evidence for estimating the true label when the
signal coming from the LFs alone is already strong — and,
in some of these cases, as in the experiment above with
all 135 LFs, it even worsens performance. Furthermore, we
find that no deteriorating behavior happens for subsets of
cardinality  30.

C. Implementation details

For all reported experiments we average over 5 runs for
the generative model, where for each such run we use the
estimated probabilistic labels to train a multilayer perceptron
(MLP) 20 times, which we again average out. That is, we
report the mean performances on the test set, averaged over
100 runs.

The MLP, the downstream model, has two hidden layers
of size 20 with ReLU activations, sigmoid output and cross
entropy loss. We train it for 250 epochs using the Adam
optimizer.

As training data we use low dimensional projections of
a bag-of-words matrix via truncated Singular Value Decom-
position (SVD), fixing the embedding size to d = 300 —
with the goal of not adding, for our purpose, unnecessary
complexity through, e.g., pre-trained embeddings.

VI. CONCLUSIONS

We have demonstrated various, significant impacts that
modeling dependencies can have on downstream perfor-
mance, i.e. boosting, negligible or even deteriorating effects.
This may come surprisingly and emphasizes the importance
of our presented work to gain, and give practitioners, a better
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(a) Number of labeling functions: 20

(b) Number of labeling functions: 40

(c) Number of labeling functions: 70

Fig. 4. We repeatedly subsample 10 to 70 LFs out of the 135 we selected for the IMDB dataset and plot the gain in performance when modeling more
and more, slightly weaker, dependencies (w.r.t. Base, the baseline AUC performance for not modeling any dependencies of a given subset—red dotted
line).

understanding of the additional step of modeling dependen-
cies. In particular, we have empirically shown that, in many
settings of practical relevance, modeling seemingly sensi-
ble dependencies between weak sources of supervision has
marginal or even negative impacts on the test performance of
the downstream classifier. As such, we conclude that ignoring
dependencies is a reasonable baseline for practitioners, as
the, often small, lifts are confronted with potentially worse
performances.

In future work, we plan to utilize this information to
make well-founded decisions on when to interactively learn
dependencies between weak supervision sources.

APPENDIX

A. Factor Definitions

We supplement the factor definitions from section III. For
the fixing dependency we have:

�Fix
i,j,k,1 = {⇤i,j = �y⇤i ^ ⇤i,k = y⇤i }

�Fix
i,j,k,2 = � {⇤i,j = 0 ^ ⇤i,k 6= 0},

for the negated:

�Neg
i,j,k,1 = {⇤i,j = �y⇤i ^ ⇤i,k = y⇤i }

�Neg
i,j,k,2 = � {(⇤i,j = y⇤i ^ ⇤i,k = �y⇤i ) _ ⇤i,j = ⇤i,k 6= 0},

for the bolstering:

�Bol
i,j,k,1 = {⇤i,j = ⇤i,k = y⇤i }

�Bol
i,j,k,2 = � {⇤i,j = �⇤i,k 6= y⇤i _ ⇤i,j = ⇤i,k 6= y⇤i },

for the similar:

�Sim
i,j,k = {⇤i,j = ⇤i,k}

and, finally, for the reinforcing one:

�Rei
i,j,k,1 = {⇤i,j = ⇤i,k = y⇤i }

�Rei
i,j,k,2 = � {⇤i,j = 0 ^ ⇤i,k 6= 0}.
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Path Optimization for Autonomous Rough Terrain Traversal

Gargi Sadalgekar1, Sean J. Wang2 and Aaron M. Johnson2

Abstract— Robots capable of traversing rough terrain have
many useful and varied applications. Many of these require
the robot to travel to a desired location using the most efficient
path possible. However, because of the non-linear and non-
deterministic dynamics that robots have when traversing rough
terrain, the process of determining the optimal path becomes
difficult. While the robot’s non-deterministic dynamics allow it
to be modeled as a Markov decision process (MDP) problem,
the existing methods for solving such a problem are compu-
tationally expensive. In this paper, we propose a new method
for solving the MDP problem that utilizes a sampling-based
optimizer called the cross-entropy (CE) method. We implement
the CE method using a multivariate Gaussian distribution and
evaluate the sample paths using a cost function that calculates
each sample’s overall path length and distance from the target
endpoint.

Index Terms— Autonomous Vehicle Navigation, Motion and
Path Planning, Probability and Statistical Methods, Wheeled
Robots

I. INTRODUCTION
Robots with the ability to traverse extremely rough terrain

have a wide variety of uses, such as terrain exploration,
environmental monitoring, and search-and-rescue missions.
A key requirement of many of these applications is that the
robot is capable of travelling to a designated point using the
most efficient path possible. Specifically, we are looking at
the case where a wheeled robot with high suspension and
traction is tasked with traversing rough terrain in order to
survey a region, as shown in Fig. 1.

If a robot were traveling over flat ground, the problem of
finding the optimal path would be straightforward because
the robot’s flat-ground dynamics would classify it as a
Dubins’ car. A Dubin’s vehicle has an established optimal
path consisting of the concatenation of a straight line segment
and two circular arcs of maximum curvature [1]. However,
determining the optimal path for a robot to take when
traversing rough terrain is more complicated. The established
optimal path for a Dubin’s car is not guaranteed to work
when executed over rough terrain because it doesn’t take
into account the new complexities of the environment. If, for
instance, there is uneven terrain along the established optimal
path, the robot could get stuck or flip over, causing it to fail
in reaching the desired point. In such a case, the true optimal
path would navigate the robot around such obstacles while
still reaching the desired endpoint in an efficient manner.

1Gargi Sadalgekar is with the Robotics Institute Summer Scholars
Program at Carnegie Mellon University, Pittsburgh, PA 15213, USA and also
with the Department of Mechanical and Aerospace Engineering at Princeton
University, NJ 08540, USA gargis@princeton.edu

2S.J. Wang and A. M. Johnson are with the Department of Mechanical
Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
{sjw2, amj1}@andrew.cmu.edu

Fig. 1. Four-wheeled steered robot with four-link off-road suspension
traversing rough terrain.

Furthermore, even if there was some way to immediately
identify the optimal path, traditional linear control systems
would have difficulty keeping the robot on said path. This
is because rough terrain traversal involves highly non-linear
dynamics as the robot makes and breaks contact with ob-
stacles in complex shapes. As a result, controllers based
on linear dynamics offer poor results, and an alternative
method for control is necessary. One such alternative is
model predictive control (MPC), where a model is used first
to predict the motion of a robot when given a sequence of
actions and then to continually recompute the optimal action-
sequence as the robot diverges from the predicted motion.
This type of control requires a model of the system based
on the robot’s dynamics. Over rough terrain, these dynamics
become non-deterministic due to unknown variables, such as
friction, payload, or complex terramechanics, so the system
can be modeled using a Markov decision process (MDP).
The problem of finding an optimal path thus reduces to one
of solving the MDP of the system. However, most traditional
methods for solving MDP problems, such as value iteration
and policy iteration, are inefficient. Both methods involve
updating the value function of every state at every iteration,
which becomes computationally expensive over time [2]. For
MPC to be effective, it requires a fast method for solving the
MDP problem in order to efficiently reach the goal.

In this paper, we propose implementing a sampling-based
optimizer called the cross-entropy (CE) method as a faster
means for solving the MDP problem and computing the
optimal action-sequence to reach a designated goal. We
use a data-driven probabilistic motion model of the robot’s
dynamics and input a sequence of actions that the model
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uses to predict the robot’s motion as it executes the actions.
The optimal action-sequence that will take the robot to the
desired goal is determined using the CE method. The CE
method randomly samples action-sequences from a probabil-
ity distribution and uses the action-sequences with the lowest
associated costs to re-weight the distribution. This process is
repeated until the distribution eventually converges over the
optimal action-sequence. In contrast to the traditional ap-
proaches to solving an MDP problem, the proposed approach
is able to solve the MDP problem associated with the non-
deterministic dynamics of the system using a fast method for
computation that can be done in real time.

II. DESIGN

A. The Cross-Entropy Method

The cross-entropy method is an adaptive importance sam-
pling procedure that is used for rare-event probability esti-
mation and optimization. Here we provide a brief summary
of the CE method. More details can be found in [3].

Consider the probability ` that a real value function S(x)
is below some threshold �, where x is a random variable
selected from probability distribution function (pdf) f(·;u)
which is parameterized by a finite-dimensional real vector u.

` = P(S(x)  �) =

Z
IS(x)�f(x;u)dx (1)

Here the expression IS(x)� represents an indicator func-
tion that equals one when the expression S(x)  � is
true, and zero when the expression is false. The rare-event
probability ` can be represented using another pdf g as
follows:

` =

Z
IS(x)�f(x;u)

g(x)
g(x)dx. (2)

Then, if we draw N random variables x1,...,xN from g, we
can define an unbiased importance sampling estimator of `
as ˆ̀ where

ˆ̀=
1

N

NX

k=1

IS(xk)�
f(xk;u)

g(xk)
. (3)

The optimal importance sampling pdf that minimizes the
variance of IS(x)�

f(x;u)
g(x) is defined as g⇤, where

g⇤(x) =
f(x;u)IS(x)�

`
. (4)

The goal of the CE method is to choose an importance
sampling pdf g, within the class of pdfs f(·;v), such that the
Kullback-Leibler (KL) divergence between g and an optimal
importance sampling pdf g⇤ is minimal. The minimization
problem can be simplified to finding the optimal reference
parameter v⇤.

v⇤ = argmax
v

1

N

NX

k=1

IS(xk)�
f(xk;u)

f(xk;w)
ln f(xk;v) (5)

Since ` is a rare-event probability, v⇤ cannot be found in one
step as most of the indicators IS(x)� in (5) will be zero,

and the maximization problem will become moot. Instead,
a multi-step CE procedure is used where a new reference
parameter vt and a new threshold �t are calculated at each
step with the goal that the reference parameter converges
to v⇤, once the threshold reaches �. At each iteration t,
we generate N samples from the current pdf, calculate the
associated S(x) values, and define an intermediary gamma
value �t as the ⇢-quantile of the performance values S(x).
The rarity parameter ⇢ is a user-specified parameter which
ensures that, at each iteration, a set number Ne = d⇢Ne
of the samples taken have an indicator of 1. This set of Ne

variables for which S(x)  �t is called the elite set. Once �t
is determined, the value of the reference parameter is updated
using (5) based on the elite set. The iterations continue until
�t reaches the desired threshold of �. The probability ` can
then be estimated using (3) where u equals the reference
parameter found in the final iteration.

B. The CE Method for Optimization

This method for estimation can also be adapted for opti-
mization purposes, since the probability of reaching some
optimal solution using a random search is a rare-event
probability. Thus, the CE method can be used to gradually
change the sampling distribution of the random search so that
the selection of the optimal solution is more likely to occur.
In this case, the optimal solution refers to some variable
x⇤ that either minimizes or maximizes a given function.
For example, suppose that the goal is to find the value x⇤

that yields the minimum of a function S(x). This unknown
minimum can be denoted as follows

S(x⇤) = �⇤. (6)

This can then be translated into the following estimation
problem

` = P (S(x)  �⇤) (7)

to find the lowest possible �⇤ through an iterative process.
Before initiating the iterations, an initial reference param-

eter v0 is defined along with a variable Ne that represents
the size of the elite set. Each iteration t starts by sam-
pling N random variables from the chosen pdf, written as
x1
t , ...,x

N
t ⇠iid f(·;vt�1). Then the cost function S(x) is

evaluated at xk
t for all k. An intermediate threshold �t is

defined as the (Ne +1)th largest cost. Using this threshold,
the reference parameter vt is then updated with

vt = argmax
v

1

N

NX

k=1

IS(xk
t )�t

ln f(xk
t ;v). (8)

This process is repeated until some user-defined stopping
parameter is met. Algorithm 1 provides a complete summary
of the process.

To run this algorithm, the user also needs to select the
appropriate probability distribution function family. If the
chosen distribution belongs to an exponential family of
sampling distributions, then the optimal reference parameter
vt of each iteration can be solved for explicitly. For example,
the reference parameter of a Gaussian distribution can be

196



found by solving for the mean and variance of the elite set.
Furthermore, the user needs to establish a stopping criterion
for the iterations. One option is to stop iterating once the
change in the distribution between iterations, measured by
the KL-divergence, falls below some threshold ✏. Similarly,
the user can also stop iterating once the change in �t falls
below ✏. If the probability distribution being used is a
Gaussian, the algorithm can also be terminated when the
determinant of the Gaussian’s covariance matrix approaches
zero [4]. For the purposes of this paper, we use the change
in �t as the stopping criterion.

Algorithm 1 CE Algorithm for Optimization
1: Choose an initial parameter vector v0

2: Define Ne = d⇢ ·Ne
3: Set t = 1
4: while �� < ✏ do
5: Generate x1

t ,...,xN
t ⇠iid f(·;vt�1)

6: Calculate the performances S(xk
t ) for all k

7: Sort the samples such that S1  ...  SN

8: Let �t = SNe+1

9: Update �� = �t � �t�1

10: Update vt = argmax
v

1
N

NX

k=1

IS(xk
t )�t

ln f(xk
t ;v)

11: t = t+ 1
12: end while

C. Application of CE Method for Rough Terrain

In this section, we implement the CE method to find an
action-sequence that accurately sends the robot to the desired
goal using the least amount of steps over the shortest possible
path. Each action in the action-sequence represents a pair
of inputs that the robot receives: one value corresponds to
the throttle input and the other value corresponds to the
steering input. As a result, each sampled sequence x has the
dimensions 2L, where L represents the number of actions in
a sequence. The performance of each sample is quantified
using a cost function S(x) that measures criteria such as
path length, steps taken, and proximity to the target. Thus
by minimizing the cost function the CE method is able to
determine the optimal action-sequence.

