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From the Scholars...
The Robotics Institute Summer Scholars Working Papers Journal is an annual publication 
of the Robotics Institute’s Summer Scholars Program at Carnegie Mellon University. 
The journal is a medium for the undergraduate students of the summer research 
program to communicate their work in collaboration with the participating lab 
faculties. This journal encompasses the learnings and research findings of 
the students over the eleven-week-long remote engagement with the CMU 
community for the year 2021.

The journal comprises 58 papers written by the scholars participating in RISS 
2021. The papers included exploring varied domains of Robotics, including 
Localization, Mapping, Computer Vision, Motion-planning, Controls, 
Haptics, Aerial Systems, Medical Robotics, Multi-agent Systems, Machine 
Learning, and Reinforcement Learning. The papers have been drafted by the 
scholars in collaboration with graduate students and faculty mentors.

The Journal Team would like to acknowledge the splendid efforts put in by the scholars for the 
papers and for making the peer-review process a success enhancing the quality of the papers.

The scholars would like to thank all the mentors for their invaluable guidance and feedback 
throughout the program. Their expertise has been of immense support for the scholars.

The scholars would also like to acknowledge the support provided by Dr. Keely Austin, Ms. 
Jamie Rossi, and the Center for Student Academic Success (CSAS). The CSAS held several 
workshops and one-on-one appointments for individual scholars throughout the program. 
Their assistance in guiding and reviewing the individual works has helped the scholars to acquire the 
necessary skills for writing and presenting their work. We are grateful to Mr. Alexander Hall and the CSAS 
team for their support. Furthermore, we would like to thank Library Liaison Dr. Jessica Benner for guiding us 
through the CMU library resources.

Finally, the cohort would like to thank RISS co-directors Ms. Rachel Burcin and Dr. John M Dolan, and RISS 
summer 2021 partner Ms. Jennie Piotrzkowski, who have put their efforts into making this program possible 
even in the most challenging time of the global pandemic. Their ability to successfully coordinate the program 
and welcome each scholar to the CMU community while overcoming the barriers introduced by the remote 
program was inspiring. The RISS experience would not have been possible without their hard work and 
coordination. We are also thankful to the whole CMU community for their contribution to the program.

 — The RISS Scholar Journal Team
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58 SCHOLARS  
FROM 43 COUNTRIES 
& 33 UNIVERSITIES
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Welcome to the 2021 Carnegie Mellon Robotics Institute Summer Scholars (RISS) Working Papers 
Journal. The CMU RISS community supports opportunities for students from across the country and around 
the world to conduct research with robotics researchers at CMU.  We are pleased to present this collection of 
articles that reflect the range of topics and diversity of research to which the scholars contributed. 

The RISS undergraduate research program is diverse, global, and inclusive. 

Launched in 2006, RISS provides opportunities for students from across the country and around the world 
to conduct research with CMU leaders in robotics and artificial intelligence. Scholars build knowledge, skills, 
and a network that will open doors for years to come. We work to create an atmosphere where students 
can explore and develop their identities as scientists. RISS is a community that cares. It fosters a diverse 
and inclusive working and learning environment where all students are actively welcomed, included, and 
supported.  The RISS community has hosted students from over 60 home countries plus cities and towns 
across the United States for research experiences. 

The RISS 2021 cohort was the largest ever. 

• 58 scholars (29 US Scholars)

• 43 home universities

• 13 countries of citizenship

The 2021 cohort was selected from an applicant 
pool of over 700 applications from more than 40 
countries and over 300 institutions worldwide. Of 
the 29 scholars from the United States, over 60% 
came from a community underrepresented in STEM. 

Dear Colleagues

Sponsors, mentors, and partners make a tremendous difference in the lives of these scholars. Sponsors 
create access, opportunity, and impact. Additionally, the School of Computer Science and the Robotics 
Institute provided tremendous support to ensure emerging scholars have this opportunity despite the added 
challenges of the COVID-19 pandemic. More than 100 members of the extended CMU community worked together 
to shape the 2021 scholar learning experience, including 6 RISS alumni. 

With gratitude, 

John & Rachel

Dr. John M. Dolan 
Director of RISS Program  
& Principal Systems Scientist
jdolan@andrew.cmu.edu

Ms. Rachel Burcin 
Co-Director of RISS Program & 
Global Programs Manager
rachel@cmu.edu
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Mexico

United States

Germany

Saudi Arabia

Nigeria

Cameroon
India

Pakistan China

Vietnam

Indonesia
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Thank You 
Program Sponsors & Partners

We gratefully acknowledge the 
support of the National Science 
Foundation IIS Div of Information 
& Intelligent Systems through 
the Research Experience for 
Undergraduates (REU) program 
(Grant # 1950811).

Student Academic Success Center University Libraries Mechanical Engineering

ROBOTICS INSTITUTE      10



Transfer Exploration in RL: A Study on Recent Count-Based Methods

Jacob Adkins1, Victoria Dean∗2, Simone Parisi∗3, Abhinav Gupta2,3

∗ equal contribution

Abstract— Task agnostic exploration in reinforcement learn-
ing is an important research area, especially in settings with
sparse or unknown rewards. Learning efficient exploration in
these settings remains a key challenge. Existing exploration
methods define intrinsic motivation in a multitude of ways,
including visitation counts, learned models, and environment
changes. We build on a recent paradigm shift in how we learn
and evaluate task agnostic exploration: an agent should first
learn to explore by training a task-free exploration policy and
later transfer this policy to explore unseen environments while
learning to solve tasks. This transfer setting provides a clear
opportunity for combining multiple forms of exploration across
phases of training. We consider the recently developed method
of Count-Based Exploration Transfer (C-BET) and extend it to
store a record of its state change counts, used as an auxiliary
task for the extrinsic policy at transfer time. We present
experiments in the procedurally-generated MiniGrid setting
with this extended version and compare to the original method.
We then extend to the recently released robotics simulator
Habitat 2.0, presenting initial experiments using a random
policy over a continuous action space and discuss how we plan
to utilize this simulator to test C-BET in the robotics setting of
a home assistance robot.

Index Terms— Reinforcement Learning, Exploration, Trans-
fer Learning

I. INTRODUCTION

In the context of reinforcement learning, exploration is
taxonomized into two broad categories: task-driven and
task-agnostic exploration. In task-driven exploration, the
agent maximizes the expected discounted sum of future
rewards that it receives for some extrinsically motivated task.
Whereas, in task-agnostic exploration, the agent learns to
explore its environment without any external reward, instead
relying on some definition of intrinsic motivation which to
some extent may be more similar to how humans learn. When
we are babies, we learn to interact with and explore objects
in our environment with nothing but our own intrinsically
motivated curiosity driving us [1]. This initial exploration
is not for a specific goal but still serves us well when we
attempt other extrinsically motivated tasks [2]. Some prior
definitions of intrinsic reward have included prediction error
of a concurrently-learned forward dynamics model [3], [4],
action impact evaluated as environment change [5], and states
rarity as measured by state visitation counts [6], [7].

1Jacob Adkins is with the Departments of Mathematics and Com-
puter Science, New College of Florida, Sarasota, FL 34243, USA
jacob.adkins18@ncf.edu

2Dean and Gupta are with the Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA 15213, USA
vdean,gabhinav@andrew.cmu.edu

3Parisi and Gupta are with Facebook AI Research, Pittsburgh, PA 15213,
USA sparisi@fb.com

One recent paradigm shift in task-agnostic exploration
moves away from learning and evaluating in a single envi-
ronment; instead, an agent should first learn a task-free ex-
ploration policy across many environments and later transfer
this policy to explore unseen environments where it learns
to solve tasks.

Within this new transfer framework, we build from previ-
ous work that introduces Change-Based Exploration Transfer
(C-BET). [8] This method combines state visitation and state
change counts for an intrinsic reward. C-BET is based on the
idea that some objects are inherently interesting and an agent
may wish to interact more with these objects than a method
that only considers state visitation counts would allow. The
state change count is a way to capture the “interestingness”
of an object. C-BET learns an intrinsic exploration policy
which is then added as a fixed bias to the task-specific policy
to encourage exploration.

This paper documents a proposed extension to C-BET
and proposes future work with C-BET in continuous action
spaces. Firstly, we note that current intrinsically motivated
exploration methods are quite lacking in sample efficiency.
Using real robots is also very expensive. Therefore, the
amount of data our agent is able to learn from may be
limited, and sample efficiency is of the utmost importance. C-
BET utilizes transfer learning to improve sample efficiency.
However, the two-stage setup of C-BET limits the agent to
focusing on the extrinsic task at transfer time. What if the
agent not only cares about this task but also might want to
do more things in the future? We may wish for the agent
to both perform well at its task and continue intrinsically
motivated exploration.

We look at the transfer paradigm proposed in [8], but ex-
tend this paradigm further, asking the question: what happens
when an agent not only uses a pre-trained exploration policy
but continues relying on intrinsic motivation while learning
a task as well? This agent will attempt to both solve its
extrinsic task and maintain curiosity about the world.

To this end, we propose transferring not only the previ-
ously learned policy but also a record of the state change
counts from the previous environment(s) with the hope that
saving the counts may be useful for the agent and cut down
on the number of new samples required. We still fix the
exploration policy but use the saved counts as a reward bonus
to the extrinsic reward policy.

Secondly, we note that in many real-life scenarios, the
action space will be continuous rather than discrete. There
are many continuous control domains, such as robotic ma-
nipulation or autonomous driving. Continuous action spaces
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are difficult since the number of states is infinite and an
exhaustive search is not possible. We explore how to extend
and evaluate intrinsic motivation methods to continuous
action spaces.

II. RELATED WORKS

A. Intrinsic Motivation

One approach to exploration in sparse reward environ-
ments is to define a form of intrinsic motivation for the
agent to augment the reward signal. There have been several
attempts in recent years to define different forms of intrin-
sic motivation. Some methods have used visitation count
bonuses [6], [9]. Others have used prediction error error of
some learned model [3], [8], [10], [11]. The C-BET paper
[8], whose method we extend and evaluate, notes that these
approaches are agent-centric (i.e. based on the agent’s belief)
and encourages also utilizing environment-centric ideas when
forming exploration policies.

B. Transfer

Transfer learning is the idea that agents should be able to
use their experience from previous environments to help in
their new environment. This could be a learned policy [12]–
[15] or new some pre-learned state representation [16], [17].
C-BET proposes approaching transfer in a task-agnostic way
by learning a task-free exploration policy that is transferred
to the new environment and used as a fixed bias to a policy
motivated by learning from an extrinsic reward. [8]

In the first part of this work, we examine whether it
is advantageous for the agent to transfer not only this
exploration policy but also a record of the change counts
to assist as a reward bump in the learning of the second
task-specific policy.

III. PRELIMINARIES

We consider the classic reinforcement learning formulation
governed by a Markov Decision Process (MDP). At each
time step t, the agent evaluates its state st, takes an action
at according to its policy π(a|s), the environment transitions
to a new state s′t, and the agent receives a reward signal rt.
The agent’s objective is to take actions such that it maximizes
its expected sum of rewards received during its episode. The
agent learns from its experiences to develop its policy π: a
distribution on actions given state, and its value function Q:
an estimate of the expected future reward given the state and
action.

An MDP can formally be described by a tuple:
(S,A, P,R, γ), where S is the state space, A is the ac-
tion space, P (s′|a, s) is a distribution that describes the
probability of the agent arriving in state s′ given that the
action a and previous state s, R(s, a) is a distribution on
the reward that the agent receives when taking action a in
state s and γ is a discount factor for determining the value
of future reward. The agent must balance what is known
as the exploration-exploitation dilemma. Since environment
dynamics are unknown, the agent must choose whether to
take explore (i.e. take actions to obtain more information

about its environment) or exploit (i.e. take actions that the
agent expects to provide the highest future reward given its
current knowledge of the world). The RL problem becomes
especially difficult when the rewards are sparse. This occurs
when the agent only gets reward at the end of a task, such
as winning a game or finding a location in a maze. Often
the state and action spaces are far too large to exhaustively
search and the agent still must decide how to explore with
a very faint (or no) reward signal.

IV. C-BET OVERVIEW

Change-Based Exploration Transfer (C-BET) works in
two phases. First, the agent learns an exploration policy
in a task-agnostic way from interacting in one or multiple
environments. Second, it transfers this learned exploration
policy to a new environment to assist in solving the new
extrinsic task.

During the pre-training phase, the agent learns an ex-
ploration policy πexp(a|s) = σ(Qi(s, a)) by seeking to
maximize its intrinsic reward. This reward is based on
two components: an agent-centric count of states and an
environment-centric count of changes between states when
the agent takes an action. The intrinsic reward is defined as

ri,t = 1/
√
N(c(s, a, s′))N(s′)

Where c(s, a, s′) is the change of a transition (s, a, s′) and
N is a (pseudo)count of changes and states. When a pseudo
count is needed, as in the case of continuous state spaces,
C-BET uses #Exploration [18] with SimHash [19] to map
images to hash codes and count their occurrences with a
hash table.

During the transfer phase, the agent fixes the the interest-
value function that it learned during pre-training Qi(s, a) and
and learns a new one Qe(s, a) from only extrinsic rewards. In
this phase, the policy is πtask(a|s) = σ(Qi(s, a)+Qe(s, a))
The idea here is that early on the agent will follow only the
interest-value function since extrinsic rewards are sparse but
as the agent collects more extrinsic rewards it will become
greedier with respect to the extrinsic reward value function.

V. CONTINUING INTRINSIC MOTIVATION AT TRANSFER
TIME

Our work considers what happens when, instead of only
learning from the extrinsic rewards at transfer, we continue to
learn from intrinsic rewards, but with a record of all of the
change counts from the previous pre-training environment.
The intuition for transferring the change counts specifically
is that the change counts represents how the environment
changes, so learning to maximize rare changes may make
the policy interested in interactive states/actions. If the agent
learns that pushing a button or opening a door is interesting,
the agent will want to remember it. In contrast, state counts
just tell the agent to visit different states. Since during pre-
training there is no reward, at transfer the agent may need to
revisit states the agent has seen during pretraining. If state
counts were stored, the agent would not revisit those states.
The interest exploration policy Qi(s, a) is still fixed and used
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as a bias but now our new value function Qi,e(s, a) will be
learned from the sum of the intrinsic and extrinsic rewards
rt = αri,t + βre,t where rit is the intrinsic reward at time t
and ret is the extrinsic reward at time t with alpha and beta
being hyper-parameters. In the intrinsic part of the reward,
the state counts are reset at the beginning of transfer to the
new environment while the change counts are transferred
from the previous environment.

VI. EXPERIMENTS

A. Experimental Setup

For evaluating the proposed extension of transferring the
change counts, we experimented in several MiniGrid envi-
ronments which are procedurally generated gridworlds. The
agent can move between discrete squares in the grid and
interact with objects such as keys, doors, boxes, etc. This
is an interesting setting for exploration because rewards are
sparse and often tasks can require many steps before the goal
is reached (e.g. move box, pickup key, use key to unlock
door, then find gold coin). In MiniGrid, there are many
environments of varying difficulties. The experiments that
were run to follow up on the MiniGrid experiments run in
the C-BET paper [8]. We repeat several of the experiments
performed but with the transferred state change counts and
learn the after transfer policy as based on the sum of the
intrinsic and extrinsic rewards to see how the agent performs.
The agent sees a 7x7x3 partial observation space where it can
see the 7x7 tiles in front of it. However, it cannot see behind
walls or doors or inside of boxes. The action space available
to the agent is discrete with seven actions: left, right, forward,
pick up, drop, toggle, and done. The change encoding is a
binary vector saying which parts of the state vector have
changed after an action a c(s, a, s′) := [s1 6= s′1, s2 6= s′2, ...].

First, the agent was pre-trained in three different en-
vironments: KeyCorridorS3R3, BlockedUnlockPickup, and
MultiRoom-N5-S5. This is where the agent learned its task-
free exploration policy and saved the counts of the state
change counts. Following this, the agent is transferred to
its next environment where we measure its performance
by the extrinsic reward it received for achieving the task.
The transfer environments used were Unlock, BlockedUn-
lockPickup, KeyCorridorS3R3, MultiRoom-N6, MultiRoom-
N12-S10, and ObstructedMaze-1D1h.

B. Experiment Results

The results were similar across environments so here
we present the results of only two of the environments:
BlockedUnlockPickup and MultiRoom-N6. In BlockedUn-
lockPickup, the agent must pick up the ball in front of
the door, drop it somewhere else, pick up the key, unlock
the door, and then open the box in the other room. In
MultiRoom-N6, the agent must navigate through six rooms
of maximum size ten and go to the green goal. The plots
shown here are of interactions per episodes (a metric of
exploration performance) of the agent after transfer as well
as the extrinsic reward received.

Fig. 1. BlockedUnlockPickup Interactions

Fig. 2. Blocked Unlock Pickup Extrinsic Return

Fig. 3. MultiRoom-N6 Interactions

Fig. 4. MultiRoom-N6 Extrinsic Return
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The results demonstrate that transferring the state change
counts does not improve performance on the extrinsic task
nor exploration as measured by interactions per episode.

VII. MOVING INTRINSIC MOTIVATION BEYOND
GRIDWORLDS: HABITAT 2.0

A. Initial Continuous Action Experiments

In Habitat 2.0, there are both discrete and continuous
state and action spaces. In the continuous setting, there is
a rearrange task where the agent is a Fetch robot as seen
in Fig. 6. The robot is placed in a room with a goal object
and clutter randomly spawned in 6 receptacles. The robot is
tasked with picking up the object and returning its arm to the
resting position using data from an RGB camera. The agent
takes actions in a 7-dimensional joint space and controls the
gripper using discrete grasp and release actions.

Fig. 5. A mobile Manipulator (Fetch Robot) in Habitat 2.0 performing
rearrangement tasks. Taken from Figure 1. of Habitat 2.0 paper [20]

B. Experimental Setup

For an initial experiment, we visualize the performance
of randomly exploring the action space by sampling actions
uniformly over the joint space at each step in the episode.
We consider two cases: when the robot begins each episode
in the same position in front of the object and also when
Gaussian noise is added to perturb the starting location of
the base position and angle. The Gaussian distributions have
a mean 0 and variances of 0.4 and 1.2 for the base position
angle respectively. Fig. 6 and Fig. 7 visualize the end-effector
position data for 10,000 episodes color mapped by time
with no noise added and noise added respectively. Dark blue
denotes the beginning of the episodes and red denotes the
end.

C. Results

Fig. 8 and Fig. 9 display a density plot of the end-effector
states that are visited over 10,000 episodes with no noise
added and noise added respectively.
Figures 6-9 show how challenging exploration is in real-
world problems. In RL, usually the agent starts by following
random actions in the hope to find rewards that will guide it.
However, Figure 8 and 9 show how meaningless a random
policy would be in a real scenario: the agent ends up visiting

Fig. 6. End-effector position of agent taking random policy with over the
joint space for 10,000 episodes colormapped by time (no Gaussian noise)

Fig. 7. End-effector position of agent taking random policy with over the
joint space for 10,000 episodes colormapped by time (with Gaussian noise)

the same states over and over, possibly failing to even
complete full trajectories due to hardware constraints. Fig
6 and 7 show that late-in-time steps always converge to the
center of the reachable area, and this is confirmed by the
density plots in Fig. 8 and 9. This highlights the need for
more intelligent exploration strategies.

Fig. 8. Density of states visited by random policy (no Gaussian noise)

D. Future Work with Continuous Actions

The work in Habitat 2.0 is still in very early stages. There
are several ideas that we have for where to proceed with
experiments. First, we would like to see how well C-BET
extends to the 7-dimensional continuous action space with
the discrete grasping action. In addition, when the code for
the end-effector and velocity controls is released, we would
like to try C-BET in the 3-dimensional end-effector action
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Fig. 9. Density of states visited by random policy (with Gaussian noise)

space with the discrete grasping action. We expect change-
based counts to be more effective than state-based counts, as
there are many states that involve the robot arm floating in
space and not interacting with the world. Finally, when Habi-
tat 2.0 releases Home Assistance Benchmark (HAB) [20],
their suite of higher-level tasks and actions, we would like
to test C-BET on that and compare it to other benchmarks.
For experimentation, we are considering both basic task-
agnostic exploration within the same environment as well as
pre-training and transfer between scenes. Additional inquiry
into transfer of counts and/or value functions could be worth
exploring in the new environment.

VIII. CONCLUSIONS

Sample efficient exploration and intrinsic motivation are
crucial to successful robot learning in the real world. There
are numerous applications in home assistance, medicine,
shipping, and countless other fields. We hope to begin
investigating how to effectively approach sample efficient
exploration in real-world settings.
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Multi-Modal Socially-Aware Imitation Learning for General Aviation

Jasmine Jerry Aloor1, Jay Patrikar2 and Sebastian Scherer2

Abstract— With an anticipated increase in aerial traffic in
the near future in the form of crewed air-taxis, aircraft, and
autonomous aerial systems, achieving safe human-operated and
independent vehicle coordination in shared airspace is crucial.
Current studies have investigated pedestrian and ground vehicle
trajectories in multiagent environments in great detail. How-
ever, these studies have not yet analyzed aerial trajectories.
There is a need to have safely separated aircraft in the vicinity
of airports that behave as required when entering and leaving.
This work takes a step forward to achieve safe manned-
unmanned vehicle operations while learning from each other.
A motion planning algorithm is developed using methods of
behavior cloning using the inputs of state, past trajectory,
and intent to determine the subsequent actions with a safety
system using human intervention. We use real-world aircraft
flight data as trajectories encoded as states, augmented with
the agent’s goal to generate optimal trajectories as future
actions. We discuss an assured-safety intervention learning
algorithm to expand the proposed approach to handle out-
of-distribution compounding errors. Our system incorporates
continuous learning allowing autonomous aircraft to integrate
into regular manned traffic flow safely.

Index Terms— Motion and Path Planning, Imitation Learn-
ing, Social Navigation, Aerial Systems

I. INTRODUCTION

The future of aviation will see a massive increase in the in-
tegration of low-altitude autonomous flying aircraft, air taxis,
personal air vehicles, and commercial urban aerial mobility
(UAM) systems. In an unstructured environment such as
one near non-towered airspace, this entails a high degree of
inter-aircraft interaction to remain safe and reason about the
potential intentions of each ‘agent.’ General Aviation (GA)
consists of all non-military, non-commercial civilian flight
operations and takes up the bulk of air traffic in uncon-
trolled airspace. GA pilots primarily use visual observations
of the path of other aircraft to detect, sense, and avoid.
Augmenting this with knowledge of aviation regulations,
current weather, and experience, pilots make predictions of
the path of other aircraft. Terminal Airspace describes the
airspace surrounding an airport, where aircraft converge and
also perform maneuvers such as descent and turns. Since
2018, the Federal Aviation Administration (FAA) has seen
an increase in the number of GA flight hours and a resulting
rise in GA accident rates [1]. Conflicts between aircraft
are common, and resolution involves direct pilot-to-pilot
communication. Traditional detect and avoid systems (DAA

1Jasmine Jerry Aloor is with the Department of Aerospace En-
gineering, Indian Institute of Technology, Kharagpur, WB, India
jasminejerry@iitkgp.ac.in

2Jay Patrikar and Sebastian Scherer are with the Robotics Institute,
School of Computer Science at Carnegie Mellon University, Pittsburgh, PA,
USA {jpatrika, basti}@andrew.cmu.edu
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Fig. 1: Summary of the approach: a) The social navigation
challenge for a pilot trying to land near a runway using
a rectangular pattern in terminal airspace. b) Our solution
involving imitation learning using trajectory and weather
information to output the next action required to be taken.

such as TCAS or ACAS-X) are designed for the en-route
phase of flight and try to prevent collisions rather than to
reach goals and are unable to process multiple streams of
information like vision and speech. Autonomous and crewed
aircraft are strictly separated, which also limits flexibility and
reduces the effectiveness of operations. In close vicinity of
other vehicles or obstacles, they cannot react and avoid them
to ensure safety.

Problem: Safe General Aviation Navigation: There is a
need to have safely separated aircraft coordination, planning,
and navigation in the absence of a centralized traffic control
tower in the vicinity of airports. Pilots are expected to be
socially compliant and follow the FAA guidelines to take
actions that are acceptable within a social context. Following
the basic rectangular traffic pattern reduces the possibility of
conflicts at airports without an operating control tower. As
the guidelines are not strictly enforced, there is scope for
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flexibility in each trajectory while maintaining separation.
With each aircraft having a specific goal, requiring to main-
tain safety and behave as expected when entering and leaving
the formation, this becomes a social navigation problem.

Solution: To develop solutions to social navigation, two
main directions have emerged in recent research: reinforce-
ment learning (RL) [2] and inverse reinforcement learning
(IRL) [3] based approaches. RL methods have a shortcoming
when the reward functions structure is not present that can
satisfy the requirements of navigation. Training in the real
world is difficult and expensive with new policies, especially
for safety-critical systems. Using a multi-agent simulator
presents the issue of accurately modeling human-like piloting
behavior for training a policy, which leads us to the initial
problem. On the other hand, learning from expert human
demonstrations using IRL and imitation learning (IL) can
attempt to provide a natural, human-like motion.

Sequential decision-making problems using IL leverage
the information of the next best action choice taken by an
expert to learn a near-optimal policy more effectively than
RL [4]. Imitation learning is a popular research direction
that uses supervised learning for decision-making. Here, a
policy is learned that imitates recorded behaviors, and the
simplest form is known as behavior cloning. We present a
novel trajectory planning method name that uses inputs of
state, past trajectory, and intent to determine the next actions
with a safety system using behavior cloning as our baseline
algorithm.

We use real-world GA aircraft flight data as trajectories
that are encoded as states, and the latent space augmented
with the agent’s goal generates the next actions to be taken.
We test the algorithm and learned policy to analyze the
limitations of the behavior cloning approach. The results
show that learning from demonstrations without interactive
learning leads to poor results. By applying expert human in-
tervention when the agent leaves a safe set, we aim to enable
safety by repairing bad actions and re-positioning waypoints.
Our approach has wide-ranging applications, from being a
smart co-pilot for the regular crewed operation to allowing
autonomous aircraft to safely integrate into regular manned
traffic flow safely.
Contributions: The main contributions of this work are
summarized as follows:

1) A curated set of dynamically feasible motion primi-
tives frequently observed in GA aircraft near terminal
airspace, generated and utilized for aircraft motion
prediction.

2) A trajectory planning method is developed that uses
information from agent-agent, agent-environment, and
agent-context interactions to generate next actions.

The organization of the remainder of the paper is as follows:
In Section II, we provide an overview of the methods used
in aircraft motion prediction, social navigation, and imitation
learning. In Section III, we introduce the approach, motion
primitives generated, and our algorithm. In Section IV, we
test our baseline model with selected metrics. In Sections

V and VI we outline future work using interventions and
conclude respectively.

II. RELATED WORK

Aircraft motion prediction: As the number of air taxis,
autonomous aircraft, and aerial mobility systems increases,
there exists a need to have an efficient operation in shared
airspace. Knowing the accurate trajectory models in the
vicinity of terminal airspace is essential to develop advanced
control technologies during close-proximity interactions. Pre-
vious works involved predicting motion by estimation of the
aircraft’s state and using dynamic equations to propagate
the estimate [5], combining different modes of operation to
generate a trajectory [6] and learning probabilistic represen-
tations from historical data [7], [8]. Recent research has used
Gaussian Mixture Models (GMMs) to learn aircraft trajectory
positions and deviations from intended behavior in terminal
airspace [9], [10].
Social navigation: Focusing on the prediction of a single
aircraft’s trajectory would leave out the information of inter-
action with multiple aircraft and the effects on all trajectories.
Socially compliant navigation that is focused on modeling
human pedestrian behavior and motion has been extensively
studied [11] where an S-LSTM model uses a ‘social pool’
layer connecting to every agent’s trajectory network to ac-
count for the inter-agent dynamics. Recent research [12], [13]
applies this to predict multi-aircraft trajectories.
Imitation Learning: With an increase in the collection of
expert demonstration data, many traditional imitation learn-
ing algorithms like behavior cloning have been developed
policies that mimic human experts’ directly [3], or via
feedback querying [14], [15]. DAGGER algorithm [16] is an
online sampling framework that trains their current policy
by collecting the correct action labels from the expert. As
the expert actions are aggregated, the algorithm trains a new
policy with significant improvement. However, it becomes
inefficient when querying at every state visited by the algo-
rithm that the expert would normally not visit, and the learner
keeps all control with the expert receiving no feedback. HG-
DAGGER algorithm [17] is an extension that allows selective
querying of the expert where the novice policy is rolled out
until it enters an unsafe region. The expert has full control
of the system and returns it to a safe and stable state-space
during which the expert action labels are collected. The
recent Expert Intervention Learning (EIL) algorithm [18]
learns the expert actions through demonstrations as well
as the timing of the correction. The policy minimizes the
querying of the expert over time and quickly learns the good
and bad states, thereby reducing the need for interventions.
However, these works do not provide a guarantee of the
safety of the system. We build on these to develop a learning
algorithm that makes decisions using expert data and discuss
future directions to the work.
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III. PROBLEM FORMULATION

A. Trajectory Data

This work uses the recently-released TrajAir1 dataset,
which is collected at the Pittsburgh-Butler Regional Airport
(ICAO:KBTP) [19]. KBTP is a single runway GA airport
located 10 miles North of the city of Pittsburgh, Pennsyl-
vania. Non towered airports have an airport traffic pattern
established for aircraft entering and leaving with specifi-
cations that include the direction and procedures. Airport
traffic patterns are rectangular-shaped, developed to ensure
that air traffic is flown into and out of an airport safely and
in an orderly manner. KBTP has Left Traffic patterns for
its runway, where all turns in the pattern are to the left.
The dataset trajectories are smoothed using B-spline (basis-
spline) approximate representation of order 2, an order k
B-spline is formed by joining polynomials of degree k − 1.

B. Approach

We model the multi-agent system as a sequential decision
making problem in continuous space, composed of A agents
(vehicles) that interact over T time steps. At time t, let xa

t =
(xat , y

a
t , z

a
t ) and φat denote the position and weather context

(taken as wind velocities) of the ath agent. Let x1:A
t1:t2 , φ1:At1:t2

and a1:At1:t2 denote the trajectories, context and actions over
a {t1, . . . , t2} time-horizon for all {1, . . . , A} agents in that
scene.

We formulate the problem as finding a distribution of fu-
ture actions â1:Atobs:tpred+tobs

conditioned on the past trajecto-
ries x1:A

1:tobs
and context φ1:At:tobs

, where, tobs is the observation
time window and tpred is the future time horizon (1).

â1:Atobs:tpred+tobs
∼ p(â1:Atobs:tpred+tobs

| x1:A
1:tobs

, φ1:At:tobs
) (1)

The action space A consists of a fixed library of 252 motion
primitives represented by xl

1:tobs
, where, xl

t = (xlt, y
l
t, z

l
t)

denote the positions of each trajectory in the library at
time t (see Fig. 4). Each action ait is a pre-defined control
and a sequence of resulting predicted trajectories aitobs =
(û1:A

1:tobs
, x̂1:A

1:tobs
).

1http://theairlab.org/trajair/
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Fig. 3: Trajectory Classification: The broad categories of
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turning (heading angle ◦) are plotted

C. Motion primitives

We consider a fixed-wing aircraft flying in three-
dimensional Euclidean space (Fig. 2). The kinematic equa-
tions (2) are used to calculate a set of trajectories in the
inertial frame.

ẋ = v cos γ cosχ (2a)
ẏ = v cos γ sinχ (2b)
ż = v sin γ (2c)

χ̇ =
uh

v cos γ
(2d)

where, (x, y, z) ∈ R3, v = ‖V‖ is the inertial speed and
the velocity vector V is a function of the inertial speed
(v), elevation angle (γ) and azimuth angle (χ). The lateral
acceleration is represented by uh, which is a function of the
aircraft’s bank angle, φ. We choose three broad categories
of motion

1) Steady Level flight
2) Steady Climb and Descent
3) Coordinated Turns (Right, Left)

We vary the velocities from 60-120 knots in steps of 20
knots, we choose the rates of climb and descents (ż) to
vary from {0,±250,±500,±1000} ft/min and set the bank
angles as {2◦, 7◦, 15◦, 27◦} to turn by {15◦, 45◦, 90◦, 180◦}
heading respectively over the chosen time-horizon. We clas-
sify the trajectories in the dataset into different climb rates
based on the start and end heights (δz/δt). We then match
the generated trajectories in the library with the trajectory
dataset to understand the types of motions encountered using
a weighted L2 Euclidean error distance over (x, y) points on
the entire trajectory. We represent the minimum value and the
matched library trajectories over all the scenes in L(xa

1:tobs
)

18



2 

7 

15 

27 

1000 ft/min 

500 ft/min 

250 ft/min 

(a) All turns: X-Z

2 

7 

15 

27 

(b) X-Y

2 

7 

15 

27 

1000 ft/min 

500 ft/min 

250 ft/min 

(c) Y-Z

2 

7 

15 

27 

(d) Isometric

Climb (60 kts) 

St (60 kts) 

St (80 kts) 

St (100 kts) 

St (120 kts) 

(e) Straight, Climb, Descent: X-Z

St (60 kts) 

St (80 kts) 

St (100 kts) 

St (120 kts) 

(f) X-Y

Climb (60 kts) 

St (60 kts) 

St (80 kts) 

St (100 kts) 

St (120 kts) 

(g) Y-Z

Climb (60 kts) 

St (60 kts) 

St (80 kts) 

St (100 kts) 

St (120 kts) 

(h) Isometric
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also has steady level flight plotted for velocities 80, 100, and 120 knots

and T (xa
1:tobs

) respectively.

∀
d∈D

L(xa
1:tobs

) = min
l∈{1...N}
s.t. żl

t=ża
t

( t2∑
i=t1

∑
j∈(x,y)

(wi[x
l(j)
i − xa(j)i ])2

) 1
2

(3a)

∀
d∈D

T (xa
1:tobs

) = argmin
l∈{1...N}
s.t. żl

t=ża
t

( t2∑
i=t1

∑
j∈(x,y)

(wi[x
l(j)
i − xa(j)i ])2

) 1
2

(3b)

where, (x
l(x)
t , x

l(y)
t ) = (xlt, y

l
t), wi is the weights applied

to the segments, N is the total number of trajectories in
the library and D is the number of scenes in the dataset.
The preliminary analysis showed the most frequent types of
motions observed were left and right turns, which is expected
from the traffic pattern to be followed near KBTP. We also
observe a low number of steady steep climb and descent rates
and no sharp turns with a steep climb and descent rates.

D. Model Details

We propose a behavior cloning algorithm that takes as
input the past trajectories of all the agents, along with the
weather context, to predict their possible action distribution.
The network uses a Temporal Convolutional Network (TCN)
to process the sequential trajectory data. TCN layers encode
a trajectory’s spatio-temporal information into a latent vec-
tor without losing the underlying data’s temporal (causal)

relations in the underlying data [20]. We use TCNs as an
alternative to using LSTMs [12] for encoding the trajectories.

We break the trajectories in a scene into sequences of
length tobs+tpred with a certain minimum number of agents
constant across each sequence. The number of agents can
change from sequence to sequence. For each agent in a given
scene, the raw trajectory in absolute coordinates is encoded
using the same TCN layers.

haobs = TCNobs(x
a
1:tobs

) ∀ a ∈ {1, . . . , A} (4)

where, haobs is the encoded vector of agent a. The encoded
information of the other agents is max-pooled to get a set of
representations of other agents with the greatest numerical
value.

h
a

obs = ∀b∈{1,...,A}6=a maxpool{hbobs} (5)

To include the environmental context, the raw context vector
for each agent is encoded using a standard CNN layer, and
the output is concatenated to the TCN encoded trajectories.

haenc = haobs⊕ h
a

obs⊕CNN(φa1:tobs) ∀ a ∈ {1, . . . , A} (6)

In the goal-conditioned network, we append the agent’s goal
as a one-hot vector representation of the final goal of a
particular agent as the eight cardinal directions along with
two runway ends. Finally, the output is passed through a
Fully Connected layer to get the correct dimension for the
predictions from the motion primitive library.

altobs:tobs+tpred
=MLP (haenc) (7)
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The Ltraj measures how close the predicted trajectory is to
the ground-truth trajectory using an L2 Euclidean distance
loss.

Ltraj = L2(xa
tobs:tobs+tpred

, x̂a
tobs:tobs+tpred

) (8)

The Lact measures how close the predicted action is to the
pre-processed matched action using a Cross-Entropy Loss
(CEL).

Lact = CEL(âatobs:tpred+tobs
, T (xa

1:tobs
)) (9)

For training, we use the Adam optimizer with a learning rate
of 1e− 4.

IV. EVALUATIONS AND DISCUSSION

We evaluate the trajectories on one set of 7 consecutive
days of data portion in the TrajAir dataset. To accurately
capture the dynamics of a particular motion in x-y-z coordi-
nates, we use tobs = 20 sec and tpred = 20 sec. We select
the action predicted from the trajectory library at tobs + 1
and match it with the trajectory followed by the agent in
that scene.

The evaluation metrics used are
1) Average Displacement Error (ADE): L2 Euclidean

distance over the entire trajectory
2) Weighted Displacement Error (WADE): Weighted end-

point L2 Euclidean distance over the whole trajectory.
3) Cross entropy loss (CEL): For the selection of right

actions from the library.

We use results for the best of N = 5 queries to the network
to record all the metrics (ADE/FDE/CEL scores).

Metrics ADE (m) FDE (m) CEL
Best Case 13.60 27.43 2.64
Failure Case 18.30 31.72 3.33

TABLE I: Evaluation metrics for the best case and failure
case observed in the test data.

Figure 7 shows the qualitative results for a right turn sce-
nario along with the X-Plane visualization. The x-y tracked
trajectory is shown on the top right, which is a segment
from the rectangular pattern followed by the agent in the
dataset. Figure 8 shows a failure case where the predicted
actions were in the opposite direction to the motion of the
agent, thus leading to an incorrect path. Table I shows the
quantitative results for the behavior cloning network.

V. FUTURE WORKS

Behavior cloning is known to require a large number
of expert demonstrations and, at the same time, deviates
significantly when encountered with out-of-distribution states
[3], [21]. A formulation similar to Inverse Reinforcement
Learning uses generative adversarial training to fit distri-
butions of states and actions. The algorithm, Generative
Adversarial Imitation Learning (GAIL) [22] learns policies
directly from data. We aim to incorporate GAIL-like methods
in our training along with goal conditioning as our next step.
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An aircraft pilot has multiple directives needed to follow
to navigate safely in an airspace. We seek to determine all
constraints and encode them appropriately to be included
while training our model. Approaches that can collect feed-
back interactively by querying the expert have been explored
[14], but can be impractical due to the algorithm querying in
states that are not natural for the human expert. Additionally,
the lack of full control to the expert causes a delayed
response. Another method is to provide the human expert
full control and the option to intervene when required, which
is more natural and provides the algorithm the additional
information of the ‘bad’ states to avoid and technique to
recover from it [17], [18]. We plan to build on this method
to use interventions from a supervisor to handle achieve safe
manned-unmanned vehicle teaming to improve the system
performance and have each teammate learn from each other
in different aircraft operations. When our agent goes out of
the safe zone, we will use the expert intervention to bring it
back to safety and update the learner algorithm.

VI. CONCLUSION

This work presents a model using imitation learning
for socially aware navigation of dynamical systems in the
general aviation domain. It also offers a curated set of
motion primitives for aircraft that are frequently observed
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in general aviation navigation. The current results for be-
havior cloning are good given the inputs of trajectory and
weather information. It is, however, the first step in the
aviation domain for social robotics and automation. There
is a great scope for improvement using interactive learning
and intervention-based methods that will be compared to our
proposed method.
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Class-Imbalanced Learning via Bilevel-Optimized Weight Decay

Shaden N Alshammari1, Yu-Xiong Wang2, Deva Ramanan3, Shu Kong3

Abstract— Real-world data tends to follow long-tailed distri-
butions: there are some common classes that have abundant
data while many rare classes that have scarce data. However,
performance on rare classes is often crucial in many real-world
applications. This motivates the well-studied class-imbalanced
learning (CIL) problem, which aims for high accuracy averaged
over the imbalanced classes. In CIL, a naively trained model
performs well on common classes but poorly on rare classes.
Popular solutions for emphasizing rare classes are based on
data resampling or loss reweighting. We explore the orthogonal
direction by balancing network weights via regularization for
CIL. Our motivation is based on the observation that a naively
trained model has imbalanced classifier weights w.r.t norms.
We first revisit weight decay, a popular regularizer adopted in
deep learning, and find that carefully tuning it notably improves
CIL, rivaling prior arts. Further, to avoid manually tuning
weight decay, we exploit bilevel optimization that automatically
tunes it during training. This allows for learning with per-
layer weight decays, achieving even better performance. Our
experiments on a popular CIL dataset show that learning with
bilevel optimization of weight decay achieves the state-of-the-art
performance.

I. INTRODUCTION

Real-world data often follows long-tailed distributions, e.g.,
class labels are imbalanced such that a few common-classes
have abundant data while many rare-classes have scarce
data [1]–[3]. However, high recognition accuracy on rare-
classes is often crucial in various real-world applications (e.g.,
cancer cell recognition and malicious internet content recog-
nition) [4]. This motivates the well-studied class-imbalanced
learning (CIL) [5]–[7], which evaluates classification accuracy
macro-averaged over all classes yet trains the model over
class-imbalanced training set.

Status quo. In CIL, a naively trained model performs
poorly on rare-classes because of scarce data in the rare-
classes [5], [8]. To emphasize the accuracy on rare-classes [9],
existing methods commonly adopt loss reweighting or data
resampling during training [2], [7], [10]–[12]. While it makes
sense to balance classes’ distribution or their impact on
training losses, doing so does not exploit training examples
properly. For example, oversampling rare-class examples
artificially form training batches consisting more such data,
as a result the trained model overfits to them and generalizes
poorly [5], [12], [13]. On the contrary, recent work shows that
decoupling feature learning and classifier learning performs
much better [14] – first learning deep features without using
any class balancing techniques, and then freezing the features
and learning the classifier using some balancing techniques.

1 Massachusetts Institute of Technology
2 University of Illinois Urbana-Champaign
3 Robotics Institute, Carnegie Mellon University

Other methods use transfer learning techniques that learns
features from common classes and repurpose them for rare-
class recognition [5], [15].

Motivation. Empirically, for CIL, a naively trained model
has imbalanced norms of classifier weights, as shown in
Figure 1. This motivates our CIL method that is to balance
network weights via regularizing their norms norms. More-
over, this observation is also noted in [6] which shows that
post-hoc normalization of classifiers boosts performance. Hy-
pothetically, post-hoc normalizing only the classifier weights
is insufficient for CIL because other layers are also biased
towards common classes in an implicit way. Therefore, in
this work, we propose an algorithm to regularize per-layer
weight decay to better regularize network weights.

Contribution. We propose to balance network weights w.r.t
norms through regularization in the training of the network.
One common regularizer is weight decay, as known as the L2

norm penalty. Weight decay encourages to learn small weights
and hence serves to balance network weights. Interestingly,
weight decay is underexplored in CIL. We revisit weight
decay and conclude that tuning it boosts CIL performance.
Furthermore, because tuning weight decay is nontrivial that
requires manual efforts, we adopt bilevel optimization to
automatically tune weight decay. Particularly, we propose
a simple Population-based Bilevel Optimization (PBO) ap-
proach to efficiently optimize weight decay parameters. Our
PBO allows training with per-layer weight decay that achieves
the state-of-the-art on on a popular CIL benchmark.

II. RELATED WORK

Class-Imbalanced Learning. Natural data tends to follow
long-tailed or imbalanced distributions. However, performance
on low-data regime is crucial in many real-world tasks [2],
[5], [16]. This motivates the well-studied class-imbalanced
learning (CIL) problem, which equally evaluates perfor-
mance on imbalanced classes. Many CIL methods emphasize
rare-class performance through loss reweighting and data
resampling [5], [10], [12]. Specifically, data resampling
focuses on modifying the training data to make it more
class balanced such as under-sampling common-classes [17]
and over-sampling rare-classes [12], [18]. Loss reweighting
focuses on emphasizing rare-classes in the loss function [5],
[7], [10], [19]. Transfer learning methods transfer knowledge
learned on the common-classes to rare-classes [20], [21].
Recent work examines the training procedure and find CIL
to be better addressed by decoupling feature learning and
classifier learning, rather than jointly training them [14], [22].
[23] find that the SGD momentum causes issues in CIL
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(a) per-class classification accuracy vs. class cardinality

(b) norms of per-class weights from the learned classifier vs. class cardinality

Fig. 1: Class-imbalanced Learning (CIL) trains a K-way classification network on class-imbalanced data, as shown by red
curve in (a). A naively trained model performs well on common-classes but poorly on rare-classes, as shown by the green
bars in (a). (b) A naively trained model has imbalanced classifier weights w.r.t norms: common/rare classes have large/small
weights. This motivates us to balance network weights during training for CIL. Our method regularizes network training
motivated to balance network weights. By doing so, “ours” improves long-tailed recognition for all classes, as shown in blue
bars in (a). (The figures are based on results on the long-tailed version of CIFAR100 dataset with imbalance factor 100.)

that prevent further improvement. We explore the orthogonal
direction of parameter regularization.

Regularization. For better generalization and alleviating
overfitting, regularization plays a crucial role in optimization
and learning [24]. There exist many regularization meth-
ods [25], [26], such as weight normalization [27], [28], early-
stopping [29], data augmentation [30], dropout [31], etc.
Among various constraints, weight decay, or L2-normalization
penalty on the parameters, is a common and effective
technique [32], [33]. In this work, we specifically explore
weight decay which encourages to learn small weights to
alleviate overfitting. This serves our intuition to balance
network weights in CIL. Furthermore, we explore bilevel
optimization methods to automatically tune weight decay
during training. This makes our approach distinct from the
common use of weight decay. We find learning with bilevel
optimized weight decay to outperform existing CIL methods
notably.

Hyperparameter Tuning and Bilevel Optimization. Tun-
ing hyperparameters is crucial to alleviate overfitting and
hence to learn more generalizable models. But hyperparameter
tuning is non-trivial in terms of striving for an optimal
balance of all regularizations [34]. It is common to assume

independent hyperparameters, e.g., only tuning weight decay
by fixing learning rates, batch size, augmentation, etc. Doing
so simplifies tuning: one can train models using each of
some predefined hyperparameter values, and select the best-
performing checkpoint via validation [35]. Such a tuning
method requires manual efforts and is sub-optimal. Therefore,
some work propose to use bilevel optimization to optimize
hyperparameters along with learning model parameters. The
typical criterion of optimizing hyperparameters is to maximize
the performance on the validation set [36], [37]. There are
different types of bilevel optimization on hyperparameter,
such as SGD-based methods [37], [38] and model-free search
based methods [35], [39]. Empirically, we find that the former
does not work, presumably because of the difficulty of bilevel
optimizing between low-dimensional hyperparameteres and
high-dimensional network parameters [37]. On the contrary,
the latter works well. In this work, we adopt model-free
bilevel optimization and contribute a new algorithm.

III. CLASS-IMBALANCED LEARNING WITH BILEVEL
OPTIMIZATION OF WEIGHT DECAY

Problem Formulation. Given a training set of class-
imbalanced data from K classes, Class-Imbalanced Learning
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(CIL) learns a K-way classifier and measures accuracy macro
averaged over all the K classes.

We are interested in training a deep neural network for
K-way classification. We denote the network as f(·;Q) with
M layers parameterized by Q = {θl}Ml=1, where θl is the
weights of layer-l. For a data example x, the network outputs
ŷ = f(x;Q) ∈ RK , a K-dimensional score vector. We
measure the difference between the ŷ and the ground-truth
one-hot y using a loss function `(ŷ, y), e.g., the cross-entropy
loss as used in this work. Denote U = {(xi, yi)}Ni=1 as the
whole training set that contains N examples, we minimize
the following to train f(·;Q):

Lerror(Q) =
1

|U|
∑

(xi,yi)∈U

`
(
f(xi;Q), yi

)
(1)

By learning f(·;Q) on the training set U , we hope it
generalizes well to unseen testing examples. That said, instead
of selecting a model that achieves the best performance on
the training set, we commonly use a validation set V to select
the best-performing checked point.

Weight Regularization. The model f(·;Q) trained by
minimizng (1) might not generalize well due to overfitting
to the training data. To alleviate overfitting, we adopt
regularization techniques such as weight decay. Furthermore,
for CIL, a network trained to minimize Eq. (1) has imbalanced
weights, as shown in Figure 1: classifiers have larger weights
on common classes w.r.t norms while smaller weights on
rare classes. This is because common classes have more data
that dominate the training thus yield large weights. We are
motivated balance network weights for CIL. Particularly, we
exploit the weight decay, as known as L2-norm regularizer.
Weight decay encourages learning small weights, and is
a common regularizer in deep learning. However, it is
underexplored in CIL – the literature of CIL simply fixes
weight decay to some values without tuning [40], [41] for
paper [42], [43]. We write weight decay penalty as below:

Lwd(Q,λ) =

M∑
l=1

λl||θl||22, (2)

where λl is the hyperparameter of weight decay on the weight
at layer-l, and λ = [λ1, λ2, . . . , λM ]. We train the network
f(·;Q) by optimizing Q to minimize LU = Lerror+Lwd over
the training set U

Q∗(λ) = argmin
Q

{
LU (Q,λ) ≡ Lerror(Q) + Lwd(Q,λ)

}
(3)

Here we write network parameters Q as a function over
wegiht decay hyperparameter λ. Typically, we use a single λ
to regularize the whole network parameters without varying
across layers, i.e., λ1 = λ2 = · · · = λM = λ. In our work,
we find that carefully tuning λ via validation drastically
improves CIL, as convincingly shown in Figure 3. However,
hand-tuning requires repeatedly training independent models
and selecting the best-performing model via validation. Such
costly manual efforts prevent using fine granularity of weight

Algorithm 1: SGD-Based Bilevel Optimization
initialize base model Q(0);
initialize base weight decay parameter λ(0) ;
learning rates αλ and αQ

for iteration t = 1, 2, . . . , T do
sample a batch of training data, denoted as B;
Compute LU (Q(t−1),λ(t−1);B) according to Eq.(3)
Q(λ(t−1)) = Q(t−1) − αQ∇LU (Q;λ(t−1),B)
sample a batch of validation data, denoted as G;
Compute the criterion LV (e.g., accuracy) on the val-set.
λ(t) = λ(t−1) − αλ∇λL

V(Q(λ(t−1));G)

Use λ(t) to compute LU (Q(t−1),λ(t)) and learn Q(t)

end

decays, e.g., per-layer weight decay, which is expected to
improve further. Intuitively, different layers need different
degree of regularizations: compared to low-level generic
layers, high-level layers are class-specific and hence need
stronger regularization. Therefore, we explore methods to
automatically tune weight decay for each layer.

A. Bilevel Optimization of Weight Decay for Class Imbal-
anced Learning

Recall that we typically tune hyperparameters via valida-
tion: we train independent models by setting λ as one of
candidate values, and select the “best-performing” checkpoint
with a validation set V measured by a criterion LV , e.g.,
classification accuracy macro averaged over all classes. This is
essentially a bilevel optimizatioin problem that has two loops:
the inner loop is training network parameters by minimizing
errors on the training data, and the outer loop optimizes the
hyperparameters by minimizing errors on the validation set.
A generic bilevel optimization performs the two levels of
optimization more frequently as below:

λ∗ = argmin
λ
LV(Q∗(λ))

subject to Q∗(λ) = argmin
Q

LU (Q)
(4)

Gradient Descent based Bilevel Optimization. One
straightforward approach is based on gradient descent [37].
Algorithm 1 depicts the pseudo code of this method. While
the idea is simple, the gradient descent based method does
not work empirically, presumably because of the difficulty of
bilevel optimization between low-dimensional hyperparame-
teres λ and high-dimensional network parameters Q [37].

Model-Free Bilevel Optimization. Model-free approaches
include grid search and random search [35]. Empirically, it
is trivial to parallelize model-free methods over computing
resources and they tend to perform well in practice [44],
[45]. We adopt model-free bilevel optimization in this work.
Next, we elaborate our population-based bilevel optimization
method.

B. Population-based Bilevel Optimization (PBO)

We propose a Population-based Bilevel Optimization
(PBO) method which is model-free. The essential idea is
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Algorithm 2: Population-based Bilevel Optimization
of a single λ

initialize base model Q(0);
initialize base weight decay parameters λ
define K candidate hyperparameters {α0, . . . , αK}
for iteration t = 1, 2, . . . , T do

// train with different λ values
for k = 1, . . . ,K do

λ← αk;
Qk ← argmin

Q
Lerror(Q

(t−1);U) + λ
∑M

l=1 ||θl||
2
2;

end
// select the best-performing model on

the validation set
k∗ ← argmin

k
LV(Qk;V)

Q(t) ← Qk∗

end

that, we (1) train a population of K models simultaneously
using K different hyperparameters λ ∈ {α1, . . . , αK}, (2)
periodically evaluate K checkpoints, (3) select the best-
performing one on the validation set and use it to reinitialize
all the K models that are being trained, (4) keep training
with the K different λ’s and repeat the above till the end of
training. Our method builds on a hypothesis that searching for
better and better weight decays during the whole course of
training yields better performance in the end. Our method is
conceptually similar to [46], which however only reinitializes
underperforming models; in contrast, our PBO method always
picks the best-performing checked point to initialize all other
models and continue training them. In Algorithm 2, we
illustrate our PBO algorithm for bilevel optimizing a single
weight decay hyperparameter λ. Extending the algorithm to
bilevel optimize per-layer weight decay is straightforward, as
described in Algorithm 3.

While the algorithms are simple to understand, we find
that, with a constant learning rate or a single learning
rate scheduler, our PBO method does not achieve better
performance; however, using cyclic learning rate schedule [47]
make PBO shine. Our observation matches the number
reported in [48]. Intuitively, cyclic learning rates help find
better local minima and hence better performance in the end.
We carry out ablation study on this point in the experiment
section.

IV. EXPERIMENTS

We carry out experiments to validate our Population-based
Bilevel Optimization (PBO) method for class-imbalanced
learning (CIL). First, we show the importance of tuning
weight decay for CIL. Second, we study the significance of
using cyclic learning rate in bilevel optimization of weight
decay with our PBO method. Third, we study PBO in learning
with per-layer weight decays. Finally, we benchmark our PBO
and compare against existing CIL methods. We start with
experiment setup.

Dataset and Evaluation Metric. We conduct experiments
using the long-tailed CIFAR100 dataset (imbalance factor as

Algorithm 3: Population-based Bilevel Optimization
of Per-Layer Weight Decay

initialize base model Q(0);
initialize weight decay λ = [λ1, . . . , λM ]
define K candidate hyperparameters {α0, . . . , αK}
for iteration t = 1, 2, . . . , T do

select layer j ∈ [1,M ]
for k = 1, . . . ,K do

λl ← αk

Q(k) = argmin
Q

Lerror(Q
(t−1)) +

∑M
l=1 λl||θl||22;

end
// select the best-performing model on

the validation set
k∗ ← argmin

k
LV(Qk;V)

Q(t) ← Qk∗

end

100) [49]. The dataset is a modified version of the original
CIFAR100 by reducing the number of training examples per
class such that it follows an exponential distribution. Each of
the training and validation datasets has 100 category classes.
Following the literature [49], we use the class-balanced
CIFAR100 validation set for evaluation; this does not affect
evaluation because we macro-average per-class accuracy as
the evaluation metric.

Implementation. We train a ResNet34 network [50] using
the cross-entropy loss (CE), SGD optimizer with momentum
0.9. We set batch size as 64 for all of the experiments. We
use the PyTorch toolbox in this work [51]. For training with
our PBO, we predefine six candidate λ values {5e-2, 1e-
2, 5e-3, 1e-3, 5e-4, 1e-4}. Unless noted, we train with the
cosine annealing learning rate scheduler that gradually decays
learning rates from 0.01 to 0 [52].

A. Ablation Study

Tuning Weight Decay Notably Improves Performance.
Weight decay is adopted in existing methods [10], [14] (also
refer to some released code [40], [41]). However, the literature
of CIL underexplores weight decay. Because weight decay
encourages learning small weights to avoid overfitting, it tends
to “balance” weights by squeezing all weights during training.
In this study, when training the classification network (using
the cross-entropy loss), we hand-tune a single weight decay
hyperparameter λ by setting it to some different values. With a
specific λ, we train each model for 320 epochs. Figure 2 plots
accuracy curves on the training and validation sets during
training with different hyperparameter values. Figure 3 plots
the classification accuracy on the validation set as a function
of hyperparameter λ. Clearly, manually tuning weight decay
boosts performance from 38.6% to 46.5%!

Learning with constant vs. bilevel optimized weight
decay. We compare the performance of learning with bilevel
optimized weight decay versus a constant weight decay. In
this study, we use our PBO algorithm to optimize a single
weight decay (rather than per-layer weight decay). Table I
compares the results. We can see that learning with bilevel
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(a) training accuracy (b) validation accuracy

Fig. 2: Accuracy on the training (a) and validation (b) sets by learning with different hyperparameter λ on weight decay terms.
When weight decay is too large (e.g., λ=5e-2), the model cannot learn well because the weight decay term dominates the
overall loss. On the other hand, when weight decay is too small (e.g., as small as zero), the model overfits to the training set
quickly and has poor generalization to the validation set. The sweet spot of λ is in the middle, e.g., λ=5e-3. We complement
this plot with Figure 3 that plots validation accuracy as a function of weight decay.

Fig. 3: Tuning weight decay notably improves classification
accuracy on the validation set. Specifically, on this benchmark,
we find that setting weight decay hyperparameter λ =5e-3
yields the best performance, 46.5%, while learning without
weight decay achieves 38.6%. Note that tuning weight decay
already rivals existing CIL methods, e.g., 38.32% at λ =2e-
4 [42], [43] (cf. code [40], [41]) and 44.10% at λ =1e-3 [23]
(cf. code [53]).

optimized weight decay matches the previous best-performing
model that is with manually tuned weight decay (λ=5e-3).
However, our PBO algorithm allows learning with per-layer
weight decay, which is expected to perform even better, as
studied next.

Cyclic learning rate vs. cosine annealing learning rate.
We study the effect of using different learning rate schedules
on our PBO algorithm: cosine annealing learning rate [52]
and cyclic learning rate [47]. Table II lists the results. We
can see that the two different learning rate schedules do not
make a difference when learning with constant weight decay,
but they do matter in our PBO that bilevel optimizes weight
decays which is also shown in Figure 4 (cyclic learning
rate yields better performance than cosine annealing learning
rate). We conjecture that the cyclic learning rate help training

TABLE I: CIL performance on the validation set by learning
with PBO of weight decay versus a single constant weight
decay. Here we use PBO to optimize a single weight decay
hyperparameter λ shared by all layers. For learning with
constant weight decay, we set λ=5e-3 which is the best-
performing model through manual tuning and validation. PBO
matches the the best performance achieved before; note that
PBO allows learning with per-layer weight decay, as studied
later.

constant WD PBO WD

46.56±0.16 46.73±0.40

escape current local minima and lands on some better local
minimas in the whole course of training.

B. Benchmarking Results

We benchmark our method by comparing against existing
CIL methods on this dataset. Table III lists detailed compari-
son. Clearly, CE, which learns without weight decay, only
achieves 38.50% accuracy; when hand-tuning weight decay
(λ=5e-3) we obtain much better performance 45.75%. In
contrast, training with our PBO achieves further improvement,
47.35%. Recall that our PBO method is orthogonal to any
existing CIL methods, e.g., τ -normalization which post-hoc
normalizes classifiers after training. The τ -normalization
notably improves the typical method, e.g., 47.73% by τ -
norm on top of a CE model compared to 38.50% by CE.
We can also apply the simple tau-normalization technique
to the classifiers learned with our PBO. This achieves the
record-breaking result 51.32%!

V. CONCLUSION AND FUTURE WORK

In Class-imbalanced learning (CIL), a naively trained
network has imbalanced class-specific weights norms. This
motivates us to address CIL via parameter regularization. To
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TABLE II: Learning rate scheduler is crucial in our PBO
algorithm. We compare classification accuracy (%) on the
validation set. When we train with a constant weight decay
λ=5e-3, it does not matter whether to use cyclic learning
rate or cosine annealing learning rate. However, it matters in
PBO: using cyclic learning rate consistently performs better
than cosine annealing learning rate. Intuitively, PBO requires
reinitialization and continually training the models, cyclic
learning rate helps escape current local minimas and land on
better local minimas. In this study, we use PBO on the top
one/two layers (weight decay at other layers is set to 5e-3)
because we find it does not improve further when used on
the rest of layers, presumably because top layers are more
class-specific that needs sophisticated regularization.

Method Cyclic-LR Cosine-LR

constant WD (λ=0) 38.45 38.50
constant WD (λ=5e-3) 46.25 46.35

PBO with single λ 46.21 41.25
PBO on the last layer 46.79 46.52
PBO on the last two layers 47.35 46.17

TABLE III: Top-1 accuracy (%) on the validation set of
CIFAR100-LT (where the imbalance factor is 100). Compared
with a naively trained model using cross entropy loss (CE) that
achieves 38.50%, tuning weight decay (WD) notably improves
accuracy (i.e., CE+WD), achieving 45.75%. Learning with
PBO algorithm boosts accuracy to 47.35%. Because our PBO
algorithm is an orthogonal method to existing ones, we further
adopt the τ -normalization atop of the classifiers learned with
PBO, yielding the best performance 51.32%.

Method Validation Accuracy

CE 38.50
CE+CB [10] 39.60
KD [54] 40.36
LDAM-DRW [5] 42.04
BBN [22] 42.56
LogitAjust [55] 42.01
LDAM+SSP [16] 43.43
Focal [56] 38.41
Focal+CB [10] 39.60
De-confound-TDE [23] 44.10
CE with τ -norm [6] 47.73

CE+WD (λ =5e-3) 45.75
PBO 47.35
PBO with τ -norm 51.32

Fig. 4: In our PBO algorithm, using a cyclic learning rate
(dotted curves) performs better than cosine annealing learning
rate. In each cycle (which consists of 40 epochs), the model
achieves a local minima and escape it in the next cycle which
yields to a better local minimas eventually.

do so, we propose the population-based bilevel optimization
method to optimize per-layer weight decays during training.
Our experiments show that learning with bilevel-optimized
weight decay achieves the state-of-the-art on the CIFAR100
long-tailed benchmark.

Future Work. While weight decay squeezes network
weights towards small values, the (per-class) filter weights are
still imbalanced. We are motivated to explore regularization
on per-filter weights. We expect our PBO algorithm on weight
decay to be also applicable to tuning per-filter weights for
better CIL.
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An Affordable and Accessible Educational Manipulator

Samuel C. Alvares1, Pragna Mannam2, Oliver Kroemer2, Zeynep Temel2

Abstract— Educational robots provide an engaging platform
to teach students interdisciplinary skills and inspire them to
pursue careers in STEM. Currently, most educational robots
are wheeled. These platforms can be effective at introducing
engineering and coding concepts to a wide range of students
when provided at a low cost and with educational resources.
An alternative perspective to developing an educational robot
is a manipulator, or a stationary robot that can interact with
its environment. Traditionally used in factories, manipulators
were expensive and unsafe for an educational setting. Current
technologies allow us to 3D-print manipulators from soft
materials so that they are safe for student use and low cost. To
progress towards a safe, affordable, and accessible manipulator
for educating students 12 to 18 years of age, we present DeltaZ.
Unlike a traditional wheeled robot, DeltaZ sits on a desktop
and introduces students to the ideas of kinematics, sensing,
and manipulation. This delta-style robot has three translational
degrees of freedom and closed-form kinematic solutions which
make manipulation problems more intuitive compared to other
manipulators. Clear instructional resources are provided with
various learning stages to engage students from a novice to
advanced roboticist. Open-source 3D-printable designs and
code are made available to the public to modify, improve
and share back to the community. Open-hardware designs,
open-source code, and educational materials are available at
https://github.com/alvaresc/DeltaZ.

Index Terms— Education Robotics, Parallel Robots, Com-
pliant Joints and Mechanisms, Additive Manufacturing, Soft
Robot Applications, Flexible Robotics, Kinematics

I. INTRODUCTION

Robot manipulators consist of a series of bodies intercon-
nected by articulated joints and have a means for performing
a task [1]. Not only are manipulators effective at replacing
humans in dangerous or repetitive tasks, they are becoming
increasingly important in minimally invasive surgery [2],
working in space [3], and even collaborating with humans
[4]. It is important to inspire today’s youth to engage in
STEM learning and continue development in fields such
as manipulation. Educational robots are becoming more
prevalent in the classroom [5] and are an effective means to
engage students in learning STEM subjects such as robotics,
computer science, electrical engineering, mechanical design,
and mechatronics. Most educational robots are wheeled [6]–
[9]. These robots can explore their environment via remote
control or autonomously with sensors, and some even have
trainings and certificates for teachers to better adopt these

1S.C. Alvares is with the Robotics Institute Summer Scholars at
Carnegie Mellon University, Pittsburgh, PA 15213, USA and also with
Rose-Hulman Institute of Technology, Terre Haute, IN 47803, USA
alvaresc@rose-hulman.edu

2 P. Mannam, O. Kroemer, and Z. Temel are with the Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA 15213, USA {pmannam,
okroemer, ztemel} @andrew.cmu.edu

Fig. 1: The mechanical design of DeltaZ. The upper part
of the robot enclosures all motors and electronics and is
supported by a tripod base. The 3D-printed soft delta compo-
nent (white) has flexible joints that enable to robot to move
similarly to a rigid robot.

robots in the classroom [10]. With clear educational goals
and unifying concepts, educational robots can be an ef-
fective tool to teach STEM principles and give students
the confidence to pursue STEM-related careers. There are,
however, few affordable educational robots that introduce
students to the ideas of manipulation. This is because most
manipulators are too dangerous, expensive, or complicated
to be viable for teaching middle or high school students.
Recent technologies have allowed us to fabricate low-cost
manipulators using flexible, 3D-printed materials [11]. Based
on this work, DeltaZ, shown in Fig. 1, presents a key step
towards an affordable, accessible, manipulator-style educa-
tional robot geared towards students 12 to 18 years of age.
The robot uses key physical parameters from [11] but offers
an improved mechanical design and is tailored to a learning
environment. Its design features a modernistic, 3D-printed
enclosure for electronics and safe, 3D-printed, flexible joints.
Due to its three translational degrees of freedom, DeltaZ
provides a straightforward platform to introduce students to
the fundamental ideas associated with manipulators including
setup, kinematics, manipulation, and sensing. This robot also
has open-source software and hardware which encourages
communities of users to share ideas and collaborate on
improving the overall design and functionality of the robot
[12].
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II. RELATED WORKS

An engaging way to teach students about STEM-related
topics is through educational robots; previous work has
demonstrated the effectiveness of such robots in education.
One study on 23 seventh grade students showed that robotics
activities led to an increased interest and higher self-efficacy
in STEM tasks [13]. Thus, being exposed to robotics in
high school or college may give students the confidence
to pursue STEM-related classes and careers. Another study
investigated the impacts of educational robotics on technical
and social skills [14], and it showed that students who
worked with robotics in middle and high school not only
improved their technical skills in areas such as math and
programming, but users had more positive views on STEM
fields. In addition, students who worked with robotics in
their education demonstrated improved soft skills such as
teamwork. Other work is being done to investigate additional
benefits of robots in classrooms such as boosting female
involvement in STEM [15]. Certain educational robot man-
ufactures, such as Thymio, are placing a special emphasis
on creating gender-neutral designs to boost the inclusivity of
their products [7]. Thymio also boasts low costs and multiple
coding environments to appeal to a wide range of users.

There are a number of successful, low-cost, open-source
educational robots. Hapkit is an example of an educational
robot that promotes open-hardware design and even provides
training on how to customize their hardware in a free CAD
software [16]. Other open-source educational robots include,
among others, the Edison [9], Finch [8], and Thymio [7].
These robots, like most educational robots, are wheeled
and teach robotics concepts such as coding, sensing, and
autonomous navigation. Manipulators, although common in
industry, are under-represented in educational robots. Elenco
manufactures two low-cost educational robot manipulator
kits. The HydroBot [17] is a hydraulic robot manipulator,
and the Wire Controlled Robot Arm [18] is a serial manip-
ulator controlled with motors. These robots are marketed to
teach STEM though hands-on activities. There are, however,
few other low-cost educational manipulators available. The
European Lab for Educational Technology provides a more
thorough review of available educational robots [19].

Certain challenges exist with incorporating robots into
educational programs. In particular, many robots lack the
educational materials necessary to prepare both students
and teachers to adopt a robot in a class’s curriculum [19].
VEX robotics is tackling this problem by hosting in-person
teacher training courses and certificates in robotics [10].
VEX educational robots do, however, have a higher price
point compared with other competitors such as Thymio,
Finch, and Edison, which limits accessibility. [20] points
out key actions to increase robot usage in the classroom,
including the need for educational robot workshops at one of
the main robotic conferences as well the need for government
implementation of widespread robotics curricula.

Soft, delta-style robots have excellent potential for use as
an educational tool due to their high performance, low-cost,

TABLE I: Stakeholders and their perspectives in terms of an
educational manipulator robot.

Stakeholder Perspective

Middle and high
school students

Want to be engaged and challenged, pre-
fer a straightforward fabrication, setup,
and assembly process

Middle and high
school teachers

Want to inspire students and teach with
technology, value low cost and clear edu-
cational materials

Independent STEM
organizations

Want to increase student involvement in
STEM and inspire future scientists, want
a durable robot

The present lab Wants to develop a platform that helps
students engage in STEM, placing an em-
phasis on affordability and accessibility

inherent safety, and intuitive motions. Delta-style robots have
base mounted motors and parallel geometry that allow for
fast and accurate motions with relatively small and low-
cost motors [21]–[23]. Previous work has been done to
develop a 3D-printable soft delta robot design which mimics
the kinematics of the rigid counterpart [11], [24]. TPU
(thermoplastic polyurethane) 95A, which is used to 3D-print
low-cost soft delta robots in [11], [24], is compliant and safe
for student use. In addition, a closed-form kinematic solution
and three translational degrees of freedom make the robot’s
motions intuitive compared to other manipulators such as the
previously mentioned Elenco robot arms [17], [18].

DeltaZ builds upon the previous work of [11] in which
a 3D-printed, soft, delta-style robot was initially designed
and evaluated using revolute actuators. Using key physical
parameters from the original work, we improved upon the
mechanical design of a soft, delta-style robot by making it
more conducive for a learning environment. In particular,
mechanical connections were made more durable and reliable
for educational use. Also, an encasement was designed to
house all electronics and motors. A universal end-effector
attachment allows a variety of manipulation tasks to be
achieved, making the robot more engaging for students. In
addition to hardware contributions, software resources in-
clude a user-friendly GUI, educational materials and videos,
and an Arduino library to handle forward and inverse kine-
matics based upon related work [23]. The design of DeltaZ’s
hardware and software are tailored for educational use.

III. METHODOLOGY

The design of DeltaZ’s software and hardware was derived
from stakeholder needs and perspectives. Since DeltaZ is
primarily be used as an educational tool, main stakeholders
include middle and high school students and teachers. Other
stakeholders include independent STEM organizations and
the present research lab. Members of all stakeholder groups
were interviewed with a common set of questions. A sum-
mary of stakeholder perspectives is shown in Table I.

From the stakeholder perspectives, we identified 6 primary
needs. In order of importance, DeltaZ needs to be:
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1) affordable
2) accessible
3) engaging
4) educational
5) easy to fabricate, setup and assemble
6) durable.
Low cost is critical to making DeltaZ available to a broad

range of users. Other successful low cost manipulators such
as Thymio, Edison and Finch cost $189, $49, and $139,
respectively, so we establish low cost in this context at around
$100 to $200 [7]–[9]. We target DeltaZ to have a cost of
under $100 which will allow a classroom set of 10 robots to
be purchased for under $1000.

A focus on accessibility, in terms of obtaining, using, and
learning, is important to make the robot as inclusive as pos-
sible. We target having open-source software and hardware
which allows anyone to use and modify existing hardware
or software for free. Designs should be approachable and
inclusive for users. For the mechanical design, we target
gender-neutrality which can be achieved through color and
a minimalistic design with a mix of curved and sharp edges.
Also, user interfaces should be made approachable with
color and intuitive controls. Presenting educational materials
in both written and video format makes learning more
accessible to those with different leaning styles. Also, video
subtitles make educational videos accessible to a wider range
of users.

Engagement is important to encourage students to operate
and learn using DeltaZ. Since students 12 to 18 years of
age have a large range of experience levels, DeltaZ should
be educational for students who are early beginners to those
who are experienced roboticists. One way to achieve this
is to have various learning stages of increasing difficulty.
In this way, the barrier to entry is low for beginners, and
advanced students will be challenged in the final stages. A
user experience study could provide feedback to quantify
how engaging the robot really is. We are targeting a large
majority of over 75% positivity on a simple feedback survey
which asks users to rate the positivity of their experience
with DeltaZ on a scale from 1 to 10.

DeltaZ is an educational robot and needs to convey
fundamental topics in manipulation such as setup, assembly,
forward and inverse kinematics, manipulation of the environ-
ment, and sensing. Resources such as educational videos to
accompany written materials, references for further learning,
as well as options for creative learning can increase the
educational value of the robot. Videos, which address visual
and auditory learning styles, enhance the instructive abilities
of the robot. Also, hands on demonstrations help convey the
main learning objectives. References for further learning will
allow students to expand their knowledge in areas of inter-
est. Multiple stakeholders mentioned the need for ”creative
learning” in which users would have the opportunity to dive
deeper into materials by devising their own unique solutions
to open-ended design problems.

A positive user experience is promoted by simple and
straightforward assembly, fabrication, and setup processes.

TABLE II: DeltaZ needs mapped to target specifications

Need Target

1) Affordable a) total cost under $100

2) Accessible a) open-source software/hardware
b) gender-neutral design

3) Engaging a) >75% positivity on survey
b) multiple learning stages

4) Educational a) educational videos provided
b) references for further learning provided
c) options for creative learning

5) Easy to fabricate,
setup and assemble

a) <50 components
b) build time <50 minutes

6) Durable a) >5000 cycles in endurance test

A simple design with clear instructions can benefit a user’s
experience during these steps. A typical high school or
middle school class is at least 50 minutes long. To allow
the robot to be built in one class period, 50 minutes is
set as the upper target on mechanical build time. Assuming
that each component takes about 1 minute to install, we are
targeting to have a design with under 50 total components.
Also, 3D-printing allows custom parts to be fabricated easily
and affordably.

Durability is given the lowest importance because the
robot will be primarily 3D-printed, so the user can reprint
damaged or worn components. However, it is important that
the robot can withstand the stresses of a learning environment
without frequent repair or maintenance. An endurance test is
used to quantify the durability of the robot. One endurance
cycle is completed when the robot travels to the top and
bottom of its workspace as well as around the circumference
of its workspace. Roughly, we expect the robot to go through
50 cycles each time the robot is used. If an individual were
learning with DeltaZ, he or she may use the robot 5 times
per week over the course of a month. If the robot were to
last 5 years, then the robot would need to endure at least

50 cycles
use

· 5 uses
week

· 4 weeks
month

· 5 years = 5000 cycles.

Target metrics, which are established to objectively assess
the performance of the robot’s design, are summarized in
Table II with the associated robot needs. DeltaZ’s designs
are driven by the established metrics.

IV. DESIGN

Affordability and accessibility, in addition to other criteria
discussed in Section III, are central to the design of DeltaZ’s
hardware, software, and educational materials.

The overall mechanical design of DeltaZ is shown in Fig.
1. Inclusivity of the mechanical design was achieved through
a low-cost, gender-neutral design, and simple fabrication and
assembly processes. The base cost of the robot is affordable
compared to similar low-cost educational robots, at around
$46. Depending on the user’s needs and abilities, various
sensors or add-ons can be purchased to expand upon the
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Fig. 2: The soft delta component of DeltaZ can be 3D-printed
with 4 central holes to attach a variety of end-effectors using
M3 screws. This component bolts to the rigid forearms via
the outer 3 holes.

Fig. 3: Examples of how DeltaZ can interact with its en-
vironment in a useful or entertaining way including: (A) a
hook end-effector picking up a weight, (B) stamping a letter
with an ink pad and a rubber stamp, and (C) drawing with
a colored pencil.

base robot. The mechanical design is intentionally gender-
neutral as to not preclude user groups. Specifically, DeltaZ
is minimilistic in its design, and it features a variety of
curved and sharp edges to not appeal to one gender in
particular. In terms of fabrication, all custom components
are 3D-printed. The rigid components of the robot, shown
in black in Fig. 1, are 3D-printed from PLA, and the white
component in Fig. 1, referred to as the soft delta, is printed

Fig. 4: (A) DeltaZ, with a 3D-printed boot attachment, winds
up to kick a soccer ball. (B) DeltaZ kicks the ball into the
goal.

from a flexible material, TPU 95A, as in [11]. 3D-printing
the soft delta with TPU is affordable and accessible to anyone
who has access to a 3D-printer. Even if an individual does
not have access to a 3D-printer, 3D-printing services such as
CraftCloud [25] will print any or all of the components. The
soft delta is 3D-printed as one piece, reducing the number of
components and assembly steps. DeltaZ is made of 42 total
pieces, including individual screws, all of which are screwed
or bolted together. A video on DeltaZ’s website walks users
through the assembly process. The time to assemble DeltaZ’s
42 components varies based upon the users experience level.
More experienced users can assemble the robot in under 30
minutes, but other users may take up to 50 minutes. DeltaZ
is durable and is rated for 5 years of regular classroom usage
as it passed a 5000 cycle endurance test.

The functionality of DeltaZ is enabled by its three trans-
lational degrees of freedom. To leverage this movement and
teach the ideas of manipulation, the soft delta design allows
various end-effectors to be attached using an array of small
bolts, as shown in Fig. 2. Fig. 3(A), Fig. 3(B), and Fig. 4
provide examples of DeltaZ completing manipulation tasks
with 3D printed end-effectors. As shown in Fig. 3(C), an
alternative design of the soft delta component of DeltaZ
allows for a colored pencil to be inserted for drawing. Users
are instructed on how to use TinkerCAD, a free online CAD
software, to design custom end-effectors for DeltaZ. With
this knowledge and some user creativity, there are limitless
manipulation tasks that DeltaZ could achieve.

DeltaZ’s software also promotes accessibility, ease of use,
and benefits the educational goals of the robot. DeltaZ’s
software package includes an Arduino library to handle
forward and inverse kinematics, a communications function
to handle messages, and a graphical user interface (GUI) to
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Fig. 5: The DeltaZ GUI which allows users to control the robot using either forward or inverse kinematics and see a stick
model of the robot’s pose in real time. Users can also save positions, configure the workspace, or even code their own own
special functions in Arduino and run them from the GUI.

send commands to the robot and display its state. DeltaZ’s
GUI, shown in Fig. 5, allows movement of DeltaZ without
any text coding input from the user. Thus, those who have no
coding experience can learn about manipulation with DeltaZ.
The Arduino platform allows individuals with more coding
experience to develop their own text code in Arduino’s
simple and open-source coding environment. The GUI allows
users to control the robot by setting x-, y-, and z-positions
or by setting the joint angles of the robot. Therefore, it
is intuitive to teleoperate the robot and to learn forward
and inverse kinematics with DeltaZ. The workspace of the
robot can be adjusted to prevent crashes when using various
attachments. Other functionalities of the GUI include saving
positions and a stick figure which updates pose in real-time
with physical robot.

DeltaZ provides written and video-based educational ma-
terials with a central theme of manipulation. The learning
stages are: materials, building, setup, moving, manipulation,
and sensing. In the materials and setup sections, users are
given a linked bill of materials and instructions to setup
the robot’s software. Users are introduced to forward and
inverse kinematics concepts and how to operate the GUI
in the moving stage. The manipulation section of DeltaZ
walks students through various manipulation examples and
provides a short design overview so users can create their
own end-effectors. The final lesson of DeltaZ involves sens-
ing and analog inputs. Instructional materials are provided
on how to connect various inputs, such as a potentiometer,
a force sensitive resistor, and a joystick, to control the
position of the robot. The user is tasked with combining
multiple inputs to add intelligence to the robot. At least one

TABLE III: DeltaZ needs mapped to target specifications

Target Evaluation

1a) cost <$100 Met: base cost is $46

2a) open-source Met: open-source software/hardware
2b) gender neutral Met: gender neutral design

3a) positivity score Undetermined: see Future Work
3b) multiple stages Met: 6 total stages of increasing difficulty

4a) educational videos Met: 7 educational videos
4b) learning references Met: references provided for further learning
4c) creative options Met: incorporated creative learning

5a) <50 components Met: 42 components
5b) build time Met: build time around 30 minutes

6a) endurance test Met: >5000 endurance cycles completed

video is provided for each learning stage of DeltaZ, and all
videos have subtitles to make them more accessible. The
sections of DeltaZ increase in difficulty so that beginning
and advanced users can gain from their experience with
DeltaZ. Also, there are a variety of open ended design
challenges and many references provided to contribute to the
learning and inspiration of users. The 6 lessons of DeltaZ,
videos, and open-source software and hardware are located
at https://github.com/alvaresc/DeltaZ.