The first step in finding the optimal path is to ran-
domly select a set of action-sequences from a multivariate
Gaussian distribution, where each variable sampled from
the pdf is actually a vector, and each component of the
vector represents one action in an action-sequence. Since
the robot requires two inputs for each action command,
two multivariate Gaussians are needed to draw from, one
for each input. Once N variables are sampled from each
distribution, the corresponding throttle and steering inputs
are paired to create N action-sequences. The cost of each
action-sequence is then evaluated using the cost function
S(x). This is done by first simulating each action-sequence
through the environment using a probabilistic motion model
and then evaluating it based on the resulting path. Once all

of the costs are calculated, the next step is to determine
which action-sequences belong in the elite set mentioned in
section II-A. The threshold �t is defined using the (Ne+1)th

largest cost and for every cost below �t, the corresponding
throttle and steering variables are each assigned to the elite
set for each distribution. Each elite set is then used to
update the reference parameter, vt, for each distribution.
As mentioned earlier, the updated reference parameter for
a Gaussian distribution can be solved for explicitly by first
finding the mean and covariance of each elite set as follows:

µ̂t =
1

|E|
X

x2E
x, ⌃̂t =

1

|E|� 1

X

x2E
(x� µ)(x� µ)T (9)

where E represents the elite set [4]. Once the mean and
covariance of each elite set are determined, it is necessary
to include a smoothing step that prevents the algorithm from
converging to a sub-optimal solution [5]. Smoothing involves
updating the mean and covariance such that:

µt+1 = ↵⇤µt+(1�↵)⇤ µ̂t, ⌃t+1 = ↵⇤⌃t+(1�↵)⇤ ⌃̂t

(10)
where ↵ is a user-defined smoothing parameter. Once the
mean and covariance are updated for each distribution, a
new set of samples is drawn from each pdf and the entire
process is repeated. The iterations continue until the change
in �t falls below a designated threshold, indicating that the
distributions have converged over a path.

For this procedure, the user needs to define a sample size
N , the number of steps taken by the robot in each action-
sequence L, the rarity parameter ⇢, the smoothing parameter
↵, the stopping parameter threshold, an initial mean vector
µ0, and an initial covariance matrix ⌃0, where

µ0 2 RL, and ⌃0 2 RL⇥L (11)

D. Cost Functions

A large contributor to the success of the algorithm is the
type of cost function used to evaluate each sampled path. We
tested two different cost functions to see which one produced
a more optimal path. The first cost function S1(x) evaluates
each action-sequence based on the Euclidian distance from
the desired endpoint to the last position of the robot once
the action-sequence is completed. The second cost function
S2(x) evaluates each action-sequence based its overall path
length and the distance from the desired endpoint that is
determined in S1(x). Function S2(x) calculates the path
length by totalling the distances between every action in the
action-sequence. This sum, denoted as dist, is then combined
with the distance to the desired endpoint to produce the
following cost function

S2(x) = dist · � + S1(x) (12)

The variable � is included as a user-defined weighting
parameter that is included to allow the user to decided
whether the algorithm should give preference to paths that
are closer to the desired endpoint or to paths with a shorter
path length. Another cost function that could potentially be
effective is one that evaluates an action-sequence based on
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the amount of time the robot spends at the endpoint. Such a
cost function would identify the optimal path as one where
the robot reaches the endpoint in fewest number of steps and
then remains there for the remainder of the action-sequence.

III. RESULTS

In order to determine which cost function produces the
more optimal final path, we ran a series of trials to compare
the performance of each cost function described in II-D.
Table III outlines the values of all the user-defined parameters
required to run the algorithm. Furthermore, all trials were
given the coordinates (5.0, 5.0) as the desired endpoint for a
robot starting at (0.0, 0.0). The trials were simulated using a
flat-terrain motion model. The cost functions were compared
based on the resulting optimal path’s proximity to the target,
its overall path length, and the number of iterations the
algorithm needed to converge. Table III compares the average
results of 30 trials.

TABLE I
A LIST OF ALL THE USER-DEFINED PARAMETERS USED IN THE TRIALS.

Parameter Value Description
N 300 Number of samples
L 75 Number of steps in path
⇢ 0.99 Rarity Parameter
↵ 0.5 Smoothing Parameter
� 0.75 Weighting Parameter for S2(x)
✏ 0.0001 Stopping Parameter Threshold
µ0 zero vector Initial Mean Vector
⌃0 identity matrix Initial Covariance Matrix

TABLE II
COMPARISON OF THE OPTIMAL PATHS PRODUCED BY EACH COST

FUNCTION BASED ON PATH LENGTH AND PROXIMITY TO THE TARGET.
Cost Function Final X Position (m) Final Y Position (m) Path Length (m) Iterations

Ideal Path 5.000 5.000 7.071 -
S1(X) 4.997 5.004 10.987 24.8
S2(X) 4.998 5.000 8.669 35.8

According to the results of the trials, both cost functions
are capable of bringing the robot within 5 mm of the desired
endpoint. However, S2(x) produces action-sequences that
reach the goal over a much shorter path length. Furthermore,
Fig. 2 and Fig. 3 demonstrate the qualitative differences
between the paths produced by the two cost functions, where
the red plus in each indicates the desired endpoint for the
path. Function S2(x) clearly produces optimal paths that are
shorter and smoother than those produced by S1(x).

IV. CONCLUSION

The results of the trials demonstrate that the CE method
for optimization can be used to determine a near-optimal
action-sequence for a robot to reach a desired location.
The adaptation of the CE method for this purpose involves
sampling action-sequences from a multivariate Gaussian
distribution and then quantifying the performance of each
sample using a cost function that evaluates the action-
sequence based on its path length and final distance from
the desired endpoint. The least costly samples are used to

Fig. 2. Optimal path determined using S1(x)

Fig. 3. Optimal path determined using S2(x)

gradually shift the Gaussian distribution towards an action-
sequence with a minimal cost. The next section discusses
what steps need to be taken in order to determine whether
this method is indeed faster than existing methods for the
MDP problem.

A. Future Works

At this point, the algorithm still requires modifications
in order to consistently produce the most optimal action-
sequence for a robot to arrive at a desired endpoint. A next
step would be to develop a cost function that evaluates each
action-sequence based on the amount of time, or the number
of steps, that the robot spends at the desired endpoint. Such
a cost function would ideally give preference to action-
sequences that reach the target endpoint quickly and spend
the remaining allotted steps at the target. Another important
step would be to test alternative probability distributions, to
see if there is a better way to represent the data. Specifi-
cally, we would like to test a version of the algorithm that
uses a multivariate Gaussian mixture model based off of
the algorithm proposed in [6]. Implementing a multivariate
Gaussian mixture model would more accurately represent
the data in scenarios where the data is multi-modal. Once
these modifications are made, the next step would be to test
the method using a rough-terrain motion model, especially
since we have only been able to test the method with flat
terrain models so far. The final step would be to compare this
method’s performance to that of other established methods
in order to determine its validity.
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Online and Decentralized Multi-Agent Path Planning for Realistic

Robotics Systems

Nayana Suvarna1, Guillaume Sartoretti2 and Howie Choset3

Abstract— Multi-agent path finding (MAPF) is the problem

of determining collision-free paths for an arbitrary number

of agents in a given workspace. Our group’s prior work deals

with scalability - being able to allow algorithms to operate with

large numbers of agents - utilizing an algorithm called M*. Our

next challenge, which is necessary for real-world deployments

is to handle the uncertainties and conditions that real-world

systems possess. Uncertainties caused by noise and imperfect

localization and controls as well as large team sizes can cause

costly replanning times with current state of the art approaches.

To address these challenges, we propose a decentralized, online

framework that distributes the work of a variant of M*, called

ODrM*, to effectively plan for large sets of agents with minimal

delay to their movement. We test our framework by placing

increasing amounts of agents in a simulated environment

and by comparing plan execution times as well as the ratio

between ”offline” pre-planning time using ODrM* to online

plan execution time from our framework. Through our tests,

we suggest that our framework will outperform ODrM* in plan

execution time for all agent when scaled to larger team sizes.

I. INTRODUCTION
Large scale robotics systems have recently been applied

to various applications, including warehouses and industrial
environments, as well as search and rescue. Most widely
accepted algorithms in this field are centralized. Although
these approaches can provide complete and optimal plans,
they fail when applied to real-world deployments. Creating
a single joint plan for all agents at the beginning of planning
is infeasible due to position uncertainties caused by imper-
fect localization and controls. There is a growing need for
algorithms that can scale well and handle these uncertainties.

Previous work with our group deals with a centralized,
dynamically coupled algorithm called ODrM*. Although
ODrM* outperforms other state of the art coupled planners
with larger team sizes, planning time increases significantly
when scaling to larger teams. Planning can take up to five
minutes for bounded sub-optimal solutions for teams of over
150 agents [1]. This makes it impractical when applied to
realistic systems because of the increased delay before agents
can start moving to their goals.

This paper presents an online, decentralized path planning
framework for multi-agent systems that uses ODrM* as the
local planner to resolve collisions. Agents initially plan their
individual paths assuming they are alone in the world. As

1Nayana Suvarna is with the Computer Engineering Department at the
University of Pittsburgh, Pittsburgh, PA 15213 nls71@pitt.edu

2Guillaume Sartoretti is with the Mechanical Engineering Depart-
ment at the National University of Singapore, Singapore 119077
guillaume.sartoretti@nus.edu.sg

3Howie Choset is with the Robotics Institute at Carnegie Mellon Univer-
sity, Pittsburgh, PA 15213 choset@andrew.cmu.edu

agents proceed to their goals, they share plans with other
agents that get within range. Plans are then compared and if
a collision exists, all agents involved start replanning for the
local subset of agents. The new plans are shared by the first
agent who finishes planning and all agents can then resume
their journey to their goals. If no collision exists, all agents
just proceed to their goals and retain knowledge of plans
shared by other agents, which they can use in the future as
constraints for subsequent planning instances.

Through this approach, we leverage the benefits of de-
centralized, online planning to distribute the execution of
ODrM* across all agents during movement. By only using
ODrM* as the local planner when a collision is detected,
we keep team sizes small which allows for faster replanning
without delaying the movement of agents. We present results
from tests where we place increasing numbers of agents
in a simulated environment and demonstrate that the plan
execution time for our framework is faster and the ratio
of ”offline” pre-planning” time to our framework’s plan
execution time increases as the number of agents increases.

II. PREVIOUS WORK
A. Multi-Agent Path Finding (MAPF)

Recent efforts for solving MAPF problems have revolved
around decoupled and dynamically-coupled approaches. De-
coupled approaches compute plans for agents individu-
ally and then resolve collisions by coordinating movement
amongst them to avoid collisions. Optimal reciprocal col-
lision avoidance (ORCA) [2] presents a velocity-based ap-
proach that infers agents’ velocities while moving and dis-
tributes work amongst agents in adjusting individual veloci-
ties to avoid collisions. However, an assumption is made that
all agents can perfectly assess the positions and velocities of
other agents, and there is no communication between agents.
Priority-based planners organize agents according to priority
and plan paths for agents in decreasing order. Higher priority
agents are treated as moving obstacles [3]. If resources are
mostly spent on higher priority agents, collisions may occur
before plans are calculated for lower priority agents. Overall,
decoupled approaches can compute plans for agents very
quickly, but they are not guaranteed to find solutions to all
problems even if a solution exists.

Dynamically-coupled approaches are a hybrid of coupled
planners, such as A*, that search in the joint configuration
space of all agents and decoupled approaches to plan for
multiple agents efficiently. They combine the benefits of
better plan quality from coupled approaches and the faster
planning time of decoupled approaches to efficiently plan for
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multiple agents. Conflict Based Search (CBS) [4] applies a
series of constraints to the higher dimensional search space of
a system so that collisions are resolved on lower-dimensional
search spaces.

B. M* and Subdimensional Expansion

Our previous work [1][5] deals with a dynamically cou-
pled algorithm called M*. This algorithm is a centralized,
dynamically coupled approach that effectively utilizes sub-
dimensional expansion to plan for large sets of agents.

Subdimensional expansion is a framework that plans for
each agent individually, assuming they are alone in the world,
and then locally expands the search space if a collision
is detected. After ”backpropagating” the paths of agents
involved in a collision, a coupled planning approach is then
used to explore alternative paths in the locally expanded
search space, and collision-free paths are computed for all
agents involved. [5]

M* is an implementation of subdimensional expansion in
which the search space is represented as a graph. A* is
used as the underlying planner to ensure that complete and
optimal paths are found. [5] The main difference between M*
and A* is that M* planning is limited to locally expanded
search space when a collision occurs, instead of the joint
configuration space for the whole system.

III. APPROACH
A. Local Planner

Fig. 1. Visualization of agents planning in a naive SE(2) workspace. The
filled in boxes represent each agents current (x,y) position. The outlined
boxes represent the goal for each agent with respect to the agents’ fill color.
The line indicates possible headings of 0�, 90�, 180�, and 270 �

B. Workspace Representation

With M* and it is variants, the configuration space
that planning occurs on is R2. The configuration space or
workspace for a robot is the set of all possible configurations
in a given environment. With an R2 workspace, the robot’s
motion is limited to two dimensions, x and y, and the robot
is abstracted away as a point on the Euclidean plane. With

this configuration space, the robot can translate on the plane.
[6] Although this works well when the motion of agents is
limited to a theory-based graph environment, an additional
factor of orientation needs to be considered when working
with physical systems.

For our framework, we utilize a naive Special Euclidean
(SE) group representation of the two-dimensional workspace
(SE(2)) [6] to include orientation while planning. With this
representation, agents now have to rotate in place to the
appropriate orientation before translating in the plane. To
simplify the problem, we planned in a grid-based environ-
ment. We assumed that each agent could only occupy one
”cell” at any given timestep, and rotations are done in place.
We limited the orientations to four possibilities: 0�, 90�,
180�, 270�. Our representation is classified as naive since
only the x and y positions of agents are considered when
checking for collisions. A ”collision” is defined as when the
two agents occupy the same x and y position at the same
expected timestep. A visualization of agents planning on a
naive SE(2) workspace using ODrM* is shown in Figure 1.

C. Framework

All agents initially plan to their goal, assuming they are
alone in the world and proceed towards their goals. When
agents get within a specific threshold distance, all agents in
range share plans with each other. Upon sharing plans, every
agent compares it’s own path to every other agent’s expected
path to determine if a collision exists.

If a collision exists, all agents start replanning for the col-
lision set using ODrM*. Whichever agent finishes planning
first shares the new plans with all other agents involved.
Upon receiving plans, agents stop their individual planning
and start proceeding along their new paths. Agents then
repeat this process until they reach their goals. Through
our approach, we trade off suboptimality for time efficiency
when scaling to larger agents. To further illustrate this
concept, a figure that walks through an example situation
with two agents is shown in Figure 2.

In the first panel, we see that both agents plan their
individual paths to their goals. In the second panel, we see
that the orange agent has rotated in place, and the blue agent
has moved forward. At this point, both agents are within the
threshold distance of each other. In panel 2, we can see that
at this point, both agents share their plans. The blue agent
retains information about the expected path for the orange
agent, and the orange agent now retains information about
the expected path for the blue agent. Both agents now know
their own path as well as the other agent’s path.

They both compare their individual paths to the other and
determine that an imminent collision exists. Both agents start
planning for themselves and the other agent using ODrM*.
The blue agent finishes planning and shares the new plans
with the orange agent. Upon receiving the plans, the orange
agent stops it’s individual planning and retains it’s new plans
and the new expected plans for the blue agent. This is
demonstrated in the 3rd panel. The agents then proceed in
the environment on their new paths and repeat this process
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Fig. 2. Example of framework when applied to two agents. Filled in boxes represent the actual positions of agents. Outlined boxes represent goals.
Smaller circles represent expected paths for agents and the solid lines represent the actual paths for agents.

until they reach their respective goals. This is shown in the
last two panels.

D. Implementation

A critical aspect of our framework is that planning occurs
in real-time during movement.To facilitate this, we imple-
mented our framework using the Robot Operating System
(ROS) and tested in a simulated Gazebo and Rviz environ-
ment. We utilized Turtlebot3 robots as our simulated agents
and used the fake localization and move base packages to
facilitate localization and local planning for each agent. We
then used our framework as the global planner for each agent.
This setup allowed us the overhead to plan while moving
as well as to mimic the conditions and uncertainties that
physical robotics systems provide.

IV. RESULTS
A. Comparison with ODrM*

For our experiments, we ran tests for sets of 4 to 16 agents.
We set the distance threshold for all agents to 5 meters and
limited the rate of planning to 5 Hz. Planning with ODrM*
was uninflated. We placed agents in an empty world with no
static obstacles and limited the map to an 18 meter by 18
meter area.

To compare our framework to ODrM*, we had to deter-
mine a set of metrics that could accurately compare the
two approaches. The main difference we had to address
was determining a relationship between path length (in
agent moves) from ODrM* and simulation time from our
framework. We compare OdrM* to our framework by using
the total execution time of both approaches. The execution
time was the amount of time that elapsed between the start
of planning and when all agents reach their goals.

The total execution time for ODrM* was the sum of pre-
planning and movement time. The pre-planning time was
the amount of time that it took for ODrM* to compute

Fig. 3. Comparison between pre-planning time for ODrM*, total execution
time for ODrM*, and total execution time for our framework

plans for all agents. The movement time was the expected
amount of time for all agents to reach their goals using these
plans. Since ODrM* returns paths in terms of number of
agent moves, we compute the movement time for ODrM*
by assuming that agents spend 3 seconds per agent move.
Thus, the total execution time for ODrM* was the sum of
pre-planning and movement time. For our framework, the
movement time is equivalent to the execution time.

We found that our framework’s total execution time was
larger than the execution time for ODrM* when applied to
less than 10 agents. Then, there is a balancing point from
10 to 13 agents where there is minimal error between the
two approaches. The execution time for ODrM* exceeds our
framework’s execution time when applied to larger than 13
agents. Overall, as the number of agents increases, the total
execution time for ODrM* surpasses the total execution time
for our framework. This is demonstrated in Figure 3.

We also measured the ”ratio of delay” with ODrM*. This
was the ratio between pre-planning time for ODrM* and
total execution time for our framework. As the number of
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Fig. 4. Ratio of delay for ODrM*

agents increased, we saw an upwards trend in this ratio. This
is demonstrated in Figure 4. Through this metric, we were
able to quantify the amount of delay in the movement before
agents can start moving to their goals when OdrM* is used.

Although more testing needs to be done, we are confident
that these trends will carry over when applied to larger sets
of agents.

V. CONCLUSION
In this paper, we presented a framework that is able to plan

for agents in parallel to movement. We show through tests
that we were able to successfully distribute the execution of
ODrM* to run in real-time on agents with minimal delay in
the execution of plans.

Future work will focus on applying our framework to
larger sets of agents as well as maps with different densities
to see how our metric compares with ODrM* and other
similar MAPF approaches. We also believe that making the
workspace representation for the underlying planner less
naive may help overall performance. Further verification of
our framework can also be conducted by applying it to
physical robots.
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Simulating Social Robot Quori using ROS and Gazebo

Adrian Thinnyun1, Roshni Kaushik2 and Reid Simmons2

Abstract— Quori is a novel and affordable socially-interactive
robot platform designed for use in human-robot interaction
(HRI) research. With an expressive projected face, two gestur-
ing arms, and a bowing waist, Quori has the potential to easily
generate versatile social behaviors. However, designing and
implementing social skills and behaviors for Quori is currently
a difficult task, due to the limited number of models available
and the lack of a proper simulation environment. Having a
proper simulation environment would make the development
and testing of algorithms for Quori much easier. In this paper,
we present our work towards a Quori simulator using ROS and
Gazebo. We also showcase implementations of several behaviors
for Quori that will be used in future work to determine how
Quori’s nonverbal movements relate to its perceived emotional
state.

Index Terms— simulation, animation, human-robot interac-
tion

I. INTRODUCTION
Socially-interactive robots have experienced a surge in

popularity in recent years. While traditionally robots have
been most popular in industrial settings such as automobile
manufacturing, recent developments in human-robot interac-
tion (HRI) have led to a shift from industrial robotics to
service robotics [1]. Service robots often share the same
physical space with people and regularly interact with them
in both professional settings such as storefronts and research
labs and domestic applications such as assisting the elderly.
In order for robots to perform well in these applications, they
must have strong capabilities for social interaction.

Two popular socially-interactive robots are Softbank’s
Pepper and Nao. Pepper and Nao are both humanoid robots
that have been used in a wide variety of professional,
research, and recreational activities. Pepper can be found
in several Softbank stores around Japan waiting to greet
customers and has proven to be equally popular with adults
and children alike [2]. Nao has become a popular contender
in the annual RoboCup league, which features intelligent
autonomous robots competing in soccer [3]. Although both
robots are widely used in labs and universities across the
world, some research groups may not be able to afford the
just-under $2000 price tag of Pepper [4], or Nao’s nearly
$8000 price [5]. Thus, having an affordable alternative may
increase the opportunities for further HRI research.

Quori was designed to fulfill this role, released in the
summer of 2018 with ten platforms awarded to ten re-
search groups [6]. It was developed with input from the

1Adrian Thinnyun is with the Department of Computer Science, Univer-
sity of Virginia, Charlottesville, USA athinnyun@gmail.com

2Roshni Kaushik and Reid Simmons are with the Robotics Institute,
Carnegie Mellon University, Pittsburgh, USA
{roshnika, rsimmons}@andrew.cmu.edu

HRI community to prioritize the most important hardware
capabilities for social interaction and maximize functionality
while keeping costs affordable. For example, Quori’s head
consists of a low-cost projector allowing it to display various
faces/expressions easily, and its arms are connected by 2-
DOF shoulder joints that allow for simple gestures. A 1-
DOF spine attaches this upper body to a holonomic mobile
base, and options are available for mounting cameras, micro-
phones, and other sensors to extend Quori’s capabilities. Fig.
1 illustrates a sample configuration of Quori, though note that
the modularity of its design allows for other configurations.

We use the open-source software Gazebo [8] as the
environment for our simulator. Gazebo is a popular robot
simulator that has already been used to simulate robots
frequently used in HRI research, including both Pepper
and Nao. A Unified Robot Description Format (URDF)
[9] file is used to describe the virtual model of Quori,
containing information about the various links of the model
and their associated masses, inertia matrices, and joints. This
information is extracted by the engine and used to render the
robot in a 3D environment, as well as to simulate physical
forces and enforce collision checking. We also use the ROS
[10] framework in order to interact with the virtual robot
model, sending actions for the robot to perform by publishing
messages to the appropriate control topics.

In addition to developing a simulator for Quori, we also
present work on developing non-verbal behaviors appropriate
for social interaction. Humans use a wide variety of poses
and gestures to convey emotions and other affective infor-

Fig. 1. Diagram of Quori illustrating its components and available degrees
of freedom [7]

204



mation over the course of natural conversation. For example,
someone experiencing anxiety or panic may lean backwards,
while someone experiencing joy may move their arms up
and down [11]. In turn, seeing someone express a certain
emotion non-verbally often provokes an emotional response
in oneself. Behaviors associated with disgust often create
responses of fear, while behaviors associated with anger
provoke more anger [12]. Thus, having the ability to produce
these gestures seamlessly and accurately within the context
of a conversation is critical to Quori’s capability for social
interaction.

One application of Quori’s social behaviors we are par-
ticularly interested in is education. Recently there has been
a promising body of work showing the effectiveness of the
“learning by teaching” paradigm involving students instruct-
ing teachable robots [13]–[16]. Tanaka et al. used Pepper to
teach children English through a variety of programs. In one
activity, Pepper uses its tablet to display a lesson teaching
the word “plane” and then extends its arms outwards to
imitate the wings of a plane, inviting the children to join
as they learn the word. In another activity, Pepper shows a
video of a teacher teaching the word “mouth” while placing
Pepper’s hand on its mouth, then tells the children, “Teach
me like that teacher is doing”. This method, known as “direct
teaching”, has been shown to be effective in promoting
children’s learning [17].

Like Pepper, Nao has also seen use in experiments focused
on improving education. Lemaignan et al. used Nao to
help young children with motor difficulties improve their
handwriting. Rather than Nao teaching the children how to
write, the children were tasked with teaching Nao how to
write, with the help of an occupational therapist. Although
these children experience great deals of anxiety dealing
with their handwriting difficulties, this scenario transforms
the role of the child from a “bad writer” to a “teacher”
helping Nao with its own handwriting, a strategy that greatly
improves the child’s self-esteem and motivation to participate
in the activity. These studies demonstrate the potential of
robots and the “learning by teaching” paradigm.

Quori could be a potential candidate for research of this
nature, but before it can be used in any experiments it needs
to be able to socially interact with humans by understanding
the emotional state of its partner and responding with appro-
priate, context-driven actions. Previous work has shown a
strong relationship between a student’s nonverbal behaviors
and their teacher’s expectations and self-assessments [18],
so care must be taken in order to make sure that Quori
responds appropriately to a student mentor’s instruction. In
this paper, we present our progress on a Quori simulator and
work towards developing a diverse set of nonverbal social
behaviors.

II. SIMULATION OVERVIEW

In this section, we give a brief overview of the core
components of our Quori simulation and present our original
contributions to it.

A. Universal Robot Description Format (URDF)
At the heart of the simulation lies Quori’s URDF file,

which contains all of the necessary information for recreating
Quori in a virtual environment. The most basic URDF file
simply contains all of the links and joints comprising the
robot defined in XML, where links are visually represented
using either basic geometric shapes or pre-defined mesh
files. However, in order to properly simulate a robot in
Gazebo’s physics engine, one must also add inertial informa-
tion, including the mass and moment of inertia. Additional
tags specifying colors and textures for each link, while not
required, are helpful for accurately recreating the robot’s true
appearance and we have included this information in our
URDF file. Finally, we include transmission tags describing
the actuators of Quori’s movable joints, as these allow us to
manipulate our simulated robot using ros control.

B. Robot Control in ROS
The ros control [19] framework allows for con-

trol of the robot using standard ROS topics, nodes, and
messages. A variety of controllers are available, each
with its own parameters, message type, and function. We
chose to use a joint trajectory controller as the
main controller for Quori’s joints. This controller accepts
JointTrajectory messages as input, which contain a
list of waypoints specifying the position, velocity, and accel-
eration of each joint at various time steps. We determined
that this controller type provided the necessary freedom and
flexibility to accurately produce the diverse set of movements
needed for nonverbal communication.

C. Inverse Kinematics
To make the description of arm movements easier, we

have also implemented an inverse kinematics solution that
converts the 3-D desired position of the arm’s end-point into
the two shoulder angles required to reach the desired point.
The equations for this solution were provided to us by the
developers of Quori at the University of Pennsylvania.

For a given arm, we define ✓1 as the rotation of the
arm’s shoulder joint and ✓2 as its abduction/adduction (i.e.
the raising or lowering of the arm). As depicted in Fig. 2,
C0 indicates the origin of the arm joint and pa denotes an
arbitrary point on the arm. Finally, we define the coordinate
plane such that the x-axis points out to the front of the robot,
the y-axis points out to the side of the robot from which
the arm originates, and the z-axis is normal to the ground
plane (assuming the torso is vertical). We chose to define the
coordinate planes for the left and right arms as reflections
of one another so that inputting the same command for both
arms would lead to symmetrical movement. Thus, for an
end-point of the arm pa = (x, y, z), the equations for the
two joint angles are:

✓1 = atan2(z/x) (1)

✓2 = atan2

 p
x2 + z2

–y

!
(2)
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Fig. 2. Visualization of Quori, where C0 indicates the origin of the arm
joint and pa denotes an arbitrary point on the arm (in this case, the origin
of the lower arm)

This solution is implemented by a ROS node which
subscribes to a topic consisting of Float64MultiArray
messages specifying the arm(s) to be moved, the desired time
for the action, and the Cartesian coordinates to be reached.
The node converts these messages to JointTrajectory
messages using Equations (1) and (2) and publishes them to
the joint trajectory controller’s command topic.

III. NONVERBAL BEHAVIOR DESIGN

In this section, we discuss the key considerations and
concepts involved in designing nonverbal social behaviors
for Quori.

A. Facial and Bodily Expressions

With the necessary mechanisms in place for executing
complex movements with Quori in a simulated environment,
we focus our discussion on the human nonverbal behaviors
we wish to emulate. In particular, we focus on bodily expres-
sions of emotion rather than facial expressions. Originally it
was believed that facial and vocal expressions alone were
responsible for communicating the type of emotion being
experienced while bodily movements/postures merely con-
veyed the intensity or level of arousal of the emotional state
[20], [21]. However, this view has been challenged by recent
studies showing that dynamic whole body and arm movement
[22]–[25] as well as static body postures [26], [27] reveal
specific information about a person’s emotional state. Thus
it is imperative to take Quori’s whole body configuration into
consideration when designing effective affective non-verbal
behaviors.

B. The Action-Perception Disconnect

While the literature has found that certain body move-
ments/poses seem to be associated with certain emotional
states, performing those behaviors does not necessarily entail
that an observer will perceive the correct emotional state
from them. Perceived emotion may vary greatly depending

on context, including factors such as the relationship between
the actor and the observer, the environment in which the
interaction takes place, the emotional state of the observer,
etc. Thus, when designing nonverbal behaviors, we must ac-
knowledge that we are merely optimizing behaviors towards
the goal of successfully conveying a desired affect, rather
than creating behaviors that do convey a desired affect.