A summary of the performance of DeltaZ’s software and
hardware designs in terms of established target metrics is
shown in Table III. Although initial user experiences have
been positive, more in depth user experience studies needs
to be conducted.
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V. DISCUSSION AND CONCLUSION

DeltaZ is an educational robot that is affordable, accessi-
ble, and engaging for middle- and high school-aged students.
It addresses science, technology, engineering, and math in
an exciting and engaging manner, and it aims to introduce
students to key ideas in manipulation. DeltaZ is for a broad
range of students from someone who has never interacted
with a robot to a fourth-year high school robotics student.
After identifying and interviewing stakeholder groups, we
ranked needs for the robot and determined metrics to assess
the effectiveness of the design. DeltaZ’s low cost, free
software and designs, and simple instructions reduce the
barrier to entry. Various learning stages teach principles such
as forward and inverse kinematics, manipulation strategies,
and sensing. Distinct learning stages with written and filmed
materials make DeltaZ engaging and educational. The joints
of the robot are printed from a flexible material, TPU, making
the design affordable and accessible to anyone who has
access to a 3D-printer, or a 3D-printing service. Overall,
user experiences with the robot have been positive. DeltaZ
is a robot that has the potential to inspire future scientists
and engineers, and it provides a unique platform for an
educational robot which is affordable and accessible.

VI. FUTURE WORK

Among the key aspects for the future development for
DeltaZ are to conduct more in-depth user experience surveys,
to implement closed-loop position control by sensorizing the
robot, and to refine the educational resources. The DeltaZ
platform allows users to expand upon the robot in any
way that they find interesting including modifying existing
designs, designing new components and end effectors, pro-
gramming new functionalities, and then to share this work
back to the community. Future revisions of DeltaZ will take
these contributions into consideration. We hope to continue
increasing the accessibility of DeltaZ by implementing fea-
tures to improve user experience for people with disabilities.
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Synthetic Data Generation for the Natural Language Component of an
Artificial Social Intelligence Agent

Ryan Aponte1, Aishwarya Jadhav2, Joseph Campbell2, Dana Hughes2, and Katia Sycara2

Abstract— This paper describes a data synthesis method used
to improve the feedback of an artificial social intelligence (ASI)
agent as part of the Artificial Social Intelligence for Successful
Teams (ASIST) project. We use Natural Language Processing
(NLP) to understand and predict transcribed speech for the
agent. Currently, human teams may make errors due to the
chaotic nature of disasters. An artificial social intelligence agent
can assist human teams by recognizing and correcting these er-
rors. The agent uses a Theory of Mind (ToM) to model humans
in a simulated search-and-rescue environment; it estimates the
state of a participant’s mind to make predictions about actions.
The communication analysis module, a competent of the agent,
labels human utterances with a hierarchical coding scheme.
These labels help update the agent’s ToM models of the humans.
The ASIST project collects data from a simulated search-and-
rescue environment in Minecraft. The communication analysis
module is trained with human subject transcripts from the
Minecraft environment which are then coded and prepared to
be merged with message bus data. Due to significant limitations
in collecting data for the project, data synthesis techniques are
discussed.

Index Terms— human performance augmentation, agent-
based systems

I. INTRODUCTION

Humans use a Theory of Mind (ToM) to infer the mental
states and make predictions about other humans [1]. This is
considered a theory due to the state of another individual’s
mind not being directly observable and because the ToM
makes predictions [1]. A simple use of a ToM is to provided
as an example.

Maxi eats half his chocolate bar and puts the rest
away in the kitchen cupboard. Then he goes out to
play in the sun. Meanwhile Maxi’s mother comes
into the kitchen, opens the cupboard and sees the
chocolate bar. She puts it in the fridge. When Maxi
comes back into the kitchen, where will he look for
his chocolate bar? [3]

Maxi will look for the chocolate bar in the cupboard, since
this is where Maxi left it [3].

Recognizing and understanding verbal communication is
valuable for a ToM. When verbal communication is used,
the ASI agent has an opportunity to update its ToM. For
example, person A may tell person B that a victim has been
found in room 203. At this point, the ASI agent should

1Ryan Aponte is with the Herbert Wertheim College of
Engineering, University of Florida, Gainesville, FL 32611, USA.
aponte.ryan@ufl.edu

2Aishwarya Jadhav, Joseph Campbell, Dana Hughes, and Katia Sycara
are with the Robotics Institute, Carnegie Mellon University, Pittsburgh, PA
15213, USA. {ajadhav2@,danahugh}@andrew.cmu.edu,
jcampbell@cmu.edu, sycara@cs.cmu.edu

update its ToM to recognize that person A and person B
are aware of the victim in room 203.

The ASIST project works to provide artificial agents with
ToM models to understand the behaviors of individuals and
teams [4]. State-of-the-art language models may be trained
on tens of terabytes of data [5]. Trials for the ASIST
project are expensive, limiting the quantity of language data.
Additionally, the speech of participants in the trials may be
unclear, participants may speak over one another, and partic-
ipants may unintentionally mute their microphones, reducing
data quality. Once data are collected, they must be labeled
by hand, a time consuming process. Data augmentation can
mitigate these issues.

II. RELATED WORK

A. Theory of Mind

Humans as well as chimpanzees are believed to have a
ToM. If a ToM is not unique to humans, one may be more
inclined to extend it to machines. This has been defined as:

An individual has a theory of mind if he imputes
mental states to himself and others. A system of in-
ferences of this kind is properly viewed as a theory
because such states are not directly observable, and
the system can be used to make predictions about
the behavior of other. [1]

With a ToM, humans communicate efficiently and adapt
their speech to the listener or listeners. As a result of this,
a ToM is important for communicating with a human or
team of humans, since it enables adaptation to the listener.
A human recognizing and correcting a misunderstanding
regarding a communication is one application of a ToM
[2]. Human ToM models may reflect high-level beliefs, but
their utility is measured by the ability to make predictions
and plan. A machine theory of mind may use a different
underlying process, but it can also be measured by prediction
and planning capability. A machine ToM can be able to
recognize false beliefs, like a human ToM [6].

B. Ad hoc Teams

Ad hoc teams are teams in which members do not have
prior experience working together [7]. Prior work has iden-
tified difficulties in these teams.

Communications, achieving situational awareness,
engaging in standard teamwork behaviors, and
demonstrating leadership were listed as major
problems by the majority of the subjects. Leaders
of ad hoc organizations face difficulties in task
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allocation, anticipating team members’ actions, and
anticipating team problems. Ad hoc team members
commonly experienced communication problems
(1) in knowing when to communicate updates to
their team members (2) in knowing whom to ask
for information (3) in providing and accepting
feedback. [8]

If one has experience working with a partner, they may
be able to make reasonably accurate predictions about the
other’s state of mind and actions. However, with limited
experience, this becomes difficult. An agent may be able to
supplement a human’s limitations in understanding a state of
mind through interventions. Prior work has identified agent
interventions for ad hoc teams and identified the importance
of communication in ad hoc teams. When one is unable to
make estimate the state of mind of another, communication
may be able to fill the gap. If one person makes an action
that the observer is unable to explain, the observer might
ask about the intent of this action. Additionally, one might
inform others of their intents in an ad hoc team, since the
other team members might not understand the actor’s actions.
These communications do not have to come from a human,
however.

The four basic categories of possible interventions
include: 1) agents that help the humans with ba-
sic task skills like navigation or providing user
interface assistance; 2) agents that monitor task
progress such as timekeeping or coverage monitor-
ing. 3) agents that check whether all team members
are fulfilling agreements on plan and roles related
to the team search pattern; 4) agents that help
humans with their teamwork skills such as regu-
lating communications with teammates or alerting
players to possible assistance opportunities. [7]

Participants are provided minimal training in the USAR
environment. Participants may have difficulty with parts of
the testbed, such as the map. In this instance, Intervention
1 may be useful. Agent interventions could also be used to
fill gaps in a ToM by providing explanations for actions or
recognizing errors in models.

In [7], ad hoc teams were studied where teamwork was
more useful and where teamwork was less useful. When
teamwork was less useful, it has been found that off-topic
communication was harmful to performance. When team-
work was more useful, off-topic communication was found
to increase score. One hypothesis is that this was a result of
the off-topic communication warding off harmful communi-
cation. If an ASI agent can encourage or discourage certain
types of communication, such as off-topic communication,
it may be able to improve team performance. A difficult
challenge of assisting teams has been: ”how can team-
supporting agents acquire a model of what the human team
members intend to do and thereby be enabled to monitor
their task execution and coordination as a team” [7]. A ToM
model may be a good fit for this task.

C. Data Augmentation
When linguistic data are limited, the value of data augmen-

tation increases. If communications must be hand-labeled,
there may be an additional time-consuming process. Three
common methods for augmenting linguistic data are:

1) Rule based
2) Interpolation
3) Model
These have been found to be in order of increasing data

need [9]. When linguistic data are extremely limited, there
may only be sufficient data for rule based augmentation. Two
methods are Easy Data Augmentation [10] and Dependency
Tree Morphing [11]. For systems that tagging communica-
tions, the increased classification accuracy of EDA may be
useful [10].

Dependency Tree Morphing, which has been inspired from
image processing, performs an equivalent of rotating and
rotating on natural language. Cropping is a straightforward
method, in which components are removed from sentences.
Rotating involves moving fragments around the root of a
dependency tree. These methods are believed to be useful
for sentiment analysis and text classification, and with the
natural language component wanting to understand the state
of mind of participants and potentially label their communi-
cations, may be useful [11].

III. METHODS
A. Testbed

The ASIST testbed is a simulated urban search-and-rescue
(USAR) scenario conducted in Minecraft. Ad hoc teams were
formed of three participants, with one or more experimenters
providing instructions and training for the teams. Participants
connected to the testbed remotely, but were instructed to
treat the test as if it were being conducted in a lab. Steps
were taken to ensure regularity between teams, such as
instructing participants to only use a single monitor, have
an external mouse, and to use a similar proportion of screen
space for the game, map, and interaction pane containing
the marker semantics. The testbed uses a timer to provide a
time pressure. The testbed uses two perturbations of a map,
which differ in rubble and victim placement. The difficulty
of each version is intended to be equal. Participants had
screens recorded and spoke through Zoom, providing an
audio recording.

B. Data Collection
Data are collected using Zoom recordings of participants

completing trials remotely. Otter.ai, an automated speech
recognition (ASR) service, is then used to generate a draft
of the transcript. The ASR transcripts may contain errors,
so a human listens to the transcript and corrects errors in
speaker and in communication. This is especially important
when participants do not speak General American English,
as transcription errors appear to be more common. The
transcript includes speaker name, utterance, communication
number, and the start and end of the utterance with hundredth
of a second.
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C. Data Cleaning

ASR transcripts serve as a starting point of the NLP
data. They may contain many errors, as well as complete
omissions of utterances, especially when the voice of a
participant is unclear or the volume is low. Data quality can
be increased by having a human coder listen to the transcript
and correct errors. By having higher quality data, it is hoped
that NLP efforts will have more compelling results.

Transcripts are initially produced as a single file, including
both trials from the testbed as well as additional data.
Removing the components other than the trials and making
a file for each trial makes working with the linguistic data
easier.

The ASIST project involves multiple data collection
sources, including a message bus. Having separate files
makes aligning the message bus data based on time to the
transcripts easier, since this involves looking at less data.
Transcript data are aligned with the message bus based on the
times of communications. This enables coded linguistic data
to be merged with other data, such as participant location
and team score.

D. Transcript Coding

The ASIST project works to build a theory of mind, so
transcripts are given codes to potentially reflect state of mind.
High level codes do not reflect the content of a participant’s
speech, instead, they include information like whether the
speech is a question or if it is informing a teammate. Topic
level codes involve the specifics of a communication, such
as if it involves rubble or a victim.

Identifying speech at the level of communication, rather
than at the level of content, is done. Content level analysis
often requires additional data, and with the limitations in
data collection, this becomes difficult. Communication level
labeling enables analysis of other communication traits, such
as the use of closed-loop communication.

E. Data Augmentation

Data collection in the Minecraft environment is difficult.
To compensate for limitations in ASR data quantity, synthetic
utterances were generated. Transcripts, after being corrected,
were run through SpaCY [12] and the Berkeley Neural Parser
[13-14]. SpaCY performs part-of-speech tagging tokeniza-
tion, and segmentation, which increases the accuracy of the
parser output. The parser was selected on the basis of high
accuracy. Parsing is often used before rule based data aug-
mentation. The parser outputs Backus–Naur form grammar,
which enables words used in the same part of speech to
be substituted for data synthesis. SpaCY is able to generate
dependency trees, enables dependency tree morphing [10].
The parsing is used to prepare for data augmentation.

IV. EXPERIMENT

A. Environment

In the scenario, three participants are tasked with rescuing
as many victims as possible during two trials, each with
different maps. At the entry point of the game, participants

Fig. 1: The semantics provided to two of the three partici-
pants.

Fig. 2: Part of a heatmap displaying victim locations and
room names.

are able to select one of three classes: searcher, medic, and
engineer. The searcher has a stretcher to move victims, the
medic has a medical kit to heal victims, and the engineer
has a hammer to remove rubble. Each tool has durability and
will wear out; once depleted, participants move faster. The
searcher has the fastest movement speed, the medic’s speed
is in the middle, and the engineer moves the slowest. As the
searcher is fastest, this class may be best able to find victims.
Victims may be hidden by rubble, necessitating the use of
an engineer (Fig. 3). There are two types of victims: critical
and non-critical. Non-critical victims can be healed only by a
medic. Critical victims must also be healed by a medic, with
the additional requirement that all three participants must
be near the victim for the revival process. Once a victim is
revived, it remains in the state.

Participants are given marker blocks to help determine
what rooms have been explored and what is inside them.
They are labeled 1-3 and each participant has a different
color. Two participants share a single provided semantics,
with the third participant having the no victim and regular
victim swapped (Fig. 1).

Participants are also given a heatmap including room
names and victim locations. Participants share some com-
ponents of the map, but a complete map is not given to each
participant. This encourages participants to share knowledge
of victim location. Participants are also given the opportunity
to recognize that their maps contain different information, as
no one participant has a complete heatmap. Part of a heatmap
is shown in Fig. 2.

As each participant may be only one class, teamwork
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Fig. 3: A participant’s view of the Minecraft environment.

is encouraged. There is also a time limit, simulating the
importance of speed in a disaster scenario, again increasing
the importance of teamwork. Due to the utility of teamwork,
participants are naturally encouraged to communicate. These
communications are recorded and analyzed to identify salient
features.

B. Data Collection

Data were collected using automatic speech recognition
(ASR) on human trials in a search-and-rescue environment.
These transcripts were hand-labeled with high-level and low-
level, or domain-specific, language (Table 1). Imbalance in
code frequency may be addressed by over sampling and
under sampling [7].

Zoom ASR transcripts may excessively break down com-
munications; for example, a single sentence might be broken
into multiple utterances. This is not desired, so the high-
level code Fragment is used so a program can recognize
when multiple utterances are really fragments of a single
utterance. The first utterance is always labeled with the non-
fragment code, and all subsequent fragments are labeled with
the fragment code.

High-Level Codes Low-Level Codes
Question No code

Command Rubble
Inform Victim

Agreement/Closed-loop Marker
Intent Role
Other Tool

Fragment

TABLE I: Communication Codes

C. Data Cleaning

Steps were taken toward a transcript coding standard to
improve inter-rater reliability. This begins with standardizing
software and enumerating each step of the process. Table 2

describes the steps of coding transcripts. It is suggested that
the coder has a copy of the map to ensure locations are heard
correctly.

1) Make an Excel Workbook named team(number).xlsx
and select cell A1. Open the Zoom transcript, select
all, and paste into Excel.

2) Make a copy of the current sheet and put it at the end
of the Workbook.

3) Cut off ends of the transcript that are unrelated to the
mission. The “321” countdown should be left in the
transcript. The beginning of the transcript should have
the communication number. Transcript should end with
the last communication of the mission.

4) Add column names: Transcript, Corrections, Codes
(for high and low level codes), Predictable (if codes
can be predicted only from the current utterance,
Coding Suggestion (if, from this utterance, the coder
suggests to add a high or low level code).

5) Copy all cells of the transcript column into the cor-
rections column. Will need to rename the corrections
column.

6) Correct transcription errors while listening to Zoom
recording. May complete step 7 simultaneously.

7) Add communication codes.
8) Now that coding is complete, export the

sheets to csv with the naming scheme:
team(number) trial(number).csv.

Step 3 aids in working with other data sources. Metadata
files may begin timing with the start of a mission, however,
Zoom recordings include additional communications. The
ASIST agent only uses data from trials, so removing the
excess communications will help with future training and
use of Zoom data with trial metadata. The spreadsheets
are exported to comma separated values files for better
compatibility with scripts. Additional standardization was
used to improve inter-rater reliability.

• Each trial is 15 minutes and they appear towards the
middle to end of the transcript

• The beginning of each trial is announced with “321”
Each transcript concludes with the end of the second
(of two) trials

• If transcript does not record the speaker name, it should
be added to the transcript if the speaker can be deter-
mined by the coder

• Question marks should be added to questions in the
transcript; these are not included in Otter.ai transcripts

• If an utterance is not recorded, it should not be added to
the transcript, as this often occurs when a participant’s
speech is unclear

• Capital letters should be used when participants refer-
ence rooms for increased transcript readability

• ”Okay” is preferred to ”OK,” in consistency with Ot-
ter.ai transcripts

• If participant A speaks in utterance N and B in N+1,
but some of B’s words are in N, B’s words should be
moved to utterance N+1
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• Overlapping communications, in which the coder cannot
determine the topic, should not receive a code

• Communications between participants and those con-
ducting the test should not receive a code

D. Data Alignment

The Zoom transcripts contain only speech data, with the
message bus containing additional data including team score.
If a task is to predict team score based on speech, data for this
task can be collected by combining the annotated transcripts
with the message bus data. The following steps convert 15:03
on the metadata timer to the Zoom transcript time.

1) Open the video of naming scheme HSR-
Data OBVideo Trial-T0*.mp4

2) Look at the video for when the timer is at 15:00
3) Find the first utterance that appears in both the Zoom

transcript and is heard in the video. Subtract the
number of seconds this occurs after the timer reaches
15:00 in the video and then subtract three seconds

4) Take the time from the previous step to get the time
that the trial started from the beginning of the Zoom
transcript

V. RESULTS

After parsing, the grammar of human utterances is ex-
tracted. This includes the word, grammar type from Backus-
Naur form syntax, and frequency. With frequency, data may
be generated as a stochastic process, with more common
words in human utterances appearing more frequently in
synthetic utterances. Parsing is conducted in SpaCY, so the
code may be easily extended to use SpaCY’s part of speech
tagging for data augmentation. With the parsed and coded
transcripts, data synthesis can begin with little additional
work.

VI. DISCUSSION

Future natural language processing efforts may be im-
proved by increasing the sound quality of recordings, en-
abling more accurate ASR transcripts. With more accurate
transcripts, recognition and prediction of participant action
may be less challenging. Instructing participants to not
talk over one another, while reducing the authenticity of
participant behavior, may improve transcript quality.

Finally, a decision could be made on whether transcripts
should be coded while the coder listens to the audio record-
ing. Transcripts may be missing utterances, so communica-
tion codes may reflect unrecorded utterances when coding
at the same time as listening to the recording. If coders do
not have a standard, coded transcripts may have increased
variation between coders.

Eventually, an ASI agent may be used to provide feedback.
If participants have a false belief, the agent would need to
recognize this and inform the participants in a method they
are receptive to. In the ASIST testbed, participants are given
different marker semantics. An ASI agent might intervene
by encouraging participants to use a standard, rather than
the conflicting semantics they are provided.
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Trajectory Planning for a UAV Wrench Task Considering Vehicle
Dynamics and Force Output Capabilities

Andrew Ashley1 Azarakhsh Keipour 2 Sebastian Scherer 2

Abstract— As unmanned aerial vehicles (UAVs) have risen
in popularity, so has the interest in using these vehicles to
physically interact and manipulate the world around them.
From inspecting metal thickness and quality in hard-to-reach
areas to delivering packages, the demand for the use of UAVs
has outpaced traditional methods of trajectory planning for
these vehicles.Traditionally, methods rely on kinematic and
geometric models [1] in order to plan trajectories, but these
methods fail to take into account the constraints and forces that
physical interaction introduces. Each multirotor’s geometry
and architecture create an operational profile with constraints
and patterns specific to the robot. The operational profile
includes the limits (such as the maximum wrench and maximum
tilt) and defines the possible range of outputs in each state.
There has been little exploration into the addition of these
operational profiles to traditional planning methods, and as
such, the current state-of-the-art methods fall short of efficient
and robust planning systems for a UAV interacting with the
world. This work explores developing an operational profile
of a fully-actuated, 6 Degree of Freedom (DoF) hexacopter
and integrating it into a trajectory generator that uses the
operational profile and a defined task to provide motion plans
that are informed by the vehicle’s dynamics. This work also
introduces a motion controller strategy that is adapted to
follow motion-wrench trajectory plans that will allow the vehicle
to execute the manipulation task. The new methodologies
introduced in this paper bridge the gap in traditional planning
systems that are made for free-flight planning to allow UAVs
to successfully interact with the world around them.

Index Terms— Aerial Systems: Perception and Autonomy,
Field Robots, Task and Motion Planning

I. INTRODUCTION

UAVs have the ability to easily reach places that would
be very difficult for humans or other ground robots to get
to. This advantageous maneuverability provides countless
opportunities for an aerial robot to complete tasks and
manipulate the world in safer and more efficient ways than
have been previously possible. One example of such a task
is the rotation or screwing of a target object in a high-to-
reach area. The development of omnidirectional UAVs and
control systems for these vehicles has brought this task into
reach, and this work proposes a method for planning a set
of trajectories for a UAV to perform a wrenching motion
on a target. In order to plan a set of trajectories for a UAV
that is providing a wrench force with a fixed end effector
on an object, the planning system must be informed of the
vehicle’s dynamics and capabilities.

1Andrew Ashley is with the University of Pittsburgh, United States
ata33@pitt.edu

2Azarakhsh Keipour and Sebastian Scherer are with Carnegie
Mellon University, United States akeipour@andrew.cmu.edu
basti@andrew.cmu.edu

II. RELATED WORK

A. Efficient Sample-Based Planning for High-Dimension
Spaces

A high volume of work has been completed on efficient
planning algorithms for trajectory generation. The Open
Motion Planning Library (OMPL) has implemented many of
these algorithms and allows for relatively quick development
of planning systems [2]. Due to large multiple-dimension
space that the uav system needed to plan in, a sample based
planner was optimal due to its relative speed over complete
planners and the lack of need for a provably optimal solution.
RRT*-Connect, explained further in Section 3.D.1., was
chosen from OMPL for this work.

B. Trajectory Planning Considering Vehicle Dynamics and
Force Application

In the desired wrench task, the planning system will need
to plan for movement in both X,Y,Z space as well as the
roll and pitch angles of the UAV. This system also needs
to have some form of temporal constraint that only allows
the vehicle to start rotating/providing wrench force once it
is in contact with the target rotation point. The work done
in [3] on an underwater submarine with a robotic arm used
different Motion Primitives to coordinate movement between
the submarine and the arm based on distance to the target.
This system only planned to move the arm once it was
a certain distance from the target. This system provided
the inspiration of the multi-space planning proposed in this
paper. While completing a wrench task, the manipulator may
experience a wide range of varying necessary forces that
need to be overcome in order to rotate the target. [4] has
completed work that uses a search based planning system that
considers the manipulator’s torque constraints and dynamics
in order to plan feasible trajectories of the manipulator based
on the maximum torque that each portion of the manipulator
can output.

III. METHODOLOGY

A. UAV Platform for Experiments
The vehicle to be used in the development and testing of

the proposed approach is a fully actuated 6 DoF hexacopter
Fig. 1 simulated in Gazebo simulator. As seen in Fig. 2, the
rotors of the vehicle are all mounted at +-20 degrees off
the standard vertical thrust orientation. This, paired with the
controller introduced in Section 3, allows the vehicle to have
6 DoF’s, with lateral movement unbounded by the roll and
pitch of the vehicle, which is unique compared to standard
multirotors.
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Fig. 1. Fully-Actuated Hexacopter

Fig. 2. Thrust Components of Fully-Actuated Hexacopter

B. Gathering Vehicle Configuration Dynamics and Creating
an Operational Profile

Creating a vehicle dynamics informed planner first re-
quires an analysis of the proposed vehicle in order to
determine the maximum operational pitch and flight configu-
rations for a required torque value. A simulator was first used
to analyze the maximum angular acceleration at different roll
angles around the roll axis at a fixed pitch angle (Triangle
Figure). This was then generalized to create a formula that
provides the maximum roll and pitch angle combination that
can provide the required torque to rotate the target. This
formula, along with the set of roll and pitch where

ThrustOutput > MassOfV ehicle ∗Gravity

were combined to create a vehicle specific operational profile
for the test UAV.

C. Fully Actuated UAV Controller

In a previous work, a popular flight controller, PX4, was
extended with a controller for the fully-actuated hexacopter
that is used for this work [5]. This controller provides
multiple attitude and lateral thrust strategies to allow for the
6DOF drone to be used in applications such as the wrench
task of this paper. One of these strategies, called the zero-
tilt strategy, allows the vehicle to move translationally in
[x,y,z,θ] while keeping the roll of the drone and the pitch of
the drone zero, seen in Fig 4. This translational movement
without roll or pitch allows the vehicle to make optimal flush
contact with the target rotation point, which is critical to the

Fig. 3. Maximum Thrust Output For Varying Roll Angles with a Fixed
Pitch

wrench task. Another ability of this controller and the fully-
actuated drone is that it allows the vehicle to maintain a fixed
[x,y,z] position while changing roll angle. This facilitates the
rotation of the drone while the end effector is in contact with
the rotation target. For all of the experiments in this work,
the zero-tilt strategy was used until the drone’s end effector
contacted the target, where the fixed attitude strategy was
then used to rotate the drone and the target.

D. Planning System

1) RRT*-Connect: The planning algorithm used in this
work is RRT*-Connect. This algorithm combines two earlier
planning methods, RRT* and RRT-Connect and provides a
single planner that combines the benefits of each. Standard
RRT (Rapidly-exploring Random Tree) algorithms initialize
a parent node at a start point and randomly sample nodes in
the space and connect valid ones to the existing tree structure
until it reaches the goal. RRT [6] was developed for planning
in high-dimension spaces, which is ideal for the goals of this
work. While this is useful, it does not guarantee an optimal
path and is slow compared to new iterations of the method.
One iteration, RRT* [7], uses tree rewiring and an added cost
function to provide a theoretical optimal path as the number

Fig. 4. Zero-Tilt Control Strategy
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of nodes sampled goes to infinity. Another, RRT-Connect [8],
improves on the speed of RRT by initializing trees at both
the start and goal state and building both trees until they
connect. RRT*-Connect builds upon two of these iterations,
RRT* and RRT-Connect in order to provide a fast planner for
high-dimension spaces that provides a theoretically optimal
solution. RRT*-Connect was also readily implemented in
OMPL, which further aided the speed of development.

2) Hybrid State Space: Planning to turn a targeted object
with a 6DoF UAV introduces novel challenges that do not
exist in classic trajectory planning for obstacle avoidance
tasks. Since the vehicle’s maximum wrench force around the
end effector varies with different roll and pitch configura-
tions, the planner must be aware of the system’s dynamics
and their relation to the known force that the task requires.
The planner, given only a target position and orientation
[x,y,z,θ,roll,pitch] must also be able to recognize that the
vehicle should only rotate to the desired roll and pitch. This
introduces a temporal aspect to the planning that must be
solved.

This work overcomes this challenge by using online
planning and a hybrid state space that includes both con-
siderations of the vehicle’s dynamics when determining the
validity of each sampled state and temporal constraints
to ensure rotation is only planned once the vehicle is in
contact. The planning space in total covers the SE3 space:
[x,y,z,θ,roll,pitch]. Depending on the drone’s configuration
during planning, parts of the space are fully constrained
to enforce correct planning with respect to time. While the
vehicle is not in contact with the target, a R3 space [x,y,z]
was utilized to plan in the World Space while the SO3 space
for roll pitch and θ was fully constrained to zero. Valid states
in this configuration of the state space included all states that
were not occupied by an obstacle in World Space and did
not have a non-zero value for [roll, pitch, θ].

The sensor attached to the end effector of the vehicle
informs the planner when contact with the target is made,
which initiates the transition in the planner to plan in
the full SE3 space, with the roll pitch and θ components
unconstrained. In order to determine a sampled state to be
valid in this space, first collisions with obstacles in the R3
World Space were checked. If those elements of the state
were admissible, the roll, pitch, and θ components were input
into the vehicle configuration dynamics formula, introduced
in Section 3B, in order to determine if that configuration
would be able to output a torque that was above the minimum
required torque for the task. If both of these were viable, the
trajectory was added to the RRT*-Connect’s graph as a valid
state.

IV. EXPERIMENTS AND RESULTS

The planning and control system proposed in this work
was tested through a series of constrained experiments.
The R3 portion of the hybrid state space used to represent
physical obstacles was first tested without a rotation target
in order to evaluate its effectiveness and accuracy. Once the
simple obstacle avoidance task was fully tested, the SO3

Fig. 5. Vehicle navigating to target

Fig. 6. Simulation test environment

portion of the hybrid space was tested. The vehicle was com-
manded to take off and given a task to rotate an imaginary
target with a fixed torque requirement. The planner proved
successful in this task, correctly considering the vehicle’s
maximum torque output during the task while rotating the
imaginary target. After both portions of the planner were
evaluated separately, they were combined in order to test
the temporal constraints imposed on the planning system by
the contact sensor. Because the goal of this test was solely
to evaluate the planner’s ability to output a trajectory that
first navigates to the target and then once connected, rotates
the target, no obstacles were used. For demonstration and
visibility purposes, the physical representation of the target
in the simulation was removed, although the mathematical
constraints and representation of the target were still kept
and used in the planning of the rotation of the target. This
test can be seen in Fig 5 and Fig 6. In Fig 5, the planner
output a set of trajectories to move the vehicle to the target
rotation point. It successfully navigated to the point, and in
Fig 6, the vehicle can be seen rotating the theoretical target
at the goal position. Later tests were successfully conducted
that tested both the obstacle avoidance and target navigation
of the R3 portion of the hybrid planner, as well as the SO3
portion’s ability to rotate the target while considering the
vehicle’s dynamics. The test environment can be seen in Fig
7.

V. CONCLUSION AND FUTURE WORK

As demonstrated in the previous section, the proposed
hybrid planning system allowed the successful completion
of a motion-wrench task on a target. The planner correctly
navigated to the target point and then planned a correct series
of rolls and pitches to successfully rotate the target. This
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Fig. 7. Simulation test environment

work contributes the successful development and integration
of a vehicle’s force output constraints in the planning of
a world manipulation task. The next step for this project
involves integrating the developed software into an actual 6-
DoF drone that has been built. The experiments will test
a range of rotation tasks with varying force and torque
requirements which will further evaluate the feasibility of
this approach
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User Centered Approach for Developing a Robot Assisted Femoral
Vascular Access Device for the Battlefield

Lama Bahanan1 Nicolas Mateo Zevallos-Roberts2 and Howie Choset2

Abstract— Femoral vascular access (FVA) is a critical life-
saving intervention for managing trauma on the battlefield.
There are many obstacles to performing FVA which automation
could solve. Although there has been a substantial effort in
developing automated vascular access technologies, none of
them can be used for obtaining femoral vascular access. In
addition, none of these technologies are designed for use in
combat zones. In this paper, we use a user-centered approach to
gather user requirements for developing a handheld robotically
assisted femoral vascular access device tailored to military
personnel regardless of their medical training. We conduct user
interviews with medical staff from civilian and military settings
to collect information about the clinical needs, implementation
limitations, and design preferences. The findings from the user
interviews were used to inform the design of the procedural
workflow model of the device along with generating important
criteria for the physical design of the device.

Index Terms— Medical Robots and Systems, Human Cen-
tered Automation.

I. INTRODUCTION

About 86% of battlefield deaths happen in the first 30
minutes of trauma [1]. This makes speed and accuracy the
most important factors for trauma management [2]. However,
due to the hostile environments a soldier can be left for
more than 72 hours without medical care which increases
the mortality rate [3]. In addition, providing medical care in
combat zone encounters a lot of challenges such as limited
availability of medical equipment and personnel [1]. For
example, you may have the equipment for a procedure but
no one to do it and vice versa. Another challenge is the
combination of mental and physical stress along with the
chaotic nature of a battlefield environment makes medical
procedures even harder to perform [4]. Vascular access (VA)
is crucial for trauma management. It is a prerequisite for fluid
resuscitation, the most extensive and time-consuming block
in the required basic combat training (BCT) for soldiers [4].
This precious time could be utilized for other lifesaving skills
or tactical training [4]. All these challenges can be resolved
by developing an automated vascular access device suited
for use in battlefield conditions. Although a device capable
of performing multiple VA methods would be optimal but
developing the technology for an automated femoral vascular
access would pave the way for other VA methods. There
has a been a huge advancement in incorporating medical

1Lama Bahanan is a biomedical engineering student at
Georgia Institute of Technology, Atlanta, GA 30332, USA
lama.bahanan@gatech.edu

2Nicolas Mateo Zevallos-Roberts and Howie Choset are with the
Biorobotics Lab, Robotics Institute, Carnegie Mellon University, Pittsburgh,
PA 15213, USA nzevallo@andrew.cmu.edu

robots in the health care system. Various robotic systems
have been developed for needle insertion to assist different
vascular access methods [5], [6]. However, none are applica-
ble for femoral vascular access [7]. In addition, there are no
user centered studies for generating device requirements for
vascular access devices for battlefield use. Conducting these
studies is important as it has been found that obtaining user
input in the early development stages increases the quality
and usability of medical devices [8]. This paper’s research
supports the development of a robotically assisted femoral
vascular access device [7] by collecting data from a user
perspective that can be implemented in the design of the
device. In this paper, we present an overview of vascular
access, user centered design approach, user requirements for
hardware features and the proposed workflow model that
matches the expectations and needs of users in combat zones.

II. BACKGROUND

A. Femoral Vascular Access

Femoral vascular access (FVA) is one of the most common
methods for obtaining central vascular access which is a
method for entry and removal of devices or chemicals –
blood, fluids, and medications - from the vascular system
[9]. In addition, it is a prerequisite for advanced resuscitative
methods such as Extracorporeal Membrane Oxygenation
cannulation (ECMO) and Resuscitative Endovascular Bal-
loon Occlusion of the Aorta (REBOA) [10].

B. User Centered Design

User Centered Design (UCD) approach is an iterative
process in which the user is an active participant throughout
the development phases of a product. UCD approach has
been used widely for developing medical technologies rang-
ing from devices to robots. In [8], they listed the benefits
of utilizing a UCD approach which includes improving the
efficiency, consumer approval, and usability. In addition, they
summarized the methods for assessing user requirements
during the different stages of medical device development
such as conducting user interviews which is the main method
in our study.

C. Related Work

There has been a substantial effort in developing robotic
surgery technologies for vascular access. These technologies
include the development of image-based guidance and needle
insertion. In [6] they developed a device for cannulation of
upper-extremity peripheral vessels and in [5] they developed
a manipulator for central venous catherization. However,
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none of these robots are suitable for performing femoral
vascular access due to the unique anatomy of the femoral
region [7].

Using a user-centered design is widely used in robotics. In
[11] they utilized a UCD approach for developing a robot-
assisted fracture surgery. They gathered user requirements
through interviews with orthopedic surgeons which guided
them through their robotic system development. In another
study, they used the same approach for a designing a
prosthetic hand [12]. Nonetheless, there are no studies that
investigate the user requirements for an automated femoral
vascular access in combat zones. In summary, although there
has been a lot of technological development with respect
to the development of a robotically assisted FVA system
[7]. There is a need for a parallel study into user design
preferences for steering the hardware and software features
to match the expectations of targeted users.

III. APPROACH

We conducted an extensive literature review in femoral
vascular access, medical devices for the battlefield, and
automated vascular access technologies which some of it
can be seen reflected in the previous section. As a result,
we devised the following objectives:

• Refine the concept for the new device.
• Identify barriers to safe design and implementation.
• Collect user opinions on hardware and software fea-

tures.
• Develop a procedural workflow model.

To collect user opinion, we conducted user interviews
with medical personnel with civilian and military experience
from the United States. Each interview lasted between 20
minutes to 60 minutes. Before the interview, the goals of the
study were clearly defined for the participants. During the
interview, we ensured that the participants could talk freely,
and additional questions were asked to clarify and encourage
participants to elaborate more on their answers. Based on
the research objectives we created the following clusters of
questions:

• Needs: clinical needs and challenges while performing
FVA.

• Barriers: Limitations that could affect the success of the
procedure.

• Safety: Important factors to consider for ensuring the
safety of the patient and operator.

• Design preferences: Understanding the users’ prefer-
ences and environment.

During the interview, we showed the participants a video
of the current device and graphical user interface (GUI) in
action along with the proposed design of the device modeled
using SOLIDWORKS and developed GUI using MATLAB
to get their opinion about certain hardware and software
features.

Fig. 1. The Iterative process in which our designs were adjusted as a
results of feedback from user interviews.

IV. RESULTS

A. Hardware design considerations

There are four main important criteria for the hardware
design: size, weight, portability, and stability. As the combat
medic stated during the interview, the golden rule for de-
veloping any portable device used in the military is to have
minimum size and weight and maximum power so it doesn’t
limit their deployability. Another important feature: stability
rose when we asked the participants whether they prefer a
single or two-handed design. Stability is an important factor
while performing femoral vascular access. Abrupt motion
during the needle insertion process could pierce the vessel
and cause serious complications. Therefore, the handheld
device must be designed ergonomically to ensure maximum
hand stability and control.

B. Procedural Workflow

The device has to be designed to accommodate two types
of users, femoral vascular access experts and nonexperts. For
this reason, we created two modes - expert and nonexpert
- with the same functionality, the only difference is that
the nonexpert mode is supported with additional guidance
throughout the procedure. In this paper, we present the
procedural workflow for the nonexpert mode as shown in
figure 2. In addition, the main screen has two default settings
for bright and dark modes. Although more specific brightness
options are included but this easy access is provided because
light can be a source of attention in combat environments.
In addition, there is a needle grip controller for changing the
needle after each procedure.

Pre scanning: the first step is determining the site of
procedure whether it is the left or right femoral region.

During scanning: a picture of where the operator should
position the transducer will appear. The operator will be
instructed through animation how to move the transducer
along the desired region. The screen display will contain a
reference image of how the ultrasound image should look
like. Since the device is handheld, different operators will
exert a variable amount of force. The amount of pressure
impacts the quality of the ultrasound image. Therefore, there
is a need for pressure guidance. This issue can be resolved by
providing feedback to the operator through a feedback loop
which will be demonstrated on the screen by a pressure scale.
However, this is not an ideal solution because it can increase
the cognitive load on operators. Therefore, integrating a
force-controlled ultrasound system as developed in [13] is
important.
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After Scanning: Once the algorithm finds the vessel a red
circle will appear around the targeted vessel and a needle
overlay will appear on the screen. the ultrasound image
will auto label vascular structures. Then the operator will
be prompted to move the device until the tip of the needle
overlay is on the center of the highlighted vessel. Once the
system detects an overlap it will notify the user to hold
the device still. There will be a threshold for movement
which halts the needle insertion process until the motion is
decreased to a safe level. Another safety feature is ensuring
that we selected the right vessel before needle insertion by
using the doppler ultrasound feature to check the flow which
enables us to identify a vein from an artery. After needle
insertion, a flexible guidewire will be inserted automatically.
Once it is done, the operator will confirm the completion of
the guidewire insertion which will retract the needle after
which the operator can move the device without risking
piercing the vessel which flags the end of the femoral
vascular access procedure.

Fig. 2. Proposed workflow based on user requirements for the robotically
assisted femoral vascular access device.

V. CONCLUSIONS

We were able to identify crucial hardware and software
user requirements, but we had a limited number of interviews
with medical personnel from different departments in the
civilian and military settings due to their increased workload

because of the COVID-19 pandemic. In the future, we plan
to conduct additional interviews to generate a more specific
set of functional and nonfunctional requirements.
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Multi-agent Coordination for Automation of U.S. Air Force Installed
Systems Testing

Lauren J Blanks1, Isaac K Isukapati2

Abstract— Complete end-to-end testing of installed systems
on an aircraft within a free-space radio frequency (RF) envi-
ronment is crucial to understanding and developing its combat
capabilities. The Benefield Anechoic Facility at Edwards Air
Force Base is one of the few facilities capable of measuring
far-field coverage patterns of systems under test, including
simultaneous measurements of multiple installed antennas for
most aircraft in the Air Force inventory. However, the current
test environment requires human intervention to manually
re-position and reorient the emitters between discrete test
points. The task of reorientation is very cumbersome and time-
consuming, resulting in inefficient test operations. Additionally,
this method only allows for snapshot characterizations of the
aircraft’s response since the manual set-up only allows for the
test to be run in the specific and individual scenarios. Ad-
vances in distributed computing and multi-agent coordination
techniques make it possible to not only automate the task of
reorienting the emitters between test points, but also to simulate
a continuous testing environment. As a first step in this process,
this paper seeks to demonstrate the possibility of designing an
autonomous process through the design of an auction-based
scheduler capable of generating optimal tour for a given set of
rovers and user-defined waypoints that they ought to traverse.
We propose to benchmark the performance of the optimized
system with the original test sequences to demonstrate the
increased efficiency.

I. INTRODUCTION

The development and integration of installed systems on
aircraft relies heavily on operational realism during testing to
accurately emulate their combat capability and performance.
This need results in increased emphasis on the use of
specialized test facilities and flight test ranges [1]. Flight
tests, however, present sufficient deficiencies to include
significant cost factors due to the specialized environment
required and the inability to enact controlled and repeatable
tests [1]. Therefore, the testing of aircraft subsystems has
increasingly relied on the use of ground test facilities capable
of simulating a flight environment called Installed System
Test Facilities (ISTF) [2]. One such ISTF is the Benefield
Anechoic Facility (BAF) at Edwards Air Force Base, among
the largest anechoic chambers in the world, capable of testing
virtually all of the U.S. Air Force’s inventory in a free-space
radio frequency (RF) environment.

Improvement in test and evaluation (T&E) strategies at
the BAF and similar facilities is paramount to ensure their
ability to meet increased demand. Advancement efforts have
been made to increase efficiency, such as the transition to

1Lauren Blanks is with the Electrical and Computer Engineering Depart-
ment, U.S. Air Force Academy.

2 Isaac Isukapati is with the Robotics Institute, Carnegie Mellon Univer-
sity.

automated data acquisition and analysis methods during the
test process at the BAF [3]. To assist in the efficiency of the
testing process, the BAF now utilizes carts that can carry
the emitters quickly from one test set-up to the next [2].
However, even this improved testing procedure requires man-
ual intervention to re-position and reorient the antennas used
to emit the electronic warfare (EW) signals during testing.
As a result, the testing process is inefficient and requires
substantial effort to conduct simulated tests, an increasingly
apparent obstacle to the facility’s mission as the demand
for its use grows. Additionally, the static positioning of
the emitter antennas inhibits the ability to conduct dynamic
testing, as the requirement for manual positioning means that
tests can only create snapshot characterizations as opposed
to enacting a flying scenario, e.g. system response to signal
on the flying approach.

Recent advancements in distributed computing and multi-
agent coordination techniques indicate the possibility of
automating the testing process to allow for reorientation
and positioning between test points, to include simulating
a continuous testing environment, more closely emulating a
dynamic flight environment. In this way, this paper seeks to
serve as a first step through the development of an auction-
based scheduler that optimizes the tour for a given team of
rovers equipped with the testing emitters. In comparing the
performance of the simulated testing with the team of rovers
with that of the original sequences, it is apparent that the
testing is much more efficient and therefore, would allow
the facility to better fulfill its mission.

II. METHODOLOGY

The methodology evolved from generating a graph and
sequence of tasks for the rover team to complete.

In order to reasonably generate the graph and scheduler,
assumptions were made that must be understood in order
to establish the methodology of the research. Primarily, we
assume that the rovers on which the emitters are positioned
are able to localize their position within the graph and can
navigate the area. In this way, this paper does not detail
localization or communication techniques on the hardware
of the rovers themselves. Second, the simulator assumes
a controlled environment without obstacles or interference,
allowing for simpler path planning and optimization of the
sequence of tests. Finally, it is assumed that each test will
utilize every available rover for the duration of testing.

The methodology can be divided into the following steps:
A) Chamber Description, B) Graph Generation, and C)
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Shortest Path Algorithm. The information in this section
elaborates on each of the steps.

A. Chamber Description

The Benefield Anechoic Facility served as the model for
the generation of the graph to be used in the creation of the
path planner and scheduler. The chamber itself is 264-ft. long
x 250-ft. wide x 70-ft. high in order to house any aircraft
in the Air Force inventory [4]. To create the free space
environment needed to conduct the electronic warfare testing,
the ceilings, floors, and walls are covered in radar absorbing
material (RAM) that work to minimize the reflections of
signal [3]. The RAM on the floor is able to be reconfigured
based on the emitter positioning in order to allow for
suitable coverage, as suitable radar absorbing treatment is
essential to ensuring the testing data is not skewed because
of reflected energy [5]. The RAM is shaped and positioned
in such a way that it absorbs the electromagnetic signals and
transforms them into thermal energy to reduce interference
with the simulation [5]. Thus, one of the primary constraints
in designing the paths on which the rovers could traverse
was ensuring it did not negate the validity of the testing
by removing too much of the RAM from the floor of the
BAF. In order to maintain acceptable absorption within the
chamber, the pathways could not account for more than 10%
of the overall area of the floor dimensions. In this way,
we could ensure that the operations of the rovers did not
interfere with the accuracy of the testing. Additionally, the
rovers were understood to operate outside of the Quiet Zone
near the aircraft, an area in which nothing but absorbent
material could be placed to protect the aircraft itself. In
choosing which aircraft to use with the simulation, we settled
on a C-130 Hercules, which was large enough to account
for the more difficult testing scenario with limited space,
but not so large that the rovers were excessively confined
in their movement. The dimensions of a C-130 Hercules
are 97-ft. long with a 130-ft. wingspan. With our graph
of a C-130 Hercules observing a Quiet Zone of 24-ft, the
graph structure begins with the inner grid positioned 24-ft in
all directions from the aircraft, and this distance constraint
was then extended to the space between the grids and
subsequently between the outside grid and the wall, with
a minimum of 24-ft distance spaced between each. For a
smaller aircraft, additional grids could be included for the
rovers to cover, with the opposite effect being possible for a
larger plane, assuming the paths continue to allow for at least
90% coverage by RAM. A model of the chamber housing
a C-130 Hercules, overlaid with the grid structure, can be
found in Figure 1.

B. Graph Design

The graph was generated by creating a series of nodes on
two grids that the rovers would traverse on their path around
the aircraft. Each node serves as a way-point in which every
node’s location within the chamber is known, and each path
would be determined by mapping the sequence of nodes
that the rover would encounter from its starting point to

Fig. 1. Schematic of graph structure for C-130 in the anechoic chamber.
C-130 image source: https://fas.org/man/dod-101/sys/ac/c-130.htm

final destination position for testing. Connecting each node
within the same grid is an edge of length 24-ft., to allow
for the rover to be able to accelerate to maximum speed
and decelerate to full stop on a single edge. This length
ensures the distance is enough to allow for the rover to
slow completely, should a collision at the oncoming node
need to be avoided. The outer grid consists of 32 nodes
while the inner grid has 28, with uniform edge lengths
of 24-ft. between nodes on the same grids and between
nodes on neighboring grids. The grids and the connections
between them offer the potential paths on which the rovers
could travel prior to and during testing, so each edge is
bidirectional to allow for traversal in multiple directions
around the aircraft.

In order to understand the optimal path based on the
kinematics of the rovers, it was essential to create a naming
convention that would make it easy to identify when major
transitions were taking place, such as encountering a corner
or moving from one grid to the next. Therefore, as shown in
Figure 1, the name of each node consisted of a sequence of
either one or two alphabetical letters, followed by a number
combination that indicated its position in the graph. The
corners of each of the grids had two letters to indicate first
that it was a corner, and second whether it was the inner
or the outer grid. For example, the outer top left corner is
called ’AB01’, signaling it is the first corner on the outer
grid, while the node at the same position on the inner grid
is called ’CD01’. In the same way, nodes on the outer grid
began with ’A’ while nodes on the inner grid began with ’B’.
The combination of numbers that follow the letters in the
naming convention further inform the nodal position. Nodes
residing in line with the x-axis as seen from the aerial view
of the chamber shown in Figure 1, corresponded to evenly
numbered nodes after the grid letter, while odd numbers
corresponded to nodes parallel to the y-axis. In this way,
it is clear where in the chamber a rover is currently, and

50



which direction it is heading based on the sequence of nodes
that make up its path. For example, a rover with the path
sequence: ’AB01’, ’A02’, ’A04’, ’B02’ travels from the top
left corner horizontally on the outer grid for two edge lengths
(16-ft.) before turning in to the destination of the node ’B02’
on the inner grid. In this way, understanding the position and
path of a rover would be much more intuitive and easier to
follow.

C. Shortest Path Algorithm

Dijkstra’s Shortest Path Algorithm was used to determine
the optimal path for each rover to traverse from its source
node, or starting point, to the destination node where it would
be oriented for the tasks. Dijkstra’s shortest path algorithm
works to determine the optimal path by minimizing the cost
from start to end on a positively-weighted graph [6]. The
algorithm finds the shortest path by first finding the minimum
cost connection between the starting node and its neighbors,
thereby storing the connecting node in a set, S, of which the
shortest, or minimum cost, length [7]. The same principle
is applied at each connecting node until the destination is
reached.

III. SIMULATION AND EXPERIMENTS

A. Graph Generation

The python package, NetworkX, was used in graph gener-
ation. First, we created a JSON file dictionary with the keys
corresponding to each node on the graph, and their value
pair was made up of their neighboring nodes. By importing
that file into the graph code, NetworkX created a graph
with the nodes and subsequently the edges connecting each
to its listed neighbors. Following the creation of the graph
as a NetworkX object, it allowed for the use of standard
algorithms like shortest path to be implemented and used in
analyzing the graph [8]. In this way, it allows for seamless
use in the scheduling algorithm.

In order to generate a weighted the graph, it was important
to attribute the cost, or time of traversal, to each edge.
The rovers that will be used to carry the emitters are the
Rover Robotics 4WD Rover Pro. The rovers themselves are
capable of driving forward, backward, and pivoting at a stop.
The maximum speed of the unloaded rover is 2.5 m/s and
the acceleration is 1.5 m/s2. The simplifying assumption
was made that, due to the uniform length of the edges
between the nodes and this knowledge of maximum speed
and acceleration, the rovers would completely cross the
connection between two nodes in 5 seconds. Therefore, every
edge on the graph was given the weight of 5 seconds. From
there, this knowledge of time to cross was incorporated in
generating the graph.

B. Creating the Scheduler and Simulation

The layout for how the simulator was structured can be
found in Figure 2.

First, random number generators were used to determine
destination points for a series of tests. Random nodes were
sampled from the graph and assigned to a rover as a

Fig. 2. Overview of the Simulator

destination for testing. Given four rovers in the chamber, four
destinations were assigned per generated test, one for each
of the rovers available. For this paper, we operated under
the assumption that every test would utilize the maximum
number of emitters and, thus, all four would be in use
for each test. Upon the creation of each test’s destination
points, they were crosschecked with the already existing test
points to ensure that no duplicate tests were conducted. Once
cleared, the points were passed to the List of Tests, as shown
in Figure 2.

Once a list of destination points for each rover was
determined, it was sent to the auction-based scheduler, where
the sequence would be optimized to minimize cost, or time of
completion. In order to do this, each rover and its destination
were analyzed through an algorithm catered to solving the
traveling salesman problem. Inherently, each test had a
different destination point for rover 1, and subsequently,
rovers 2, 3, and 4. In this way, each was subject to its own
case of the traveling salesman dilemma, where the scheduler
would solve the optimal tour, or sequencing of the destination
points, to minimize the time it takes to reach them all. First,
the scheduler determined the fastest order of tests with rover
1’s destinations as the basis, with the destinations of rovers
2, 3, and 4 simply lining up with whatever their destinations
were for the tests that correspond to the optimal sequence
for rover 1. For example, for tests numbered 1, 2, and 3, the
optimal ordering for rover 1 to reach its destination nodes
of the three tests the fastest might be to complete the tests
in the order of 2, 3, 1. For this, because all four rovers are
needed to conduct a test, rovers 2, 3, and 4, are confined to
also navigate to the corresponding destinations for the tests
in the order 2, 3, 1. For this reason, the scheduler produced
four sequences, with each rover serving as the basis, meaning
the sequence of the tests would be first determined by the
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optimal order for rover 1, then it was created for rover 2,
and so on through all four rovers. Then, the resulting four
weighted sequences were compared, with the minimal cost,
or fastest time, determined as the optimal sequence of the
tests as a whole. The minimal cost sequence was the one
that took the least amount of time overall to complete. In
other words, the weighted cost of each sequence was actually
how long it took the slowest rover in that sequence to reach
its destinations and complete the tests. Sequence 1 might be
optimal for rover 1, but that time was not what determined
its cost. The cost was actually determined by the slowest
tour for that sequence, as it is the limiting factor in pursuit
of efficiency.

The optimized test sequence, informing the rovers not only
which destinations they must navigate to, but also in what
order, was then passed in with the graph information to be
used in the rover navigation. The kinematic, or rover motion,
model could then instruct the rovers on how to move and
illustrate how quickly each sequence can be accomplished
according to the acceleration profile. In this way, a time
matrix was created that could describe the exact time each
rover would arrive at the destination. An important addition
at this stage was the random test duration generator, coupled
with the rover motion model, as seen in Figure 2. At each
destination, the rovers must wait the duration of the test in
order to simulate the time it would take to sequence each test.
The simulated test durations were generated using a Gaussian
distribution with a mean of 90 sec. In this way, a final matrix
could be passed to the data logs that not only listed the
destinations for the rovers in the optimal sequence, but also
the time that each rover would arrive at those destinations,
and thus, the total time for completion of the generated list
of installed systems tests.

C. Monte Carlo Simulations

In order to test the performance of the scheduler, 30 Monte
Carlo simulations were run for each of nine different testing
scenarios. The experimentation was grouped first by the num-
ber of rovers available for test, with the simulations run for a
testing sequence involving either 2, 3, or 4 rovers. For each of
these scenarios, three experiments were then conducted: the
performance of the scheduler when sequencing 30, 50, and
100 tests. From there, the average time taken to complete the
sequence of tests was recorded for each of the 30 simulations.

IV. RESULTS

The purpose of experimentation was to benchmark the
performance of the scheduled sequence with the original.
For each of the scenarios, sequencing 30, 50, and 100 tests
for teams of 2, 3, and 4 rovers, the average time to complete
the testing implementation was compared with the average
performance of the unscheduled sequence after simulation.
The side-by-side comparison of these averages can be seen in
Tables I, II, and III. The optimized sequence performed the
series of required tests anywhere from 5% to 8% faster than
the original order. Additionally, the results of the experiment
indicate that the more agents in the system, the better

the scheduler can improve the process. Figure 3 illustrates
the cumulative distribution functions (CDFs) for the overall
performance time for each of the nine experimental results,
measured in seconds. These figures corroborate the results
shown in the tables, as the optimized sequence consistently
outperforms the original, by completing the task in a shorter
duration of time.

The coupling of the integration of rovers with a scheduling
algorithm capable of optimizing their tour would greatly
improve the ability of the BAF to meet the rising demand
for its test facility. Intuitively, the act of automating the test
with the rovers removes the excess time typically taken to
set up and take down the emitters’ positions for each test
sequence, and therefore, rover implementation is even more
efficient.

TABLE I
EXPERIMENTAL RESULTS FOR 2 ROVERS

Number of Tests Average Time of Completion (sec) : Improvement
Original Optimized

30 1746 1665 5%
50 3016 2843 6%

100 6127 5767 6%

TABLE II
EXPERIMENTAL RESULTS FOR 3 ROVERS

Number of Tests Average Time of Completion (sec) : Improvement
Original Optimized

30 1768 1667 6%
50 3012 2812 7%

100 6144 5723 7%

TABLE III
EXPERIMENTAL RESULTS FOR 4 ROVERS

Number of Tests Average Time of Completion (sec) : Improvement
Original Optimized

30 1767 1645 7%
50 3026 2785 8%

100 6151 5702 7%

V. CONCLUSION

In order to meet the current demand for realistic free-
space simulation of aircraft, installed system test facilities
like the Benefield Anechoic Facility must make their testing
processes more efficient. One such improvement could be the
automation of its testing through advancements in distributed
computing and multi-agent system coordination to allow for
a team of rovers to position and orient the emitters between
and during installed systems testing. This paper serves as
a first step towards that goal as an auction-based scheduler
was successfully implemented to optimize the tour for a team
rovers when given a set of waypoints and tasks. Future work
could involve incorporating a realistic rover model rather
than operating under the uniform weight assumption for the
edge traversal time. Additionally, the scheduler could be
bolstered to allow for more heterogeneous testing conditions,
where a different number of rovers might be required for
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each test to allow for optimization by performing some tests
in tandem. Additionally, the scheduling algorithm could be
further improved to solve the problem in greater dimension,
where certain rovers were not specifically assigned nodal
destinations that resulted in a TSP type of problem, but rather
we could work to optimize the assignment of the rovers
to test points based on current location in addition to the
sequencing of the tests. The successful implementation of
the auction-based scheduler allows for diverse and exciting
ways to further improve and advance the automation of the
U.S. Air Force’s test and evaluation processes.

ACKNOWLEDGMENT

This researched was supported by the United States Air
Force Academy. Lauren Blanks would like to thank the
USAFA electrical and computer engineering department, as
well as Ms. Rachel Burcin and Dr. John Nolan for the
opportunity to participate in RISS.

REFERENCES

[1] E. F. Ali, “Electronic warfare testing at the benefield anechoic facility,”
in 1997 IEEE Autotestcon Proceedings AUTOTESTCON’97. IEEE Sys-
tems Readiness Technology Conference. Systems Readiness Supporting
Global Needs and Awareness in the 21st Century. IEEE, 1997, pp.
232–243.

[2] M. Pywell and M. Midgley-Davies, “Aircraft-sized anechoic chambers
for electronic warfare, radar and other electromagnetic engineering
evaluation,” The Aeronautical Journal, vol. 121, no. 1244, pp. 1393–
1443, 2017.

[3] R. M. Taylor and J. Pasimio, “Automated data acquisition and analysis
at the benefield anechoic facility,” in 1997 IEEE Aerospace Conference,
vol. 4. IEEE, 1997, pp. 139–148.

[4] E. E. Sabat, “An integrated and collaborative radio frequency (rf) test
infrastructure,” AIR FORCE TEST CENTER EDWARDS AFB CA,
Tech. Rep., 2012.

[5] V. Rodriguez, “Basic rules for indoor anechoic chamber design [mea-
surements corner],” IEEE Antennas and Propagation Magazine, vol. 58,
no. 6, pp. 82–93, 2016.

[6] J.-C. Chen, “Dijkstra’s shortest path algorithm,” Journal of formalized
mathematics, vol. 15, no. 9, pp. 237–247, 2003.

[7] N. Jasika, N. Alispahic, A. Elma, K. Ilvana, L. Elma, and N. Noso-
vic, “Dijkstra’s shortest path algorithm serial and parallel execution
performance analysis,” in 2012 proceedings of the 35th international
convention MIPRO. IEEE, 2012, pp. 1811–1815.

[8] A. Hagberg, P. Swart, and D. S Chult, “Exploring network struc-
ture, dynamics, and function using networkx,” Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), Tech. Rep., 2008.

53



(a) 2 Rovers Conducting 30 Tests (b) 2 Rovers Conducting 50 Tests (c) 2 Rovers Conducting 100 Tests

(d) 3 Rovers Conducting 30 Tests (e) 3 Rovers Conducting 50 Tests (f) 3 Rovers Conducting 100 Tests

(g) 4 Rovers Conducting 30 Tests (h) 4 Rovers Conducting 50 Tests (i) 4 Rovers Conducting 100 Tests

Fig. 3. Performance CDFs for systems with differing number of rovers and tests.
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Danielle Brennan1, Keene Chin2 and Dr. Carmel Majidi3

Abstract— Compliant mechanisms are flexible structures that
achieve force and motion transmission through elastic body
deformation. A mycelium is a dense network of thread-like
structures of fungi. Mycelial (mycelium-based ) materials pro-
vide an alternative to fossil-based plastics as they are completely
biodegradable and renewable. Although many properties of
mycelium are being researched heavily, research on the mechan-
ical performance of such mycelial materials is limited. While
mycelium is being introduced in the packaging and designing
industries, little research has been done into mycelial materials’
applications in active mechanisms, such as those used in medical
devices or robotics. In this paper, we explore the mechanical
properties of mycelium via mechanical prototyping and finite
element analysis, in order to see if it is a suitable material for
the construction of robotic mechanisms. Our analysis also aims
to provide insight into other possible applications of mycelial
materials.

Index Terms— Complaint Mechanisms, Mycelium

I. INTRODUCTION

Non-renewable materials are slowly being replaced by
natural bio-composites and bio-based materials [1] in almost
every industry as the world becomes more conscious of
its impact on the environment. Mycelial materials have the
potential to become as accessible and in demand as plastics
without the harmful effects on wildlife and the environment.
However, the possible applications of mycelial materials
has not been fully explored. The introduction of mycelial
materials started in the packaging and distribution industry
as a suggested replacement for polystyrene foam [1] but with
further research on the physical properties of mycelial bio
foam it could be used in many other fields.

There exist a variety of bio-based materials, some of which
include Sorghum, wood and paper [2], but mycelium is es-
pecially interesting because of its flexibility and malleability.
There is not much literature on the mechanical behavior of
mycelium composites. The existing literature does not focus
on the properties of mycelial materials and therefore allows
for only limited cross examinations to evaluate possible uses
for this bio composite. In this paper, we study a mycelial
mold’s deformation in different scenarios. The objective to
obtain more information on the properties of the mycelium
composite. We evaluated a method to make mycelial sam-

1Danielle Brennan is with the Department of Chemical
Engineering,Howard University,Washington, DC 20059, USA
danielle.brennan@bison.howard.edu

2Keene Chin is a PhD student with the Soft Machines Lab,
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keenec@andrew.cmu.edu

3Dr. Carmel Majidi is with the Department of Mechanical En-
gineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
cmajidi@andrew.cmu.edu

Fig. 1. Typical Structure of Mycelium-based foam [1]

ples. We test the samples through mechanical and online
simulations and performed related calculations.

II. RELATED WORK

This section is a brief overview of previous applications
and suggested uses for mycelium composite.

A. Packaging Applications

Fossil-based plastics are used many different sectors due
to the structural integrity it provides and its bending abilities.
For mycelium-based materials to ”replace” plastics they must
have comparable properties. The first literature on mycelium-
based materials were focused on the low-density and good
insulation properties of the material [1] making it suitable for
packaging material and a replacement for polystyrene [3].

B. Design and Architectural Applications

The initiative to find renewable and biodegradable mate-
rials has extended to the construction industry as there is
a a constant need for housing with our growing population
[4]. Mycelium is of interest because of its low cost, density
and energy consumption. There is still more research to be
done before this bio-composite can be fully implemented,
but there are still companies that manufacture mycelium-
based furniture and other structures. Water absorbency and
compressive strength of the bio-composite are also important
factors in determining the efficacy of mycelial material in the
design and architecture field [5].

Growing Compliant Mechanisms From Mycelial
                                           Materials
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C. Suggested Uses

Efforts have been made to see the electronic application
this but more research has to be done before it is im-
plemented [6]. Mycelium has also been introduced to the
fashion industry through ”mycelium leather”, a sustainable
latticework of mycelium. Other industries are slowly looking
to mycelium as their material for sustainable transformation.

III. METHODOLOGY

This project used two different methods to create the
mycelial samples: the flour method and direct method [7]-
[9].

A. Direct Method

With this method three different substrates were used to
observe the mechanical differences between the mycelial
materials formed: sawdust, wood chips and rye berries.

• The Pleurotus ostreatus (P. ostreatus) culture was intro-
duced to the sterilized substrates utilising the techniques
used to prepare grain spawn [7].

• The mycelium material was transferred to a lined,
sterilized cardboard mold and allowed to sit for 4-5 days
out of direct sunlight [8].

• The mycelial samples were allowed to sit in a larger
container for 2 days to form a white outer layer.

• The sample was then was then baked at 200 degrees
Fahrenheit for 30 minutes.

• The mycelial samples are now ready for use.

Fig. 2. Grain Spawn with Rye Berry Substrate

B. Flour Method

• Rye berries were used as the substrate for the grain
spawn along with the Pleurotus ostreatus (P. ostreatus)
fungus culture [10].

• The mycelium was allowed to grow on this substrate
for 7 days then activated the mycelium with a mixture
of flour and water and let sit in a warm area for 4-5
days [9].

• After the mycelium is activated a few teaspoons of flour
is mixed in and the mixture is put into a sterile mold
and was allowed to sit out of direct sunlight for 5-6
days.

• The sample air dried for 2 days and then was baked at
200 degrees Fahrenheit for 30 minutes.

• The mycelial sample is now ready for use.

Fig. 3. Mycelium in Substrate using Flour Method

After the samples are made a MATLAB script analyzed the 
deflection of the sample during the experiment to determine its 
Elastic Modulus. The MATLAB frame by frame analysis 
script created to analyze the footage of the mycelium can-
tilever test was tested using footage of a cantilever test with a 
sample of expanded polystyrene foam. The script’s calculated 
Elastic modulus was within the range of values provided in the 
literature. The calculated Elastic Modulus was 2.888 MPa and 
the range is 1.379 MPa to 3.309 MPa.

IV. EXPERIMENTS

The molds are tested to obtain values for physical proper-
ties to compare with existing values [1]. The bio-composite 
undergoes two mechanical tests: The cantilever test and the 
living hinge test.

A. The Cantilever Test

There are various setups for the Cantilever Test, for this
research we use the Cantilever Beam with a concentrated
load at any point. The deflection of the material being
tested, v and the deflection at the end of the beam, δB are
determined by the following equations:

v =
−Px2

6EI
(3L− x) (1)

δB =
PL3

3EI
(2)

Where P is the force acting at the point along the length
of the sample, L, x is a point along the span of the sample. E
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represents the modulus of elasticity and I is the area moment
of inertia of the sample’s cross section.

We obtain the deflection from the mechanical tests, after
using an image processing script on Matlab2 to analyze
video footage of the sample experiencing varied forces. The
equations above would then be rearranged in order to find
the elastic modulus of the mycelial sample.

B. Living Hinge Test

The Living Hinge Test is a simple mechanical test to
determine at the angle at which the material will break, hence
allowing us to examine the flexibility and durability of the
material. The living hinge sample is formed by attaching a
circular shaped piece of polymer clay to the mold that the
mycelial material will grow in. This creates a rectangular
shape with a ”bridge” in the center, where the material will
be bent.

V. RESULTS

After the 7 day growth period, the rye berry sample
became white with mycelium while the wood chip and
sawdust samples showed no sign of growth.

Fig. 4. Mycelial Bio-foam with rye-berry substrate

Based on the Elastic modulus range [11] of mycelium
provided in existing literature, we were able to hypothesize
the relationship between the deflection of the material and
the elastic modulus with and without added weight.

The flour method also proved to be unsuccessful when
the sample became contaminated. We postulate that insect
eggs or larvae were in the flour, incidents like these may be
avoided by sterilizing the flour by applying heat.

A. Testing

The sample’s texture was not very conducive for the living
hinge test and as a result by visual inspection the sample
broke at about a 35 degree angle.

Fig. 5. Graph showing relationship between Deflection and Elastic Modulus 
[11]

The MATLAB script could not analyze the footage of the 
mycelium sample being tested as the first weight (data point) 
caused the sample to break.

Fig. 6. Cantilever Test Setup with Mycelium Sample

Fig. 7. Mycelium Sample at Maximum Deflection when Weight is added

VI. DISCUSSION

We expected that the mycelial sample would be able to
withstand much more weight than it did. The point at which
the sample broke there was an existing fracture, this was
as a result of the mycelium not fully developing around the
substrate particles. Many factors could have contributed to
the not ideal mycelium growth.
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Fig. 8. Mycelium Sample after breaking

A. Factors that could have affected the health of the 
Mycelium

The health of the Mycelium may have been affected 
by the surrounding temperatures, altitude, air quality and 
humidity. In an ideal environment all these variables would 
have been kept constant and adjusted for optimal mycelium 
growth, but those conditions could not have been met in our 
testing environment.

B. Factors that could affect the Mycelium’s ability to connect 
parts of the mold

Mycelial materials are formed by the mycelium growing 
and binding its substrates’ particles together to form one solid 
bio-composite. Our mycelial sample did not cohere as 
expected and this could be caused by using insufficient 
amounts of fungus culture, compression applied to the sample 
and the saturation level of each substrate particle in the culture.

VII. CONCLUSION

Throughout this project, we observed the behavior of 
our mycelium material and the process by which the bio-
composite is made. For optimal mycelial samples we would 
have a controlled environment and introduce more fungus 
culture to the suitable substrate. After creating the mycelial 
bio foam we would conduct a cantilever test and use our 
MATLAB script to analyze the video footage and determine 
its Elastic Modulus. Following the collection of this data 
we would conduct a Finite Element Analysis to test 
possible mechanism designs. There are still numerous 
possible uses for mycelial materials yet to be discovered. 
With much more research and ideal conditions we believe 
mycelial materials could be used to make compliant 
mechanisms.
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Automatic Detection of Road Work and Construction with Deep
Learning Model and a Novel Dataset

Brian Chen1, Robert Tamburo2, Srinivasa Narasimhan2

Abstract— Automating the process of identifying and un-
derstanding road work and construction zones is significant
and beneficial for the safety of road workers, drivers and
obtaining traffic conditions in real-time. While tasks like object
detection and segmentation have been well studied in the field
of computer vision and achieve promising results, there has not
been any work focusing on the reasoning of construction zones.
Despite plenty of transportation related images and video data
of available online, there is no dataset specifically created for
construction zones. In this paper, we introduce a new dataset
collected from both online and the real world. We discuss
how we use a deep learning framework to automatically and
efficiently label the dataset from rich and diverse sources. The
results are promising and show that our dataset can be used to
automatically detect real-world construction zones. Moreover,
we conduct experiments and analysis to better understand
the features that are crucial in identifying construction zones
and found that color features are important. Finally, in an
effort to improve detection accuracy we experiment with using
segmentation masks of different objects as additional input for
identifying construction zones.

Index Terms— Computer Vision for Transportation; Recog-
nition

I. INTRODUCTION

Object detection and classification techniques based on
deep learning models have been applied to real-world ap-
plications in different aspects, especially in the transporta-
tion field. For example, intersection cameras provide real-
time traffic status updates using car detection and object
segmentation. Autonomous cars rely on sensors, cameras,
and machine learning to understand the environment in
order to determine the appropriate control actions, which
requires computer vision techniques, both in 2D and 3D.
Due to the complex nature of real-world environment, it is
difficult to be reliable and timely in the prediction of the
deep learning models, since artificial intelligence methods
are unable to achieve a comprehensive understanding of
the surrounding environment comparable to human beings.
Because of this limitation, even the state-of-the-art methods
may cause serious safety issues if the environment scene is
wrongly interpreted. In this work, we focus on enhancing
our knowledge in the construction zone, as it will affect the
models’ output significantly and relatively low attention has
been drawn to this specific area.

1Chen is with the University of Illinois at Urbana-Champaign.
He completed this work during his internship at CMU.
brianc5@illinois.edu

1Narasimhan and Tamburo are with the Robotics Institute,
Carnegie Mellon University. srinivas@andrew.cmu.edu,
rtamburo@cmu.edu

Fig. 1. This figure demonstrates various forms of construction zone from
different sources in our construction zone dataset. The top left image is
obtain using Google engine. The top right image is taken from Taipei. The
bottom two images are collected from Pittsburgh. Construction zone has
diverse appearances, depending the location, the type of construction, and
various other factors.

Construction zone is inevitable on the road, and serious
accidents are more likely to happen in nearby area due to the
presence of workers on the road and unexpected changing
road conditions. For example, distracted drivers bring less
attention to unexpected road conditions and hazards. More-
over, understanding construction zone allows to send real-
time updates to pedestrians, pedal cyclists, and drivers about
traffic status and construction progress. However, as current
deep learning methods rely heavily on large-scale datasets to
train models, the lack of construction zone specific dataset
prevents us from applying state-of-the-art methods to gain a
better understanding of construction zone. Existing datasets
either only concentrate on detecting a small subset of objects
found in construction zones, such as traffic signs [1]–[4], or
focus on a more general view of traffic and congestion [5]–
[10], ignoring the details of the construction zone, which
plays a crucial part of transportation applications.

Therefore, in this work we aim to address these issues
and conduct an analysis of construction zone. We present
a novel construction zone labeled dataset and explore the
usefulness of this dataset in real world by using our trained
models in different scenarios. Currently this dataset supports
binary label - construction and non-construction. Images are
collected from diverse sources so that the model trained from
it can be generalized to unseen environment in the future.
Moreover, we conduct analysis to understand what features
are critical for classification. We learned that the color is
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a crucial factor for models to classify construction zone by
conducting experiments and feature map visualization. Ad-
ditionally, we dive into different approaches such as utilizing
pseudo label and segmentation masks to expedite the process
of dataset collection and improve model performance.

Our main contributions include:
1) create a construction dataset consisting of 4429 images,

images were scraped from google image searches and
captured from smart phones in Pittsburgh and Taipei

2) train a construction identification model and utilize
it to generate pseudo label to allow the model to
automatically annotate images

3) conduct analysis in the effects of color and segmenta-
tion masks for identifying construction zone

II. RELATED WORK

In this section, we review the datasets related to trans-
portation and construction zone. Specifically, we will go
over some traffic sign datasets, general scene datasets, and
driving/transportation datasets.

Traffic signs are common components in construction
zone. As recognition and detection for traffic signs have
been studied in many previous works, some of the presented
datasets are solely applicable for traffic signs. For example,
Lisa Traffic Sign Dataset [1] is a US traffic signs dataset,
which includes the original video tracks of all annotated im-
ages/frames of traffic signs. German Traffic Sign Recognition
Benchmark (GTSRB) and German Traffic Sign Detection
Benchmark (GTSDB) [2], [3] are traffics sign datasets col-
lected in German for similar purposes. The former dataset is
for traffic sign detection while the latter is for traffic sign
classification, with more than 50,000 images. Benchmark
Tsinghua-Tencent 100K [4] contains images with traffics
signs taken under various illumination and weather condi-
tions. Class label, bounding box, and segmentation mask are
available in the dataset. Despite the fact that these traffic sign
datasets provide useful information for construction zone
understanding, these are not out-of-box datasets that could
facilitate the construction zone identification.

There are several nature object and scene datasets, such as
Pascal Visual Object Classes (VOC) [5] , Microsoft COCO
[6], ADE20K [7], which are more designed for general
purpose scene classification, segmentation, and detection. In
the context of driving datasets, KITTI [8], MIT DriveSeg
datset [9], and BDD100K [10] are well-developed datasets,
with high-quality pixel level segmentation, high resolution
and frame rate, and other features for driving applications.
BDD100K has multiple tasks such as lane marking and
drivable area detection, which are relevant to the construc-
tion zone. Besides real-world datasets, several works utilize
computer graphics to generate synthetic datasets, such as
Virtual KITTI dataset [11] and SYNTHIA dataset [12].
Moreover, there are also datasets specifically designed for
persons and pedestrians detection, e.g. CityPersons [13],
EuroCity Persons [14]. While these datasets include many
objects relevant to construction zone, such as fence and
individual standing wall, which makes it sufficient for most

common cases, they lack particular details and information of
construction zone and its related objects, such as the type of
construction zone, etc. In our work, we propose to construct
a rich dataset specifically for construction zone analysis.

III. METHOD
We first go over the definition of our construction zone

dataset. We then move on to the methodology and strategies
used for collecting dataset. Moreover, we explain our choices
of models for identifying construction zones. We then de-
scribe how we try to utilize the trained model to increase the
efficiency of labeling process with pseudo label. Finally, we
discuss the procedure of making use of segmentation masks
as additional input signals.

A. Construction Zone Dataset

Definition. The most important aspect of creating a dataset
is to determine what we expect from the dataset and what
information should be included. We define the construction
zone in our dataset as road construction, sidewalk con-
struction, bike-lane construction, and any other construction
that would directly effect normal, daily transportation of
regular uses. In other words, we do not collect images of
pure construction zone, e.g., an area that is not on the
road or does not affect the traffic, or building construction
site. Additionally, portraits of construction-related objects are
ignored as it does not provide much information about the
condition of transportation. We accept images with arbitrary
aspect ratios. Images taken from the human-level height and
intersection camera are desired, while viewpoints from ex-
treme angles are not considered, i.e. satellite-level or ground-
level viewpoints. The dataset should cover a wide range of
diversity, including but not limited to the location, weather,
time of days, environment, type of roads, configuration of
roads, type of constructions, and the type of barriers.

Collect with Google engine. To minimize the labor cost of
annotations for our dataset, we exploit the power of Google
search engine. Google engine is beneficial because we can
inherently obtain the labels of the images by specifying
the query keywords. To automate this process, we write a
python script that can process multiple keywords together
and download images accordingly. At this point, the main
problem becomes what the query keywords should be. To
ensure that the dataset is sufficiently diverse and general to
be applied to the real world scenarios, we design a complex
set of query keywords in the following format

[multiple objectives] + noun

Originally, the objectives we used include weather condi-
tion, location, and others. While the nouns of interest include
”road construction”, ”road maintenance”, and ”road work”,
eventually we only use ”road construction” since the other
two usually return duplicate images as the first one. Yet, we
conclude that Google search engine cannot returning relevant
images while the compound keywords are over-complex.
Specifically, when the keyword has one noun and more than
two objectives, the returned images mostly only satisfy one
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Fig. 2. This figure illustrates the pipeline used for different experiments. The left is for the basic construction zone classification using ResNet101. The
middle and right are the two architectures we use when having segmentation masks as additional input. In the middle pipeline, we only changes the first
layer of ResNet101; the RGB image and segmentation masks are stacked and fed into the model. In the right, we use 2 branches pipeline in order to learn
better features.

or a few query keywords. The most dangerous case is that
the image only satisfy the objectives, instead of actually con-
taining the construction zone. Therefore, even though using
multiple keywords can provide richer annotations, using only
one objective and one noun for the query keywords actually
yield more effective results for our purposes.

Filter unsuitable images. Although simple keywords
facilitate Google engine to return higher quality images, the
returned images are still sometimes unsuitable for a dataset.
For example, it may return images with different types and
formats, such as synthetic images or slides of a presentation
due to the high functionality of Google engine. Even though
we explicitly prohibit Google engine from returning images
other than photos, using the built-in filter function, the
problem still remains. Furthermore, we may still get images
that are not construction zone while the query keyword is
simple and contains the keyword ”construction”. Other issues
include getting images with bad scale, watermarks, and
from unacceptable viewpoints. Therefore, to collect a reliable
dataset, manual labeling and checking is still a mandatory
procedure with the use of Google engine in our experiments.
Google engine can only serve as a convenient tools to gather
images efficiently.

Diverse data sources. To verify the model trained on the
dataset G collected from Google engine can be generalized
to real world, we need other datasets from different environ-
ments or distributions. For this purpose, we collect dataset
by taking pictures in the cities where we live in. Due to
remote working, we are fortunate to be able to collect photos
from two cities across the ocean - Pittsburgh and Taipei,
as shown in Fig. 1. This greatly increases the diversity of
the dataset and allows us to justify the generalization of G.
Since we collect dataset by ourselves, we can label it more

efficiently by only considering certain types of photos in a
period. To improve the performance of the dataset, we try to
collect images in nearby area of construction zone so that the
distribution of construction and non-construction images are
more balanced. This forces the models to focus on the key
features of the construction zone for identifying, instead of
relying on other noise features. In addition, we collect images
during driving. We deploy cameras at different locations on
the car and set up a remote shutter control so that we could
safely and efficiently take photos while driving.

B. Model Architecture

For simplicity, the classification model for identifying
construction zone is using ResNet101 [15] as the backbone,
followed by multi-layer perceptron (MLP), as shown in the
left of Fig 2. ResNet101 is a popular backbone for many
larger networks in the field of computer vision. It features
the residual blocks, which allow building larger architectures
by minimizing the gradient vanishing issue and preserving
the features and information in previous layers. In addition,
we apply an existing segmentation model - HRNetV2 [16] -
to obtain the segmentation masks for our dataset. The seg-
mentation masks are then fed into the ResNet101 backbone
with the original RGB image to provide more information
about the geometric structure of the image.