With Quori, we encounter an additional disconnect: the
disconnect between human and robot. Even if a certain
human behavior always lead to a certain perceived emotional
state and we were able to replicate it perfectly with Quori, we
still would not be able to guarantee that an observer would
interpret the behavior the same as they would if a human
had performed it instead. Some people do not believe robots
can have emotions, or that robots could take on the same
roles as a human (e.g. student, teacher, salesperson, etc.).
The visual differences between a robot and a human could
also affect its perceived affect. Thus any behaviors we create
for Quori will require further user validation before they can
be deployed with confidence.

C. Quori’s Limitations

Since Quori is a humanoid robot, it makes sense to use
human body movements as a starting point when designing
nonverbal behaviors for it, even if they may not be inter-
preted in the same manner. However, translating human body
movements and gestures into motions Quori can perform is
a difficult task. Consider the array of emotions that can be
expressed by a single human hand. One can raise their fist to
the sky, shake it back and forth, extend an open hand in front
of them, or gently hold it above their head. Each of these
actions could be used to make different inferences about
the actor’s intentions/emotions depending on the context and
precise motions used. Quori lacks the ability to perform any
of these actions as it has neither fingers nor a wrist. Similarly,
simple gestures like nodding in agreement or shaking one’s
head in disagreement are unavailable due to Quori’s lack of
a movable neck joint.

Another limitation to consider is the speed at which Quori
is able to move its joints. Humans often use quick, abrupt
movements when expressing emotion, such as a sudden fist
pump when feeling joy or quickly outstretching one’s arms
when feeling panic or fear. Quori’s motors are only capable
of producing relatively smooth, continuous motion, so these
kinds of gestures are also unavailable to Quori. Quori’s
available degrees of freedom (DOF) are summarized in Table
I.

TABLE I
QUORI’S DEGREES OF FREEDOM

Joint Name Upper Limit Lower Limit Speed
Waist Hinge 0.47 radians -0.27 radians 1 rad/sec
Turret Joint N/A N/A 3 rad/sec
Arm (Rotation) N/A N/A 1 rad/sec
Arm (Abduction) 1.1 radians -1.1 radians 1 rad/sec
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D. Mapping Body Movements to DOF
We now present our initial design choices for Quori’s

nonverbal behaviors. Table II features the six canonical
emotions – happiness, sadness, fear, disgust, anger, and
surprise – as well as the state of “interest”, which we believe
will be useful in an educational setting. For each affect, the
representative postures and movements found in the literature
are listed along with the analogous behaviors that can be
performed by Quori.

At a glance each behavior seems reasonable on its own, but
a problem arises when considering the resulting set of Quori
behaviors in conjunction with one another. There are several
cases of multiple affects sharing similar or identical poses.
For example, both happiness and surprise are represented by
the torso leaning backward and arms raised high. Similarly,
both sadness and interest are represented by the torso leaning
forward and arms resting by Quori’s side. Thus, these poses
currently lead to emotional ambiguity, which is unhelpful for
social interaction. We discuss steps for resolving this issue
in our section on future work.

IV. EXPERIMENTAL RESULTS
A. Preliminary Gestures

Using our simulated model as a basis, we have imple-
mented a few nonverbal behaviors to showcase Quori’s ca-
pabilities for social interaction. As seen in Fig. 3, the first of
these involves Quori slowly leaning backward while raising
its arms above its head, while the second involves Quori
quickly leaning forward and stretching its left hand forward.
In Table II, the former of these motions may be associated
with happiness, while the latter most closely corresponds to
anger, but we again stress that the actual perceived emotional
state arising from these actions is unknown without user
validation. In addition to these two simple behaviors, we
have also implemented a more dynamic variant of the first
expression, which consists of Quori raising its arms above
its head and using its turret joint to quickly spin around 360
degrees. This behavior illustrates two important concepts.
First, while there are many motions that can be performed by
a human but not Quori, there are some motions that can be
easily performed by Quori but not by a human. Secondly, the
novelty of dynamic animations and movements performed
by a robot could prove effective in provoking interest and
fascination from a student, strengthening their willingness
to engage with Quori and, consequently, their own learning.
However, once again we will require additional work in order
to see whether this effect is observed in a real-life setting.

V. FUTURE WORK
In the future, we would like to expand on this work in

a few key ways. As mentioned previously, there currently
exists some ambiguity in the behaviors we have derived
from the literature. Differentiating the expressions of each
emotional state from one another as much as possible is
important for accurate conveyance of Quori’s desired affect.
Additionally, we need user validation to determine whether
the intended perceived emotional state of each behavior

corresponds to its actual perceived emotional state. We
intend to conduct a survey asking participants to categorize
videos of Quori performing various poses and motions and
report the affect they perceive. These videos would include
additional variability in the movements by including various
combinations of start/end positions, speed, degrees, and
asymmetrical motion. The results of this study will not only
help us differentiate our behaviors but also validate their
effectiveness in conveying emotional states.

Additionally, although we have precise control over
Quori’s upper-body motions, our control of Quori’s wheels
and movement is currently limited. We plan to implement
a differential drive controller based on the Jacobian to
coordinate the base and turret motors to achieve omnidi-
rectional capability. This would allow us to begin devel-
oping coordinated motions such as facing a given point in
space while moving. Combined with the implementation of
cameras, laser scanners, and other sensors for our simulated
model, these developments would greatly enhance Quori’s
capabilities.

Lastly, we would like to implement these behaviors on
a real Quori robot and see how they function in a real-
world setting. Our Quori has not yet been delivered, so we
cannot currently test using real hardware. If effective, these
behaviors would be instrumental towards preparing Quori to
interact with students in an educational setting. Having been
designed with affordability in mind, Quori could one day
populate many classrooms to aid in student education.
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Control for Distributed Dextrous Manipulation on a Multi-manipulator
Array

Skye Thompson1 and Oliver Kroemer2

Abstract— Distributed manipulators - consisting of a set
of actuators or robots working cooperatively to achieve a
manipulation task - are robust and flexible tools. Delta arrays,
distributed manipulators composed of a parallel grid of 3DOF
Delta robots, are proposed as a novel mechanism for performing
a range of dexterous manipulation tasks. In this paper, we
explore the principles guiding development and control of such
a delta array, including optimal arrangement and packing,
planar manipulation policies, and cooperative control. Hand-
designing effective distributed control policies can be complex
and time consuming, given the high-dimensional action space
of the manipulator. We examine policy learning as a robust
control approach allowing for smooth manipulation of a range
of objects, showing improved performance over a baseline
human-designed policy.

Index Terms— Distributed Robot Systems, Parallel Robots,
Model Learning for Control

I. INTRODUCTION

Distributed approaches to manipulation, such as those
seen in automated conveyors, smart surfaces, and planar
manipulators, have long served as valuable tools for use
in manufacturing and other domains. Such systems offer
an appealing flexibility and resilience in their capabilities,
through the redundancy and bandwidth afforded by their
many cooperating actuators. But the design and control
of distributed manipulators departs significantly from that
of more traditional end-effectors. Many are best-suited to
non-prehensile and hardware-dependent manipulations with
complex, geometry-dependent dynamics - like wheeled con-
veying, for one example. Designing these kinds of policies is
difficult even for manipulating known objects in a controlled
environment. Transitioning distributed manipulators to un-
structured environments, with unfamiliar objects, requires
innovation in both the hardware available and the approach
to distributed control.

Individually, a delta robot is a 3 degree of freedom
parallel mechanism with a fixed base and moving stage,
originally designed for pick-and-place and performing other
high-speed, high-precision tasks in factory settings. With
a straightforward design and simple kinematics, the delta
is an appealing candidate for mass production and coordi-
nated control. Recent advancements have allowed for the
production of these robots at smaller scales, making it more
feasible to use them cooperatively. By arranging these deltas
in a cooperative grid, called a "delta array", it’s possible to

1Skye Thompson is with CSAIL, Massachusetts Institute of Technology,
Cambridge, MA 02139, USA, rsthomp@mit.edu

2Oliver Kroemer is with The Robotics Institute, Carnegie Mellon Uni-
versity, Pittsburgh, PA 15213, USA, okroemer@cmu.edu

achieve a wide range of object manipulations, combining
a variety of manipulation strategies requiring both stable
contact and dynamic cooperation. For example, it’s possible
to convey an object across the surface of an array with
one group of deltas, while raising another group in a wall
structure to assist with alignment. Initial experimentation
has been promising, but the general principles of design
and control for this novel system have not yet been fully
explored. We propose to develop these principles in this
paper, through examination and experiment at each stage of
design and control of the delta array.

We begin by examining the possible configurations of
deltas within an array, and the impact each arrangement has
on the manipulative capacity of the system. We then explore
variations on distributed control approaches to a planar trans-
lation task on the delta array. We compare different phase
breakdowns of a multiphase finger-gaiting policy and their
impact on manipulation performance. We evaluate the impact
of individual delta’s gait trajectories as well, optimizing for
a smooth, efficient translation through policy search.

II. RELATED WORKS

Previous work on the design and control of distributed
manipulators has focused primarily on industry applications,
and the forms of distributed manipulators most applicable to
them. Yaemglin et. al [1] focuses on automated conveyors or
other industrial systems. A body of thorough and interesting
work on distributed control has been built through these
explorations. The approach used by Bedillion et. al relies on
dynamics-dependent models of known objects for consistent
control [2], while that used by Luntz et. al focuses instead on
algorithmic models attempting to guarantee the manipulated
object will reach a certain pose, regardless of dynamics [3].

These approaches, while informative, are not clear analogs
to those which would be effective on the delta array. Dy-
namics calculations that may be feasible for a known set of
objects interacting with pins, or a surface of spinning wheels,
don’t translate directly to a system like the delta’s with
finger-like points of contact with an object, and a different
model of interaction requiring closed-form contact or finger
gaiting. Additionally, even the most robust of these control
approaches, such as the elliptical and squeeze fields explored
in Lunz et. al [3] and Bohringer et. al [4], fail to generalize
to objects of certain shapes and sizes, for reasons not fully
addressed by their system design. From this, we conclude the
work of exploring the factors to consider in the design and
control of a delta array, or similar distributed manipulator,
is vital in guaranteeing it’s potential as a flexible, resilient
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manipulation system. The unique traits of such a system
- the three degrees of freedom of each delta unit, and the
difference in models of contact and control between a delta
and a wheel or pin actuator - require a novel investigation.

Another body of work is that done on smart surfaces. Barr
et. al [5] explores the algorithmic and mechanical properties
of a grid of single degree of freedom actuators, capable of
rising and lowering to manipulate objects on the surface.
The control approach for such a system is still not identical
to that of an array of 3DOF robots, like the deltas, which
can translate in the XY plane in addition to the Z axis,
granting them a wider range of manipulative capabilities,
and requiring a different focus of control to execute those
skills. Although the dynamics and kinematics of the Delta
itself are thoroughly covered in [6], no work is done on the
interactions between deltas, or the traits and capabilities of
such robots operating in unison.

III. DELTA PACKING

The first consideration when constructing the delta array
is the configuration of the grid of delta manipulators - how
tightly to pack them, and in what pattern. This configuration
impacts the size and shape of objects that the array can
manipulate, as well as what policies work best for ma-
nipulating those objects. Our first intuition is that tighter
packing, by eliminating gaps between deltas, results in more
reliable manipulation of a wider range of objects than a
widely-spaced arrangement, as small objects are less likely
to fall out of reach of any individual manipulator. However,
when packed closely, the legs and stages of neighboring
deltas risk colliding, limiting the effective workspace of each,
resulting in an inefficient use of available space. An optimal
configuration jointly maximizes the density of manipulators
in the array, and the effective workspace of each individual
delta.

One benefit of the array-like manipulator layout is sym-
metry, allowing us to extrapolate the workspace of the
entire grid from relationships between individual neighboring
deltas that are repeated throughout the structure. We evalu-
ated three possible delta packing arrangements for our arrays
- square, triangular, and hexagonal, as seen in the figure
below. Each of these layouts is composed of only one or
two configurations of neighboring deltas that may collide
- defined by the rotational and translational offset between
deltas. The best packing arrangement is determined as having
the neighboring delta configuration with the least potential
collisions between deltas.

A. Delta Arrangement
To explore each possible delta arrangement, we developed

a set of Matlab simulation tools. The legs, base, and stage
of a delta were modeled at a given position and orientation.
Each delta was modeled with a 1 cm stage side length,
a 1.4 cm base side length, 2 cm long lower legs, and
3cm long upper legs. The maximum possible workspace of
each delta was identified by sampling a set of end effector
points defining its possible workspace, calculating the inverse

Fig. 1: The possible delta packing configurations associated
with each rotational offset. Square packing places neighbor-
ing deltas in rows and columns, triangular packing places
neighboring deltas at a 60� rotational offset, and hexagonal
packing places neighboring deltas in staggered columns

kinematic delta configuration needed to reach each one, then
eliminating those which violated the angle constraints of
the delta’s legs. To identify collisions between deltas, two
deltas were simulated at a time, at a specified distance
and rotational offset from each other. For a given point in
each delta’s known workspace, the inverse kinematics were
calculated to determine the configuration of the legs and
stage. A series of collision spheres were then simulated along
the length of each leg and the sides of the staging area. Any
overlap in these spheres was recorded as a collision. All
configurations of the two deltas in their identified maximum
possible workspace were tested, and pairs of configurations
resulting in a collision were recorded.

TABLE I: Workspace Median Collisions per Configuration

Square Triangular Hexagonal
Summed Median Collisions 206 100.5 75

The hexagonal packing arrangement clearly demonstrates the
least median collisions per point, indicating it was the option
that would best preserve the deltas’ effective workspace.

As shown in Table I above, results indicated that deltas
arranged hexagonally had the fewest collisions, therefore
preserving the largest effective workspace. Intuitively, this
makes sense - this arrangement places the legs of each delta
at an offset from the legs of neighboring deltas, making them
less likely to collide. This corresponds with the hexagonal
packing method, suggesting that a hexagonal grid of deltas
would be the ideal arrangement for efficient use of space.

B. Packing Density and Workspace Volume
Once the best packing arrangement had been identified,

our next step was to examine the density, represented by the
distance between neighboring Deltas. Each delta’s effective
independent workspace is defined as the set of points it can
reach while guaranteed not to collide with its neighbors.
Our goal was to determine how closely neighboring deltas
could be placed to each other without sacrificing significant
portions of the workspace of each.
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Fig. 2: This figure shows the valid workspaces of neigh-
boring Deltas in a hexagonal arrangement before and after
the removal of the fewest possible points to eliminate all
collisions.

Fig. 3: Collisions were removed using an algorithm which
models the points in each delta’s workspace as vertices of
a graph, and collisions between them as edges. First, the
vertices with the most edges - the points with the most
collisions - are identified. Next, for each of those vertices,
we sum the number of edges of each of their neighbors. We
remove the vertex with the fewest secondary edges from the
graph, then repeat. This means the point causing the most
unique collisions in the graph will be removed.

We examined the pattern of collisions between deltas in a
hexagonal packing arrangement, spaced a range of distances
apart. When the set of collisions were identified for a given
distance and rotational offset, the effective workspace of
each delta was determined by eliminating points from the
workspace of each delta until no collisions between the
two remained. To minimize the points removed to achieve
this goal, a simple algorithm was employed, as seen in
Figure 3. The points representing a configuration in each
delta’s workspace were treated as vertices in a bifurcated
graph, and the collisions between them as edges. At each
step, the vertex with the most collisions, represented as the
vertex of highest degree, was removed from the graph. If
multiple vertices of the same degree existed, the one with
the smallest sum of degrees across its connected vertices
would be removed. This incentivized the removal of points
uniquely responsible for some set of collisions in the other
delta’s workspace, preserving the maximum number of points
in each. Due to the asymmetry of the hexagonal pattern of
deltas, where the leg of one delta would point towards the
gap between two legs of its neighbor, collisions were not

distributed equally between the two workspaces. It proved
important to attempt to conserve a similar number of points
in each delta’s workspace, to avoid asymmetric, infeasible
workspace representations like those shown in Figure 4. This
was achieved by imposing an additional constraint on the
removal of points; if a workspace had significantly more
points remaining than its neighbor (here, a difference of
greater than 10 points), only points in that workspace would
be considered for removal.

Fig. 4: An example of a delta array workspace constructed
without enforcing symmetry between neighboring deltas. The
issues with the constructed workspace are due to the different
orientation of each delta affecting the number of collisions
per point for certain configurations.

Fig. 5: The size of each delta’s workspace approached the
maximum possible size as the distance between deltas was
increased. Each delta’s effective workspace also became
more symmetrical as distance increased. Red indicates the
size of the delta’s effective workspace, while Blue indicates
the maximum possible workspace diameter.

The figure above shows how the full accessible workspace
of a delta array would evolve as the deltas are spaced further
apart. This workspace was constructed by taking advantage
of the hexagonal symmetry in the packing arrangement,
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tessellating the effective workspace of a single pair of deltas
(indicated by the diamond) throughout the grid. The density
of each packing arrangement was represented by the surface
area of this diamond on the XY plane, while the workspace
volume was represented by the number of points falling
within that diamond.

Fig. 6: Here, a joint measure of workspace volume and
Delta density are graphed, both before and after removing
collisions. After removing collisions, the workspace density
(defined as number of non-colliding points divided by the
surface area of the packing hexagon) peaked around a dis-
tance of 7.5 cm, where the effective workspace of each delta
reaches the maximum possible workspace with no significant
gaps between deltas.

From these evaluations, we can conclude that a hexagonal
packing of deltas is the most feasible and effective arrange-
ment for a manipulator array, and that the density of that
packing does significantly impact the effective workspace of
each individual manipulator. Packing arrangements up to 7.5
cm distance between neighboring deltas, for the modeled
specifications, can provide sufficiently complete coverage
of the array workspace, while greater distances result in
growing gaps between deltas that create unreachable space.
Even up to that distance, however, different densities may
result in different capacity to manipulate objects of a range
of sizes. In order to continue this evaluation, we move to an
examination of basic planar manipulation techniques.

IV. TRANSLATION ANALYSIS

Planar manipulation is the primary realm of many common
forms of distributed manipulation, like automatic conveyors
or smart surfaces - simply translating or rotating objects
in the XY plane. Due to the 3 degrees of freedom of
each individual manipulator, a delta array has an additional
ability to perform three-dimensional manipulation skills, like
grasping. But planar manipulations can both contribute to
useful three-dimensional skills, like re-grasping, as well as
provide insight on how the delta array’s design can impact its
general manipulative capacity. We want to be able to translate

and rotate objects in plane. Ideally, these manipulations will
also be smooth, quick, and consistent. However, because
such manipulations are non-prehensile, object behavior can
be heavily dynamics-dependent.

Fig. 7: The three possible phase breakdowns of a translational
or rotational gait on a hexagonal grid.

One straightforward approach to planar manipulation is the
use of multiphase finger gaiting, where separate groups of
deltas move together in a staggered pattern, transferring the
object between the deltas assigned to a given phase as they
oscillate. For a hexagonal packing, there are three potential
phase breakdowns for a given manipulation - dividing the
deltas into two, three, or four groups as seen below, where
deltas marked by the same color move together. A translation
using more phases may lead to a smoother trajectory in
the desired direction, as the handoff between phases occurs
before the current face stops or begins to reverse. But with
more phases, fewer deltas are in contact with the object at
any given time, which may contribute to instability in the
object trajectory, particularly for smaller objects. Our next
goal is to determine how the use of different phases impacts
the path and behavior of a translated object, and to establish
what constraints the use of each phase breakdown imposes
on the objects that can be successfully manipulated.

A. Phased Gait Evaluation

We constructed a simulated, 8x8 delta array in Cop-
peliasim. Each delta manipulator is represented by a hexag-
onal base and a cylindrical end-effector, controlled by pris-
matic x-, y-, and z-joints to replicate the delta’s 3 degrees of
freedom. A flat, cuboid object served as the manipuland,
placed on top of the delta array. For this analysis, we
assume each delta moves in a simple elliptical pattern with
constant speed, in the desired direction of translation, with
a phase delay corresponding to the phase breakdown of the
maneuver, and the position of the delta on the grid. The path
of each delta can be described as:

xt = d1 · cos(✓) · cos(�+ t · ⇡
f
)

yt = d1 · sin(✓) · cos(�+ t · ⇡
f
)

zt = d2 · sin(�+ t · ⇡
f
)
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Fig. 8: Details on the object trajectory for a planar translation
skill using each possible phase breakdown. Higher-phase
gaits showed smoother travel, with lower average accelera-
tion and Z-axis deviation of the translated object, regardless
of the direction of the translation.

Where d1 and d2 are the major and minor diameters of
the ellipse, ✓ is the angle of translation, and � and f are the
phase delay and frequency of the oscillation respectively.

For our first evaluation, we compared 2-, 3-, and 4-
phase gaits for translating a square object of fixed side
length across the surface of the array. We compared between
translations parallel and perpendicular to the “grain” of the
phase breakdown in each, as shown in 8. We found that gaits
with more phases tended to produce smoother trajectories,
with less vertical deviation, and a lower average acceleration,
likely due to the smaller phase delay between each phase
resulting in a more constant velocity. However, the increased
spacing between Deltas in the same phase caused a different
form of instability in the trajectory. With the higher-phase
gaits, the object was more likely to tip due to having fewer
points of contact with the array.

To explore this further, the translation test was repeated
with objects of varying side length. The vertical deviation,
acceleration, and maximum roll, pitch, and yaw deviations of
the object across the trajectory were measured. Performance
on all gaits stabilized when the surface area of the object to
be translated was approximately 1.44m, about 8 times the
area of the delta’s simulated hexagonal workspace (.175m).
This suggests a lower bound on the surface area of manipu-
lable objects, and indicates that although increased distance
between deltas may be more space-efficient, as explored in
the first section, the range of objects such an array can
manipulate may be reduced at higher distances.

V. GAIT TRAJECTORY

Having examined how the design of a delta array may
impact it’s manipulative capacity, we now delve into its
control. We previously assumed that each individual delta
would perform a simple oscillating elliptical gait - but the
optimal gait may differ significantly from this prior, and may
be different given different skills. To avoid the difficulty of
hand-evaluating the possible dynamics of each interaction,
we can approach this problem with learning. One example
to explore is a comparison of the effective trajectory for
different phased translational gaits. To improve the efficiency

of manipulation using the delta array, we aim to learn an
improved trajectory that will translate an object quickly and
smoothly.

We aim to learn this improved trajectory through episodic
Relative Entropy Policy Search, or REPS [7], a policy search
approach that imposes a constraint on the similarity of each
updated policy distribution to its predecessor. Our lower-level
control policy u(t) is represented as a series of weighted
Gaussians, centered at N equally spaced timesteps. At any
timestep, the target position of the Delta is calculated as

st =

PN

i
!iN (µi,�i)PN

i
N (µi,�i)

. This allows us to parameterize a

smooth trajectory with a smaller number of points, N, for
efficient learning.

For a given episode, our higher-level policy, ⇡!(✓), con-
sists of an N -dimensional Gaussian representing the weights
used in the lower-level policy u(t). A set of weights, w1..N ,
are sampled from this Gaussian at the beginning of the
episode, and used to define the cyclical trajectory to be
executed. Each episode consists of a rollout of this policy
across a fixed number of timesteps. The reward signal,
R(✓) = 1

z1
v � 1

z2
h � 1

z3
a, obtained at the end of this

rollout, considers the average speed of the object in the
desired direction v, its maximum vertical deviation h, and
its maximum acceleration a, where z1�3 are normalizing
factors.

The higher level policy is updated every epoch, and the
new distribution pi!(✓) is approximated by performing a
maximum-likelihood estimate on the samples ✓[i], weighted
by weights di = exp(R(✓[i]

⌘ ). The parameter ⌘ is found by
minimizing the dual function:

g(⌘) = ⌘✏+ ⌘log(
X

i

1

N

✓
R(✓[i])

⌘

◆
)

where ✏ is the upper bound established on the KL-
divergence between the current distribution and the new
distribution.

We found the learned policy for all phases, after 30-50
epochs of 5 episodes each, converges to a trajectory with a
widened, flattened upper half compared to the elliptical prior.
This flat period is shorter for higher-phase gaits, where the
delta spends less time in contact with the object.

VI. CONCLUSION AND FUTURE WORK

In our experiments, we identified several principles and
tradeoffs to guide development of the delta array manip-
ulator, including optimal arrangement and packing, planar
manipulation policies, and learned control. We present these
to inform further use and study of such systems. One next
step would be to explore further how learning can inform
policy design for this type of manipulator, and distributed
manipulators more generally. Efficient and effective high
and low level control policies can be difficult to identify in
complex systems, but the preliminary approaches to learning
examined here suggest that it may be possible to learn such
policies, and achieve better performance with the manipu-
lator. Another important future pursuit is a more detailed
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Fig. 9: A comparison of the performance of each phased gait on objects of different side length. Performance on all gaits
stabilized when the surface area of the object to be translated was approximately 1.44m, about 8 times the area of the delta’s
hexagonal workspace in simulation(.175m).

Fig. 10: The learned gait trajectory for each of the possible phase breakdowns. While the bottom half of the trajectory,
where the delta is no longer in contact with the object, is highly variable, the period of contact is consistently smooth and
slightly sloped across all the trajectories.

consideration of the dynamics of the delta robots in the array.
The force and compliance each delta is capable of generating
could have a significant impact on the array’s manipulative
capacity.
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Effective Collision Avoidance System for Unmanned Aerial Vehicles

Fausto Vega1, Mohammadreza Mousaei2, and Sebastian Scherer2

Abstract— Collision avoidance for unmanned aerial vehicles
is critical to ensure safety in autonomous missions. Several
methods have been implemented to ensure a safe set around
an aircraft, yet they have not been set as a global standard
such as the Traffic Collision Avoidance System (TCAS) system
for large aircrafts. This paper will present a new collision
avoidance method using boundary certificates and compare its
performance to the state-of-the-art methods that are currently
being explored. Airborne Collision Avoidance System (ACAS)
sXu was simulated through the XPlane-11 flight simulator to
visualize the detect and avoid algorithm as well as analyze the
advisories given by the algorithm. A control barrier function
approach was also investigated and validated on a drone
platform which provided promising results as the drone only
deviated when required.

Index Terms— Aerial Systems: Applications, Collision Avoid-
ance

I. INTRODUCTION
Unmanned aerial vehicles (UAV’s) have begun populating

the airspace at high rates due to their versatile form factor
that allow robust performance in various applications. From
disaster response, to agriculture monitoring, UAV’s increase
efficiency by automating processes and capturing data via
onboard sensors for further processing. With an increasing
amount of air traffic, an effective collision avoidance system
needs to be established to ensure safety among all vehi-
cles. Currently, large commercial vehicles utilize a Traffic
Collision Avoidance System (TCAS) to safely navigate the
airspace by a series of radio signals via onboard transpon-
ders. From these signals, instructions are given to both
aircrafts if a possible collision threat is detected [1]. In terms
of UAV’s, obstacle avoidance sensors exist such as vision and
LiDAR, yet a framework to connect multiple vehicles to one
collision avoidance system continues to be explored. State
of the art collision avoidance systems for UAV’s include
a probabilistic model that use Markov Decision Processes
to select the best policy based on the encounter. Yet these
methods are still in progress and have not become a global
standard like TCAS. UAV’s also contain certain restrictions
such as having it fly within a line of sight of the user as
well as strict control of drones in urban areas [2]. With an
integrated collision avoidance system, these vehicles can be
managed efficiently and perform automated missions in any
indoor/outdoor space. TCAS has been experimented with a
UAV platform however it is unreliable as the antenna utilized

1Fausto Vega is with Department of Mechanical Engineering, University
of Nevada, Las Vegas, 4505 S. Maryland Pkwd, Las Vegas, NV 89154
vegaf1@unlv.nevada.edu

2Mohammadreza Mousaei and Sebastian Scherer are with the Department
of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213,
USA {mmousaei,basti}@cmu.edu

Fig. 1. XPlane-11 flight simulator window

in TCAS does not provide an accurate bearing [3]. TCAS is
designed for commercial aircrafts with the assumption of an
onboard pilot that can interpret the display; therefore,

UAV’s need a new system to effectively navigate the air
space [4]. Several approaches have been developed to address
this problem such as a geometric approach that considers
UAV’s as point mass and calculates the point of closest
approach to evaluate the worst conflict among UAV’s [5].
Another method developed by Lin includes a sampling-based
path planner for UAV collision avoidance and validated it
with indoor and outdoor tests [6]. A velocity obstacle method
was also used to calculate the optimal safe velocity of an
agent, yet this method was not suitable for highly dynamic
collision avoidance [7]. The performance of these methods
has not been compared to state-of-the-art collision avoidance
systems to validate performance results. With these methods
onboard, it expands the capabilities of a UAV as it can lead
to multi-agent collaboration to cover a large area as well
as autonomous missions for applications such as a drone
delivery system.