To accommodate the additional input to the model, we
adopt two modifications to the original architecture, as illus-
trated in Fig. 2. First, the number of the input channel to
the first layer of ResNet101, which is a convolution layer, is
changed from three to six. By expanding the input channels,
we can stack the original RGB image and the segmentation
mask, and use it as the input to the model to enhance the
inherent information. The second modification is to have two
branches of ResNet101 model for learning different features
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Fig. 3. This figure shows that color plays an important role in identifying construction zone. The left is the input of the model. The middle is a selected
feature map of the first convolution layer of ResNet101, which shows the model relies on the orange color to make decision. THe right is all the 64 feature
maps of the first convolution layer of ResNet1010.

TABLE I
THIS TABLE SHOWS THE RESULTS OF THE MODEL TRAINED BY USING

THE DATASET G.

Test Dataset Accuracy Number of Images

A 0.8801 273

B 0.9150 153

C 0.6849 948

D 0.7184 1612

E 0.6453 113

for RGB images and segmentation masks respectively. The
two embedded features are then concatenated and fed into a
MLP to generate the final prediction of our model.

In addition, we allow the trained model to label unseen
images, when the model is confident in its prediction. The
trained model is considered confident when the difference
in the output logits of the top-2 prediction is greater than
0.15. With this automatic annotation function, we utilize the
information of an annotated dataset to obtain a new labeled
dataset annotated by our models. We call these labels pseudo
labels since they are annotated by the trained models, in
contrast to the ones annotated by humans. Finally, we use
this dataset with pseudo labels to update our trained model
again.

To further improve the models and interpret what the
model has learned to identify construction zone, we design
experiments to investigate the behavior of the model. Specif-
ically, we visualize the feature maps of the ResNet101 model
and analyze the results. Furthermore, we run the model with
gray scale image input to demonstrate the importance of the
colors in the input image.

IV. RESULTS

A. Datasets

Datasets. We test the model on multiple datasets we built
as described in Section III-A. Since the entire construction
dataset is collected over time at different locations through
out the project, we divide the dataset into multiple small
subdatasets. We will refer subdataset as dataset in the rest of
the article.

The first dataset G is built using google search engine
and requires filtering. Before filtering out unsuitable images,
there are about 3.6K images. After manually filtering, the
total size of the dataset is 1.2K, where 64% of them
are construction images and the rest are non-construction
images. About 66% of the returned images from Google
engine are not suitable for our dataset.

We have other 4 datasets collected in Pittsburgh, and 1
dataset collected in Taipei. Dataset A and B are collected
while walking in Pittsburgh. Dataset C and D are collected
while driving in Pittsburgh. Dataset E is collected while
riding scooter in Taipei.

Evaluation. The accuracy is defined by computing the
number of correct predictions divided by the number of total
predictions.

To evaluate how well the model trained on dataset G can
be generalized to the real world, we train the model using
dataset G and tested on all other datasets individually. Table
I summarizes the model performance on various datasets.
Accuracy on dataset C, D, E is relatively low compared
to performance on dataset A and B. It is conjectured that
this is due to the inconsistency in annotations. For example,
one might annotate images as construction zone based on
whether there exist traffic cones and construction fences on
roads. On the other hand, one might consider images as
construction zone only when there is an active construction
zone. The second reason might be the changes in dataset
domains, which requires additional model adaptation to fix
the issue. Additionally, we run an experiment by combining
all datasets into one and randomly split them into 70% for
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Fig. 4. This figure shows the prediction by model trained on dataset G. The predicted labels are shown on the left. The red border indicates that the
images are wrongly classified.

training and 30% for evaluation. We achieve 88% on this
setup. Therefore, we expect the model trained by our dataset
to have comparable capability of identifying construction
zone in real world.

For consistency, we complete the rest of the experiments
using dataset G as the training set and dataset A as the test
set.

B. Feature Exploration

We visualize the feature maps of the first 3 layers of the
ResNet101 to understand what the model learns. Fig. 3 shows
that except the horizontal and vertical edges, the orange
region of the feature map is highlighted in a single feature
map. This indicates that color features are captured by the
model while identifying construction zones. Furthermore, the
input signals are turned into a single channel to see how the
model performs. In other words, we transfer RGB images
into gray scale images. Specifically, we use the PyTorch
built-in function to map RGB images to gray scale and
set all the RGB channels be the gray-scale value so that
we do not need to modify the original model architecture.
Table II shows that model with only the gray scale images
perform significantly worse than the RGB images. We can
infer that the model cannot well identify the construction
zone solely using the geometric properties of the images.
This is consistent with our claim that the color is a crucial
factor for identifying the construction zone.

In Fig. 4, we show several images from dataset C and the
corresponding predictions from our model. The two images
in the top-left are wrongly classified as construction zone.
We suspect that this is because of the objects with bright
red color that appear in the image, such as the building wall
and red car. Interestingly, the third image in bottom row,
which also has large area of red color, is correctly classified.
Probably this attributes to the fact that our model also relies
on the geometric structure of the images to make decision.
In the bottom-left, two images of highway road works are

TABLE II
THIS TABLE SHOWS THE EFFECT OF COLORS AND SUGGESTS THAT

MODELS HEAVILY RELY ON COLOR TO IDENTIFY CONSTRUCTION ZONE.

Input Accuracy

RGB image 0.8801
Gray image 0.7109

wrongly classified, it is conjectured that this is due to the
insufficient diversity of our dataset.

C. Pseudo Label

The pseudo label experiments are conducted using the
dataset G and A. Specifically, we split the dataset G into
approximately 40% for initial training. The remaining 60%
are labeled by the trained model. As mentioned in Section IV-
A, we evaluate the model on dataset A. The confident
threshold for the model is set to 0.15. We observe that the
model’s performance drops by 11% after being trained on
the images with pseudo labels. There are two factors that
could potentially lead to this result. First, the hyperparameter
- confident threshold - might not be optimized. There is a
trade-off between the number of images being labeled and
the precision of the pseudo labels. If the model is forced to
annotate images only when highly confident, the number of
annotated images will be small, and vice versa. Currently it
is not clear what threshold value is optimal. Secondly, the
model might not be able to correctly annotate images since
the provided training dataset is not huge enough. The lack
of training images is a classic problem in computer vision.
It is planned to conduct more experiments with the pseudo
label setup when more images are available to resolve this
issue.
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TABLE III
THIS TABLE SHOWS THE EFFECTS OF DIFFERENT SEGMENTATION

MASKS.

Filters Accuracy

w/o filter (150) categories 0.7875

All relevant (21) categories 0.7985

Most relevant (7) categories 0.7985

Road only 0.7839

D. Segmentation Masks

We try two different model architectures to accommodate
the additional segmentation mask input, as described in III-
B. The first architecture does not perform well compared
to the one without using any segmentation masks, which
contradicts to our hypothesis that the segmentation masks
are useful. The first possible reason is that the segmentation
mask from HRNetV2 is not good enough to serve as the
input. The second explanation is that the model is not strong
enough to learn and extract the information in the segmenta-
tion masks. As we only do a simple trick to ResNet101, we
change the architecture by making a 2 branches architecture,
where each branch is a duplicate ResNet101 model, as shown
in the right of Fig. 2. We find that the accuracy increases by
12% by using the 2 branches architecture.

Segmentation masks are obtained by using the HRNetV2,
which is pretrained on the ADK20 dataset. Since this dataset
has 150 categories, we filter out the categories that are
unlikely to appear in our construction dataset to reduce the
noise in the segmentation masks. Since it is hard to determine
which categories should be included, we apply different sets
of mask filters to see what the optimal set of categories is.
Specifically, we try using (a) all the categories in the original
dataset, (b) all the relevant categories that might appear in
our dataset, (c) the essential categories that are very likely
to be helpful for identifying the construction zone, and (d)
only the ”road” category. Table III shows a summary of the
experiments. We conclude that filtering does help improve
the performance by a margin. However, as the performance
is still worse than the baseline, a better model needs to be
considered.

V. DISCUSSION

We demonstrate that the model trained from our con-
struction dataset is capable of identifying construction zone
in several real-world scenarios. We also discover that our
current method cannot utilize the segmentation masks as
additional inputs to improve the performance of our models.
It is expected that better framework for training models
and more labeled data are required for the segmentation
experiments.

In future work, we will expand our dataset to include
more annotations of objects commonly found in construction
zones. The annotations include the bounding box of chosen
objects, the type of construction zone, the blocking condition
of lanes, etc. Moreover, we would like to review the defini-
tion of the construction zone, to ensure the consistency and
robustness of our dataset. For example, we will specify the
portion of construction zone on an image that is required to
label that image as construction zone. In addition, we would
like to run and test the model on a larger dataset, such as
images from bus cameras and intersection cameras. In terms
of model functionalities, we will integrate our model with
other methods that could detect and segment construction
objects.
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Joint SLAM on Multiple Monocular Cameras for Legged Robots

Thomas Detlefsen1, Sayan Mondal2, and Matthew Travers3

Abstract— Legged robots have a distinct advantage over
other platforms, such as wheeled or tracked robots, because
of their ability to adapt to highly-variable terrain. However,
the ability to dynamically adapt to changing terrains comes at
a cost; on board sensors such as inertial measurement units,
cameras, LIDAR, etc. are often violently shaken, producing sig-
nals that are hard to interpret or outright fail altogether. To this
end, it has been shown that when the camera source is placed on
a legged platform, visual-inertial simultaneous localization and
mapping (SLAM) methods experience degraded performance
due to unpredictable sensor motion [1]. Even robust SLAM
systems that can recover from some unpredictability in sensor
measurements tend to suffer from degraded performance due
to the abrupt and motions and vibrations on sensors that
corrupt measurements. To address this, we introduce a method
for performing association between sensor measurements on a
rapidly moving camera and increasing re-association confidence
through the use of recurrent neural networks (RNNs) and a
learning-based tracking algorithm.

Index Terms— Monocular Vision, Features, Re-identification,
Simultaneous Localization and Mapping (SLAM)

I. INTRODUCTION

Legged robots are crucial to robust applications of robotics
where other platforms fail. They have the ability to navigate
natural terrain such as ones with uneven or soft surfaces,
whereas other platforms require a continuous support surface
to move effectively. [2] The capability to maneuver across
different terrain makes legged robots a common choice for
applications such as industrial inspection, exploration, or
search and rescue missions. [3]

In recent years, SLAM algorithms have vastly improved,
but they still perform poorly when applied to systems with
rapid and dynamic motion. [4] Systems that rely heavily on
visual information often incur a lower cost to implement,
but do not perform well on legged platforms because of
the unpredictable motion of a legged robot. These systems
experience increased effectiveness at lower speeds where
movement is more controlled, but they are still not as
effective as on other platforms [1] and provide a limitation
for the speed of the platform when it is physically able to
move faster.

In this work, we introduce a design for a robust visual-
inertial SLAM algorithm that identifies visual features of
the environment and re-associates them to the map within
multiple monocular camera frames on board a legged robot.

1Thomas Detlefsen is with the Electrical Engineering Department at the
University of Pittsburgh, Pittsburgh PA 15213, USA ted32@pitt.edu

2Sayan Mondal is with the Biomedical Engineering Department
at the University of Pittsburgh, Pittsburgh PA 15213, USA
sayanmon@andrew.cmu.edu

3Matthew Travers is with the Robotics Institute at Carnegie Melon Uni-
versity, Pittsburgh PA 15213, USA mtravers@andrew.cmu.edu

Our method is split into four modules: detection, classifi-
cation, tracking, and re-identification. The detection module
recognizes environment features and records their position
relative to the robot. The information about these features is
then used to classify the features with increasing confidence
using the classification module. These features and classifi-
cations inform the tracking module which generates a unique
identifier for each feature so that it can be re-identified be-
tween time-steps and between camera views. The association
module uses the feature identities and attributes to re-identify
features to map the environment and localize the robot.

Figure 1 shows a simplified example of this system in
action. In the first time-step, features are extracted from the
image taken by the camera and unique identities are gener-
ated for each feature. In the next time-step, the previously
detected features (shown in red) are re-identified and new
features are detected and fit to the environment. Again, in
the third time-step, the previous features (shown in orange)
are re-identified by the system.

The method is implemented and demonstrated by repre-
senting visual features as objects on a conveyor belt moving
between two cameras. This representation allows us to ab-
stract away the details of feature selection in SLAM, as this
ability has been demonstrated consistently in many modern
SLAM systems. [1], [5]-[7] This abstraction allows us to
focus on the performance of the tracking and re-identification
of features in a controlled environment.

Fig. 1. A simplified example of the system is shown above. In the first
time-step, features are identified and unique identifications are generated.
In the next time step, the previously detected features (shown in red) are
re-identified and new features are added to the map. In the final time-step
previously detected features (shown in orange) are again re-identified.
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II. RELATED WORK

Within the field of localization for mobile robotics, there
are a large variety of SLAM algorithms suited for different
purposes. Some of these systems are designed for general
use on mobile robots but have degraded performance when
adapting to specific use cases, such as legged perception.
This section discusses state-of-the-art general SLAM algo-
rithms and those more specifically suited for SLAM on
legged robots.

A. State-of-the-art general SLAM Algorithms

This section provides a brief overview of some state-of-
the-art SLAM algorithms suited for general use in mobile
robotics. These methods perform well when there is less
frame-to-frame movement, but as the amount of displace-
ment between camera measurements increases, the perfor-
mance of general use systems degrades.

1) ORB-SLAM2: ORB-SLAM2 is a feature-based SLAM
system designed for monocular, stereo, and RGB-D cameras.
ORB-SLAM2 is the continuation of ORB-SLAM [5], a
monocular vision SLAM system that uses the same fea-
tures throughout tracking, mapping, re-localization, and loop
closure. ORB-SLAM2 demonstrates an increase in accuracy
with the use of bundle adjustment over iterative closest points
used in previous methods. This system features a real-time
camera re-localization method that allows the algorithm to
recover from failure, but it still has difficulty with consistent
camera movement. [6]

2) VINS-Mono: VINS-Mono is a visual-inertial SLAM
system that utilizes a monocular camera and inertial measure-
ment unit (IMU) measurements. The primary contribution
of VINS-Mono is the ability to initialize the system from an
unknown state which was previously difficult due to the IMU.
In previous visual-inertial systems, the IMU was required
to start from an unknown moving position to calibrate the
camera and IMU together. This method outperforms ORB-
SLAM because of the incorporation of IMU measurements
which constrain the pose estimation of the mobile robot.
This inclusion of IMU measurements is still not sufficient
to accurately perform SLAM on a dynamic system such as
a legged robot. [7]

B. State-of-the-art SLAM Algorithms for Legged Perception

Recently, there have been developments in the field of
robust SLAM systems for legged perception. These meth-
ods often utilize graph optimizations and introduce further
constraints than general methods to restrict the graph if
too few features are found in common between camera
measurements. While these systems improve over general
use SLAM systems, they still fail to perform at higher
speed movement where more instability is introduced to the
cameras of the robot.

1) PUT SLAM: PUT SLAM is a system reliant on RGB-
D sensors that is specifically designed for the application
of urban search and rescue missions on legged robots. PUT
SLAM uses bundle adjustment to create a map of features
optimize them with the sensor trajectory. The graph created is

constructed of features and sensor poses. While PUT SLAM
performs better than conventional state-of-the-art SLAM
systems, it still is not robust to legged robots with rapid
and unstable gaits. [1]

III. METHOD

This section discusses the details of our robust monocular
camera SLAM system for legged systems. To abstract away
the details of feature selection, as this ability has been
demonstrated consistently in many modern SLAM systems,
our method represents features as objects moving between
multiple cameras on a conveyor belt. Because of this, we
employ four modules to our system: detection, classification,
tracking, and association. An overview of this method is
shown in figure 2.

Fig. 2. The system diagram for our SLAM system is shown above. Images
are passed from the camera to the detector where each detected object is
classified and returned. These classifications and bounding boxes are passed
to the tracker where unique object IDs are generated and the information is
provided to the next system so that it can inform detections.

A. Detection

For the initial detection of objects, this method uses the
YOLO v5s network, which is the most recent iteration of
[8]. YOLO uses a single CNN to extract features from an
entire image and maps the detections onto a grid. Then
the confidence score is created and the bounding boxes are
generated. YOLO v5 has a pre-built classifier, but in this
work, the YOLO v5s classifier is substituted for an RNN
based classifier, because the original classifier does not take
into account temporal information from previous detections.
The advantage of YOLO v5s in this context is that its speed
is suitable for real-time detection at high frame rates allowing
the system to gather more information on the objects to make
accurate future predictions.

B. Classification

The classification network uses a joint CNN-RNN network
(known as CRNN), depicted in figure 3. The cropped images
from the object detector are fed into the network at each
time step, and processed by the CNN, the extracted features
are fed to the RNN which uses the hidden states of the
previous time step to create a better estimation to classify
the correct object. At each time step, the classifier outputs
a probability distribution that describes the likelihood of
the classification of the object. Over time, as more views
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of the object are available, the classification of the object
improves. This classification is returned to YOLO v5s where
the bounding box and classifications are associated.

Fig. 3. A visualization of an unrolled CRNN is shown above. At each
time step, an image is fed into a CNN and the features are passed to the
next state in the RNN. The RNN uses the hidden states from the previous
time step to generate a probability distribution across the classes based on
features and previous classifications.

1) Training: For training, we have generated a dataset
of over 200 videos of objects moving across a conveyor belt
and sorted the data for classification. To train the CRNN, we
use a sliding window with length n that includes n-1 images
of an empty conveyor belt and one image of the object. In
the following video index, the window slides, decreasing the
number of conveyor belt images and increasing the object
images until all of the images from the video are used. This
allows for uncertainty when an object first enters the camera
view, then increasing confidence as more images of the object
are found.

C. Tracking

For the tracking and re-identification of objects, this
system employs the DeepSORT network. DeepSORT is an
extension of SORT which takes into account visual features
and object trajectory to perform multi-object tracking. [9]
This system receives the bounding box and classifications
from YOLO v5s and generates an ID based on the features
and previous states of the object. The ID and classification
are then made available for other tracking modules for the
other camera systems to access and perform re-identification.

IV. RESULTS

To evaluate the SLAM system proposed in this paper, we
represent features as objects moving past a camera on a
conveyor belt. This method allowed us to abstract away the
details of feature selection in SLAM, as this ability has been
demonstrated consistently in many modern SLAM systems.
While we were have not yet achieved full integration across

multiple monocular cameras, we were able to integrate the
detection and tracking modules and compare the classifica-
tion of the CRNN to that of YOLO v5s.

A. Detection and Tracking Integration

For initial testing of the system proposed in this paper,
only the tracking and detection models were integrated. This
means that objects were detected and classified by YOLO
v5s and the bounding boxes and classifications were passed
to DeepSORT where IDs were generated for each object so
that they could be tracked throughout the view of the camera.

During this testing, there were a fixed number of objects
from each class sent down the conveyor belt in quick
succession. We used the tracker to keep a running total
of the number of objects from each class and compared
this to the actual number of objects sent (one example
from a test is shown in figure 4. We found that while
objects consistently maintained the same ID, the objects were
somewhat frequently classified incorrectly.

Fig. 4. The figure shown above is an example of the results from the
integration of the detection and tracking modules. On the left side of the
screen, there is a counter which lists the number of each class that has passed
through the camera frame. As can be seen, some objects are miss-classified,
and some are not classified at all.

The frequent classification changes and miss-
classifications show that there is a need for a more
robust classification module. Specifically, one with temporal
knowledge can increase the confidence of new classifications
based on knowledge of previous states. For this reason, the
CRNN classification module is effective for this purpose.

B. Classification

The CRNN classification module was tested and compared
to the classification native to YOLO v5s. This comparison
was made by sending one object at a time down the conveyor
belt so that only one object was visible to the camera at
once. The results of this experiment are shown in figure 5.
The chosen object (a bottle) entered the view of the camera
after 5 frames. As seen in figure 5, the classification from
YOLO v5s is extremely sporadic for the first 8 frames, and
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Fig. 5. The figure shown above demonstrates the ability of the CRNN to perform more consistent classification than time-independent networks like
YOLO v5s by using the previous states to inform present classification. An object appears starting in frame 5. YOLO v5s does not classify the object
correctly for a few frames and is inconsistent in its classification for the first few frames. The CRNN classifies the object correctly immediately then the
confidence increases consistently until it is almost 1.

eventually gains confidence. In contrast, the classification
from the CRNN is more smooth and the classification rises
consistently, as it uses information from the previous states
to inform the next classification.

V. DISCUSSION AND FUTURE WORKS

This work demonstrates the design of a joint monocular
SLAM system robust to rapid camera motion due to the
movement of a legged body. The results shown in the
previous section demonstrate the current progress of this
research. This section will discuss how these results build
a path for the SLAM system described and what the pursuit
of this research will be moving forward.

The first example in the results, showing the integration
of the tracking and integration system shows the ability
of the system to detect and track objects frame to frame
while maintaining the same identity. This will be extremely
important for identifying and tracking features with rapid
body movement. The second set of results helps to show how
including information from previous classifications helps to
improve future classifications, giving them higher confidence
after fewer frames. Both of these results show the initial
phases of implementing a robust SLAM algorithm for legged
robots.

In future iterations of this project, we plan to integrate
the classification module into the monocular-camera network
so that object classification confidence can be observed
increasing as the object travels across the view of the camera.
Once this is complete, we plan to extend this to the multiple
monocular camera system originally proposed so that objects
can be re-identified outside of the original camera view. This
implementation would ideally be in real-time as YOLO v5s
was chosen specifically for its speed and accuracy results.
Once this implementation is completed, we plan to adapt this
multi-camera monocular SLAM system to a legged robot

where the method can be evaluated and tweaked for the
greatest success.
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Weakly Supervised Classification of Vital Sign Alerts as Real or Artifact

Arnab Dey1,2, Mononito Goswami 1, Joo Heung Yoon 3, Gilles Clermont 3, Michael Pinsky 3,
Marilyn Hravnak 3, Artur Dubrawski 1

Abstract— Numerous studies have shown that a significant
proportion of clinical alarms are false. This often leads to alarm
fatigue in clinical personnel, inevitably compromising patient
safety. To combat this issue, researchers have attempted to
build Machine Learning (ML) models capable of accurately
adjudicating Vital Sign (VS) alerts raised at the bedside of
hemodynamically monitored patients as real or artifact. Previ-
ous studies utilize supervised ML techniques, which require
substaintial amounts of hand-labeled data to train reliable
classifiers. However, in our observation, harvesting manually
annotated ground-truth labels on data can be costly, time-
consuming, and mundane, and is one of the key limiting factors
that prevent widespread adoption of beneficial ML capabilities
in healthcare. As an alternative, we explore the use of multiple
imperfect heuristics to automatically assign probabilistic labels
to unlabeled training data using data programming method-
ology. These heuristics provide weak supervisory signals to
train accurate and efficient downstream classifiers, sidestepping
the demanding requirements of previously used approach.
The primary goal of our study is to substantiate the efficacy
of weakly supervised classification of respiratory rate and
oxygen saturation alerts occurring in data from monitored
intensive care patients. We found Random Forest (RF) models
trained on probabilistic labels generated using the proposed
approach to perform comparably or outperform similar models
trained on ground truth labels, highlighting the potential of
data programming as an efficient and practical alternative to
supervised learning in healthcare applications of ML.

Index Terms— Machine Learning, Weak Supervision, Vital
Sign Alerts

I. INTRODUCTION

Intensive care patients who are at risk of cardiorespiratory
instability (CRI) undergo continuous monitoring of vital
sign (VS) parameters such as electrocardiography, plethys-
mography, pulse oximetry, and impedance pneumography.
Recent advances in commercial bedside monitoring devices
have made the sustained tracking of the physical state and
health of a connected patient a real possibility. Without
these devices it is practically impossible for medical prac-
titioners to continually and attentively observe fast-evolving
and heterogeneous VS parameters. However, even modern
commercial devices have surprisingly inadequate support for
identifying abnormal physiological variables in the form of
simple exceedances of pre-determined normality thresholds

1Arnab Dey studies at the Georgia Institute of Technology, Atlanta, GA,
USA adey43@gatech.edu
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[1]. However, it is not uncommon for patients to have atyp-
ical VS parameters due to occasional movement, electrical
interference, or loose sensors [2].

Indeed, numerous studies have shown a large percentage
of these VS alerts to be false, or more formally, artifact [3] -
either of mechanical, electrical, or physiological nature [2],
[4]. Additionally, medical practitioners may be exposed to
up to 1,000 alarms per Intensive Care Unit (ICU) shift [5].
The sheer amount of alarms in tandem with the high rate
of artifacts can quickly lead to alarm desensitization and
burnout in healthcare professionals. Multiple studies have
concluded that the resulting alarm fatigue can have severe
negative consequences for patient safety with several in-
cidents resulting in preventable harm or even death of a
subject [3], [5], [6]. In addition to the added stress placed
on medical practitioners, the frequent alerts from patients
can also lead to increased physiological stress, metabolic
impairment, sleep disturbance and even death [6]. The U.S.
Food and Drug Administration (FDA) has reported over 500
alarm-related patient deaths in the short span of five years [5].

Previous attempts to combat alarm fatigue have relied
on advancements in adaptive filtering or explored the use
of various Machine Learning (ML) paradigms, namely su-
pervised, semi-supervised and active learning. However, all
these methodologies require varying quantities of manually
and pointilistically labelled data. Labeling alerts as real or
artifact is often not only time-intensive, but also laborious,
expensive, and mundane tasks that pull experienced clini-
cians away from their patients. Furthermore, traditional ML
paradigms do not easily adapt to evolving clinical expertise
and changing problem definitions due to their reliance on
pointillisticaly annotated data which must be re-labeled to
accommodate each such problem redefinition.

As an alternative, data programming methodology pro-
poses to harvest general heuristics that clinicians would use
to label the data by hand, and use them collectively to
probabilistically reconstruct the labels in even vast amounts
of unlabeled reference data. The hope is that downstream
models trained with such automatically annotated data would
perform as well as would the models trained on data labeled
in a data-point-by-data-point fashion, while of course the hu-
man effort needed to accomplish that can be vastly reduced.

Recent work suggests that the proposed weak supervision
(WS) methodology can indeed accomplish such goals in
some healthcare time-series applications [7], [8]. In this
paper, we demonstrate the potential utility of this framework
to adjudicate bedside alerts as real vs. artifact in high-density
waveform VS data collected in intensive care settings.
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Fig. 1. Shown is a diagram outlining the Weak supervision pipeline for the
binary classification of vital sign alerts. Heuristics given by domain experts
are encoded into labeling functions whose votes are fed into a generative
model. This generative model then outputs probabilistic labels that are used
in tandem with feature sets generated from vital sign time-series data for
training a downstream Random Forest Classifier.

II. RELATED WORK

A. Alarm Fatigue

Alarm fatigue caused by high rates of artifact VS alerts is
a widely-studied problem and a variety techniques have been
adopted to combat it in previous research. Most approaches
fall into two main categories: (1) artifact reduction, and (2)
artifact detection. The former approach attempts to reduce
the number of artifact alerts produced through internal im-
provements within the vital sign monitors and other biosignal
measuring devices. Advancements in adaptive filtering and
other techniques to reduce artifacts in real time within the
monitor itself have been developed [9]–[14]. But, due to the
wide frequency range diverse nature and causes of artifact
alerts, [15], [16], the problem of alarm fatigue still persists
[2]. Our paper instead aims to tackle alarm fatigue and the
high rates of artifact alarms through the latter approach,
which focuses on post-measurement artifact detection and
classification.

B. Clinical Settings

A large amount of research has been conducted on post-
measurement artifact detection in the past, but most either
look at ambulatory settings or in the context of wearable
devices and smartphones – settings which are fundamentally
different from VS alert classification in the clinical settings
due to differences in physiological state of users, data quality,
rates of motion and noise artifact, amount and type of
available data, a priori likelihood of artifact, and primary
differences in the types of artifact that is detected [17]–[19].
While in a clinical setting, a VS alert is classified as real
or artifact, some aforementioned papers classify biosignals
themselves as real or artifact.

C. Machine Learning Paradigms

Prior research on artifact detection strictly in the clinical
setting has been conducted, but most papers combat alarm
fatigue through the use of traditional ML pipelines such as
fully-supervised (FS), active, semi-supervised, and federated
learning [2], [20], [21]. These papers have made great strides

in VS alert classification and in fact, the medical data curated
by [critical care alert group] used in the paper by Chen et
al. for VS alert classification was also used in this work
[2]. However, these previously studied learning paradigms
require vast amounts of initial training data to train efficient
and accurate classifiers, which is greatly inconvenient, and
even impractical in certain situations. There is a distinct
lack of analysis on classifiers trained in data and label
sparse environments using pipelines expressly suited for this
situation. Moreover, to the best of our knowledge, our work
is the first to apply weak supervision to the problem of VS
alert classification.

D. Weak Supervision to Solve Clinical Problems

Prior work on applying weak supervision to solve a
gamut of clinical problems ranges from detecting aortic
malformation using cardiac MRI sequences [22], detecting
abnormal heartbeats [8], to detecting seizures using EEG data
[7]. Our work follows [8] in being among the first to apply
weak supervision to time series data using heuristics defined
directly on time series, compared to prior work such as [7]
which used heuristics defined on auxiliary modalities such
as text.

III. METHODOLOGY

A. Problem Formulation

Broadly, given an alert, our goal is to classify it as a
real or artifact. We specify each alert as a 4-tuple Ai =
(pid, τ, t, d), where aid is a unique alert ID, τ ∈
{RR, SpO2} is the alert type, t and d are the starting time
and duration of the ith alert. We assume that each alert is
associated with an unobserved true class label Y∗

i ∈ {0, 1},
where 0 denotes real and 1 denotes an artifact; and that
for the duration of the alert, we have access to time series
data Ti which includes both waveforms such as ecg leads
II and III and numerics such as HR, potentially sampled
at different frequencies. We aim to use clinical intuition
and expert knowledge encoded in several noisy heuristics
to obtain labels to train an downstream classification model
M. We define each heuristic, alternatively called a labeling
function (LF), denoted by λ : T × A → {−1, 0, 1} directly
on timeseries data. A LF either abstains (−1) or votes for
a particular class (0, 1) given an alert A and its associated
waveform data T . While we do not expect LFs to have
perfect accuracy or recall, we do expect them to have better
than random accuracy where they vote. Starting with n
patient alerts X = {(Ai, Ti)}1...n and m labeling functions
Λ = {λi}i=1...m, our goal is to learn a label model L which
assigns a probabilistic label p̂(y | Λ), y ∈ {0, 1} to each
patient alert in X .

The label model learns from the overlaps, conflicts and
optionally dependencies between the LFs using a factor
graph as shown in Fig. 1. In this work, we assume the
LFs to be independent given the true class label. While this
assumption may not always stand, most prior work [7], [8],
[22] has shown that the label model works well in practice.
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We use the label model proposed in [23] to learn the joint
distribution between the unobserved

B. Vital Sign Data

Our data was collected at one of the University of Pitts-
burgh Medical Center hospitals, and curated and de-identified
at the University of Pittsburgh whose Institutional Review
Board deemed this research did not qualify as human subjects
research. Cardiorespiratory vital sign alert data consisting of
a variety of waveforms and numerics was collected by a
Philips IntelliVue MX800 Monitor, from a mix of Intensive
Care Unit (ICU) and Step Down Unit (SDU) patients.
Numerics, including Respiratory Rate (RR), Heart Rate (HR),
oxygen saturation (SpO2), and telemetric oxygen saturation
(SpO2T) were sampled at 1 Hz. Waveform data including
lead II and lead III Electrocardiograms (ECG), plethysmo-
graphs (pleth), telemetric plethysmographs (plethT), ar-
terial pressure waveforms (ART) derived from an indwelling
arterial catheter, and respiratory waveforms (resp) from
impedance pneumography were all sampled at various fre-
quencies. ECG lead II and lead III were sampled at both
250 Hz and 500 Hz. Pleth, plethT, and ART were all
sampled at 125 Hz, and the resp waveform was sampled at
62.5 Hz. It is also worth noting that the featurizations done
on the ART data were removed later in the study when it
was discovered that a large portion of the data was missing
or incomplete for both RR and SpO2/SpO2T alerts.

C. Vital Sign Alert Events

We determined both RR and SpO2/SpO2T vital sign alerts
by analyzing the RR numeric and SpO2/SpO2T numeric,
respectively, on 4 factors: (1) duration - at least 5 minutes
of the respective numeric data was present, (2) persistence
- at least 70% of the numeric values exceeded respective
thresholds (< 10 breaths per minute or > 29 breaths per
minute for RR and < 90% for SpO2/SpO2T), (3) tolerance
of 5 minutes suggesting that consecutive alerts < 5 minutes
apart were combined, and (4) density expectation of 65% of
numeric values present at a 1 Hz sampling frequency. These
factors ensured that the VS alerts we analyzed contained con-
tinuous spaced anomalies with minimal interruption and were
sufficiently long to have clinical relevance. Similar to prior
work by [2], [20] we only used the first 3 minutes of each
alert event for both RR and SpO2/SpO2T alert classification.
However, we broke each 3 minute alert window into three
1 minute windows, primarily as a way to artificially boost
the sample size. The ground truth label for each of the alert
windows was assumed to be the same as the ground truth for
the parent event. In the rest of this paper, RR or SpO2/SpO2T
alerts refer to these 1 minute alert event windows.

D. Expert Knowledge Informing VS Alert Classification

Manually classifying artifact VS alerts is an arduous,
repetitive, yet sufficiently objective process, largely governed
by a set of guiding principles or ”business rules” based on
visual distinction and clinical intuition [20]. Most business

Fig. 2. This sample RR LF demonstrates the general design of labeling
functions. Heuristics suggested by domain experts can be easily encoded as
a set of simple conditional statements. In this specific case, when the value
for the median RR derived from respiratory waveform data is within 15%
of the median RR numeric, the VS alert is classified as real.

Alert LF Name Polarity Coverage Overlaps Conflicts Emp. Acc.

RR

respNK1 [0,1] 0.844 0.844 0.458 0.803
respNK2 [0,1] 0.844 0.844 0.458 0.519
respINT [0,1] 0.809 0.809 0.448 0.735
respFFT [0,1] 0.844 0.844 0.458 0.847

respHeight [0] 0.234 0.234 0.062 0.860
plethFFT [1] 0.228 0.228 0.183 0.958
plethNK1 [1] 0.305 0.305 0.216 0.937
plethNK2 [1] 0.264 0.264 0.222 0.971

SpO2

plethNK1 [0,1] 0.657 0.657 0.192 0.877
plethNK2 [0,1] 0.657 0.657 0.192 0.853
plethINT [0,1] 0.657 0.657 0.192 0.896
plethFFT [0,1] 0.657 0.657 0.192 0.939

pulsatility [0] 0.125 0.113 0.111 0.677
pulsatilityT [0] 0.095 0.022 0.022 0.957

plethMatchesECGiiiNK1 [0,1] 0.044 0.044 0.042 0.682
plethMatchesECGiiiNK2 [0,1] 0.050 0.050 0.048 0.640
plethMatchesECGiiiINT [0,1] 0.040 0.040 0.038 0.700
plethMatchesECGiiiFFT [0,1] 0.050 0.050 0.048 0.800

tachypnea [1] 0.450 0.389 0.121 0.762

TABLE I
SUMMARY STATISTICS FOR ALL LFS. POLARITY LISTS THE CLASSES A

LF VOTES FOR, WHERE 1 CORRESPONDS TO A REAL ALERT AND 0

DENOTES AN ARTIFACT. IN OUR WORK, WE USED A MIX OF UNI AND

BIDIRECTIONAL LFS. ADDITIONALLY, THE HIGH OVERLAP AND

CONFLICT WITH THE GENERALLY GOOD COVERAGE INDICATES THAT

THE LFS WERE WELL-SELECTED. THE EMPIRICAL ACCURACY OF EACH

HEURISTIC IS PROVIDED AS TOOL FOR ENHANCING THE READER’S

UNDERSTANDING OF THE WEAK SUPERVISION PIPELINE, BUT

GENERALLY THIS STATISTIC WOULD BE UNAVAILABLE IN PRACTICE,
SINCE THE CALCULATION RELIES ON GROUND TRUTH LABELS.

rules are based on the apparent disagreement between ob-
served numerics, and corresponding numerics derived from
recorded waveform data. For instance, most business rules
to distinguish between real and artifact RR alerts are based
on discrepancy of observed RR and the numeric derived
from the resp, pleth, plethT, and ART waveforms. In
this study, however, we were unable to derive RR plethT
and ART waveforms after finding a large portion of the
data for these waveforms to be missing or incomplete.
Similarly, SpO2/SpO2T alerts are more likely to be artifacts
when the observed HR does not match HR derived from
the pleth/plethT waveform. Our label model leveraged
the overlaps and conflicts between labeling functions built
on different core methodologies to probabilistically label
training data.

Some other business rules compared the HR derived from
ECG lead iii to that computed from the pleth waveform,
and examined whether patients are experiencing tachypnea
(rapid breathing, with RR > 20) during an oxygen satura-
tion alert. To improve reliability, some business rules also
checked whether resp and pleth waveforms were too low
or displaying a lack of pulsatility.
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E. From Expert Knowledge to Labeling Functions

Since most business rules relied on RR and HR numerics
derived from the recorded waveforms, we developed mul-
tiple core methodologies with wide ranging accuracy, to
compute these numerics. For most business rules relying
on derivations of RR and HR, it was important to be able
to compute the primary/secondary harmonics and locate
peaks in different waveforms. For instance, the RR closely
corresponds to the median number of peaks and the primary
harmonic of a clean resp waveform. We compute the
former using a modified version of SciPy’s peak detection
algorithm [24] and an extrema extraction algorithm proposed
in [25] as implemented in Neurokit2 [26]. We computed
the primary harmonic of the resp waveform by locating
the highest peak of a periodogram modified by the Bohman
windowing function. Prior to using the resp waveform, we
processed it subjecting it through linear detrending followed
by a fifth order 2Hz low-pass IIR Butterworth filter [25].

To derive RR from the pleth and ART waveforms,
we first processed them via a different, novel, multi-step
methodology, which involved interpolating the tips of the
peaks found using SciPy’s peak detection algorithm via
spline interpolation. This was done to ‘clean’ the pleth
and ART waveforms which experienced significant noise,
making RR estimation using our core methodologies hard.
For SpO2/SpO2T alerts, we derived the HR numeric from
ECG lead ii and iii using the same core methodologies,
after employing an ECG cleaning technique proposed in
Neurokit [26].

Finally, we translated our business rules into labeling func-
tions building on the aforementioned core methodologies.
As an example, Figure 2 illustrates one such LF, comparing
the observed median RR (waveform.medRR) with the RR
derived from resp using the methods proposed in [25] and
implemented in Neurokit (waveform.respNK1). We
implemented a total of 8 and 11 noisy heuristics for the
binary classification of RR alerts and SpO2/SpO2T alerts,
respectively. Table I presents summary statistics for all RR
and SpO2/SpO2T LFs.

F. From Labeling Functions to Alert Classifier

We trained the label model L defined in the previous
section using LFs for respective VS alerts, to obtain prob-
abilistic labels for our training data. We used label model
implementation in Snorkel [27] for the same. Samples not
covered by any LF were filtered out, and the remaining prob-
abilistic labels produced by the label model were translated
into crisp binary training labels, which were then used to
train a Random Forest (RFs) model [28] to classify VS
alerts as real versus artifact. RFs have been been widely
used in literature to learn complex decision boundaries for
various classification problems [29], [30] and have also been
shown to be effective for learning discriminative models of
real versus artifact VS alert classification [2]. We trained RF
models with 1000 decision trees having a maximum depth
of 5 implemented using scikit-learn [31].

IV. EXPERIMENTAL SETUP

A. Featurization

In order to train the RF models, we not only used the
features computed for use by our LFs such as the wave height
of the resp waveform (respHeight), RR derived from
a modified periodogram of the resp waveform (respFFT),
etc., but also extracted features from the raw waveforms and
numerics themselves by computing a set of aggregate statis-
tics (mean, standard deviation, kurtosis, skewness, median,
1st and 3rd quartile). For the RR alerts, we subsequently
dropped the features calculated from the ART, plethT, and
ECG lead iii waveforms, and the SpO2T numeric, due to
more than 75% of the alerts not having the prerequisite
waveform or numeric data required to compute such features.
For SpO2/SpO2T alerts, we only dropped features calculated
from the ART waveform, for the same reason. The complete
set of featurizations for both alert types can be found in the
appendix. Next, we replaced any missing values remaining in
the data after incomplete features were removed with either
a 0 or −1 depending on the normal range of the features.

B. Baselines and Evaluation

We compared our weakly supervised RF model with its
fully supervised counterpart trained using ground truth labels
(Fully Sup.), probabilistic labels produced by the label
model (Prob. Labels), and RF models trained using
majority vote (Majority Vote) instead using the data
programming label model. The majority vote label model
predicted labels simple based on what the majority of LFs
voted. All models were trained on a leave-one-patient-out
(LOPO) cross-validation setting, where the training data
comprised of data from all but one patient, and later were
tested on the held-out patient. This setting ensures that the
models do not inadvertently fit to patient specific character-
istics to artificially inflate their performance.

We compared all the models based on a number of
performance metrics such as precision, recall, F1,
accuracy and AUC. We also computed metrics of practical
utility such as the false positive rate at 50% true positive rate
(FPR 50% TPR), true positive rate at 1% FPR (TPR 1%
FPR) etc. These metrics were computed across all LOPO
cross validation folds.

All models and labeling functions were implemented using
Python programming language (version 3.8.1), and exper-
iments carried out on a computing cluster with 64 CPUs
equipped with AMD Opteron 6380 processors having a total
of 252 GB RAM.

C. Additional Research Questions

In addition to examining the efficacy of weakly supervised
models for VS alert classification, we aimed to answer the
following research questions from our experiments.

1) What patterns are our RF models learning?: Inter-
pretability is important when ML models are deployed in
clinical settings, especially when using black box models
such RFs. To this end, we used Gini importance (GI) [28]
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and permutation feature importance (PFI) [32] to deter-
mine features which our weakly supervised model relied
on the most while making predictions. Since GI can be
inflated for high-cardinality features, PFI was also analyzed
to reliably understand trained RF models, in line with
prior work conducted in different settings [30]. GI and
PFI was evaluated by accessing the feature importance at-
tribute of a trained scikit-learn RF classifier, and using
the permutation feature importance function in
scikit-learn, respectively.

2) How useful is the waveform data?: Because previous
work on VS alert classification, by [2] for example, did not
have access to waveform data, we became curious about
the predictive utility of waveform data for classifying VS
alerts. To that end, we conducted ablation experiments by
withholding waveform features while training and validating
our weakly and fully supervised models using the same
LOPO cross-validation procedure. However, we must we
note that the LFs informing the weakly supervised RF still
had access to requisite waveform data, and therefore these
experiments are not completely indicative of settings with a
lack of waveform data.

3) Does the weakly supervised model predict telemetric
and non-telemetric SpO2 alerts equally well?: Since SpO2

and SpO2T alerts were mixed during the main experiments,
the difference in classifier performance between telemetric
and non-telemetric oxygen saturation alerts was briefly ex-
plored.

V. RESULTS

A. Performance Metrics

For the RR alerts, the various performance metrics shown
in Tables IV & V highlight the weakly supervised pipeline’s
surprising, but superior performance over the supervised
learning paradigm. Analysis we conducted on the perfor-
mance metrics for the oxygen saturation alerts yielded more
expected results, with the supervised learning pipeline per-
forming slightly better than the weak supervision pipeline.
However, considering the immense advantage of access-
ing ground truth labels for training, the weak supervision
pipeline’s comparable performance to the supervised learning
pipeline was still impressive. Tables IV & V also indicate that
all the RR pipelines performed better than the SpO2/SpO2T
pipelines. This finding is consistent with prior work by
[2]. However, the performance gap we found between the
two alert types was slimmer, likely due to the inclusion of
waveform data in our work.

B. ROC-AUC

Based on the log-scale AUC plots for RR alerts shown in
Figure 3 (i & ii), it is clear to see that the weak supervision
pipeline has a higher TPR and TNR at nearly every FPR and
FNR, respectively. For SpO2/SpO2T (Plots iii & iv in Figure
3), although the weakly supervised pipeline is not better,
it performs comparably to the fully supervised pipeline,
despite not having access to ground truth labels, underscoring

the impressive capabilities of the weakly supervised Data
Programming learning paradigm.

(i) (ii)

(iii) (iv)
Fig. 3. A set of 4 log-scale ROC-AUC plots for RR & SpO2/SpO2T
alert classification are shown above, each with the weak supervision (red),
majority labeler (green), supervised learning (blue), and probability labels
(grey) pipelines. The first two plots (i & ii) correspond to RR Alert
classification, while the last two (iii & iv) correspond to SpO2/SpO2T Alert
classification. The ROC-AUC plots highlight the WS pipeline’s ability to
keep up with the fully supervised pipeline for the SpO2/SpO2T alerts, and
even beat it for the RR alerts.

C. Answers to Additional Research Questions

1) Our RF models for WS and FS pipelines are learn-
ing similar patterns: Despite discrepancies in GI and PFI,
overlap in features such as the standard deviation of the
resp waveform (std resp) for RR alerts, and HR derived
from the pleth waveform using a modified periodogram
(plethFFT) for the SpO2/SpO2T alerts indicate that both
the weakly and fully supervised RF models may be learning
similar patterns.

2) Waveform data is helpful for RR alerts, but almost
essential for SpO2/SpO2T alerts: The log-scale ROC plots in
Figure 4 neatly visualize the predictive utility of waveform
data for both the RR and SpO2/SpO2T alerts. For RR alerts,
the plots show some separation between the pipelines with
and without access to waveform data, indicating the slight
usefulness of waveform data for RR alert classification. In
contrast, the plots for oxygen saturation alerts show a much
larger gap between plots with and without access to wave-
form data, with the pipelines having access to waveform data
performing much better than those without. The significant
predictive utility of waveform data for oxygen saturation
alert classification is further substantiated by the ubiquity of
waveform features in the top echelon for feature importance,
as highlighted in the previous paragraph and Table II

3) Our WS and FS models perform much better on non-
telemetric SpO2 alerts than telemetric SpO2 alerts: All
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GI PFI
Alert WS Fully Sup. WS Fully Sup.

RR

std resp q1 rr std rr respHeight
respHeight respHeight q1 resp std resp

mean rr mean rr respFFT std rr
q1 rr std resp skew rr q3 resp

med rr med rr respNK1 q1 resp

SpO2

plethFFT kurt pleth med rr plethTINT
plethINT plethFFT q1 rr plethTNK1
plethNK1 plethINT q3 rr plethFFT
kurt pleth q3 pleth plethNK1 plethTFFT

plethHeight plethNK1 skew pleth med SpO2T

TABLE II
FEATURE IMPORTANCES CALCULATED FOR RR & SPO2 /SPO2T ALERTS

USING Gini importance (GI) AND permutation feature importance (PFI)
ARE SHOWN ABOVE IN DECREASING ORDER OF IMPORTANCE. THE

RANKED FEATURES BETWEEN THE WEAKLY AND FULLY SUPERVISED

PIPELINES FOR BOTH ALERT TYPES SHOW SIMILARITIES AND

DIFFERENCES IN THE TYPES OF FEATURES USED BY THE RF MODELS

FOR EACH SEPARATE PIPELINE.

(i) (ii)

(iii) (iv)
Fig. 4. These 4 log-scale ROC-AUC plots pertain to the ablation
experiments conducted on the RR alerts (i & ii) and SpO2/SpO2T alerts (iii
& iv). Each plot shows the weak supervision pipeline without waveform data
(red), with waveform data (dark-red), the fully supervised pipeline without
waveform data (blue), with waveform data (dark-blue), and the probability
labels pipeline (grey).

pipelines performed well, but both classifiers performed best
on the Non-Telemetric data, as indicated by Table III. More
importantly, the weak supervision pipeline performed com-
parably to the fully supervised pipeline in both scenarios. It is
unclear if this performance boost is truly due to the splitting
of the data or just due to differing class balances, number of
data points, or statistical chance, but this a potential avenue
for future research.

VI. DISCUSSION

A. Findings

This work has five significant takeaways: (1) The novel
core methodologies we developed to derive vital sign nu-
meric values from time series waveform data were reliable,
and have meaningful applications beyond the scope of this
project. (2) Both the fully supervised and weakly supervised
pipelines - when validated on unseen data from a unique
patient - remained robust and performed well, with AUC
values ranging from 0.898 to 0.964 for all the models.
(3) Additionally, the predictive utility of waveform data
was found to be only slightly useful for RR alerts, but
significantly important for SpO2/SpO2T alerts. (4) Based
on the real and artifact F1 scores for both alert types,
all the classifiers performed better at classifying real alerts
correctly, as compared to artifact alerts. This difference
in performance is not only important, but also favorable,
since in clinical applications, correctly identifying real alerts
is a much more desirable result than correctly identifying
artifacts. (5) Perhaps most importantly, the weak supervision
pipelines were shown to perform at a level on par with their
fully supervised counterparts, and for the RR alerts, even
outperform them.

B. Limitations and Future Work

There are a few limitations to this work. Firstly, this
work assumes a priori knowledge of approximate real versus
artifact class balances of vital sign alerts. However, domain
experts often already have this knowledge, so these models
can still be powerful and reliable tools for classifying vital
sign alerts. Secondly, due to the design of our code, the weak
supervision pipeline is currently best used as a “fact-checker”
that lends a secondary opinion on archived vital sign alert
data. In the future, analysis should be carried out to measure
the speed and latency of the classification algorithm, before
eventually optimizing the design to create and implement
a working real-time artifact alert detection system. Despite
these limitations, the promising results indicate that a trained
WS model could eventually serve as an effective tool for
medical practitioners to combat alarm fatigue in the clinic,
and it will require vastly less subject matter expert’s effort
needed to prepare data to train the models, than previously
required.
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programming: Creating large training sets, quickly,” Advances in
neural information processing systems, vol. 29, pp. 3567–3575, 2016.

[24] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright,
et al., “Scipy 1.0: fundamental algorithms for scientific computing in
python,” Nature methods, vol. 17, no. 3, pp. 261–272, 2020.

[25] D. Khodadad, S. Nordebo, B. Müller, A. Waldmann, R. Yerworth,
T. Becher, I. Frerichs, L. Sophocleous, A. Van Kaam, M. Miedema,
et al., “Optimized breath detection algorithm in electrical impedance
tomography,” Physiological measurement, vol. 39, no. 9, p. 094001,
2018.

[26] D. Makowski, T. Pham, Z. J. Lau, J. C. Brammer, F. Lespinasse,
H. Pham, C. Schölzel, and S. A. Chen, “Neurokit2: A python toolbox
for neurophysiological signal processing,” Behavior Research Meth-
ods, pp. 1–8, 2021.

[27] A. Ratner, S. H. Bach, H. Ehrenberg, J. Fries, S. Wu, and C. Ré,
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Real Artifact
SpO2 Alert Type Pipeline Precision Recall F1 Precision Recall F1 Accuracy AUC

Non-Telemetric
Weak Sup. 1.000 0.940 0.969 0.840 1.000 0.913 0.955 0.994
Fully Sup. 0.985 0.985 0.985 0.952 0.952 0.952 0.977 0.969

Telemetric
Weak Sup. 0.650 0.867 0.743 0.882 0.682 0.770 0.757 0.830
Fully Sup. 0.800 0.800 0.800 0.864 0.864 0.864 0.838 0.832

TABLE III
PRELIMINARY FINDINGS FROM A NON-CROSS-VALIDATED ANALYSIS ON PURELY TELEMETRIC AND PURELY NON-TELEMETRIC SPO2 ALERTS SHOW

IMPRESSIVE PERFORMANCE FROM THE NON-TELEMETRIC PIPELINES, AND AVERAGE PERFORMANCE FROM THE TELEMETRIC PIPELINES. MORE

IMPORTANTLY, THE WEAK SUPERVISION PIPELINE PERFORMS ON PAR, AND FOR SOME METRICS, BETTER THAN, THE SUPERVISED LEARNING

PIPELINE FOR BOTH OXYGEN SATURATION ALERT TYPES.

Respiratory Rate Alerts Oxygen Saturation Alerts
Real Artifact Real Artifact

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1
Weak Sup. 0.917 0.973 0.944 0.909 0.754 0.824 0.896 0.938 0.916 0.840 0.751 0.793

Majority Vote 0.959 0.838 0.895 0.667 0.901 0.766 0.911 0.947 0.929 0.866 0.788 0.826
Fully Sup. 0.897 0.954 0.925 0.844 0.696 0.763 0.952 0.907 0.929 0.809 0.894 0.849
Prob. Labels 0.911 0.948 0.929 0.836 0.743 0.786 0.838 0.961 0.895 0.865 0.577 0.692
WS w/o WF 0.902 0.950 0.925 0.836 0.714 0.770 0.801 0.773 0.787 0.520 0.561 0.540
Sup. w/o WF 0.891 0.889 0.890 0.692 0.696 0.694 0.837 0.759 0.796 0.546 0.661 0.598
Maj. w/o WF 0.943 0.763 0.844 0.569 0.871 0.688 0.807 0.752 0.778 0.509 0.587 0.546

TABLE IV
WE CALCULATED VARIOUS PERFORMANCE METRICS OF ML PIPELINES ON THE CLASSIFICATION OF RR & SPO2 /SPO2T ALERTS AND FOUND THAT

THEY ALL PERFORMED REALLY WELL. MOST INTERESTING, WAS THE WEAK SUPERVISION PIPELINE’S COMPARABLE, AND IN SOME CASES,
SUPERIOR, PERFORMANCE OVER THE FULLY SUPERVISED LEARNING PIPELINE FOR BOTH ALERT TYPES.

Respiratory Rate Alerts Oxygen Saturation Alerts
Accuracy AUC FPR 50% TPR FNR 50% TNR TPR 1% FPR TNR 1% FNR Accuracy AUC FPR 50% TPR FNR 50% TNR TPR 1% FPR TNR 1% FNR

Weak Sup. 0.915 0.951 0.012 0.008 0.428 0.567 0.881 0.940 0.011 0.009 0.382 0.630
Majority Vote 0.855 0.952 0 0.015 0.551 0.409 0.899 0.951 0.011 0.007 0.458 0.630
Fully Sup. 0.886 0.898 0.07 0.023 0.038 0.304 0.903 0.964 0.016 0.007 0.345 0.582

Prob. Labels 0.894 0.936 0.006 0.002 0.577 0.550 0.844 0.902 0.016 0.037 0.151 0.143
WS w/o WF 0.887 0.918 0.035 0.010 0.031 0.474 0.709 0.754 0.111 0.197 0.012 0.032
Sup. w/o WF 0.838 0.871 0.053 0.019 0.004 0.146 0.730 0.825 0.037 0.106 0.002 0.243
Maj. w/o WF 0.792 0.899 0.07 0.019 0.080 0.199 0.702 0.779 0.058 0.167 0.025 0.069

TABLE V
THE PERFORMANCE METRICS OF practical utility FOR THE ML PIPELINES CLASSIFYING RR & SPO2 /SPO2T ALERTS WERE ALSO CALCULATED. WE

AGAIN FOUND THE WEAK SUPERVISION PIPELINE OUTPERFORMED, OR AT THE VERY LEAST, MATCHED THE PERFORMANCE OF THE FULLY

SUPERVISED LEARNING PIPELINE FOR BOTH ALERT TYPES.
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Tree Modeling for Robotic Manipulation using a 3D Autoencoder

Christian Eberle1 and Oliver Kroemer2

Abstract— Modeling tree structures is a crucial requirement
for performing manipulation tasks on trees, such as pruning
or harvesting. One big challenge in modeling these structures
is the visual occlusion through twigs and leaves. Therefore, the
goal of this work is to reconstruct the 3D model of a tree in full
leaf from partial view, using a 3D autoencoder neural network.
Our contribution is to provide a method of generating training
data for such an autoencoder, based on 3D models of trees
grown in simulation. We provide both ground truth models
as well as a models that were reconstructed from the images
of a kinect camera. The images were obtained in the robot
simulation software CoppeliaSim.

Index Terms— Agricultural Automation, Perception for
Grasping and Manipulation, RGB-D Perception, Simulation
and Animation

I. INTRODUCTION

At present, almost all manipulation tasks involved in
maintaining and harvesting crops are done by hand. Not only
is this physically demanding labor, it is often unhealthy work
in the long term. As qualified human workers in modern
agriculture also become rarer and more expensive, there
is an increasing need for automation in this field. Thus,
a lot of current research effort explores the development
of agricultural robots that can physically interact with its
environment [1], [2].

For tree-based crops such as apples, the important ma-
nipulation tasks to automate are pruning and harvesting.
Furthermore, monitoring fruitlets for diseases or to pre-
dict next season’s fruit load often requires pushing aside
branches. Most commercial robots designed for these tasks
still require human supervision to operate. Some fruit picking
robots do not need human supervision but are limited in
the environment in which they can operate, thus requiring
extensive effort from the farmer to prune the fruit trees in a
way that the robot can operate on them [3]. To perform these
tasks, a robot must incorporate a perception component that
models the 3D branch structure of the tree. This component is
crucial to reach a goal state in the tree when performing ma-
nipulation tasks. However, modeling branch structures comes
with many challenges: Trees are highly complex objects with
a lot of variation in shape, size and surface properties such
as color and texture. Additionally, one always has to adapt
to different lighting conditions. But most importantly, the
branch structure is usually not directly visible because leaves
and smaller twigs obstruct the view. In a comprehensive

1Christian Eberle is with the Department of Computer Science, University
of Tübingen, Germany.
christian-thomas.eberle@student.uni-tuebingen.de
2Oliver Kroemer is with The Robotics Institute, Carnegie Mellon Uni-

versity, Pittsburgh, PA 15213, USA. okroemer@cmu.edu

review on Computer Vision for fruit harvesting robots [4],
Kapach et al. identified the occlusion from foliage as “the
main challenge that our research community faces today”.

The goal of this work is to tackle the occlusion problem by
training a 3D autoencoder neural network to do infilling on
the occluded regions of the scene. To do this, it would first
have to segment the voxel grid into regions of unoccupied
voxels, surface voxels and occluded voxels. Our contribution
is to provide a pipeline for generating training data. This data
is based on simulation and provides both ground truth 3D
data as well as 3D data from the partial view of a kinect
camera.

The following sections are organized as follows: Section
II will explore related works, followed by a section on the
method of generating data. In the Results section, we will
present the dataset we created before ending with a section
discussing potential future works.

II. RELATED WORK

Modeling trees is a task that many researchers work on
for various reasons and the approaches for solving this
task can be roughly divided into two categories: The first
category includes approaches utilizing traditional, procedural
algorithms. The other category of approaches utilize machine
learning algorithms to find a solution based on given data.

A. Procedural Approaches

In computer graphics, tree models are often generated by
simulating the growth over time. Algorithms simulating tree
growth are commonly based on Lindenmayer-systems (L-
systems), a formal grammar used to describe organisms with
complex branching structures [5]. A Lindenmayer system
is a set of rules that is iteratively applied to a set of
starting symbols, thus making use of the recursive nature of
cell-based organisms. While methods like L-systems work
well for creating realistic-looking tree models in animation,
agricultural applications instead need to model existing trees
accurately using sensory information. In a recent paper [6],
Yandun et al. proposed two approaches for this task: The
first approach relies on the Space Colonization Algorithm
(SCA) to reconstruct the 3D-model from the images of a
stereo camera. Like L-systems, SCA is a recursive algorithm
and it builds the tree model based on a number of attraction
points at which the tree has potential to further grow [7].
To obtain the attraction points, Yandun et al. used a deep
neural network for object recognition called Faster-RCNN.
The second approach involves Laplacian-based contraction
(LBC), an algorithm that can extract the skeleton from
discrete geometric data such as point clouds. For synthetic
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as well as real trees, LBC could reconstruct the 3D shape
more accurately than SCA and was shown to be a promising
approach.

B. Learning Approaches
Machine learning methods have shown to be a powerful

tool for agricultural machine vision systems [8]. Therefore,
many other approaches use machine learning methods to
detect or extract features from tree imagery: Multi-class
support vector machines (SVM) were used to detect fruits
and branches for a fruit harvesting robot designed for citrus
trees [9]. SVMs project data into higher-dimensional space
to seperate it into multiple classes with a hyperplane. In
this case, the SVM classified the pixels of an RGB image
as either citrus, branch, leaf or background. Other research
instead focuses on deep learning approaches, particularly
convolutional neural network (CNN) architectures. CNN’s
are a popular architecture and have shown to be highly
effective in many image processing tasks. Notably, Zhang et
al. used color and depth data from a Kinect camera to detect
branches in apple orchards with a Regions-Convolutional
Neural Network (R-CNN) [10].

Another architecture that has also proven to be useful is
the autoencoder neural network. This architecture consists
of two components: First, an encoder component transforms
the input into a compressed representation. This component
can be described by a function e(x) mapping its input to
a lower-dimensional space. In this function, the input x is
first multiplied by a set of weights, described by the weight
matrix We. Next, the biases be of the encoder network are
added before passing it through an activation function φ:

e(x) = φ(WT
e x+ be) (1)

A decoder network will then transform this compressed
representation h(x) back into its original dimensionality to
form the output. The decoder network has its own weight
matrix Wd, biases bd and activation function φ, but the
resulting function d(e(x)) looks similar to h(x):

d(e(x)) = φ(WT
d e(x) + bd) (2)

In a recent paper, a deep convolutional autoencoder was
used for feature extraction on images of plant leaves [11].
These features supported disease identification of apple,
cherry and corn plants and led to up to 98.8% classification
accuracy. Furthermore, autoencoder architectures were also
shown to be effective not only on images but also on three
dimensional data: To tackle the problem of 3D shape re-
trieval, autoencoder architectures have been sucessfully used
to reconstruct the 3D shape from a depth image [12] or 2D
images [13]. [12] achieved near state-of-the-art performance
in a collection of benchmark datasets, such as the Princeton
Shape Benchmark (PSB).

III. METHODS
Our date generation pipeline was structured as follows:

First, we created an assortment of artificial trees the 3D ani-
mation tool grove3D. Next, we exported those trees into the

Fig. 1: Overview of an autoencoder architecture. The input
X is transformed by the encoder into h, a compressed
representation. Next, the decoder transforms h back into the
original dimensionality and outputs X’.

robot simulation software CoppeliaSim, where sensory data
of the trees was generated. Finally, we converted the sensory
data into a voxelized representation of the tree. The ground
truth is a voxelized representation based on the original mesh
file of the tree model. This pipeline provides both training
and teacher data, thus making supervised learning possible.

A. Generating artificial trees

All 3D models were generated in Blender, a 3D computer
graphics software [14]. To generate realistic tree models,
we utilized the latest release (release 10) of The Grove
3D, a Blender add-on [15]. The Grove 3D was designed
specifically for this purpose and includes tools to ”grow”
a variety of tree species. It does so by simulating the
relevant genetics and mechanism in natural tree growth, such
as Phyllotaxis or Photosynthesis. The resulting 3D models
were exported from Blender as wavefront object files. This
data structure represents an object as a mesh containing a
collection of edges, vertices and faces.

B. Sensor Simulation

Next, each 3D tree model was imported into a scene
of CoppeliaSim, a program for robot simulation [16]. The
wavefront object files did not include texture, thus the tree
model was not colored. Not including color in the scene
might make the task of reconstruction more difficult for the
autoencoder, since this information might be useful to distin-
guish between green leaves and brown branches. However,
not relying on color also has its advantages: In real scenes,
color is an instable feature that may be misleading due to
varying lighting conditions [17]. Therefore, not relying on
color features for segmentation and infilling might make the
autoencoder more robust in real-life applications.

As sensor, we used a kinect camera that provides both
an rgb and a depth image. Kinect cameras are low-cost
sensors, making them attractive for commercial use. The
depth camera of a kinect sensor relies on the time-of-
flight (TOF) mechanism. TOF sensors calculate depth by
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(a) Blender (b) CoppeliaSim scene

Fig. 2: Sample 3D model of a walnut tree, in Blender and a CoppeliaSim scene.
On the right hand side, b) also shows the position of the kinect camera as well as the rgb image (top left) and depth image

(top right)

transmitting light and then measuring the time the light takes
to travel to a given location [18]. Further image processing
was done with Open3D, a library for dealing with 3D data
[19].

From the rgb and depth images of the kinect, we created
a voxelized representation of the tree. To do this, we first
created a point cloud based on the rgb and depth image and
subsequently converted the point cloud to a voxel grid. This
voxel grid is a good approximation of sensory data that might
occur in a similar scene in a natural environment. As seen
in Fig.2, the kinect takes the images from a single position
and the resulting images present only a partial view of the
scene. Therefore, it contains the same occlusion in view as
in a real scene, or at least a very similar one. The voxelized
representation of the tree obtained from the kinect images
provides the surface area visible from that view angle. To
go from this representation to a complete 3D model of the
tree, one has to do infilling on the occluded voxels behind
the surface voxels.

Another thing that should be considered is that the conver-
sion process from image to point cloud to voxel grid will lead
to some loss in information. As the voxel size is chosen to be
relatively large, the resolution of the 3D model is decreased.
Increasing the resolution would make the task easier but as
a tradeoff leads to a much higher computational cost in data
collection and training. We chose a voxel size of 10cm, since
our computational resources were limited and we wanted to
generate large quantities of data.

C. Ground Truth
To obtain the ground truth tree models, we loaded the

wavefront object files into Open3D and converted them into
a voxel grid. To be able to directly compare the voxel grid
obtained from sensory data to the ground truth voxel grid,
the voxel size is kept the same.

IV. RESULTS
Our dataset consisted of young trees that were 3 years

old. Young trees have the advantage that their shape is less

complex than older trees, thus providing a good starting point
for first experiments in training a 3D autoencoder neural
network. The young age was also a pragmatic decision, since
the resulting files were smaller and subsequent processing
came with a lower computational cost. We chose walnut
trees because we are ultimately aiming for agricultural appli-
cations and walnuts are high-value crops. Additionally, they
were the only tree species available in grove3D that included
fruits. The walnut trees were grown using the default param-
eters and the corresponding twig package ”Walnut”. Default
parameters allow the trees to grow without constraints, as
they would in the wild. To simulate the environment of a
maintained orchard in more detail, one could explore the
tools provided by grove3D for auto-pruning. However, since
we’re only using very young trees auto-pruning doesn’t make
a big difference yet.

In total, we generated 500 mesh models of young walnut
trees. From each mesh model, we created both a ground truth
voxel grid as well as a voxel grid that was reconstructed from
rgb and depth image.

V. DISCUSSION

This work provides a pipeline for generating simulated
tree data that can be used to train a 3D autoencoder neural
network to reconstruct the 3D model of a tree from the im-
ages of a kinect camera. Solving this task would significantly
contribute to the development of agricultural applications
related to robotic manipulation on trees. The next step is
to implement the 3D autoencoder neural network and to
train it using the data we provided. Furthermore, future work
could expand on our data generation pipeline. Both of these
possibilities will be explored in the following two sections.

A. Autoencoder architectures

The task of this 3D autoencoder neural network would
be divided into two subtasks. The first task is a segmen-
tation problem, where the voxel grid of the tree would be
segmented into unoccupied regions, surface regions and
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Fig. 3: Four sample trees from the dataset.
From top to bottom: Tree in blender, scene in CoppeliaSim, point cloud, voxel grid, ground truth voxel grid

occluded regions. The second task would consist of filling
in voxels within the regions identified as occluded in the first
step.

A question that remains open is which exact architecture
to choose, since there is a variety of different autoencoder
architectures. [20] uses contractive autoencoders for object-
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specific 3D reconstruction. Contractive autoencoders have
the advantage of providing invariance during feature ex-
traction which makes the network more robust to noise.
While the main goal of [20] is shape retrieval and the 3D
reconstruction is only an intermediate step, the architecture
is well-suited for our task. Moreover, [20] also uses depth
images from a kinect camera as input.

Variational autoencoders (VAEs) have also shown great
potential in similar tasks. VAEs apply regularisation during
training, resulting in an encoding that has especially suitable
properties for generating new data. Since we are generating
new data when filling in occluded voxels, the VAE architec-
ture is a strong candidate for future work.

B. Expanding the data generation pipeline

To expand on the data generation pipeline one could grow
older trees, resulting in more complex models. While this
requires more computational resources and makes the task
of 3D reconstruction more challenging, models of older
trees would be a more faithful reproduction of trees in
a commercial setting. Additionally, almost all commercial
orchards also prune their trees to maximize yield. This could
also be simulated using the auto-pruning tools provided by
grove3D. Another way to expand on our data generation
pipeline would be to add textures in the CoppeliaSim scene,
thus providing the autoencoder with color features. As dis-
cussed earlier, including color might make the task easier in
simulation but runs the risk of leading to less robustness in
real-world applications due to variance in lighting conditions.
Furthermore, the resulution of the voxelized representations
could be improved by decreasing the voxel size. A higher
resolution will depict the tree shape more accurately but
comes with a higher computational cost because a larger
set of voxels needs to be processed. Ultimately, the level
of accuracy required from the model will depend on the
application. For example, pruning often involves precise cuts
and therefore requires a very accurate 3D model of the tree.
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SR-UVOS: Sparse Reconstruction for Unsupervised Video Object
Segmentation

Daniel Ekpo1, Senthil Purushwalkam2, Abhinav Gupta3

Abstract— With applications in autonomous driving, human-
robot interaction, video editing, etc. this is a very compelling
task with a lot of attention in the last few years. Although
a lot of current methods claim to be unsupervised, they
still use some supervision from other datasets. This kind of
supervision is rather expensive, does not scale well, and the
methods are not easily transferable to other domains. We
present a novel algorithm to tackle this task without using
any human annotation. We build from recent progress in vision
transformers and knowledge distillation to build a model that is
aware of time and space correspondences between video frames.
We hypothesize that learning both intra-frame and inter-frame
correspondences with the transformer self-attention modules
can improve the accuracy on video object segmentation. Vision
transformer self-attention modules have been shown by recent
work to be able to pay attention on image regions with
foreground objects. To this end, we leverage recent work on
video understanding with transformers. Specifically, we use
the DINO model proposed by [1] as a base model and build
on it to learn spatial and temporal correspondences between
video frames. We use knowledge distillation to train a student
model that must learn to match the teacher network’s output.
To make this task non-trivial and encourage the network
to learn semantic correspondences between frame pairs, we
add a reconstruction module which learns to reconstruct the
embeddings for the overlapping region between the images
in the frame pair. We show in our experiments that our
simple self-supervised algorithm is enough to learn semantic
visual representations in video frames and semantic intra-frame
correspondences between video frames.

Index Terms— self-supervised learning, video object segmen-
tation

I. INTRODUCTION

With applications in autonomous vehicles, human-
computer interaction, video editing, the task of video object
segmentation has received an increased attention in recent
years. The task involves localizing foreground objects in a
video and putting segmentation masks over those objects.
A challenging sub-task is separating foreground objects
from the background - a rather ill-posed challenge since a
”foreground” object is not well defined. A common definition
among researchers is that foreground objects are salient
objects that would normally get a human viewer’s attention
[2] when watching the whole video sequence [3]. The back-
ground is defined as uninteresting ”stuff” like sky, buildings,
etc. The task is difficult since the model does not have
any prior knowledge about the foreground objects. Video

1 Daniel Ekpo is a student at Brigham Young University
2 Senthil Purushwalkam is a PhD student at the Carnegie Mellon Robotics

Institute
3 Dr. Abhinav Gupta is an associate professor at the Carnegie Mellon

Robotics Institute

Fig. 1. SR-UVOS: Each network - the teacher and student take a pair of
images and an optional reference embedding as input. We compare the final
predictions to calculate the prediction loss

object segmentation (VOS) can be divided into two tasks -
(weakly) supervised video object segmentation and unsuper-
vised video object segmentation (UVOS). In the supervised
case, the model receives the segmentation masks for the first
frame which is then used as a prior for subsequent frames. In
unsupervised video object segmentation, as defined by [3],
the segmentation mask for the first frame is not given, so the
model must learn to accurately segment foreground objects
in the first and subsequent frames.

It is also important to point out that some methods [4],
[5], [6] focus on segmenting a single foreground object.
Some other methods [7] attempt to segment all the fore-
ground objects in each video frame. The Davis challenge
[3] does not penalize models for predicting too many non-
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overlapping object segmentation masks. In this work, we
tackle unsupervised video multi-object segmentation. This is
a more challenging problem since the model must discrimi-
nate between foreground objects and the background as well
as discriminate between multiple class-agnostic objects.

The lack of any priors on the segmentation mask makes
UVOS more challenging than its supervised counterpart.
Since a common strategy in VOS is to propagate the mask
predictions from previous frames when making predictions
on the current frame [1], [6], inaccurate predictions in the
first frame can quickly be propagated to other frames, de-
grading the performance of the model. To tackle this problem
[8] use the so-called Selector Net module to propagate only
high quality masks out of a several possible mask predictions.
Background and foreground similarity (similarities in color
and texture) is another problem that plagues UVOS. This
problem occurs when the foreground object and the back-
ground are very similar in color or texture, making it difficult
to use appearance properties only to localize foreground
objects. To overcome this problem, some methods [9], [10],
[11] use optical flow predictions to augment the appearance
features. Computing the optical flow predictions is rather
expensive, therefore increasing the amount of computation
and time needed for training and evaluation. In addition,
some foreground object stay stable or don’t move enough
between frames for optical flow predictions to be useful for
detecting foreground objects.

One could be tempted to treated UVOS as a special case
of object segmentation and simply treat each frame indepen-
dently, effectively reducing the problem to the task of object
segmentation in still images. While this has been shown to
work to some extent [12], [13], [14], models that follow
this approach miss the rich temporal information between
video frames. Both spatial and temporal correspondences
between frames can provide rich information about the
current objects, providing useful priors for the current frame.
Some methods compute the optical flow between consecutive
frames and use that for the temporal correspondence, but as
we pointed out earlier, this can be slow and inaccurate when
the foreground is static [11]. The vision transformer [15]
which has been successfully used in different vision tasks,
provides an efficient way to compute the spatio-temporal
relationship between two video frames.

We start by asking if we can learn a model to perform
better than the current state-of-the-art methods without using
motion information via optical flow, or any expensive post-
processing step. This question was inspired by the intuition
that frames that are separated by a close enough frame
distance δ should share similar objects - that is there should
be a level of consistency between the two frames. This
observation leads to asking if computing the correlations
between the two frames would provide enough priors to
improve the segmentation accuracy.

Inspired by the recent work on visual representation learn-
ing with vision transformers by [1], we learn a model to
compute correspondences between video frames using the
vision transformer’s [15] attention module. This alleviates

Fig. 2. VIT-WIR: Vision transformer with reconstruction takes a pair of
images as input and an optional reference embedding for reconstruction.
The reconstruction is done in the reconstruction module and its output is
passed to the next transformer block

the need to compute the optical flow or use any complex
method. Instead of creating a pretext task, as is popular in
recent unsupervised methods, we use knowledge distillation,
similar to [1]. to train a student network to learn to match
the teacher networks predictions. We evaluate our model on
the DAVIS 2019 dataset.

Our main contributions are as follows:
• We propose and end-to-end, simple, and efficient fully

unsupervised method to tackle the video multi-object
segmentation task. We discuss our method in Section 3

• We introduce a modification to the vision transformer
which includes adding a reconstruction module to re-
construct the embeddings for the patches in the over-
lapping region between the images in the frame pair

II. RELATED WORK

A. Self-supervised learning

A large body of work in this domain focus on learning use-
ful task-independent discriminative features from images and
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videos. The weights for these models are then used directly
[1] or fine-tuned [16], [17] on a specific task to solve the
given problem. Often these models perform decently well,
but are usually subpar to supervised methods that are trained
for the specific task. In our work, we focus on learning a
model with no human annotation to perform significantly
well on the specific task of video object segmentation.

Recent approaches use a pretext task that force the model
to learn discriminative features to be able to do well on the
given task. These methods typically use contrastive learning
where the training data is grouped into positive and negative
pairs. The task then is to learn a feature space where positive
pairs are close together and negative pairs are far apart by
at least some delta. Chopra et al [18] propose a similarity
metric function that maps input images to points in a low
dimensional target space such that the L1 distance between
objects of the same category is minimized and the distance
between objects in different categories is maximized. Do-
ersch et. al [19] introduce a context prediction pretext task
for visual representation learning. In their formulation, the
model learns to predict the position of an image patch in
relation to a query image patch. They show that the model
must learn to recognize objects and their parts to do well
on this task. Others [17], [20], [21] follow this practice by
introducing different pretext tasks for unsupervised visual
representation learning. Although our work focus on visual
representation learning, our approach does not follow this
paradigm. Instead, we use knowledge distillation to train
a target student network to match the features of teacher
network.

Most related to our work is the DINO model proposed
by Doersch et al. [1]. They build on the vision transformer
[15] and knowledge distillation [22] by training a student
transformer to learn to match the predictions of the teacher
vision transformer model. To encourage the model to learn
useful visual representations, the teacher network is shown
two global crops from the image and the student sees the
global crops as well as multiple local crops. In contrast
to other common knowledge distillation methods, where
the student is trained after the teacher, the authors train
the teacher simultaneously with the student. The student
transformer’s weights are updated using stochastic gradient
descent, while the teacher transformer’s weights are update
from the student network’s weights using momentum update
[23]. Our work differs from their work in that we do not have
local crops, and instead of taking two global crops from the
same image, we use two images from the same video with
a frame distance δ as our global crops. Another important
difference between our work and theirs is that we add a
reconstruction module in the transformer to discourage the
model from finding a trivial solution while encouraging it to
focus on the overlapping areas in the frame pairs.

B. Unsupervised Video Object Segmentation

The task of unsupervised video object segmentation
(UVOS) is a rather new task introduced in the DAVIS 2019
challenge [3] and has received some attention in the recent

years. Some approaches [8], [12], [14] rely on bounding
bounding box predictions from off-the-shelve object de-
tection algorithms like Mask R-CNN [24]. These models,
as expected, are not end-to-end trainable and do not take
advantage of the temporal correlation between video frames
since each frame is treated as an independent entity.

Liu et al [25] try to tackle the background and foreground
similarity problem in UVOS by introducing the F2Net model
which first predicts a center point for the object of interest.
The model leverages this predicted center point of the
foreground object as a spatial guidance prior to encourage
the segmentation module to focus on the primary object.
Inspired by how humans tend to segment objects, the authors
hypothesize that this prior can help the segmentation module
focus on the pixels of the foreground object, resulting in
more accurate segmentation masks. In addition, they pro-
pose an attention-based so-called dynamic information fusion
module to dynamically select the most discriminative of
three features (inter-frame, intra-frame and original semantic
features) to use for the final object segmentation masks. Their
approach works decently well for single objects, however
they did not show any results with multiple objects, and did
not mention how their approach could be used for multi-
object scenarios. Also, their architecture is rather complex.

Garg et al [8] attempt to tackle the problem of mask
error propagation/drifting between frames by using a quality
discrimination module to select the best masks for each frame
from an ensemble of segmentation mask predictions. They
show from experiments that this module improves the object
segmentation mask predictions. However, they rely on region
of interest predictions from Mask R-CNN [24] so their model
is not end-to-end trainable.

In this category, our work is most related to [26] and
[27] who use vision transformers to tackle the UVOS task.
However, our method is different from theirs since their
methods are supervised. Our approach focuses on learning
rich semantic visual representations and correspondences
first, and then adapting the model for the UVOS task.

C. Self-attention

Early approaches, mostly in natural language processing
[28], [29] used recurrent neural networks to compute cor-
respondences and help the model know what parts of the
sentence to focus on (attention). Recurrent neural networks
have been adopted in vision tasks [30], [31], [32], [33].
Wang et al [34] proposed a general self-attention algorithm
for capturing the affinity between image patches or whole
images. Recent approaches towards attention have adopted
the transformer model [28]. [15] introduced the vision trans-
former, which uses the same architecture as [28] but uses
image patches instead of word embeddings as the transformer
input. Vision transformers have been applied with success to
different computer vision tasks including video classification
[35], video instance segmentation [36], object tracking [37],
and video object segmentation [27] [26]. Our work builds on
this recent successes as we use the vision transformer’s self-
attention mechanism to compute correspondences between
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video frames efficiently.

D. Knowledge distillation
Knowledge distillation, is the process of training a -

usually smaller network to match the output of a - usually
- bigger network. The student network learns to match the
teacher network’s logits. Introduced by Hinton et al. [22],
this approach has successfully been used for model training
and compression [38], [39], [40]. In our work, we use
knowledge distillation to train a student vision transformer
model to match the outputs of a teacher model of the same
architecture.

III. METHOD

We do not directly train our model on the task of video ob-
ject segmentation. Going with popular methods, we first train
our model to learn useful semantic visual representations and
inter-frame correspondences and then test on the DAVIS [3]
dataset. Our model learns to solve two problems - one, to
accurately reconstruct the embeddings for the overlapping
area of the images in the frame pair, two, to match the teacher
network’s predictions.

We define It, It+δ as two frame images from the same
video V = {I0, I1, . . . IN} where N is the total number
of frames in the video. It is randomly sampled from V
at time step t and It+δ is δ time steps away from It. We
define a single training example as x = {It, It+δ} such
that x ⊂ V . Let gθs and gθt be the student and teacher
transformer networks respectively, parameterized by θs and
θt respectively.

A. The reconstructor
Both networks have the same architecture with a set of

transformer blocks. Let the student network’s transformer
block be Bs = {bs0, bs1, . . . bsM} where M is the total num-
ber of transformer blocks. Each transformer block encodes
an embedding from its input, we define the embedding for
the training example at block i as bsi(x). The reconstructor
takes the embedding at the same transformer blocks from
the teacher and student models and try to reconstruct the
student embedding for the part of the overlapping part of
both images. Let o be the coordinates where both image
crops overlap. This is computed in the dataset. We mask
a certain percent p of the overlapping region between the
two image crops and let the reconstructor reconstruct the
masked attention maps. We define the reconstructor part of
the attention:

z = R(bsi, bti, o, p)

We set i as a hyperparameter. In practice R is a simple
transformer model with only one transformer block. We
replace the masked part of bsi with z and pass it to the next
transformer block. In our experiments we try different values
for p including 0.25, 0.50, 0.75. We compare the reconstruc-
tion with the ground truth and compute the reconstruction
loss using the mean squared loss given as:

Lrecon =
1

n

n∑
i=1

(ei − zi)2

B. Full model

Our method, SRU-VOS, shares the same general archi-
tecture as DINO [1] with the vision transformer modified
to include a reconstruction module. The overall architecture
is shown in figure 1. 2 shoes the general architecture of
each transformer network with the reconstructor module.
As shown in 2, the student network takes the reference
embeddings from the teacher network as well as the training
sample as input. The teacher model only takes the training
sample as input. To learn useful visual representations, DINO
looks at two global crops and n local crops from the same
image through the teacher and student model and compares
their class token predictions. Since we are interested in not
only useful semantic visual representations, but also semantic
correspondences between image frames, we replace the two
global crops from the same image with global crops from
different frames from the same video. In our experiments
we set δ to 1 and we do not use any local crops from either
frames.

We follow the common vision transformer protocol of
splitting the images into patches and add the positional em-
beddings. However, to discourage the model from cheating
during the embedding reconstruction, we do not add the class
token until after the reconstruction module. The patches go
through one or more variable number of standard transformer
blocks, then a reconstruction block that is used only in the
student network.

We take the normalized softmax of the MLP head output.
We use a temperature variable τ to normalize the logits,
controlling the hardness or softness of the softmax output.
We use the same notation as [1] where Ps and Pt are the
student and teacher network’s output probability distributions
respectively, we denote Ps as:

Ps(x)
(i) =

exp(gθs(x)
(i)/τs)∑K

k=1 exp(gθs(x)
(k)/τs)

The teacher’s output, Pt follows the same formulation. The
prediction loss which is the cross entropy loss is given by:

Lpred = H(Pt(x), Ps(x))

Where θs represents the student network’s weights. The total
loss is the sum of the reconstruction loss and the prediction
loss and is given as:

L = Lpred + λLrecon

where λ is the reconstruction loss weight that controls
how much the reconstruction loss contributes to the total
loss. We experiment with different λ values and record our
observations in the experiments section. The student network
learns to match the teacher network’s output by minimizing
the prediction loss w.r.t its weights, θs. Only the student
network’s weights are updated with the gradients from the
loss. We do not calculate the gradients w.r.t the teacher
network’s weights. Instead, we use momentum update similar
to [1] and update the teacher network’s weights from the
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student network’s weights. The weight update for the teacher
network is given as:

θt ← mθt + (1−m)θs

where θs is the teacher weight parameters, m ∈ [0, 1) is the
momentum coefficient and θs the student weight parameters.

IV. EXPERIMENTS

We use the same hyperparameters as DINO in our ex-
periments. We try different positions for the reconstruction
block - 1, 6 and 11 which correspond to having it right
after the first, the 6th (middle) and the 11th (second to
last) transformer blocks. In our preliminary experiments, we
find that the loss goes down significantly faster when the
reconstruction block was at index 1, that is right after the
first transformer block. We notice that it deteriorates after
the first few iterations and quickly goes back up. At index 6
the loss also goes down significantly at first, but the learning
is not sustained. Our intuition is that the model is finding
a trivial solution early in the training process and adjusting
its weights towards that direction and gets stuck in a sub-
optimal local maxima.

We train the model on the Kinetics-400 dataset [41], a
dataset of curated videos of different human actions. We
sample video frames at 10 frames per second. We run
experiments with different λ values and observed that the
reconstruction loss does not significantly affect the total loss.
The prediction loss is the major contributor so the most
impactful values for λ are 0 and 1. Throughout all of our
experiments so we set p to 0.25. In future experiments we
plan on trying different p values like 0.50, 0.75 and 100. We
run the training for 100 epochs.

V. CONCLUSIONS AND FUTURE WORK

This is still a work in progress. While we are confident
that our model will learn useful intra-frame semantic visual
representations and inter-frame correspondences, we do not
yet to have results to show. Our model is set up to learn
intra-frame features and also inter-frame correspondences.
We plan on running more experiments and adjusting the
hyperparameters as needed to help the model learn. We also
plan on adding code to visualize the attention maps to see
what and how the model is learning.
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Probabilistic Safe Reinforcement Learning using Control Barrier
Function for Autonomous Vehicle Ramp Merging Control

Quanzhi Fu1, Yiwei Lyu2 and John M. Dolan3

Abstract— The ramp merging problem is one of the chal-
lenges for autonomous vehicles, since this is a situation where
autonomous driving agents interact with human drivers. Learn-
ing a strategy to interact with humans is required for a safe
merge. Reinforcement Learning (RL) is an end-to-end learning
method for policy finding. Control barrier functions (CBF)
are commonly used to achieve a forward invariance safety
guarantee. RL can be combined with CBF to acquire a safe
merge policy. Current works use rollout to ensure the output
action is within the safety constraints. A problem with existing
rollout algorithms is that they are based on the assumption
that the exact dynamics of the environment are known and
the future states can be exactly predicted. However, due to
the inherent uncertainty, in reality, the future states are not
fully predictable. In this work, instead of penalizing the rollout
states that violate the safety constraints, we constrain the
output action to be inside an action set that guarantees a
given safety level. The performance of the proposed Safety-
Assured Policy Optimization for Ramp Merging (SAPO-RM)
algorithm is compared with Constrained Policy Optimization
(CPO). SAPO-RM updates the policy safely with a safe initial
policy. However, in the contrast with CPO,it fails to make an
unsafe policy safe through the update. Moreover, SAPO-RM
sometimes shows a sudden increase in return, which benefits
the convergence of the algorithm.

I. INTRODUCTION

Safety is critical for autonomous driving. Collisions must
be avoided in all circumstances to prevent harm to humans.
Existing autonomous driving algorithms can control the car
safely in most scenarios. However, the autonomous vehicle
still faces risks when it needs to directly interact with human-
driven vehicles, as people have diverse driving styles. A
typical traffic scenario where an autonomous driving vehicle
needs to interact with human-driven vehicles is ramp merging
(see Fig. 1).

Control barrier functions (CBF) can provide an admissible
control space for certain safety constraints in a dynamical
system. The forward invariance property of CBF gives a
strong guarantee of safety. Compared with traditional point-
wise constraints, CBF enforces a more cautious approach to
the constraint boundary [2](see Fig. 2).

Reinforcement learning (RL), as an end-to-end learning
method for sequential decision making, has shown powerful

1The author is with the School of Data Science, the Chinese Uni-
versity of Hong Kong, Shenzhen, Guangdong, 518172 China. This
work is completed when Quanzhi Fu served as an intern in the
Robotics Institute Summer Scholar, Carnegie Mellon University. Email:
quanzhifu@link.cuhk.edu.cn

2The authors are with the Department of Electrical and Computer En-
gineering, Carnegie Mellon University, Pittsburgh, PA, 15213 USA. Email:
yiweilyu@andrew.cmu.edu

3The authors are with the Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA 15213 USA. Email: jmd@cs.cmu.edu

Fig. 1: Merge scenario [1]. The host car (green) is an autonomous
vehicle, running on the main road; the merge car (red) is a human
driven car, running on the ramp.

(a) Traditional Pointwise Con-
straint

(b) Control Barrier Function

Fig. 2: Intuitive depiction of control barrier functions.

performance in a lot of control problems [3], [4] and has
also been widely applied in the autonomous driving field.
A safety-concerned RL problem can be formulated as a
constrained RL problem in which agents learn to maxi-
mize the expected return while always satisfying the safety
constraints. Existing constrained RL algorithms always use
inequalities to bound cost functions as the constraints. Con-
strained policy optimization (CPO) is an algorithm that
provides a theoretical guarantee for safe exploration [5].
It applies the accumulated cost as the constraint and also
uses a trust-region constraint for stable updating. Trust-region
[6] is a method proposed to confine the update step length
of the policy to balance the sample efficiency and stability
of the learning. With a linear approximation technique, the
CPO algorithm can be conducted very efficiently while
generally retaining safety. Therefore, CPO is one of the most
commonly used baselines for safe-RL.

Although the existing constrained RL algorithms can sat-
isfy the safety constraints for policy updates, the constraints
are bounds of the expected cost. Satisfying the constraints
does not provide an absolute safety guarantee for the policy.
Thus the update direction for the given constrained policy
optimization problem cannot ensure safety. A way to tackle
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this problem is to adopt the model information into the
algorithm [7]. In [2], the authors propose a method that
uses a CBF constraint to replace the accumulated cost. The
forward invariance property of the CBF provides a theoretical
guarantee for safe exploration.

Adopting model information into the algorithm does solve
the problem. A reason why interacting with the human-driven
car is especially challenging for autonomous vehicles is that
humans introduce uncertainty into the merging process. In
other words, future states are a random distribution condition
on current state and action. Algorithms with model informa-
tion require the use of roll-out to predict the future states.
However, due to the uncertainty in the system dynamics,
the roll-out faces a severe variance inflation problem. This
problem harms the performance of model-based algorithms
in the system whose dynamics contain uncertainty.

In this paper, we propose a probabilistic safety-assured
RL algorithm Safety-Assured Policy Optimization for Ramp
Merging (SAPO-RM) for the ramp merging problem. We
adopt a constraint on output actions that provides a prob-
abilistic safety guarantee on the dynamics with uncertainty
in our algorithm. SAPO-RM is in actor-critic framework.
Both the actor and the critic are approximated by artificial
neural networks (ANN) and a linear approximation technique
is used for efficient updating. Moreover, we add a trust-region
constraint to ensure a monotonic updating of the policy.

The rest of the paper is organized as follows. In section II
we summarize some recent work in constrained RL. In sec-
tion III-D, we provide some preliminaries about constrained
RL and control barrier functions. The problem formulation is
also introduced in this section. In section IV we elaborate on
the details of the proposed algorithm. Section V-B contains
the simulated result and the analysis. Section VI provides
some future directions for this work.

II. RELATED WORK

Constrained RL was introduced to address the problem of
training RL agents with constraints. The goal for constrained
RL is to achieve a safe exploration during the training and
exploit phase. The constrained RL agent aims to find a policy
π that maximizes the long-term return G.

π∗ = arg max
π

Eat∼π[G =
∞∑
t=1

γt−1r(st, at)] (1)

where r(·) denotes the reward function and st, at denote
state and action respectively.

Constrained RL agents are designed to optimize the ob-
jective in the feasible region ΠC .

ΠC = {Jc ≤ dc} (2)

where Jc is the cost function for constraint c and dc is the
selected threshold for c.

One method of combining CBF with RL is to design a cost
function for the CBF and add it into the constraints. In addi-
tion to the cost function, constraint formulation has a critical
effect on constrained RL algorithms. A very early intuitive

way to formulate the constraint is Policy Gradient Projection
(PGP), which uses the average cost as the constraint [8]:

lim
T→∞

[
Es∼d(s),a∼πk(

1

T

T∑
t=1

rCi)

]
≤ di (3)

where rCi is a one-hot vector containing the constraint
violation cost. This formulation is intuitively reasonable, but
it always allows some constraint violations, as it is based on
average cost. To tackle this problem, the authors of [9] adopt
a balance parameter η in the constraint formulation.

lim
v∈R

{
v +

1

1− η
Es∼d(s),a∼πk [(rCi − v)+]

}
≤ di (4)

This method alleviates the problem caused by some low-
probability actions having severe bad consequences. How-
ever, the nature of the balancing parameter determines that
low-probability violation is still accepted.

CPO is the first algorithm that claims to guarantee safe
exploration. The updating of CPO is based on reward ad-
vantage and cost advantage. CPO also adopts a trust region
for faster and stabler policy updating [5]:

πk+1 = arg min
π

Es∼dπk ,a∼πk [Aπ
k

(s, a)]

s.t. JCi(πk) +
1

1− γ
Es∼dπk ,a∼πk [Aπ

k

Ci (s, a)] ≤ di

DKL(π||πk) ≤ δ

(5)

where Aπ(s, a) denotes the advantage function, which is
defined as the difference between state-action function Q
and state-value function V :

Aπ(s, a) = Qπ(s, a)− V π(s) (6)

With linear approximation techniques, CPO can be per-
formed very efficiently. Thus it is a commonly used baseline
for constrained RL. While it accept constraint violations for
the system with randomness.

Another method to combine CBF and constrained RL is
using a hierarchy architecture. The feasibility for the outputs
of the RL agent is checked and modified by a CBF controller,
thus ensuring that the output is always feasible [10]. In [10],
the authors use CBF and CLF to constrain the output of
the RL agent, thus achieving safe exploration. They also
use Gaussian Processes to learn the model information of
the environment, thus enabling model-based learning. Such
methods use online learning, leading to the problem of low
sample efficiency, and will therefore not be the focus of this
paper.

In this paper, instead of use constraints of cost, we apply
a CBF-based probabilistic safety assured constraint to the
constrained optimization problem for the actor. Therefore,
provide a update rule with theoretical safety guarantee.

III. PRELIMINARIES AND PROBLEM FORMULATION

A. Constrained reinforcement learning

RL is an algorithm for sequential decision-making control
problems. In a general RL framework [11], an agent interacts
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with an environment and learns from the feedback in a
sequence of discrete timesteps to accomplish a task. The
environment that the agent interacts with must have the
Markov property, which means the future states only depend
on the current state and the current input.

A commonly used RL architecture is actor-critic. Both
actor and critic are function approximators, e.g. ANN, to
approximate the policy π(s; θ) and value function of the
policy V π(s;w), respectively.

The training process for the actor-critic RL algorithm
contains two interactive steps: (1) evaluate the value function
for the underlying policy, which is called policy evaluation,
and (2) update the current policy based on the estimated
value function given by the critic, which is called policy
improvement.

The aim for constrained RL is to return a policy that
maximizes the accumulated reward G =

∑∞
t=1 γ

t−1r(st, at)
while satisfying the constraints. For the policy evaluation
process, the critic is updated by iteratively minimizing the
loss function,

L(w) = Es∼d
{

1

2
(r(s, a) + V π(s′;w)− V π(s;w))2

}
(7)

where d is the stationary distribution for the current policy
and s′ is the state after taking action a at state s.

For the policy improvement step, the parameter θ is
optimized to maximize the estimated accumulated reward
Ĝ = r(s, a) + V π(s′;w).

max
θ

Es∼d,a∼π(s;θ)[Ĝ]

s. t. g(s, a) ≤ 0

t(x, a) = 0

(8)

By alternately solving equations 7 and 8, a local optimal
policy that satisfies the constraints can be obtained. Note that,
since in equation 8 we are solving a constrained optimization
problem, there may be no feasible solutions. Achiam et
al. adopted a retrieval mechanism for policy updating to
tackle this problem [5]. This mechanism will be elaborated
in section IV.

B. Control Barrier Function

CBF is proposed to address safety with dynamic systems
[12]. For a nonlinear system in a control affine form,

ṡ = f(s) + g(s)u (9)

where s ∈ Rn, u ∈ Rm are the system state and control
input, respectively. For a function h : Rn → R, define the
safety space

H = {h(x) ≥ 0} (10)

Then the definition of CBF for the safety set H is as follows
[12].

Definition 1. (Control Barrier Function) Given a dynamical
system 9 and the set H defined in 10 with a continuously
differentiable function h : Rn → R, then h is a control

barrier function (CBF) if there exists an extended class K∞
function for all s ∈ S such that

sup
u∈U

Lfh(s) + Lgh(s)u ≥ −κ(h(s)) (11)

where S ⊆ Rn,U ⊆ Rm denote the state space and action
space of the system, respectively. Lfh(s), Lgh(s) denote the
Lie derivatives of h along vector field f and g.

Consistent with [13], we particularly choose a particular
K∞ function, i.e., κ(h(s)) = αh(s). where α is the conser-
vativeness coefficient.

Since RL is only compatible with a discrete-time environ-
ment, we adopt the discrete-time version of the CBF [2].

Definition 2. . (Discrete Time Control Barrier Function) The
discrete-time control barrier function (CBF) for a constraint
h(st) ≥ 0 is

h(st+1) ≥ (1− α)h(st) (12)

In this definition, a difference replaces the derivative in the
continuous situation. Thus, the admissible space in equation
11 is redefined as:

B(ut) = {u : h(st+1|st, ut)− h(st) ≥ αh(st)} (13)

It is proved that, as long as s0 ∈ H and all subsequent actions
ui ∈ B(ui), ∀i > 0, the state si is always in the safe set
H: si ∈ H ∀i > 0 [12]. This property is also known as the
forward invariance property for CBF.

In this paper, we choose the same pairwise safety function
h as [13]. The safety set H and admissible set B(s) are
redefined as

H = {h(s) = ||xe − xh||2 −R2
safe ≥ 0}

B(st) = {ut : h(st+1|st, ut)− h(st) ≥ αh(st)}
(14)

where xe, xh denote the position of the ego vehicle and the
host vehicle and Rsafe denotes the safe distance.

C. Problem Formulation

We consider the ramp merging scenario with Gaussian
random noise [13]. Our agents are trained to control the
ego vehicle on the main road to merge with a human-driven
host vehicle from the ramp safely. Meanwhile, maintain the
vehicle under the expected acceleration as much as possible.
The human-driven vehicle is assumed to have constant veloc-
ity with some random noise. The system dynamics for each
vehicle can be described as a double integrator as follows
[13]:

Ẋ =

[
ẋ
v̇

]
=

[
02×2 I2×2

02×2 02×2

] [
x
v

]
+

[
I2×2 I2×2

02×2 02×2

] [
u
ε

]
(15)

where I2×2 denotes a 2×2 identity matrix, and x, v ∈ R2 are
the position and velocity of the vehicle. u ∈ R2 is the control
input acceleration, and ε ∼ N (µ,Σ) ∈ R2 is the uncertainty
in the system with known mean µ and covariance matrix Σ.

In this paper, we consider the discrete-time system dy-
namics:

Xt+1 =

[
xt+1

vt+1

]
=

[
xt + vt∆t+ 1

2ut∆t
2

vt + ut∆t

]
(16)
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where ∆t is the time increment. The goal for our algorithm
is to achieve a safe policy while maintaining efficiency: i.e.,
satisfy the constraints and ensure that the acceleration does
not deviate from the expectation too much. Thus we define
the reward function r as

r(st, at) = ||at − aexpected||2 (17)

where aexpected is selected by the user. The dynamics of the
considered ramp merging problem contain randomness, thus
we cannot fully guarantee the CBF constraints. Instead, we
consider satisfying a constraint with a certain confidence
level η ∈ (0, 1). The desired parameter θ∗ for the policy
is the solution of the following constrained optimization
problem:

min
θ

Es∼d,a∼π(s;θ)[G]

s.t. Pr
(
Ea∼π(st;θ)[h(st+1|st, at)] ≥ (1− α)h(st)

)
≥ η

(18)

D. Admissible set for probabilistic ramp merging system

Generally, optimization problems containing probabilistic
constraints are hard to optimize. However, for the ramp
merging setting we considered, the probabilistic constraint
can be converted into a constraint on the output action [13].

Theorem 3. Given a stochastic dynamical system
defined in equation 16 and a confidence level
η ∈ (0, 1), the following admissible control space
Bsη(x) ensures a chance-constrained safety condition
Pr
(
Ea∼π(θ)[h(st+1)] ≥ (1− α)h(st)

)
≥ η for the ego

vehicle with each merging car m.

Bsη(x) = {ue ∈ Ue : Aemue ≤ bem,∀m} (19)

with

Aem = −2∆x>em∆t

bem = 2∆x>em(∆vem + ∆ε̂em) + αhsem(x)

− Φ−1(η)
√

∆x>em∆Σem∆xem

(20)

where ∆xem = xe−xm, ∆vem = ve−vm, εem = εe−εm ∼
N(∆ε̂em,∆Σem) for ego vehicle e and each merging vehicle
m.

The detailed proof can be found in [13].

IV. METHODS

The aim for reinforcement learning algorithms is to max-
imize the expected return G. We use a policy-based rein-
forcement learning algorithm. To guarantee a safe merge,
updating the policy is a constrained optimization problem:

min
∆θ

La = Es∼C,a∼π(θ)[G]

s.t. Jc = Eue∼π(θ)[Aemue] ≤ bem

Dp(θ; θk) ≈ 1

2
∆θ>H∆θ ≤ δ

(21)

with

Aem = −2∆x>em∆t

bem = 2∆x>em(∆vem + ∆ε̂em) + αhsem(x)

− Φ−1(η)
√

∆x>em∆Σem∆xemc

(22)

The updating of the critic is the same as for the constraint-
free actor-critic algorithm, by optimizing the critic loss
defined in equation 23:

Lw = Est∼C{
1

2
(G− V (st;w))2} (23)

analogously to the method used in [2]. An approximate
solution of the constrained optimization can be computed
through linear approximation and a trust region constraint is
added for a more stable convergence:

min
∆θ

g>∆θ

s.t. z + C>∆θ ≤ 0

Dp(θ; θk) ≈ 1

2
∆θ>H∆θ ≤ δ

(24)

where g = ∂La
∂θ /||

∂La
∂θ ||

2, z = Jc − bem, C = ∂Jc
∂θ /||

∂Jc
∂θ ||

2.
Using a Lagrange multiplier, the Lagrangian function is

L(∆θ, v) = g>∆θ + λ(
1

2
∆θ>H∆θ − δ) + v(z + C>∆θ)

(25)
where λ and v are dual variables. Using the KKT condition,

∂L

∂∆θ
= g + λH∆θ + vC = 0

λ(
1

2
∆θ>H∆θ − δ) = 0

v(z + C>∆θ) = 0

λ, v ≥ 0

1

2
∆θ>H∆θ − δ ≤ 0

z + C>∆θ ≤ 0

(26)

the optimal update direction can be obtained. Supposing
there exists a feasible solution for the optimization problem
24, the optimal update direction is

∆θ =
H−1(g − v∗C)

λ∗
(27)

where v∗ and λ∗ are the optimal dual solution obtained
by analytical solution. If the problem does not have a
feasible solution the policy update rule changes to a retrieval
mechanism:

θk+1 = θk −
√

2δ

C>H−1C
H−1C (28)

For the retrieval update, we tentatively ignore the objective
function and take the gradient descent with respect to the
constraints; in other words, we try to ”force” the policy back
to the safety region.
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Algorithm 1 SAPO-RM
input: arbitrary initialized parameter θ0, w0

output: trained parameters θ∗, w∗

repeat
Sample a set of trajectories D = T ∼ π(θk)
From D update w by (23)
Estimate g,z,C,H
Check the feasibility by (30)
if feasible then

update θ by (27)
else

update θ by (28)
end if

until converge

input
ye The y-position for the ego vehicle
xh The x-position for the host vehicle
yh The y-position for the host vehicle
ve The velocity for the ego vehicle
vh The velocity for the host vehicle
output
a The acceleration of the ego vehicle

TABLE I: summary of the input and output for the RL information

We check the feasibility by solving the following opti-
mization problem, which is proposed in [7]:

min
∆θ

1

2
∆θH∆θ

s.t. z + C>∆θ ≤ 0
(29)

Suppose the optimal value of equation 29 is δmin. The
feasible solution set is empty if δmin ≥ δ and contains
a feasible solution otherwise. We optimize this problem
efficiently using the Lagrangian dual problem:

max
v≥0
−−v

>C>H−1Cv

2
+ v>z (30)

The feasibility check can be done by comparing δmin with
δ.

The probabilistic Safety Assured Policy Optimization for
Ramp Merging (SAPO-RM) is summarized in Alg. 1.

V. EXPERIMENTAL RESULTS

We conduct experiments to test the sample efficiency
and the ability to perform safe exploration. We use a
simulated environment for ramp merging which contains
one ego vehicle and one host vehicle. The RL agent is
trained to safely merge with the host vehicle that comes
from the ramp. The host vehicle has a constant velocity
with random variance. The observation of the RL agent
s = (ye, xh, yh, ve, vh) ∈ R5, and the control input for
the ego vehicle is the acceleration a. The basic information
for the RL algorithm is summarized in Table I. The reward
function is defined in equation 17.

The environment dynamics follow equation 16. We assume
a speed limit vmax = 35m/s for the environment. The ego
vehicle is controlled not to exceed this speed limit.

The architectures of the neural networks used in the ex-
periments are summarized in Table II. The optimizer for the

Actor
Input Layer 5->120 fully connected layer
Activation Tanh
Hidden Layer 120->1 fully connected layer
Activation Tanh
Output Layer 1-d Gaussian Layer
After the second activation function, the value are multiplied by a
constant to confine the output action between the feasible region
Critic
Input Layer 5->80 fully connected layer
Activation Tanh
Output Layer 80->1 fully connected layer

TABLE II: Summary of the neural networks used in the experiments

critic network is LBFGS. The gradient of Eue∼π(θ)[Aemue]
is estimated using the REINFORCE trick,

∇Jc =

∫
∇p(ue; θ) ·Aem · uedue

=

∫
p(ue)∇ ln p(ue; θ) ·Aem · uedue

= ∇Eue∼π(θ)[ln p(ue; θ) ·Aem · ue]

(31)

Multiple actions u were sampled from the policy distribution
and timed with the log probability. The mean of this value
is an unbiased estimator for the constraint loss.

For each experiment, we start with fixed initial parameters
for both algorithms to fairly compare their performance.

Note that due to time limitations, the experimental results
shown in the following sections are based on very limited
testing. More systematic experiments will be performed in
the future.

A. Experiment 1: safe exploration

In this experiment, we aim to answer the following ques-
tion: Does our algorithm provide more safety in a ramp
merging environment with uncertainty?

In this experiment, we chose episode constraint violation
distance to evaluate constraints violation for each algorithm,
which is defined in equation 32:

ET [R2
safe − ||xe − xh||2)]+ (32)

where T denotes trajectories and [·]+ denotes the function
max{·, 0}. We use this as the evaluation criterion for safety
constraints, since we not only care about the frequency of
constraint violation, but also the extent of violation. Policies
with less frequent but severe violations are not what we want.
Thus we use episode constraint violation distance to capture
both violation frequency and the extent of the violation.
The smaller the constraints violation distance is, the better
the feasibility performance algorithm. The performance of
algorithms during the training process is shown in figure 3.

Compared with CPO, SAPO-RM shows greater variance
when dealing with constraint violations. The CPO generally
monotonically reduces the violation rate. SAPO-RM, in the
contrast, shows a huge fluctuation in violation distances.
In some other trials of the experiment, SAPO-RM fails to
reduce the violation even after thousands of epochs. This
indicate that there is no guarantee for SAPO-RM to get a safe
policy when the initial policy is unsafe. A possible reason for
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Fig. 3: Average episode constraints violation distance with different
algorithms.

this is that SAPO-RM is constrained by the mean of the CBF-
based step-wise constraints. CBF-based constraints have a
safety guarantee only when the initial policy π0 is a feasible
policy. However, there is no guarantee for the update if the
agent is initially not in a safe state. Another possible reason
is due to the constraint being step-wise. Taking the mean of
these inequalities over trajectories cannot guarantee that all
constraints are satisfied, since these constraints may conflict
with each other. Thus, we propose an updated version of
SAPO-RM which conducts step-wise optimization (see Alg.
2). We will test its performance in the future. The current
version of SAPO-RM has worse performance in dealing with
violations compared with CPO, as it fails to provide a stable
update that makes the policy go back to the safe region.
However, once SAPO-RM has a generally safe policy, no
matter a safe initial policy or a occasionally gotten safe
policy during the training process, it can update the policy
to remain in the feasible region.

B. Experiment 2: sample efficiency

In this experiment, we will test the algorithm’s episode
return, to see the sample efficiency. Sample efficiency is a
critical problem for RL algorithms. RL agents learn from
interaction with the environment, which is costly in reality.
We test the average return for the CPO and SAPO-RM
algorithms. The results are shown in Figure 4.

Fig. 4: Average episode return with different algorithms.

CPO shows an erratic reward curve, as it doesn’t get a
safe policy until about 300 epochs. The shape of the reward

Algorithm 2 SAPO-RM Updated
input: arbitrary initialized parameter θ0, w0

output: trained parameters θ∗, w∗

repeat
Sample a set of trajectories D = T ∼ π(θk)
From D update w by (23)
for t = 1 : T do

Estimate g,z,C,H by st and at
Check the feasibility by (30)
if feasible then

update θ by (27)
else

update θ by (28)
end if

end for
until converge

curve greatly depends on the initialization of the policy. More
experiments are required to explore the effect of the initial-
ization. For initialization where CPO can reach a safe policy
in a few steps, the reward curve becomes smooth. A special
observation for SAPO-RM is that once SAPO-RM reaches a
safe policy, its reward makes a huge jump. This jump occurs
frequently in the training and significantly accelerates the
convergence of the algorithm. More experiments are required
to delve into the reason for this jump.

VI. FUTURE WORK

This paper only contains some preliminary experiments
with limited data. More experiments are required for a
comprehensive analysis of SAPO-RM. The performance of
Updated SAPO-RM (Alg. 2) is worth testing, since it may
be able to deal with an unsafe initial policy.
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Automatic Multi-modal Calibration of Stereo Cameras, Thermal
Cameras, and Lasers in Arbitrary Scenes

Taimeng Fu1, Huai Yu2, Yaoyu Hu2 and Sebastian Scherer2

Abstract— The combined use of multi-modal sensors has
become increasingly popular in autonomous driving and intelli-
gent robots, since the integration can provide richer information
than any single sensor, enhance the reliability under complex
environments. The precise 6-DoF extrinsic calibration between
any two sensors of a perception system is important since it
directly affects its performance. Traditional calibration methods
are only designed for calibrating sensors in no more than two
modalities, and most of them either require specific calibration
targets or need manual manipulation. It’s inconvenient to use
them as the sensor types increase.

In this paper, we introduce an automatic cross-modal calibra-
tion framework, which can calibrate the extrinsic parameters
between stereo cameras, thermal cameras, and LiDAR sensors
in one shot. It can be conducted in arbitrary scenes without
any specific calibration target, and perform automatically
without manual intervention. The key insight is to extract
edge information from the data of different sensors and align
these edges by minimizing the registration error on extrinsic
parameters. Although the cost function is not convex globally,
it is always convex locally around the correct calibration.
The algorithm only needs a rough initialization, which can be
manually obtained, and then it will optimize this initial guess
to estimate the precise extrinsic parameters.

I. INTRODUCTION

Today, robots have been used to automatically perform
a variety of challenging tasks, and perception of the envi-
ronment is a critical step in accomplishing them. To max-
imally collect environmental information, the latest robots
are often equipped with different types of sensors, such
as stereo cameras, thermal cameras, and LiDAR sensors.
Extrinsic calibration is a process of estimating the rigid-body
transformation between each two sensors’ local coordinates.
With the transformation, 3D points detected by different
sensors can be converted to a unified coordinate system or
projected onto camera images. As the sensor types grows,
accurate extrinsic calibration becomes increasingly important
in multi-modal perception systems. Calibration serves as a
bridge connecting sensors, providing fusion information for
the perception system, and enhancing the robot’s ability to
perceive the environment.

Over the past several years, substantial works have been
done on cross-modal extrinsic calibration. It is a challenging
problem since it’s difficult to perform automatic feature
matching between different modalities. We will introduce

1Taimeng Fu is with the School of Data Science, The Chinese University
of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District,
Shenzhen, China, 518712 taimengfu@link.cuhk.edu.cn

2Huai Yu, Yaoyu Hu and Sebastian Scherer are with the AirLab,
Carnagie Mellon University, Pittsburgh, PA 15213 {huaiy, yaoyuh,
basti}@andrew.cmu.edu

previous works on calibrating monocular camera and lasers,
stereo cameras and lasers, and RGB and thermal cameras
respectively.

A. Calibration of monocular camera and lasers

Zhang and Pless [1] proposed a method to calibrate the
camera and lasers system with a checkerboard calibration
target that can be simultaneously observed by both sensors.
Later, Scaramuzza et al. [2] demonstrated an improved laser
point cloud visualization technique that enables manually
matching laser points with the corresponding image pixels.
They employed the perspective-from-n-points (PnP) algo-
rithm to calculate the transformation based on the matches.
Their method does not depend on a specific calibration
target, so it can be executed in any scene. However, manual
matching is time-consuming and might be imprecise. On the
other side, Nunez et al. [3] chose to increase the degree of au-
tomation while still under a controlled scene. They developed
an algorithm to automatically detect the checkerboard in the
lasers’ view and align it to the camera image to get extrinsic
parameters. To improve the accuracy, multiple laser frames
were aggregated with the help of an inertial measurement
unit (IMU).

There were also some attempts to get rid of both fixed
scene and manual manipulation. Pandey et al. [4] provided a
solution of automatic targetless extrinsic calibration by max-
imizing mutual information of laser reflectivity and image
intensity. They found that after aggregating 10 scans, their
MI cost function becomes convex and thus easy to optimize.
However, the laser reflectivity and image intensity might not
be strongly correlated in some scenarios. This might result
fault calibration. Levinson and Thrun [5] developed a online
system that automatically align laser edges to image edges to
correct sensor drifting. They generated cost maps for each
image, projected laser edge points onto them to calculate
the cost, and tried to adjust the extrinsic parameters to lower
the cost. However, on one hand, since the laser scans are
relatively sparse, some of the laser edge points may not
precisely lie on the boundary of the objects, which affects the
calibration accuracy; on the other hand, they used a greedy
approach to reduce the cost, which is less efficient than a
gradient based optimizer.

B. Calibration of stereo cameras and lasers

The stereo-laser calibration is more straightforward than
that of monocular camera and laserfs since both stereo
cameras and lasers have depth information. Guindel et al.
[6] calibrated stereo cameras and lasers based on a four-hole
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calibration board. They developed a segmentation pipeline
for extracting boundaries of the holes from stereo point
cloud and laser point cloud respectively, and calculated the
extrinsic parameters by minimizing the distance between the
clustered centroids of the four holes. Dhall et al. [7] reported
a method that relies on a calibration board with a visual tag
on it. They calculate the 3D position of the board corners in
both stereo and lasers’ view, and solve a set of equations to
get the transformation that minimizes the distance between
corresponding corner points.

C. Calibration of RGB and thermal cameras

In recent years, with the development and wide use
of thermal cameras, RGB-thermal calibration becomes an
unavoidable task for image fusion and object fusion. Most
of the attempts tried to build calibration targets that are
distinguishable in both RGB and thermal views. Li et al.
[8] placed LED bulbs on their calibration board. The bulbs
have high intensity on both RGB and thermal images since
they emit both light and heat. They developed an algorithm
to localize the bulbs on RGB and thermal images, and
then calibrate the extrinsic parameters by minimizing the
reprojection error. Shivakumar et al. [9] mounted aluminum
squares on a black acrylic background to form a checker-
board. Since the checkerboard blocks have different colors
and different thermal reflectivities, it’s easy to recognize the
chessboard pattern on both RGB and thermal images. They
then employed OpenCV’s [10] camera calibration toolbox to
estimate the transformation.

Most of the calibration methods mentioned above require
specific calibration targets. This limits their adaptability and
introduces the trouble of setting up calibration scenes as well.
On the other side, the scene-independent ones either require
manual matching or not robust enough. Besides, all of them
only focus on two-modal calibration. It’s inconvenient to use
them sequentially when types of sensors increase.

To solve these problems, we contribute an automatic,
targetless, all-in-one calibration pipeline for stereo cameras,
thermal cameras, and LiDAR sensors. For the stereo-laser
calibration, we directly use Generalized-ICP (GICP) [11] to
register their point clouds. To calibrate the thermal camera,
we expand Levinson and Thrun’s [5] edge alignment algo-
rithm. Our method projects the edge points in both stereo
and laser point clouds to thermal images and optimizes
the thermal extrinsic to minimize the edge alignment error.
Since the edges are widely existed in almost every scenario,
our method works in arbitrary environments. Besides, it
calibrates the three sensors in one system. This greatly
simplifies the cross-modal multi-sensor calibration process.

II. METHODOLOGY

The goal of our algorithm is to take a series of n
synchronized stereo image pairs I left1:n , Iright1:n , thermal images
Ithermal
1:n , and laser point clouds Claser

1:n , captured in arbitrary
scenes, and automatically optimize the initial guesses of the

6-DoF rigid-body transformations to get accurate calibra-
tions. The transformation is defined by six parameters ξ =
{x, y, z, row, pitch, yaw}, where x, y, z are translations, and
roll, pitch, yaw are Euler angle rotations. We take the stereo
left camera’s coordinate system Ŝ as the base coordinate
system, and calibrate other sensors to Ŝ. As the stereo
right to left transformation TLR can be easily obtained with
OpenCV [10], there are two transformations remaining to be
estimated: laser to stereo transformation TSL and thermal to
stereo transformation TST . We assume that the stereo and
thermal cameras’ lens distortions have been calibrated so
the pinhole camera model is applicable, and their intrinsic
matrices Kleft,Kright, and Kthermal are obtained.

Our calibration pipeline has three steps. First, generate
stereo point clouds by image feature matching and triangu-
lation. Then, calibrate the lasers to stereo by point cloud
registration. Finally, optimize the thermal-stereo transforma-
tion TST by minimizing the edge alignment error. The flow
of the pipeline is shown in Fig. 1.

Fig. 1. Flow chart of our calibration pipeline. It takes stereo image pairs,
thermal images and laser point clouds as input, and automatically calibrate
the stereo-laser and stereo-thermal extrinsic parameters in one run.

A. Stereo point cloud generation

We generate point clouds from stereo image pairs to make
full use of their 3D information in later calibrations. The
Scale Invariant Feature Transform (SIFT) feature detection
algorithm [12] is employed to extract key points and compute
descriptors on each stereo image pair (I lefti , Irighti ), i =
1 · · ·n. A RegionsMatcher implemented in OpenMVG [13]
performs feature matching. Then triangulate matched fea-
tures to get the 3D positions P stereo

i,j , where j is the index
of matched features in image pair i. We use the OpenCV’s
[10] triangulation function here. The stereo point clouds
Cstereo

i = {P stereo
i,j }, i = 1 · · ·n.

Fig. 2. Example of a matched stereo image pair (left) and the generated
stereo point cloud (right).

B. Stereo-laser calibration

The aim of this part is to estimate the laser to stereo trans-
formation TSL. We employ the Generalized-ICP (GICP) [11]
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algorithm to register the corresponding stereo and laser point
clouds (Cstereo

i , Claser
i ), i = 1 · · ·n. GICP is a variant of the

Iterative Closest Point (ICP) [14] algorithm. It optimizes not
only the point-to-point but also point-to-line and point-to-
plane distance. The initialization for GICP can be obtained
by manually aligning the stereo and laser point clouds in
Blender [15] or other 3D processing software. The final TSL

is the average of each frame’s calibrated transformation.

C. Thermal extrinsic calibration

RGB-thermal automatic calibration is challenging when
there are no specially designed calibration targets. Since the
RGB and thermal images have different color styles, it’s hard
to match their features. However, we found that in most
cases, the RGB and thermal images share similar edge maps,
i.e., if there’s an edge on the RGB image, it’s very likely to
find a corresponding edge on the thermal image. Moreover,
as Levinson and Thrun [5] claimed, the correct calibration
gives the smallest reprojection edge alignment error (REAE),
comparing to the slightly biased calibrations. Based on this,
we developed an algorithm to calibrate the thermal extrinsic
parameters by minimizing the REAE.

1) Stereo edge points detection: Stereo edge points detec-
tion is easy since there are correspondences between the 2D
features and 3D points. We first use Sobel operator [16] to
detect edges on stereo image pairs (I lefti , Irighti ), i = 1 · · ·n,
then pick out the feature points on the edges, and mark their
corresponding 3D points as edge points. Fig. 3 gives one
example of the stereo edge point detection. The edge points
in the ith stereo cloud forms Estereo

i .

Fig. 3. Example of the matched features on edges in a stereo image pair
(left) and the edge points detected in the stereo point cloud (right).

2) Laser edge points detection: Due to the limitation of
the number of LiDAR scanning lines, the vertical scanning
density is too small for edge detection. Therefore, we only
use the horizontal depth difference between the adjacent
scans to detect edge points. For a laser point p, we define
left(p) as the point generated by p’s left neighbor scan and
right(p) as the point of p’s right neighbor scan. The left and
right neighbours of p are

N0 = {leftk(p) | k = 1...r} (1a)

N1 = {rightk(p) | k = 1...r} (1b)

where r is the sample radius. The edge is detected according
to the distance relationship between p and its neighbors

p is edge⇐(∀a ∈ Ni, dist(a)− dist(p) > ε) ∧
(∀b ∈ N1−i, |dist(p)− dist(b)| ≤ ε), i = 0, 1

(2)

where dist(p) is the L2 distance from point p to the origin

dist(p) =
√
p.x2 + p.y2 + p.z2 (3)

and ε is the threshold for edge judgment. Fig. 4 gives one
example of the laser edge point detection result. All edge
points in the ith laser frame forms Elaser

i .

Fig. 4. Example of a frame of laser points. The detected edge points are
marked in red.

3) Thermal attraction field map generation: We use the
Canny edge detector [17] to detect edges on thermal images
Ithermal
i , i = 1 · · ·n, then apply distance transform on the

edge maps, as shown in Fig. 5. Distance transform calculates
the Euclidean distance from each pixel to its nearest edge.
We call the distance transformed edge maps ”attraction
field maps”, written as Gi, i = 1 · · ·n, since their gradient
provides the direction to the nearest edge.

Fig. 5. Example of a thermal image (left), its edge map (middle), and its
attraction field map (right).

4) Edge alignment optimization: In this step, we optimize
the initial thermal extrinsic to minimize the reprojection
edge alignment error (REAE). We first define two projection
functions, which project points in stereo local space and laser
local space onto thermal images respectively,

projstereo(p) = Kthermal

T−1ST


p.x
p.y
p.z
1




3D

(4a)

projlaser(p) = Kthermal

T−1ST TSL


p.x
p.y
p.z
1




3D

(4b)

where TSL, the laser extrinsic, is estimated in laser cal-
ibration; TST , the thermal extrinsic, starts with an initial
guess and be optimized iteratively. The notation (·)3D is the
conversion from 4-dimensional homogeneous coordinates to
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3-dimensional space coordinates.

x
y
z
w




3D

=

x/wy/w
z/w

 (5)

In some cases, the thermal edges are not 100% correspond-
ing to stereo and laser edges. The outliers will mislead the
optimizer and negatively affect calibration. Thus, we need to
detect and filter them out. We remove the stereo and laser
edge points that are too far away from any thermal edge after
projecting with the initial transformation, i.e., the inliers are

Êstereo
i = {p ∈ Estereo

i | Gi[proj
stereo(p)] ≤ δ} (6a)

Êlaser
i = {p ∈ Elaser

i | Gi[proj
laser(p)] ≤ δ} (6b)

where δ is the threshold of inliers. Then we can define the
cost function, the REAE, as

REAE =
α∑n

i=1 |Êstereo
i |

n∑
i=1

∑
p∈Êstereo

i

Gi[proj
stereo(p)]

+
β∑n

i=1 |Êlaser
i |

n∑
i=1

∑
p∈Êlaser

i

Gi[proj
laser(p)]

(7)
where α and β are weight parameters. Considering the
quantity of the laser edge points is far less than that of the
stereo edge points, we take α = 1 and β = 2.

We use Ceres Solver [18] to minimize the REAE by
adjusting the initial guess of TST , which is obtained by
manual measurement with tapes and protractor. Although our
cost function is not convex globally, in experiments we found
that it is always convex near the correct calibration, thus the
algorithm can optimize the extrinsic parameters toward the
correct direction with a fine initialization. And as the number
of frames n grow larger, the algorithm can tolerant bigger
initialization error. That means the user can get the initial
guess through rough measurement, and rely on minimizing
the REAE to optimize the extrinsic parameters.

III. EXPERIMENTS & RESULTS

A. Sensor setups and data caption

The sensors we used include two Ximea MC124CG-SY
RGB cameras, one FLIR Boson® 640 Longwave Infrared
(LWIR) thermal camera, and one Ouster OS0-128 LiDAR
Sensor. The two RGB cameras are fixed on both sides to
form a stereo pair with baseline = 22.270cm. The thermal
camera is installed between the two RGB cameras, next to
the left camera. The LiDAR sensor is mounted a little higher
in the middle. The sensors group is mounted under a drone,
as shown in Fig. 6.

After installing the sensors, we used tape to measure the
translation between the stereo left camera and the thermal
camera, got tST = [−0.038 0.009 0.001]T . As the stereo
cameras and thermal camera are fixed on the rod toward the

Fig. 6. (left) The complete drone platform. The sensors are mounted under
the drone. (right) The detailed setup of the sensors, including stereo cameras,
thermal camera, and LiDAR. Notice that there are two LiDAR sensors on
our platform, one is horizontal and the other is vertical. We only use the
horizontally mounted one.

same direction, we just RST = I3×3. So, the initial guess of
TST is

T initial
ST =

[
I3×3 tST

01×3 1

]
And by manually aligning a pair of stereo and laser clouds
in Blender [15], we got the initial guess of TSL.

The data set was captured in the CMU campus, around a
stone pier. The recording contains 170 valid frames.

Fig. 7. An example of stereo and laser point cloud registration with initial
(left column) and calibrated (right column) laser extrinsic parameters. The
first row compares the point clouds alignment in 3D space. When registered
with the initial transformation, the ground planes of the two point clouds are
at an approximately 7° angle. After the calibration, the two ground planes
align well. The second row compares the alignment of the projected laser
points and foreground image objects. By viewing the outline of the stone
pier in the image, we can see that the initial transformation causes the laser
points to deviate a little to the left, while there’s no obvious deviation after
the calibration.

B. Laser extrinsic calibration result

After registering the laser point clouds with the corre-
sponding stereo point clouds, the two point clouds align
well. Both the rotation and translation errors are significantly
reduced. We can see this improvement by comparing the
registrated 3D point clouds with the initial extrinsic param-
eters and the calibrated ones, as shown in the first row of
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Fig. 8. Four examples of edge point reprojection with initial (first row) and calibrated (second row) thermal extrinsic parameters. In general, the projected
edge points fit the thermal edges better after the calibration.

Fig. 7. We can also project the laser points onto the left
images, and check the alignment of the projected points and
the outline of foreground objects in images. The comparison
in the second row of Fig. 7 shows that projecting by the
calibrated transformation gives a more accurate reprojection
alignment, which indicates an accurate result.

C. Thermal extrinsic calibration result

We picked one frame every ten frames in our ”stone pier”
outdoor data set, obtained a subset with 17 data frames, and
inputted them to the thermal extrinsic optimizer. The REAE
drops from 167.136 to 139.647 after the 100 iterations. Fig. 8
shows four edge points reprojection results with initial and
calibrated thermal extrinsic parameters respectively. It’s clear
that the stereo, laser, and thermal edges are aligned better
after the calibration.

IV. CONCLUSIONS

This paper presented a multi-modal calibration pipeline
for stereo cameras, thermal cameras, and lasers. We first use
GICP to calibrate stereo cameras and LiDAR by aligning
their point clouds, then project registered stereo and laser
point clouds onto thermal images and optimize the thermal
extrinsic parameters by minimizing the edge alignment er-
ror. Our calibration pipeline can perform automatically in
arbitrary environments, and estimate three rigid-body trans-
formations between each pair of the three sensors in one run.
It’s easy to use since the user only needs to provide a rough
initial guess of the transformation and synchronized data
frames from the three sensors. The system greatly reduces
the complexity of the calibration process, and gives better
extrinsic calibration results for high level tasks, such as 3D
reconstruction, day-night visual odometry, etc.

Future works will focus on exploiting the real-time per-
formance potential of the system by pre-filtering irrelevant
information and improving the parallelism capability. The

real-time calibrator can be used to continuously detect and
correct the extrinsic parameters’ changes due to the sensor
drift or time misalignment. Besides, more kinds of edge
information, such as the edge of laser reflectivity map, can
be integrated while optimizing cloud-image edge alignment
to improve the system’s accuracy and robustness.
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Reason & Act : A Modular Approach to Explanation Driven Agents for
Vision and Language Navigation

Shaunak Halbe1, Ingrid Navarro2 and Jean Oh2

Abstract— Vision-and-Language Navigation (VLN) is a
multimodal task where an agent follows natural language
instructions to navigate in photo-realistic environments. VLN
assumes discrete motion along viewpoints of an undirected
navigation graph. However, navigation in the real world
demands continuous movement through low-level actions, thus
motivating the task of Vision-and-Language Navigation in
Continuous Environments (VLN-CE). Current approaches to
VLN-CE use end-to-end models that attempt to solve both
global reasoning and low-level control tasks. Training a single
model to perform tasks with vastly differing requirements
is difficult. We present the design of a modular system in
the form of a global and local planner. The global planner
would be responsible for the overall navigation to the desired
goal position as indicated by the natural language instruction.
It predicts a high-level waypoint to be reached by a local
planner through execution of a series of low-level actions.
The current baselines for VLN-CE are weak and cannot
be scaled for global planning. In this paper, we focus on
improving multi-modal understanding of VLN-CE agents with
an intention of extending them to form the global planner. To
boost multi-modal understanding, we introduce a grounding
module along with a Reason-and-Act strategy requiring the
agent to identify salient objects in its surroundings. Such
a scheme allows the agent to derive visual cues and match
them with the verbal indicators given in the instruction. We
believe, an agent that can learn to link the signals present in
different modalities can perform better in unseen environments.

Index Terms— Vision-and-Language Navigation, Embodied
Agents, Hierarchical Planning

I. INTRODUCTION

A robot that can understand and execute human instruc-
tions has been a dream for scientists since ages. Up until a
few years ago, such a robot was only imagined in science
fiction movies. Vision-and-Language Navigation (VLN) [1]
takes a significant step towards achieving this dream by for-
mally defining this task. VLN requires an agent to navigate
across photo-realistic visual scenes by inferring directional
cues from a natural language instruction. Although this is an
inherently challenging task for robots to carry out, certain
assumptions have simplified the requirements for developing
such an agent. VLN agents move by snapping across discrete
viewpoints of an undirected navigation graph and are not
concerned with the low-level path planning required to
reach any viewpoint. These agents observe the environment

1S. Halbe is with the Department of Computer Engi-
neering, College of Engineering, Pune, Maharashtra, India.
halbesa18.comp@coep.ac.in

2I. Navarro and J. Oh are with the Robotics Institute, Carnegie
Mellon University, Pittsburgh, PA., USA ingridn@cs.cmu.edu,
jeanoh@nrec.ri.cmu.edu

through panoramic images, and use it to choose the next
viewpoint from a list of available candidates.

Some of these assumptions are strong as compared to
real world conditions. The more recently proposed task
of Vision-and-Language Navigation in Continuous Envi-
ronments (VLN-CE) [2] takes a step closer to the real
world setting, by requiring the agents to execute low-level
actions in continuous environments. This setting presents
further challenges as the agents are no longer guaranteed
perfect localization, actuation, and navigation. The authors
of VLN-CE [2] introduce two end-to-end models to serve as
baselines. Due to the complex nature of this task, the models
achieve low success rates.

We believe that solving such a complex, multi-stage task
requires a hierarchical approach with modular components
that divide task responsibilities (e.g., alignment, reasoning,
control, etc) among themselves. Toward this end, we ex-
plore methods for improving the high-level planning aspect.
Specifically, we focus on improving the alignment between
visual and verbal signals with a goal of leveraging it to
improve high-level navigation.

We discuss the structure of a global planner which is
entrusted with the task of correlating the visual observations
with the instruction and providing us with a high level
waypoint to navigate towards. Such a waypoint would then
be reached by a local planner through the execution of a
series of low-level actions. We explore the idea of an agent
that can identify salient features in visual scenes and link
them to verbal indicators to develop a richer understanding
of the environment. In this spirit, we introduce a reasoning
component, which requires the model to identify salient
objects in its surroundings that are pivotal in navigating
towards the goal. To summarize, our contributions to improve
the high-level planning are two fold; we

• introduce a Vision-Language grounding module that
generates strongly grounded features in Vision, Depth
and Language Space.

• propose a reasoning component that allows an agent to
enhance its multi-modal understanding.

II. RELATED WORK

A. Vision-Language Navigation

In VLN [1], an agent is required to follow a navigation
instruction from a start location to a goal. Usually, the goal
position is not explicitly provided and is to be inferred from
the instruction. Overall, VLN models ([3]–[6]) have seen
considerable progress in their ability to reach the goal and
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Fig. 1. Global Planner with Cross Modal Attention

the degree of their instruction-trajectory alignment. While
most existing works only consider the scenario where the
test environments are previously unexplored, some ([3], [5],
[7]) also consider a setting where the agent can explore
the test scenes prior to evaluation. Among these works, the
Speaker-Follower [3] approach is quite common where a
speaker model generates novel instructions from sampled
trajectories which are then used for path selection while
training the follower. Different from these, transformer based
Vision-and-Language pre-training approaches have been suc-
cessfully extended to VLN. [6], [8] have achieved positive
results by demonstrably increasing the vision and language
alignment by transferring multimodal transformers pretrained
on internet data to VLN settings.

B. Other Language-Guided Navigation Tasks

Apart from VLN, several other tasks involving Language-
Guided Navigation / Interaction ([2], [9]–[13]) have been
proposed which place an agent in an embodied setting
requiring visio-linguistic understanding. These tasks are in
a similar vein to the VLN tasks but differ in the activity
expected from the agent. Most similar to VLN is VLN-
CE [2], which requires an agent to move in a continuous
environment in the absence of a navigation graph. VLN-
CE also differs with regard to the topological and positional
knowledge that the agent has access to. However, VLN-
CE has the same high-level objective of language guided
navigation as VLN. On the other hand, Embodied Question
Answering (EQA) [9] requires an agent to navigate based
on the natural language question and answer it using the
explored information. Similarly, in Embodied Object Re-
ferral (EOR) the agent is tasked with navigating towards
an object in the environment based on a natural language
instruction. Unlike EOR and EQA, tasks like Vision and
Dialog History Navigation (VDHN) and Embodied Goal-
Directed Manipulation (EGM) require interaction with the

oracle or manipulation in the environment. We refer readers
to [14] for further details about the aforementioned tasks. In
this paper we focus on designing a modular agent for the
VLN-CE task.

C. Modular Planning

Previous works([12], [15], [16]) have proposed hierar-
chical approaches to solve Embodied Vision-and-Language
Planning tasks. [17] propose MoViLan, a modular approach
for long horizon tasks such as Vision-and-Language Navi-
gation. MoViLan uses a novel Graph Convolutional Neural
Network (G-CNN) based approach for mapping by approxi-
mating the geometry of nearby objects. The navigation map
thus generated is used along with semantic information to
predict high-level actions. Finally these high level actions
are decomposed into low-level actions using a non-learning
search strategy like A*. [15] and [16] use supervised learning
to learn to predict high-level waypoints using images and
instructions. In the second stage, Reinforcement Learning is
used to learn actions to reach these waypoints.

Similar to these approaches, we discuss a modular design
to optimize for subgoals using a global planner. However, in
VLN-CE environment subgoals are not explicitly provided
making it a challenging task to work on.

III. PROBLEM FORMULATION

Following the definition in [14], let S = {V,L}
represent the set of states encompassing the visual ob-
servations, V , and language inputs, L. Next, let A =
{stop,turn left,turn right,move forward} in-
clude the set of possible actions. The VLN task can be
formulated as ΦVLN = {S,A, s0, sgoal}, where s0, sgoal ∈ S
represent the initial and target states, respectively. Thus, a
plan ΨVLN = 〈s0, a0, s1, a1, . . . , sT, aT〉 exists such that each
state st, where t ∈ [0, T ], is associated with a location in
the environment leading to the final goal. An episode in
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Fig. 2. Cross Modal Attention

VLN requires an agent to find a route from the start state
to a target state following an instruction l ∈ L. At each
time-step t, the agent in the environment E is said to be
in a state st, represented as (vt, l) where vt corresponds to
the current visual observation, and l is the instruction. The
agent must predict a solution Ψ̂VLN = 〈s0,a0,s1,a1,...,sT,aT〉
by executing an action at ∈ A at each state st following a
policy π parametrized by θ such that at = π(st; θ).

The episode is deemed successful if the sequence of
actions, both, delivers the agent close to the intended goal
location sgoal, and minimizes the difference between the
ground-truth plan ΨVLN, and the predicted plan Ψ̂VLN.

IV. APPROACH

In this section, we introduce our global planner πglobal
which is tasked with predicting the next waypoint given vi-
sual observations and a specified instruction. We assume the
predicted waypoints are passed to a local planner πlocal which
predicts the sequence of low-level actions to reach each of the
intended waypoints. As mentioned in the previous sections,
our paper focuses on exploring techniques to improve the
high-level planning. Thus, we leave local planning out of
the scope of our work. We refer readers to Figure 1 for the
model architecture.

A. Global Planner

Following [2], we leverage imitation learning [18] to train
the global policy πglobal to predict the next waypoint gt by
imitating expert actions. We train our global agent using AI
Habitat [19] and the VLN-CE dataset [2]. In our setting,
πglobal receives an instruction and at each time-step has access
to visual observations comprised by color and depth images.
The global policy then uses this information to predict the
next waypoint gt = πglobal(st; θglobal) in terms of distance
and heading relative to its current position.

Our global planner is comprised by two sub-modules,
a grounding module tasked with ensuring the alignment
between the language and visual modalities, and a reasoning
component which ensures the agent is able to explain the
actions taken in the past. Below we provide further details
about the aforementioned modules.

1) Grounding Module: In VLN-CE [2], the authors pro-
pose a vanilla Sequence-to-Sequence (Seq2Seq) model and a
Cross-Modal Attention (CMA) based Recurrent Neural Net-
work (RNN) to serve as baselines for the tasks. Pre-trained

Fig. 3. Extracting the ground truth from Scene Priors

transformer models ([20]–[22]) have starkly outperformed
RNN based approaches across a range of language only
(Question-Answering, Language Modelling) and multimodal
(VQA [23], VisDial [24]) tasks. Drawing inspiration from
such tasks, we introduce a Vision-and-Language Grounding
module in the form of a pre-trained LXMERT encoder [25].
This module completely replaces the individual instruction
encoder and RGB image encoder from the baselines. By
design, said model requires bounding box feature vectors
of top 36 objects extracted by a 101-layer Faster-RCNN.
Thus, we use a pre-trained Faster-RCNN [26] model to
extract objects features from our RGB observations to feed
to the transformer-based model. We freeze the parameters
of both of the encoders, and merely use them as feature
extractors. The LXMERT model encodes the image features
and instruction tokens and performs cross-modal as well as
self-attention over 9 language, 5 visual and 5 cross-modal
transformer-encoder layers. For each image-instruction pair,
we extract the last layer’s outputs from language and vision
streams of LXMERT and combine it to form a representation
grounded in vision and language. Separately, we use a
Resnet [27] encoder trained on the dataset from the Gibson
Environment [28] to extract features from depth observations.

Finally, we use CMA as in [2] to fuse the grounded
features extracted from LXMERT with the depth features.
CMA consists of two RNN encoders as shown in Figure
2, one to track visual observations and the other one to
make decisions based on attended features. The previous
action features along with the hidden state are used to attend
over the language embedding from LXMERT. This attended
language embedding is in-turn used to attend to the visual
and depth features. Thus through cross-modal interaction, a
strongly grounded representation is produced.

2) Reasoning Component: Through this component, we
task the agent with identifying an object in its field of sight
that is most relevant to instruction and the region that the
agent is in. We implement the reasoning module as a linear
layer on top of the attention module. We pass the grounded
features through the linear layer with an aim to classify it
between the 41 object categories present in Matterport3D
[29]. We use Cross Entropy as the loss function and optimize
it auxiliary to the action prediction loss. Curating good-
quality ground truths for each scene is very crucial. At each
step, we choose the ground truth object in one of following
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Val-Seen Val-Unseen

PL ↓ NE ↓ nDTW ↑ OS ↑ SR ↑ SPL ↑ ST ↓ PL ↓ NE ↓ nDTW ↑ OS ↑ SR ↑ SPL ↑ ST ↓

Seq2Seq w/o
reasoning 7.60 8.48 45.60 30.20 23.52 22.41 102 7.77 9.14 40.73 25.28 16.53 15.03 97

Seq2Seq w/
reasoning (Ours) 8.30 8.66 44.95 34.83 23.65 21.99 99 7.50 8.88 42.40 23.54 16.47 15.28 87

TABLE I
REASONING EXPERIMENT

Val-Unseen

PL ↓ NE ↓ nDTW ↑ OS ↑ SR ↑ SPL ↑ ST ↓

CMA 8.59 9.20 41.49 28.16 17.45 15.82 114

LXMERT
+ CMA (Ours) 8.31 9.02 42.21 27.19 17.18 15.92 100

TABLE II
ALIGNMENT EXPERIMENT

three ways:
• An object directly mentioned in the instruction is

present in the agent’s field of sight
• An object present in the visual scene is correlated to an

object mentioned in the instruction
• An object present in the visual scene is often observed

in the region (room) where the agent is currently located
We use a Knowledge Graph from Visual Genome[30] to
find associations between objects and determine their co-
occurrence. We filter this Knowledge Graph by keeping
only the objects and regions present in Matterport. Given
an object, we use the Knowledge Graph to find other
commonly associated objects. While choosing the ground
truth an object directly mentioned in the instruction is given
highest preference. In case of multiple objects, we use co-
occurrence values to determine the ground truth. At each step
we maintain a list of objects consisting of the ones directly
mentioned in the instructions, associated with the objects
mentioned in the instruction and ones that are associated
with the region (room) where the agent is present. We extract
co-occurrence values between two objects and between an
object and a region from the Knowledge Graph. We select
the object with the maximum co-occurrence value as the
ground truth for the reasoning task.

V. EXPERIMENTS
A. Metrics

We report standard metrics for visual navigation tasks
defined in [1], [31], [32] of success rate (SR), success
weighted by inverse path length (SPL), normalized dynamic-
time warping (nDTW), path length in meters (PL), oracle
success rate (OS), navigation error in meters from goal
at termination (NE), and steps taken (ST) to quantify the
performance of the model.

B. Implementation Details

We train our agents on the ‘train’ split from VLN-CE
dataset in the AI Habitat simulator[19]. We utilize the Adam
optimizer [33] with a learning rate of 2.5 ×10-4. We use
a DAgger-like [18] approach to collect trajectories with
oracle actions as ground truth actions. We collect 10,819
trajectories for both of the experiments. Imitation learning is
then performed for 15 epochs over all collected trajectories.
In order to match the original setup [2], we set the forward
actuation of the agent to 0.25 meters and a turning angle
of 15o. We report the results on the entire ‘val-seen’ and
‘val-unseen’ splits from [2].

As mentioned in Section IV-A.1, the grounding module is
frozen during the training and inference. We use a Faster-
RCNN model pre-trained on Visual Genome [30], to extract
20 object proposals from the RGB image observations. We
use the LXMERT model adapted from huggingface [34] pre-
trained on multiple multi-modal datasets (MS-COCO [35],
VQA [23], GQA [36], and Visual Genome). The depth
observations are separately extracted from a Resnet encoder
which is updated during training. The textual instructions are
tokenized to word-piece embeddings through the LXMERT
tokenizer from huggingface, and then pooled out. Finally, we
implement our models in PyTorch on top of AI Habitat.

VI. RESULTS

Tables I & II present a comparison of our approach
against the baseline models for the Reasoning and the Vision-
Language grounding experiments respectively.

A. LXMERT CMA v/s Baseline CMA

We observe that the LXMERT model marginally outper-
forms the baseline under the metrics of PL, NE, nDTW, SPL
and ST. However, its performance drops slightly under the
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metrics of OS and SR. Such a moderate performance by
LXMERT is counter-intuitive considering the large gains it
furnishes on other Vision and Language tasks. The basic
LXMERT model contains around 300 million parameters
which is far more than the CMA or Seq2Seq baselines.
Training LXMERT in an embodied in-simulation setting
takes very long adding to the difficulty of achieving or
even assessing convergence. This, limited our studies to
using a pretrained LXMERT model without fine-tuning it’s
parameters during the VLN-CE training process. We ascribe
the middling performance of LXMERT to the domain shift
between the high-quality images it was pre-trained on and the
significantly lower-quality visuals it experienced through the
simulator. A promising future direction would be to replace
the Faster RCNN from the LXMERT pipeline with a simpler,
more efficient feature extractor and training the overall model
on scenes from VLN-CE.

B. Seq2Seq w/ reasoning v/s Seq2Seq w/o reasoning

The agent equipped with the reasoning component
achieves comparable results for the val-seen split, which
contains scenes observed by the agent during training. The
gains with the reasoning component are better realized for
the val-unseen split, where it improves over the baseline
for majority of the metrics. Although the improvements
are minor, they help support our claim of the reasoning
component allowing the model to generalize to unseen
environments. The reasoning component described in this
paper is a preliminary implementation of our idea. We
plan to pursue more sophisticated mechanisms for inducing
reasoning in the agent.

VII. CONCLUSIONS

In this work, we proposed the idea of a modular agent for
VLN-CE. However, we focused on the high-level planning
component of this agent. More specifically, we worked
towards improving the baselines and presented a strategy to
incorporate them into a modular architecture. Although the
results are mixed and the gains are smaller, these directions
appear to be promising and create ample opportunities for
development in the future. Following this work, we would
like to improve the Vision & Language Grounding module,
by making it computationally efficient, thus allowing it to be
trained or finetuned on VLN-CE episodes.

Further we would like to explore better alternatives for in-
culcating the ability of reasoning in such agents by allowing
them to explore and understand the environments. Finally, we
plan to build and test the entire modular agent by integrating
the proposed high-level policy with a local planner.
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Accurate Pedestrian Localization for Urban Crosswalks

Rayna Hata1, Issac Isukapati2, Stephen Smith2

Abstract— Safe and easy crossing of signalized pedestrian
walkways in urban settings still poses a challenge for vision-
impaired or mobility-impaired people. To tackle this problem,
PedPal, a mobile application, was developed to help those with
the app influence the traffic control systems to adjust the length
of time allotted for them to cross the walkway. Through the app,
the pedestrian may adjust the length of time allotted to them
to cross the intersection to fit to their speed. If the intersection
is not safe for the pedestrians to cross yet, the app will also
notify when it is safe to cross.

Using this app, the pedestrian may adjust the length of
time allotted to cross the intersection to fit their speed and
signal to them when it is safe to travel across. Because the
localization abilities of the iPhone are not accurate enough to
conform to the needs of PedPal, there are currently Bluetooth
beacons installed into each corner of the intersection to detect
which corner the pedestrian is at by having the pedestrian
manually interact with the beacon. But, this proves to be a
problem if the pedestrian’s hands are occupied. Furthermore,
the current Bluetooth beacons installed cannot accurately track
the pedestrian’s progress through the interaction and the exact
moment they arrive at the crosswalk. In this paper, we explore
different types of radio beacons and algorithms to achieve
the best localization accuracy of the pedestrian’s location with
respect to the corners of the intersection.

I. INTRODUCTION

Mundane methods of transportation, such as walking
across an intersection, are a seemingly easy task for most
people. However, pedestrians with visual or mobility disabil-
ities find this one of the most daunting tasks of their everyday
lives. A survey sent to 1,123 members of the AER Division
9 found that ninety-eight percent of respondents expressed
that they found knowing when to start crossing difficult.
Ninety-seven percent of their respondents stated that they
had difficulty keeping straight on a crosswalk. Furthermore,
sixty-six of their respondents said that they have trouble
figuring out where the destination corner was. [1]

In an urban setting with other pedestrians, more significant
levels of noise, and unpredictable factors, vision-impaired
pedestrians tend to spend more time at an intersection to
understand the patterns at that particular intersection. Using
cues around them such as the noise of an idling car to
understand the width, direction, and surroundings before
crossing, these pedestrians can spend up to multiple crossing
cycles before feeling safe enough to make the cross. Aside
from using vehicles around them as cues to help them map
out the crosswalk better, the pedestrian may look for the

1Rayna Hata is with the department of Computer Science, Colby College,
Waterviile, Maine rhata23@colby.edu

2Isaac Isukapati and Stephen Smith are with the Robotics
Institute, Carnegie Mellon University, Pittsburgh, PA, USA
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curb ramp to find the start of the crosswalk. However, the
pedestrians and orientation and mobility specialists find that
looking for the curb ramp can cause more harm than good
at times. While looking for the ramp, the pedestrian may
get misaligned with the intersection and thus veer off in a
different direction when crossing. [2]

PedPal is a guided navigation mobile application meant to
serve as an assistive technology for successfully navigating
crosswalks in an urban setting for blind or mobility disabled
pedestrians. PedPal currently utilizes two systems to help
accommodate each pedestrian with a more personalized
crossing time to ensure that they successfully cross the inter-
section. The first system is a real-time adaptive signal control
using the SURTRAC traffic signal system. SURTRAC, scal-
able urban traffic control, allows each intersection to decide
its green time independently of one another, relying on real-
time information of incoming vehicles using videos or radars.
A signal timing plan is created using the information and
communicated with the nearby intersection signals. This type
of traffic signalization allows for efficiency within an urban
environment leading to less lost time. [3]

The same idea of individualizing the length of the green
light can also be implemented for a pedestrian signal. In
order to do so, there must be some form of Pedestrian-to-
Infrastructure (P2I) communication. The current form of P2I
in the PedPal app comes from the user manually indicating
which intersection they intend to cross using either audio
or visual options. Upon selecting the intersection, the app
will report the state of the intersection to the pedestrian.
If the signal is on a green light, the app will read out a
countdown of the number of seconds left. Depending on the
type of disability that the pedestrian has, the app will request
additional time to be added to the length of the green signal
to allow the pedestrian to cross with ample time. [4]

Currently, PedPal uses Bluetooth beacons to assess if the
pedestrian is approaching the end corner of the intersection.
While this is a way to connect the signal and the mobile
device, Bluetooth’s localization ability to sense the distance
between the signal and pedestrian is not accurate enough
to fit the needs of PedPal. Without accurate pedestrian
localization, the app will not be able to guide the pedestrian
successfully across an intersection.

As an alternative to Bluetooth, we will incorporate Ultra-
Wideband (UWB) beacons to establish communication be-
tween the mobile device and the signal as a method for the
localization of pedestrians. By extending the new Nearby
Interaction (NI) framework provided by Apple and supple-
menting the distance measurements with additional data from
the Core Motion (CM) framework, the mobile device will
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determine the progress and the direction of the pedestrian
approaching the end of the intersection.

II. RELATED WORKS

A. Bluetooth for Pedestrian Assistance and Tracking

Blind pedestrian assistance technology is an emerging field
with different technological approaches. One method utilizes
Bluetooth beacons to communicate with the pedestrian to
convey the state of the intersection. Universal Real-Time
Navigational Assistance (URNA) connects the user’s phone
to the Bluetooth beacon placed on the pedestrian light signal
to relay the information displayed on the light to the phone
screen. The phone, using Text-to-Speech, is designed to read
out the state of the light and count down the number of
seconds remaining in that cycle. This method effectively
ensures that the pedestrian is aware of the state of the traffic
signal and the number of seconds left before the green light
state is over. [5] One of the difficulties that a vision-impaired
pedestrian faces using this interface is that the URNA does
not know the exact location of the pedestrian, and thus cannot
guide then across it. The system also does not implement a
method for collecting information on whether the pedestrian
has safely crossed the intersection.

Localization tracking of objects or people has become
popular to increase productivity, efficiency, or safety within
set environments. One method of a Bluetooth localization
system is in an indoor setting to track objects with mo-
bile devices. The mobile devices communicate with signals
emitting Bluetooth nodes as the individual moves around the
space. A study tested the accuracy of the Bluetooth indoor
localization gathered via the communication between the
Bluetooth nodes and the mobile device. The study had two
stationary time measurement systems with a receiver and a
moving transmitter to localize the Bluetooth device to run the
test. The final accuracy was found to be around ±1 meters.
[6] While ±1 meters in an indoor setting can be harmless,
this kind of distance on a crosswalk in an urban setting can
cause significant safety issues.

B. GPS Pedestrian Assistance

Another proposed method of pedestrian assistance tech-
nology for blind pedestrians is using a mobile phone’s GPS
to track if the pedestrian is near a crosswalk. Using the GPS
to assess the pedestrian’s coordinates, a satellite image of the
location is pulled into a crosswalk detection framework to
guide the user toward the intersection. While this method is
helpful for real-time positioning of the pedestrian’s location,
the paper mentions that due to factors such as image acqui-
sition problems or GPS accuracy, the localization accuracy
cannot be narrowed down to cm. [7] Furthermore, there is
no communication between the mobile device and the signal.
Therefore, while the satellite can guide the pedestrian to the
desired crosswalk, it cannot notify the pedestrian of the state
of the crosswalk, nor can it guide them during the crossing.

C. Use of UWB in localization

UWB localization can be used in various settings. For
example, UWB is used to track unmanned aerial vehicles
[8], objects in a factory environment to increase automation
and efficiency [9], or in indoor pedestrian tracking systems.
An indoor pedestrian localization system was created by
fusing UWB, pedestrian dead reckoning (PDR), and floor
map data. Using time-of-arrival (TOA) from the UWB, step
number, step length, direction from PDR, and a floor map,
they achieved a localization accuracy of 0.15m. While there
are many indoor pedestrian localization methods proposed,
there are much fewer outdoor pedestrian methods. The main
difference between an outdoor and an indoor setting is the
amount of noise change in an outdoor setting. In an indoor
setting, obstacles such as walls are stationary. However, in
an outdoor setting, there are constantly moving objects with
varying degrees of obstruction.

III. METHODOLOGY

There are many other methods of localization tracking
using different short-range wireless communication devices
(Bluetooth, GPS, WiFi). However, in this paper, we will be
discussing the use of UWB devices as a method of pedestrian
tracking. UWB beacons are known to have a high accuracy
of up to 20 cm in an indoor setting. Another advantage of
UWB devices over other short-range communication devices
is that the short-duration pulses allow for easier sorting of
correct signals vs. reflective signals. [10] Other advantages
of UWB over other devices include potentially lower cost
and more resistance to severe multi-path and jamming. [11]
In an urban setting, where there is potential for a significant
level of noise and obstacles, a device with more resistance
to signal interruption is needed in order to ensure the most
accurate calculation of distance between the anchor node and
the mobile node.

While indoor localization of human tracking is more
widely researched than outdoor tracking, the implementa-
tions are similar. Applications such as PedPal will utilize
implementations of UWB devices in urban outdoor settings
to assist blind pedestrians in crossing an intersection.

A. Nearby Interaction

Recently, Apple has incorporated UWB chips into their de-
vices as well. These UWB chips, named U1 chips, allow for
Apple devices to communicate with other devices that also
have U1 chips. Following the release of the U1 chips, Apple
has also released an object tracking device called Air-Tags.
These small tracking chips communicate with an iPhone and
lets the owner track objects attached to the Air-Tags with
high precision. This kind of tracking can be implemented into
pedestrian tracking as well. With the mobile node being the
pedestrian with the iPhone and the anchor being the corner
of the pedestrian’s intersection, Apple’s Air-Tag technology
could accurately track the progress. However, an Air-Tag can
only be registered to one iCloud account at a time. Therefore,
using the AirTag as an solution to the tracking device is not
a feasible option.
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A solution to this problem would be to implement Apple’s
Nearby Interaction (NI) feature with an Apple-approved
UWB device. Apple has released multiple third-party UWB
chip devices compatible with the U1 chips installed in mobile
phones. Using the NI framework, the UWB device will be
able to get the precise distance of the pedestrian and the
direction that the pedestrian is walking. This framework
allows for multiple phones to be connected to one device,
allowing for multiple pedestrians to cross the intersection
while using the UWB device to determine their distance.
[12]

B. Core Motion

While the Nearby Interaction framework allows the iPhone
to get the distance and the direction from the anchor node,
its optimal performance is when the iPhone is held vertically
straight and in front of the person holding the phone. Without
the proper position, there is a greater likelihood of the
distance and direction being incorrect. To combat that, we
plan to investigate if supplementing the Nearby Interaction
data with Inertial Measurement Unit (IMU) sensors will
decrease the potential errors created by the iPhone held
incorrectly. Apple’s iPhones have IMU sensors built into
them, which the Core Motion framework can access. The
Core Motion framework allows for apps to access motion-
related data generated via the phone’s hardware. The iPhone
currently has a gyroscope, pedometer, magnetometer, and
altimeter that can be utilized. [13]

C. Logging Distance Between an AirTag and iPhone

In order to test the accuracy and the reliability of the U1
chip, we first started with manually collecting the distance
measurements displayed on an iPhone when it is connected
to a single AirTag. With one person holding the AirTag and
another person walking along with a measured distance, we
collected distance measurements at different stop points. In
the first round, the measured starting distance between the
AirTag and the iPhone was 24 ft. While walking towards the
AirTag, we stopped every three feet to check for a difference
between the actual distance and the distance displayed on the
iPhone. To see if the phone’s orientation affects the distance
measurements, we tested three different ways a phone can
be held. (1)Phone held vertically straight, screen parallel to
user’s chest (2)Phone held horizontally, screen perpendicular
to chest (3) Phone held tilted down. These different positions
tested out how the distance measurements changed, and
direction was affected.

There are often many moving parts in an outdoor setting,
which can act as an obstacle between the anchor and the
iPhone. To see what obstacles may affect the line of sight
readings, we placed a human in between the AirTag and the
iPhone. Secondly, we placed a vehicle between the AirTag
and the iPhone.

The third experiment that we ran to test the accuracy of
the AirTag tested if the distance readings would fluctuate
if the pedestrian is stationary. A pedestrian often needs to
wait at the signal before crossing, and if the readings bounce

around during that time, then a better localization method is
needed. Going out to a set measured distance, the holder of
the iPhone stood in one spot to see how the readings would
differ over a period of time.

Finally, we tested the maximum distance that an iPhone
can detect an AirTag to see what the range was in order to
determine if this is a viable option for a large intersection.

IV. RESULTS

A. Testing the Accuracy of Measurement Readings

In this experiment, we found that the accuracy of the
AirTag matches the measured distance consistently no matter
what the phone’s orientation is. Furthermore, the measure-
ments show that the error resolution is closer to cm than ft.
The margin of error was found due to the fact that if the
phone is exactly 21 ft. from the AirTag, then the iPhone
would display the distance as 21 ft. As we moved forward
slightly, the distance displayed became 20 ft, rounding down.
As the AirTag and the iPhone became approximately half a
foot away from each other, the phone would display that we
have arrived at the location of the AirTag.

B. Testing with Obstacles

Testing for the accuracy and strength of the readings, we
found that placing a human between the AirTag and the
iPhone as an obstacle did not affect the accuracy of the mea-
surement. However, the strength was displayed as a weaker
signal. When a vehicle was placed between the AirTag and
the iPhone, the connection was lost, and measurements were
not displayed.

C. Testing the Stability of Readings

Checking for the stability of the distance measurements,
we found that the iPhone quickly converged to a single
distance after the holder stood still for a few seconds. While
standing at the same point, the displayed measurement did
not change and stayed accurate for an extended period.

D. Testing the Range

Walking away from the AirTag until the iPhone lost con-
nection, the furthest measured distance was approximately
90 feet. Different situations may affect the range, but, in this
instance, the range is large enough to be viable for PedPal.

V. CONCLUSION

Our initial tests indicate that using the Apple-approved
UWB device is a reliable form of tracking the pedestrian’s
distance from the corner of the intersection. The distance
measurements measured by the AirTag and the iPhone were
accurate and consistent with less than a foot error. This fits
the requirements that we have determined as a safe error in
order to avoid having the pedestrian miss the intersection.

One problem that would need to be addressed is a scenario
when there is an obstacle between the UWB device and the
pedestrian. It seems as though there is a problem with getting
non-line-of-sight data. While the LOS data is very accurate,
the chances of having a good LOS reading at all times like
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low as there are many moving parts in an urban setting. This
issue can be potentially fixed by fusing the measured distance
with the Core Motion data.