In this paper, a collision avoidance scheme for UAV’s will
be presented and will be compared to the current state of
the art collision avoidance systems in aviation. This system
will utilize barrier certificates which will ensure collision
free behaviors in multi-robot systems. The method of barrier
certificates utilizes control barrier functions which defines
several safety barrier constraints that will be minimized [8].
An ideal flight controller must be minimally invasive which
means it should only notify the vehicle when a collision is
evident. TCAS sends notifications when a plane is within a
certain range yet does not take aircraft heading into account
which leads to unnecessary notifications. The current state
of the art collision avoidance system will be simulated using
the X-Plane 11 flight simulator to provide an accurate test
environment. Metrics such as warnings alerts and distance
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between aircrafts will be observed to confirm the most
efficient system.

The remainder of the paper is organized as follows:
Section II describes the methods taken to simulate the
ACAS sXu algorithm on XPlane-11 as well as the drone
specifications and software to simulate the control barrier
function approach. Section III will present the results of both
experiments, and Section IV will address conclusions and
future work on this project.

II. METHODS

A. XPlane-11

XPlane-11 is a flight simulator that displays accurate
physics simulations of various aircrafts and provides detailed
scenery with the option of multiple weather conditions.
This platform allows the user to select from a variety of
aircrafts, each with unique dynamics, sensors, and controls.
The performance and handling of the aircraft are predicted,
and XPlane-11 allows the user to test control algorithms
and trajectories for the aircraft. The aircraft chosen for this
project was the Taranis unmanned aerial vehicle that is
developed by BAE Systems as it fits the dimensions of the
collision avoidance system that was investigated. The aircraft
interior in the XPlane-11 environment is shown in Figure 1.

XPlane-11 publishes several values called data refs via
UDP communication. These values specify the current state
of the aircraft in terms of controls, dynamics, and onboard
instrumentation. XPlane-11 provides a software development
kit (SDK) which allows users to develop additional programs
(plug ins) to modify the XPlane-11 environment and to
collect data. AI aircrafts (aircrafts controlled through the
XPlane-11 software) are also available to provide air traffic,
test ownship instrumentation, and collision avoidance sys-
tems which was the main focus of the project.

1) XPlane Connect: The X-Plane Connect Toolbox was
the research tool used to communicate with the simulator as
it allowed the user to receive state information and program
the control surfaces of the aircraft. This tool contains several
clients and languages to interface with the simulator by
reading and writing to any data ref available on XPlane-11.
The specific datarefs used in this project are as follows:

• sim/flightmodel/position/longitude
• sim/flightmodel/position/latitude
• sim/flightmodel/position/elevation
• sim/flightmodel/position/local vx
• sim/flightmodel/position/local vz
• sim/multiplayer/position/plane1 lat
• sim/multiplayer/position/plane1 lon
• sim/multiplayer/position/plane1 v z
• sim/multiplayer/position/plane1 v x

B. Framework

1) ACAS sXu: ACAS sXu is the collision avoidance
system being tested which is a computational method that
produces optimized decision logic for the aircraft. This
method is current research in airborne collision avoidance
for manned and unmanned vehicles at the MIT Lincoln

Laboratory. The output of this logic is a surveillance and
tracking module (STM) that detects an aircraft and tracks
position, and a threat resolution module (TRM) that identifies
aircraft threats and resolution guidance. The algorithm input
requirement is the state of both the ownship and the intruder
aircraft to generate the advisories and the resolutions. The
state of both aircrafts was done using the datarefs listed
above.

Figure 2 shows the flow chart of the data transfer methods
from XPlane-11 to ACAS sXu. The plug in, X-Plane Con-
nect, gathers the data from XPlane which is then transferred
to a ROS publisher that is publishing at a rate of 50
Hz. ACAS sXu was modified to be ROS compatible and
subscribe to the data to generate the reports. As the threat
resolution report was generated as a JSON file, it was parsed
to read the resolution outputs. A set of codes are provided
by ACAS that signify horizontal and vertical advisories from
the JSON file. From this information, the control surfaces of
the aircraft are commanded to avoid the collision path.

Fig. 2. XPlane-11 Simulation Flow Chart

C. Simulation Experiment

The ownship aircraft was programmed to take off from
an airport and once it reached a safe height, the autopilot
datarefs were engage to fix the pitch and velocity of the
aircraft. Once the ownship was stable in the air, an AI aircraft
was spawned at 10 m east and 50 m north of the aircraft to
generate a collision path and engage the collision avoidance
algorithm. As the aircraft spawned, the threat resolution
module report generated a descend advisory which is sent
to the aircraft, and the control surfaces are commanded to
act accordingly. Figure 3 shows an AI aircraft spawned in
the scene which generates the collision advisory from the
ACAS system. The red circle is the ownship aircraft while
the black circle in Figure 3 is the AI aircraft that is spawned.
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Fig. 3. AI aircraft spawned in XPlane scene

D. Control Barrier Functions

Control barrier functions are another form of collision
avoidance that impose safety constraints on the trajectory
of an aircraft to ensure safety. A safe set is pre defined as
the aircraft traverses through the air space and the safety
constraints control the safe set of the aircraft. A function h
is defined and it maps n dimensional state space to one value
which compresses the notion of safety. Equation 1 expresses
a control barrier function which is an inequality that ensures
the safety of the aircraft as it takes actions. In Equation 1
f and g are the dynamics of the quadroter in control affine
form. As long as this notion of safety h is greater than a
certain constant, then the aircraft is guaranteed to be in the
safe set.

ḣ(x, u) =
dh

dx
(x)(f(x) + g(x)u) � ��(h(x)) (1)

1) Hardware Integration: A drone platform was devel-
oped to validate the control barrier function algorithm simu-
lation. A 70 cm plastic drone frame was connected with four
brushless motors and electronic speed controllers to generate
the overall thrust of the system. The Pixhawk 4 was the
autopilot system used to control the drone autonomously,
yet it was configured to work in a GPS denied environment
for use indoors. For localization, an Intel T265 sensor was
used because of its small form factor and simultaneous
localization and mapping capabilities on board the sensor.
A Rapsberry Pi 3 was the main source of hardware as it
combined the sensor and the flight controller under a unified
system.

2) Software Integration: The Raspberry Pi 3 was config-
ured to run Ubuntu 18.04 in order to utilize ROS melodic
to control the drone. The librealsense package was installed
on the Raspberry Pi 3 to provide the necessary drivers for
the tracking camera, and the realsense-ros package was also
downloaded for the sensor to publish data streams through
ROS topics. For the pixhawk to communicate with the
Raspberry Pi 3, a serial to USB cable was made to transfer
the data, and the mavros package was installed to ensure

Fig. 4. Hardware Integration of Drone Platform

communication through the MAVLink communication proto-
col. From the simulation, a ROS node published the position
of the aircraft in the frame to the setpoint position/local topic
from mavros. Once mavros received the topic, the drone
was switched to offboard mode and followed the waypoints
generated through the simulation. A comparison of these
images are shown in section III.

3) Experiment: A drone was placed at the (0,0) position
in a cartesian coordinate system centered in the middle of the
workspace. An obstacle was placed 0.5m to the right and 1.5
m in front of the drone. The goal position of the drone was
tasked at 1.5 m to the right and 2.5 meters forward. From
the simulation, the waypoints of the drone were divided by
2 due to the limited workspace. Figure 5 shows a diagram
of the experiment setup.

Fig. 5. Experiment setup with dimensions

III. RESULTS

The drone followed the waypoint path generated from
the simulation and only deviated from the obstacle when
necessary. A safety distance of 0.75 meters was set to
prevent collisions. The waypoint data from the simulation
to the drone was transmitted at 40 Hz to allow the drone
to move effectively to each point. A common fault that
arises in the control barrier function algorithm is the issue
of deadlock as the robot stays in a constant position trying
to determine the safe set. Figure 6 shows the control barrier
function simulation plotted using matplotlib. The red ellipse
represents the robot, the green ellipse is a safety distance, the
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point is the goal position, and the grey is the obstacle set in
the simulation. To match the conditions of the simulation, the
setup from Figure 5 was established and the drone platform
in Figure 7 shows the test in progress at the same timestep
as the simulation.

Fig. 6. Control Barrier function simulation

Fig. 7. Drone platform experimentation

IV. CONCLUSION

This work presented a simulation of a state of the art
collision avoidance system called ACAS sXu on the XPlane-
11 flight simulator by transferring aircraft data via ROS. A
control barrier function approach towards collision avoidance
was also presented and validated on a drone platform to
ensure the reliability of the algorithm on real world systems.
Collision avoidance for unmanned aerial vehicles presents
an essential task to achieve safe air traffic control among all
systems. This is also crucial for indoor applications of aerial
vehicles such as inventory management in which a drone
has to navigate across a warehouse and avoid obstacles in
its trajectory.

Future work includes testing a control barrier approach
with aircraft dynamics instead of utilizing the control affine
dynamics used in this work. XPlane-11 can provide these
accurate dynamics and a comparison to ACAS sXu in terms
of specified metrics such as distance between vehicles and
number advisories can be recorded. Currently, the control
barrier approach only generates one solution, therefore future

work also includes generating a greater amount of solutions
and forward simulating several time steps to create a set
branches that will be optimized to select the best action
path. The final goal includes testing the modified control
barrier function approach on small drone platforms such as
the Mavic Air.
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Planning with Online Topological Memory

Eliot Xing1, Sam Powers* 2, Victoria Dean* 2, and Abhinav Gupta2

Abstract— Reasoning over long horizons is a difficult prob-
lem for reinforcement learning that is usually addressed by
introducing hand-engineered reward signals or brittle temporal
hierarchies. Recent work in long-horizon navigation has com-
bined planning with reinforcement learning by constructing a
graph offline on sampled environment observations and using
graph search to plan subgoals. This decomposes a long-horizon
goal into a sequence of shorter horizon subgoals. However,
these methods do not use planning while training the policy,
making it difficult to apply them to manipulation tasks where
policies execute more complex actions. We extend this work
by proposing online topological memory, which dynamically
constructs a graph on prior experience during training. Our
method uses planning during training to set intrinsic subgoals
for the agent that guide exploration. We use reinforcement
learning to train a goal-conditioned local policy that can execute
a plan of short-horizon subgoals, while offloading long-horizon,
global reasoning to graph planning.

Index Terms— Reinforcement Learning

I. INTRODUCTION

We want to build agents that can perform long-horizon,
goal-based tasks, such as searching through cabinet drawers
in a kitchen to find a certain cup. Deep learning based
approaches enable us to handle high-dimensional inputs
such as images, and deep reinforcement learning has found
success in learning control policies for robotic tasks. How-
ever, reinforcement learning algorithms fail to reason over
long horizons, even when the inputs are ground truth, low-
dimensional state observations. In the absence of dense,
human-specified reward functions, model-free reinforcement
learning algorithms fail to effectively explore the state space,
and can converge to suboptimal fixed points [1]. Rather than
trying to directly achieve goals for a given task, an agent
should set its own subgoals and learn in a more sample-
efficient manner.

Prior work has introduced methods for offline construction
of a graph on observations in simulated visual navigation
tasks [2]–[4]. However, without constructing a graph online,
these methods cannot plan subgoals while training the policy.
This makes it difficult to apply these methods to tasks like
manipulation which require learning more complex policies
that consider the environment dynamics, compared to navi-
gation tasks.

To this end, we propose online topological memory, which
builds a graph on observations online, and plans on the graph

*Equal contribution
1Eliot Xing is with the Department of Electrical and Computer

Engineering, Georgia Institute of Technology, Atlanta, GA., USA.
exing@gatech.edu

2Sam Powers, Victoria Dean, and Abhinav Gupta are with the
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to generate sequences of subgoals that guide exploration.
We show that online topological memory can be used with
planning to solve goal-reaching tasks with improved sample-
efficiency.

II. RELATED WORK

A. Goal-conditioned reinforcement learning

Goal-conditioned policies [5]–[7] take actions to reach a
specified task goal given the current state. Goal-relabeling [8]
has been shown to improve the sample-efficiency of training
goal-conditioned policies [9]–[13]. Our method trains a goal-
conditioned policy and applies goal-relabeling by checking
nodes in the graph.

Several works have explored learning distance functions
between goals [3], [14], [15] to guide learning. Goal-
conditioned policies can also be combined with planners [16]
to solve longer-horizon tasks. We use graph search with
Dijkstra’s as the planner to generate a path of subgoals for
the goal-reaching policy.

Following [17]–[19], we use a goal-conditioned policy to
return to a state that has already been visited and should
be reachable by the policy, and then begin stochastic ex-
ploration. This can viewed as inducing a curriculum [20],
[21], as the local policy must have learned to consistently
reach the planned subgoals before attempting the desired,
long-term task goal. The planner selects these subgoals by
treating the graphical memory as a non-parametric generative
model. Maximum-entropy methods [12], [13] have also been
proposed to set intrinsic goals for exploration.

B. Topological memory

A number of recent works in simulated visual navigation
have used graph-based planning with goal-reaching policies
by constructing a graph on observations. Savinov et al. [2]
build a graph given a human-provided walkthrough demon-
stration, with edges determined by a Siamese network that
predicts whether nodes are temporally close. Eysenbach et
al. [3] learn distributional Q-values as distances for edge
weights and assume that the environment can be uniformly
sampled. Laskin et al. [4] build a sparse graph on trajectories
obtained by random exploration, subsampling edges with k-
nearest filtering and proposing a two-way consistency check
to merge nodes using an asymmetric distance function.
These prior methods construct a graph offline for inference,
while our algorithm dynamically builds a graph during
training to guide learning. Chaplot et al. [22] use supervised
learning to incorporate geometric and semantic properties
and update a graph during testing to navigate in unseen
house environments. Deng et al. [23] present dynamic graph
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construction using graph neural networks for visual and
language navigation.

Several studies have also evaluated using topologi-
cal memory beyond visual navigation tasks, with model-
free [24]–[26] or hierarchical [27]–[30] reinforcement learn-
ing. These works propose different methods to divide the
goal space [25], [27]–[30] and reduce the number of nodes
stored in the graph, to guide the agent to unexplored states
using the graph [25], [27], [28], or to propogate Q-values
between states connected in the graph [24], [26].