A. Current Work

Ongoing research includes progressing to storing a contin-
uous stream of distance measurements between two devices.
A continuous data collection allows us to see if there are
fluctuations in the data that the iPhone did not display.
Furthermore, while storing the distance measurements, we
are also storing the Core Motion measurements to find a
way to fuse the two data readings from the sensors. Using
the data from the Core Motion, we are looking to get better
directional measurements as the orientation of the iPhone
affects the directional readings to determine if the pedestrian
has veered off the intersection. Next, we plan to move to use
more than one UWB device at a time to form a method of
triangulation instead of relying on one device at all times.
Lastly, we plan to progress to our own UWB devices using
an Apple-approved third-party device. These devices allow
for multiple connection sessions at a time, addressing the
problem of more than one person using the UWB device.
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GPU Enhanced Front-end for Visual-inertial Odometry

Yao He1, Huai Yu2 and Sebastian Scherer2

Abstract— A robust and versatile visual-inertial odometry
(VIO) serves as a fundamental tool for state estimation in
a wide range of applications, such as robotic navigation,
autonomous driving, and virtual reality. Despite the urgent
demands in these applications, the high cost on CPU resource
and computation latency limits VIO’s possibility in integration
with other applications. Recently, many existing computer
vision works have utilized the powerful embedded graphics
processing units (GPUs) to improve the information processing
capability and reduce the latency. Inspired by these works, we
incorporate the GPU-improved algorithms in the field of VIO
and thus propose a new front-end for VINS-mono. Typically,
we uitilize the feature detection and tracking algorithms in
the Vision Programming Interface (VPI) provided by NVIDIA.
We also test the VIO modules provided in the CUDA Visual
Library (VILIB), and implement our own random-sample-
consensus (RANSAC) algorithm on GPU. This work shows that
without losing the high accuracy of state estimation, the CPU
resource occupation rate and computational latency are recused
by 40.4% and 50.6%, respectively.

Index Terms— Monocular visual-inertial systems (VINSs),
Visual-Inertial SLAM, state estimation.

I. INTRODUCTION

State estimation is the most fundamental module for a
wide range of applications, such as robotic navigation, au-
tonomous driving, and augmented reality (AR) [1]. The state-
of-the-art approaches are visual-inertial odometry (VIO) al-
gorithms, which combines inertial measurement units (IMUs)
and the cameras to solve the odometry problems accurately.
Numerous work has been proposed for this combination,
for example, VINS-Mono [1], ROVIO [2], and ORB-SLAM
[3] for mono-VIO, ORB-SLAM2 stereo [4] for stereo-VIO.
Generally, a VIO algorithm composes of a front-end that
processes image data, and a back-end that carries out the
optimization of poses. Since the data size processed by the
front-end is remarkably large, the cost on CPU usage and
computation latency is high. Jeon [5] tests the CPU usage
of different VIO algorithms on various NVIDIA hardware
(Jetson TX2, Xavier NX, and AGX Xavier boards). His work
shows that most of the VIO algorithms have extensive CPU
usages on different NVIDIA hardware. The computation
latency is also a significant problem for real-time visual
processing. It might result in an accumulating delay when
the VIO operates for a long time. Approaches are applied
to reduce the cost on CPU and computation latency. For
example, VINS-mono limits the number of tracked features
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to a certain amount. These approaches work to some extend,
but they reduce the accuracy of the estimation since they limit
the performance of the front-end. In our work, we would like
to build a new front-end for VIO. This front-end reduces
the cost on CPU usage and computation latency, while the
estimation accuracy maintains or even gets improved at the
same time.

We mainly focus on incorporating the graphics processing
units (GPUs) enhanced modules into the VIO algorithms.
Recently, the powerful embedded GPUs have been utilized
to improved the information processing capability and reduce
the latency in the field of VIO. Noticeable approaches are
Vision Programming Interface (VPI) proposed by NVIDIA
[6], and CUDA Visual Library (VILIB) proposed by Nagy,
et al. [7]. In our work, we incorporating them into the front-
end of VIO and test the performance. We also proposed our
own GPU enhanced random-sample-consensus (RANSAC)
algorithm [8]. With the help of GPUs, we expect that the
CPU usage and computation latency could be reduced, while
the estimation accuracy and robustness maintain.

We perform an extensive evaluation on public datasets
to compared the accuracy of different versions of GPU
enhanced VIOs. The computational latency of the front-
end is also measured. In addition, we use our own VIO
setup to collect data in large environment, and evaluate the
performance of VIO on Xavier AGX.

The rest of this paper is organized as following. Section
II provides the relevant literature. Section III describes the
GPU algorithms we use and the implementation of RANSAC
algorithm on GPU. Section IV provides the testing results
with different GPU enhanced algorithms. Finally, this paper
is concluded with the discussion and possible future research
directions.

II. RELATED WORK
A. VIO Algorithms

Numerous VIO algorithms have been proposed in recent
years. Qin [1] et al. proposed VINS-mono. It starts with
a robust procedure for estimator initialization. By fusing
preintegrated IMU measurements and feature observations,
a tightly coupled, nonlinear optimization-based method is
performed to obtain accurate state estimation. Combined
with the tightly coupled formulation, a loop detection module
enables relocalization with minimum computation. Addition-
ally, it performs 4-DOF pose graph optimization to enforce
the global consistency. Furthermore, VINS-mono reuses a
map by saving and loading it in an efficient way. The current
and previous maps are merged together by the global pose
graph optimization. In Jeon’s work [5], the CPU usage of
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VINS-mono on Xavier is on TX2, Xavier NX, and Xavier
AGX are around 150-180%, 230-250%, and 150-170%, re-
spectively. Here the values are above 100% because of multi-
core processing. The front-end feature detector consumes
15ms, and KLT tracker consumes 5ms [1].

Bloesch et al. proposed ROVIO [2]. It combines an iterated
extended Kalman filter (EKF), a fully robocentric formu-
lation of visual-inertial odometry, and a photometric error
model.The landmark tracking by iterated extended Kalman
filter allows per-landmark iterative updates and thus provides
simultaneous landmark tracking and full state refinement.
Bloesch et al. claims that ROVIO can run in real time on
computationally constrained platforms. In Jeon’s work [5],
ROVIO has the least CPU usages (around 60%) among all
the tested VIOs. However, EKF is less efficient compared to
the bundle adjustment method adopted in other VIOs [9], the
computational latency on back-end will be larger in ROVIO.

R. Mar-Artal et al. [3] proposed ORB-SLAM. The ORB-
SLAM performs an automatic and robust initialization pro-
cedure based on model selection. It utilizes the ORB features
which provides good invariance to changes in viewpoint
and illumination. The tracking and mapping is focused in
a local cosivible area, it achieves real time operation in
large environments. A survival of the fittest approach to map
point and keyframe selection provides robust tracking and
enhanced lifelong operation. Built from a spanning tree, the
loop closure links strong edges from the covisibility graph to
achieve real time optimization. The camera relocalization is
also invariant to viewpoint and illumination, which allows re-
covery from tracking failure and enhances map reuse. Based
ORB-SLAM, R. Mar-Artal et al. proposed ORB-SLAM2 [4],
the first open-source1 SLAM system for monocular, stereo,
and RGB-D cameras, including loop closing, relocalization,
and map reuse. In Jeon’s work [5], the CPU usage of ORB-
SLAM2 on TX2, Xavier NX, and Xavier AGX are around
150-250%, 200-260%, and 150-240%, respectively.

B. GPU Enhanced VIO Algorithms Libraries

After the proposition of CUDA [10], a parallel computing
platform and programming model that leverages the paral-
lel compute engine in NVIDIA GPUs, programmmers can
solve complex computational problems in a parallel ways.
Recently, several works have utilized GPUs to improve the
information processing capability and reduce the latency.

NVIDIA proposed the Vision Programming Interface
(VPI) [6]. VPI is a software library that implements com-
puter vision and image processing algorithms on several
computing hardware platforms, such as CUDA, available
in NVIDIA embedded and discrete devices. It supports
easy inter-operation with existing projects that make use of
OpenCV and NVIDIA® CUDA® SDK libraries. This allows
for gradual replacement of existing computing tasks with
faster VPI equivalents.

Nagy, et al. [7] proposed the CUDA Visual Library
(VILIB). VILIB applies efficient low-level, GPU hardware-
specific instructions to improve on existing computer vision
algorithms in the filed of VIO. It proposes a solution to

non-maxima suppression for feature detection on GPUs,
and provides both Harris feature and fast feature detection
algorithms. In terms of feature tracking, VILIB provides LK
feature trackers. The VILIB feature detectors and trackers
are tested using EuRoC datasets [11] and compared the
execution time with other public feature detectors. The
results indicate that the VILIB feature detectors and trackers
achieve superior execution times compared to other CPU
versioned equivalents. The front-end built with VILIB is
integrated with existing VIO algorithms. The results show
that VILIB accelerates the execution time. However, the
accuracy is reduced, especially when fast camera motion and
dark scenes occur.

C. Benchmark Comparison of VIO

Numerous studies have been conducted on the benchmark-
ing of VO or VIO methods. The EuRoC datasets [11] are
commonly used in different VIO works, such as [1], [5], and
[7]. These datasets contain stereo images, synchronized IMU
measurements, and accurate motion and structure ground-
truth. They can be used to test both mono and stereo VIOs.
EuRoC datasets provides three difficulty levels and three
different scenes. Such diversity allows researchers to test
VIO algorithms in different environments and motions. The
rpg trajectory evaluation repository [12] implements com-
mon used trajectory evaluation methods for VO/VIOs. This
repository supports both single and multiple trajectory esti-
mation, as well as comparison between different algorithms
on many datasets, including EuRoC MAV Datasets.

III. METHODOLOGY

The fundamental approach is to substitute the modules
that consumes essential amount of CPU and computational
time with corresponding modules enhanced by GPUs. These
modules should capture the property that a huge amount of
computation can be carried out separately, so that they can
benefit from the parallel computing provided by GPUs.

We select VINS-mono as our baseline to build the new
front-end. The front-end has large data volume to process,
which contributes to high latency and CPU usage. We would
like to balance the feature matching performance and speed.
In addition, we are seeking for opportunities to extend the
single camera system to multi-camera system. In multi-
camera system, the CPU usage and latency will accumulate
proportion to the number of cameras, making the VIO cannot
achieve real-time processing. Among the front-end, the two
key modules-feature detectors and feature trackers-are the
most vital and time-consuming. However, if they can be
solved in a parallel way, the cost will reduced significantly. In
VINS-mono, these two modules are achieved directly using
functions provided in OpenCV [13]. In the OpenCV fashion,
feature detection and tracking are implemented on CPU.
Therefore, they are substituted with the corresponding GPUs
implemented algorithms in our work.

In addition, we also try to implement the RANSAC
algorithm on GPU and incorporate it into the VIO, since
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the work of finding fundamental matrix and evaluating the
estimated models can be done in a parallel way.

A. Incorporating VPI into the VIO

One major property of VPI is to support easy interop-
eration with existing projects that make use of OpenCV li-
braries. Therefore, the feature detection and tracking modules
are directly substituted with corresponding VPI equivalents
(Harris Corner Detector and Pyramidal LK Optical Flow).

We modify the underlying data structure in VINS-mono
front-end to reduce the cost on data transportation between
CPU and GPU. However, if the Harris features are picked
according to their scores, their distribution is not uniform on
the image. This might reduce the robustness in intializating
the VIO. Inspired by ORB-SLAM [3], we implemented
the quad-tree algorithm to make the selected feature points
distribute more evenly inside the fisheye mask. The overall
architecture of the front-end is shown in Fig. 1. The Design
of quad-tree algorithm and result are shown in Algorithm 1
and Fig. 2, respectively.

Camera Images

Feature points in 
the last image

VPI Pyramidal LK 

Optical Flow

VPI Harris Corner 

detector

Tracked points

Feature points 

selection by quad-

tree algorithm

Feature points in 
the current image

Detected 

points

Back-end Optimization

Front-end image processing

Fig. 1. The overall front-end architecture of VINS-mono with VPI.

Fig. 2. Distribution of detected feature points. Here we use the same scene
in MH 03 Medium of EuRoC datasets. In the picture, the red points are
detected and tracked points and the blue points are newly detected points.
The first picture shows the distribution of feature points detected by VPI
without quad-tree algorithm. The feature points are simple selected by their
scores. The second picture shows the detection results of VPI improved by
quad-tree algorithm. It has more uniform distribution compared to the first
picture.

B. Incorporating VILIB into the VIO

Similar to VPI, we replace the corresponding modules for
feature detection and tracking with the modules in VILIB.
However, the design of VILIB is not compatible with VINS-
mono. We modify VILIB’s structure, and encapsulate the
algorithms for feature detection and tracking into functions
having similar input and output format as that in OpenCV.

Algorithm 1 Selecting Feature points by Quad-tree.
Input: Pin: the set of detected feature points; S: the set of

scores corresponding to detected feature points; k: the
number of needed feature points; M : mask of fisheye.

Output: Pout: the set of selected feature points;
1: Select the feature points inside M into set P ′

in;
2: if |P ′

in| < n then
3: return P ′

in;
4: end if
5: Initialize image node set N , first image node n1;
6: Store all feature points in P ′

in into n1;
7: Add n1 into N ;
8: while |N | < k do
9: for ni ∈ N do

10: if ni has no feature point then
11: Remove ni from N
12: end if
13: if ni has at least 2 feature point then
14: Split ni to four sub-nodes with the same

image size;
15: end if
16: end for
17: end while
18: for ni in N do
19: Select the feature point pi having the highest score;
20: Add pi to Pout;
21: end for
22: return Pout;

Among the feature detection algorithms provided by VILIB,
we test the Harris corner detector and Fast feature detector.

During the testing, we found that the feature points tracked
by VILIB LK tracker have serious drifting, making it impos-
sible for VINS-Mono to do state estimation. Therefore, we
only include the feature detectors of VILIB, while keep the
CPU version of feature tracker.

C. RANSAC on GPU

The RANSAC algorithm is applied in the front-end to
filter out mis-matched feature points. The basic procedure
of RANSAC in VIO have three steps:

1) Randomly select eight pairs of points to compute
fundamental matrices using the eight-point-algorithm
[14,15];

2) Evaluate the matrices on all point pairs;
3) Pick the fundamental matrix which reports the most

number of matched point pairs when termination re-
quirement is satisfied.

The first two steps can be evaluated in a parallel way.
Therefore, we define two kernels on CUDA to perform the
first two steps, as shown in Fig. 3.

1) Computing fundamental matrix: Each GPU thread will
compute one fundamental matrix. There are in total N
threads, where N is the number of fundamental matrices
we want to compute in each iteration. In our algorithm, N
is set to 1024, since it is enough to finish RANSAC in one
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iteration. Each GPU block contains p threads, where p is
the number of tracked point pairs. In this way, the shared
memory of GPU can be utilized to accelerate speed when
fetching points data. Inside each kernel, it will randomly
select eight pairs of points. Use the selected pairs, the eight-
point-algorithm is performed to compute the fundamental
matrix. Finally, the result is uploaded to a global array for
later use.

2) Evaluating models: Each block will evaluate one
model obtained in the previous step, and each thread inside
the block will compute the score of one pair of point.
Therefore, the number of blocks and threads are N and Np,
respectively. Similarly, the shared memory is used in each
block to accelerate data transfer speed. If the score is lower
than a certain threshold, then the point pair specified by the
thread is considered as an inlier, and the thread uses the
atomicAdd function to increase the score of the model by 1.

Find fundamental matrices

Each thread finds one matrix

Blocks-1 Blocks

Block1 Block2

Block3 Block4

Threadp-1 Threadp

Thread1 Thread2

Thread3 Thread4

s blocks: 

s = ⌈N/p⌉, N is the 

number of candidate 

fundamental matrices.

p is the number of 

tracked points. 

p threads: 

Shared memory is used.

BlockN-1 BlockN

Block1 Block2

Block3 Block4

Threadp-1 Threadp

Thread1 Thread2

Thread3 Thread4

Evaluate fundamental matrices

Each block evaluates one matrix

N blocks: 

each block evaluate 

one matrix 

p threads:

Each thread 

computes the score 

of one point pair. 

Shared memory is 

used.

Fig. 3. The implementation of kernels of finding fundamental matrices
and evaluating the matrices.

IV. RESULTS

We test VINS-mono with GPU enhanced algorithm on
EuRoC datasets [11]. The CPU for testing is AMD Ryzen
5800H with Radeon Graphics 3.20GHz. For each dataset,
we conduct five trials for both VINS-Mono and VINS-Mono
with GPU enhanced algorithms. Then we use the modules
provided in rpg trajectory repository [12] to evaluate and
compare the results. In this section, the CPU usage and
computation latency of different VIO front-ends are also
compared. We also collect our own data use our own VIO
setup with fisheye cameras and evaluate the performance.
The setup is shown in Fig. 4.

A. Performance of RANSAC on GPU

We compare our RANSAC on GPU with the RANSAC
algorithm provided by OpenCV. The feature points are data
collected from VINS-mono. The result is shown in the table
I and II.

Table I shows that RANSAC on GPU is slower than
RANSAC on CPU, indicating that the GPU version of
RANSAC cannot accelerate the processing rate. According
to Table II, it is noticed that copying data from CPU to GPU
and releasing memory on GPU and CPU consumes 65% of

Fig. 4. Our own VIO setup. From left to right, the devices are: battery,
helmet with fisheye cameras and IMU, Xavier.

time. Since the size of feature points collected in VINS-mono
is limited to a relatively small amount, copying data between
CPU and GPU becomes significant in the entire RANSAC
process. With small size of feature points, CPU versioned
RANSAC algorithm can operate in a fast speed. Therefore,
the total speed of RANSAC on GPU is slower than that
on CPU, even though finding and evaluating fundamental
matrices, which is the major body of RANSAC algorithm,
saves half of time for RANSAC on GPU. On the other hand,
compared to the feature detection and tracing, the scale of
time for RANSAC is relatively small. Improving it has few
effect on the performance of the VIO. Considering these
two reasons, we do not include RANSAC on GPU in the
following testing.

TABLE I
COMPARISON OF RANSAC ON GPU AND CPU

RANSAC on CPU RANSAC on GPU
0.169ms 0.352ms

TABLE II
DETAILED TIME CONSUMPTION OF RANSAC ON GPU

Copying data from CPU to GPU 0.159ms
Finding and evaluating fundamental matrices 0.085ms

Releasing memory on GPU and CPU 0.071ms

B. Comparison of Different versions of VINS-mono

Table III and IV shows the CPU usage and computational
latency of different versions of VINS-mono. We also test
VINS-mono with VPI on NVIDIA Xavier AGX. In the
experiments, the VIO setup starts from the same position,
travels through the same trajectory and finally comes back
to the starting position. The testing result is shown in Fig.
5.

Table III shows VINS-mono-VPI has the most significant
reduce on CPU usage and computational latency, achieving
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TABLE III
CPU USAGE (FEATURE DETECTION + TRACKING) AND COMPUTATIONAL

LATENCY FOR DIFFERENT VERSION OF VINS-MONO

Version CPU usage
(single core)

Computational latency
(feature detection + tracking)

VINS-mono 52% 15.4ms
VINS-mono-VPI 31% 7.8 ms

VINS-mono-VILIB
fast feature 49% 8.5ms

VINS-mono-VILIB
Harris feature 51% 8.7ms

TABLE IV
CPU USAGE (FEATURE DETECTION + TRACKING) AND COMPUTATIONAL

LATENCY FOR DIFFERENT VERSION OF VINS-MONO WITH FISHEYE

CAMERA

Version CPU usage
(single core)

Computational latency
(feature detection + tracking)

VINS-mono 85% 20.6ms
VINS-mono-VPI 53% 11.7ms

VINS-mono-VILIB
fast feature 82% 28.7ms

VINS-mono-VILIB
Harris feature 91% 16.2ms

a reduction of 40.4% and 50.6%, respectively. Modules from
VILIB do reduce the computation latency, but they do not re-
duce the CPU usage too much. According to Table IV, when
fish eye is used, all the CPU usage and computation latency
increase. This results from additional work on undistorting
feature points. It is noticed that excepted VINS-mono with
VPI, all the other three versions have single core CPU usages
close to 100%. For VINS-mono with faster feature detector
of VILIB, the computational latency is even greater than that
of VINS-mono.

According to the results on Xavier, the CPU usage on both
front-end and back-end is reduced for VINS-mono with VPI.
The reason that the CPU usage on back-end is reduced is
because the number of tracked feature points in consecutive
frames is lower. Therefore, points used in optimization is
smaller. The accuracy is maintained according to the esti-
mated trajectories.

Fig. 6 and Fig. 7 shows the trajectory evaluation results.
They present the translation RMSE and rotational RMSE
on different versions of VINS-mono. VINS-mono with VPI
has similar accuracy as that of VINS-mono. Sometimes it
is better than VINS-mono. On the other hand, VINS-mono
with VILIB lose accuracy to some extend, especially for
fast feature detectors when testing datasets V1 02 medium,
and V2 02 medium. Fig. 8 privides an example evalua-
tion from V1 02 medium. VINS-mono, VINS-mono-VPI,
and VINS-VILIB-harris have relatively small drift from the
ground. VINS-VILIB-fast has a conspicuous drift from the
groudtruth.

C. Discussion

VPI enhanced VINS-mono both maintains the accuracy of
VIO, and reduces the CPU usage and computational latency

Thread CPU usage

Feature tracking 70% 1 core

Optimization 60% 1 core

VINS-mono without VPI, Shi-Tomasi Feature

VINS-mono with VPI, Harris Feature

Thread CPU usage

Feature tracking 37% 1 core

Optimization 36% 1 core

Fig. 5. Comparison of CPU usage (single core) of different versions of
VINS-mono on Xavier. The first group is the result obtained from original
VINS-mono. The feature type is Shi-tomasi feature in the original VINS-
mono. The second group is the result obtained from VINS-mono with VPI.
The table below each picture shows the CPU usage on the front-end (feature
tracking) and back-end (optimization). The green lines in the pictures are
the estimated trajectories. The white dots around them are tracked feature
points cloud. The red dot indicate the start position of the estimation.
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significantly. It reduces the CPU usage and computation
latency by 40.4% and 50.6%, respectively. VILIB reduces the
computation latency to some extend, but it does not reduce
the CPU usage. It also has larger estimation errors compared
to VINS-mono and VINS-mono with VPI. Therefore, we
choose VPI to enhance the performance of the VIO, and use
it to build the new front-end.

V. CONCLUSIONS

In this paper, we present the GPU-enhanced front-end for
VINS-mono. The results show VINS-mono with VPI reduces
CPU usage and computation latency significantly, while the
state estimation accuracy maintains. The results also indicate
that the modules provided by VILIB and RANSAC on GPU
cannot reduce CPU usage and computation latency in VINS-
mono.

In the future, we would like to extend the mono-VIO
to multi-camera VIO, where each camera has little FoV
overlap. Comparing to single camera VIOs, such multi-
camera VIO will fully utilize the advantages brought by

VPI, achieving a real-time and low-cost state estimation.
In addition, we would like to incorporate the gstreamer
pipeline into VINS-mono with VPI. There are several reasons
for using it. First, VPI functions as a plugin in gstreamer.
Second, gstreamer allows to transfer multiple image streams
simultaneously without causing extra cost on CPU. With
gstreamer, we would like to further reduce the cost on CPU
and computation latency, especially for multi-camera VIOs.
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AlgeGloves: An Interactive Algebra Interface That Allows Students to
Mold Algebraic Functions

Iqui Balam Heredia Marin1 and Melisa Orta Martinez2

Abstract— Math is often presented as an abstract, procedural
discipline in which both teacher and student have a firm
belief that proficiency is due to fixed innate ability. English
learners and minority students are especially vulnerable to these
misconceptions as they often face further discrimination and
fewer resources and support. However, evidence has shown that
most students are capable of excelling in and enjoying math, but
not enough interactive tools are provided for them. In this paper
we present AlgeGloves, an interactive software interface that
elevates the understanding of mathematics language by provid-
ing embodied non-verbal representations of math concepts. We
have developed a software interface which allows students to
center mathematics around exploration. Using a color detection
algorithm coupled with the user wearing colored gloves, we
can detect users’ movements and allow them to manipulate
mathematical functions as if they were manipulating clay.
Results show an intuitive interface, that can be controlled to
solve proposed exercises, experimenting with algebra trough
hand movement.

Index Terms— Computer Vision, Algebra, Interface, Interac-
tive, Education

I. INTRODUCTION

A. Motivation

Even though mathematics is considered an abstract sub-
ject, research has shown that abstract mathematics concepts
can be connected and grounded through bodily interac-
tions [1] which has sparked the development of a wide
range of dynamic and interactive environments to teach
mathematics [2]. Research has also shown that a lack of
interactive experiences with mathematics concepts could lead
to a gap in experimentation for students. These studies have
suggested that kinesthetic lessons, incorporating movement
in the process of learning instead of just listening and
visualization, have been associated with better student out-
comes [3]. Algebra, in particular, is considered the gateway
to abstract thought [4]. In this work we present AlgeGloves,
an interactive software algebra interface that allows students
to experiment and interact with algebraic functions through
movement. We propose that the enhanced interactivity of
the learning interface will have positive effects in learning
outcomes as students will be able to ground abstract mathe-
matics concepts in bodily movement.

B. Prior Work

Prior research has shown the potential of learning through
gestures and actions. In [5] for example, researchers showed

1Iqui Balam Heredia Marin is with the Instituto Tecnológico y de
Estudios Superiores de Monterrey, iquibalamhm@gmail.com

2Melisa Orta Martinez is with Carnegie Mellon University,
mortamar@andrew.cmu.edu

that both physical actions with objects as well as gestures
helped students solve problems in which they were trained.
They also observed that gestures led to improved student
outcomes in solving problems which required knowledge
transfer.

Researchers have also explored the potential of games
which focus on teaching students mathematical skills through
different interactions with a virtual environment. Some of
these games aim to teach mathematics by immersing students
in real-world familiar environments situations [6]. The work
by Castellar et al. [7] showed that in game- and interactive-
based learning students have more positive affective re-
sponses than when they are learning through traditional paper
methods. Other games use Virtual Reality (VR) in order to
immerse the learner in a world where they can manipulate
objects and explore the simulated world as they are learning
mathematical concepts [8]–[10].

A recent study reported benefits in adding kinesthetic
interactions to learning environments [11]. In this work,
researchers developed a kinesthetic interface to teach physics
concepts such as Position, Velocity, and Acceleration by hav-
ing students draw the graph using their hands movement, a
Kinect which could detect these movements, and a computer
which would draw on the screen the graphs that were created
by the student’s hand movements.

II. ALGEGLOVES: AN INTERACTIVE ALGEBRA
INTERFACE

One of the most important goals when developing Alge-
Gloves, was to create an interactive interface that could be
used by teachers and students in K-12 classrooms. Thus,
we opted for creating an interactive interface that could run
on a laptop using the laptop camera. We focused our work
on Algebra and Algebraic functions since these topics are
considered gateways to abstract thought [4] and there are
already several computer interfaces that could potentially
incorporate this technology [2].

In order to use AlgeGloves, the students wear a pair of
gloves (shown in Fig. 2). These have three small colored
circles each in one finger: thumb, index and middle finger.
These fingers were selected since they are the most used
when manipulating and pinching objects. Using these gloves
students can then manipulate a clay-like material shown on
the computer screen in order to create various mathematical
functions.

The workflow of the AlgeGloves computer interface is
described in Fig. 1 and is divided into two components: The
first is in charge of processing the incoming image from
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Fig. 1. Workflow of operation for the interface

Fig. 2. Gloves used for interaction with AlgeGloves. Students wear a pair
of gloves which have three colored circles each one in one finger: thumb,
index and middle finger.

the computer camera and extracting the user’s motion from
it. The second is in charge of rendering the clay which is
composed of a cluster of connected particles. In order to
render the clay-like behavior of the particles in a realistic
way, a physics engine updates their position based on the
user’s interactions with the clay.

When a user first launches AlgeGloves, it initializes the
particle start positions. These can be set by an instructor
depending on the function that they would like students to
mold. During this initialization step, the computer camera
will also capture a frame and perform several filtering layers
(described below) in order to extract the three colored dots
that are placed on the gloves that the user wears on each
hand.

After extracting the three dots which represent the user’s
hand position, AlgeGloves then uses the center point of those
dots to decide if any of the hands are performing a ”pinching”

motion or not. If the hands are not closing, or closed, no
pinching motion is detected and the program proceeds to
capture more frames. If the hands are pinching the clay, the
program then applies an impulse force to the particles that
the user is interacting with and updates the position of all
the connected particles using the Verlet Integration method
described in Section III.

When a user stops interacting with the particles, they
will hold the position that the user moved them to and the
program will go back to capturing frames until the user
”pinches” the clay again or exits the interface.

AlgeGloves allows the user to reset the particle positions
to their initial state, so that all the modifications done to that
point are removed and they may be able to start their current
exercises. In order to do so, we implemented a closing
gesture in which users cross their hands and then close them
(Fig 3).

To close AlgeGloves interface the user may press the Esc
key or just close the window with the common cross at the
right upper corner.

Fig. 3. Reset Gesture: Both hands have to be closed but in their opposite
side

The aim of AlgeGloves is to create an affordable interface
which allows students to explore math by simply putting
on a pair of gloves. Thanks to the calibration algorithms
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(explained in Section III), the AlgeGloves interface does not
have to be deployed on a specific device. This way learning
can happen through manipulation and motion instead of on
paper. Our goal is to have students map math concepts
to bodily movements and to incite a deeper interest in
mathematics, and better learning outcomes.

III. METHODOLOGY

In this section, the different parts of the simulation are
explained. The physics simulation that governs the particles
movement, and the computer vision algorithm that processes
the input frames and decides what to do with the given
information.

A. Physics Simulation

The purpose of the physics simulation is to render the clay
that the students will manipulate. This is done by rendering
hundreds of individual particles which are connected to each
other through a spring-damper system. At each time step,
the particles position is updated based on their previous
dynamics and new forces being applied to them. In order
to render this behavior in a way that mimics a soft body
such as clay, we use the Verlet Integration Method.

Rigid body physics is well understood, but rendering soft
body physics is not completely covered in literature. One
approach to rendering soft bodies is through the Verlet
Integration Method, developed by Loup Verlet to solve
Newton’s equations of motion. This method is often used
when a modeling the physics of deformable bodies. The
Verlet Integration Method can be implemented along with a
visualizer as in [12] and its integration solution for position
is shown in Equation 1:

x(n + 1) = 2x(n) − x(n− 1) + a(n) ∗ (∆t) (1)

where:

• a is the acceleration of the system.
• x is the position of the particles.
• ∆t is the timestep for the simulation.

The Verlet integration method is stable and it can be
implemented using classes and objects in any object oriented
programming language. Using this method we can update
the particles’ position through impulses resulting from forces
applied by the user.

B. Computer Vision Algorithm

The computer Vision algorithm’s main goal is to detect
and track the user’s hands motions as they are interacting
with AlgeGloves. It is based on three main steps: first we
calibrate the color boundaries, then we filter based on those
boundaries, and finally we decide what to do with the final
mask. In this section we describe those steps. The full
algorithm was coded in Python 3.8 and uses OpenCV version
4.5.1.

1) Calibration: A simple script allows the user to identify
the colors to single out by setting the Hue, Saturation, and
Value (HSV) parameters using slider bars. The algorithm
then filters the background of the video image out using a
pass-through filter. Fig. 4 shows an example of this process
being carried out: A green piece of paper in the image is
singled out (Fig. 4A), and converted into a clean binary mask
(Fig. 4B).

Fig. 4. Calibration Stage. A) Input image without any filtering, B) Image
after a simple HSV filter for calibration has been applied

2) Filtering: In most cases, a single pass-trough filter is
not enough to obtain a clean mask. Fig. 5A shows the mask
output when a single pass trough filter is applied in non-
favorable conditions. Fig. 5B shows the output when a more
elaborated processing stage is used.

Fig. 5. Filter stage. A) HSV filtered image in non-favourable conditions,
B) Mask image after applying an elaborated filtering stage

This filtering stage is executed as follows.
1) A pass-trough filter using the calibrated lower and

higher HSV boundaries.
2) Morphological open operation, to close tiny holes that

may exist, using an elliptic structuring element with a
dimension of (3,3) and 3 iterations.

3) Get contours and areas of current blobs, the areas with
an area of less than 70 pixels are discarded.

4) At this point, the image is not binary so, a threshold
operation is used to either write pixel color as 0 or
255.

This filter not only removes small white dots but makes sure
that the fingers are correctly spaced and not combined.

3) Decision Maker: The mask obtained after the filtering
stage consists of three contours. Using these contours we
calculate the center position of the hand. The algorithm is as
follows:
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1) Obtain the center of each of the three areas.
2) Compute the area of the triangle with vertexes in this

three centers.
3) If the area is less than a threshold of 1200 pixels, we

state that the hand is Closed, otherwise it is Open.

To find the point of interest in the hand we define the
barycenter, or centroid, of the hand triangle, as follows:

Centroid(
x1 + x2 + x3

3
,
y1 + y2 + y3

3
) (2)

The centroid of the hand, is the point that AlgeGloves uses
as a user’s cursor. Using this cursor, the user can manipulate
mathematical functions, but only when the hand is closed.

IV. RESULTS

Once the image processing and the physics were designed,
the visualization and interaction environment was built using
pygame (version 2.0.1), a tool for creating videogames with
Python. To test the correctness of the physics model and
the interaction with the gloves, two different exercises were
created. In these activities, the goal for the student is to
match a given equation with the actual equation of the
manipulated clay. Once we have an error of 5% the task
is complete and the interface will show a different Target
equation pre-selected by a instructor / professor. Figures 6
and 7 show these two activities. During the activities, the
user manipulates the white line which behaves like a clay
while the red line shows the fitted mathematical function to
that clay.

For the manipulation, both gloves can be used alternately,
and the colors of the gloves can also be different to the
presented in Fig. 2. In order to use other colored gloves,
the user needs to calibrate those colors using the process
described in the Calibration Stage (Fig. 4).

In the following subsections we describe the two activities
developed.

A. Straight Line

The purpose of this activity is to have users develop an
understanding of the linear equation and the meaning of the
slope of an equation. In order to do this, users are tasked
with matching a linear equation which appears on the left
upper corner (the Target equation) by manipulating the white
particles on the screen. Users can observe on the right top
corner of the screen a fitted equation to the clay they are
manipulating as well as a red line which is super-imposed
on the clay. This equation is fitted using a scipy optimizer,
a Python library focused on machine learning techniques.
In order for the particles to be constrained to linear-like
functions, Fig. 6, the clay is constrained at the center particle.
The user can then manipulate the function using the left and
right-side particles as they pinch or close their hands and
rotate this line function. The concept of slope then becomes
a rotating gesture which users perform as they are moving a
linear function to match the target function.

Fig. 6. Interactive screen for Straight Line interaction

B. Parabola

As shown in Fig. 7, the parabola is constrained at the
left and right ends, and users are free to manipulate all the
inner particles. Similar to the Straight Line, there is a Target
equation and the user’s fitted equation equation, but now
approximated using a second grade polynomial optimizer of
scipy. The approximated equation is again displayed in red.
The purpose of this simulation is for users to develop an
understanding of a squared term and rate of growth in an
equation through angled hand movement.

Fig. 7. Interactive screen for Parabola interaction

V. CONCLUSIONS

Current work establishes the foundation of a working
algebra interface where students can interact with mathe-
matical functions. Future efforts will consider the relevance
and differentiation between this kinesthetic way of learning
against the usual and abstract teaching. In future work we
will also enhance the interface by adding haptic feedback to
the gloves. This will allow the users to feel the functions
as they are manipulating them and encourage movement.
Another important future goal is to further develop this
interface as well as the haptic feedback in partnership with
teachers learning scientists.
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Delay-aware Control for Safe Autonomous Driving
Dvij Kalaria1, Qin Lin2, and John M. Dolan2

Abstract—With the advancement of affordable self-driving
vehicles with limited computation resources and complicated
nonlinear optimization, computation time becomes a matter of
concern. Other factors such as actuator dynamics and actuator
command processing delay also unavoidably cause delays before
the planned command influences the vehicle dynamics. In high-
speed scenarios, these delays are critical to the safety of a
vehicle. Recent works consider each of these delays individually,
but none of them considers all of them under one approach
in the context of autonomous driving. Moreover, recent works
inappropriately consider computation time to be a constant
or as an upper bound, which makes the control either less
responsive or over-conservative. This paper, however, presents
a unified framework by modelling actuation dynamics, using
robust tube model predictive control and a Kalman filter to
deal with all these delays, which makes the controller safe while
minimizing conservativeness. On one hand, our approach can
serve as a standalone controller; on the other hand, our approach
can provide a safety guard by a low-level refinement of the
control commands obtained from the high-level controller, which
assumes no delay. This can be used for compensating the sim-to-
real gap when deploying a black-box learning-enabled controller
trained in a simplistic environment without considering delays
for practical vehicle systems.

Index Terms—Autonomous driving, Delay compensation, Ac-
tuator dynamics, Computation delay

I. INTRODUCTION

The recent surge in autonomous driving cars has led to
an inevitable increase in demand for making them more
affordable and accessible. The stringent requirements of on-
board computing and high-resolution sensors pose a major
challenge in making self-driving cars affordable. While there
has been much work on making current algorithms more
efficient by reducing algorithm complexity and parallelizing,
the required computation time may still be dangerous for high-
speed scenarios like highways, where rapid action may be
needed in case of an anomaly to avoid an accident.

Due to highly sophisticated algorithms required to control
the vehicle, the planned command takes time to be processed
by the actuator before it gets executed. Most commonly used
control algorithms assume the planned steering command to
be applied instantaneously. But due to dynamic constraints,
this assumption can generate significant tracking errors and
jeopardize stability, especially in high-speed scenarios. This
work presents a unified approach to dealing with three types
of delay: 1) computation time delay; 2) actuator command
processing delay; and 3) actuator dynamics delay. First, we
model the actuator dynamics delay using a first-order ordinary
differential equation (ODE). Second, we propose a delay-
aware robust tube Model Predictive Control (MPC) coupled
with a Kalman filter to probabilistically safely estimate the
computation time delay. We propose two controller plans.
The first plan enables our approach to serve as a standalone
controller for a delay-aware robust control. In the second con-
troller plan, there exists a primary controller in a closed-loop

1Dvij Kalaria is with the Department of Computer Science and Engineering,
IIT Kharagpur, India dvij.kalaria@gmail.com

2Qin Lin and John M. Dolan are with the Robotics Institute, Carnegie
Mellon University qinlin,jdolan@andrew.cmu.edu

system without considering delays. Our approach can com-
pensate the primary controller to boost its safety performance.
This controller plan has application benefits, since learning-
enabled (LE) controllers are being used in autonomous sys-
tems. However, simplistic assumptions are usually made in the
training procedure of the LE controllers. For safety-critical
autonomous systems such as autonomous driving cars, it is
crucial to close the sim-to-real gap by providing a safety-
assured guard. We treat the LE controller as a high-level
controller. In the low-level control part, we track the reference
generated by the LE controller, but actively regulate its unsafe
control by compensation considering practical delays.

In summary, we make the following novel contributions:
1. A unified delay-aware robust control approach dealing

with three major delays: computation time delay, actuator
command processing delay, and actuator dynamics delay.

2. A probabilistic framework for estimation of computation
time instead of taking an upper bound, which makes the
algorithm safe while minimizing conservativeness.

3. A control plan to safely compensate for these delays for
a LE controller which doesn’t consider delays.

The rest of this paper is organized as follows. Section II
provides a review of some important related work. Section
III describes the methodology. Section IV presents the exper-
imental results. The conclusions are in Section V.

II. RELATED WORKS

A popular architecture for layered planning and control
involves a high-level planner and a low-level controller for
trajectory tracking such as Ackermann controller [1], pure pur-
suit [2], Stanley [3], Model Predictive Control (MPC) [4], and
preview controller [5] to name a few. In the low-level control
layer, many algorithms ignore the delay arising from various
factors such as computation, actuator command processing,
sensor delay, and actuator dynamics. For the compensation
of computation delay for discrete MPC, Ref. [6] proposes a
simple solution of shifting the initial state by one control step,
approximating it from the prediction model. However, this is
not suitable if the computation time is more than one control
step. Ref. [7] further proposes to use a buffer to store control
commands from the previous batch. It also proposes the use
of a pre-compensating unit and robust tube MPC to prove the
safety of the system under bounded perturbation. This plan is
well suited for static scenarios, where the objective is nearly
constant throughout. However, for highly dynamic scenarios
where the planned trajectory changes rapidly, taking the upper
bound as the horizon length might lead to the algorithm’s being
less responsive. We instead propose to use a Kalman filter to
approximate a local upper bound on computation time and
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adapt to its changing values instead of taking an upper bound
as the horizon length.

For compensation of delay due to actuator dynamics, Ref.
[8] proposes approximating the actuator dynamics by a first-
order ODE, after which the actuator state can be augmented
in the state space model. The approach has been tested on
differential braking stability control. Instead, we use this
similar design for compensating steering delay.

For considering delay caused due to processing of actuator
commands at the actuator, [5] proposes an initial state transi-
tion method similar to the compensation for computation delay
but for a preview continuous controller. It proposes a closed-
loop solution to compensate for a dead time between when
the command is planned and when it reaches the actuator.
[9] further extends the idea by including compensation for
actuator saturation as well to make the solution deployable
on real systems with control limits. However, with the use of
the preview controller, it becomes difficult to include state
constraints in the system. [10] proposes a simple way to
compensate for the sensor delay by transforming the frame
of sensor values to reflect values at the current time and not
at the time when they were recorded. Our work, however,
considers computation delay, actuator command processing
delay, and actuator dynamics as well as control and state
constraints under one optimization framework in the context
of autonomous vehicle control.

III. METHODOLOGY

A. Notation

A polytope is defined as a convex hull of finite points
in d-dimensional space as Rd. The Minkowski sum of two
polytopes is defined as P⊕Q := {x+q ∈ Rd : x ∈ P, q ∈ Q}.
The Pontryagin difference of two polytopes is defined as
P 	Q := {x ∈ Rd : x+ q ∈ P, q ∈ Q}

B. System dynamics

A kinematic bicycle model describes the dynamics of the
vehicle with the state variables being position (px, py), heading
angle (θ), and velocity (v), and the control variables accel-
eration (a) and steering angle (δ). It is commonly assumed
in the literature that steering angle δ and acceleration a are
applied instantaneously by the actuators. But in reality there
is a certain lag between the command and when the actuator
physically modifies the steering angle state which is called the
actuator dynamic delay. We modify the system dynamics to
also include the actual steering angle as a state denoted as δa.
The control command is now the desired steering angle δ. We
approximate the change in the steering angle state by a first-
order ODE similar to [8], i.e., δ̇a = K(δ − δa), where K is
the inverse of the time constant for the steering actuator. For
acceleration, pedal dynamics are assumed to be instantaneous
for the experiments in this paper. However, they can also be
approximated in the same way. After discretization, the vehicle
state is now modified as xk = [px,k, py,k, θk, vk, δa,k]. The
discrete dynamics are given in Equation 1.

px,k+1 = px,k +
sin(θk + κklk)− sin(θk)

κk
(1a)

py,k+1 = py,k +
cos(θk)− cos(θk + κklk)

κk
(1b)

θk+1 = θk + κklk (1c)
vk+1 = vk + ak∆t (1d)

δa,k+1 = δk − (δk − δa,k)(eK∆t − 1) (1e)
(1f)

where the curvature κk =
tan(δa,k)Cr

L , L is the vehicle length,
and the travel distance lk = vk∆t+ 1

2ak∆t2.

C. Robust Tube MPC

For a discrete linear system with system matrices A ∈ Rn×n
and B ∈ Rn×m, let the control gain K ∈ Rm×n be such
that the feedback system of AK = A + BK is stable. Let
Z be the disturbance-invariant set for the controlled uncertain
system x+ = AKx + w, satisfying AKZ ⊕ W ⊆ Z , where
the disturbance w is assumed to be bounded (w ∈ W) by
a polyhedron that contains the origin in its interior. The
following finite optimization problem is solved at each step
for X̄ = {x̄0, x̄1..., x̄N}, Ū = {ū0, ū1..., ūN−1} and reference
state sequence Xref = {xref,0, xref,1..., xref,N} obtained
from the path planner, where N is the horizon length, and
X̄ and Ū are the state and control sequences of a nominal
system ignoring w.

min
x̄0,U

N−1∑
t=0

(x̄k − xref,k)TQ(x̄k − xref,k) + ūTkRūk

+ (x̄N − xref,N )TQN (x̄N − xref,N )

s.t. x̄k+1 = Ax̄k +Būk

x0 ∈ x̄0 ⊕Z
ū ∈ U 	KZ
x̄ ∈ X 	 Z

(2)

where Q, R and QN are the state, control and terminal state
cost matrices, respectively. The control command given would
be u = ū + K(x − x̄), where x is the current state. This
guarantees x+ ∈ x̄++Z for any w ∈ W , i.e., all states xk will
be inside the constraint set X . However, for a nonlinear system
as in our case, we use the equivalent LTV system, where the
system matrices A and B are replaced with Jacobian matrices
Â and B̂ at the current state for the system dynamics used
in Equation 1. For more details as well as a detailed proof
of the feasibility and the stability of the above controller, see
[11]. Also, mismatch between the linearized and the actual
model can be compensated by adding an additional disturbance
ŵ assuming the model non-linear function to be a Lipschitz
function [12]. For the experiments in this work, we assume
the disturbance margin is large enough to cover this extra
disturbance.

D. Delay-aware robust tube MPC

For the above formulation, we assumed delay time to be
zero, meaning that the computed command is delivered to
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the system at the same time the observation is made for the
current state x. But in practice, there is computation time
denoted as tc and an actuator command processing delay
ta after the calculated command is delivered, resulting in a
total delay time td = tc + ta. Hence, if the current state
x is observed at time t, the computed command influences
the actuator state at t + td time. This may lead to instability
of the system if td is large and the robust tube assumptions
no longer hold true. In order to tackle this problem, Ref. [7]
proposes a bi-level control scheme to deal with time delay
and also proves robustness using the tube MPC. The high-
level MPC runs to get the robust tube for the next cycle with
the initial tube position constraint to cover all possible initial
state positions under bounded disturbances. Meanwhile, the
second-level control scheme acts as a pre-compensator unit
and ensures robustness by correcting the current state towards
the nominal state calculated from the first level. A buffer block
of commands is used for communication between higher- and
lower-level units, as depicted in Figure 1. At time t, the set of
possible states at time t+ th, where th is the horizon length,
is predicted. The high-level tube MPC updates the buffer with
nominal states and control commands from time t + th to
t+ 2th. If the higher-level MPC requires a delay time tc that
is less than th, the system waits for the remaining time th−tc.
However, we believe this is only suited for systems when
the objective is nearly constant. For dynamically changing
objectives as well as state constraints, it is also necessary to
update the reference path more frequently, since waiting for the
full horizon path to be followed may lead to inconsistencies. In
the case of autonomous driving, for dynamic scenarios where
the reference path has to be updated frequently, it would not
be feasible to wait for th to get a new updated path.

We propose to get a local probabilistic upper-bound estimate
t̂c of the computation time. We update the buffer from (t+ t̂c
to t+t̂c+th) instead of from (t+th to t+2th) as shown in Fig.
1. This increases the controller plan update rate for the higher-
level MPC and also makes the controller robust to changing
computation times. For estimation of the local upper bound t̂c,
we use a Kalman filter as further described in Section III-E.
Considering ta to be the extra delay due to actuator command
processing, thus getting a new local upper-bound delay time
estimate t̂d = t̂c + ta, which we use to find the initial state
estimate xt̂d|t assuming no disturbance after t̂d time given the
current state xt. It can be calculated by piece-wise integration
of the system dynamics using the control commands from the
buffer. Hence, command executed at t+ t̂c will be executed at
t+ t̂c+ta = t+ t̂d where we consider our initial state to be for
optimization as depicted in Fig. 1. Mathematically, the updated
objective function is described in Equation 3, where xt̂d+t is
the actual state after time t̂d. The calculated nominal discrete
states (X̄) and controls (Ū ) are used to fill the buffer B from
time t+ t̂c to t+ t̂c+ th as ū[t+t̂c+k∆t,t+t̂c+(k+1)∆t] = ūk for
k ∈ {0, 1, 2...N − 1}, as shown in Figure 1. Pre-compensator
unit is a low level process which executes command c = ūt′ +
K(xt′ − x̂t′) at time t′ in the buffer at high frequency.

Fig. 1: Dual cycle control scheme for tube MPC with delay

min
x̄0,U

N−1∑
t=0

(x̄k − xref,k)TQ(x̄k − xref,k) + ūTkRūk

+ (x̄N − xref,N )TQN (x̄N − xref,N )

s.t. x̄k+1 = Ax̄k +Būk

xtd+t ∈ x̄0 ⊕Z =⇒ xtd|t ∈ x̄0 ⊕Z 	 (⊕s−1
j=0A

j
kW)

s =

⌈
td
∆t

⌉
ū ∈ U 	KZ
x̄ ∈ X 	 Z

(3)
1) Control Constraints (U): Limits on acceleration and

steering are formulated as control constraints for the optimiza-
tion problem.

2) State Constraints (X ): For the state variables θ and v,
we set the upper and lower bound for their range. However,
for the state variables px and py , free space is non-convex in
nature, hence it becomes quite computationally expensive to
set them in the non-convex form for the optimization problem.
Hence we use the IRIS algorithm we have used in previous
work [13] to derive a set of convex constraints which can be
used for efficient optimization of the path tracking problem
while also ensuring safety through collision avoidance. IRIS
optimizes the objective of finding linear constraints for each
obstacle such that the resultant convex space fits the largest
possible ellipsoid. We set the seed for IRIS as the predicted
position (without uncertainty) of the vehicle after time t̂d to
get the resultant convex space X .

3) Disturbance-invariant set (Z): The disturbance-
invariant set can be over-approximated using Zk = ΣNi=0A

i
kW

for a given Ak [14]. However, in the presence of delay, Ak+1

would be different for the next control cycle, hence for
robustness, Zk must be sufficient to be covered by Zk+1.

Theorem 1. Given the optimization in Equation 3, the
disturbance-invariant set Zk is calculated as Z =⋃
A∼SA

(⊕N−1
j=0 A

jW), i.e., a union set with all possible values

of initial heading angle, speed and steering angle within
the admissible range, which determines the Jacobian matrix
Ak. The invariant set guarantees robust initialization of the
optimization problem.

Proof. xtd|tk is the expected state assuming no disturbance
after td for the current time tk, and the application of ū with
feedback. xtd+tk is the actual state at td+tk. We have xtd+tk ∈
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xtd|tk ⊕ (⊕s−1
j=0A

j
kW), where s =

⌈
td
∆t

⌉
, From Equation 3, we

have xtd+tk ∈ x̄0|td+tk ⊕ Z . Hence, in order to guarantee
robustness, xtd|tk ∈ x̄0|td+tk ⊕Z 	 (⊕s−1

j=0A
j
kW), we need to

ensure x̄0|td+tk have a valid solution, i.e., (⊕s−1
j=0A

j
kW) ⊆ Z .

As s ≤ N and 0n ∈ W , we can establish
(⊕s−1

j=0A
j
kW) ⊆ (⊕s−1

j=0A
j
kW)⊕ (⊕N−1

j=s A
j
kW) (4)

Thus, ⊕s−1
j=0A

j
kW ⊆ ⊕

N−1
j=0 A

j
kW . Ak is the Jacobian matrix

which depends on θk, vk, and δk of xtd|tk . Let’s define set
SA = {A(θ, v, δ)|θ ∈ [−π,+π], δ ∈ [−δmax, δmax], v ∈
[vmin, vmax]}, which consists of all possible matrices.

(⊕N−1
j=0 A

j
kW) ⊆

⋃
A∼SA

(⊕N−1
j=0 A

jW) (5)

Thus, ⊕s−1
j=0A

j
kW ⊆

⋃
A∼SA

(⊕N−1
j=0 A

jW). Z is chosen as⋃
A∼SA

(⊕N−1
j=0 A

jW), which concludes the proof.

E. Estimating computation time

For estimating a local upper bound on computation time,
we use an Adaptive Kalman Filter (AKF) on the single
variable. We initialize the estimated computation time and the
variance associated with it by the first measurement. For the
Kalman filter, we need state update parameters γ, process
noise variance q and measurement noise variance r. We
assume both noise distributions to be gaussian, independent
and mutually uncorrelated throughout. The adaptive kalman
filter, uses data points to estimate their values recursively
at each step. Running average of prediction error e and
measurement error w are used to recursively update the values
of q and r. Parameters Np, Nq , Nθ determine roughly the
no of previous samples effectively taken for the exponential
weighted mean of e and w which are used for update of q and r
respectively. These update rules have been adapted from [15].
While the update rules for state transition parameters θ have
been adapted from []. λ = Nθ−1

Nθ
denotes the forgetting factor

for estimation of θ. The following steps are performed in a
loop (see Equation 6). (.)n|n−1 and (.)n|n denotes the prior
and posterior estimates at nth step.

xn|n−1 = γn−1[xn−1|n−1 1]T (6a)
pn|n−1 = pn−1|n−1 + qn−1 (6b)

en =
Nr − 1

Nr
en−1 +

1

Nr
(zn − xn|n−1) (6c)

∆rn =
((zn − xn|n−1)− en)2

Nr − 1
−
pn|n−1

Nr
(6d)

rn =

∣∣∣∣Nr − 1

Nr
rn−1 + ∆rn

∣∣∣∣ (6e)

Kn =
pn|n−1

pn|n−1 + rn
(6f)

xn|n = xn|n−1 +Kn(zn − xn|n−1) (6g)
pn|n = (1−Kn)pn|n−1 (6h)

wn =
Nq − 1

Nq
wn|n−1 +

1

Nq − 1
(xn|n − xn|n−1) (6i)

∆qn =
pn|n − pn−1|n−1

Nq
+

(xn|n − xn|n−1)− wn
Nq − 1

(6j)

qn =

∣∣∣∣Nq − 1

Nq
qn−1 + ∆qn

∣∣∣∣ (6k)

Let φ be [xn−1|n−1 1]T

Fn =
1

λ

(
Fn−1 −

Fn−1φφ
TFn−1

λ+ φTFn−1φ

)
(6l)

γn = γn−1 + Fnφ(xn|n − xn|n−1) (6m)
For the local upper bound estimate, we use the predicted

value and variance to get an upper-bound estimate on computa-
tion time at step k, tc,k (Equation 7). We choose the parameter
β accordingly to get sufficiently high confidence as an upper
bound assuming a Gaussian distribution.

t̂c,n = xn|n + βpn|n (7)

F. Controller Plan A

We present a standalone controller (called plan A) as
depicted in Figure 2. We compensate for the actuator dynamics
by including actuator first-order ODE as part of the system
dynamics. For the compensation of computation and actuator
command processing delays, we use initial state shift by
the estimated local upper bound on the net delay time. The
optimization problem updates the robust tube buffer from t+t̂d
to t + t̂d + th with the nominal commands and states. The
pre-compensator unit runs as a low-level process to refine the
control to maintain the robust tube condition, see Figure 2.

Fig. 2: Controller Plan A for Robust tube MPC

G. Controller Plan B

As an alternate plan, we compensate for the actuator and
computation delay of a nominal controller. It can be a black-
box controller, which doesn’t consider compensation for these
delays. This plan can be used for a LE controller which
has been trained on the simplified simulation environment
without all practical delays. We use a separate unit which
takes the commands from the nominal controller as reference
to track. Assuming the commands from the LE controller
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be Û = {û1, û2..., ûN}, the output is the set of refined
commands after compensating for actuator dynamic delay as
U = {u1, u2.., uN}. U is obtained by solving a quadratic
optimization problem (Equation 8) where ustart is the current
value of the steering angle, rk is the unit step response of the
steering actuator at the kth time step, and Qac and Rac are
positive semidefinite weight matrices. The optimization is to
track the desired actuator commands from the LE controller
as closely as possible while minimizing the control effort. For
the computation time compensation, we use the same design
as plan A by shifting the initial state, see Figure 3.

Fig. 3: Controller Plan B for black box controller

min
U

N∑
k=1

∥∥∥∥∥ûk − (u0 +

l=k∑
l=1

(ul − ul−1)rk−l+1)

∥∥∥∥∥
Qac

+ ‖uk‖Rac
s.t. u0 − ustart = 0

(8)

where rl = (1− e−Kl∆t).

IV. EXPERIMENTAL RESULTS

We conduct the experiments in the Gazebo simulator with
a Prius vehicle model. In order to get the time constant value
for the steering actuator, we test the unit response of the
actuator, i.e., we set the actuator command to 1 and record
the steering angle values over a time window sufficient for
the steering angle to converge at the maximum possible value.
We then fit the observed response values with the first-order
ODE described in Section III-B and determine the parameter
K. As shown in Figure 4, using K = 30 well approximates
the actuator dynamics for the Prius model in Gazebo.

A. Static scenario

For testing controller plan A, we perform a static obstacle
avoidance experiment. The planner used is hybrid A∗, [16].
We compare the paths followed by the controller with and
without considering delay time and actuator dynamics. We
also compare the paths followed if the delay time is taken
as an upper bound equal to the horizon length, which is
proposed in ?? and if the local upper bound on the delay
time is approximated using our proposed Kalman filter. The
path followed using our proposed method can be clearly seen
to be better. This is because at point A (Figure 5), the state

Fig. 4: Steering angle response for Prius model in gazebo

constraints generated from IRIS as shown in the Figures (5 6
7) force the vehicle to deviate from the reference path, which
thus overshoots by a significant amount, but is still able to
get back to the reference, which is not the case if we don’t
consider compensation for any time delay. On the other hand,
if we approximate the delay time using a Kalman filter and
adjust the expected local upper bound value accordingly (see
the delay estimation in Figure 6), the controller responds faster.
Hence, after passing point A, the state constraints change and
the controller reacts faster to get back to the reference path,
giving less overshoot. The robust tube condition gets violated
for the controller if the compensation for actuator dynamics
and delay time is not considered at point B, when the vehicle
collides with the obstacle.

Fig. 5: Comparison on paths followed with and without delay
compensation. Yellow region is the convex state constraint set
from IRIS at point A of the trajectory for Experiment IV-A.

B. Overtaking scenario

We further test the controller plan A in an overtaking
scenario. For this scenario, the lead vehicle brakes suddenly
at point A, t = 4s. For this scenario, we use the Frenet
planner [17] with the reference path as the lane center. Frenet
frame-based planning has been successful in practice due to
the significant advantage of its independence from complex
road geometry. We perform the experiment with the same
starting conditions and compare the results with (Figure 8a)
and without (Figure 8b) delay compensation. The Frenet path
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Fig. 6: Observed computation times and their estimated values
using Adaptive Kalman filter (AKF) for Experiment IV-A.

Fig. 7: Speed comparison for the paths followed with and
without delay compensation for Experiment IV-A.

planner expects the ego vehicle to move at constant speed,
but as the speed rapidly drops at point A, as shown in the
figures, the reference path changes rapidly. The Frenet planner
thus rapidly changes path after point A. Point B is the closest
position between the ego vehicle and lead vehicle in all the
cases. If delay time is not considered, the ego vehicle hits
the other vehicle slightly at point B. Also, in this case if
computation time is taken as a constant upper bound of 0.2s,
due to the slow reaction of the controller, the ego vehicle hits
the lead vehicle at point B (Figure 8b). Hence, it can be seen
that taking the computation time as an upper bound might be
ineffective in rapidly changing scenarios.

C. Closed track scenario

Finally, we test our controller plan B on a LE controller
which has been trained on an ideal environment without delay.
The LE lateral controller is a neural network trained on way-
point following with inputs [∆x,∆y,∆θ], where (∆x,∆y)
and ∆θ are respectively the vector co-ordinates and direction
of the target waypoint in the local frame of reference of the
ego vehicle. The output is the steering angle δ. The network
architecture is a simple feed-forward neural network with
hidden layer sizes (4, 16, 4). For longitudinal control, simple
PID control is used to track a constant speed of 75 m/s
throughout. When deploying the controller in Gazebo for
waypoint-following, the controller performs worse due to the
practical delays. The controller deployed without compensa-
tion loses control at the time of turn, as demonstrated in

(a) With variable local upper bound on computation delay.

(b) Without computation delay consideration.

(c) With constant upper bound on computation delay (0.2s).

Fig. 8: Comparison in paths traced by the ego vehicle and the
traffic vehicle for Experiment IV-B

Figure 9. After using the proposed plan B, which contains
compensation for the computation and actuator delays, the
vehicle retains control. The vehicle is operating at it’s friction
limits, hence even a little bit of error caused due to delay leads
to vehicle losing control even when the computation time is
just 0.02s on an average during the experiment.

Fig. 9: Comparison in paths followed with and without delay
compensation on a closed track centre line tracking objective
for Experiment IV-C

V. CONCLUSION

In this work, we propose a unified framework for compen-
sating the delays of computation, actuator command process-
ing and actuator dynamics in autonomous driving systems.
We use a Kalman filter for approximating the computation
time instead of taking it as an upper bound, leading to better
performance and response in dynamic scenarios. With the
use of tube MPC, the vehicle is able to safely track the
planned trajectories in realistic scenarios tested in the high-
fidelity Gazebo simulator. Lastly, we also present a general
framework for compensating delays in real environments for
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any black-box controller which works in an ideal environment.
The control framework has been tested on a system with a
1.60GHz Intel Core i5-8250U CPU. The simulation results
demonstrate safety and real-time performance of our proposed
framework.
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AirObject: An Evolving Topological Graph-based Object Encoding for
Semantic Loop Closure

Nikhil Varma Keetha∗,1, Chen Wang2, Yuheng Qiu2 and Sebastian Scherer2

Abstract— Object encoding and identification in a distributed
setup are vital for multi-agent robotics tasks involving au-
tonomous exploration, semantic scene understanding, and re-
localization. Previous approaches have attempted to either track
object detections or generate embeddings of an object from a
single viewpoint for object identification. However, such systems
are limited to a “fixed” object representation from a single
viewpoint and agent. Furthermore, in an online distributed
setup such as Multi-agent Semantic Simultaneous localization
and mapping (SLAM), there is a requirement for an “evolving”
object representation across multiple agents and viewpoints that
is shared and merged effectively. In this paper, we propose a
novel incremental 3D object encoding approach to obtain global
graph-based keypoint representations and embeddings of ob-
jects. We employ topological graph merging and a hierarchical
graph representation-based encoding method to generate global
object descriptors robust to drastic viewpoint shift, occlusion,
deformation, and scale of the representation, either across
multiple agents and viewpoints or from a single agent and
viewpoint. We demonstrate that our approach achieves great
performance for object identification and semantic loop closure.

Index Terms— Localization; Semantic Scene Understanding;
Deep Learning Methods; Recognition

I. INTRODUCTION

Object encoding and identification are crucial for many
robotics tasks such as autonomous exploration, semantic
scene understanding, and loop closure in simultaneous lo-
calization and mapping (SLAM). For example, drift-free
large-scale object-based semantic SLAM and identification
of revisited interesting landmark objects require robust and
efficient object encodings [1], [2]. Prior approaches pro-
posed in the literature have attempted to track object de-
tections [3], use keypoint features [4] or generate graph-
based embeddings of an object from a single viewpoint for
object matching [5]. However, such systems are limited to
a “fixed” object representation from a single viewpoint and
robotic agent and are not robust to drastic viewpoint shift
or scale of representation. Furthermore, in a Multi-agent
Semantic SLAM setup [6], existing methods easily produce
false matches and incorrect inter-robot loop closures. Hence,
in this context, an object encoding method to generate robust
object representations that can be shared and merged effec-
tively across multiple viewpoints and agents is necessary.

In this work, we propose a novel topological graph
merging-based 3D object encoding method to generate tem-

1The author is with the Indian Institute of Technology (ISM) Dhanbad,
India. email: keethanikhil@gmail.com

2The authors are with the Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA 15213, USA. email: {chenwan3, yuhengq,
basti}@andrew.cmu.edu
∗This work was done as a CMU Robotics Institute Summer Scholar.

Frame 1

Frame n

Topological Graph 
Merging“Evolving” Topological 

Object Graph

Fig. 1. We propose a topological graph merging method that builds a
temporally evolving object graph where new nodes are added as different
viewpoints or distinct parts of an object are explored.

porally evolving representations of objects (see Fig 1).
Specifically, we use extracted deep learned keypoint fea-
tures [7] to form object-wise topological graph neural
networks (GNNs), which on embedding generate single-
viewpoint object descriptors. To deal with a varying number
of object keypoints, we employ a sparse object encoding
method [5] so that only a few positions of an object descrip-
tor can be affected due to change in keypoints. Furthermore,
the topological GNN and sparse object encoder generate
node-wise location descriptors and feature descriptors. These
node-wise location descriptors are used for topological graph
merging across multiple viewpoints of an object to build
incrementally growing topological object graphs. These tem-
porally “evolving” topological object graphs are embedded to
generate 3D object descriptors which accumulate knowledge
across multiple viewpoints making the descriptors robust to
viewpoint changes, the scale of representation, and deforma-
tion.

In summary, we make the following specific contributions:

• Delaunay triangulation based topological object graph
representations which leverage explicit geometry from
keypoints;

• a topological graph merging method based on sparse
location descriptors to build a temporally “evolving”
topological object graph; and

• a method to generate 3D object descriptors that accumu-
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late knowledge across multiple viewpoints and provide
reliable object matching and semantic loop closure.

II. RELATED WORK

In this section, we review object matching, loop closure
methods based on handcrafted and deep learned features.
Furthermore, we also review Visual Place Recognition (VPR)
methods that can be extended to object identification. Object
tracking methods based on networks such as Mask R-
CNN [8] are not included because they are not suitable for
object re-identification.

A. Handcrafted Features

Handcrafted features such as SIFT [9] and SURF [10] have
been widely used in classical approaches for loop closure,
object matching, and VPR. One such classical approach,
fast appearance-based mapping (FABMAP) [11], utilizes the
trained visual vocabulary of SURF features, obtained by hier-
archical k-means clustering, for identifying revisited objects
through feature distribution matching. Further extending this
idea, a binary descriptor ORB [12] was used in DBoW2 [13]
to achieve better speed. Furthermore, in recent work such
as Kimera-VIO [14] and Kimera-Multi [6], a Bag-of-Words
(BoW) representation of keyframes based on ORB features
and DBoW2 was used for distributed loop closure detection.

Further building on the idea of vocabulary-based re-
trieval, [15] introduces a vocabulary maintenance strategy
that groups similar images by repetitive registration of the
same descriptors across multiple frames. To further speed
up the retrieval process, [16] introduces an online trained
Hamming distance embedded binary search tree (HBST).
However, the memory cost of the incremental visual vocab-
ulary tree is huge due to the use of raw local descriptors.
This memory overhead can be mitigated through dimensional
reduction. One such approach, [17], employs principle com-
ponent analysis (PCA) on BRISK [18] features and applies k-
nearest neighbor (K-NN) search on the projected descriptors
to achieve fast speeds in the range of milliseconds for each
query while maintaining a low memory overhead. However,
these handcrafted features based methods are sensitive to
environmental changes and lead to false matches when the
local descriptors are not discriminative enough.

B. Deep learned Features

The recent success of convolutional neural networks
(CNN) [19] in computer vision has led to the rise of
deep learned features-based image retrieval. The methods
employing deep learned features have shown tremendous
improvements over handcrafted features. One such method,
[20], uses a multi-scale feature encoding across two CNN
architectures to generate CNN features that are viewpoint
invariant, thereby providing large performance improvement.
Another popular end-to-end deep learning-based approach,
NetVLAD [21] generates descriptors inspired by the tra-
ditional vector of locally aggregated descriptors (VLAD).
Further building on both feature-based and deep learning

methods, [22] uses a Multi-Process Fusion to combine dif-
ferent image processing methods such as the sum of abso-
lute differences, histogram of oriented gradients [23], CNN
spatial Max pooling, and CNN spatial Arg-Max Pooling for
VPR.

Further exploring other input modalities such as RGB-
D images, [24] incorporates depth information of objects
into pre-trained CNN features by rendering objects from
a canonical perspective and colorizing the depth channel
based on distance from object center. Similarly, [25] embeds
point cloud and depth data into the RGB domain for RGB-
D object recognition. Another recent RGB-D-based method,
HP-CNN [26], uses multi-view 3D object poses from RGB-D
sensors to generate multi-scale object feature representations.

Recently proposed deep learning method, SuperPoint [7]
leverages a self-supervised framework to train interest point
detectors and descriptor extractors. Further building on Su-
perPoint, SuperGlue [27] introduced a local feature matcher
based on graph attention [28] where the interest points
are nodes of a graph, and their associated descriptors are
the node features. Both SuperPoint and SuperGlue have
been widely adopted for the task of feature matching and
hierarchical VPR [29], [30]. Similar to SuperGlue, [5] em-
beds object-wise fully connected graph-based representations
of SuperPoint features using a Sparse Object Encoder to
generate object descriptors. However, this approach doesn’t
consider the explicit geometry available from the Super-
Point interest points when constructing the graph-based
representations of objects. Also, it generates fixed object
representations limited to only a single viewpoint. In this
context, our proposed framework builds temporally evolving
topological graph representations of objects to generate 3D
object descriptors that accumulate knowledge across multiple
viewpoints.

III. PROPOSED APPROACH

In this section, we first present the proposed method to
generate topological graph representations of objects that are
input to the object encoder. We then describe the structure
of the object encoder and our approach to building and
embedding evolving topological graph representations of
objects to generate 3D object descriptors (see Fig 2).

A. Topological Graph-based Object Representations

Intuitively, a group of feature points for an object form a
graphical representation where the feature points are nodes
and their associated descriptors are the node features. Essen-
tially, the graph’s nodes are the local distinctive features of
the object, while the edges/structure of the graph represents
the global structure of the object. We believe that embedding
such a topological graph-based representation of an object
containing both local distinctive features and global object
structure will enable robust object identification similar to
humans [31]. Hence based on this hypothesis, we formulate
a procedure to generate topological graph representations of
feature points corresponding to objects.

131



tt

Object 
Encoder

Object 
Encoder

Node Encoder

Attention Graph

Feature  
Encoder

Location  
Encoder

Single-layer 
Encoder

3D Object A Descriptor

Single-frame 
Object B 

Descriptors

Single-frame 
Object A 

Descriptors

Object A Temporal 
Sequence

Object B Temporal 
Sequence

Object 
Encoder

Topological Graph Merging

SuperPoint based 
Evolving Object 

Graph

1 n

Fig. 2. Schematic of our proposed approach. The SuperPoint based topological graph representations of objects are input to the object encoder to generate
the node-wise location features and the single-frame object descriptors. Then, based on these node-wise location features, topological graph merging is
performed to create a SuperPoint based evolving graph representation of the object. This evolving topological graph is input into the object encoder to
generate the 3D object descriptor, which provides positive matches with the descriptors of the same object and rejects false matches.

Fig. 3. Topological Graph Representations of Objects. These representa-
tions are generated by using Delaunay Triangulation on object-wise grouped
SuperPoint keypoints.

Given an object, we extract a set of feature points corre-
sponding to the object, where the position of each feature
point is denoted as pi = (x,y), i ∈ [1,M] and the associated
descriptor as di ∈RNp , where Np is the descriptor dimension.
In practice, these object-wise grouped feature points are
obtained by using ground-truth instance segmentation masks
or object segmentation masks from pretrained Mask R-
CNN [8] along with point detector SuperPoint [7]. Given
these object-wise grouped feature points, our goal is to
generate a topological graph representation that leverages the
explicit geometry provided by the position of each feature
point.

Essentially, we build a topological graph structure for the
feature points corresponding to an object by using Delaunay
triangulation [32] on the positions of the feature points, as
shown in Fig 3. Delaunay triangulation is a mathematical
formulation, where given a set of discrete points, the ob-
jective is to provide a triangulation such that no discrete

point is present inside the circumcircle of any triangle of
the triangulation. This objective can be particularly stated
as maximizing the minimum angle of all the angles of
the triangles in the triangulation, thereby avoiding narrow
and intersecting triangles. This particular property coupled
with fast processing speeds makes Delaunay triangulation
desirable to generate mesh representations that model the
object’s geometry. We believe that inputting a topological
graph representation of object feature points based on this
mesh structure to the object encoder will enable the object
encoder to reason better about the global structure/geometry
of the object and further make encoding of temporally
evolving topological graph representation of the object robust
to deformation or occlusion.

B. Object Encoder

The topological graph representation of the object feature
points is input to the GNN based sparse object encoder [5].
A particular desirable property of a sparse object encoder
is that a single keypoint should only have a local effect on
sparse locations of the object descriptor so that addition or
removal of keypoints doesn’t significantly change the object
descriptor. Furthermore, the object encoder should encode
distinct keypoints to unique locations within the object
descriptor. Essentially, to facilitate this, the object encoder is
comprised of a Node Encoder, a two-layer Graph Attention
(GAT) [28] module followed by a Sparsity module which
contains two parallel heads, namely a feature encoder and a
location encoder whose outputs are element-wise multiplied
and passed through a single-layer encoder to generate object
descriptors.
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The Node Encoder takes the positions and descriptors
of the topological graph-based object representation and
encodes the graph’s node features xi as the concatenation of
the point descriptor and transformation of the point position:

xi
(1) = [di ‖MLP(pi)], xi ∈ RNn , (1)

where Nn = Np +Nm, ‖ denotes the concatenation operator,
the Multi-layer Perceptron (MLP) module maps R2 7−→RNm ,
and superscript of xi

l denotes the l-th layer of the GNN.
In practice, we normalize the position pi to [−1,1] by the
object size, which considers the object center as the origin.
The concatenation of the transformation of the position as
opposed to a summation similar to SuperGlue [27] helps
the object encoder explicitly learn the object structure since
the relative position information is not blended into the
descriptor. Furthermore, this concatenation operation enables
the Sparsity module of the object encoder to learn sparse
non-zero locations for the keypoints based on the object
structure.

The graph’s node features xi and the adjacency matrix
from the topological graph structure are input to a two-
layered GAT to enable structured attention-based message
propagation between the features of the object1. This helps
the object encoder reason about global feature interactions
between the local distinctive keypoint-based features of the
object. Afterward, the output of the GAT is passed on to
the Sparsity module to encode the graph embeddings as an
object descriptor such that learned location features of the
node decide the sparse location of the keypoint on the object
descriptor.

The Sparsity module of the object encoder contains two
parallel heads where each head contains two stacked sparsity
layers to learn the location feature xi

L and the content feature
xi

C, whose inputs are xi from the GAT (here we leave out
the layer index (l) for simplicity). The sparsity layers for the
location node features and content node features are defined
as:

(l+1)xi
L = ReLU(WL

(l).(l)xi
L), (2a)

(l+1)xi
C = ReLU(WC

(l).(l)xi
C), (2b)

where WL
(l), WC

(l) ∈ RNo×Nn
l
, Nn

l < No are the learnable
location and content weights, respectively, and No is the
dimension of the object descriptor. Then, these node-wise
location and content features are used to generate the object
descriptor Dk in the following way:

Dk =Wo

M

∑
i=1

xi
L� xi

C, (3)

where Wo is a learnable single-layer encoder, M is the
number of nodes in the graph, and � represents element-
wise multiplication.

The GNN based object encoder is supervised by a sparse
location loss, dense feature loss, and object matching loss [5].
The objective of the sparse location loss is to ensure that

1Refer to [28] for more details on GNNs and GAT.

location feature xi
L is a sparse vector. The sparse location

loss Ls is defined as the l1-norm of xi
L.

Ls =
M

∑
i=1
‖φ(xi

L)‖1, (4)

where φ(x) = x/‖x‖2 is a l2-normalization to prevent the
location features from being zero. Given that the sparse
location loss ensures that keypoints are encoded into sparse
locations on the object descriptor, the objective of the dense
feature loss is to ensure that distinctive keypoints are encoded
to unique sparse locations on the object descriptor. Hence,
dense feature loss Ld is defined as the negative l1-norm of
the location features.

Ld = max

(
0,δ −φ

(
‖

M

∑
i=1

(xi
L)‖1

))
, (5)

where δ > 0 is a positive constant. Intuitively, the com-
bined optimization of both sparse location loss and dense
feature loss enables the object encoder to encode graph
representations such that the similar keypoints are encoded to
similar locations, while distinctive keypoints cover different
locations retaining the density of the object descriptor.

Finally, to enable robust object matching, a triplet style
object matching loss is used. The objective of the object
matching loss Lm is to maximize the cosine similarity of
positive object pairs and minimize the cosine similarity of
negative object pairs.

Lm = ∑
{p,q}∈P+

(1−S(Dp,Dq))

+ ∑
{p,q}∈P−

max(0,S(Dp,Dq)−ζ ),
(6)

where ζ = 0.2, S is the cosine similarity, and P+ and P− are
positive and negative object matching pairs, respectively.

C. Topological Graph Merging and 3D Object Descriptors

Given a sequence of temporal topological graph-based
object representations, we use the sparse location features
from the object encoder to build an evolving topological
graph representation of the object. We believe that the
properties of the sparse location features enable us to robustly
match the keypoints of objects across various frames. Based
on this intuition, we calculate the cosine similarity between
location features of different frames and define a matching
threshold of λ = 0.9 to select similar points. Then, based on
this matching, new points in the current frame that didn’t
match any points will be appended to the original graph.
To effectively merge the graph structure, we employ a union
across the adjacency matrices of the merged frames based on
the matching pairs to generate a graph structure (topology)
for the incrementally evolving graph.

Since the graph structure remains constant within the
object encoder, we take the temporally evolving topological
graph representation based on the location features and build
a similar graph with the same topological structure; however,
the nodes are based on SuperPoint features. This SuperPoint
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based evolving topological object graph representation is
input to the object encoder to get the 3D object descriptor.
We call this object descriptor a 3D object descriptor because
it’s an encoding based on a temporally evolving graph. So
essentially, here, the third dimension is time as opposed to
space. We believe that this 3D object descriptor reasons about
varying object structure due to deformation or occlusion,
enabling robust matching compared to a single-frame object
descriptor.

IV. EXPERIMENTS

A. Implementation Details & Evaluation Criteria

The object encoder is trained on the COCO dataset [33],
where the object-wise grouped features are obtained using
ground-truth instance segmentations and pre-trained Super-
Point [7]. Furthermore, random homographies, including the
translation, rotation, perspective, and scale transforms, are
generated for data augmentation. For training, a batch size
of 16, a learning rate of 10−5 with RMSprop [34] optimizer is
employed. For the experiments, the particular configurations
of the object encoder are set as Np = 256, Nm = 16, and
No = 2048.

To test the performance of our proposed framework,
we use the YouTube Video Instance Segmentation (VIS)
dataset [35] which is a large-scale video sequence dataset
containing a large object vocabulary and various challenging
scenarios, including perceptually aliased animals/objects and
people riding on vehicles. Furthermore, the dataset provides
ground-truth instance segmentations for video sequences,
making the experimentation more robust than using a Mask
R-CNN [8] to generate instance segmentations.

For testing the proposed framework, we build 3D object
descriptors from the first half of the video sequence and
match them with the 3D object descriptors of the second
half. To determine a match between an object pair, we
compute the cosine similarity between the descriptors and
define a matching threshold ρ . We use a matching threshold
of ρ = 0.8 to calculate the Precision, Recall, and F1-Score.
Furthermore, by varying the threshold ρ values, we generate
precision-recall curves and calculate the area under the
curves.

We use two baselines: 2D Baseline and 3D Baseline,
to extensively compare the performance of our proposed
approach. For the 2D Baseline, similar to [5], we match
the single-frame descriptors of the first half of the video se-
quence to the second half. Furthermore, for the 3D Baseline,
we match the descriptors obtained by averaging the single-
frame descriptors of the first half of the video sequence
to the descriptors obtained by averaging the single-frame
descriptors of the second half.

B. Results & Discussion

Table I and Fig 4 show the performance of the proposed
approach on the YouTube VIS dataset. We also present the
performance of the two baselines.

TABLE I
PERFORMANCE COMPARISON ON YOUTUBE VIS DATASET.

Methods Precision Recall F1-Score

2D Baseline 80.31 52.05 63.16
3D Baseline 92.51 39.63 55.49
Ours: 3D Object Encoding 75.89 75.02 75.46

Fig. 4. Precision-Recall Curves for the proposed approach and baselines on
YouTube VIS dataset. The area under the curve is shown in the [brackets].

From Table I, it can be observed that our method provides
substantial performance improvements over the 2D and 3D
Baselines. The proposed 3D Object Encoding based on
evolving topological graphs shows an improvement in F1-
Score of ≈ 12% over the 2D Baseline and ≈ 20% over the
3D Baseline. Furthermore, on observing the precision-recall
curves shown in Fig 4, it can be seen that the proposed 3D
Object Encoding has a higher area under the curve of ≈ 6%
compared to the 2D Baseline and ≈ 2% compared to the
3D Baseline. Hence based on the performance trends, it can
be observed that encoding an evolving graph representation
of an object helps the 3D object descriptor to accumulate
knowledge across multiple viewpoints and states, thereby
providing more robust matching.

In Fig 5, we show qualitative visualizations of object
matching for an aquarium video sequence in the YouTube
VIS dataset, where 3D object descriptors based on evolving
graph representations built till that current frame are matched
with the single-frame object descriptors of the current frame.
It can be seen that even though the video sequence poses
challenging scenarios such as perceptual aliasing, deforma-
tion, and occlusion, the proposed method provides robust
matching.

To further analyze the robustness of our proposed topo-
logical graph merging, in Fig 6, we provide visualizations of
new distinctive features added to the evolving graph and also
a plot showing the number of nodes in the evolving graph
at different frames of a single-object boat video sequence in
the YouTube VIS dataset. From Fig 6, it can be observed
that new nodes are added to the evolving graph of the
object only when new distinctive features of the object that
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Frame 2 Frame 20 Frame 30

Fig. 5. Visualizations of object matching for a sequence in the YouTube VIS dataset. Here, we show matching between evolving graph representations
of objects till the current frame and the single-frame topological graph representations of the current frame. Our method can robustly identify the fishes
even though they look similar and showcase challenging properties such as deformation and occlusion.

(a) (b) (c) (d) (e)
Fig. 6. (a) - (d) Visualizations of new distinctive features added to the evolving graph at the frames 1, 10, 16, & 19, respectively for a sequence in
YouTube VIS, and (e) plot showing the number of nodes in the evolving graph at each frame of the same video sequence.

have not been seen a-prior are observed due to changes in
viewing angles. This particular analysis shows our proposed
topological graph merging method’s effectiveness in building
incrementally evolving graphs where new nodes are added
as distinctive features of the object are observed.

V. FUTURE WORK

In future work, we aim to explore training the object
encoder for the task of generating 3D object descriptors.
We currently use an object encoder trained for single-frame
descriptors, and it would be interesting to explore an updated
object encoder that is directly trained to generate 3D object
descriptors. To facilitate this, we aim to formulate a dif-
ferentiable topological graph merging method based on soft
score assignment instead of the current hard threshold-based
graph merging and supervise the graph merging process
using SuperGlue with a formulated graph merging loss.
Furthermore, it would be interesting to explore the concept of
Cross-correlation matrices, which has been recently explored
for Lifelong Graph Learning [36], in the context of our work.

We also aim to deploy the proposed framework in a simu-
lated multi-agent distributed setup to test the effectiveness of
3D Object Encoding by building and sharing evolving graph-
based representations in a distributed setup. Furthermore, it
would be interesting to compare our proposed approach’s
semantic loop closure performance in a distributed setup
with recent state-of-the-art multi-agent loop closure methods
based on image feature matching used in systems such as
Kimera-Multi [6].

VI. CONCLUSION

Discriminatively identifying objects in a distributed setup
is a critical and challenging problem for multi-agent robotics
tasks involving autonomous exploration and semantic local-
ization & mapping. It is crucial to build “evolving” object
representations that accumulate knowledge across an object’s
varying states in this context. In this paper, we present a
novel evolving topological graph-based 3D object encoding
method to generate global object descriptors. We propose a
topological graph merging method that identifies new dis-
tinctive features robustly to build evolving topological graph
representations. The experiments show that our proposed
method leads to superior performance in object identification
and semantic loop closure on a challenging dataset. We
also show that our generated object descriptors are robust
to drastic viewpoint shift, occlusion, deformation, and scale
of the representation. We envision our proposed method to
play an essential role in multi-agent frameworks used for
robotic applications.
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Solving CommonRoad Motion Planning Benchmarks using CILQR

Shivesh Khaitan1, Qin Lin2 and John M. Dolan2

Abstract— Self-driving cars have seen great technological
advancements in recent decades. Motion planning in dynamic
environments is a critical component in the self-driving tech-
nology stack. However, unlike the perception and trajectory
prediction tasks, the lack of real traffic benchmarks imposes a
barrier for the research community to comprehensively validate
and compare different motion planning algorithms. In this
paper, we demonstrate how CILQR, which is an optimization-
based algorithm, coupled with a high-level trajectory planner
and a prediction framework, can be used to solve motion
planning for self-driving in generic scenarios. To demonstrate
the effectiveness of our framework in real-world scenarios, we
test its performance using CommonRoad benchmark scenarios
which have been created using real-world traffic datasets, e.g.,
the NGSIM dataset. Our framework is able to successfully solve
a multitude of benchmark scenarios.

Index Terms— Autonomous Vehicle Navigation, Collision
Avoidance, Motion and Path Planning, Optimization and Op-
timal Control

I. INTRODUCTION

Self-driving cars are at the heart of academia and industry
due to the immense benefits which they can bring to society,
ranging from reduced accidents to solving traffic jams and
eliminating drivers’ discomfort during long journeys. They
have been around for a decade and technological advances
are fueling further developments in the field. Research in
the field has been promoted by several key industry leaders,
e.g., Waymo and Tesla. Major events like the DARPA
challenge, Hyundai Autonomous Challenge and the latest
Indy Autonomous Challenge have also contributed to the
progress. Most approaches to solving self-driving have di-
vided the problem into subsystems, including mapping and
localization, perception, and planning and controls.

Motion Planning is one of the most critical tasks in
the development of driverless car technology. This is be-
cause motion planners need to deal with obstacles, road
constraints, traffic rule constraints and other human drivers
in the environment simultaneously while ensuring that the
planned trajectory is dynamically feasible for the low-level
controller to achieve. The highly dynamic environments pose
a major challenge to decision making and planning in real-
world driving scenarios. Though there have been several
advancements in the field of motion planning over the years,
solving motion planning for self-driving in complex traffic

1Shivesh Khaitan is with the Department of Computer Science &
Engineering, Manipal Institute of Technology, Manipal, Karnataka, India
shivesh.khaitan@learner.manipal.edu

2Qin Lin and John M. Dolan are with the Robotics
Institute, Carnegie Mellon University, Pittsburgh, PA, the USA
{qinlin,jdolan}@andrew.cmu.edu

scenarios is still a challenge which will require further work
to be solved.

Previously, several motion planning frameworks have been
proposed for self-driving. However, a majority of the existing
solutions have been tested in limited, artificially designed
scenarios. This is because motion planners alone are not
able to deal with general self-driving scenarios. They need
processed obstacle data for prediction and reference goals to
determine the behavior to be executed. Thus, the research
question raised in our work is how a motion planner can
be coupled with a high-level route planner and a prediction
framework to solve CommonRoad Motion Planning bench-
marks [1] which have been created using real-world traffic
data, e.g., from the NGSIM dataset.

CommonRoad Benchmarks are a collection of composable
benchmarks for motion planning on roads. Reproducibility
and comparability are important advantages of the Com-
monRoad tests that make them suitable for testing motion
planning algorithms.

Figure 1 shows an overview of the solution architecture.
For each planning problem, CommonRoad provides a traffic
scenario, goal region and a lanelet [2] network describing the
road network architecture. The CommonRoad interface also
provides the updated state of the ego-vehicle and dynamic
obstacles at every time-step. Time is discretized with a
small time-step dt in each planning problem. The proposed
solution works in a receding horizon framework. For each
planning step, the high-level route planner generates a series
of lanelets to traverse in order to reach the goal region
specified in the planning problem. Concurrently, the predic-
tion framework also generates future trajectory predictions
of the dynamic obstacles. The motion planner then uses
the reference lanelets, predicted dynamic obstacles and the
road boundary as constraints to generate a kinematically
feasible trajectory for the car’s controller starting from the
ego-vehicle’s instantaneous state.

The rest of this paper is organized as follows. Section
II provides a review of existing related work. Section III
explains the CommonRoad Motion Planning problem in
detail. Section IV contains necessary background on key
methodologies. Section V is about the formulation of the
vehicle dynamic model, cost function and constraints design.
Section VI presents the experimental results. The conclusion
is in section VII.

II. RELATED WORK

Several motion planning frameworks have been proposed
for self-driving. The algorithms are divided into four major
categories. including 1) search-based methods such as state
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Fig. 1: Overview

lattice based planning [3] and Probabilistic Road Map (PRM)
[4]; 2) sampling-based methods such as rapidly-exploring
random trees (RRT) [5]; 3) various curve interpolation-based
methods; 4) optimization-based approaches using sequential
programming. End-to-end learning-based methods using Imi-
tation Learning [6] and Reinforcement Learning [7] have also
become popular for motion planning and decision-making in
recent years.

Search- and sampling-based methods are often not suitable
for highly cluttered urban scenarios due to their incomplete
nature. Further, curve interpolation methods do not always
guarantee kinematically feasible trajectories. Learning-based
methods are still considered black-box solutions which re-
quire further study before they can be used in real-world
scenarios.

Trajectory optimization-based approaches formulate the
motion planning problem as a constrained optimization prob-
lem where real-world constraints like dynamics and collision
avoidance are formulated as optimization constraints. Model
Predictive Control (MPC) [8]–[10] is one of the widely used
optimization-based approaches for planning and controls.
Despite being highly popular, its use in real-world self-
driving technology is limited due to high complexity of the
self-driving car problem, leading to increased computation
time. This complexity is mainly due to the highly nonlinear
vehicle models and nonconvex free space in real-world driv-
ing scenarios, ultimately leading to nonlinear constraints in
the optimization problem. Mixed-Integer Quadratic Program-
ming (MIQP)-based solutions [11] have also been proposed,
but again the nonlinear constraints pose a challenge due to
high computation.

Linear Quadratic Regulator is a widely used method
for optimal control of linear systems with quadratic cost
function. Iterative linear quadratic regulator (ILQR) [12]
is an extension of LQR for nonlinear systems which uti-
lizes Dynamic Programming (DP), thus reducing computa-
tion compared to other nonlinear system solution methods.
Constrained ILQR (CILQR) [13] is a further extension of
ILQR which is able to deal with obstacle constraints by
adding obstacles as quadratized cost in the objective function.
However, most earlier approaches [13], [14] are limited to
simple scenarios with static obstacles or vehicles moving
with constant velocity.

In [15], the authors have further proposed a safe prediction
framework for CILQR. However, the testing is still limited
to a few specialized scenarios. In this work, we demonstrate
a complete motion planning framework with route-planning
and prediction for CILQR to solve real-world scenarios
simulated using CommonRoad benchmarks.

III. COMMONROAD BENCHMARKS

Each CommonRoad benchmark consists of a scenario
with a planning problem, a vehicle dynamics model, vehicle
parameters, and a cost function composing a unique ID.
The same scenario can be tested with different vehicle
dynamics models, different vehicle parameters and different
cost functions. The scenario selection tool available allows
segregating specific kinds of scenarios, e.g. lane change,
lane following, merging, traffic jam, turns, intersections, etc.
A single planning problem can also have multiple scenario
tests.

The ego-vehicle state space model is defined as:

ẋ(t) = fM (x(t), u(t)) (1)

where x ∈ Rn is the state vector, u ∈ Rm is the input
vector and t represents time. For each planning problem, the
following are defined:

• Initial time, t0: The solution trajectory must start from
the initial time.

• Initial state, x(t0): The solution trajectory must start
from the initial state.

• Lanelet network: The occupancy of the ego-vehicle for
each state of the solution trajectory must lie within the
lanelets.

• Dynamic obstacles: Occupancy of dynamic obstacles in
the scenarios at each time-step should not have any
overlap with the occupancy of the ego-vehicle at that
time-step.

• Goal region, GS ⊆ Rn: The solution’s terminal state
must be within the goal region.

The goal region can be a union of disjoint sets for different
state constraints. Every goal region includes:

• Final time interval: tf ∈ [tfmin , tfmax ]. The solution
trajectory must finish within the specified time interval.

• Final position: The final position can be specified in one
of two ways: 1) Set of Lanelet IDs; 2) Convex polygon
region. The center of the final position of the ego-
vehicle must be within the specified lanelets / polygon.

• Final Orientation interval (optional):
θf ∈ [θfmin , θfmax ]. The solution trajectory’s final
state’s orientation must be within the specified orien-
tation interval.

• Final Velocity interval (optional): vf ∈ [vfmin , vfmax ].
The solution trajectory’s final state’s velocity must be
within the specified velocity interval.

• There can be additional constraints on yaw-rate, slip-
angle, etc. depending on vehicle model. These are
specified in a similar manner as intervals.

Apart from the vehicle dynamics (Eq. 1) and goal region
constraints for the final state, there are additional constraints
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which should not be violated for each of the solution
trajectory states:

• The occupancy of the ego-vehicle should be within
the drivable free-space (avoiding dynamic obstacles) for
each time-step, i.e., ∀t ∈ [t0, tf ] : O(x(t)) ∈ Wfree(t)
where O(x(t)) denotes the occupancy at time t.

• Control constraints, e.g., acceleration and steering lim-
its.

IV. METHODOLOGY

In this section, we will go through key techniques used in-
cluding route-planning, short and long-term prediction using
reachability analysis and an adaptive filter and Constrained
ILQR optimization.

A. High-level Route Planner

Route planning for generating a high-level plan to be fol-
lowed by the motion planner is done using CommonRoad’s
inbuilt route planner. The route planner finds sequences of
lanelets that lead from the initial lanelet to the goal lanelets
of a given planning problem. The planner works by creating
a directed graph of the lanelet network specified for the
planning problem and running an A* [16] search in the
graph. After generating the series of lanelets, it computes a
reference path through the lanelets. However, the reference
path might not be kinematically feasible and may have
collisions with dynamic obstacles. These have to be dealt
by the motion planner.

B. Prediction of dynamic obstacles

The state of the moving obstacles in the environment
needs to be predicted in each planning loop to generate
obstacle-free trajectories. This is achieved using the short-
term and long-term prediction model from [15]. It proposes
a combination of a safety-oriented short-term planner and an
efficiency-oriented long-term planner.

The short-term prediction considers the uncertainty of a
target vehicle’s state (e.g., sensor disturbance or localiza-
tion error) and the uncertainty of control actions over the
short-term prediction horizon under a kinematically feasible
but possibly non-deterministic assumption. The reachable
state of the target vehicle is projected to the sub-space in
the inertial frame for the min/max longitudinal and lateral
positions. The long-term predictor only predicts the target
vehicle’s single position (i.e., particle) without considering
uncertainty. For a detailed explanation of the short- and long-
term predictions, readers are referred to [15].

C. Constrained Iterative Linear Quadratic Regulator
(CILQR)

To compute the final trajectory, we make use of CILQR
[13], [14]. An obstacle-free motion planning problem can
be formulated as a standard ILQR problem with nonlinear
system dynamics:

min
U

J =
N−1∑
k=0

l(xk,uk) + lf (xN ) (2)

s.t. xk+1 = f(xk,uk) (3)

where xk and uk are the state and the control input at time
step k and xN is the final state. Thus, N is the planning
horizon. Eq. 3 is the system dynamics constraint, which is
a transition function mapping state and control at step k to
state at step k+ 1. U := {u0,u1, · · · ,uN−1} is the control
sequence, and l and lf are the cost functions.

Since the standard LQR only solves optimization problems
with quadratic cost and linear systematic constraints, this
problem can be reformulated. By linearizing the systematic
constraint at multiple points, we can relax the nonlinearity of
the ILQR problem into the linear problem required by LQR.
The steps of ILQR are listed below.

1) Start with a feasible initial guess û and obtain x̂ using
the dynamic model. A common way is using a zero
initialization. Note that feasibility of the initial guess is
important in practice. The users can either do a sampling
in the beginning or start the planning only when the zero
initialization is feasible.

2) Calculate the derivatives of the dynamics and the cost
function about the trajectory.

3) Run an LQR backward pass to obtain δu∗. For an
ill-conditioned matrix, we increase λ and restart the
backward pass, otherwise we reduce λ. The details of
designing appropriate factors of increasing and decreas-
ing can be found in [17].

4) Run forward pass and initially set α = 1 in δu = αk+
Kδx to compute a new nominal sequence. If the cost
does not converge, decrease α and restart the forward
pass.

ILQR has the drawback of its constraint-free nature, which
makes it unsuitable for collision avoidance problems. The
CILQR algorithm offers the inclusion of different constraints
into the objective function through barrier functions. Ideally,
a barrier function serves as an indicator giving a huge penalty
to constraint violation and low cost to satisfied constraints.
Constraints can be generalized into two categories by lin-
earity. First, any nonlinear constraints can be converted to
linear constraints via a second-order Taylor Expansion. Then,
a barrier function is applied and quadratized. Eq. 4 and Eq.
5 demonstrate this process. The quadratized linear barrier
function can now be incorporated into the ILQR algorithm.

An exponential barrier function is defined as

bk(g(xk)) = q1 exp(q2g(xk)) (4)

Its Jacobian and Hessian are derived as

∇b = q1q2 exp (q2g(xk))∇g(xk)

∇2b = q1q2 exp (q2g(xk))(q2∇g(xk)∇g(xk)T +∇2g(xk))
(5)

where g(x) is the constraint function at time step k.
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V. PROBLEM FORMULATION

In this section, we will go through the vehicle dynamic
model, the cost function and constraints design.

A. System Dynamics

The vehicle model used is the kinematic single-track
model (denoted as KS in CommonRoad) shown in Figure
2. It considers only two wheels, where the front and rear
wheel pairs are each lumped into one wheel, because the
roll dynamics are neglected. The tire slip is neglected as well.
The differential equations of the vehicle model are defined
as:

ṗx = v cos(θ)

ṗy = v sin(θ)

v̇ = along

θ̇ =
v

L
tan (δ)

δ̇ = vδ (6)

where px and py are the position in the Cartesian plane
v is the velocity
θ is the orientation
along is the longitudinal acceleration
δ is the steering angle
vδ is the steering velocity
L is the wheelbase.

Following are the constraints for the vehicle model:

vδ ∈ [vδmin , vδmax ]

v ∈ [vmin, vmax]

δ ∈ [δmin, δmax]

along ∈ [−amax, amax]√
a2long + (vθ̇)2 ≤ amax (7)

The control input is u = [along, vδ]
T .

Fig. 2: Vehicle Kinematic Bicycle Model

B. Objective Function for CILQR

The general definition of the objective function in Eq. 2
can be made specific in Eq. 8. The terms in the summation
represent the control effort cost, the reference position track-
ing, the reference velocity tracking, the reference orientation
tracking and the constraints cost (i.e., obstacle avoidance).
cN is the end state cost.

J =
N−1∑
k=0

(
cuk + crefk + cvelk + cθk + cconk

)
+ cN (8)

1) control effort cost: The penalty for large acceleration
and the steering speed with corresponding weights are shown
in Eq. 9.

cuk = uTk

[
wa

wvδ

]
uk (9)

2) position, velocity and orientation tracking cost: The
reference tracking term assigns a cost based on the distance
to the closest point of the reference trajectory. The velocity
cost penalizes the ego-vehicle for the difference between its
velocity and the reference velocity. Similarly orientation cost
penalizes for deviation from the reference orientation. The
combined cost is written in a matrix form in Eq. 10, where
∆xk is the difference between the ego-vehicle state and the
reference state.

∆xk = xk −
[
prefx,k prefy,k vrefk θrefk

]T
creft + cvelt + cθt = ∆xT


wref

wref
wvel

wθ

∆x

(10)

The reference path from the route planner is a series
of points in the Cartesian space which does not include
any time or velocity reference. Since the environments are
dynamic and the solution trajectory is required to be within
the goal region in the specified time-interval, planning needs
to consider both space and time dimensions. Further, since
motion planning can only be done for a short horizon,
intermediate goals need to be generated.

Thus, for each planning iteration, a local reference is com-
puted. The reference path from the route planner is resampled
at turnings to decrease the distance between sampled points.
This is because at turnings, vehicle velocity needs to be
less than the usual velocity. Thus, instead of setting vrefk

explicitly, we implicitly add it using the distance between
reference points. Hence, wvel is set zero throughout except
when the goal region is within the planning horizon. In this
case, the vrefk is set to the average of the required velocity
interval as defined in the planning problem and wvel is set to
be nonzero. For orientation as well, wθ is set to zero unless
the goal region is within the planning horizon.

The time dimension is added to ensure that the ego-vehicle
reaches the goal region in the specified time interval. It is
done as follows:
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1) The time remaining is calculated as

tr = tfavg − tk
where tfavg is calculated as

ti = max(
tfmin + tfmax

2
, tfmax − 5)

tfavg =

{
ti, if ti > tk

tf , otherwise
(11)

2) The reference path, after resampling for turnings, is

divided into d tr
dt
e segments such that each of the

segments has an equal number of reference path points
(the number of points in the last segment can be adjusted
if tr is not exactly divisible by dt). The centers of the
first N segments are set as the position reference for
CILQR.

The end state cost is set in a similar manner. The penalty
cost for the end state is set much higher than for the
intermediate states. This is to ensure that the ego-vehicle
always prioritizes obstacle avoidance over reference tracking
and at the same time moves in the general direction of the
goal instead of strictly following the reference path, which
might lead to collisions.

3) constraint cost: All inequality constraints can be ex-
pressed in a negative null form shown in Eq. 12, in which
xlim is the maximum or minimum boundary value and f(x)
is some sort of function on the decision variable.

g(x) = xlim − f(x) ≤ 0 (12)

For linear constraints like acceleration and steering velocity
limits, we can write them as, for instance:

g(u) = u− umax ≤ 0 (13)

Then, a barrier function can be used as stated in Eq. 4.
For the obstacle avoidance term, we use a geometric

collision check as the inequality constraint and the problem is
formulated as a geometry-based cost function. Obstacles are
formulated as ellipses with major and minor axes adjusted
for the ego-vehicle’s shape. The inequality constraint is
shown in Eq. 14. θobsk is the predicted heading angle of the
obstacle at time k, and b are the semi-major and -minor axes’
lengths. ∆xk and ∆yk are the relative longitudinal and lateral
distance between the ego-vehicle and the predicted obstacle,
respectively. The corresponding Jacobian and the Hessian of
this term for the LQR backward pass can be found in Eq. 5.

Rk =

[
cos(θobsk ) − sin(θobsk )
sin(θobsk ) cos(θobsk )

]
Tk = Rk

[
1
a2

1
b2

]
RTk

g([∆xk,∆yk]) = 1− [∆xk,∆yk]Tk[∆xk,∆yk]T ≤ 0
(14)

4) road boundary cost: To ensure that the CILQR does
not violate the road boundary constraints, the road boundary
is included in a manner similar to the obstacle cost for
dynamic obstacles. However, the road boundaries need to

be incorporated differently, as they are not point obstacles.
Algorithm 1 describes the obstacle generation.

Algorithm 1 Road Boundary Constraints
Compute (L)

inputs : L, list of lanelets in the network
output: O, computed list of obstacles
O ← ∅

foreach lanelet l ∈ L do
if l.left ⊂ ∅ then

O ← O ∨ l.left boundary
if l.right ⊂ ∅ then

O ← O ∨ l.right boundary
return O

As described in algorithm 1, for each of the lanelets, it is
checked whether there exists an adjacent lanelet to its left (or
right) or not. If there is no lanelet to its left (or right), this
means that the area on the left (or right) is not drivable free-
space. Then, the obstacles list is appended with the sampled
boundary points on the left (or right). Otherwise there exists
an adjacent lane to the left (or right) and there is no need for
any boundary constraint. The boundary points added to the
obstacles lists are then added as costs in a manner similar to
the dynamic obstacles. The radius of the obstacles is set as
the distance between the sampled boundary points to form
a circle. Since the obstacle is a circle, orientation does not
have any effect and θobsk is set to zero.

VI. EXPERIMENTAL RESULTS
In this section, we will present the experimental results we

have for CommonRoad benchmarks. The ego-vehicle model
used is kinematic single-track with vehicle parameters of a
Ford Escort. We have tested using the TR1 cost function.
The cost function penalizes the solution for longitudinal jerk
(Jlong), steering rate (SR), distance to obstacles (D) and
deviation from lane center (LC). Thus we solve the scenarios
in the setting KS1:TR1:. The scenarios for testing are taken
from the CommonRoad’s Competition for Motion Planning
of Autonomous Vehicles 2021 - Phase 1 1.

Fig. 3 shows five of the scenarios which were used for
testing. Due to limited space, we have shown four snapshots
for each scenario beginning with the initial state and ending
at the final goal state. The ego-vehicle is pictured in red. The
actual trajectory of the ego-vehicle is pictured in dark blue.
Dynamic obstacles (including vehicles, buses, pedestrians
etc.) are depicted in light blue. The yellow-regions are the
goal lanelets. The grey areas are the road network with lane
markings in black. All the scenarios are in the noninteractive
mode of CommonRoad. Thus, the surrounding vehicles do
not cooperate with the ego-vehicle.

The multitude of scenarios types for which the testing was
conducted is evident in the figures.
(a) DEU Flensburg-1 1 T-1: Sharp right turn with vehicle

behind.
1https://commonroad.in.tum.de/competition/announcement
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(b) ZAM Tjunction-1 48 T-1: Busy T-junction.
(c) DEU Flensburg-60 1 T-1: Different vehicles including

bus, bicycle and pedestrian.
(d) DEU Lohmar-39 1 T-1: Urban traffic
(e) DEU Flensburg-71 1 T-1: Narrow road with single lane

We have used a planning horizon of 4 seconds with a
discretization (dt) of 0.1 seconds. The average loop time for
the framework is less than 300ms in the Python implemen-
tation. Thus, we expect a real-time performance in C++. The
framework runs on a laptop with a 2.50GHz Intel Core i5-
7200U CPU.

VII. CONCLUSION

In this paper, a framework for solving the CommonRoad’s
Motion Planning Benchmarks has been proposed. The frame-
work is able to successfully generate solutions in different
kinds of scenarios including urban, junctions, turns etc. We
demonstrate how CILQR, coupled with a route planner and
prediction framework can be used to generate kinematically
feasible obstacle free trajectories for self-driving in various
situations.

Further work in this approach includes extending the
approach to test with the highly complex vehicle models
and improving the implementation for real-time performance.
Another area of research would be to improve the prediction
framework using the road network constraints available.
Integrating a robust behaviour planner to decide intermediate
goals would also improve the performance.
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(a) DEU Flensburg-1 1 T-1

(b) ZAM Tjunction-1 48 T-1

(c) DEU Flensburg-60 1 T-1

(d) DEU Lohmar-39 1 T-1

(e) DEU Flensburg-71 1 T-1

Fig. 3: Scenarios
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Modelling Human Trust in Commanding of Robot Wingmen

Manav Kulshrestha1, Huao Li2, Konstantinos Mitsopoulos3, Dana Hughes4, Katia Sycara5

Abstract— In the development of AI systems that interact
with humans and help them achieve a common goal, trust
plays a key role in the efficient utilization of the communicated
information. Simply put, for peak effectiveness, a human must
be able to reasonably trust the information it gets from their
AI counterpart. In working towards the same goal, the AI
counterpart is similarly incentivised to maintain a good repu-
tation with regards to its reliability as a teammate. We explore
these ideas by allowing the AI to model its understanding
of this trust and adapt accordingly as it performs in a 2-
dimensional game environment with multi-faceted goals. This
model aims to supplement the AI’s performance by allowing it
to better predict human intentions and capabilities throughout
the simulation in order to be a better wingman to the human
pilot. The scope of the project will also extend to how the
dynamics of the situation evolve with multiple such AI wingmen.

I. INTRODUCTION

The growing ubiquity of automation has seen advanced
robots appear in a variety of work environments, many of
which see them working along side humans. Human presence
is quite important in applications where there is a common
task since humans can better adapt to changing mission
guidelines and tasks, especially when the robots are built
to be less specialized in their implementation. Our scenario
deals with an aerial simulation environment. For tasks in this
vein, humans are present in the form of a commanding vessel
which is aided by some amount of UAVs in a supplementary
capacity which may may be responsible for environmental
monitoring, exploration, or aiding in defensive formations.
In an abundance of cases, humans may find themselves
depending on the robots in very difficult situations with
incredibly high stakes. Unfortunately, in the field of machine
learning, the progressing sophistication of the automata’s
decision processes often sees an incomprehensible obfus-
cation as the model for their mind learns and adapts to
more complicated situations and tasks. This distancing of
the human’s understanding of the inner workings of the
automaton can have a negative impact on their ability to trust
the information being provided by the automaton. In addition
to this, the limited understanding also typically extends to
accurately understanding the results from the UAVs as well
as knowing the inputs that lead to the desired behaviors

1Manav Kulshrestha is an undergraduate student with the College of In-
formation and Computer Sciences, University of Massachusetts at Amherst

2Huao Li is a Ph.D. student with the Intelligent Systems Program,
University of Pittsburgh

3Konstantinos Mitsopoulos is an Associate Project Scientist with the
Robotics Institute, Carnegie Mellon University

4Dana Hughes is a Postdoctoral Fellow with the Robotics Institute,
Carnegie Mellon University

5Katia Sycara is a Research Professor with the Robotics Institute,
Carnegie Mellon University

which directly affects effective command the UAV fleet. All
of these factors foster varying levels of trust depending on
the human operator’s interpretation, causing under-trusting
of information which may be vital to the success of an op-
eration or the over-trusting of information with questionable
veracity. Another aspect of this problem is that providing an
abundance of information can have a detrimental impact on
the effectiveness of humans, especially in situations where
time is of the essence. In the case that the human under-trusts
the UAVs, they may micromanage by being unnecessarily
precise in their instruction or by taking over tasks that could
have been delegated. In the case that the human over-trusts
the UAVs, they may blindly accept the recommendations
from the UAVs and fail to accurately monitor the situation.
To summarize, trust plays a very important role in operations
involving human-automaton cooperation and requires the
automata to have a good sense of the human’s trust in
order to adapt its actions with the goal of improving overall
performance of the group.

Fig. 1. Environment concept for loyal wingman scenario

A. Markov Decision Processes

A Markov Decision Process (MDP) is represented as a
tuple 〈S,A,R,T,γ〉. Here, S denotes the set of possible states
the agent can be in. The state of the environment at time
t is given by the random variable St . A denotes the set of
actions that the agent can select between. The action chosen
by the agent at time t is denoted by the random variable
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At . R : S×A×S→ R is a reward function and characterizes
the distribution over rewards at time t given by St ,At , and
St+1. T : S×A×S→ [0,1] is a state transition function and
characterizes the distribution over states at time t +1 given
the state and action at time t. An important factor is the
Markov property which states that the distribution over St+1
is independent of all prior events given St and At . That is
to say that the distribution over states at time t + 1 is fully
determined by the state and action at time t. Finally, γ ∈ [0,1]
is the reward discount parameter which is used to discount
rewards based on how far in the future they occur. π : S→ A
is a policy which essentially specifies the distribution over
At given St . The main problem concerning MDPs is to find
the optimal which maximizes the cumulative reward function
given by

∞

∑
k=1

γ
kR(sk,a,sk+1)

B. Inverse Reinforcement Learning

The Inverse Reinforcement Learning (IRL) problem is
to find a reward function that best explains the observed
behavior. In the simplest of cases, the state space would be
finite, the model would be known, and the complete policy
would be observed. In that, we would be given a finite state
space S, the set of all actions A, the transition function T ,
and the reward discount parameter, and a policy π . From
here, we are to then find the set of all possible rewards
such that π is the optimal policy for the MDP given by
〈S,A,R,T,γ〉. Next, when considering the case of infinite
states, the MDPs can be defined in the same way as above.
However, we allow an isomorphism S = Rn for the sake of
concreteness. Here, the reward function is a function from
Rn to the reals (which trivially extends to include actions).
From here, we can simply use a linear approximation for the
reward function, expressing it as

R(sk,ak,sk+1) =
d

∑
j=1

α jφ j(sk)

where all φ j are fixed, known, and bounded basis mapping
functions from S = Rn to R and the α j are unknown
parameters we want to fit.

II. RELATED WORKS

J. D. Lee and See’s (2004) closed loop model, the human
operator would receive the information on the state of
the automata’s decision processes from a display [1]. The
trust was then determined as a function of the automata’s
capability as well as the current state. To elaborate, their
closed model of the human operator’s trust had 6 stages. As
per the automota’s understanding, after receiving information
from the display, the human operator would analyze said
information and form their belief regarding the situation.
This allows the trust to evolve which can either cause more
analysis and belief formation or go on to formulate an inten-
tion. From here, there is the simple matter of action reliance.
Sheridan (2019) expands on this by proposing a Kalman
estimation model by developing a feed-forward influence of

trust anticipation which evolves trust after intentions have
been formulated [2]. This essentially allowed the trust model
to anticipate the changes in the system state as intervening
decisions were made by the human operator. The continuous
updating of the trust was achieved by using the discrepancy
between the state of the model and what was displayed
to the human operator as well as what was anticipated to
be the effects of the intervention. On another note, Nam,
Walker, Lewis, and Sycara (2017) proposed a computational
trust model for a foraging task where a swarm of robots
was controlled by a human operator and the goal was to
search for hidden targets in an unknown environment with
dynamic goals [3]. An interesting problem faced was that
since the goals were dynamic, interventions by the human
operator was not necessarily indicative of lowering trust. In
order to resolve this, they developed a classifier to distinguish
between intentional shift in priorities and loss in trust.

A. Online Probabilistic Trust Inference Model

Xu and Dudek (2015) proposed a dynamic Bayesian
inference model which used the performance of the automata
in order to predict the operator’s trust and supplemented it by
taking periodic trust reports from the human operator in the
middle of the task as well as interpreting the human opera-
tor’s intervening action or returning control to the automata
[4]. OPTIMo treats the degree of human-robot trust tk at
each time step k as a random variable, and maintains belief
distributions for these performance-centric trust measures,
based on various factors of the interaction experience. This
was achieved by creating a Bayesian network which also
incorporated past time steps in order to influence the current
trust level. This graph structure efficiently encodes both
causal and evidential relationships between trust and other
factors, as well as the evolution of trust states over time.

Fig. 2. Dynamic Bayesian structure of OPTIMo from Xu and Dudek
(2015). Dashed factors are not observed on all time steps k, and are not
mandatory for inferring trust states tk

III. METHODOLOGY

Our experiment will utilize two different representations
to model human trust with the intention of comparing
and analyzing their accuracy, namely: inverse reinforcement
learning and an online probabilistic inference model. The
former sees human trust formalized as an MDP and will use
IRL to learn the underlying reward function for the human
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Fig. 3. Wingman scenario simulated in MAPE. 5 Targets (red), 2 UAVs
(grey), and 1 Human operator (pink)

in an effort to learn the trust behavior. The latter is to use
the Bayesian inference model which was detailed in Xu and
Dudek (2015) [4]. We designed our experiment to simulate a
two dimensional representation of an aerial environment. The
environment will be populated by 1 human pilot, 2 unmanned
aerial vehicles (UAVs) and 5 opposing targets. All targets can
have a capability level of 0,1, or 2 whereas each of the UAVs
as well as the human operators will have a capability level of
1. The basic idea behind defeating a target will be to engage
it in either a group or alone so that the cumulative capability
level is at least equal to that of the target. The overarching
goal of the experiment, as a human participant, is to defeat
targets and maximize the score while making effective use of
the UAVs. The main challenge, from the human participant’s
perspective, is to try and gauge the reliability of each of the
UAVs.

The format of the experiment is designed to have 20
trials where the properties of the UAVs remain persistent
through the trials. That is, observed performance of each of
the specific UAVs is expected to remain consistent. Each
trial consists of two phases. Phase one will begin with
each of the UAVs going out to survey a different target.
The UAVs will then convey the information regarding the
perceived capability level of the target with a confidence
score. This confidence score will be obscured with some
gaussian noise. Then, in the second phase, the human op-
erator simply chooses to engage one of the 5 targets. Any
successfully defeated targets will be counted towards the total
score, weighted by the capability level of the defeated target.
Finally, we ask the human operator for a subjective rating
regarding their trust towards each of the two UAVs. From
here, we simply reset the environment and repeat until the

participant has completed 20 trials.
For our experiments, we decided on different levels of re-

liability for UAVs and performed trials for each permutation
of UAV configurations. The following details the multinomial
distribution used for calculating the chance of the UAVs
detected level matching the true level of the target.

```````````̀
True level

Detected level Level 0 Level 1 Level 2

Level 0 0.8 0.1 0.1
Level 1 0.1 0.8 0.1
Level 2 0.1 0.1 0.8

TABLE I
MULTINOMIAL DISTRIBUTION FOR UAV TYPE 1

```````````̀
True level

Detected level Level 0 Level 1 Level 2

Level 0 0.6 0.2 0.2
Level 1 0.2 0.6 0.2
Level 2 0.2 0.2 0.6

TABLE II
MULTINOMIAL DISTRIBUTION FOR UA TYPE 2

From the human perspective, there are several different
considerations to be made with regards to the experiment.
The operator has to build a continuous understanding of
which UAVs it feels is more reliable and establish trust for.
In addition to this, the addition of gaussian noise to the
confidence levels of the readouts from the UAVs make it
so the trust will not simply be a function of the confidence
level.

IV. RESULTS AND CONCLUSIONS

Our research goal is to rate the accuracy of the trust rating
modelled by the data from the UAVs with the ground truth
being the one provided by the human participants during the
trials. Another goal is to compare the performance of the two
models, with respect to accuracy. The following is some data
from Li et al. (2021) where a comparable experiment mod-
elled trust using Kalman filters [5]. A notable exception was
that the experiment involved supervisory control of swarms
as opposed to having the human operator be participating in
the field.

Fig. 4. Kalman estimation to model trust in Li et al (2021) [5]. The blue
line represent model prediction while green is user trust feedback values
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V. FUTURE WORK

Some next steps would include a second phase to the trials
where the UAVs would coordinate with the human pilot in
order to formulate the next steps which could take the form
of the UAVs recommending possible plans for the human to
either accept of reject. Naturally, an accept would indicate the
building of trust whereas the a rejection would indicate trust
loss. Another idea would be to compare the performance of
alternate models such as Kalman filters. A more ambitious
extension of this project would be to use the data obtained
from these experiments and embed them within the the UAVs
for a real time test along side human participants as opposed
to discrete trials.
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Tuning Mechanical and Aerodynamic Properties of Micro Whisker
Sensors for Improved Airflow Detection and Stimuli Sensing

Courage Lahban1 Teresa Kent2 Dr.Sarah Bergbreiter3

Fig. 1. Design of the WhiskSight sensor and primary components. This
figure was first published in [6]

Abstract—Modifications to the WhiskSight sensor design and
attached whiskers can amplify or mechanically filter properties
of airflow applied to the WhiskSight sensor. Specifically, two
criteria were varied: the layout of the whisker array, and
mechanical properties of the elastomer substrate. Different array
configurations will change the response to airflow. We hypothesize
that the arrangement of the whisker array will affect the ability
for all whiskers to detect airflow depending on the relative
angle between the airflow and the array. Finally, the WhiskSight
sensor uses an elastomer membrane to suspend the whiskers
over a camera; changing the elastomer membrane’s modulus
of elasticity will affect both sensitivity and may even provide a
mechanical filter for airflow. For example, we hypothesize that a
low modulus elastomer will increase the angle of deflection and
oscillations. The sensor will be characterized using a commercial
fan and previously developed tracking algorithms. The methods
used in the development and calibration of micro whisker sensors
is discussed along with the experimental results

I. INTRODUCTION

M ammals can use their whiskers to trace their path by
detecting flow features from their surroundings without

necessarily using their visual senses. With a bilateral array
arrangement of more than 25 whiskers located per side of

1 Courage Lahban is with Department Mechanical and Industrial Engineer-
ing, New Jersey Institute of Technology Newark, NJ 07102 USA

2 Teresa Kent and 3 Dr.Sarah Bergbreiter are with the Department of
Mechanical Engineering, Micro Robotics Lab, Carnegie Mellon University,
Pittsburgh, PA 15213 USA

the nose [1], mammals can use the whiskers to plan rapid
motion ahead of their perception. Scientific studies reveal that
seals can use their whiskers to locate their prey even when
prevented from eye vision or sound sensing [9]. Engineered
vibrissae (whiskers) can replicate the properties demonstrated
by mammals to obtain multi-dimensional tactile information
when applied in the surrounding environment to distinguish
from contact, drag and inertia forces generated by the move-
ments of the whisker motion [6].

Biologically inspired sensing for stimuli like those exhibited
by mammals have been hypnotizing for implementation over a
wide spectrum in robotics applications. Present in most mam-
mals [2], whiskers augment vision by providing additional
sensory information especially during full or partial occlusion
of light. Active sensing in robotics can be used to enhance
sensory systems like optical sensors and computer vision sys-
tems, which will improve the sensory capacity of mechanical
systems such as mobile robots [3]. Direction sensing robots
and autonomous systems can use this active sensing technique
to read locations, detect speeds and control movements from
lower pressure to higher pressure surroundings [4].

Different designs and approaches have been used for the
development and optimization of whisker-based sensing sys-
tems. In a new design called “Touch the Wind” [4], a group
of scientists use a whisker inspired high drag sensor to
measure flow interaction and sensing dynamics for a Micro
Aerial Vehicle (MAV) using whiskers. They adopt a deep
learning and model-based approach to estimate UAV velocity
interaction with the wind, measuring airflow at values up to 4
m/s [4].

Since airflow sensitivity is important for whisker perfor-
mance, whisker sensing can also be used to detect and dif-
ferentiate flow at more closer ranges when applied towards
surface ranges. Another whisker sensor called the TacWhisker,
uses a camera to track engineered whiskers during whisking
to localize an object [5]. A non-similar approach incorporates
magnetic hall effects sensors on rigid whiskers as trackers for
tactile sensing [3, 4]. The highlighted approaches above show
that current work on whiskers is largely inspired by the ap-
plication and direct implementation, but whisker performance
may vary based on the techniques and methods applied during
development, and the purpose the whisker is been developed.

When it comes to whisker optimization, we are specifically
interested in the general properties such as whisker oscillation
and deflection which amount for the behavior and information
obtained from the whisker sensors when applied under differ-
ent flow conditions. In this paper, we explore different tuning
techniques to optimize the performance of the WhiskSight
sensor [6] for detecting specific variations in wind speed in
an airflow range. We look at the mechanical properties of the
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elastomer substrate and study how the distinction in informa-
tion produced by different materials under airflow conditions
may highlight new properties in the behavior of whiskers.
Two variations were made: comparing material thickness and
observing the whisker responses.

In addition, we seek to understand how whisker placement
and orientation relative to airflow origination impacted average
deflections and oscillations produced when flow is applied.
Whisker based sensing systems face current limitations, first
being the control of whiskers during active sensing which
is important to amplify the signal in quality and quantity of
sensing information obtained during sensing [7] and secondly,
the improved multi-dimensional flow sensing and optimal
performance when introduced to different material and ar-
ray configurations [6]. Understanding the tuning properties
of whiskers is important for future optimization in multi-
dimensional stimuli detection using different materials and
designs.

II. METHODS

Two different tunning experiments were performed. We
investigate on the first test how different materials (elastomer),
and their properties affected airflow detection when subjected
to different flow. The second test examined how different
whisker array configurations affected similar flow information
on oscillation and deflection.

A. Set up of experiments

A Stanley pivoting fan (ST-3130A-120, model) was used
to simulate flow conditions at 3 different speeds of 300, 240
and 200 Cubic Feet per Minute (CFM) chronologically corre-
sponding to High, Medium and Low (H, M, L) respectively.
A set-up was created, creating a specific distance of exactly 9
inches and a flow angle of 36 degrees from the plane (Fig.2),
parallel to the elastomer. Air flow velocity at the whiskers is
not measured.

A setup was designed for the whisker placements. We
used, 7.2mm, 3.6mm and 1.5mm thickness platinum-catalyzed
silicon (Ecoflex) at weights of 4grams, 8grams and 2grams and
a diameter of 64mm respectively to perform the material test.

The WhiskSight design secures and tensions the elastomer
which holds a single magnetic whisker module. The magnetic
whisker is made using 1K, DH12 (K&J Magnetics) cylindrical
magnets that holds the whisker to the elastomer (Fig.1). The
whisker (100 mm rigid carbon fiber rod) is kept perpendicular
to the elastomer surface and DH12 cylindrical magnets using
a N42, NI, R212 ( K & J Magnetics ) ring magnet.

The elastomer was painted white using acrylic paint to pre-
vent ambient light from penetrating. Red paints on the magnets
indicate the sensor to a segmentation algorithm. Black dotes
made on the elastomer and magnet surface using permanent
marker are tracked by a computer vision algorithm. Airflow
is applied at H, M, L, and a video is recorded within a time
range between zero to 15 seconds for each trial respectively.
The video is then processed, and a single interface web camera
is used as a transducer to track the interaction and sensor
information with the computer vision algorithm.

(b)

(b)

Fig. 2. Side view of airflow simulation for a single magnetic attachment on
the WhiskSight sensor. Image on right, close view of calibrated workspace to
physically observe whisker movement

B. Elastomer material substrate

Different materials and their properties can affect airflow
detection when subjected to different flow. Using a platinum-
catalyzed silicon plastic (Ecoflex), we studied the effects of
airflow following the experimental procedures stated above.
Consecutive tests were performed on 3.6mm 4grams and
7.2mm 8grams Ecoflex to study the whisker response to
different material types. A following experiment examined
how variations in the thickness of Ecoflex material affected
the response of whiskers under the same airflow conditions.
Here, we compared 3.6mm Ecoflex against 7.2mm Ecoflex at
H, M, L respectively.

Using a thinner material, additional tests were conducted
with 1.5mm 2grams Ecoflex material substrate, to verify the
same hypotheses against already the existing experiments
discussed above. This repetition was done to obtain additional
and different trends of data and to further amplify our results.
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(a)

(b)

Fig. 3. (a) Translation of the dots from the initial frame are represented by
an arrow which is 10x the translation in pixels. (b) Using a computer vision
algorithm, all dots are identified by a segmentation algorithm are tracked.

C. Configuration of whisker arrays

A second experiment was conducted, where the whisker
response to arrays with partial and no obstruction of flow
based on whisker placements in the array. In this experiment,
two magnetic rigid whiskers were mounted in a diagonal and
perpendicular configuration (Fig.4). The direction of flow and
whisker arrangement has been hypothesized to impact whisker
output and behavior. The results from these experiments are
compared to test if this is true.

III. TRACKING WHISKER MOTION AND FLOW
OBSERVATION

We use a Python Minimum Output Sum of Squared Error
(MOSSE) Tracker in a computer vision algorithm to track and
interpret flow signals generated by the whisker. Each black
dot in a square represents a potential whisker magnified 10
times the pixel translation of the dot by the tracking algorithm.
The arrows represent whisker motion and point towards the
direction of rotation and deflection of the whisker. (Fig.3,a)

(a)

(b)

Fig. 4. (a) Ecoflex elastomer membrane, attached single magnet (red) and
tracker points (black).Image (b) shows computer vision algorithm, tracking
airflow direction on attached whisker on elastomer

Fig. 5. (a)Schematic representation whisker deflecting angle when airflow
is applied. (b) The direction of whisker movement from camera view (red
magnet) is indicated by the computer vison and segmentation algorithm.
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Fig. 6. Flow Trajectory of whisker motion when airflow is applied at different
speeds and ranges

During each test, the setup and whisker test were recorded
for each trial. This is important for close observation and
performing checks to ensure the data obtained from the
simulated results closely matches the whisker behavior during
experiment. (Fig.2,b) Percentile bindings were calibrated on
sheets of graphing and A4 white paper Boards to observe how
far directly or physically the whisker deflects when a specific
speed of airflow was applied. For example, we observed that,
high air flow speeds caused the whisker to deflect more.
This deflection was physically and analytically varied across
different elastomer membranes to study their effects on the
whisker

IV. RESULTS.
We find that, the mean whisker deflections produced directly

correlate with the changes in airflow speed. This can be seen
from the values of the distribution (Fig 7, a) which increase
simultaneously from low to higher airflow. Additionally, it
was also observed that smaller mean deflections values cor-
responded to points of lower material thickness. When the
three different elastomer thicknesses were tested for affect, the
3.6mm elastomer (4grams) had the largest whisker deflection
while the thinnest elastomer 1.5mm (2grams) had the smallest
response.

This indication could mean that the thickness of the elas-
tomer material could be a property of the deflections produced
resulting from the whisker when under airflow motion. But
the precise relationship between material thickness and sensor
responsiveness is not clear although at each flow level the
ranking of the whisker responsiveness remained unchanged.

Contrary to the expected observations from the average
oscillations generated (Fig 7, b) there were no definitive corre-
lations between the thickness of the material used (elastomer).
This is known by looking at the plot for the average oscilla-
tions, which show the distribution order changing frequently.
(Fig.7,b)

Because the material used had the same young’s modulus
coefficient of 200kpa, (Table 1, 2 3) the variation in deflection

(a)

(b)

Fig. 7. Average whisker oscillation and mean deflections for different
elastomer thickness when different airflow speeds are applied

an oscillation values were thought to result from the difference
in the thickness of the material as all other variables were
kept constant. Tables oscillation and deflection values from
whisker motions observed for 1.5mm, 3.6mm and 7.2mm
Ecoflex respectively.

To directly observe the relationship between the different
whiskers when airflow was applied, we calculated the change
in deflection values ( ∆c) resulting from the different shapes
of the whisker placements. (Table.2)

(PPD −HTL) = |∆c| (1)

where PPD and HTL represent the perpendicular and hor-
izontal shapes respectively. Changes in magnitude were ob-
served for airflow distance between the two planes of the two
whisker shapes resulting from the deflections, which increased
simultaneously from low airflow to medium and high airflow
for each of the resulting trials that were conducted. (Fig 8)

For the two varied orientations, the perpendicular configu-
ration Generally received higher whisker deflections for each
set of trials, with the first whisker for this configuration being
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Table. 1 (a, b, c) oscillation and deflection
values from whisker motions observed for
1.5mm, 3.6mm and 7.2mm Ecoflex respectively.

(a)

(b)

(c)

at the receiving front with higher mean deflection values.
(Fig 7, Table 1,23). We expect to have a larger deflection
angle for the first whisker in this placement and a smaller
deflection angle for the second whisker due to the difference
in airflow magnitude. This change in the amount of airflow on
the whisker array also affected the drag profile for the second
whiskers as the observations showed little movement towards
its boundary separation (whisker2).

Observations from the horizontal whisker configurations re-
vealed that airflow applied towards the whiskers was received
at similar mean magnitudes of deflection. With ∆c being

Fig. 8. Diference in whisker deflection for two trials at on perpendicluar
shape (PPD 1 2 and Horizontal Shape HTL 1 2

Table. 2 (a, b) Corresponding ∆c values for first and second
trial for a Horizontal and Perpendicular array placement

(a) (b)

equally similar at different airflows for the different trails.
The amount of flow received by each of the whiskers for this
configuration was observed to be within the same range along
with movement towards the drag profile of the whiskers.

V. DISCUSSION AND FUTURE WORK

Frequency of oscillations and mean deflections of whisker
may be indictors of flow speed and flow characteristics. The
resulting number of whisker deflections produced, and the
results are expected to show a closer and direct relationship
between the deflecting angle and the magnitude of the resulting
stimuli from the whisker. In this case flow, inertia drag and
contact.

The placement of whiskers in different arrays or shapes
affects the flow signals picked by the WhikSight sensor when
airflow is applied. We observe the relationship between a
perpendicular (PPD) and a horizontal (HTL) placement and
our results demonstrate that, the properties of each whisker
vary relative to their position within the boundary or placement
towards an airflow source. While eventually this may be a
technique we can use to our benefit, at present it is only notable
as a circumstance to be overcome in the design of the array.

For PPD configurations, each of the whisker within this set
will have different deflections angles and changes towards the
drag profile as airflow changes. For the horizontal configura-
tion, the deflection angles will remain within a similar range
for each of the whiskers as airflow is being applied.

Currently, the results from this study highlight material
thickness as an important property, in tuning of flow on
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Table. 3 First trial Horizontal Test (R1 HTL) Whisker 1 (a),
Whisker 2 )(b)

Table. 4 Second trial Horizontal Test (R2 HTL) Whisker 1
(a), Whisker 2 (b)

Table. 5 First trial Perpendicular Test (R1 PPD) Whisker 1
(a), Whisker 2 (b)

Table. 5 Second trial Perpendicular Test (R2 PPD) Whisker
1 (a), Whisker 2 (b)

whiskers. Obviously, the information received from of each
whisker will independently vary based on their position or
array configuration within their placement.

It is counter intuitive to these authors that the flow is
maximized at a specific elastomer thickness. Further tests need
to be performed in the future to verify this relationship. In the
interim, it is certain that modifying the thickness of elastomer
has a significant impact on the sensitivity of the whisk Sight
sensor.

These studied properties are important to help understand
airflow and its effects on whiskers. If flow tuning is achieved,
the integration of the WhiskSight sensor could find new ap-
plications in multidimensional sensing for robotics navigation
in robust environment or terrain, flow detection in Unmanned
Aerial vehicles and underwater systems such submarines.
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Replicating Bugs Faster

Evolone Layne1 and Jack Mostow2

Abstract— It is difficult for developers to replicate bugs based
on a trial and error process. A bug can be classified as “stuck”
or “crash”. This project focuses on developing a bug replication
process for RoboTutor, an Android tablet application. A stuck
bug occurs when a RoboTutor activity stays on the screen
and can only be escaped by quitting the activity. A crash bug
occurs when RoboTutor closes without being prompted to do
so. This project explores a way to replicate and document bugs
by creating a “bug recipe”. A bug recipe contains a screen
recording of the visible behavior leading up to the bug, along
with a timestamp, and other features that help developers
diagnose bugs and debug RoboTutor. This project is important
because this approach can serve as a blueprint that other
developers can follow to speed up the bug replication process
and debug their code.

Index Terms— Software Architecture for Robotic and Au-
tomation

I. INTRODUCTION

A. What is RoboTutor?

RoboTutor [1] is an application built to teach children in
Tanzanian villages with little or no access to schools basic
Swahili literacy and numeracy. RoboTutor was entered to
compete in XPRIZE, a competition to develop software that
give children the ability to teach themselves basic reading,
writing and arithmetic within a 15 month period. While chil-
dren in 28 villages in Tanzania used RoboTutor, gigabytes of
detailed log files including thousands of instances of ”crash”
and ”stuck” bugs that prevented the users from finishing
activities were documented.

Before I joined the RoboTutor team, the developers were
finding errors, but they found it laborious to replicate and
produce the same bug without proper documentation. Bugs
delay the progress made on applications, so instead of focus-
ing on enhancing the features of the application, developers
have to focus on making the application more functional. If
less time were spent on the debugging process, applications
could have more features.

My project aims to create and refine an efficient way to
replicate bugs within software. This research is important
because a better way to replicate bugs could speed up the
debugging process. Previously, developers were replicating
bugs by rerunning activities that sometimes led to them,
and trying to remember the sequence of actions leading up
to them. However, this is not an efficient method because
replicating the exact error from memory after seeing it once

1Evolone Layne is with the Department of Electrical Engineering
and Computer Science, Howard University, Washington D.C., USA
evolone.layne@bison.howard.edu

2Dr. Jack Mostow is with the Robotics Institute, Carnegie Mellon
University, Pittsburgh, PA 15213, USA mostow@cs.cmu.edu

can be extremely difficult. The objective of my research is
to develop a way to replicate bugs faster.

II. METHODS

Before opening the application, I consulted the activity
table (Table 1). The activity table consists of logged bugs
and their probability of ”crashing” or getting ”stuck”. I used
a pivot table to filter the large table and condense it to where
I can see the stories with the highest stuck and crash rates.
This made it easier to focus on replicating activities had high
crash and stuck rates. A developer menu is a menu that only
developers can see to select an activity. To bypass this part
of the replication process, I had to create a custom story
data.json file. This file consists of type, skill, tutor id, tutor
desc, tutor data, and hash name.

Once the debug.json file is added, RoboTutor opens on
the exact activity specified in the debug.json file (Figure 1).
This allows for developers to go straight to the activity with
a bug to start the replication process. In addition, a screen
recording is taken every time an activity is initiated. The
screen recordings are useful because they display the steps
taken by the user to create a bug. This means that the same
sequence of steps should cause the application to get stuck
or crash. Now, the developers can isolate the error(s) and
replicate the bugs faster.

Using this approach, I was able to obtain a screen record-
ing of a stuck bug and follow the same actions shown in
the recording several times to ensure that they constitute
a reliable bug recipe. I hope to find more bugs using this
documentation method.

Fig. 1. This is the debug.json file used to launch the activity with the
bug. Without this input, the developers would have to launch the app and
manually go through the actions, which is time-consuming.

Fig. 2. These statistics are derived from the activity table. Bugs to replicate
are chosen based on high stuck or crash rates.
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A. Our Method

1) Bypass debugger menu.
2) Use custom story activity to skip to sentence.
3) Record video in case bug recurs.
4) If bug recurs, replay preceding steps as bug recipe.
5) If it doesn’t, infer that bug was fixed.
6) Repeat to test reliability of recipe or bug fix.

Fig. 3. RoboTutor screenshot from an activity with a stuck bug.

III. DISCUSSION

A. Stuck Bug Example

One example of stuck bug occurred in story 33 (Figure
3). I selected this activity based on the fact that it had a
high stuck rate. While playing the activity, the highlighted
sentence was not read aloud. Instead of continuing with the
story, it was stuck on this sentence, but the audio continued.
This is an example of a stuck bug that we were able to
replicate, thanks to the screen recording feature.

B. Sources of Delay

While doing this project, a few factors delayed progress.
For example, a lot of the work being done relied on code that
was not ready yet. In addition, analyzing the activity table
is very difficult at the start of the project. This can slow one
down at first, but after filtering this out and putting some of
the data in a pivot table, it becomes much easier to handle.

Another source of delay came from the implementation of
the debug.json file. When I first followed the format created
prior to this project, I was stumped because whenever I
ran RoboTutor, it would launch with a grey screen, which
probably means that the unpackaged assets were not found.

One delay that is in fact a good delay is when we spend
time on a bug that was fixed prior to the start of the project.
The table reflects gigabytes of logged bugs, so keeping track
of fixed bugs can be difficult. Creating a way to do this might
also be beneficial in the future.

IV. EVALUATION

We will evaluate our research based on the number of bugs
we are able to replicate. After this, we will assess the number
of bugs successfully replicated. This criterion aids in the
development of a percentage of total successful bug recipes.
Another factor in the evaluation process is the amount of
time it took to replicate the bug. This is because our goal is

to develop a faster way to replicate bugs in software. If our
method takes less time, this means that we have achieved
our goal of creating a faster way to replicate bugs. If bugs
are not replicated throughout the process, we will evaluate
the amount of recipe tests. This can also mean that the bug
has been fixed prior to the start of this project.

V. CONCLUSION

Replicating bugs based on a trial and error process is
tedious and can potentially produce even more bugs along
the way. The focus of this project is to develop a more refined
bug replication process for RoboTutor, an Android tablet
application. The goal is to have the soon to be developed
bug recipe process applied to other projects in this field. It
will serve as a blueprint that other developers can follow to
not only speed up the bug replication process, but to stay
organized in the process.

VI. FUTURE WORK

In the future, we will try this method in practice. The
goal is to continue to run RoboTutor and replicate frequently
occurring bugs based on the activity table. Accumulating
more bug recipes would help us to evaluate our method and
prove that it is more reliable than the current replication
process.

Extending our method to other activities is also very
important. Right now, this method is being tested for use on
story activities. Over time, getting this replication process to
work for writing and math activities would be beneficial.

A. Continuation

To continue working on this method, it will be helpful to
keep filter the table by highest stuck and crash rate because
the table is very large. It may also be useful to get the
debug.json working and past the grey screen to avoid the
debugger menu.
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Multi-agent Hierarchical Reinforcement Learning in Urban and Search
Rescue

Long Le1 and Dana Hughes2 and Katia Sycara2

Abstract— In an urban search-and-rescue (USAR) task, a
team of agents cooperates to explore different rooms in the
environment, clear rubble, and triage victims. USAR presents
a challenging control problem in multi-agent Reinforcement
Learning due to its long horizon, sparse and delayed reward,
and the large size of the state space. Hierarchical approaches
such as options and state abstraction have been proposed as a
way to reduce the state space and planning complexity in such
problems. In this work, we leverage domain knowledge to (1)
train individual low-level (sub)-policies of each agent in smaller
subsets of the state space, and (2) then train a team-level policy
over a reduced graph representation of the states using those
pretrained sub-policies. We show some early-stage results where
our approach outperforms two multi-agent algorithms option-
critic, and independent Q-learning on a simple environment.

Index Terms— Multi-agent Reinforcement Learning. Hierar-
chical Planning. Search-and-Rescue.

I. INTRODUCTION

Reinforcement Learning (RL) is a framework where an
agent or multiple agents interact with the environment,
receive observations and rewards for their actions. The
agents learn through experience how to maximize their future
discounted rewards. RL has been applied to solve a diverse
array of domains, from game playing [Mnih et al., 2013] to
self-driving [Kiran et al., 2021], and provides a natural way
for training artificial teams in urban search-and-rescue tasks.

In a USAR task, a fully cooperative team of agents has
to navigate and explore the environment, removing obstacles
such as rubble along the way, to locate and rescue victims.
This is a difficult task in several ways. First, USAR is a
hard-exploration problem where the environment has very
sparse and delayed rewards. That is, because the objective
of the team is to rescue victims, agents can only receive
extrinsic rewards when a victim is successfully triaged,
which is a rare event. Further, the learning is complicated
by delayed rewards [Arjona-Medina et al., 2018] in that the
decision an agent makes in one time step tends to have its
consequence revealed much later. For example, when the
agent clears the rubble at the entrance of a large hall-way,
it might only know if its effort has been worth it when a
teammate discovers a victim in the hall-way multiple time
steps later. The learning can also suffer from long horizon.
Coupled with sparse rewards, long horizon means that an
agent needs to perform a very long sequence of actions
before any reward can be received. Finally, environments

1Long Le is with the College of Information and Computer Sciences,
University of Massachusetts Amherst. lnle@umass.edu

2Sycara and Hughes are with the Robotics Insitute, Carnegie Mellon
University. {danahugh, sycara}@andrew.cmu.edu

Fig. 1: Coordinator-Agent Hierarchical Framework.

for USAR missions are typically large, requiring agents to
differentiate and generalize between a vast number of states.

To deal with hard-exploration and large state space, hi-
erarchical approaches, both over the action space [Dayan
and Hinton, 1992], [Sutton et al., 1999] and the state space
[Barry et al., 2011], [Steccanella et al., 2021], [Shang et al.,
2019], have been proposed. In this work, we utilize both
action and state hierarchical representations to tackle the
USAR problem. Specifically, we train each agent in the team
to complete some sub-tasks in a completely decentralized
manner using the low-level features of subsets of the state
space, and then train a centralized team-level coordinator
on a high-level graph representation of the environment.
In our framework, the coordinator gives command to the
team, for example “agent 1 goes to search for victims in
room A, and agent 2 goes to room B”. The agents execute
their assigned sub-tasks and report their rewards to the
coordinator. We do not assume an agent’s sub-policy to
achieve a sub-task is prescribed a priori but instead choose
to obtain it through decentralized training. See Fig. 1 for
an illustration. This approach reduces the state space since
an agent only plans over a small subset of the environment,
and the coordinator only plans over a small graph view. It
also alleviates the long planning horizon problem since the
coordinator avoids micro-management and learns to associate
high-level decisions with rewards. We demonstrate that this
approach outperforms two multi-agent algorithms option-
critic, and independent Q-learning in a simple environment.

Training high-performant agents not only can contribute
towards the future development of autonomous robotic teams
for USAR missions but can also serve to give advice to
human teams in order to improve their performance.
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The organization of this paper is as follows. Section II re-
views single-agent and multi-agent Reinforcement Learning.
Section III discusses some previous work to obtain hierar-
chical structures for action and state spaces. Our approach
in modeling the search-and-urban task using hierarchical
planning is given in Section IV. The result in given in Section
V. Section VII is the conclusion and future work.

II. PRELIMINARIES

A. Markov Decision Process

In single-agent RL, a Markov Decision Process (MDP) is
often assumed. MDP is a tuple (S,A, p0, p, r, γ, L), where S
is a set of states (s ∈ S), A the action space (a ∈ A), p0(s0)
the initial state distribution, p(st+1|st, at) the environment
dynamics, and r(st, at, st+1) the reward function, γ the
discount factor, and L ∈ N ∪ {∞} the horizon. In words,
the agent appears initially at state s0 drawn from p0. At any
time step t, the agent is in state st, takes an action at and
transition to the next state st+1 drawn from p(.|st, at), and
receives a discounted reward of γtr(st, at, st+1). In finite-
horizon problems such as ours, the agent keeps interacting
with the environment until the time step reaches the horizon
L, after which the episode is terminated. A policy π(at|st) is
a conditional probability distribution over actions, dictating
which action the agent will take in a given state. The goal
of the agent in RL is to learn a policy π that maximizes the
expected total discounted reward

E
[ L∑

t=0

γtr(st, a)
∣∣ s0, π].

B. Partially Observable Markov Decision Process

A partially observable decision process (POMDP) is an
extension of MDP to situations where the agent does not
have full access to the environment state s but rather to only
observation o ∈ O drawn from the observation probability
model O(o | s). In a USAR mission, an agent does not
have perfect information about the environment, and can
only access the observations. For example, the agent does
not know where the victims are initially but can observe its
local surroundings.

C. Decentralized Partially Observable Markov Decision
Process

A Decentralized Partially Observable Markov Decision
Process (Dec-POMDP) is a generalization of POMDP to
multi-agent systems. Dec-POMDP allows for heterogeneous
teams of agents by enabling agents to have different ac-
tion sets and observations. Formally, an agent i can takes
action ai ∈ Ai and receives observation oi ∈ Oi. The
state transition probabilities p(s′|s, a1, ..., an) and rewards
r(s, a1, ..., an, s′), where n is the number of agents, depend
on the joint action (a1, ..., an) of all agents. Note that the
reward r in this case is shared among all agents. This
is appropriate for fully-cooperative team settings such as
ours. Markov games [Littman, 1994] extend Dec-POMDP to
mixed cooperative-competitive settings by allowing different

agents to have different rewards. We will assume a Dec-
POMDP in our work.

III. RELATED WORK

A. Action Abstraction

Two popular frameworks for hierarchical RL over the
action space are options [Sutton et al., 1999] and Feudal
learning [Dayan and Hinton, 1992], [Vezhnevets et al., 2017].

In the former approach, the concept of “macro-actions” or
options is introduced. An option is a high-level action that
consists of primitive actions and is temporally extended i.e.
the option might take a variable number of time steps to
complete. For example, the option of “going to the airport”
consists of a sequence of primitives such as steering the
car wheel, and might take 30 or 45 minutes depending
on the traffic condition. Formally, an option ω consists
of an initiation set Iω ⊂ S , a sub-policy πω(a|s) and a
termination probability distribution βω(s). In state s, the
agent use a meta-control policy µ(ω|s) to picks an option
ω available, execute the option using πω until completion
determined by βω . There are two levels to be learned µ and
{πωi
}mi=1 where m is the number of options. Options can be

explicitly defined and learned using subgoals and pseudo-
rewards as in [Sutton et al., 1999], or both levels can be
learned simultaneously from end-to-end using option-critic in
[Bacon et al., 2016]. Distributed option-critic [Chakravorty
et al., 2019] extends the option-critic framework to multi-
agent systems via common-belief and communication.

In the latter approach of Feudal learning, there is a
hierarchy of managers (lords) and sub-managers (serfs). The
managers at different levels in the hierarchy observe different
scales of resolution of the environment, assign tasks to sub-
managers or workers one level below them. A manager at a
level receives an intrinsic reward from their superior based
on how well they execute their assigned task. This framework
is different from the option’s in that it focuses on state space
abstraction between different levels of hierarchy rather than
temporal abstraction [Riemer et al., 2019].

Our approach is inspired by both of the mentioned frame-
works. We use sub-goals to train agents’ sub-policies, and
use a coarser resolution of time and space for the coordinator
(manager) for the team-level policy.

B. State Abstraction

In some domains, it is possible to reduce the state space
by “factoring” the MDP [Boutilier et al., 2000]. The idea
is that some parts of the MDP state are independent and
thus can be exploited by a more compact Bayesian graphical
representation. [Barry et al., 2011] presents an algorithm to
cluster states of a factored MDP into “macro-states”. In the
present work, we have not attempted to represent the states
in factored form.

The authors in [Steccanella et al., 2021] learn a hierar-
chical representation of the environment by partitioning the
states into a set of “abstract states”. A “compress function”,
mapping primitive states to abstract states, is learned from
data. The idea is to first collect a set of trajectories by letting
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the agent wander through the environment. Then, a compress
function is optimized using the heuristic that consecutive
states in a trajectory should usually belong to the same
abstract state 1. They showed that the learned abstract states
correspond to different rooms in a grid-world experiment.
Our current work assumes that the abstract states are already
given.

The paper [Shang et al., 2019] is another approach to
obtain a high-level view of the environment by identifying
the “pivotal states”, where pivotal states are defined to be
those most useful to predict the agent’s actions. A variational
autoencoder is used to learn the pivotal states from collected
trajectories. They show that the pivotal states correspond
to hall-way junctions in 2-D mazes. This is an interesting
direction for our future work.

Note that in both [Steccanella et al., 2021] and [Shang
et al., 2019] approaches, we need to run some exploration
trajectories to build a state abstraction before actual learning
can occur. In this paper, we take a shortcut and use a pre-
specified state abstraction instead.

IV. APPROACH

A. Two-rooms Environment

The two-rooms environment consists of a 10x15 2-D grid
with two victims in the top and bottom rooms, and two
medics in a hall-way (see Figure 2). The goal of the agents
is to rescue both victims in the shortest amount of time
possible. Each agent location is a tuple (x, y, dir), where
(x, y) is a coordinate on the 2-D grid and dir is one of
four possible directions NORTH, SOUTH, WEST, EAST,
representing the direction that the agent is currently facing.
The navigation actions include FORWARD, TURN-LEFT
and TURN-RIGHT. An agent also has a special action
TRIAGE that only takes effect if the agent is facing a victim;
otherwise, it is a no-op. The environment also has walls that
the agents cannot pass through. In other words, a FORWARD
action when facing a wall does nothing.

For simplicity, we assume a fully observable MDP. The
horizon is set to 100, and γ to 0.99.

B. Graph-level View and Sub-policies Training

We handcraft a graph representation of the environment
where each node is a section of the map (see Figure 3).
The agents learn to navigate between neighboring nodes of
the graph through pseudo-rewards. For example, to train a
navigation strategy for the bottom agent from its position
to the top room, we remove the other agents and victims
from the map. Then, we give a synthetic reward of +100 for
reaching any locations in the top room, and a reward of -1
with every passing time step to encourage the agent to reach
the sub-goal as fast as possible. Within each room, we also
train the agents to triage the victims by giving a reward of
+100 for a successful triage and -1 time reward as before.
Note that this triage sub-policy is learned assuming that an

1One naive abstract function is to map all states to the same abstract state.
[Steccanella et al., 2021] avoids this by having another loss term to make
sure that all abstract states are somewhat equally likely over the trajectories.

Fig. 2: The two-rooms environment. The walls are in black.
Two green squares are two victims. Two blue squares are
two agents.

agent is already in the room where a victim might be located.
Thus, the sub-policy has no guarantee for good performance
when, for example, an agent is asked to execute the option
“RESCUE TOP VICTIM” when the agent is not in the top
room but rather is in the hall-way.

Note that the agents’ sub-policies are local in the sense that
they require local information for execution. For example,
to execute the option of going from the hall-way to the
top-room, an agent needs not know what is happening in
the bottom room. Note that in our current work, since we
assume a MDP, this discussion about local information is
less relevant. However, in a Dec-POMDP version of the
problem, sub-policies dependency on only local information
would reduce the state representation needed for learning
those policies.

Further, the approach of local sub-policies provides an
implicit curriculum training [Bengio et al., 2009] for the
agents, lessening the problem of sparse rewards and long
horizon. For instance, when an agent is already in the top-
room, it is much more likely that the agent stumbles upon
triaging the top victim, thereby providing more frequent
rewards in the initial exploration phase of an RL algorithm,
and thus speed up learning.

The description of options is given in Table I. In gen-
eral, we should train 4 navigation sub-policies: TOP-to-
HALLWAY, HALLWAY-to-TOP, HALLWAY-to-BOTTOM,
and BOTTOM-to-HALLWAY. Then, to navigate from the
bottom room to the top room, an agent would chain to-
gether its BOTTOM-to-HALLWAY and HALLWAY-to-TOP
options. For this simple environment, we take a shortcut and
only train 2 navigation sub-policies as in Table I with the
understanding that the agents are always initialized in the
hall-way during the full search-and-rescue mission. Also,
there is no need to jump 2 hops in the graph here (e.g. going
from the bottom to the top room) since an optimal team-level
policy is to have the top medic go to the bottom room, and
the bottom medic to the top room.
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Fig. 3: The graph representation for the two-rooms environ-
ment.

C. Coordinator’s Policy Training

Once we have had the trained subpolicies, we proceed
to train the coordinator’s policy over the joint option using
the graph representation. That is, the coordinator sees a
state (n1, n2, v1, v2) where ni ∈ {TOP-ROOM, HALL-
WAY, BOTTOM-ROOM} indicates the position of agent
i, and vi ∈ {0, 1} indicates whether the ith victim has
been triaged. The coordinator’s meta-policy is over the joint
options (ω1, ω2) where each ωi can take on 1 of 4 possible
options (see Table I).

The coordinator selects a joint option and commands
its agents to use their sub-policies to execute that joint
option. Once one of the agents completes its option, the
coordinator terminates the options of all agents, re-evaluates
the situation, and select another joint option. We also enforce
the termination conditions of options by giving a large
negative reward to the coordinator whenever it tries to select
an unavailable option. For example, if the top agent is in
the hall-way and the coordinator commands it to execute
“TRIAGE-BOTTOM-VICTIM”, the coordinator will receive
a large negative reward and learn to avoid selecting invalid
options in the future.

V. RESULT

Both the training of sub-policies and the coordinator’s
meta-policy are done by Deep Q networks with experience
replay and target nets [Mnih et al., 2013].

We compare our result against two multi-agent algorithms:
the option-critic [Sutton et al., 1999], and independent Q-
learning.

For each algorithm, we run 8 trials and plot the results in
Figures 4, 5, 6. Besides rewards, we also plot the number
of time steps taken in each episode. The lower the number
of steps, the quicker the agents were able to achieve their
goals. If the agent was not able to accomplish its goal, then
the number of steps would be equal to the horizon. For every
small number of training episodes, we also performed a test
episode. DQN-based models sometimes suffer from “catas-
trophic forgetting” [Roderick et al., 2017] when the agent’s
performance degrades after achieving optimal behavior. One
reason is that after achieving a decent policy, the agent is
only used to seeing “good” states. When some “bad” states
are encountered by chance, the agent’s Q-value prediction
is completely off, incurring a high error and changing the
network weights unfavorably. The simple solution in [Mnih
et al., 2013] is to regularly test the model during training

and save the model resulting in the best test performance so
far.

Each of our sub-policy takes at most around 600 episodes
to obtain optimal solutions. In the best trial, they take
around 1000 episodes in total but they can be trained
concurrently. The coordinator’s meta-policy trained on those
sub-policies takes about 30 episodes to reach optimality. The
best trial of the option-critic takes around 1,500 episodes to
reach optimality. For independent Q-learning, the variance
in performance is small but the algorithm was not able to
rescue both victims at all. The best trial can learn to triage
one victim after 450 episodes. The performance of various
algorithms is summarized in Table II. We compare the best
performance of each algorithm against each other since the
average metric might be deceptive. As discussed, there is the
problem of catastrophic forgetting so if there are two trials
that achieve optimality at different times, for example the
test rewards of the two trials are [0, 100] and [100, 0], then
their average might seem to suggest that the agent has not
achieved the goal at all: the average is [50, 50].

The independent Q-learning does not touch on the multi-
agent aspect of the problem since each agent learns on its
own, and is not aware of the existence of other agents. Thus,
this approach suffers from non-stationarity as other agents
change their policies over time.

The distributed option-critic overcomes the non-
stationarity issue by giving the centralized critic access to
all observations of agents. It also improves the MADDPG
algorithm [Lowe et al., 2017] by adding action abstraction
to this approach by using options. However, there is no state
abstraction, and the options are learned, which might not be
as good as hand-specified options using domain knowledge.

VI. CONCLUSION AND FUTURE WORK

In this work, we adopt hierarchical abstraction over the
state and action spaces to build a team of autonomous
agents for the urban search-and-rescue task. We present our
preliminary results for a simple two-rooms environment, and
compare them to those by common end-to-end multi-agent
algorithms.

In the future, we would like to extend this framework
to a more complicated environment of bigger size, with
heterogeneous agents with different capabilities, rubble, and
partial observability. For a bigger environment, we plan to
use a Graph Neural Network (GNN) to encode the environ-
ment information and formulate the Reinforcement Learning
problem as a node-level decision-making task (e.g. see
[Gammelli et al., 2021]). In the case of partial observability,
there is a problem: the agents do not know whether a room
contains a victim, and if so how many and where they are.
Here, intrinsic curiosity-driven exploration [Pathak et al.,
2017] and multi-object search [Wandzel et al., 2019] can
help. Also, we would like to automate the learning as much
as possible, for example by learning the state representation
through initial exploration as proposed by [Steccanella et al.,
2021] and [Shang et al., 2019]. We would also like to
experiment with transfer learning as discussed in [Steccanella
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Option Initiation set Termination condition

NAVIGATE-TO-TOP-ROOM agent is in the hall-way agent reaches the top room
NAVIGATE-TO-TOP-ROOM agent is in the hall-way agent reaches the bottom room
TRIAGE-TOP-VICTIM agent is in the top room top victim is triaged
TRIAGE-BOTTOM-VICTIM agent is in the bottom room bottom victim is triaged

TABLE I: The agent’s options in the two-rooms environment.

Algorithms Best number of eps til optimality in 8 trials

Graph + options (ours) 1030
Option-critic 1,500
Independent Q-learning > 5, 000

TABLE II: The performances of different multi-agent control algorithms.

et al., 2021] by randomizing the victim locations. Intermittent
communication where the coordinator only has access to
a “common belief” [Chakravorty et al., 2019] updated by
broadcasting between agents is also possible.

Object-oriented model-based Reinforcement Learning
[Diuk et al., 2008], [Wandzel et al., 2019] is also an attractive
alternative to model-free RL like DQN we are currently
using. Model-based RL is generally more sample-efficient,
more generalizable and transferable than model-free RL
when domain knowledge is available. In object-oriented RL,
the environment consist of objects of different classes, and
the experience with one object can be generalized to that with
another object of the same class. For example, an object can
be a wall in our case. The agent might learn that it cannot
pass through a wall in Room 1. This experience can also be
referenced when the agent encounters another wall in Room
2 under the model-based framework. In model-free, on the
other hand, the agent does not have the concept of a wall.
What it learns is that I cannot perform a certain move at a
specific location in Room 1. When encountering the object
of the same class in Room 2, it has to re-learn the fact that
it cannot move through wall again.

Lastly, we would like to consider agent advising [Torrey
and Taylor, 2013] and hierarchical active imitation learning
[Le et al., 2018]. Under these frameworks, a teacher, which
is a trained high-performant team of agents, would observe
a student to provide feedback in order to accelerate the
student’s learning. Under the agent advising paradigm, the
teacher predicts the student’s next action, and intervene
whenever it believes that the student is going to make
a mistake. Under the hierarchical imitation approach, the
teacher observes the student’s mistake after the fact and
provides feedback, still in an online manner.
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(a) 1 test episode every 10 train episodes

(b) 1 test episode every 10 train episode

(c) 1 test episode every 10 train episode

(d) 1 test episode every 10 train episode

(e) 1 test episode every 10 train episode

(f) 1 test episode every 10 train episode. For this sub-policy to succeed consistently across trials, we had to
lower γ to 0.9. Since the bottom room is very small, having small γ prevented the agent from wandering to
other parts of the environment. The usual γ = 0.99 still worked for one trial. In practice, it would not be
necessary to adjust γ since we would save and use the best model in terms of test performance.

Fig. 4: Training sub-policies.
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(a) Training performance of DOC

(b) Testing performance of DOC. For every 50 training episodes, we perform one test episode using a greedy-Q policy.

Fig. 5: Performance of the simplified distributed option-critic (DOC) algorithm. The number of options is a hyper-parameter
in DOC. We set it to 2,4 and 8 since our approach uses 4 options.

(a) Training performance of Independent Q-learning.

(b) Testing performance of Independent Q-learning. For every 50 training episodes, we perform one test episode using a
greedy-Q policy.

Fig. 6: Performance of independent Q-learning.
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SiamFIND: Towards One-shot Informed InterestiNg Object Detection

Bowen Li1, Chen Wang2, and Sebastian Scherer2

Abstract— Recent years have witnessed the fast development
and promising prospects of visual object detection methods.
However, for robots’ autonomous exploration tasks, the method
is expected to detect unseen interesting novel objects with
online defined few labeled samples, where a few-shot learner
is expected. Despite that prior works have made progress in
few-shot object detection (FSOD) tasks, the number, as well
as the members of the novel classes, are quite fixed after
fine-tuning. There exist very few detectors suitable for robots’
online exploration, where the interesting objects are actually
dynamic. To this end, this work proposes a novel Siamese
Few-shot InterestiNg object Detector (SiamFIND), which builds
favorable marriage between Faster RCNN and meta-learning
strategy. Specifically, a Siamese branch is designed to extract
intra-class prototypes, which enables a prototype embedding
network for localization and a learnable cosine module for
classification in the meanwhile. Once trained, the proposed
SiamFIND can thus fast generalize to and accurately detect
user-defined dynamic few-shot interesting objects without fur-
ther updating. Exhaustive experiments have been conducted on
the MSCOCO dataset, which demonstrated the superiority of
SiamFIND against a baseline method. Furthermore, SiamFIND
will be implemented in some image sequences captured during
real-world exploration, strongly validating the feasibility of
SiamFIND in such a task.