III. PRELIMINARIES

We consider goal-reaching tasks for an agent interacting in
an environment. Each episode starts by sampling a start state
and goal pair from some distribution ⇢(s1, g). For simplicity,
let the goal space G be the entire state space. At each
timestep t, the agent observes its current state s 2 G and
goal g 2 G. The agent then samples an action a ⇠ ⇡(a|s, g)
and receives a reward rg equal to 0 if the goal is reached
and �1 otherwise.

The objective of learning is to maximize the expected
return Rt = E[

P1
i=t �

i�tri] under the environment dy-
namics and current policy, with discount factor � 
1. A goal-conditioned Q-function learns Q⇡(st, at, g) =
E[Rt|st, at, g]. Under the sparse reward rg with � = 1 and a
finite-horizon, the absolute value of the Q-function gives the
expected number of steps for the policy to transition from
state st to goal g.

We train a goal-conditioned policy using off-policy model-
free reinforcement learning algorithms: DDPG [31] for con-
tinuous action spaces and DQN [32] for discrete action
spaces. We learn a distributional value function [33] fol-
lowing [3] for the given sparse reward rg . Unlike [3], for
a given maximum Q-value N , we learn a set of N +1 bins,
B = (B0, B1 . . . , BN ), where Bi corresponds to a given
state and goal being i steps away.

IV. ONLINE TOPOLOGICAL MEMORY

In this section, we introduce our method of online topo-
logical memory. We begin by describing the neighborhood
function and online graph construction. Then, we discuss two
ways the agent can use the graph during training, by planning
for exploration and goal-relabeling using the graph.

A. Neighborhood-based partitioning

We build our topological memory using a neighborhood
function b which partitions the goal space into regions. We
consider two different sets of thresholds, bmerge and breached.
We use bmerge to determine if nodes should be merged
together during online graph construction and breached to
check if a subgoal has been reached during a trajectory.

For goal spaces that are Euclidean domains, we assume
that the l2-norm gives an appropriate distance measure-
ment between states. For example, in navigation tasks, this
corresponds to coordinate positions in the environment. In
practice, for these state-based environments, we use bmerge =
breached.

Graph

Trajectory

Graph 
Update

neighborhood

Merge 
Nodes

Fig. 1: Diagram of online graph construction using our
method. If states in a trajectory are localized as nodes in
the graph, then the nodes are merged. Otherwise states are
added as nodes.

B. Online graph construction

Algorithm 1 Online Topological Memory
Require: embedding �, neighborhood function b, replay

buffer R, local policy ⇡, value function D
1: vertices V  ;, edges E  ;, graph G (V,E)
2: for n = 1 · · ·N episodes do
3: T  collect trajectory
4: for s 2 T do
5: W  bmerge(s|�, D,G) . localize goal in G
6: if W 6= ; then
7: s nearest w 2W in � space
8: else
9: V  V [ {s}

10: end if
11: E  E [ {(s0, s, 1)}
12: s0  s
13: end for
14: update �
15: update ⇡, D
16: end for

We present an outline for online graph construction in
Figure 1. If a state in a trajectory is similar to some state
saved in the graph, then the corresponding nodes can be
merged together. Formally, we build a directed, weighted
graph G(V,E) online as trajectories are stored in the replay
buffer, as described in Algorithm 1. For each state s in
the trajectory, we check if s is in the neighborhood of a
state saved as a node in V . If multiple nodes satisfy the
neighborhood check b, then we take the nearest state using
the distance in the embedding space �. Otherwise, if s is not
localized to any states in V , then we add s to V . An edge is
added to E that connects s with the node of the previously
observed state s0 of the trajectory.

C. Planning for exploration

By planning on the topological memory during training,
the agent can set a sequence of intrinsic subgoals that act as a
curriculum for reaching longer-horizon goals. In particular,
the policy must succeed in reaching subgoals in the order
given by the plan. Figure 2 presents a diagram of our method
of planning to explore using the graph. We describe our
formulation for open loop planning in Algorithm 2. First,
the goal is localized in the graph using the neighborhood
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goal
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1. Cannot localize goal in graph

Task
goal

3. Reached goals and added node2. Pick random node to explore from

Fig. 2: Diagram of planning to explore using online topo-
logical memory. If the given goal cannot be localized in the
graph, then a random state in the graph is selected as the
goal. The agent attempts to returns to that state and then
explores. If the task goal is successfully achieved, then a
corresponding node is added to the graph.

Algorithm 2 Planning with Online Topological Memory
Require: timestep t, current state s, desired goal g, embed-

ding �, neighborhood function b, graph G(V,E), value
function D

1: if t = 0 then . open loop planning
2: W  bmerge(g|�, D,G) . localize goal in G
3: if W 6= ; then
4: g  nearest w 2W in � space
5: else
6: select random g 2 V
7: end if
8: subgoal plan P  ShortestPath(s, g,G)
9: end if

10: wi  current subgoal of plan P
11: if wi 2 breached(s|�, D,G) then
12: wi  wi+1 . get next subgoal
13: end if
14: g  wi

function b introduced in Section IV-A. If the desired goal
cannot be localized in memory, then the planner selects a
random node in the graph as the goal. Then, a shortest
path between the localized start and goal nodes in the graph
is computed using Dijkstra’s algorithm. The learned goal-
conditioned policy attempts to execute subgoals in this plan
until the episode ends.

D. Goal relabeling

HER [8] relabels transition goals by selecting states en-
countered during a trajectory and by assigning a success
reward (e.g. 0) instead of the prior reward (e.g. -1) if the
new goal is achieved. However, HER assumes access to a
function reached(s, g) with domain covering the entire goal
space that can check whether some goal is achieved in any
given state. For goal-reaching tasks such as those with visual
inputs, this assumption does not hold.

Instead, we propose goal relabeling using topological
memory and the neighborhood function b. We can consider
a goal g as reached if the current state s is within the
neighborhood of g. In particular, s and g should be in the
same neighborhood of some node in the graph.

V. EVALUATIONS

We evaluate our method for online topological mem-
ory in three environments: FourRoomsPointEnv [3]
with thinned walls [4], FetchPush [34], and a fixed
DoorKeyMiniGrid environment [35]. These different
environments span discrete and continuous control, with
ground-truth state or pixel observations, which we use to
answer the following questions:

A. Does online topological memory enable long-horizon

reasoning?

For a long-horizon task, we evaluate in FourRooms-
PointEnv, depicted in Figure 3. This environment has
(x, y) coordinate observations and a continuous action space
with noise added to actions. We fix the start and goal
positions to be the centers of the bottom left and top right
rooms, respectively. The maximum episode length is set to
200 timesteps; note that over 100 timesteps are needed to
move from the start to goal position. We use DDPG [31] to
train the goal-conditioned policy. We evaluate two different
strategies for goal relabeling, standard HER which uses all
future states as potential goals for relabeling, and a strategy
which only considers states of the next h transitions.

We repeat each experiment with the same 3 random seeds.
We plot each random seed as a transparent line and the
average across the 3 random seeds as the solid line in Fig-
ure 4. Results demonstrate that planning plus goal relabeling
with online topological memory consistently reaches the task
goal, corresponding to DDPG+Planning+HER in Figure 4.
In contrast, DDPG+HER cannot solve the task in all 3 seeds
within 100,000 steps. Without goal relabeling, DDPG alone
is unable to solve the long-horizon navigation task.

We visualize the trajectory taken by the policy trained
using our method in Figure 5a. Without planning subgoals,
the local policy is unable to solve the task. By planning
with topological memory, the agent executes a sequence of
subgoals, and is able to achieve final task goal. In Figure 5b,
we visualize the graph generated by online topological
memory. The “task success” nodes correspond to the subgoal
states visited by the policy among all successful trajectories.
We also show the “exploration” nodes that the agent had
visited before finding and localizing the final task goal in
the graph.

B. Does planning yield structured, efficient exploration?

In Figure 3, we compare the different exploration
outcomes for policies evaluated in Section V-A on
FourRooms-PointEnv. While DDPG+HER is able to
consistently explore parts of the adjacent rooms compared
to DDPG only, both fail to discover the goal by exploration
using additive Gaussian noise. With our method of planning
using online topological memory, if the desired goal cannot
be localized within the graph, then the planner randomly
selects a node in the graph and computes the shortest path
to that node. Note that DDPG+Planning is unable to solve the
task because the local policy cannot complete the subgoals
generated by the planner. By using goal relabeling, the policy
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Fig. 3: Visualization of agent exploration, showing the points visited over the course of training on FourRoomsPointEnv
(same seed).

Fig. 4: Comparison between online topological mem-
ory (DDPG+Planning+HER) and different baselines, show-
ing average task success evaluated through training on
FourRoomsPointEnv (same 3 seeds). We plot each ran-
dom seed as a transparent line and the average across the 3
random seeds as the solid line.

(a) Trajectory comparison (b) Graph

Fig. 5: (a) Comparison of trajectories with no planning and
with planning in FourRoomsPointEnv. (b) Visualization
of the graph constructed using our method.

learns goal-reaching behavior. Our method, corresponding to
DDPG+Planning+HER in Figure 3, is able to consistently
reach the desired goal in the diagonally opposite room. The
same policy trained using our method was also visualized
in Figure 5. By selecting a random state in the graph for
exploration, the agent makes no prior assumptions on how to
achieve the task goal, allowing it to escape the local minima
of the corners of the room.

C. Can online topological memory handle multiple goals?

We evaluate whether our method can solve multi-goal
tasks in FetchPush, where a robot must push a block
to some given location on a table, indicated by the sphere
in Figure 6. The goal position is randomly chosen as
some point on the table for each episode. Results in Fig-
ure 7 show that online topological memory, labeled as

Fig. 6: Visualization of FetchPush environment, where
the sphere indicates some goal position for the robot to move
the block to. The sphere is for visualization only and not part
of the environment.

Fig. 7: Comparison between online topological mem-
ory (DDPG+Planning+HER) and different baselines, show-
ing average task success evaluated through training on
FourRoomsPointEnv (same 3 seeds). We plot the av-
erage across the 3 random seeds as the solid line, and the
shaded region corresponds to one standard deviation.

DDPG+Planning+HER, is able to achieve different task goals
in fewer environment steps than DDPG+HER.

D. Can online topological memory perform visual planning?

We perform a simple evaluation on DoorKeyMiniGrid,
an environment with a discrete action space and RGB
observations. The agent must pick up a key, open a door,
and navigate to the green goal tile. Note that while MiniGrid
environments are randomly generated, for this evaluation we
fix the environment to some seed, as shown in Figure 8a.
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(a) Environment (b) Goal

Fig. 8: (a) Environment visualization for single DoorKey
environment from MiniGrid. (b) Raw point-of-view RGB
observation goal given to agent. The agent must match the
position and direction specified by the goal. Note that though
the door is open, the agent may re-close the door and still
achieve the task goal.

Fig. 9: Comparison of planning, showing average task
success evaluated through training on DoorKeyMiniGrid
(same 3 seeds). We plot each random seed as a transparent
line and the average across the 3 random seeds as the solid
line.

We give the agent a task goal specified by the RGB image
shown in Figure 8b. For this simple visual setting, we use the
l2-norm in pixel space as the neighborhood function b. This
will not scale to more challenging visual domains, and in
future work we intend on learning a neighborhood function
for pixel inputs.

We train DQN without goal relabeling, as a random
exploration policy is sufficient for solving the task. For
exploration, we use ✏-greedy exploration that linearly decays
✏ from 1.0 to 0.001 over 200,000 environment steps. We
chose to set ✏0 = 1.0 to guarantee that the agent achieves
the task goal. A more conservative exploration policy, such
at ✏0 = 0.3, could solve the task, but not consistently over
different seeds. Due to RGB inputs, we learn a VAE repre-
sentation; for more details on this choice, see Appendix VI-
A.

In Figure 9, results show that our method (DQN+Planning)

Fig. 10: Example of an egocentric plan generated by our
method for DoorKeyMiniGrid.

Fig. 11: Comparison between different visual representa-
tions, showing task success evaluated during training on
Empty6x6MiniGrid (same 3 seeds). We plot each ran-
dom seed as a transparent line and the average across the 3
random seeds as the solid line.

(a) Start (b) Goal

Fig. 12: Raw point-of-view RGB observations for Empty6x6
environment from MiniGrid.

is more sample-efficient at learning. In Figure 10, we visual-
ize an egocentric plan generated by our method, created by
searching for paths in the graph.

VI. CONCLUSIONS & FUTURE WORK

We present online topological memory, an extension to
prior work in visual navigation domains which construct
graphs on observations for subgoal planning. Our method
builds a graph on observations online. By dynamically
constructing a graph, our method can plan subgoals while
training the policy, guiding exploration and inducing a cur-
riculum. In future work, we plan to evaluate our method on
more challenging, multi-step continuous control tasks with
image observations. For these domains, we will explore how
to learn a neighborhood function online with pixel inputs for
graph construction.
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APPENDIX

A. Online VAE training

For MiniGrid environments with image-based observa-
tions, we learn a visual representation using a �-VAE. Here,
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we compare a VAE representation against a representation
learned by a standard convolutional neural network in a
simple setting. The same layer architecture is used for
both networks. We train DQN with an ✏-greedy exploration
policy that linearly decays ✏ from 0.3 to 0.001 over 37,500
environments steps. The embedding network is trained only
on the agent observations and not on the task goal given to
it, unless it has achieved that goal during some trajectory.

Results are shown in Figure 11 with the Empty6x6 envi-
ronment from MiniGrid, where the agent must reach a fixed
goal tile from the starting position, as shown in Figure 12.
We plot each random seed as a transparent line and the
average across the 3 random seeds as the solid line. Training
a VAE representation online with the Q-function, the policy
converges to the optimum. We also compare against a lagging
VAE representation trained every 100 optimization steps
of the Q-function. Policies learned with a lagging VAE
representation or standard ConvNet fail to converge to the
optimum.
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Introspection in Theory of Mind Agents

Renos Zabounidis1, Dana Hughes2, and Katia Sycara2

Abstract— Theory of Mind (ToM) is a popular method for
modeling human mental states. ToM models predict various
aspects of mental states, including intentions, beliefs, emotions,
and various other cognitive states. This mental representation
can then be used to more effectively predict human actions,
making Theory of Mind models widely applicable to any
reinforcement learning task. ToM Models, however, are not
without their down falls. Compounding errors, as well as rapid
shifts in the cogitative states of a human, can cause the ToM
model to fall out of sync with the players true cognitive state,
causing action predictions to become worse then even mental
state agnostic approaches. To remedy this problem, we propose
introspection, an algorithm which updates the ToM model when
it falls out of sync.