Index Terms— Object detection, few-shot learning, robot
autonomous exploration

I. INTRODUCTION

Pre-trained on large-scale image datasets, object detectors
aim at localizing and classifying the objects in a test image.
Such algorithm has facilitated numerous applications for
robots including grasping [1], navigation [2], and localization
[3]. While for robots’ online autonomous exploration task,
since the operation area is usually unknown, the objects
are probably unseen in the training set, termed as novel
interesting classes, and the human-provided annotations for
those novel classes are few, making most existing state-of-
the-art object detectors [4]–[8] ineffective.

There have been some prior arts studying few-shot object
detection (FSOD) [9]–[14], where detectors are designed to
possess strong generalization capabilities, enabling them to
detect novel classes with just a few labeled samples. Despite
promising results, for the previous algorithms, the number
and the member of the object classes that can be detected is
fixed after finetuning, while for robots’ exploration tasks, the
interesting objects are online defined by a human user, where

1Bowen Li is with the School of Mechanical Engineering, Tongji
University, 201804 Shanghai, China. This work is completed when Bowen
Li served as an intern in the Robotic Institute Summer Scholar, Carnegie
Mellon University.

2Chen Wang and Sebastian Scherer are with the Robotic Institute, the
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA
15213, USA.
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Fig. 1. Illustration of the workflow of proposed SiamFIND. After
base training with abundant images. SiamFIND can fast generalize to
online deployment without finetuning, where only one-shot samples of the
interesting classes are provided.

the novel objects are dynamic and different. In this case,
the detectors have to be re-finetuned every time the novel
classes are changed, which is neither efficient nor intelligent.
Moreover, the provided annotations are even more scarce
during real-world implementation (usually only one or two
samples of each novel class are provided), broadening the
gap between existing arts and expected applications.

To this end, this work mainly focuses on building a
dynamic one-shot informed detector (SiamFIND), which is
capable of detecting online defined one-shot novel classes
without abominable finetuning. Built upon the popular two-
stage detector Faster RCNN [4], SiamFIND is also inspired
by Siamese visual trackers [15]–[17], which design Siamese
network structure to search for a target with the template.
Similarly, SiamFIND utilizes an auxiliary dual branch to ex-
tract class prototypes from the provided one-shot labeled im-
age (support image). With the class prototypes and proposals
from region proposal network (RPN) [4], SiamFIND learns a
novel prototype embedding network (PEN) to achieve class-
related location feature of the test image (query image),
which can be utilized to precisely localize each object.
Meanwhile, a learnable cosine similarity (LCS) module is put
forward to robustly classify the proposals with prototypes.

Surprisingly, SiamFIND is insensitive to class variations
by virtue of the proposed PEN and LCS, compared with
other prior works. In other words, after large-scale base
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training, the human user only needs to input his interesting
objects with only one single sample per class to SiamFIND,
detection of these objects is quickly achieved on following
captured images, regardless of the numbers or members
of these classes. Fig. 1 demonstrates such workflow of
SiamFIND.

To validate the effectiveness and superiority of SiamFIND,
this work built up a new evaluation setting using COCO
dataset [18], where the 80 classes are randomly split into 6
groups (with different members and numbers each group).
Provided single labeled image per class, SiamFIND can
perform favorable detection in the testset even better than
[4], which is slowly finetuned. The experimental results
strongly proved the excellent generalization ability and
splendid robustness of SiamFIND when faced with class
variation issues, which can largely ensure and enable robots’
autonomous exploration tasks.

To sum up, the contributions of this work are three-fold:
• This work proposed a novel few-shot detector, termed

as SiamFIND, which achieved promising results in
detection novel classes without arduous finetuning.

• This work put forward a brand-new Prototype Embed-
ding Network (PEN) and Learnable Cosine Similarity
(LCS) module, which learns class agnostic relation
to guarantee the outstanding generalization ability of
SiamFIND.

• This work constructed a new evaluation benchmark,
where novel classes for the COCO dataset are split
into different groups to validate the superiority of
SiamFIND.

II. RELATED WORKS

A. Object Detection

The task of object detection [4], [7], [8] is to find out
all the interesting objects in the image and determine their
categories and positions, which is one of the core problems
in the field of computer vision.

Object detection algorithms based on deep learning are
mainly divided into two categories: two-stage methods [4],
[19], [20] and one-stage methods [5]–[8].

For the two-stage target detection algorithm, the interest-
ing region is firstly generated (R-CNN) [4], termed as region
proposals (or anchors), then the proposals are classified
and regressed for fine results. As the best known two-stage
detector, Faster RCNN [4] proposed region proposal network
(RPN) based on Fast RCNN [19], which greatly improved
the speed of object detection. Based on Faster RCNN, R-
FCN [20] proposed to utilize a full convolutional network
(FCN) for shared computation and further boosts the speed.

The one-stage target detectors directly extract features
from the image to predict object class and location with-
out anchor generation. Among them, the popular SSD [5]
algorithm proposes a small convolution filter to predict the
class and the offset of the bounding box on the feature map.
YOLO [6] takes object detection as a regression problem.
Based on a single end-to-end network, the input from the

original image to the output of object position and category
is directly completed.

Although the above detection algorithm has achieved
considerable detection accuracy, its huge defect is that a huge
amount of data are needed for off-line training, where the
number of samples in each class is up to tens of thousands.
Moreover, the categories that can be detected by the above
detection algorithm have been fixed after training, indicating
a huge gap from real robots applications.

B. Few-shot Object Detection

After base classes image training, with only a few labeled
novel class image samples, few-shot detectors can learn to
generalize to the novel classes, without losing the accuracy
and robustness of the base classes.

Two main branches are leading in FSOD task, one is
based on meta-learning [9], [11]–[13], the other is fine-tuning
[10], [14]. For fine-tuning-based few-shot detectors, most
parameters of the network are locked after large-scale base
training, while only a few parameters are unfrozen. With an
appropriate learning rate, the network is fine-tuned with a
few samples of both base class and new class. Among them,
TFA [10] proposes to fine-tuning only the last two layers of
the network (that is, the linear layer of the regression branch
and the cosine similarity layer of the detection branch) will
achieve considerable results. SRR-FSD [14] proposes that
the semantic relationship between novel and base class can
assist network to generalize.

There are generally 2 stages of meta learning-based meth-
ods [9], [11]–[13]: meta training, meta fine-tune. In the
meta training stage, the huge base class is divided into
a large number of query images and a small number of
support images. The detector learns the meta knowledge from
the few support images to detect objects in query images.
In the meta tuning stage, the images mixed by a small
number of both novel and base classes are also divided into
query and support, with a similar training process performed.
During the test, support images with annotations are input
for the network to manipulate test images, outputting object
bounding boxes.

Both 2 kinds of methods can only detect the pre-defined
number and members of classes. Faced with dynamic class
variation during online deployment, strenuous re-fine-tuning
is needed. Besides, existing few-shot detectors all suffer
from extreme one-shot cases. Differently, this work proposed
SiamFIND, a few-shot interesting object detector that detects
novel objects directly after base training with only one-shot
information needed.

III. METHODOLOGY

This section first formulate the problem setting, where the
task of few-shot object detection and learning schedule of
SiamFIND are introduced in detail. Then, the model structure
and loss definition of SiamFIND are demonstrated, where the
module functions and design motivation are also provided.
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Fig. 2. The overall framework of the proposed SiamFIND. SiamFIND includes 2 branches: query branch and support branch, which are marked out
by arrows in different colors. Three modules of SiamFIND, i.e., the Siamese feature extraction network, classification branch, and regression branch are
shown by dotted boxes in different colors for clear reference.

A. Problem Definition

This section first formulates the problem setting, where
the task of few-shot object detection and learning schedule of
SiamFIND are introduced in detail. Then, the model structure
and loss definition of SiamFIND is demonstrated, where the
module functions and design motivation are also provided.

B. Problem Definition

For few-shot detection tasks, the detectors are firstly
trained with abundant images belonging to base class pool
B. Then, given only k shots (k ≤ 10) images per novel class
n ∈ N , the detector is expected to detect objects belonging
to both base classes and novel classes. Since for robots’
exploration tasks, the user usually doesn’t care about the
base classes, rather, they expect the detector to be robust in
online defined novel classes n ∈ N , which is dynamic.

To achieve such tasks, SiamFIND adopts a meta-learning
strategy [9], [12], where training and tested are aligned with
the episodic paradigm. For the base training stage, in every
episodic, a query image Qb in class b and a support image
Sb in the same class are simultaneously input into the model.
With proper loss function calculated on the ground truth of
Qb, the network is supposed to learn the meta knowledge
from Sb to detect objects in Qb. The difference between
deployment and base training lies in that the ground-truth
bounding boxes of class b in Qb are available only during
training.

Different from existing works [9], [12], SiamFIND doesn’t
need to be finetuned using images in novel classes N . Once
trained, after feeding the supported image Sn, n ∈ N into
SiamFIND, the model can be directly deployed to detect the
novel classes in Qn regardless of the number and member
of N .

C. Network Structure

To build a few-shot detector without finetuning, we aim
to make the detector class agnostic like visual tracking [15],
[16]. In other words, the detector is expected to learn the
relation between support and query images for detection,

instead of learning or trying to overfit the feature of a certain
class [4], [9], [10], [12].

Fig. 2 offers the overall framework of the proposed
SiamFIND, which contains two Siamese branches, i.e., the
query branch and support branch. With features of query and
support images from backbone and region proposal network
(RPN) [4], we proposed (a) learnable cosine similarity (LCS)
module for classification and (b) prototype embedding net-
work (PEN) for regression the bounding box of proposals.

1) Siamese Network: Given that backbone network and
RPN are proved to be class agnostic [4], [12], the 2 modules
share weights in the Siamese network of SiamFIND. For a
given of query images Q, we define the feature from the
backbone as F(Q) = ψ(Q) ∈ R1×D×W×R, where D is the
channel depth of the feature map. Similarly, with totally C
classes of support images S = [S1,S2, · · · ,SC ], the support
feature satisfies F(S) ∈ RC×D×W×R.

Then, with p generated proposals in Q from RPN, pro-
posals features P(Q) ∈ Rp×D×a×a are achieved using
ROIAlign [21], where a denotes the representation size.
Using ground truth from support images, we implements
similar align process on the support feature F(S) and
obtained the prototypes P(S) ∈ RC×D×a×a.

With proposal feature P(Q) and prototype P(S),
SiamFIND implements regression and classification using
prototype embedding network (PEN), and learnable cosine
similarity (LCS), respectively.

2) Regression Branch: Inspired by [11], information from
support images can help design class agnostic regression
branch, we proposed a locator network to achieve class-
related location feature, as presented in Fig. 3.

The proposals P(Q) are first repeated to P(Q) ∈
Rp×C×D×a×a to match the class number C. Then, we
calculate the proto kernels K(S) ∈ RC×D×1 as:

C = conv(P(S)) ,

K(S) = view(C)W1W2 ,
(1)

where Conv denotes 3 × 3 convolution, W1 ∈
R(a×a)×D′

,W2 ∈ RD′×1 indicates two fully connected
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layer, respectively. D′ is a hyperparameter, which is set to
1024 in our experiments. With the class proto kernels, class
related location feature P̃L(Q) are achieved:

P̃L(Q) = P(Q)�K(S) , (2)

where � denotes convolution.
After the locator network, we follow the design in [4],

where regression MLP and a linear are used to get the precise
bounding box of proposals P(Q).
Remark 1: Differently, since P̃L(Q) already possesses class
information, the last Linear layer of regression WR takes
the dimension RD′′×4 instead of RD′′×(4×C), where D′′ is
the output channel dimension of MLP layer. This allows
SiamFIND to fit into any number of classes C to be detected
by virtue of the adaptive class dimension of the locator
network.

3) Classification Branch: According to [10], cosine sim-
ilarity is an effective method to minimize the intra-class
variance, which shows its efficacy in classification. However,
we found that merely adopting cosine similarity can barely
work, since the background proposals will also achieve a
high similarity score, disturbing the filtering process.

To this end, SiamFIND proposed a learnable cosine sim-
ilarity module. Let V(Q) ∈ Rp×D′′

and V(S) ∈ RC×D′′

denote the feature vector of proposals in query image and
prototype feature vector of support images, respectively.
Classification branch aims to learn a background vector
VBack ∈1×D

′′
, which is concatenated with V(S) ∈ RC×D′′

to get the cosine similarity weights Wcos:

Wcos = CAT(VBack,V(S)) ∈ R(C+1)×D′′
, (3)

Then, elements si,j in similarity score matrix Ssim is ob-
tained using:

si,j =
V>i (Q)Wcos,j

‖Vi(Q)‖‖Wcos,j‖
, (4)

where i ∈ p indicates the i−th proposal, and j ∈ (C + 1)
denotes the j−th weight vector of Wcos.
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Fig. 3. Details of the Prototype Embedding Network (PEN). With the
proposed PEN, class-related location feature is obtained, which can be
utilized to achieve bounding box regression for precise localization.

Remark 2: Unlike [4], [10], [12], the LCS in SiamFIND out-
puts dynamic classification score matrix, i.e., the dimension
of Ssim is only decided by the number C of support images
S, while prior work usually off-line defines this dimension,
making the detector static.

D. Training Loss
Following [4], [10], [12], the training loss consists of 3

parts, i.e., the RPN loss LRPN, regression loss Lreg, and
classification loss Lcls. For LRPN and Lreg, the definition
has already given in [4], which also proves to work well in
SiamFIND. However, for Lcls, using cross entropy loss in
[4] won’t work well since: (a) elements in Ssim are already
probability scores, instead of probability logits; (b) cross
entropy loss will end in extremely unbalanced loss of positive
and negative proposals, i.e., the positive proposals will be
much higher than that of negative proposals. To this end, we
proposed a weighted normalize null loss to handle Lcls.

1) Classification Loss: Let Vpos(Q) and Vneg(Q) denote
the feature vector of positive and negative proposals, re-
spective. Their corresponding score vectors are obtained as
Ssim,pos and Ssim,neg using Eq. (4). Assume the label vector
of positive and negative samples are Lpos and Lneg. The
classification loss Lcls is given as:

Lcls = αNLL(log(norm(Ssim,pos)),Lpos)

+ NLL(log(norm(Ssim,neg)),Lneg) ,
(5)

where NLL denotes nll loss and norm indicates normalize
operation. α is a hyper parameter to control the influence of
positive proposals.

IV. EXPERIMENTS

To validate the efficacy of the proposed SiamFIND in
dynamic one-shot object detection scenes, this work mainly

TABLE I
OBJECT AND IMAGES DISTRIBUTION DURING TRAINING AND

EVALUATION. DURING EVALUATION, DIFFERENT GROUPS HAVE

DIFFERENT MEMBER AND NUMBER OF CLASSES.

Phase Split Classes Images

Training Pascal VOC split 1

aeroplane, bicycle, boat, bottle,

6135
car, cat, chair, diningtable,

dog, horse, person, pottedplant,
sheep, train, tvmonitor

Evaluation

COCO class group 1
person, motorcycle, bus, truck,

2944boat, traffic light

COCO class group 2

stop sign, bench, bird,

1418handbag, suitcase, snowboard, kite,
baseball glove, chair

COCO class group 3
dining table, toilet, laptop,

1190keyboard, cell phone, oven, book

COCO class group 4
clock, vase, hair drier, refrigerator,

978bed, sandwich, bird, bench

COCO class group 5
laptop, snowboard, bench, keyboard,

1042bed, sandwich, bird, stop sign, book

COCO class group 6
clock, bus, boat, refrigerator,

1117cell phone, suitcase, bird, motorcycle
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TABLE II
OVERALL PERFORMANCE OF THE DETECTORS IN COCO CLASS GROUPS. IN ALL GROUPS, SIAMFIND ACHIEVES BETTER RESULTS THAN OUR

BASELINE IN THE ONE-SHOT SCENE. BESIDES, WHILE BASELINE AND FSDET NEED AT LEAST 10 EPOCHS FINE-TUNING, SIAMFIND CAN BE

DIRECTLY DEPLOYED ONCE TRAINED. RED DENOTES THE BEST RESULTS AMONG 3 DETECTORS IN 1 SHOT CASE.

AP50 of baseline, FSDet, and SiamFIND in COCO new setting

GroupDetector Converge Epoch Shots Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

SiamFIND 0 1 3.8 0.6 1 0.6 0.8 2.9
FSDet [12] 10 1 1.1 0.2 0.4 0.1 0.3 0.6
baseline [4] 30 1 3.5 0 0.5 0 0 1.6

baseline 30 5 7.1 1 1.8 3.7 3 9.7
baseline 30 10 9.5 0.9 5.7 5.3 4.3 10.2

conducts experiments using classes in COCO dataset [18] as
test images. To maintain fairness, the baseline method [4],
state-of-the-art (SOTA) few-shot detector FSDet [12], and
SiamFIND are all trained using Pascal VOC split 1 [22].

A. Implementation Details

1) Details of SiamFIND: SiamFIND is built on Faster
RCNN [4], adopting MobileNet v2 [23] as feature extractor
network. During training, 4 NVIDIA TITAN X GPU are
utilized in parallel, where the model was trained 30 epochs
using momentum SGD. For the training process, we adopted
a base learning rate of 0.005, with momentum as 0.9 and
weight decay of 0.33. p is set to 1024 per image, D is
1280, D′ and D′′ are both set to 1024. Representation size
a of RPN is set to 7. For other implementation details of
SiamFIND, we followed the original torchvision official code
of Faster RCNN.

2) Evaluation Dataset: TABLE I represents the details of
the dataset utilized in this work. To maintain fair comparison
with [12], all models are trained using the same training set,
i.e., Pascal VOC split 1, containing a total of 6135 images.
For evaluation, since we aim to evaluate the generalization
ability of the models, the evaluation is extended in COCO
dataset [18]. This work randomly selected 6 groups of classes
in total 80 classes of COCO, which is shown in Tab. I. Note
that we use one shot per class in MSCOCO training set

TABLE III
PER CLASS RESULTS IN COCO CLASS GROUP 1. THE NOVEL CLASSES

AND OUTSTANDING RESULT OF SIAMFIND ARE MARKED OUT IN RED.

Group Class Group 1

Class person motorcycle bus truck boat traffic light
baseline 3.45 0.00 17.28 0.00 0.00 0.00

SiamFIND 12.30 3.56 4.33 1.45 1.29 0.00

TABLE IV
PER CLASS RESULTS IN COCO CLASS GROUP 6. THE NOVEL CLASSES

ARE MARKED OUT IN RED.

Group Class Group 6

Class clock bus boat refrigerator cell phone suitcase bird motorcycle
baseline 0.0 1.0 0.0 0.8 0.1 3.0 1.0 0.0

SiamFIND 0.06 10.3 3.4 0.2 0.07 0.8 2.4 6.3

randomly as a support set and all images in the MSCOCO
eval set as evaluation.

B. Overall Performance and Analysis

The overall performance in COCO novel class groups
is presented in TABLE II. We consider our baseline as
Faster RCNN [4], which is finetuned in each group with
corresponding shots following [10]. Proposed SiamFIND can
achieve better results than baseline and a SOTA few-shot
detector FSDet [12]. Moreover, while baseline method and
FSDet [12] needs at least 30 epochs fine-tuning, SiamFIND
can be directly applied on the novel classes with the only
one-shot sample.

TABLE III and TABLE IV display per class results of
SiamFIND and baseline of group 1 and group 6, respectively.
Surprisingly, when baseline can’t work well in novel classes
like a truck, bus (group 6), bird, motorcycle, etc., with a
single shot per class, SiamFIND can get better result even
without fine-tuning.

V. FUTURE WORK

From both Tab. II and Tab. III, despite SiamFIND is better
than simply finetuning method [4], its mAP is still very low,
which guides us to the inspections. According to our exper-
iments, the loss of RPN LRPN and regression branch Lreg

maintain robust when novel classes are introduced, which
illustrates that the RPN and regression branch can achieve
favorable class agnostic. Nonetheless, the main hardship
lies in the classification branch, the loss of which vibrates
violently with novel classes, indicating that the classifier still
can’t live up to our expectation, which is to learn class
agnostic meta knowledge during base training. The above
observations lead us to the following future work:

• Inspect feature extraction: For the failure of classifica-
tion, one assumption is that the feature of novel classes
is not robust. In other words, the feature from the same
novel class may vary significantly, making the inferior
robust classification.

• Design more robust classifier: The classifier is currently
based on cosine similarity, which can be improved to
some learnable deep strategy like relation network in
[24], [25].
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• Classification loss definition: Another reason for the
unsatisfying performance of the classification is that
the positive proposals can achieve a high background
score, indicating that the current loss definition still
not focuses on positive samples enough, which can be
further improved.

VI. CONCLUSION

This work presents a novel few-shot object detector,
which, once trained, maintains its robustness when one-shot
novel classes enroll without further updating. Specifically, a
prototype encoding network is proposed for class agnostic
regression and a learnable cosine module is put forward for
robust classification. Experiments conducted on 6 groups of
COCO novel classes demonstrate the superiority. Despite
better results, the performance of SiamFIND is still far from
enough to be deployed on real robots, whose defects and
future work are also summarized.

ACKNOWLEDGMENT

I extend my sincere gratitude for Prof. Sebastian Scherer
and Dr. Chen Wang, who provided me invaluable suggestions
and guidance in this work. I’m also thankful for all the
members of the Airlab, who offered their indispensable help
to me. This work is supported by the Robotic Institute,
Carnegie Mellon University.

REFERENCES

[1] H. Karaoguz and P. Jensfelt, “Object Detection Approach for Robot
Grasp Detection,” in 2019 International Conference on Robotics and
Automation (ICRA), 2019, pp. 4953–4959.

[2] R. Reid, A. Cann, C. Meiklejohn, L. Poli, A. Boeing, and T. Braunl,
“Cooperative Multi-robot Navigation, Exploration, Mapping and Ob-
ject Detection with ROS,” in 2013 IEEE Intelligent Vehicles Sympo-
sium (IV). IEEE, 2013, pp. 1083–1088.

[3] S. Gidaris and N. Komodakis, “Locnet: Improving Localization Ac-
curacy for Object Detection,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2016,
pp. 789–798.

[4] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-
time Object Detection with Region Proposal Networks,” Advances in
Neural Information Processing Systems, vol. 28, pp. 91–99, 2015.

[5] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “SSD: Single Shot Multibox Detector,” in Proceedings
of the European Conference on Computer Vision (ECCV), 2016, pp.
21–37.

[6] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look
Once: Unified, Real-time Object Detection,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2016, pp. 779–788.

[7] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,”
arXiv preprint arXiv:1804.02767, 2018.

[8] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal
Loss for Dense Object Detection,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), 2017, pp. 2980–
2988.

[9] X. Yan, Z. Chen, A. Xu, X. Wang, X. Liang, and L. Lin, “Meta
R-CNN: Towards General Solver for Instance-Level Low-Shot Learn-
ing,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2019, pp. 9577–9586.

[10] X. Wang, T. E. Huang, T. Darrell, J. E. Gonzalez, and F. Yu,
“Frustratingly Simple Few-Shot Object Detection,” arXiv preprint
arXiv:2003.06957, 2020.

[11] J.-M. Perez-Rua, X. Zhu, T. M. Hospedales, and T. Xiang, “Incre-
mental Few-Shot Object Detection,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR),
2020, pp. 13 846–13 855.

[12] Y. Xiao and R. Marlet, “Few-Shot Object Detection and Viewpoint
Estimation for Objects in the Wild,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2020, pp. 192–210.

[13] J. Wu, S. Liu, D. Huang, and Y. Wang, “Multi-Scale Positive Sample
Refinement for Few-Shot Object Detection,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2020, pp. 456–
472.

[14] C. Zhu, F. Chen, U. Ahmed, Z. Shen, and M. Savvides, “Semantic
Relation Reasoning for Shot-Stable Few-Shot Object Detection,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2021, pp. 8782–8791.

[15] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H.
Torr, “Fully-Convolutional Siamese Networks for Object Tracking,” in
Proceedings of the European Conference on Computer Vision (ECCV),
2016, pp. 850–865.

[16] B. Li, J. Yan, W. Wu, Z. Zhu, and X. Hu, “High Performance Visual
Tracking with Siamese Region Proposal Network,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2018, pp. 8971–8980.

[17] B. Li, W. Wu, Q. Wang, F. Zhang, J. Xing, and J. Yan, “SiamRPN++:
Evolution of Siamese Visual Tracking with Very Deep Networks,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2019, pp. 4282–4291.

[18] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft COCO: Common Objects in
Context,” in Proceedings of the European Conference on Computer
Vision (ECCV), 2014, pp. 740–755.

[19] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1440–
1448.

[20] J. Dai, Y. Li, K. He, and J. Sun, “R-FCN: Object Detection via
Region-Based Fully Convolutional Networks,” in Advances in Neural
Information Processing Systems, 2016, pp. 379–387.

[21] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), Oct 2017.

[22] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zis-
serman, “The Pascal Visual Object Classes (VOC) Challenge,” Inter-
national Journal of Computer Vision, vol. 88, no. 2, pp. 303–338,
2010.

[23] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted Residuals and Linear Bottlenecks,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2018, pp. 4510–4520.

[24] L. Zhang, S. Zhou, J. Guan, and J. Zhang, “Accurate Few-Shot Object
Detection With Support-Query Mutual Guidance and Hybrid Loss,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2021, pp. 14 424–14 432.

[25] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales,
“Learning to Compare: Relation Network for Few-Shot Learning,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2018, pp. 1199–1208.

170



Self-learning of Crawling Behavior for a Modular Quadruped Robot
with Bayesian Optimization

Chuan Li, Lu Li

Abstract— Modular robots are intuitively designed for quick
adaptation under various environments. The control method
alters along with the configuration change of module com-
bination. Implementing such algorithms requires complicated
spatial geometry calculation and different moving properties
of modules. Based on common locomotion patterns of the
quadruped, we use Bayesian Optimization to conduct a para-
metric search towards a feasible controller. We perform several
experiments to measure the optimizing performance during
crawling learning, and our results show that the Bayesian
Optimization algorithm is capable of creating an efficient
learning process toward a locomotive gait. A high exploration
factor and a large vertical amplitude are both beneficial to the
optimal parameters searching.

Index Terms— Quadruped locomotion, Gait optimization,
Parametric search

I. INTRODUCTION

Compared to traditional wheeled robots that can only
travel on plain grounds, modular robots have stronger mobil-
ity because of the ability to overcome rough terrains with ver-
tical movement of the legs. However, legged locomotion is
much more difficult to model and control for its complexity.
Although several controllers for quadruped robots have been
proposed [1] [2] [3], the configuration and tuning of their
parameters remain a challenging problem. It is extremely dif-
ficult to tune these parameters manually, especially when the
robot is operating in the physical world with unpredictable
noise. Therefore, parametric search for the gait controllers
has become the key to control the locomotion of legged
robots.

Various machine learning and optimization methods have
been utilized to find these parameters. Such approaches in-
clude genetic algorithms [4], Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) [5], gradient descent methods
[6], and Bayesian Optimization (BO) [7] [8] [9], etc. BO is
a sample-efficient black-box global optimization algorithm
that is especially suitable when the objective function is
expensive to evaluate [10], which is usually the case in the
context of robotics. Performing experiments with robots are
usually time-consuming and wearing. BO hence has more
advantages over the other methods, especially for modular
robots.

Most of the previous studies on gait optimization using
BO focus on the influence of different configurations of the
BO algorithm itself. For example, [8] incorporates domain
knowledge to reduce dimensionality for BO in higher dimen-
sions of the parameters. [9] proposes an Alternating Bayesian
Optimization (ABO) algorithm that iteratively learns the
parameters through interactive trials, resulting in sample

efficiency and fast convergence. In this work, we focus on
the influence of the BO exploration factor and the vertical
amplitude of robot crawling.

In this paper, we assess different exploration factors and
locomotion settings to our robot and use Bayesian Optimiza-
tion to conduct a parametric search towards a locomotive
controller. In our experiments, the robot tries to find suitable
controllers parameters to move ahead.

The remainder of the paper is organized as follows.
Section II overviews the system and describes the proposed
methodology in detail. Section III evaluates the methodology
by experiment results, and discusses on potential future work.
Lastly, section IV concludes the paper.

II. METHODS
In this work we assemble a quadruped robot (shown

in Fig.1) to test a self-learning process of a locomotive
controller.

A. Robot Assembly
The modular robot project is called EigenBot, which

currently enables simulated modules including bendy module
(the module attached directly to the body), elbow module,
foot module, etc. All four legs are centrosymmetric to the
body. Each of them only contains the first three modules and
has 3 degrees of freedom (DOF). The elbow module and the
foot module are static, while the bendy module can bend
within 180◦.

Fig. 1. Quadruped robot: each leg has 3 bendy modules, which enables
the foot to move in 3 DOF.

B. Quadruped Crawling Controller
The controller of the robot orders each joint to move in a

sine wave described in Equation.1.

θL|R,i = Ai sin

(
t

T
+ φL|R,i

)
(1)
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θ denotes the target angle of a joint (in degree). A denotes
the amplitude of the wave (in degree). Specifically, A2 affects
the overall vertical amplitude of the robot movement. t is the
simulation time in second and period T is unified to 0.3s (this
period will be longer in the simulation due to communication
delay). φ denotes the initial phase in radian. Note that the
subscript 1 to 3 denote hip joint to ankle joint respectively.

To reduce the parameter space of BO, we also synchronize
the diagonal legs and similarize all joints’ wave amplitude.
The final parameter space is shown in Table.I.

TABLE I
PARAMETER SETTINGS OF THE CRAWLING CONTROLLER

Parameters Range
A1 [0, 25]
A2 h · [0, 25]
A3 [0, 25]

φL,1, φL,2, φL,3 [−π, π]
φR,1, φR,2, φR,3 [−π, π]

In our experiment, vertical amplitude factor h ∈
{1.0, 1.5}. These 9 parameters will be the input of the BO
algorithm.

C. Bayesian Optimization

Bayesian Optimization uses Gaussian Process to create a
probabilistic surrogate model of the unknown objective func-
tion. Gaussian Process is a collection of random variables,
any finite number of which have (consistent) joint Gaussian
distributions [11]. It can be defined by its mean function
m(x) and covariance function k (x, x′), and represented as
Equation.2.

f ∼ GP (m, k) (2)

In each iteration, BO samples a point selected by the
acquisition function and updates the surrogate model created
by GP until a certain number of iterations is reached. We
used Upper Confidence Bound (UCB) as the acquisition
function of BO and implemented the algorithm with Python.
The exploration factor is tested by two values, that is, κ ∈
{2.5, 30.0}. The objective function in our experiments is set
to be the forward distance passed by the robot.

D. Experimental Setup

We use CoppeliaSim as the robot simulator (previously
called V-REP), which is based on a distributed control ar-
chitecture: each object/model can be individually controlled
via an embedded script, a plugin, a ROS or BlueZero (B0)
node, a remote API client, or a custom solution. We choose
the B0-based remote API to apply position control on joints
via Python scripts. We run 50 iterations to obtain a result
of parameters combination from the BO algorithm, and each
iteration lasts 50 seconds for our robot to crawl. Each joint
is set with a maximum torque of 100 N·m.

Fig. 2. Learning process: h denotes the vertical amplitude factor. κ denotes
the exploration factor of acquisition function in BO algorithm.

TABLE II
LONGEST CRAWLING DISTANCE (M)

Random BO κ = 2.5 BO κ = 30
h = 1.0 0.77 0.41 1.34
h = 1.5 0.95 0.48 2.36

III. RESULTS AND DISCUSSION

As the vertical amplitude factor h increases, the landing
feet step harder, providing more support to move forward,
while the lifting feet release stress from the ground, resulting
in less friction resistance. These lead to a more oscillatory
learning process shown in Fig.2, which is beneficial for the
exploration to optima. Moreover, a low exploration factor κ
is harmful to the learning, ending up with results even worse
than those of random exploration displayed in Table.II.

The line patterns in Fig.2 also enhance the consistency of
the BO learning process. At around the 7th iteration, both BO
with κ = 2.5 and BO with κ = 30 explore to an extremely
low value. Their optimal learning results both appear around
the 40th iteration, along with several sub-optimal values.

Further BO experiments can be established on EigenBot
with similar configurations. It is vital to restrain the param-
eter space by synchronizing certain joints or simplifying its
structure, otherwise, it would be expensive to find optima. On
the other hand, it is also interesting to assemble an EigenBot
with few joints but it has a novel structure/configuration,
something manual control could hardly be feasible yet self-
learning algorithms would easily manage. Moreover, the
same robot learning to move on different terrain is another
aspect of studies.
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IV. CONCLUSIONS

In this work, we assembled a modular quadruped robot,
implemented a sine wave controller with a few variable
parameters to be decided by the Bayesian Optimization
algorithm. We found that both a high exploration factor from
the algorithm side or a large vertical amplitude factor from
the physics side can greatly aid the crawling learning pro-
cess. Additionally, this learning algorithm can be applied to
various configurations of modular robots. While simulations
are a powerful tool to explore controllers before deploying
those to real robots, roboticists should be aware that those
will not work in the same manner that they performed inside
simulations.
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Understanding and Predicting Human Activities in Search and Rescue
Tasks

Ruiyu Li1, Yue Guo2, Dana Hughes2, Katia Sycara2

Abstract— In an urban search and rescue (USAR) task, the
existing preconditions for successful triage and the complexity
of environments may impair rescuers’ performance. To build
an artificial agent that can assists rescuers in performing their
tasks efficiently, it is crucial to understand the correct sequence
of activities required to complete a task and predict rescuers’
high level strategy. While previous efforts have allowed agents
to predict rescuers’ navigation and victim triage strategy, there
is no work tackling rescuers’ activities together at a high
abstraction level. This work proposes steps towards this by
capturing high level behaviors in USAR tasks from training
hierarchical reinforcement learning agents. (1) We learn an
expert strategy module by training an optimal agent with
portable options. (2) We utilize LSTM networks to predict
rescuers’ high level strategy at each time-step. Early-stage
experiment results show the capability of the AI agent developed
by our method to optimally perform USAR tasks and accurately
predict rescuers’ activities. This could be useful for enabling
agents to provide intervention and further extend to multi-agent
scenarios.

Index Terms— Search and Rescue Robots, Reinforcement
Learning

I. INTRODUCTION

Consider a USAR scenario where rescuers try to save as
many victims as possible in a building damaged during an
earthquake in limited time. Victims with varying degrees
of injury would require different numbers of rescuers to
save and structural perturbations in the building could bring
difficulty to rescue activities. For instance, a medic navigates
to a victim that is buried beneath rubble, but before the medic
can save the victim, the medic needs to wait for an engineer
to remove the rubble first. While human rescuers may fail
to recognize the appropriate activity sequence required to
complete a task and thus cause inefficiency, an artificial agent
that observes, predicts, and intervenes into their navigation
and rescue activities can correct their inefficient behaviors
and help rescuers improve performance.

Previous efforts such as [1] [2] have developed agents with
the ability to predict rescuers’ navigation and victim triage
strategy separately. Differently, we investigate rescuers’ var-
ious high-level activities together to capture their temporal
relationships. This paper provides initial results of learning
expert strategy of high-level activities which can serve as the
knowledge of the artificial agent and predicting the activities
of artificial rescuers.

1Ruiyu Li is with the Department of Computer Science and
Engineering, University of Michigan, Ann Arbor, MI 48109 USA
ruiyuli@umich.edu

2Yue Guo, Dana Hughes and Katia Sycara are with the Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA 15213, USA {yueguo,
danahugh, sycara}@andrew.cmu.edu

Reinforcement learning (RL) provides methods to train
agents interacting with the environment to solve various
kinds of tasks, such as video games [3], autonomous driving
[4], and business management [5]. Executing state-action-
next state transitions and receiving rewards, the RL agent
learns a policy by exploring the state and action spaces
corresponding to the task. While in long-horizon tasks stan-
dard RL generally results in agents with poor performance,
hierarchical reinforcement learning (HRL) decomposes a
long-horizon RL task into a hierarchy of sub-tasks consisting
of a sequence of low-level actions to effectively reduce the
task’s long horizon [6]. The HRL agent learns a higher-
level policy that optimally chooses sub-tasks as high-level
actions to execute. Since our focus is on rescuers’ high-level
activities like approaching a victim and navigating to a room
instead of primitive actions like moving forward and turning
left, it is natural to model rescuers as HRL agents.

Specially, we utilizes the option framework [7] to simulate
artificial rescuers, where each option represents an activity
of a rescuer that we want to understand and predict. To
increase the transferability of the learned policy over options,
we follow [8] to train options in both the problem space
and the agent space. The option-aware trajectories generated
by the artificial rescuers have many potential uses: we can
compare them with human’s trajectories and then evaluate
how humans perform in USAR tasks; we can resolve the
problem of data deficiency and also increase the diversity of
human data by simulating various types of agents; we will
be able to explain how humans perform by inferring their
options.

For any rescuer, our assistant agent observes the states
the rescuer encounters and the options it takes. Using these
observations as training data, the artificial agent can train a
classifier to predict the rescuer’s options at each step. As
human rescuers learn from advice given by our assistant
agent, the prediction task is challenging because rescuers are
constantly learning, which would produce inconsistent data.
But still, there are some underlying relationship among res-
cuers’ behaviors as time passes. Recurrent neural networks
(RNN) have been successfully applied to time-dependent
prediction [9] and recommendation [10]. We take advantage
of Long Short Term Memory (LSTM) networks, a special
kind of RNN capable of learning both long-term and short-
term dependencies [11], to predict rescuers’ activity at each
time step. One challenge of using the LSTM model is that a
large amount of data is required to train LSTM networks to
obtain good results. Thus, we collect data of option-aware
trajectories from simulating varieties of artificial rescuers.
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II. PRELIMINARIES
A. HRL Based on Semi-Markov Decision Process (SMDP)

A SMDP is a stochastic control process consisting of a
state space S of the environment, a set of actions A that
can be taken by an agent, a set of sub-tasks O, a transition
function P , and a reward function r. An option o is defined
as a tuple (Io, πo, βo). Io : S → {0, 1} indicates whether an
option o can be initialized in each state. πo : S×A→ [0, 1]
represents the policy of an option o. βo : S → [0, 1] gives
the probability of an option o terminating in each state.

A two-level HRL based on options can be formed as
follows: at any state s, an agent chooses an option according
to a high-level policy, takes an action based on the policy of
that chosen option, transit to the next state drawn from P , and
receives a reward. In general, the problem definition of the
HRL is to find an optimal hierarchy policy. In this work, we
focus on Markov policies over options, µ : S × O → [0, 1].
Let E(o, s, t) represent the event of o being taken in state s
at time t. We define the value of taking option o in state s
under policy µ as

Qµ(s, o) = E {rt+1 + γrt+2 + · · · | E(oµ, s, t)}

, where γ is the discount factor and oµ is the composition
of o and u denoting the policy that first follows o until it
terminates and then initiates µ in the resultant state. Learning
Methods such as SMDP Q-learning [12] and intra-option
Value Learning [13] are used to obtain the optimal value
functions.

B. RNN and LSTM

RNN is a class of Neural Network in which internal units
may form a directed loop to demonstrate the state history
of previous inputs. The structure of RNN allows the model
to store temporal contextual information directly without
explicitly defining the length of temporal contexts. Among
several versions of RNNs, LSTM networks are capable of
memorizing sequences with long range temporal dependen-
cies. For a sequence input (x1, x2, ..., xT ), the hidden state
ht, t ∈ {1, 2, ..., T}, of the RNN is updated by

ht = f(ht−1, xt)

, where f is a activation function. As illustrated in Figure 1,
LSTM updates its hidden state sequentially similar to RNN,
but LSTM contains the update gate it that determines how
to update remembered information, the forget gate ct that
decides the amount of remembered information to forget, and
the output gate ot decides the amount of the remembered
information to output. The following standard equations
describe recurrent algebraic relationship of the LSTM unit:

ft = σ (Wf (xt, ht−1))

it = σ (Wi (xt, ht−1))

c′t = tanh (Wc (xt, ht−1))

ct = it � c′t + ft � ct−1
ot = σ (Wo (xt, ht−1))

ht = ot � tanh (ct) .

Fig. 1. The repeating module in LSTM [14].

III. APPROACH

A. Environment and task design

We designed a four-room environment for our study, which
contains four 6 × 6 2-D grid rooms, walls, balls, switches
and doors with locks, as shown in Figure 2. In each episode,
the agent is initialized at a random location in the top-left
room and four balls are placed at random locations in the
environment to represent victims. There are doors between
the two top rooms and the two bottom rooms, which are
locked initially and at random locations. Each locked door
corresponds to exactly one switch which can be toggled to
open the door. Switches are also randomly placed in the area
that the agent are able to reach in each episode. Once a door
is opened, toggling the switch will have no effect.

Fig. 2. Four-room environment. In this example, only the blue switch can
open the blue door and the yellow switch can open the yellow door

An agent can choose from four actions, FORWARD,
TURN-LEFT, TURN-RIGHT, and TOGGLE, to take at each
step. In each episode, the goal of the agent is to rescue all
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TABLE I
AGENT’S OPTIONS IN THE FOUR-ROOM ENVIRONMENT

Option initialization Condition Termination Condition

navigate to a room agent is not in the room agent is in the room
go to a switch and toggle it agent is in the same room as the switch the switch is toggled
triage a victim agent is in the same room as the victim the victim is triagged

the four victims using as few options as possible. The agent
cannot go through walls and cannot step upon other objects.
Thus, an agent need to navigate to the switch and toggle
it before it can navigate to another room with locked door,
which is the sequence of activities we expect the agent to
learn. Besides, the agent is expected to save all the victims
in a room once it enters the room and not waste time to visit
already visited rooms.

B. Learn expert knowledge

To extract expert strategy of activities as knowledge to
provide intervention, we design options which correspond
to activities in USAR tasks and train an optimal fully
observable HRL rescuer with the options to learn the correct
sequences of activity. The training algorithm is deep Q-
network with experience replay and fixed Q-targets [15].
The three fully-connected layers in the deep Q-network
is initialized with equal weights and biases. We use both
problem space options and agent space options so that the
learned knowledge over options is more general and can be
applied to more environments [8].

C. Option prediction

For any rescuer, the artificial agent observes the states
the rescuer encounters and the options it takes. Using these
observations as training data, the artificial agent can train
a classifier to predict the rescuer’s options at each step.
Specially, at each time-step, we predict the option that the
agent is going to take in the following step using LSTM.
We train the LSTM using data of the last 100 episodes
and evaluate the prediction accuracy of LSTM on the next
episode. The input to the model is a time sequence of state
features [Xt, Xt+1, ..., Xt+T ] and the label is the option the
agent is going to take at time-step (t+T ). We also use SVM
and MLP whose input is state features Xt at each time-step
and label is the option the agent is going to take at each
time-step t to serve as baselines.

To collect data for option prediction, we simulate var-
ious artificial rescuers to perform USAR tasks by setting
β = 0.9, 0.8, 0.75 and 0.7 separately in the Softmax option
selection Pr(o|s) = eβ∗Q(s,o)∑

o′ e
β∗Q(s,o′) to train artificial rescuers.

In this way, we obtained four kinds of agents with varied
performance in the four-room USAR tasks.

IV. EXPERIMENTS AND RESULTS

A. Learn expert knowledge

To learn expert knowledge of performing USAR tasks
involving preconditions, we train a fully observable HRL

agent with predefined rule-based options. We consider three
kind of options for an agent, described in Table I. Note
that the options are not specifically defined for any fixed
environment, but rather it can be applied to any environment
that involves those activities. Denote the number of steps the
rescuer takes to fulfill the option of triage a victim as n. The
agent will receive a reward of (+2 × γn) when it saves a
victim and +1 when it toggles a switch for the first time.
The agent will be given a penalty of -1 if its chosen option
can’t be achieved finally.

We trained the agent for 7000 episodes and evaluated
on 1000 episodes. The training curve over three runs is
displayed in Figure 3, where the curve converges normally.
The average number of options the agent takes in each
episode during the evaluation are 10. Since the smallest
number of options the agent needs to take to complete
a USAR task in the four-room environment is 9 and the
locations of each objects vary from episode to episode, it
is fair to consider our trained agent as an expert in solving
USAR task in the environment.

Fig. 3. Average number of options taken - learning curve of the optimal
rescuer

B. Simulate artificial rescuers and predict their options

Figure 4 shows the learning curves of two simulated
artificial rescuers. From the figures, we can see that they have
different performances in solving USAR tasks. The curves
converge very slow and the performance of this artificial
rescuer are far from optimal, indicating the meaningfulness
of providing intervention that we plan to do in the next step.

We conducted the prediction experiment as described in
the Approach section using data of the simulated artificial
rescuers from episode 2000 to episode 5000 and report the
average prediction accuracy across four rescuers in Table II.
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The LSTM model outperforms both SVM and MLP in the
prediction accuracy.

[1]

[2]

Fig. 4. Average number of options taken - sample learning curves of
artificial rescuers

TABLE II
PREDICTION ACCURACY ACROSS FOUR RESCUERS

SVM MLP LSTM

0.32 0.58 0.74

V. DISCUSSIONS AND FUTURE WORK
While the LSTM model achieves higher prediction accu-

racy than both SVM and MLP, models with better perfor-
mance on the prediction task should be developed because
correct prediction of rescuers’ options is crucial for giving
intervention and we don’t want to waste the expert’s advice
or mislead rescuers.

In the future, we would like to utilize the learned expert
knowledge and the prediction ability to provide intervention.
Basically, the intervention will be based on the correct
identification and prediction of options, and this is helpful for
human-machine trust and improve the mission performance
in general. To our knowledge, among all the work on
transferring knowledge from a teacher to students, teacher-
initiated action advising approach is the most relevant to
our scenario. Learning Hierarchical Teaching Policies for
Cooperative Agents [16] is the only one that advise tempo-
rally extended sequences of primitive actions (i.e., high-level
strategy) via hierarchical reinforcement learning. But their
situation is two RL agents teach each other while learning

to cooperatively complete tasks. In the predictive-advising
framework introduced in [17], a RL teacher agent gives
advice on actions to RL agents a limited number of times,
which could be extended and improved for our purpose to
provide advice on options to rescuers. Moreover, extending
our approach to multi-agent settings and more complicated
environments are interesting directions.

VI. CONCLUSIONS

This work proposes methods to develop an AI agent
assisting rescuers in performing USAR tasks more efficiently
by recognizing the correct sequences of behaviors required to
complete a task and predicting rescuers’ high level strategy
at each time-step. Initial experiment results show that (1)
we successfully learn an expert strategy module by training
an optimal HRL agent with portable options and (2) our
approach by using LSTM networks to predict rescuers’ high
level strategy at each time-step outperforms the baseline
models, SVM and MLP. This could be further used to enable
agents to provide advice on options to rescuers.
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Generating Stenosis Regions of Interest in X-Ray Coronary
Angiography using Deep Neural Networks

Jennifer Liu1, James K. Miller2, Keith Dufendach3 and Artur Dubrawski2

Abstract— Invasive Coronary Angiography remains the gold
standard diagnostic tool for Coronary Artery Disease (CAD),
the leading cause of death worldwide. However, X-ray coro-
nary angiography is often met with limitations associated
with the lack of uniformity with illumination, as well as
the presence of artifacts and noise. The rapid development
and promising prospects of object detection methods can
be leveraged to address this issue. Recent work on stenosis
detection employs a two-stage Region Proposal Network trained
with bounding-box annotations for object classification and
bounding-box regression. However, this densely tailing process
is time-consuming and reduces diagnostic efficiency. This work
proposes a lightweight one-stage detector using a redesigned
RetinaNet with optimized anchor configurations to meet par-
ticular challenges that exist in medical imaging. Additionally,
image augmentation techniques were utilized to improve the
medical dataset. This one-stage stenosis detector achieved 0.735
precision and 0.721 recall on the inference of stenosis regions
of interest, significantly outperforming the state-of-the-art one-
stage approach by 30%. The contribution of this work opens the
path to a fully automated diagnostic tool for Coronary Artery
Disease from X-ray coronary angiograms to better evaluate the
prognosis of patients, bringing great clinical value in the field
of cardiothoracic surgery.

Index Terms— Object Detection, Segmentation and Catego-
rization, Computer Vision for Medical Robotics, Deep Learning
Methods

I. INTRODUCTION

Coronary Artery Disease (CAD), characterized by plaque
accumulation [1], is the leading cause of death worldwide,
and the most common cause of morbidity and mortality [2].
It accounts for 20% of all deaths in Europe [3] and 30% of all
deaths in the US [4] for over 35 years. The main cause of
CAD is plaque buildup in the epicardial coronary arteries,
which reduces cardiac blood flow and causes a mismatch
between myocardial oxygen supply and demand [1]. This
plaque buildup causes the inside of the arteries to narrow over
time; the narrowing of coronary arteries is termed coronary
stenosis.

Despite advancements in novel imaging modalities, Inva-
sive Coronary Angiography (ICA) remains the gold standard
diagnostic tool for Coronary Artery Disease, according to
The European Society of Cardiology [5]. This procedure
involves threading a catheter into the blood vessel and

1Jennifer Liu is with the School of Engineering, Tufts University,
Medford, MA, USA jennifer.liu@tufts.edu

2James K. Miller and Artur Dubrawski are with the Auton Lab,
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA
mille856@andrew.cmu.edu, awd@andrew.cmu.edu

3Keith Dufendach is with the Department of Cardiothoracic
Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA,
USA dufendachka@upmc.edu

obtaining dynamic X-ray images. The assessment of CAD re-
quires interpretive expertise to evaluate multiple parameters,
including the number of affected major coronary arteries, the
location of lesions, and the severity of stenosis. In addition to
being labor-intensive and time-consuming, visual assessment
of stenosis severity is associated with high intraobserver
and interobserver variabilities due to the lack of uniformity
with illumination, as well as the presence of artifacts and
noise [6]. Studies demonstrate that visual interpretations of
angiograms underestimate the degree of underlying disease,
which ultimately leads to a delayed diagnosis [7]. This calls
for an automated assessment pipeline for Coronary Artery
Disease.

Prior works in the field of automated stenosis detection
have successfully identified regions with stenosis. A two-
stage Regional Proposal Network model is often employed
for this detection task, which raises concerns around the
efficiency of this approach. While two-stage detectors yield
accurate results, they might not be optimal for this spe-
cific clinical application. Since coronary angiography is an
invasive procedure that involves radiologic exposure and
obviating repeated contrast injections, the slow image pro-
cessing speed in two-stage detectors might be a hindrance to
diagnostic efficiency. One-stage detectors (i.e. YOLO, SSD,
RetinaNet) can be leveraged to detect and grade stenosis at
a much greater speed. YOLOv5 [8] detectors are the most
widely used anchor-based one-stage architectures among the
one-stage family [9]. In addition to that, a research gap still
exists in the overall pipeline for Coronary Artery Disease
diagnosis. Minimal interventions have been made to support
physicians to determine the right treatment option for the
patient. To determine the right treatment option, physicians
are required to assess the grade of the stenosis and symptoms
to recommend treatment (i.e. Coronary Artery Bypass Graft,
Percutaneous Coronary Intervention).

We propose a one-stage detector approach to generate
possible stenosis regions of interest in coronary angiography,
an integral part of the pipeline towards grading stenosis and
diagnosing Coronary Artery Disease (Fig. 1). In particular,
this work aims to select the most efficient Convolutional
Neural Network (CNN) architectures and explore optimiza-
tion methods for detecting and grading coronary artery
stenosis. By generating images with possible stenosis, further
segmentation and classification tasks can be performed to
create interpolation of the degrees of vessel obstruction and
generate SYNTAX scores to determine accurate treatment
options for patients (Fig. 1).
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Fig. 1. Proposed End-to-End Pipeline for the Diagnosis of Coronary Artery
Disease.

In summary, the contributions of our work are three-fold:
• This work proposed an end-to-end assessment pipeline

for Coronary Artery Disease as a diagnostic tool to
support physicians.

• This work addressed the importance of diagnostic effi-
ciency by leveraging the power of one-stage detection
approaches.

• This work selected the most efficient CNN architecture
to construct a model that optimizes speed and accu-
racy to generate regions of interest containing possible
stenosis in Coronary Angiography images

II. RELATED WORKS

This section highlights prior works in stenosis detection,
background information about object detection algorithms,
and preliminary research on object detection, segmentation,
and classification in the wider medical imaging field.

Several approaches for automated assessments of Coro-
nary Artery Disease and stenosis detection have been pro-
posed by different research groups within the medical imag-
ing field. Tools such as centerline extraction, graph-based
method, superpixel mapping, and machine or deep learning
have been explored, with machine or deep learning being
most powerful and have shown great promise in CAD
detection due to their performance, tuning flexibility, and
optimization [10].

A. Two-stage vs. One-stage Object Detectors

Recent work on stenosis detection employs a two-stage
Region Proposal Network, such as Faster R-CNN and R-
FCN. Danilov et al. [10] pioneered the study of stenosis
detection by analyzing the speed and accuracy trade-off

for detecting single stenosis with specific state-of-the-art
CNN architectures. The comparative analysis demonstrated
3 promising neural networks, with Faster-RCNN Inception
ResNet V2—a two-stage detector—being the most effective
model to detect single-vessel disease. To determine the
location of stenosis, Danilov et al. evaluated the distribution
of the stenosis coordinates along the vessel in the input
images which is then used to estimate the center point of
the bounding box around the stenosis.

Despite Faster-RCNN Inception ResNet V2 having the
most optimal balance between accuracy and speed, this
complicated architecture is not optimized for this application.
In Faster-RCNN, the first stage Region Proposal Network
proposes candidate object bounding boxes; the second stage
consists of feature extraction by RoI Pooling (RoIPool)
operation from each candidate box for the following classifi-
cation and bounding-box regression tasks. Unlike two-stage
detectors, one-stage detectors propose predicted boxes from
input images directly without region proposal step, thus they
are time-efficient and can be used for real-time applications
[11]. Towards the pipeline proposed in Fig. 1, an efficient
and elegant one-stage approach is favored.

Compared to one-stage detectors, two-stage detectors have
an advantage for accuracy performance. By sampling a
sparse set of region proposals, two-stage detectors filter
out most of the negative proposals, while one-stage detec-
tors directly face all the regions on the image. Lin et al.
[12] investigated that the class imbalance problem found
in most one-stage detectors contributes to lower accuracy
performance. It was found that the extreme foreground-
background class imbalance encountered during training of
dense detectors is the central cause. By implementing a
novel Focal Loss, the vast number of easy negatives can
be prevented.

B. Lesion Segmentation

In the wider field of object detection and imaging, novel
machine learning models have been developed for lesion
segmentation with weak supervision. Weak labels, such as
RECIST diameters, are leveraged for segmentation, detec-
tion, and classification tasks, as seen in Chu et al. [13]
and Zlocha et al. [14] In particular, Chu et al. proposed a
joint classification localization network by clustering input
patches containing lesion. Segmented lesion would be used
to monitor lesion shape, and may prove crucial to identifying
any abnormalities.

Chu et al.’s [13] approach, including many others, show
the potential of weak labels for detection, segmentation, and
categorization tasks. However, this is not readily available
in X-ray coronary angiography and additional preprocessing
stages are required; this work aims to explore such possibil-
ities for coronary angiography.

III. METHODOLOGY

This section first formulates the source data, model archi-
tecture, and training details for the models. The metrics and
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thresholds used to evaluate the performance of models are
defined.

A. Source Data

The dataset consists of clinically-obtained coronary an-
giography sequences of 100 patients at the University of
Pittsburgh Medical Center, curated by a Cardiothoracic
Surgery expert. A total of 256 images with frame dimensions
of 800 by 600 pixels were obtained from these sequences.
For each coronary angiography frame containing stenosis,
2D bounding-boxes are labeled to showcase unique stenosis
of the corresponding artery and classified based on its degree
of stenosis (50-70%, 70-90%, >90%). Examples of labeled
source images are shown in Fig. 2.

Fig. 2. Data labeling of source images with 2D bounding-boxes of detected
stenosis.

B. Model Architecture and Training Details

In order to detect and estimate the position of every visible
stenosis in a given frame, a one-stage detector approach is
utilized, where the stenosis is the object of interest. We select
the backbone of the proposed approach to be a RetinaNet
architecture [12], a one-stage detector, highlighted in Fig.
2; the use of a focal loss addresses the common problem
of class imbalance in detection tasks in classic one-stage
object detection methods, like YOLO and SSD. A top-
down architecture with lateral connections is adopted for the
Feature Pyramid Network (FPN) to detect objects at different
scales and effectively capture information about stenosis of
varying sizes [15].

Fig. 3. RetinaNet architecture with (a) ResNet-50 backbone and (b) Feature
Pyramid Network as feature extractor to (c) classify the existence probability
and (d) regress the bounding box coordinates of stenotic lesions.

Classification and regression sub-networks are responsible
for classifying a bounding box and regressing the estimated
coordinates. Anchor configurations are crucial for the per-
formance of the detector, and it was found that the default
anchor sizes {32, 64, 128, 256, 512}, aspect ratios {1:2, 1:1,

2:1}, and scales {2
0
3 , 2

1
3 , 2

2
3 } turn out to be ineffective for

medical images [12]. We implemented anchor optimization
methods proposed by Zlocha et al. that utilize a differential
evolution search algorithm to optimize ratios and scales
of anchors. Anchor aspect ratios of {0.286, 0.5, 1.0, 2.0,
3.5} were obtained to fit the epicardial coronary arteries in
different directions and 0.5 offset (half stride) between the
center of the first anchor and the top-left corner of the image;
anchor scales and sizes remain the same. Optimized anchor
configurations were then used to train the detector. For each
800 by 600 pixel image, the α-balanced Focal Loss function
with cross-entropy was used with α = 0.25 and γ = 2 to
address issues with class imbalance [12].

The dataset is split into 80% for training and 20% for
testing. In order to address challenges with the lack of public
Invasive Coronary Angiography (ICA) datasets, lightweight
preprocessing and image augmentation techniques were im-
plemented to enlarge the size and improve the diversity of
the dataset during training. Coronary angiography images
were flipped in horizontal directions with 50% chance;
corresponding bounding boxes were generated based on
augmentation steps. As a result, overfitting is reduced which
improves generalization. We employ the Adam optimizer
with a learning rate of 10−4. All tests and computations were
performed with PyTorch 1.9.0 and Python 3.9.5, equipped
with NVIDIA GeForce RTX 2080 Ti.

C. Evaluation Metrics

At inference, a non-maximum suppression layer was im-
plemented to select one entity (bounding box with stenosis)
out of many overlapping entities. Additionally, our model
is configured to output a maximum of 5 bounding boxes at
inference time.

Precision and recall evaluation were utilized to evaluate the
accuracy of the detection model; a detection is considered a
true positive if the intersection-over-union (IoU) and confi-
dence score are both greater than 0.1. Precision and recall
scores were generated per frame based on the maximum IoU
score for a detection. The IoU threshold was optimized with
the aid of receiver operating characteristics (ROC) curves. In
addition to that, the Dice similarity coefficient and inference
time per image were calculated in order to quantify the
overall performance of the model. For this work, we consider
our baseline to be YOLOv5 [8], a state-of-the-art one-stage
detector, which was trained with the same configurations.
During performance evaluation, the amount of false positive
detections was also monitored; the number of false positives
is important in clinical applications as they may result in
choosing an unsuitable treatment option.

IV. RESULTS

To evaluate the performance of proposed model, this sec-
tion summarizes the performances of models tested through
the chosen evaluation metrics and visual results for stenosis
detection.
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A. Overall Performance

The best performance of the four models we tested are
summarized in Table I. When comparing precision, all of the
RetinaNet models outperform the baseline model. However,
the baseline model had a greater recall score when compared
to the original RetinaNet. The model with the best accuracy
performance is the improved RetinaNet with optimized an-
chors and trained with an improved dataset, obtaining a 0.735
precision, 0.721 recall, and 0.728 Dice coefficient.

TABLE I
COMPARISON OF STENOSIS DETECTION PERFORMANCE IN BASELINE

AND RETINANET MODELS

Model Precision Recall Dice Inference
Score Time

Baseline (YOLOv5) 0.3750 0.4030 0.3885 10 ms
Original RetinaNet 0.3815 0.3494 0.3648 35 ms

+ Anchor Optimization 0.5122 0.5060 0.5091 35 ms
+ Image Augmentation 0.7349 0.7211 0.7279 41 ms

Despite its high accuracy, the RetinaNet model with op-
timized anchors and trained with an improved dataset had
the highest amount of variation, with a standard deviation of
0.3. On the other hand, the standard deviation of the baseline
model was 0.05. The baseline model performed the fastest,
with an inference time of 10 ms per frame whilst the best
model had an inference time was 41 ms per frame.

When comparing our model with the two-stage detector
with the most optimal balance between accuracy and speed
(Faster-RCNN Inception ResNet V2) [10], the performance
accuracy gap is still significant. Our model’s Dice coefficient
is lower than Faster-RCNN Inception ResNet by approxi-
mately 0.2. Alternatively, our model demonstrated superior
inference time compared to Faster-RCNN Inception ResNet
by approximately half time.

Remark 1: Our one-stage stenosis detector achieved 0.728
Dice score on the determination of stenosis regions of inter-
est, significantly outperforming the state-of-the-art one-stage
approach by 30%. When comparing with the most optimal
two-stage detector, our model had a superior inference time
but trailed the accuracy of a two-stage approach.

B. Visualization of Inferences

Fig. 4 highlights visual results of inferences made by the
best model on test images, with true positive cases illustrated
in the first column and false positive cases illustrated in
the second column. The model not only was able to detect
ground truth labels, but also stenosis with grades below 50%
as seen in some instances of false positive detections (Fig.
1b). This information could be valuable for physicians to
easily track stenotic lesion over time. At the same time,
this might be detrimental as it may result in choosing an
unsuitable treatment option.

When investigating inferences made by different models,
our RetinaNet models were able to distinguish coronary
arteries from the background well due to Focal Loss. On the

Fig. 4. Visualizations for stenosis detection using best RetinaNet model
with Anchor Optimization and Image Augmentation. (a) First column
illustrates true positive cases. (b) Second column illustrates false positive
cases. Red boxes are ground truth, blue boxes are predicted stenosis with
IoU score labeled.

other hand, the baseline model detected more background
regions as stenosis due to the lack of Focal Loss.

Remark 2: The best RetinaNet model was not only was
able to detect ground truth labels, but also stenosis with
grades below 50%. All RetinaNet models were able to
distinguish coronary arteries from the background, regarding
the background regions as easy negatives.

V. CONCLUSION AND FUTURE WORK

This work presents a one-stage approach to generate
stenosis regions of interest in X-Ray Coronary Angiography
using an improved RetinaNet, outperforming the state-of-the-
art baseline by a significant margin. The contribution of this
work is shown to be significant for the proposed pipeline for
diagnosing Coronary Artery Disease. In particular, this work
shows the advantage of one-stage approaches for certain
applications in medical imaging. While our approach is
only one of many potential ways towards stenosis detection,
we hope that our exploration into one-stage detectors for
real-time medical imaging tools opens the path to a fully
automated diagnostic tool for Coronary Artery Disease to
better evaluate the prognosis of patients, bringing great
clinical value in the field of cardiothoracic surgery.

For further work, a few adjustments could be made to
further improve the performance of our model. We observed
large variability in accuracy performance on the best model
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compared to the baseline. This large variability could be
associated with the amount of noise in the image. A number
of image enhancement methods have been proposed by
different research groups using tools such as applying a
multi-scale top-hat transform [16] to enhance the contrast
of input angiogram images. Another improvement is inte-
grating attention mechanism into the feature pyramids in
the RetinaNet architecture. A recent attention gate (AG)
learns to focus on target structures by producing an attention
map, benefiting small, varying structures [17]. This would be
useful in improving bounding box detections as stenosis only
represents small proportions of the coronary angiography
frame.
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Unsupervised Visual to Thermal Image Translation and Registration

Xinhang Liu1, Huai Yu2 and Sebastian Scherer2

Abstract— In this work, we focus on the topic of infrared (IR)
and visual (RGB) image registration, which is a fundamental
task for IR-RGB fusion and IR- RGB visual odometry. Espe-
cially it enables the early feature fusion for day-night visual
odometry. Different from traditional methods based on sparse
feature point extraction and matching, we develop a multi-
modal optical flow estimation framework, which mainly relies
on the structure consistency between two modalities to establish
dense correspondences. Then we come up with a network
structure to predict IR-RGB optical flow. This architecture
combines optical flow estimation with multimodal image-to
image translation and can be trained in either a supervised or
an unsupervised manner. In order to take advantage of RGB
and infrared images’ complementary description of a scene,
we use autoencoders to represent the two images as interactive
latent codes. The results demonstrate the effectiveness of the
proposed IR-RGB network.

Index Terms— Deep Learning for Visual Perception, Image-
to-Image translation, IR-RGB registration, optical flow

I. INTRODUCTION

Visual to infrared image registration is a fundamental
problem for high-level tasks, such as IR-RGB image fusion
[1], fused object detection [2] and state estimation [3]. Due
to the different imaging bandwidths of the two sensors, a
precise registration and fusion between IR and visual image
can greatly enhance the captured information in one single
image. The registration of these two modal 2D data is to
establish the point correspondences between pixels and then
geometric relationship, such as affine transformation and
non-rigid optical flow, can be estimated. Despite the current
progress in obtain sparse point correspondences [4] and im-
age fusion [1], the dense cross-modal optical flow estimation
is still a great challenge. Also there is not a data driven
strategy to learning the cross-modal dense correspondences.

Theoretically, IR and RGB cameras have different imaging
mechanism. Infrared camera captures information in the
longwave infrared wavelength (8−15µm), which is sensitive
to the temperature of surrounding environments and the
material of reflection objects. While visual camera captures
more abundant information in a lower wavelength (400 −
700nm), which is similar to the wavelength of human eye’s
view. This difference makes the registration of IR to RGB
images a big challenge. Due to the geometric edges can be
captured by both IR images and visual images, most current

1Xinhang Liu is with School of Information Science
and Technology, ShanghaiTech University, Shanghai, China
liuxh2@shanghaitech.edu.cn

2Huai Yu, Sebastian Scherer are with Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA, USA {huaiy,
basti}@andrew.cmu.edu

IR-RGB registration methods are based on this characteris-
tics to find the geometric consistency. Simultaneously, the
accurate affine transformation or dense optical flow can be
estimated by maximize this consistency. For example, RIFT
[4] uses frequency domain to remove the texture difference
and encode the geometric information as a descriptor to
get sparse point correspondences, then a 3× 3 homography
matrix can be estimated. However, these kinds of traditional
methods mainly reply on the sparse point feature extraction
and local texture encoding, which is time-consuming and
cannot be used for online visual odometry.

Intuitively, one may consider handling this problem with
current deep learning based optical flow estimation methods
[5], [6]. However, in RGB-thermal optical flow, the two
frames of a pair of input images are in different modalities,
while these methods deal with two input images in a same
modality. What’s more, these methods only work well in a
supervised setting, which means we need training data with
ground truth optical flow. However, ground truth optical flow
is hardly accessible in our case.

Since the setup of IR and RGB cameras is usually rigidly
bundled and synchronized for robotic applications, the dense
correspondence is important for an accurate state estimation
and image fusion. However, the cross-modal IR-RGB dense
correspondence estimation is even more challenging than the
homography estimation with sparse point matching. Inspired
by the SOTA image-to-image translation framework, we
propose to combine the IR-RGB flow estimation and IR-
RGB image translation in a novel unsupervised network
architecture (as shown in Fig. 1). We first present an encoder-
decoder based network to translate between two modalities,
then the optical flow estimation can be conducted on the
same domain in both RGB branch and IR branch. This
combination of cross-modal image translation and flow esti-
mation can benefit from each other. By translating the image
style and preserving geometric consistency, IR-RGB image
translation can decrease the modality gap between IR and
RGB images, thus make flow estimation easier to learn.

II. RELATED WORK

A. GAN-based image-to-image translation

The GAN framework [7] has achieved impressive results
in image generation and has also been exploited in image-
to-image translation. A conditional generative model [8],
which learns translations between domains and applies to the
context of source images a target appearance learned from a
dataset can align the distribution of translated images with
real images in the target domain.
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The cycle consistency loss [9], [10], which enforces that
if we translate an image to the target domain and back,
we should obtain the original image, is a frequently-used
constraint used in i2i networks. Another important progress
is the assumption of a shared latent space such that corre-
sponding images in two domains are mapped to the same
latent code [11], which was further extended by [12].

B. Optical flow estimation

Optical flow describes a dense pixel-wise correspondence
between two images, specifying for each pixel in the first
image, where that pixel is in the second image. Classical
methods formulate optical flow estimation as an optimization
problem.

They infer, for a given image pair, a flow field that
maximizes smoothness and the similarity of matched pixels.
Recent supervised learning approaches instead train deep
neural networks to estimate optical flow from examples of
ground-truth annotated image pairs [5], [6].

Unsupervised approaches appeared after supervised meth-
ods and showed that even without labels, deep learning can
greatly outperform classical flow methods [13]. A recent
study performed an extensive comparison of the many pro-
posed advances in unsupervised flow estimation and amal-
gamated these different works into a state of the art method
called UFlow [14], [15].

C. Multi-modal image matching

Recently, the multi-modal image matching task has drawn
increasingly more attention, and several algorithms have
been proposed. For example, local self-similarity descriptor
(LSS) [16], partial intensity invariant feature descriptor (PI-
IFD) [17], distinctive order-based self-similarity descriptor
(DOBSS) [18], ARRSI [19], histogram of orientated phase
congruency (HOPC) [20], and phase congruency structural
descriptor (PCSD) [21].

RIFT [4] used phase congruency (PC) for feature point
detection proposed a MIM measure for feature description1.
Different from these previous work, where feature points are
extracted and matched and image registration is done in a
such a sparse way, we attempt to formulate this task in a
dense manner. We look for the correspondence of each pixel
of one image in the other.

III. METHODOLOGY

A. Disentenglement representation of RGB and IR images

Let (x1A, x
2
B) be a pair of images, where x1A ∈ XA is

an image of frame 1 from RGB domain, and x2B ∈ XB is
an image of frame 2 from IR domain. In our setting, we
are given samples drawn from the distributions p(x1A, x

2
B),

without access to the joint distribution (x1A, x
2
A, x

1
B, x

2
B). Our

goal is to estimate the conditional p(x1B, x
2
A|x1A, x2B) with a

learned model.
To tackle this problem, we make a partially shared latent

space assumption like [12]. Specifically, on one hand, we

1We reimplemented RIFT in C++, with code available at https://
github.com/DarlingHang/RIFT
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Fig. 1. Our assumptions on images. (a) The input RGB image and IR image
can be mapped into a partially shared latent space. These latent codes can
be used to translate the input into the other modality, with the geometry
remained and the appearance corresponding to the other input. They should
also be able to reconstruct the input images. (b) On top of the connection of
images through latent space, the two images within a same modality should
also be warped toward each other using an estimated optical flow.

assume that each RGB image xA ∈ XA is generated from a
content latent code yC ∈ YC that is shared by both domains,
and a color latent code yA ∈ YA that is specific to the RGB
domain. On the other, we assume that each IR image xB ∈
XB is generated from a content latent code yC ∈ YC and
a thermal latent code yB ∈ YB that is specific to the RGB
domain.

In other words, a pair of corresponding images
(x1A, x

2
A, x

1
B, x

2
B) from the joint distribution is generated by

x1A = G∗
A(y

1
C, yA),

x2A = G∗
A(y

2
C, yA),

x1B = G∗
B(y

1
C, yB),

x1B = G∗
B(y

2
C, yB),

(1)

where y1C, y
2
C, yA, yB are from some prior distributions and

G∗
A, G

∗
B are the underlying generators. We further assume

that G∗
A and G∗

B are deterministic functions and have their
inverse encoders E∗

A = (G∗
A)

−1 and E∗
B = (G∗

B)
−1. Our goal

is to learn the underlying generator and encoder functions
with neural networks.

Fig. 1(a) shows an overview of our encoder-decoder
architecture and its learning process. Our translation model
consists of an encoder EA (EB) and a decoder GA (GB) for
RGB domain XA (IR domain XB).

B. Optical flow estimation module

We found that the encoder-decoder architecture described
above can generate reasonable pair, but there can be artifacts
in details. This is because the encoder-decoder architecture
introduced so far is not sufficient for the extraction and
utilization of the local information of the picture. So we
propose to use the prediction of the optical flow between
two pictures to improve the effect of the model.

Given a pair of a pair of corresponding images (x1A, x
2
B),

we want to estimate the flow field V1 ∈ RH×W×2, which
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Fig. 2. Qualitative results of our methods. Input images, translated images by encoder-decoder, estimated optical flows and warped images via the
estimated flows are displayed.

for each pixel in x1A indicates the offset of its corresponding
pixel in x2B, as well as the flow field V2 ∈ RH×W×2, which
for each pixel in x2B indicates the offset of its corresponding
pixel in x1A.

Since x1A and x2B are in different domains, it is hard to
estimate a flow field. We instead estimate the flow field
V̂1 ∈ RH×W×2, which for each pixel in (x1A, x

1
B) indicates

the offset of its corresponding pixel in (x2A, x
2
B), as well

as the flow field V̂2 ∈ RH×W×2, which for each pixel in
(x2A, x

2
B) indicates the offset of its corresponding pixel in

(x1A, x
1
B). Note that x1A and x2B are generated images from the

encoder-decoder architecture described above, and (x1A, x
1
B)

and (x2A, x
2
B) are in the same domain.

As is illustrated in Fig. 1, in addition to the encoder-
decoder part, we add an optical flow estimation module to
our architecture. This flow estimation module is trained syn-
chronously with encoders and decodes. The training process
of this module is carried out in an unsupervised manner,
using the generated images from encoders and decodes as
the targets.

For this module, we want to learn a function fθ with
parameters θ that estimates the flow field for any image
pair, such that V̂1 = fθ((x

1
A, x

1
B); (x

2
A, x

2
B)). We learn the

parameters θ from data of unlabeled image sequences D by
minimizing a loss function L, θ∗ = argminL(D; θ).

It should also be noticed that if the ground truth is acces-
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Fig. 3. Translated images by our encoder-decoder architecture, compared with CycleGAN. Not taking advantage of both images’ information, CycleGAN
can make obvious mistake, generating image whose appearance is inconsistent with the input image of the same modality.

sible, the training procedure of the optical flow estimation
module can be converted naturally to a supervised manner.

IV. EXPERIMENTS

In this section, we evaluate our approach with experiments.
We first report the implementation details of our approach
and the utilized dataset followed by analyzing our results.
We further provide the comparison on IR-RGB translation
with previous state-of-the-art methods in image-to-image
translation.

A. Implementation Details

Our network model is implemented in PyTorch. We run all
of our experiments with a single NVidia GeForce RTX3090
GPU. The training time is about 12 hours, with 256 × 256
cropped input image resolution.

We use the FLIR dataset, which contains around 14K pairs
of images. We randomly divided the data into training set and
test set according to the ratio of 15:1. This dataset includes
scenes of cities and suburbs during the day and night. Among
them are the appearance of pedestrians and vehicles.

B. Qualitative Results

Given a pair of input RGB and IR image, our architecture
can produce translated images, estimated optical flows as
well as warped images. Fig. 3 shows qualitative results of
all these components.

Since our encoder-decoder architecture sufficiently uti-
lizes the information from both input images, the translated
images have reasonable geometries and appearances. This
is further improved by the great performance of our flow
module. Without a dependable translation, flow estimation
procedure can break down. The flow estimated can be used
to warp input images towards each other and in turn refine
the encoder-decoder.

C. Comparison of translated images

To evaluate our encoder-decoder architecture, we qual-
itatively compare translated image by our methods with
CycleGAN. 3 shows example results. CycleGAN fail to
generate reasonable outputs, either RGB or IR images. Our
full model produces images that are realistic and reasonable.

This is because that CycleGAN only takes advantage of
one image, instead of complementing two images’ descrip-
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tion with each other. When translating an RGB image into
IR, CycleGAN generated more like a grayscale version of
the RGB image. Conversely, when translating an IR image
into RGB, Cyclegan paints a grayscale image based on the
memory obtained from the training data, and it even turns a
picture that should be daytime into night or dusk.

V. CONCLUSIONS

We presented a framework for RGB-IR registration, for-
mulating this problem in a dense manner like optical flow.
Our model achieves quality superior to existing image-to-
image translation methods and we further use a unsupervised
optical flow estimation module to enhance it and preserve
more details.

ACKNOWLEDGMENT

This paper was made with the support of Robotics Institute
Summer Scholars Program and ShanghaiTech University.
Xinhang would like to thank Rachel Burcin, John Dolan and
the RISS team for their support during this research project.

REFERENCES

[1] J. Chen, X. Li, L. Luo, X. Mei, and J. Ma, “Infrared and visible image
fusion based on target-enhanced multiscale transform decomposition,”
Information Sciences, vol. 508, pp. 64–78, 2020.

[2] J. Heo, S. G. Kong, B. R. Abidi, and M. A. Abidi, “Fusion of
visual and thermal signatures with eyeglass removal for robust face
recognition,” in 2004 Conference on Computer Vision and Pattern
Recognition Workshop. IEEE, 2004, pp. 122–122.

[3] M. R. U. Saputra, P. P. de Gusmao, C. X. Lu, Y. Almalioglu, S. Rosa,
C. Chen, J. Wahlström, W. Wang, A. Markham, and N. Trigoni,
“Deeptio: A deep thermal-inertial odometry with visual hallucination,”
IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 1672–1679,
2020.

[4] J. Li, Q. Hu, and M. Ai, “Rift: Multi-modal image matching based on
radiation-variation insensitive feature transform,” IEEE Transactions
on Image Processing, vol. 29, pp. 3296–3310, 2019.

[5] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz, “Pwc-net: Cnns for optical
flow using pyramid, warping, and cost volume,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2018,
pp. 8934–8943.

[6] Z. Teed and J. Deng, “Raft: Recurrent all-pairs field transforms for
optical flow,” in European conference on computer vision. Springer,
2020, pp. 402–419.

[7] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
Advances in neural information processing systems, vol. 27, 2014.

[8] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image
translation with conditional adversarial networks,” in Proceedings of
the IEEE conference on computer vision and pattern recognition,
2017, pp. 1125–1134.

[9] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-
to-image translation using cycle-consistent adversarial networks,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2223–2232.

[10] Z. Yi, H. Zhang, P. Tan, and M. Gong, “Dualgan: Unsupervised dual
learning for image-to-image translation,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp. 2849–2857.

[11] M.-Y. Liu, T. Breuel, and J. Kautz, “Unsupervised image-to-image
translation networks,” in Advances in neural information processing
systems, 2017, pp. 700–708.

[12] X. Huang, M.-Y. Liu, S. Belongie, and J. Kautz, “Multimodal unsu-
pervised image-to-image translation,” in Proceedings of the European
conference on computer vision (ECCV), 2018, pp. 172–189.

[13] W. Im, T.-K. Kim, and S.-E. Yoon, “Unsupervised learning of op-
tical flow with deep feature similarity,” in European Conference on
Computer Vision. Springer, 2020, pp. 172–188.

[14] J. Janai, F. Guney, A. Ranjan, M. Black, and A. Geiger, “Unsupervised
learning of multi-frame optical flow with occlusions,” in Proceedings
of the European Conference on Computer Vision (ECCV), 2018, pp.
690–706.

[15] R. Jonschkowski, A. Stone, J. T. Barron, A. Gordon, K. Konolige,
and A. Angelova, “What matters in unsupervised optical flow,” in
Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part II 16. Springer, 2020,
pp. 557–572.

[16] E. Shechtman and M. Irani, “Matching local self-similarities across
images and videos,” in 2007 IEEE Conference on Computer Vision
and Pattern Recognition. IEEE, 2007, pp. 1–8.

[17] J. Chen, J. Tian, N. Lee, J. Zheng, R. T. Smith, and A. F. Laine,
“A partial intensity invariant feature descriptor for multimodal retinal
image registration,” IEEE Transactions on Biomedical Engineering,
vol. 57, no. 7, pp. 1707–1718, 2010.

[18] A. Sedaghat and A. Alizadeh Naeini, “Dem orientation based on
local feature correspondence with global dems,” GIScience & Remote
Sensing, vol. 55, no. 1, pp. 110–129, 2018.

[19] A. Wong and D. A. Clausi, “Arrsi: Automatic registration of remote-
sensing images,” IEEE Transactions on Geoscience and Remote Sens-
ing, vol. 45, no. 5, pp. 1483–1493, 2007.

[20] Y. Ye, J. Shan, L. Bruzzone, and L. Shen, “Robust registration of
multimodal remote sensing images based on structural similarity,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 55, no. 5,
pp. 2941–2958, 2017.

[21] J. Fan, Y. Wu, M. Li, W. Liang, and Y. Cao, “Sar and optical image
registration using nonlinear diffusion and phase congruency structural
descriptor,” IEEE Transactions on Geoscience and Remote Sensing,
vol. 56, no. 9, pp. 5368–5379, 2018.

188



Gander: A Comprehensive Machine Learning Synthesized Media
Evaluation Platform & Style-CLIPDraw: A Style-Infused

Text-to-Drawing Synthesis Method

Zhixuan Liu1, Peter Schaldenbrand2 and Jean Oh3

Abstract— Machine learning competition websites allow data
scientists and engineers to explore and build models in a web-
based data-science environment to advance the state of the art
on regression and classification tasks. Commonly used data
science competition frameworks lack attention to synthesized
media such as texts, images, video, or audio. In this work, we
introduce a web platform, Gander, which hosts machine learn-
ing media synthesis competitions. Gander also aims to eval-
uate the generated media comprehensively and transparently
by implementing the existing code methods for quantitative
measurements as well as implementing novel crowdsourcing
methods for qualitative evaluations. We also present Style-
CLIPDraw, an algorithm that synthesizes drawings based on
natural language input and a given style image. Without
requiring any training, Style-CLIPDraw takes advantage of a
pre-trained VGG16 and a pre-trained CLIP language-image
encoder for extracting features and measuring similarities. The
performance of generated drawings will be further evaluated
by Gander.