Index Terms— Theory of Mind, Inverse Reinforcement Learn-
ing, Normalizing Flows

I. INTRODUCTION

As autonomous, learning based systems rapidly become
a part of every day life, it is important that they be able to
complete their jobs in a socially aware context. There are
many benefits for doing so. Socially aware agents are better
suited to deal contextually with the needs of different people
with different goals. In addition, a socially aware agent is
more interpretable, being able to give the context of its beliefs
on the humans mental state as justification for its actions at
a particular point in time. However, endowing these systems
with human like empathy and social skills is a nontrivial
task. As humans, we regularly can rapidly infer other humans
beliefs, desires, and intentions, using them to predict their
future actions. In a computational framework, such inference
would require knowledge of latent characteristics and states
which are almost entirely inaccessible and computationally
intractable [1].

Cognitive Psychology tells us that the brain does this by
building layers of abstraction [2]. We do not, for example,
attempt to simulate the individual neurons of others brains.
Nor do we attempt to simulate any part of their brain at all,
nor can we, since we never have direct access to the mind of
another. Humans, and to lesser degrees other animals, posses a
Theory of Mind, the ability to infer others observable actions
in terms of unobservable mental states [3].

Creating machine agents with Theory of Mind has been
tried in a variety of ways [3]–[5]. These approaches use hand
crafted techniques spanning Inverse Reinforcement Learning,
Bayesian Inference, and Game Theory [6]. In this work, we

1Renos Zabounidis is with the College of Information and Computer
Sciences, University of Massachusetts Amherst, Amherst, Massachusetts,
USA rzabounidis@cs.umass.edu

2Dana Hughes and Karia Sycara are with the School of Computer
Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
{danahugh,sycara}@andrew.cmu.edu

use an Inverse Reinforcement Learning framework as defined
in [7] as a ToM model.

Inverse Reinforcement Learning (IRL) has classically
only looked at determining stationary rewards [8]. In its
extension to nonstrationary reward parameters, which bring
the problem of drifting reward parameters and changing of
intent, it becomes common for models to overtime become
out of sync with the true reward parameters. The question
is then how to resync the model. We postulate that the best
we can do in such a case is to look at past experiences
to make a somewhat reasonable estimate on where we
should be. This ‘introspection’ on past experiences is done
though modeling prior belief of the distribution of reward
parameters. Incorporating variational inference, we can model
the probability distribution over the set of reward parameters,
and use this distribution in order to determine regions of high
likelihood to reset our out of sync parameters.

We apply Introspection to a Grid World Search and
Rescue scenario with various tasks with non-stationary reward
parameters. We use the online IRL framework defined in
[7], incorporating introspection where intent changes are
detected. Introspection in this case is shown to improve reward
parameter estimate during intent change detection.

II. RELATED WORK

A. Inverse Reinforcement Learning
Much of Inverse Reinforcement Learning research focuses

on finding better ways of identifying which reward function
best explains a set of expert demonstrations. Bayesian IRL
imposes and search’s a prior distribution over reward functions
[9]. Maximum Margin IRL chooses a reward function that
most separates the optimal and second-best policy [10].
Gradient based approaches optimize a loss fuction with built
in penalties, such the l2 norm of deviations from the expert’s
demonstrations [8]. Maximum entropy models attempt to
directly maximize the entropy between the learned reward’s
policy and the original expert demonstration [11]. Our work
is an improvement on the approach of [7], who use online,
gradient based methods in order to estimate changing reward
parameters.

B. Theory of Mind
Theory of Mind first originated in the field of Cognitive

Psychology, where it was coined to refer to the cogitative
capacity of an individual to attribute mental states to itself
and others [12]. Since then, Theory of Mind has become a
backbone explanation for a broad set of cognitive abilities
from learning languages[28,29] to judging the guilt or
innocence [30–32].
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Theory of Mind was first applied to computational cognitive
modeling thought understanding an agent’s decision making
using Baysian Inferance [3]. Computational Theory of Mind
has been implimented using Deep Neural Networks [1], [13].
In addition, Inverse Reinforcement Learning Itself can be
thought of as learning a ToM model by understanding the
reward function learned to be the desires of the agent and
the intentions to be the agents policy [14], [15].

C. Density Estimation using Variational Inference

Density estimation with generative is a well studied
portion of statistical machine learning [16]. In recent times,
Variational Inference based techniques have proven to scale
well while providing state of the art performance. Such models
include Auto regressive Flows [17], Variational Autoencoders
[18], and Normalizing Flows [19]. In this paper, we make use
Normalizing flows to preform maximum likelihood density
estimation. Normalizing flows are used due to their property
of having a closed form solution for likelihood.

III. BACKGROUND

A. Reinforcement Learning

A Markov Decision Process (MDP) is defined as a tuple
M = (S,A, T, r, �) where,

1) S is a set of states
2) A is a set of actions
3) T : S⇥S0⇥A ! [0, 1] is a transition function defining

the probability of going from a state s to a state s’ with
action a.

4) r : S ! R is a reward function mapping a state to a
reward.

5) � 2 [0, 1] is a discount factor.
The goal of Reinforcement Learning is to learn a policy
⇡ : S ! A such that the discounted sum of future rewards
is maximized. To define what this means, let us introduce
some notation. Firstly, define the value function conditioned
on a policy as:

V ⇡(s) = E
" 1X

t=0

R(st)�
t | s0 = s,⇡

#
(1)

We can then similarly define the value of a state action pair
using the Q function:

Q⇡(s, a) = E
h
R(s) + �

X
s0 2 ST (s, a, s0)V ⇡(s0)

i
(2)

The optimal values of these functions are then:

V ⇤(s) = max
⇡

V ⇡(s)

Q⇤(s, a) = max
⇡

Q⇡(s, a)

The goal of Reinforcement Learning is therefore to find a
policy ⇡⇤(s, a) such that ⇡⇤(s, a) = argmax

a
Q⇤(s, a).

B. Inverse Reinforcement Learning
In IRL, our MDP is modified to not have a reward function,

and instead has a set of expert demonstrations. The goal of
IRL then is to learn a reward function with the goal of
recovering the original policy.

This problem as it stands is ill posed. Simply assigning
every state a reward of 0 is a valid solution. We therefore
treat the problem finding a reward function which maximizes
the likelihood of the observed demonstrations:

R = argmax
R

Pr(⇢ | R)

By posing R to be the motivations of the agent we wish
to model, inverse reinforcement learning models can be
interpreted as ToM models [15].

C. Normalizing Flows
Normalizing Flows [19], [20] model arbitrary probability

distributions by defining a series of bijective transformations
from a base distribution. By denoting a base variable z and
the transformed variable as x, x = f(z) where z ⇠ ⇡z(z). The
base density ⇡z(z is typically a simple distribution like a
unit Gaussian. Under this formulation, we can evaluate the
transformation using the change of variable formula:

p✓(x) = p✓(z)

����
@x

@z

����
�1

(3)

Much of Normalizing Flows research focuses on defining
increasingly expressive and computationally inexpensive
invertable layers [16]. One such layer is the Affine Coupling
Layer [21]:

y1:d = x1:d (4)

yd+1:D = xd+1:D � exp(s(x1:d)) + t(x1:d) (5)

where s and t are functions from RD ! RD�d. The Jacobian
of this transformation is:

@y

@xT
=

"
Id 0

@yd+1:D
@xT

1:d
diag(exp[s(s1:d)])

#
(6)

Since this Jacobian is triangular, the determinant can be
computing without computing the Jacobian of either s or
t, meaning we can make s and t arbitrary neural networks
(maintaining the aforementioned input and output dimension-
ality). In this paper, we use the coupling layers defined in
[21], who alternate the coupling layers such that all inputs
to the flow are changed. With a normalizing flow, we can
preform density estimation on any reward parameters we are
given. We do this by calculating the log likelihood of the
input:

p✓(x) = ⇡z(f
�1
✓ (x))

����det
✓
@f�1

✓

@x

◆���� (7)

By our previous formulation, f�1
✓ is easy to compute, thus

making normalizing flows an excellent choice for density
estimation.
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IV. APPROACH

A. Online Belief Updates
We will be using the Online IRL framework by [7], for

implimentation details, please see their paper. A high level
summary is described in Algorithm 1.

Algorithm 1 Reward Parameter Estimate Update
Initialize conjugate distribution parameters
Initialize trajectory buffer, ⌧ = {⇠}
Initialize set of intents, ⇥ = ;
Set decay rate, �;
Set change of intent threshold, ✏intent

1: repeat
2: Observe current state and agent action, (s, a)
3: Append (s, a) to ⌧
4: if ⌧ full then
5: Calculate ✓t

6: Calculate ✓̃ (Algorithm 2 in [7])
7: Update conjugate distribution parameters
8: Set ⌧ = {}
9: if KL(✓tk✓t+k) > ✏intent then

10: Calculate ✓new (Algorithm 2)
11: Initialize conjugate distribution parameters;
12: end if
13: end if
14: until forever

B. Change of Intent
Change of intent is defined as the KL divergence between

two online IRL updates. The KL divergence increasing beyond
a certain predefined threshold activates the introspection
module.

C. Introspection Module
Introspection is defined from the principle that when a

ToM model is out of sync with the true beliefs, the model
must look at previous experiences. Thus, in addition to
our IRL assumption of being given a set of trajectories
⇢1, ⇢2, ..., ⇢n 2 ⇢, we additionally assume being given a
set of reward parameters r1, r2, ... sampled from the reward
function. It is important to know we make no assumption
as to the relationship between the set of reward parameters
and trajectories, as that would reduce the IRL problem to
regression. With this set of reward parameters, we train a
Normalizing Flow which learns the distribution over possible
reward parameters.

Using this flow, the problem becomes how to generate
higher likelihood reward parameters from our original sample.
To do this, we use gradient decent on the current reward
parameter estimate at the time of the intent change. If we
allowed all parameters to very, this update would yeild
the same solution every time, making introspection useless.
Therefore, we use a learning principle called Neuraths Ship
[22], a principle which states that under uncertainty of a true

causal structure, human learners do not try to learn the entire
structure all at once. Instead, they incrementally update their
belief model one step at a time. In our framework, this corre-
sponds preforming gradient ascent on each reward parameter
separately, keeping the others static. By choosing to update
the reward parameter which most increases the likelihood of
the current set of reward parameters, introspection can be
viewed as an incremental process. In Algorithm 2, we see
an exact specification of Neuraths based Introspection.

Algorithm 2 Neuraths Introspection
Train or Load Normalizing Flow F
Load x, the last 10 time steps of estimated reward parameters
let lr be the learning rate
let steps be the number of steps gradient ascent is preformed
for
let n be the number of reward parameters
let likelihood be a list
let new candidates be a list

1: for i =1,2,...,n do
2: Let xi be x with all parameters except the ith being

frozen
3: for steps timesteps do
4: Preform gradient descent on xi

xi = xi � lr ⇤ F 0(x)
5: end for
6: end for
7: out var = argmin(likelihood)
8: return likelihood[out var], new candidates[out var]

V. EVALUATION

A. Environment Specification
We use a 20x20 gridworld environment with 3 types of

tasks: fire, triage, and supply. There are a total of 20 task
throughout the map, and the reward of each tasks varies
thoughout time. In addition, we define three meta parameters,
which are set before each task.

✓fire(t) =

8
><

>:

1 + a ⇤ sin( ⇡t
200 ) 0  t < 400

�1 400  t < 600

1 + b ⇤ cos(⇡(t�600)
200 ) 600  1000

(8)

✓triage(t) =

8
><

>:

�b ⇤ cos(⇡(t�600)
200 ) 0  t < 400

c ⇤ �1 400  t < 600

b ⇤ cos(⇡(t�600)
200 ) 600  1000

(9)

✓supply(t) =

8
><

>:

�2 0  t < 400

c ⇤ 2 400  t < 600

�2 600  1000

(10)

where a, b, c 2 [0, 1] are sampled from a uniform distribution.
As with [7], we use a linear reward function. We define
the reward function as follows: R(s; ✓) = ✓T�(s). Figure 1
shows an example map.
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Fig. 1. An example map

B. Normalizing Flows Training

We implemented and trained the Normalizing Flow using
the NuX library [23]. To build a dataset for training the flow,
we sampled 200 values of each meta parameter. For each
meta parameter, the resulting 1000⇥ 3 time series was split
into 992 slices which were each 10 time steps long. These
were reshaped to be a 30 dimensional vector, making a total
of 198400 training points. The flow was then trained for
3000 batches. A batch size of 32 was used with the ADAM
optimizer with an intial learning rate of 1e�3.

The flow itself consisted of 6 coupling layers, each of
which had a 3 layer neural network with each hidden layer
being fully connected and having 30 neurons. Figure 2 shows
the training curve.

Fig. 2. Averaged reward parameter estimates though 50 trials

C. Results

Figure 3 shows the average reward parameter estimates
through 50 trials. Results were not sigficantly better or worse
then [7].

Table 1 shows the average squared error of the reward
parameter estimates before and after the introspection update.
Introspection is shown to significantly improve the reward
estimate during intent changes.

Fig. 3. Averaged reward parameter estimates though 50 trials

TABLE I
AVERAGE SQUARED ERROR AT INTENT CHANGES BETWEEN 50 TRIALS

Squared Error

Before Introspection Update 8.52478692
After Introspection Update 6.49000124

VI. CONCLUSION & FUTURE WORK

In this paper, we create a method to preform introspection
when a Theory of Mind (ToM) model is out of sync. This
is done though modeling the distribution of possible reward
parameters and incrementally updating the reward parameter
which most increases the likelihood of the trajectory through
gradient descent.

Our method was implemented in the Online IRL framework
by [7] in a grid world search and rescue scenario.

Introspection ultimately fails in substantially improving the
reward estimate. During intent changes, introspection overall
lowers the L2 error between the reward estimate and the
ground truth. This is promising in that it shows that intro-
spection is an effective reset; however, the reward estimate is
ultimately dominated by the psudoestimate over many time
steps. This occurs due to the fact that the psudoestimate is
calculated at every online IRL timestep independently, and
therefore is not affected by the introspection update. This
in turn means that even though Introspection can improve
the reward parameter estimate, the pseudoestimate algorithm
remains biased towards the previous estimate. This shows
that the introspection module may be better suited for end to
end approaches such as [1], where introspection may directly
update ToM model parameters which affect future reward
parameter estimates.

In the future, research may focus on better incorporating the
changed reward estimate into future predictions. In addition,
other Variational Baysian approaches such as Variational
Autoencoders.
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