Index Terms— Art and Entertainment Robotics

I. INTRODUCTION

In the field of machine learning (ML), competition web-
sites such as Kaggle, AICrowd, and DrivenData host state-
of-the-art machine learning tasks and encourage people to
solve data science challenges. These competition websites
provide practical learning experiences for data scientists and
have also led to great innovation in the ML area.

Most competitions hosted by the existing ML platforms
are regression and classification tasks, such as value predic-
tion and object detection. With the improvement of com-
puting hardware and the widespread use of deep learning,
especially the generative adversarial networks (GANs) by
Goodfellow et al. [1], media generation, such as image and
audio synthesis is a new trend in the ML area. Media gen-
eration ML research has experienced a boom, and existing
competition websites are slow to adopt the ability to support
media synthesis competitions.

Compared with other outputs, media are abstract and
complex to evaluate. Some features of media outputs such
as aesthetic beauty or novelty are hard to capture by using
existing evaluation code metrics. Although there exist some
metrics which evaluate the performance of generated media

1Zhixuan Liu is with the School of Data Science, the Chinese University
of Hong Kong, Shenzhen, China liuzhixuan@cuhk.edu.cn

2Peter Schaldenbrand is with the Robotics Institute, Carnegie Mellon
University, Pittsburgh, PA 15213, USA pschalde@cs.cmu.edu

2=3Jean Oh is with the Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA 15213, USA jeanoh@cmu.edu

outputs, they all have their limitations. One metric is only
able to capture certain characteristics of generated outputs,
and in most cases, the score of the media outputs using
one single code metric does not correlate with humans’
objectives. In fact, there hasn’t been a universal standard in
the evaluation of generated media outputs yet, so our goal is
to make the evaluation of media outputs comprehensive and
easy for users to perform.

We introduce the website Gander, a platform that hosts
media generation tasks and is tailored to evaluate media
outputs. By surveying the code metrics used in recent media
synthesis papers and having conversations with potential
users, we select some automatic metrics for operating quanti-
tative measurements as well as using crowdsourcing methods
for qualitative analysis.

To test the Gander system, we introduce a novel media
generated algorithm to serve as a test case. We were inspired
by recent dramatic progress in the linking between text and
image such as the CLIP [2] model and the CLIPDraw [3]. We
present Style-CLIPDraw, an algorithm that synthesizes novel
style-transferred drawing-like images based on a natural
language input and a style image input.

Style-CLIPDraw has two main components: one is the
text-to-image synthesis, the other is the style transferring
from the style image to the content image. This algorithm
does not require any training; rather it takes advantage of
two pre-trained models. A pre-trained CLIP model is used
to measure the similarity between the natural language input
and the generated image; a pre-trained VGG16 trained on
the ImageNet is used for capturing the style features and
then calculating the difference between the style image
and the generated image. Similar to CLIPDraw [3], Style-
CLIPDraw optimizes the vector strokes rather than pixel
images. Therefore, the images Style-CLIPDraw synthesized
can be style-specific drawing-like images.

In the following paper, section III presents the user in-
terface and some basic functions of the Gander website,
section IV introduces the evaluation methods that are used
in Gander for media outputs, and section V introduces the
Style-CLIPDraw algorithm.

II. RELATED WORK

Generative Adversarial Networks (GANs) have
achieved great results in the media synthesis area, such
as image generation [1], [4], music synthesis [5], and text
synthesis [6]. The main idea of GANs is the adversarial loss.
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A GAN is composed of a generator and a discriminator,
where the generator tries to synthesize media that fool
the discriminator; and the discriminator tries to distinguish
generated media from real media. In our work, we present
Gander to evaluate the performance of GANs by operating
on the synthesized media.

Evaluating GANs. Generative models, in particular, gen-
erative adversarial networks (GANs) by Goodfellow et al.
[1] have gained significant attention in recent years and
are widely used in media generation tasks. There exist
two approaches for evaluating GANs: qualitative evaluations
and quantitative measurements, with their own strengths
and weaknesses. qualitative evaluations, such as fooling a
person in distinguishing generated media from real ones are
somehow the ultimate test for machine learning generated
media [7]. However, such measurements are expensive and
difficult to perform for large-scale outputs.

Quantitative measurements, although less subjective,
sometimes may not correspond to human evaluations of the
generated images [7].

To make comprehensive evaluations for generated media
outputs, crowdsourcing methods are used in Gander for qual-
itative evaluations; Gander also embeds several automatic
metrics for quantitative measurements. By standardizing the
inputs and outputs of the code, Gander makes it easier for
users to implement different measuring strategies on their
models by simply selecting the metrics they want to use on
the web interface.

Text-to-Image Synthesis. Generating an image based on
a text description has attracted a variety of proposed solu-
tions. In the most common approaches, conditional GANs
are used by taking a language embedding as input [8] and
then generate corresponding image outputs. Commonly used
datasets for this approach such as MS-COCO [9] contain
paired real natural images and their text descriptions. Thus,
the images synthesized by GANs approach are photorealistic.

Recently, the DALL-E model [10] has achieved great
success in text-to-image synthesis. It eschews the use of
GANs; rather it combines a GPT-3 transformer [11] and a
VQ-VAE encoding model [12]; then a state-of-the-art text-
image matching model CLIP [2] is used to select output
images that maximize the semantic consistency. Moreover,
CLIP shows potential as an in-the-loop evaluation method
for text-to-image synthesis, and in this work, we follow this
idea for the text-to-image synthesis.

Style Transfer. Style transfer takes two images—a content
image and a style image—and blends them so that the
resulting output image retains the core elements of the
content image, but appears to be in the style of the style
image. Neural Style Transfer introduced by Gatys et al. [13]
is the state-of-the-art method to transfer the style of images.
Style features of input and outputs images are extracted from
different layers of a pre-trained neural network and are then
represented by the Gram matrix. The style loss between two
images is further calculated by the Frobenius norm of two
resulting matrices.

In this work, we are inspired by the Style Transfer by

Relaxed Optimal Transport and Self-Similarity (STROTSS)
algorithm [14], where style features are extracted from
different layers of a pre-trained VGG16 and style loss is
calculated using the Relaxed Earth Movers Distance (EMD).

Synthesis Through Optimization. This work, instead of
directly learning an image generative network, synthesizes
images through evaluation time. This activation maximiza-
tion method is first proposed by Erhan et al. [15], where
a random image is optimized through backpropagation to
increase the activation of certain neurons in the pre-trained
network. The activation maximization method produces
highly realistic synthesis images while understanding the
meaning of neuron activation is a challenge [3]. In this work,
we follow the idea of optimizing during evaluation time:
differentiable curves receive two signals and then gradient
descent is applied to optimized the curves.

III. USER INTERFACE AND FUNCTIONS OF GANDER

Gander is specially designed for researchers who create
new machine learning methods in the Creative Artificial In-
telligence (AI) area, or artists who use AI for generating new
art pieces. Therefore, the design should satisfy the aesthetic
beauty and also contain some creative features. Blue, which
can enhance people’s performance on creative tasks [16] is
chosen to be the theme color. In the following subsections,
the main components of Gander (current version) will be
presented.

A. Login/Sign up

The Login/Sign-up page of the Gander website is shown
in Figure 1. The background image is composed of small
doodles, and a ”Gander” animation is displayed in the center
of the page. We think this design matches the art theme of
this platform.

Fig. 1. Login/Sign up page of Gander website

B. Competition Library

Gander hosts many media generation competitions in
different genres, including text, image, video, and audio
generation. Figure 2 shows the competition system of Gan-
der. The “Your Competition” page lists the history of the
competition of users. Users can use the selection bar on the
left as a filter to find the competitions they have participated
in or bookmarked before.

Competition Library, which is shown in 2 (right) is a
place where all the competitions hosted in Gander can be
found. Users are able to use tags as filters to target certain
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competitions, bookmark competitions, and also create their
own competitions.

Fig. 2. Competition Library: My Competitions & All Competitions

C. Competition Page

When users enter a competition, some basic information
of this competition is displayed in the interface, including
the overview description of this competition, data description
(shown in Figure 3), and some evaluation methods used to
evaluate the performance of the generated outputs (shown
in Figure 4). The leaderboard is used to rank the results of
individuals using the scores of evaluation metrics (shown in
Figure 5).

Moreover, compared to other ML competition platforms,
Gander is tailored to media outputs, where human evaluation
is considered as the ultimate measurement of these tasks.
Therefore, users are invited to judge the performance of
generated media (shown in Figure 6). The score of human
evaluations will also be displayed on the leaderboard.

Fig. 3. Competition Page: Data Description

D. Submitted Results

The submitted results page for a competition is shown
in Figure 7. The ranks of this submission according to its
scores on different evaluation methods are shown. Moreover,
Gander also displays media outputs like an art gallery, so
that users can directly visualize the performance of image
outputs, or directly listen to some synthesis music of this
submission.

Fig. 4. Competition Page: Metrics used for this competition

Fig. 5. Competition Page: Learderboard of this competition

Fig. 6. Competition Page: Metrics used for this competition

Fig. 7. Submitted results
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IV. STATE-OF-THE-ART METHODS FOR EVALUATING
GENERATED MEDIA

In this section, we present some state-of-the-art automatic
metrics that have been used to evaluate the generated images
on the Gander website.

A. Inception Score (IS)

IS et al. [17] is one of the most widely adopted score
for GAN evaluation (e.g. in [18]). Although with some
limitations [19], the Inception score shows a reasonable
correlation with the quality and diversity of generated images
[17]. Therefore, Gander uses IS as one of the automatic
metrics to measure the performance of generated images in
several tasks, including image synthesis, image inpainting,
style transformation, etc.

By using IS, Gander aims to capture two desirable proper-
ties of generated images: 1. high classifiable - images contain
clear objects and 2. generative algorithm should output a
high diversity of images. To capture these two features, the
generated images are feed to a pre-trained neural network
(the Inception Net [20] on the ImageNet [21]). IS measures
the average KL divergence between p(y|x), the conditional
label distribution of samples (expected to have lower entropy,
because the higher quality of the generated image, the easier
it is for samples to be classified by Inception Net [20], and
the lower the entropy will be. ), and the marginal distribution
p(y) of all the samples (expected to have high entropy
because it prefers the diversity of generated images). IS can
be expressed in the following formula:

exp(Ex[KL(p(y|x)||p(y))]) = exp(H(y)− Ex[H(y|x)])

where p(y|x) is the conditional label distribution for image x
predicted using Inception Net [20], and p(y) is the marginal
distribution: p(y) ≈ 1

N

∑N
n=1 p(y|xn = G(zn)). H(x) is the

entropy of x. The higher IS, the better performance of the
generative model.

B. Fréchet Inception Distance (FID)

Introduced by Heusel et al. [22], FID is used to measure
the similarity between two datasets of images. FID performs
well in terms of discriminability, robustness and computa-
tional efficiency and is consistent with human judgements
[7], therefore, it is now widely used in the evaluation of
various image generation tasks (e.g. in [23] [24]).

Gander calculates FID for the generated data and the
real data to measure the similarity of these two datasets
statistically. The lower FID, the better performance of the
generative model. Gander realizes this function by using
a pre-trained Inception Net. Two datasets are embedded
into a feature space given by a specific layer of Inception
Net. Then, the mean and covariance are estimated for both
datasets. FID can be further calculated in the following
formula:

FID(r, g) = ||µr−µg||22+Tr(
∑

r
+
∑

g
−2(

∑
r

∑
g
)

1
2 )

where (µr,
∑
r) are the mean and covariance of the real data

and (µg,
∑
g) are of the generated data.

C. Structural Similarity Index Measure (SSIM) and Peak
Signal-to-Noise Ratio (PSNR)

GANs have also been commonly used in the image
inpainting tasks (e.g. in [25]) and image super-resolution
tasks (e.g. in [26]), where ground truth images exit and can
be directly used to evaluate the performance of generated im-
ages. Gander uses SSIM and PSNR to compare the generated
results with the corresponding ground truth images.

1) SSIM: To be more specific, SSIM compares corre-
sponding pixels and their neighborhoods in the real image
(x) and the generated image (y) by capturing three quantities:
luminance (I), contrast (C), and structure (S). The numer-
ical expressions of these three characteristics and the SSIM
expression are:

I(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1

C(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2

S(x, y) =
σxy + C3

σxσy + C3

SSIM(x, y) = I(x, y)αC(x, y)βS(x, y)γ

where µx,µy ,σx, and σx are the mean and standard devia-
tions of pixel intensity in a local image patch centered at
x or y, σxy is the sample correlation coefficient between x
and y, and C1, C2, and C3are constants that guarantee the
numerical stability. The higher the SSIM score, the higher
the structural similarity between the two images.

2) PSNR: PSNR is another metric Gander uses to mea-
sures the peak signal-to-noise ratio between the generated
image I and ground truth image K. Higher PSNR (in dB)
means better generative quality. PSNR is calculated as:

PSNR(I,K) = 10log10(
MAX2

I

MSE
)

= 20log10(MAXI)− 20log10(MSEI,K)

where

MSEI,K =
1

mn

m−1∑
i=0

n−1∑
i=0

(I(m,n)−K(m,n))2

V. STYLE-CLIPDRAW

In this section, we present Style-CLIPDraw, a method
that synthesizes novel style-transferred drawing-like images
based on a natural language input and a style image input.

The objective of Style-CLIPDraw is to synthesize a draw-
ing that matches a given description prompt and also has the
style of a given style image (some examples in Figure 9).
And Figure 8 is the overview of our approach.

Style-CLIPDraw synthesizes drawing-like images. The
drawing generated by the Style-CLIPDraw method is com-
posed of a set of differentiable Bézier curves. Style-
CLIPDraw controls three features of a Bézier curve: the
curve control points, thickness, and the RGBA color vector.
Initially, all the features of the curves in the drawings are
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Fig. 8. Summary of our approach: Style-CLIPDraw. Starting from a random set of Bézier curves, the drawing receives two losses: one is the cosine
distance between the image encoding and the text prompt encoding; the other is the style loss calculated by the self-similarity of the style image and the
drawings. The curves are optimized in the generating process.

Fig. 9. Here are some image synthesis examples using our Style-CLIPDraw. Given the user prompt: ”Horse eating a cupcake.” and a style image, our
algorithm generates a drawing that match these two features.

assigned randomly on the default white background (see
Figure 10).

Style-CLIPDraw synthesizes a drawing through optimiza-
tion. In this process, the number of curves is fixed and
the positions of control points, thickness, and RGBA color
can be changed during optimization. To optimize a drawing,
Style-CLIPDraw receives two signals: one is the content loss
which aims to match the user prompt with the synthesis
drawing; the other is the style loss which measures the style

distance between the style image and the current drawing.

We calculate the content loss in the following steps. First,
the synthesis drawing made up of Bézier curves is converted
to a pixel image. Then, the resulting image is duplicated
and augmented, which aims to prevent the generation of
adversarial examples. Next, a pre-trained CLIP model is used
to connect the natural language and the synthesis drawing.
The CLIP text encoder maps the natural language input to a
512-length text encoding vector, and the CLIP image encoder
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Fig. 10. This figure show the initial image of the drawing where all the
Bézier curves are randomly assigned.

maps the given style image to a 512-length image encoding.
The content loss is the cosine distance between these two
encodings.

Style loss between the synthesis drawing and the style
image is calculated in the following steps. Firstly, the curves
are converted to a pixel image. Then, both this resulting
image and the style image are fed to the VGG16 for feature
extraction. We calculate the style loss, which is composed
of the relaxed earth movers distance, moment matching loss,
and the color matching loss of these two images, following
the methods proposed by Kolkin et al. [14].

A synthesis drawing is optimized by running evaluation-
time gradient descent on both the style loss and content loss.
The Style-CLIPDraw algorithm is presented in Algorithm 1.

Algorithm 1 Style-CLIPDraw Algorithm
1: Input: Description Phrase desc; Style image styleImg;

Number of Iterations I; Number of Curves N; Pre-trained
CLIP; Pre-trained VGG16.

2: Begin:
3: Encode Description Phrase. EnDesc = CLIP-

textEncoder(desc).
4: Extract Features from the Style Image. FeaStyle =

VGG16(styleImg).
5: Initialize Random Curves. Curves = RandomCurves().
6: for i=0 to I do
7: Curves to Pixel image. PixImg = ToImg(Curves).
8: Augment Image. AugBatch = Augment(PixImg)
9: Encode Augmented Image. EnImg = CLIP −

imageEncoder(AugBatch).
10: Extract Features from the Pixel Image. FeaPix =

V GG16(PixImg).
11: Calculate Content Loss for Phrase and Drawing.

CLoss = −CosSim(EnDesc,EnImg).
12: Calculate Style Loss for Style Image and Drawing.

SLoss = styleLoss(FeaStyle, FeaP ix).
13: Total Loss. Loss = CLoss+ SLoss.
14: Backprop. Curves←Minimize(Loss).
15: end for

A. Results

In the figure 9, we presents some images synthesized by
Style-CLIPDraw. The first row is the given style images,
the second row is the synthesis drawings with user prompt
“Horse eating a cupcake”, and the third row is the synthesis
drawings with the description ”Monkey playing the guitar”.
In all these sample results, we set the number of curves to
be 256, the number of iteration to be 800; for style feature
extraction we use layers 9, 10, 12, and 13 of VGG16.

By observing the results of some cases, we conclude some
properties of Style-CLIPDraw:

First, The drawings are rendered in a painterly style.
This is because Style-CLIPDraw operates on curves rather
than pixel images. Therefore, the synthesis images of Style-
CLIPDraw look more like human drawings.

Second, style learning of the synthesis drawing is by
imitating the colors and strokes from the given style im-
age. This observation further explains a phenomenon: the
performance of Style-CLIPDraw is directly related to the
given style image. Generally, when style images are real
drawings, the synthesis images from Style-CLIPDraw have
better performances, because real strokes are easier to imitate
by generated curves. However, some concrete features of the
style image may also occur in the synthesis drawing in some
cases. For example, in the first example with user prompt:
“Horse eating a cupcake” in Figure 9, where the dog’s nose
in the style image occurs in the synthesis drawing. This may
be due to the large iteration times and can be further studied.

Third, the drawings generated by Style-CLIPDraw fit well
with the user prompt. This implements that the CLIP model
based on the 400 million paired training data set is very
powerful. Also, the image augmentation avoids generating
adversarial samples, which fool the network but are unrec-
ognizable to humans.

Moreover, when the given style image is a white back-
ground color, the objects in the generated picture can be
distinguished more clearly. This is because the background
color of the initial generated drawing is also white. If the
theme color of the style image background is much darker,
such as Van Gogh’s “The Starry Night” in Figure 9, curves
need to increase their width to cover a large area of the
background plate.

VI. CONCLUSION AND FUTURE WORK

Overall, in this paper, we first introduce a web platform
Gander, which aims to hosts media generation competitions
in different genres and evaluate the generated media out-
puts comprehensively and transparently. Then, we present
some automatic code metrics currently embedded in the
Gander websites. Lastly, we introduce Style-CLIPDraw, an
algorithm synthesizing novel style-transferred drawing-like
images based on a natural language input and a style image
input.

For future work, we will continue improving the Gander
website and embed more novel evaluation methods for dif-
ferent media outputs. To further improve Style-CLIPDraw,
we will find the most suitable weight of two losses in
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this algorithm, and then evaluate the performance of Style-
CLIPDraw using the Gander website.
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Development of a Force Sensing Glove for The Analysis of Dynamic
Motions

Molly Loughney1, Cornelia Bauer2 and Nancy S. Pollard3

Abstract— As robots become more integrated into everyday
human life, it is important to understand how they interact
with their environments, and ways in which they can use
these interactions to their benefit. One way of understanding
how robots may interact with their environments is to study
human environmental interactions and incorporate them into
robotic control models. Current research focuses on using
data gathered by motion capture or fixed force plates to help
inform these models, however these methods are not necessarily
accessible or adaptable for studying motion in a variety of
environments. A more accessible method for collecting dynamic
force data is to use a sensorized glove, however present available
models are expensive and lack the force range needed for
dynamic movement. Additionally, many of these models are
not adaptable to different end effector configurations with the
majority being designed for human hands. In this paper we
present the development of a low cost, portable, easily adaptable
mitten that can be worn by humans or placed on robotic
end effectors. This mitten will allow data about the forces
experienced during dynamic motion to be more easily attained,
thus helping better tune models for robotic control.

Index Terms— Wearable Robotics, Soft Robotics Applications

I. INTRODUCTION

As we expand the capabilities of robots to interact with
humans, the use of robotic end effectors in dynamic motion
is becoming an important field of study. Humans use their
hands in a variety of dynamic movements such as leaning
against furniture while navigating cluttered spaces, pushing
against walls to quickly change directions or grasping while
in motion. Understanding the forces experienced by the
hands during these movements is important for aiding the
tuning of control models as they can be used to approximate
the forces experienced by a robot in similar circumstances.
These approximations can then be applied to simulations to
test different control models, primarily centroidal dynamics
or CDM. CDM approximates the body of a robot as an
ellipsoid centered on the center of mass and has been
employed in the modelling of legged locomotion [1] and
is especially applicable to the use of force measurements.
Currently, the forces experienced by humans during dynamic
motions can be measured using technology such as motion

1Molly Loughney is a Robotics Institute Summer Scholar at Carnegie
Mellon University and an undergraduate Engineering Science senior at
Smith College, Northampton, MA.
mloughney@smith.edu
2Cornelia Bauer is a PhD student at the Robotics Institute, Carnegie
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3Dr. Nancy S. Pollard is a professor at the Robotics Institute and

Computer Science Department, Carnegie Mellon University, Pittsburgh, PA.
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Fig. 1. Front and back of glove.

capture or force plates, however neither of these methods
are accessible or adaptable as they require lab facilities
and can be expensive. We aim to develop a glove that can
measure forces experienced by the hands during dynamic
motions and can be adapted to a variety of situations such
as use on the human hand or robotic end effector configu-
rations. Although force sensing gloves have previously been
developed for commercial and research applications, most
models are prohibitively expensive with prices of several
thousand dollars1 or do not reach the force ranges necessary
to measure dynamic movement [2]. In this paper, we review
how we developed our force sensing glove, the performance
of the glove under various dynamic movement tests and
strategies for improving the gloves future performance.

II. RELATED WORKS

A. Current Force Sensing Glove Models

Many gloves that have force sensing capabilities already
exist, however most of these gloves are designed for use
within the medical field and therefore are aimed at collecting
measurements focused on hand positioning. One such device
is the Neofect Smart Glove2, which was developed for use in
rehab and uses flex sensors to measure forces applied by the
movement of the hand. While this may provide the user with

1pressureprofile.com/body-pressure-mapping/
tactile-glove

2www.neofect.com/us/smart-glove
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detailed data on hand motion, it is not suited for measuring
contact forces. Other devices that are currently available do
not measure force ranges required for dynamic motion. For
example the glove developed in Sundaram et al. [2] which
can measure contact forces, but has a range of 30 mN to
0.5 N, which is not suitable for studying dynamic motions
as they require a force range of above at least 10 N. Gloves
such as the TactileGlove from Pressure Profile Systems3 can
measure forces near the needed range, although still too
low for many applications. However these gloves are not
affordable, costing about $25,000, making them inaccessible
to most.

B. Flexible Sensing Technology

In developing this glove we required flexible sensors that
could move with the hand during dynamic motions. One
such flexible sensing technology measures force by sensing
the deformation of magnetic particles placed on the area
of interest [3], [4]. While this method does allow sensing
across a large surface, it cannot measure forces at the needed
ranges. Other flexible sensors use liquid metals which can
act as inductors [5], which comes with the benefit of not
needing rigid wiring in place and therefore has a high level
of durability, however these methods can currently only
detect whether there is force present, not the magnitude of
the force being applied. Additionally, all sensors mentioned
have only been developed on an experimental basis and are
not available for commercial use, limiting their accessibility.
We ultimately chose to use force sensitive resitors for our
application as they are the most readily accessible from
commercial retailers and can measure in the force ranges
required for dynamic motion.

III. METHODS
A. Circuitry and Code

The force sensors used for the glove are the FlexiForce
A201. The FlexiForce A201 is a force sensitive resistor with
a standard force measurement range of 445 N. These sensors
act as a variable resistor with an initially infinite resistance
that decreases linearly as force is applied. The sensors are
191 mm long with a 9.53 mm diameter sensing area. In order
to measure the force being applied to the sensor directly,
we used a non-inverting op-amp circuit (Fig.2) that had
been adapted from the FlexiForce Best Practices in Electrical
Integration guide4. In this circuit, the sensor is connected to
the negative voltage node of the MCP6004 op-amp IC with
an 100 kΩ, 47 pF resistor-capictor circuit connected across
the negative voltage and output voltage nodes. Additionally,
a voltage divider comprised of 4.7 kΩ and 1 kΩ resistors
provides 0.58 V to the positive node of the op-amp. The
op-amp uses the 3.3 V supply voltage and is grounded at
Vdd.

We chose this circuit as it provides a better linear rela-
tionship between the resistance of the sensor and the applied

3pressureprofile.com/body-pressure-mapping/
tactile-glove

4www.tekscan.com/flexiforce-integration-guides

force than the simpler voltage divider or resistor-capacitor
circuit and is less complex to implement than an inverting
op-amp circuit which requires a dual voltage source. The op-
amp circuit connects to an Adafruit ItsyBitsy M4 Express
which is powered via USB. We chose to use the ItsyBitsy
due to its size, as it is only 35.9 x 17.8 mm. This allows it
to more comfortably fit on the hand, allowing movement to
remain unimpeded.

Measurements were collected from the sensors using the
Arduino IDE coding environment. Raw analog values were
read from the ItsyBitsy inputs and converted into voltage
readings (1), which were then converted into resistance
values (2). This resistance value was then used to find the
conductance of the sensor (3) which was then related to
the applied force via the linear equation generated by the
calibration process discussed below (4). This allowed for a
live reading of applied forces on the sensors.

Vout = Analogout ∗ 3.3/1024 (1)

Rs = Rref ∗Vref /Vout (2)

G = 1/Rs (3)

F = (G − b)/m (4)

Fig. 2. Diagram of the non-inverted op-amp circuit used.

B. Glove Construction

The gloves are constructed out of dishwashing gloves,
which were chosen due to their lightweight but durable
material and thin, smooth surface which ensures the forces
experienced by the hand are accurately represented by the
sensor readings. The sensors are attached using Velcro to
allow flexibility in their placement, thus allowing them to

197

pressureprofile.com/body-pressure-mapping/tactile-glove
pressureprofile.com/body-pressure-mapping/tactile-glove
www.tekscan.com/flexiforce-integration-guides


be optimized for different tests depending on the needs of
the user. The Velcro is sewn on to the glove across each
finger, across the upper palm and on the ball of the hand.
We chose a standard configuration of four sensors attached
to the ring and index fingers, ball of the hand and upper
palm. These positions were chosen to allow measurement
across the entirety of the hand structure and were found
by performing ink tests (Fig.3) which provided a visual
representation of the parts of the hand that were in most
contact while the palm was open against a flat surface.

The circuitry of the glove is attached to the back of the
hand so it does not interfere with natural movements during
testing. The microcontrollers are housed on the wrist of the
glove so as to ensure the USB wiring does not impede
movement.

Fig. 3. Ink test used to determine optimal sensor placing.

C. Pucks

In order to ensure that all forces experienced by the
sensors are evenly distributed across the sensing surface, we
developed pucks which are cylinders with a diameter equal
to that of the sensing surface (Fig.4). When applied to the
sensors these pucks allow for the force to be directed evenly
across the sensing surface and away from the edges of the
sensor. This is because the sensor edges do not provide a
linear relationship between the conductance of the sensor and
the applied force. We tested several different types of pucks
with varying degrees of compliance to determine how the
compliance of the puck material affected the force sensing
capabilities of the sensor. We tested pucks made from PLA,
TPU-85 and felt furniture feet for these compliance tests.

In order to ensure that the differences in puck material
was compensated for, we re-calibrated each sensor for the
different puck materials (Fig. 5) using the calibration process
described in section III-D.

D. Calibration

To allow the sensors to effectively convert resistance to
force, it was required they be calibrated in the desired force
ranges. This was achieved by collecting force data from the
NexTech DFS500 force gauge using serial monitoring and
comparing it with the measured conductance values from

Fig. 4. Pucks used in testing. From left to right, PLA, TPU and felt.

Fig. 5. Calibration plots of TPU, PLA and Felt pucks.

the force sensors. We related force to conductance values
as for lower force ranges the sensors are more obviously
linear when comparing conductance to force versus com-
paring resistance to force. Sensors were first conditioned by
applying a force of 200 N and maintaining until the sensor
output stabilized. The sensors were tested in a range of 0-
140 N at intervals of 5 N every 5 seconds, however at forces
above 110 N these intervals were more variable due to the
limitations of the tester, therefore introducing more noise
into those readings. These readings were then processed
using MATLAB to plot conductance in units of 1/kΩ and
force in units of newtons, from which a linear trend line
was generated (Fig.6). The equation of the trend line was
then input into the Arduino code which allowed the applied
force to be read directly from the sensor. The applied force
readings to the sensor were not exact, generally reading 2-5
N off from the values displayed by the force gauge at forces
below 110 N and 10-15 N off at forces above 110 N. This is
likely due to the increased noise present in the calibration of
higher forces and the inherent linearity error of the sensors,
which was +/- 3%.

IV. RESULTS

We tested three different kinds of dynamic motions using
the felt pucks; leaning against a wall, pushing against a
wall and grasping an object while in motion. The motion
components of these tests are represented in figure 14. For all
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Fig. 6. Calibration plot for Sensor 3 using a felt puck. Conductance in
1/kΩ is on the y-axis and force in Newtons is on the x-axis.

three of these tests we found that the forces did not exceed
about 25 N, and were generally evenly distributed across
each sensor. We also tested variations in sensor placement
and puck compliance. For all tests, the data was run through
a low pass filter with a cutoff frequency of 2 Hz to allow
general trends to be seen.

A. Wall Leaning

For the wall leaning test we observed higher forces present
in the index finger, which reached 20 N of force as well as
the upper palm and ball of the hand, which both reached
about 15 N of force. The ring finger had a lower maximum
force of 8 N. However it should be noted that the upper
palm peaked at 15 N but was on average reading about
10 N, while the ball of the hand had a more steady 15 N
reading. Additionally the force on each sensor increased and
decreased almost instantaneously and we observed that each
sensor achieved a maximum force and remained generally
constant at that value for the duration of the motion, creating
an almost square waveform (Fig.7).

Fig. 7. Force vs. time plot for the wall lean motion.

B. Wall Push

For the wall push motion we recorded similar force ranges
as in the leaning motion with a similar distribution of
higher and lower forces (Fig. 8). Once again the forces on
the sensors increased and decreased almost instantaneously,

however we recorded the sensors maintaining force measure-
ments for a much shorter period of time than the leaning
motion, representing the period of time that the hand was in
contact with the wall for each test.

Fig. 8. Force vs. time plot for the wall push motion.

C. Dynamic Grasp

For the dynamic grasping motion we found that the force
was generally concentrated on the fingers, with the upper
palm not recording any force and the ball of the hand only
recording a maximum of 4 N (Fig. 9). We also observed
that while the increase in force is again near instantaneous,
the decrease occurs over a period of about 3 seconds, which
corresponds to the amount of time the object is grabbed for.

Fig. 9. Force vs. time plot for dynamic grasping motion.

D. Sensor Placement

We tested various sensor placements on the gloves in
order to determine the effects on the overall force profile
of the hand. We found that placing all the sensors on the
palm of the hand generally decreased the amount of force
experienced by the sensors with the peak force of the control
trial being 20 N compared to around 12 N for the palm trial
(Fig. 10). However, we did find that when the sensors were
placed on only the fingers, the maximum force increased
to around 23 N and all sensors recorded higher maximum
force values than the palm only trial (Fig. 11). This indicates
that more force is concentrated on the fingers during leaning
motions. We also found that the data for these trials was
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noisier than the data collected when the sensors were in the
control arrangement.

Fig. 10. Force vs. time plot for the leaning motion with all sensors affixed
to the palm.

Fig. 11. Force vs. time plot for the leaning motion with all sensors affixed
to the fingers.

E. Puck Types

We found that the compliance of the puck being used did
not have a significant effect on the maximum force read by
the sensors during the leaning motion, with all three pucks
reading about 15 N of force (Fig. 12). However we did
observe that the less compliant TPU and PLA pucks recorded
a more noisy signal than the felt (Fig. 13). This may indicate
that less compliant pucks are more sensitive to small changes
in force than more compliant ones, as they absorb less force.

Fig. 12. Filtered force vs. time plots for PLA, TPU and felt pucks.

V. DISCUSSION

We found that our glove was satisfactorily able to measure
the forces experienced by a human hand during a variety

Fig. 13. Unfiltered force vs. time plots for PLA, TPU and felt pucks.

of dynamic motions. We were somewhat surprised at the
force ranges observed during these tests, as previous testing
had shown that some dynamic motions could generate forces
of up to 100 N, however the low force ranges could be
attributed to limitations in testing space which prevented
extreme motions and differences in the forces measured by
devices focusing on the entire hand versus individual fingers
and parts of the palm. Additionally, the data collected from
the glove had significant noise present. This could be due
to the difficulties with calibration affecting the precision of
the gloves and may be solved or diminished by improving
this process. We were also surprised by the results of the
puck tests, as the increase in signal noise between the
puck materials was extreme. This could be due to several
factors such as differences in puck calibrations or an increase
in sensor sensitivity from less compliant materials. This
presents an interesting focus for possible future study to
determine why this occurred and further explore how puck
material choice may impact the use of the glove.

VI. CONCLUSION

Through experimentation, we were able to determine that
the force sensing glove we developed meets all of our re-
quirements. Although it is not as precise in its force measure-
ments as it could be, it provides a good overview of the forces
experienced by the human hand during dynamic motions.
Additionally, it has shown to have excellent adaptability as
it is able to change the sensor configuration based on the
needs of the user, allowing for it to be used in a greater range
of testing situations. The sensors can also be calibrated for
use with different hand and end effector types, for example
if the sensor is affixed to a compliant material meaning
that they can be used in a variety of testing environments.
As the sensors are flexible, they could easily be integrated
into a soft robotic system as well, further expanding the
gloves possible uses. The use of easy to acquire, relatively
cheap components in the development of this glove means
that it is a more accessible option for measuring force than
current comparable products, even if there is a possible trade
off in the precision of the measurements. However, future
work could include developing a more regulated calibration
process by using a compression testing machine to better
maintain force values for extended periods of time and
continuing to test puck materials in the calibration and testing
phases to determine optimum puck material use. As well, the
circuitry could be adapted to accommodate more sensors to
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allow for a more defined picture of the force distributions
across the hand.

REFERENCES

[1] T. Kwon, Y. Lee, and M. Van De Panne, “Fast and flexible
multilegged locomotion using learned centroidal dynamics,” ACM
Transactions on Graphics, vol. 39, no. 4, July 2020. [Online].
Available: https://dl.acm.org/doi/10.1145/3386569.3392432

[2] S. Sundaram, P. Kellnhofer, Y. Li, J.-Y. Zhu, A. Torralba, and
W. Matusik, “Learning the signatures of the human grasp using
a scalable tactile glove,” Nature, vol. 569, no. 7758, pp. 698–
702, May 2019. [Online]. Available: http://www.nature.com/articles/
s41586-019-1234-z

[3] T. Hellebrekers, O. Kroemer, and C. Majidi, “Soft
Magnetic Skin for Continuous Deformation Sensing,” Advanced
Intelligent Systems, vol. 1, no. 4, p. 1900025, 2019,
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/aisy.201900025.

[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/
aisy.201900025

[4] T. P. Tomo, A. Schmitz, W. K. Wong, H. Kristanto, S. Somlor, J. Hwang,
L. Jamone, and S. Sugano, “Covering a Robot Fingertip With uSkin: A
Soft Electronic Skin With Distributed 3-Axis Force Sensitive Elements
for Robot Hands,” IEEE Robotics and Automation Letters, vol. 3,
no. 1, pp. 124–131, Jan. 2018, conference Name: IEEE Robotics and
Automation Letters.

[5] S. Hamaguchi, T. Kawasetsu, T. Horii, H. Ishihara, R. Niiyama,
K. Hosoda, and M. Asada, “Soft Inductive Tactile Sensor Using Flow-
Channel Enclosing Liquid Metal,” IEEE Robotics and Automation
Letters, vol. 5, no. 3, pp. 4028–4034, July 2020, conference Name:
IEEE Robotics and Automation Letters.

APPENDIX

Fig. 14. Photo sequences of dynamic motions. From top to bottom, leaning
motion, wall push motion and dynamic grasp.

Fig. 15. Bill of materials with total cost for the glove.
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Randomized Approach to Informative Path Planning for multiple UAVs

Rachel Moan1, Brady Moon2, and Sebastian Scherer3

Abstract— Unmanned Aerial Vehicles are rapidly becoming
the go-to method for reconnaissance tasks such as search and
rescue. In order to perform these missions, reconnaissance UAVs
must be able to quickly locate people, vessels, or other targets
given a limited flight time. This problem, known as informative
path planning or orienteering, is essential to the success of
search and rescue missions. Unfortunately, it is NP-hard and
most present state-of-the-art solutions are generally too slow
to present an effective solution online. Recent work in [1],
however, presented RAOr: a solution to the Orienteering Prob-
lem that offers significant improvement over prior methods.
This paper presents an analysis of RAOr and determines the
types of environments and circumstances in which it may offer
improvements over other accepted methods, such as a greedy
algorithm. Additionally, we present a version of RAOr that
works with multiple UAVs.

Index Terms— Search and Rescue Robots, Path Planning

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are rapidly becoming
the go-to method for search and rescue operations. Due to
their size and maneuverability, they are well-suited for navi-
gating dangerous terrain quickly and safely, whereas it would
be much slower and riskier for a human to complete the same
task. In recent years, UAVs have been used to survey areas
affected by Hurricane Katrina [cite] and Hurricane Wilma
[2]. These UAVs, however, were operated by human, and
were not capable of executing their missions autonomously.
Autonomous UAVs would eliminate the need for constant
human supervision, making the search and rescue process
more efficient.

In order to perform these types of missions, reconnais-
sance UAVs must be able to quickly locate people, vessels,
or other targets given limited battery or time constraints. This
problem, known as Informative Path Planning (IPP) or the
Orienteering Problem, is essential to the success of search
and rescue missions. Unfortunately, it is NP-hard [3], and
most present state-of-the-art solutions are generally too slow
to present an effective solution online. As a result, human
operators must control the vehicle using a video stream,
which is not as effective as an autonomous UAV would be.

Recent work in [1] proposed Randomized Anytime Orien-
teering (RAOr): a solution to the Orienteering Problem that
offers effective solutions quickly enough to be used online,
rivaling the solutions found using other common algorithms
like RIG, GCB, and a Greedy approach. This algorithm,

1Rachel Moan is with the Department of Computer Science at Winthrop
University. moanr@@winthrop.edu

2Brady Moon is with the Robotics Institute at Carnegie Mellon Univer-
sity. bradym@andrew.cmu.edu

2Sebastian Scherer is with the Robotics Institute at Carnegie Mellon
University. basti@andrew.cmu.edu

Fig. 1: Two UAVs searching nodes in an environment.

which has outperformed state-of-the-art methods in experi-
mentation, could potentially allow for an autonomous recon-
naissance UAV to be used for search and rescue missions.

The goal of this work is to expand upon RAOr by
developing a version of it that can be used on multiple UAVs
simultaneously. We also explore the various conditions and
parameters that affect the performance of RAOr. In particular,
we attempt to determine the different types of environments
in which RAOr outperforms other algorithms, such as the
Greedy approach.

The rest of this paper is organized as follows: we first
describe the relevant literature in section II. We then move
on to describe our methods in section III and our experiment
results in section IV. We wrap up our work in section V by
discussing our future work.

II. RELATED WORK
One of the most significant challenges faced by search

and rescue UAVs is finding an effective way to navigate
a given environment, locating as many targets as possible,
while staying within a certain budget. In other words, an
effective solution to the Informative Path Planning Problem
(IPP) or Orienteering Problem is essential to the success of
search and rescue missions.

Unfortunately, this problem is NP-hard [3], but this is a
common problem that has been studied extensively by past
researchers. [4] proposed a recursive greedy approach that
finds approximate solutions. Another approach called the
Generalized Cost Benefit (GCB) proposed in [5] maximizes
a submodular function subject to a cost constraint.

Prior work in [1] established a new solution to the Ori-
enteering problem called Randomized Anytime Orienteering
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(RAOr) that appears to offer improvements upon the afore-
mentioned approaches. RAOr works by sampling a set of
nodes and generating a route. It then chooses a random and,
if the node is not in the route, adds the node to the route.
If the node is in the route, then RAOr removes it. Then the
algorithm determines if the new route is better than the old
one, and keeps it if it is. This appears to be a favorable
solution for the Orienteering Problem for several reasons.
Mainly, evidence suggests that it can outperform the current
state of the art solutions.

What RAOr lacks, however, is an analysis of the con-
ditions in which it would prove to be more useful instead
of other methods, such as the greedy algorithm. This paper
provides insight into these conditions. In particular, we
examine how different environments affect the performance
of RAOr. Additionally, RAOr does not currently have a
version that supports multiple UAVs. This paper extends
upon the original RAOr algorithm to apply it to multiple
UAVs at once.

III. METHOD

A. Multi-RAOr

1) Algorithm Overview: Multi-RAOr takes as input the
following:

• m: The number of routes that will be found for the
environment.

• V : A list of the node in the current environement.
• S = [s1, s2, ..., sm]: the starting node for each path.
• E = [[e11, e

2
1, e

3
1, ...], [e

1
2, e

2
2, e

3
2, ...], ...[e

1
m, e2m, e3m]]: A

list of the end nodes for each path.
• B: the maximum budget of each path.
• Tr: the maximum runtime of the algorithm.
The Multi-RAOr algorithm works by first partitioning the

input nodes, V , into m sets. This creates a list of sets of
nodes, N (line 1). Each of these sets represents the nodes
that are particular UAV is responsible for covering. Then for
each set of nodes, a random set of those nodes is selected
that contains the specified start and end nodes for that UAV.
The order in which these nodes should be visited is found
by running the TSP solver (line 6). If the generated route is
within the budget constraint, B, it is saved as the best route.

Then, for each set of nodes, n ∈ N , a new random node is
selected (line 15). If this node is already in the current route
for this set of nodes, it is removed from the route (lines 16-
18). Otherwise, the node is added to the route (lines 19-21).
Next, if the route is within the budget and its reward is higher
than the reward of the current best route, this route becomes
the best route, rbest.

This process is repeated until time runs out (Tc > Tr).
Then the algorithm returns a list m routes.

2) Node Partitioning: The nodes are partitioned based on
location. Alg. 2 describes how the nodes were divided. The
partitioning algorithm takes a list of nodes in the environ-
ment, V , and divides them into m sets of nodes, where
m is the number of UAVs available. They are partitioned
in the order that they are input, meaning that the first

Algorithm 1: Multi-RAOr
Data: m, V , S = [v1, v2, ..., vm],

E = [v1, v2, ..., vm], B, Tr

Result: A list, R, containing the best route for each
UAV.

1 N = Partition(V );
2 R = ∅;
3 for i = 1 : length(N) do
4 n = N(i);
5 s = SampleSet(n);
6 R(i) = TSP (n, vis, v

i
e);

7 R(i)best = ∅;
8 if RouteLength(R(i)) ≤ B ∧Reward(R(i)) >

Reward(R(i)best) then
9 R(i)best = .R(i);

10 end
11 end
12 while Tc < Tr do
13 for i = 1 : length(N) do
14 n = N(i);
15 vnew = Sample(n);
16 if IsInRoute(R(i), vnew) then
17 r = DeleteFromRoute(R(i), vnew);
18 end
19 else
20 r = AddToRoute(R(i), vnew);
21 end
22 if RouteLength(R(i)) ≤

B ∧Reward(R(i)) > Reward(R(i)best)
then

23 R(i)best = .R(i);
24 end
25 end
26 end
27 return R

m/length(nodes) will be assigned to the first set, and so on.
In our case, the nodes were generated in order of location,
so each node was relatively close to the other nodes in its
respective set.

B. Experimentation

In order to determine the factors that affect the perfor-
mance of RAOr, we ran a series of experiments. We explored
two primary factors that affected the performance of RAOr:
the altitude of the UAV and the randomness of the node
selection.

1) Budget: The most obvious factor that affects the re-
ward of certain route is budget. Intuitively, we know that
a higher budget yields better results. If a search and rescue
UAV has a longer battery life, it can spend more time locating
targets and collecting a higher reward.

In an ideal scenario, reconnaissance UAVs would have
infinite battery life and time to complete their mission. Un-
fortunately, budgets are not infinite, and are often incredibly
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(a) Two paths are generated by sampling a set of nodes and
determining the order using a TSP solver.

(b) A random node, shown in red, is sampled for each path.

(c) Each random node is added to its respective path. (d) If the new route is within the budget, and the reward is higher,
it becomes the best route.

Fig. 2: An illustration of how multi-RAOr (Algorithm 1) would work with two UAVs. The paths of the UAVs are shown in
blue and green, respectively. First, a set of nodes is sampled and a path is generated using a TSP solver (a). Then a random
node is sampled for each path (b). Then the node is added to its respective path (c). If the new path is within budget and it
has a higher reward than the current best path, it is adopted as the new best path (d).

Algorithm 2: Node Partitioning
Data: V , m
Result: N , a list of m sets of nodes.

1 N = ∅;
2 index = 1;
3 num = ceil(length(V )/m);
4 for i = 1 : length(V ) do
5 index = floor(i/num) + 1;
6 N(index)+ = V (i);
7 N(index) = Append(N(index), V (i))
8 end
9 return R

limited, especially when you have a larger environment to
search.

2) Altitude of nodes: In addition to budget constraints, we
also looked at the height of the sensors. Travelling to higher
altitudes could give a reconnaissance UAV more information.
It would be able to see more nodes, and therefore be able to
identify more targets. However, if it gets too high, it might
lose information.

IV. RESULTS

A. Multi-RAOr Demo

Figure 3 demonstrates the results of an example run
of multi-RAOr. We ran multi-RAOr on environment with
several low valued nodes clustered together, and three high-
valued nodes farther away. The low-valued nodes are worth
0.1 and the high valued nodes are worth 10. In order for
the reward to be acceptable, RAOr has to hit all three of the
high-valued nodes. It was run with two agents, a budget of
70 meters, and a runtime of 20 seconds.

B. Features affecting RAOr’s success

1) Budget: In order to determine the effect of the budget
on the performance of RAOr, we ran several simulations of
RAOr while varying the budget from 50 to 150. We also ran
a greedy algorithm on the same environment and compared
the resuts. Figure 4 shows the results of this experiment.

With a lower budget, RAOr outperforms the Greedy algo-
rithm. However, when the budget increases past 120, Greedy
starts to yield a higher reward. This shows that RAOr is well-
suited for scenarios in which a UAV has a smaller budget,
relative to the environment. If you need to search a large area
but do not have ample time to do so, RAOr will generally
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Fig. 3: This graph shows the result of an example run
of multi-RAOr. Higher valued nodes are depicted with a
diamond shape. Standard nodes are depicted by circles. An
empty circle indicates that a node has not been covered by
either UAV.

lead to a higher reward. However, if a UAV does have a
large budget relative to the sizze of the environment, then
the Greedy algorithm will result in a higher reward.
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Fig. 4: This graph compares the effect of changing the budget
(m) on the reward. We compared both RAOr and a Greedy
Algorithm. This graph shows the average of 10 trials.

2) Altitude of the nodes: To examine the benefit of higher
altitudes, we ran a simulation with two types of nodes: low
sensors and high sensors. The height of the low sensors was
held constant while the height of the high sensors was varied.

The results in figure 3 show that going to higher altitudes
does offer improvements in the overall reward, the optimal
height of the higher sensors lying around 70 units. The
reward significantly drops after that, and the UAV begins
to lose information as it goes too high.

V. CONCLUSION AND FUTURE WORK

RAOr is a solution to the Orienteering problem that
could make autonomous multi-UAV missions faster and
more robust. This paper laid the groundwork for the first
version of multi-RAOr, but there are still several areas left
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Fig. 5: This image shows the affect of higher sensors on the
average reward of 30 trials.

to be explored. In particular, the way that the nodes are
divided among routes could be improved. In our version,
we partitioned the nodes based on their location. There are,
however, other possible heuristics that could yield better
results. For example, the nodes do not need to be split up
at the beginning. Instead, we could allow every to access all
the nodes, but only allow routes to select nodes that are not
being used by another route.

The environment in which a UAV is deployed will signifi-
cantly impact the performance of the algorithm used to solve
the orienteering problem. This paper began to explore some
of those factors. In the future, we plan to use the features
of the environment such as sensor height and locations of
highly-valued nodes to predict whether or not RAOr is an
appropriate solution for the given context. These features
could also be used to determine which algorithm would be
best suited for different scenarios out of a set of options,
similar to the ensemble planner described in [6].
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Abstract— Peer tutoring can be as beneficial for the learning
process of both teacher and student. However, while past work
has looked into the role of robots as teachers, there is little
research on using robots on the receiving end of tutoring. To
address this gap, our work develops robots equipped to act as
students and facilitate communication with a human teacher.
Nonverbal facial expressions and gestural cues play an impor-
tant role in traditional teacher student interactions. In this
paper, we present a framework for communicating customizable
facial features and expressions through ROS (Robot Operating
System) for the humanoid robot, Quori. Ideally, these facial
expressions will foster engagement between the robot and user,
and improve communication through contextual information.
In the long run, they will likely be one modality of many
used to connect and engage with the user. This framework will
depend on an array of customizable facial features that can be
positioned to create unique faces. From there, these features
will be set on motion paths to allow users to create a range of
expressions through ROS commands.

I. INTRODUCTION

Facial Expressions play a defining role in human interac-
tion and the communication of emotional states. In education,
they are a significant contributor to the success of interactions
between teacher and student. Past work has identified the
use of facial expressions in conveying information helpful
in collaboration such as emotion, motivations, and attitudes
[12].

In our research, we generate a set of dynamic facial
expressions on the humanoid robot Quori[13].

Fig. 1. Diagram of Quori and its components

Individually, this contributes to improving the state-of-the-
art in human-robot interaction by introducing a new mode
of communication to the Quori robot platform.

On a broader scale, this contributes to a larger ongoing
project of developing a robotic student for use in peer
tutoring environments. While there is a strong background
of research on robots acting in a teaching capacity, there is
a gap in the development of robots who can act as students.
Despite the lack of current research in this field, teachable
robots can serve as helpful tools within a classroom as peer
tutors. Past work indicates that peer tutoring is linked to
solidifying learning and deeper understanding [12], however
in many environments it is difficult to find appropriately
skilled and convincing pupils. Robotic students can fill
this gap in the classroom to create more fulfilling learning
experiences from peer tutoring. Given the importance of
facial expressions in an educational context developing a
range of customizable and interpretable facial expressions for
Quori provides support for developing a robotic peer tutoring
system.

Quori used a retro-projected head that can display a wide
range of 2-dimensional facial expressions. To capitalize on
this, we have developed a system of individually controllable
facial aspects to create a variety of custom faces through ROS
positioning of the features. Similarly, we reference Ekman
and Friesen’s Facial Action Coding System (FACS) [4] map-
ping these features to generate expressions understandable by
a broad audience.

Fig. 2. Retro-projection system used to display facial expressions on Quori
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II. RELATED WORK

Facial expressions are used broadly in social robotics.
However, there is less research specifically on the impact of
robot expressiveness specifically in an educational context.
To build a set of comprehensible facial expressions, we ref-
erenced the Facial Action Coding System (FACS) developed
by Ekman and colleagues.

A. Facial Action Coding System (FACS)

In FACS, facial expressions are divided into quantized
action units (AUs) linked to facial movements [4]. Ekman
used a coding system to identify quantitative measurements
for universally acknowledged facial expressions. There is
past work applying FACS to design robotics faces [15].
However, since Quori’s face is a projected 2D image rather
than a mechatronic setup, our use of the system is likely
more similar to past research implementing FACS. In this
area, there is significant work on computer synthesis models
and dynamic animation[1], [14]. However, few examples
integrate a FACS model into a robotic system, instead of
having the generated model act as an independent agent.

B. Dynamic and Static Facial Expressions

Past studies on emotion recognition indicate that people
begin to recognize facial expressions before the expression
is fully formed [7]. Similarly, higher levels of brain activity
occur in people responding to dynamic facial expressions
rather than static images [10]. This increased depth of recog-
nition led to our pursuit of a dynamic system where Quori
can readily shift between expressions through a dynamically
generated animation.

C. Emotional Expression in Classrooms

While there is more work on the correlation of teacher
emotions to student engagement, it is likely a relationship
also exists for the converse. Hagen Auer et. al. identified
varying patterns in teacher emotions relative to their students’
engagement where positive emotions in teachers seemed
likely to induce positive emotions in students. With this in
mind, it is plausible to assume that the perceived engagement
of a robot student will impact the mood of a peer tutor and
their willingness to teach [6]. Similar work has identified
a high correlation between a supportive presentation style
in teaching and positive affect in students whereas excessive
demands on students link to negative affect[5]. In the context
of the Quori robotic student, these patterns may be useful in
mapping realistic reactions for Quori in future work .

III. METHODOLOGY

We developed a system of individual controllable facial
features that project into a full face for the Quori robot. In
a typical workflow, users input a desired facial expression
by calling a JSON file with position and image path data
for the moments associated with that expression. This file
is processed by a base positioning function that opens and
places features in OpenCV to create a series of composite
face images sent to the robot as an”imgmsg.” After the robot

runs the expression, the user can choose either to exit the
program or continue with a new facial expression.

Fig. 3. Control flow path for feature commands to the robot

A. Facial Feature Development

In the current iteration of the facial features for Quori,
there are ten distinct features: left eyebrow, right eyebrow,
left eyelid, right eyelid, left pupil, right pupil, left light spot,
right light spot, upper lip, and lower lip. The pupils, light
spots, and nose can be resized, moved, and tilted but have
one static image shape. The eyelids, mouth, and eyebrows
have animated image sequences in addition to the ability
to move and resize to give the appearance of motion. The
shape and appearance of the features for this program are
kept relatively simple to avoid an ”uncanny valley” [8] ap-
pearance and make Quori seem friendly and approachable to
student teachers. These features are based on those linked to
emotional expression by Ekmen et. al [4]. With this in mind,
the initial facial features for Quori are relatively simple with
a cartoon like appearance. Past work indicates that cartoon
features activate the same recognition pathways as human
faces at slightly different timing intervals [11] and possibly
a faster initial processing speed [16]. Since cartoon faces
seem to produce reliable emotional interpretation without
appearing unsettling in the way a realistic face would, we
pursued a relatively simple look for our facial design.

Fig. 4. Sample of some of the facial components (top: eyelids, bottom:lips)
used to create composite facial expressions for Quori

B. Face Assembly

Quori’s face is composed of distinct dynamically control-
lable parts that can combine into a single face animation
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sequence. At present, the motion sequences and positions
for each facial feature can be stored in a JSON file. We use
OpenCV to place each sub-image for each frame into a larger
composite facial image. From this instance, the sequence of
generated faces is translated into a ROS parsable format and
projected onto Quori’s face. While we choose to use one
of a cohesive library of simple facial features for our work,
any image or sequence of images could be positioned and
projected to Quori’s face using this method.

Fig. 5. System diagram of file structure for JSON specification of an
animation sequence for Quori

Each JSON file is separated into several key/value pair
objects. As depicted in Fig. 5, at the simplest level, each file
contains an animation rate under the key name ”transition-
Time” and an array of ”feature” objects under the key name
”Features”.

{
” t r a n s i t i o n T i m e ” : 0 . 3 ,
” F e a t u r e s ” : [

{
” l e f t E y e s S t i l l s P u p i l ” : [

{
” f i l e ” : ” images / p u p i l . png ” ,
” x m u l t i p l i e r ” : 0 . 3 4 ,
” y m u l t i p l i e r ” : 0 . 3 3 ,
” s c a l e f a c t o r ” : 0 . 5 ,
” r o t a t i o n f a c t o r ” : 0

}
]

} ,
{

” Lower Lip ” : [
{

” f i l e ” : ” mouth1 . png ” ,

” x m u l t i p l i e r ” : 0 . 5 ,
” y m u l t i p l i e r ” : 0 . 5 ,
” s c a l e f a c t o r ” : 0 . 6 ,
” r o t a t i o n f a c t o r ” : 0

} ,
{

” f i l e ” : ” mouth2 . png ” ,
” x m u l t i p l i e r ” : 0 . 5 ,
” y m u l t i p l i e r ” : 0 . 5 ,
” s c a l e f a c t o r ” : 0 . 6 ,
” r o t a t i o n f a c t o r ” : 0

}
]

} ,
Con t inued . . .

The ”Features” array can contain the subelements:
”leftEyesStillsPupil”, ”leftEyesStillsSpot”, ”leftEyesStill-
sLid”, ”Upper Lip”, ”Lower Lip”, ”rightEyesStillsPupil”,
”rightEyesStillsSpot”, ”rightEyesStillsLid”, ”leftBrow”, and
”rightBrow”. However, not all facial elements have to be
included. Each element of the ”Features” array contains a
subarray of objects specifying the position of a specific
facial feature locations for each frame. If only one frame
is specified it repeats through the animation.

Within each frame, five parameters can be controlled: The
image shown (”file”), the x position (”x multiplier”), the
y position (”y multiplier”), the scale factor (”scale factor”),
and the rotation factor (”rotation factor”).

IV. RESULTS

With our current framework for broadcasting expressions
to Quori, we have developed a beginner library of dynamic
facial expressions to demonstrate Quori’s ability to display
basic facial cues. A starter set of facial features for Quori
using this system appears in Fig. 7. The depicted images are
screencaps from a fluid system of feature movement for each
dynamic expression. Each of the expressions depicted in Fig.
7. cycles from a neutral to a full emotive expression. In each
expression, we individually position the eyes, mouth, brows,
and eyelids to mimic the muscle movements identified by
Paul Ekman in his 1997 work on FACS [4].

The current list of test behaviors developed for this study is
in Fig. 6. We reference each of these base expressions from
the six basic emotions identified by Ekman [3] as well as
base face states (blinking). We describe the associated facial
movements for each expression in the second column of the
table. We applied these descriptions to design the appearance
of each of the expressions in Fig. 7.

A. Control System Development

In addition, to create these expressions we have developed
two more generalized tools for sending face expression com-
mands to Quori: a library of individual facial features (Fig.
4.) and a program for specifying movement paths, location,
and timing for the allocation of said features. These two
tools provide a system for development of additional facial
behaviors on an operator side through controlling parameters
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Expression Associated Facial Movements[2]
Joy Lip Pulled Up, Mouth Open

Contempt Lip Corner Pulled Down,
Brow Lowered, Lids Tightened

Surprise Outer Brow Raised, Inner Brow
Lowered, Lids Tightened, Lips Stretched

Distress Lip Corner Depressed,
Brow Lowered, Inner Brow Raised

Anger Lids Tightened, Lips Tightened,
Brow Lowered, Upper Lid Raised

Blink Lids Tightened

Fig. 6. Current Emotional Cues programmed for Quori facial expressions
and their associated movement paths

in a JSON file. Ideally, this should make programming
facial behaviors for Quori accessible since specifying facial
animation paths with this method can be done with little or
no prior knowledge of coding.

While Quori still does not have the full range of facial
expressions available to a human, this system lets Quori
mimic standard expressions [9] and display a similar range
of motion to that of a human face. In addition, this system
of processing facial commands likely allows for more detail
and feature complexity than used in the current demo.

V. CONCLUSIONS

In this work, we generate a system for creating distinct
and dynamic facial expressions for the Quori robot. This
relies on Python, ROS, and OpenCV to create a library of
facial feature movements and expressions. We reference the
Facial Acting Coding System (FACS) to help make these
more comprehensible to users. By developing customizable
facial expressions for Quori, we hope to increase Quori’s
effectiveness and likeability when communicating with users.
Future work here may include a study validating the impact
of Quori’s facial expressions in this capacity. Our current
assumption that the use of facial expressions will improve
Quori’s ability to communicate is based primarily on prior
research regarding dynamic facial expressions and FACS[4].
However, since Quori is a unique platform and we are
developing a unique set of facial expressions, their effec-
tiveness merits further investigation. Similarly, the current
command system for Quori’s facial expressions requires
explicit specification for each moved feature of every frame
within the animation. In future work, it would be useful
to investigate auto-generation between images to make the
program set up less cumbersome. Moving away from the
use of pre-drawn features would also provide more flexibility
when specifying commands to Quori.

VI. FUTURE WORK

We hope to continue this work both by improving the
current facial control system and by tying the current system
into the larger-scale project of developing teachable robots.

A. Improvements on current system

Presently, the still images of Quori’s features (i.e. eyelids,
lips) are hand-drawn and must be individually specified
between frames of motion by users. As this system devel-
ops we would like to move toward a more autogenerated
approach where the frames between start and end positions
can be drawn programmatically instead of simply assembled
programmatically.

On a similar note, the current system of specifying the
location of facial features for Quori makes it difficult to
determine where realistic positions are and where the bounds
of movement for a given facial feature should be. Since
the positions for facial features are specified by a numeric
multiplier, it can be difficult to intuitively know where this
multiplier rests in relation to the face. We would like to be
able to pre-specify these bounds of realistic motion for users
to make the process of designing motion paths within the
face easier.

Since Quori’s facial features are unique to each use case
and must be compiled individually for each facial expression
sequence, loading an expression sequence can take several
seconds. In anticipation of using this program for real-time
interaction in the future, we would also like to investigate
ways to speed up the compilation process or save facial
expressions for Quori in a memory-effective manner.

B. Use in teachable robots

This work is part of a long-term project seeking to develop
teachable robots that can act like students in a peer tutoring
context. Within this framework, facial cues are one of several
modes of expression that Quori is likely to use. We hope
to pair the expressions and facial control software outlined
in this work with body language and natural language pro-
cessing cues to allow Quori to communicate with depth and
clarity. In addition, we hope to develop Quori’s expressions
suit a peer tutoring environment better and to adapt Quori’s
facial expressions to match the verbal, gestural, or facial
communication cues of participants interacting with Quori.
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[5] T. Goetz, O. Lüdtke, U. E. Nett, M. M. Keller, and A. A. Lipnevich.

Characteristics of teaching and students’ emotions in the classroom:
Investigating differences across domains. Contemporary educational
psychology, 38(4):383–394, 2013.

[6] G. Hagenauer, T. Hascher, and S. E. Volet. Teacher emotions in
the classroom: associations with students’ engagement, classroom
discipline and the interpersonal teacher-student relationship. European
journal of psychology of education, 30(4):385–403, 2015.

[7] G. Horstmann and U. Ansorge. Visual search for facial expressions
of emotions: A comparison of dynamic and static faces. Emotion,

210



9(1):29, 2009.
[8] S. Y. Kim, B. H. Schmitt, and N. M. Thalmann. Eliza in the uncanny

valley: Anthropomorphizing consumer robots increases their perceived
warmth but decreases liking. Marketing letters, 30(1):1–12, 2019.

[9] D. Mazzei, N. Lazzeri, D. Hanson, and D. De Rossi. Hefes: An hybrid
engine for facial expressions synthesis to control human-like androids
and avatars. In 2012 4th IEEE RAS & EMBS International Conference
on biomedical robotics and biomechatronics (BioRob), pages 195–200.
IEEE, 2012.

[10] E. D. Ross, C. I. Prodan, and M. Monnot. Human facial expressions
are organized functionally across the upper-lower facial axis. The
Neuroscientist, 13(5):433–446, 2007.

[11] S. Schindler, E. Zell, M. Botsch, and J. Kissler. Differential effects of
face-realism and emotion on event-related brain potentials and their
implications for the uncanny valley theory. Scientific reports, 7(1):1–
13, 2017.

[12] M. Shayganfar, C. Rich, and C. L. Sidner. A design methodology for
expressing emotion on robot faces. In 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 4577–4583.
IEEE, 2012.

[13] A. Specian, N. Eckenstein, M. Yim, R. Mead, B. McDorman, S. Kim,
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Learning a CBF controller for Adaptive Cruise Control Under Model
Uncertainty

Emanuel Munoz1, Qin Lin2, and John M. Dolan2

Abstract— The Adaptive Cruise Control (ACC) problem is a
common scenario for autonomous vehicles where safety is a crit-
ical consideration. Through solving this issue, traffic flow could
be enhanced while assuring the safety of passengers. Promising
solutions based on Control Barrier Functions (CBF) have been
previously proposed to assure safe performance. These methods
formulate safe invariant sets that must be well-defined based on
the dynamic model. In real scenarios, a high-precision model
is not available because of unknown uncertainties produced
by uncontrollable parameters like rolling resistance. A CBF
based on an uncertain ACC model could provoke a collision
because its formulation depends on the model. A recent work
was able to diminish the model uncertainty based on an episodic
learning approach with successful results on similar systems.
Inspired by this learning method, we propose a learning
CBF controller that can reduce the effects of the uncertain
parameters in an ACC system. The solution includes using
a neural network estimator updated with aggregated data.
We validate the controller performance for uncertain rolling
resistance in a vehicle simulation.

Index Terms— adaptive cruise control, safety, uncertainty

I. INTRODUCTION

Autonomous vehicles are an innovative promising solution
to traffic flow, safety, pollution, etc. in populous cities [1].
Vehicles require advanced hardware and software integration
to perform autonomous driving while assuring safety. In
particular, a car in a road scenario faces several situations that
endanger the passenger’s safety. The Adaptive Cruise Control
(ACC) problem is a common situation for vehicles where
safe behavior is critical [2]. The problem essentially consists
of maintaining a safe distance from a front vehicle while
trying to reach an arbitrary desired velocity. ACC represents
an important issue in highways where dangerous collisions
could occur if this problem is not adequately solved [3].

Implemented safe systems for the AAC problem in com-
mercial vehicles have been discussed in previous works [4],
[5]. A recent approach for stability and safe maneuver stands
out in the robust control area. Control Barrier Functions
(CBFs) [6] formulate a optimization problem where a safe
performance is assured. CBFs have shown to be a promising
solution for general systems [7]. The ACC problem was
also treated under this method in previous works. In [8],
the authors introduced a variant CBF method to solve the
ACC in different scenarios. Also, [9] proposed a unification
of the CBF method and Control Lyapunov Function (CLF)

1 The author is with Electrical Engineering Department, Universidad de
Ingenieria y Tecnologia (UTEC), Lima, Peru

2 The authors are with the Robotics Institute, Carnegie Mellon University,
Pittsburgh, 15213 PA, USA

for assuring safety and stabilizing a cruise control system.
CLF is an analogous method to CBF but is oriented to the
stability of the system.

CBF formulation is based mostly on the dynamic model
of the system. However, generally only uncertain models
are available, so safe behavior can not be guaranteed [10].
For the ACC problem where safety is critical, additional ap-
proaches must be taken to diminish the effects of uncertainty.
In particular, the uncertainty sources come from the rolling
resistance, air drag, or inaccurate sensors.

Learning approaches are popular in the literature for
approximate unknown or uncertain models. This type of
method is based on collected data to estimate models or
functions. In robust control, learning approaches have shown
promising results when applied to assure safety. [11] pro-
poses a safe reinforcement learning framework based on
CBFs to perform safe control. Also in [12], the authors
synthesize a learned CBF based on expert demonstration
data. Similarly, [13] presents a synthesized CBF based on
trajectory data. Particularly for uncertain models, some CBF
works have discussed this problem. [14] presents a hybrid
synthesized control to correct an uncertain system. In [15], a
probabilistic approach is implemented to synthesize a CBF
in control affine systems based on Gaussian Processes. [16]
proposes a novel reinforcement learning framework based on
CBF and CLF for uncertain systems applied to biped robots.

In a recent work [17] dealing with model uncertainty,
the authors provide a straightforward implementation using
episodic data aggregation. This work uses the Data Ag-
gregation method (DAgger) [18] to collect adequate data.
Given that it is not feasible to obtain data from the whole
input-state space, DAgger fundamentally collects data from
experimental trials so the estimator can be improved each
time.

In this work, we propose an episodic-learned controller
based on CBF and CLF to safely drive a system while
stabilizing to the desired path. We implement this solution
specifically for the Adaptive Cruise Control problem, where
we assume the rolling resistance parameters are uncertain.
We are inspired by the work in [17] in that we collect
data episodically to use it for estimation of the model.
Our contribution is to safely control the ACC system with
uncertain parameters. We compare the performance of our
improved controller and a nominal model-based controller
to show the improvements.

The remainder of this paper is structured as follows. First,
we introduce the necessary notations for CBFs and CLFs in
Sec. II. Second, we state the ACC problem notation and
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safety and stability conditions while also referring to the
model in Sec. III. Third, we present the episodic formulation
and the implemented algorithm in Sec. IV. Fourth, we
present a comparison and analysis of the proposed method
in Sec. V. Finally, we present some conclusions and further
discussion for future work in Sec. VI.

II. CONTROL LYAPUNOV FUNCTIONS AND CONTROL
BARRIER FUNCTIONS

In this section, we introduce CLF and CBF notations. CLF
and CBF have similar formulations, but each is for a different
purpose. We do not intend to give a full review, but instead
only the information needed for the current work. Also, we
present the formulation of the Quadratic Programming (QP)
problem formulated from both functions (CBF and CLF), so
a feasible solution can be found. The notation provided is
based on the previous work [6].

A. Control Lyapunov Functions

Lyapunov functions emerged as a tool for stability analysis
for nonlinear systems. Consider in particular a time-invariant
affine system as follows

ẋ = f(x) + g(x)u (1)

where x ∈ X ⊂ Rn is the n-dimensional state system, u ∈
U ⊂ Rm is the m-dimensional control input of the system.
Let us also define f : Rn −→ Rn and g : Rn −→ Rn×m as
continuous Lipschitz functions. We assume the control task
is to stabilize the system such that x(t) −→ xe. We define a
continuous and differentiable function V called Lyapunov
such that V : X −→ R+ is bounded and V (xe) = 0.
Particularly, we focus on an exponentially Lyapunov function
such that the system stabilizes asymptotically to xe as

∃u = k(x) s.t. V̇ (x, k(x)) ≤ −κV (V (x)) (2)

where κV is a class K function. In particular, we choose
κV (a) = λa for a constant λ > 0. Also, the derivative V̇ is
expressed as follows

V̇ (x, k(x)) = LfV (x) + LgV (x)k(x) (3)

where LfV (x) and LgV (x) represent the Lie derivative of
the system denoted as ∇V (x)f(x) and ∇V (x)g(x), respec-
tively. We say that there is a Control Lyapunov Function if
∃λ > 0 such that

inf
u∈U

(LfV (x) + LgV (x)k(x)) ≤ −λ(V (x)) (4)

has a solution. Therefore, the system is exponentially stable
with a decay rate λ for all x ∈ X .

B. Control Barrier Functions

CBFs are defined analogously to CLF, but for safety
instead of stability. We define a continuous and differentiable

function h(x) : X −→ R such that its superlevel set C ∈ Rn
can be named as a safe set. Let the set C obey

C = {x ∈ X : h(x) ≥ 0} (5)
∂C = {x ∈ X : h(x) = 0} (6)

Int(C) = {x ∈ X : h(x) > 0}. (7)

We consider a system like (1) such that

∃u = k(x) s.t. ḣ(x, k(x)) ≥ −κh(h(x)) (8)

where κh ∈ K that is particularly chosen as κh(a) = γa for
a constant γ > 0. Also, the time derivative of h is expressed
as

ḣ(x, k(x)) = Lfh(x) + Lgh(x)k(x). (9)

We say the function h is a CBF if there exists a γ > 0 for
which

inf
u∈U

(Lfh(x) + Lgh(x)k(x)) ≥ −γ(h(x)) (10)

for all x ∈ X . The solution u assures that the set C is
invariant, therefore x(t −→∞) ∈ C.

C. QP formulation

CLF and CBF can be formulated as a quadratic pro-
gram problem for a particular minimization problem for
u. Assuming we have a nominal control signal uref , we
can guarantee stability and safety through the following
optimization problem

k(x) = argmin
u∈U

(u− uref )TH(u− uref ) + pδ2

s.t. LfV (x) + LgV (x)u+ λ(V (x)) ≤ δ
s.t. Lfh(x) + Lgh(x)u+ γ(h(x)) ≥ 0

(11)

where σ is a slack variable that relaxes the system under
the penalization p > 0 and H ∈ Rm × Rm is an arbitrary
positive definite matrix. The addition of the slack variable is
to relax the stability condition so the safety condition is also
feasible.

III. ADAPTIVE CRUISE CONTROL PROBLEM

Fig. 1: Adaptive cruise control representation. Ego vehicle
behind the lead vehicle in a one-dimensional motion.

In this section, we introduce the ACC problem. Consider
two vehicles: a lead vehicle and an ego vehicle, as shown in
Fig. 1. The lead vehicle is in front of the ego vehicle, while
both are on the road. Assume the lead vehicle is traveling
at a constant velocity vlead. The control objective is to drive
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the ego vehicle so it can reach a desired velocity vd while
maintaining a safe distance from the lead vehicle. The safe
distance is not a constant because it usually depends on the
velocity v of the ego vehicle. The ego vehicle has a position
p measured from an inertial frame I . We also define the
relative position of the lead vehicle through the distance z
measured from the ego vehicle in a local frame L. Given the
variables mentioned we define the state space and control
space as

x = [p, v, z]T ∈ R3 u ∈ R (12)

where u is the input variable which represents the wheel
force Fw of the ego vehicle. From basic kinematics and
dynamics, we know that

d

dt
z = v − vlead, m

dv

dt
= Fw − Fr

where m is the mass of the vehicle and Fr is the rolling
resistance of the wheels. Fr can be modeled as a polynomial
function

Fr(v) = f0 + f1v + f2v
2 (13)

where f0, f1, and f2 are coefficients obtained empirically.
Given this relationship we can formulate the affine state
system similarly to [9] as

ẋ =

 v
− 1
mFr(v)

vlead − v

+

 0
1
m
0

u = f(x) + g(x)u. (14)

Notice that the functions f and g have the same prop-
erties as (1). Also, both functions depend on parameters
obtained empirically, which could introduce uncertainty into
the model. In this work, we focus on the scenario where the
coefficients in (13) are not known. Let us also consider that
the input is limited by physical constraints of acceleration
and deceleration. The control signal can be constrained
linearly as mcdg ≥ u ≥ mcag, where g is gravitational
acceleration and ca and cd are acceleration and deceleration
factors. Considering the control objective, we formulate a
valid CLF and CBF for this affine system.

A. CLF

We define the Lyapunov function for the system (14) as

V (x) = (v − vd)2 (15)

such that it is a positive definite function. Also, this function
drives the system to the stability objective v −→ vd. The
gradient of the function is obtained as

∇V (x) = [0 2(v − vd) 0]

so the Lie derivatives of (15) are calculated as

LfV (x) = ∇V (x)f(x) = − 2

m
Fr(v)(v − vd)

LgV (x) = ∇V (x)g(x) =
2

m
(v − vd)

Notice how each derivative still depends on the parameters
of the system. Therefore, after replacing each function to
have the same condition shown in (11), we finally have the
following inequality

V̇ (x, u) + λV (x) =

(v − vd)
(

2

m
(u− Fr(v) + λ(v − vd))

)
≤ δ.

B. CBF

The safety objective of the system is to maintain a safe
distance z between the vehicles. First, let us consider that
there is a lookahead time Th (also called headway) such that
Thv is less than the distance. Also, we know that there is a
maximum braking distance for the vehicle to decelerate from
v −→ vlead. Given these constraints, we define the barrier
function h as

h(x) = z − Th(v)− 1

2

(v − vlead)2

cdg
(16)

where the second term refers to the braking distance
weighted by the minimum input possible. The gradient of
h is expressed as

∇h(x) = [0 − Th −
v − vlead
cdg

1]

so that its Lie derivatives are

Lfh(x) = ∇h(x)f(x) =
1

m
Fr(v)(Th+

v − vlead
cdg

)+(vlead−v)

Lgh(x) = ∇h(x)g(x) = − 1

m
(Th +

v − vlead
cdg

)

Both equations when substituted into (11) give the follow-
ing inequality

1

m

(
Th +

v − vlead
cdg

)
(Fr(v)− u) + (vlead − v)+

γ

(
z − Th(v)− 1

2

v − vlead
cdg

)
≥ 0.

(17)

IV. EPISODIC UNCERTAINTY LEARNING

In this section, we present the proposed solution for the
model uncertainty in the ACC system. First, we present the
new formulation so an uncertain model can be used for the
controller. We provide a general form for this case. Then, an
algorithm for implementation is shown for the ACC system.

A. Formulation

Recalling (1), we assumed we know a perfectly defined
system. However, a realistic implementation should consider
that the functions f and g are only estimated, so the actual
system used for the control formulation is

ˆ̇x = f̂(x) + ĝ(x)u (18)
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where f̂ and ĝ are the estimated functions. We can introduce
the real functions f and g to this formulation with a simple
arrangement as

ẋ = f̂(x) + ĝ(x)u+ (f(x)− f̂(x)) + (g(x)− ĝ(x))u.

Notice that the functions are grouped such that we can
replace them with error functions defined as

εf (x) = f(x)− f̂(x) εg(x) = g(x)− ĝ(x).

Therefore, for a calculation similar to (9), the derivative of
the barrier function with respect to the state is expressed as

ḣ(x, u) =
∂h

∂x

(
f̂(x) + ĝ(x)u+ εf (x) + εg(x)u

)
.

Considering that we continue with the development shown
in (9) with the estimated functions, the output of this
formulation would not be the actual ḣ but instead a ˆ̇

h that is
obtained from the estimated system (18) using (9). We can
conveniently group the expression as follows

ḣ(x, u) =
ˆ̇
h(x, u) + ef (x) + eg(x)Tu, (19)

where we also replace the last terms such that

ef (x) =
∂h

∂x
εf (x) eg(x) =

∂h

∂x
εg(x). (20)

ef and eg are unknown functions in the expression. How-
ever, they can be approximated using a supervision learning
method as long as there are sufficient data available. We
assume we have a tuple dataset D defined as

D = {(xi, ui, ˆ̇hi), ḣi}Ni=1,

containing N tuples composed of the state x and the input u
with its respective ḣ and ˆ̇

h obtained. We can now define two
parametric functions êf and êg that depend on the parameters
θ ∈ Θ. Replacing the functions in (19), the expression is

ˆ̇S(x, u, θ) =
ˆ̇
h(x, u) + êf (x, θ) + êg(x, θ)

Tu

where ˆ̇S(x, u, θ) is an approximation of ḣ. This new expres-
sion allows us to define a minimization problem such that
there exists an optimal parameter θ∗ that can be found from

θ∗ = argmin
θ∈Θ

L( ˆ̇S(x, u, θ), ḣ(x, u)).

L refers to an error function or loss function that mea-
sures the difference between ˆ̇S(x, u, θ) and ḣ(x, u). We can
approximate θ∗ using a supervised learning approach such
as a neural network. Therefore, the quadratic programming
formulation in (11) is replaced as follows

k(x) = argmin
u∈U

(u− uref )TH(u− uref ) + pδ2

s.t. LfV (x) + LgV (x)u+ λ(V (x)) ≤ δ

s.t. ˆ̇S(x, u, θ) + γ(h(x)) ≥ 0.

(21)

B. Algorithm

For training, we require a large amount of data for the
dataset D. As it was discussed on [17], it is possible to obtain
data episodically. A known method in imitation learning
called DAgger (Dataset Aggregation) proposes essentially
to obtain data from the execution of a process using the
estimated controller (policy), to label the data obtained, and
then to aggregate the new data so an improved estimated
controller can be updated [18]. This “closed-loop” data
collection is useful if the control objective does not change
significantly, such that it is not necessary to explore all the
dataset D space. We propose Algorithm 1, which includes
this idea to train the estimator êf and êg . Notice that the
algorithm shown is inspired by the work [17], which presents
a similar approach more generally.

Algorithm 1: Learning CBF controller
Input: CLF V , CBF h, initial estimators êf,i=0,

êg,i=0, initial state set X0, number of
experiments T , time step dT , final time
episode tf

Output: Optimized estimators êf , êg
1 D = {Ø}
2 for i = 0 to T do
3 x0 ∼ Uniform(X0)
4 x = x0

5 Di = {Ø}
6 for j = 0 to tf/dT do
7 uref = Fr(v)

8 k, h,
ˆ̇
h = qp-controller(x, uref , êf , êg)

9 x′ = dynamics(x, k)

10 ḣ = (hi − hi−1)/dT

11 Di = Di ∪ {(x, k, ˆ̇h), ḣ}
12 x = x′

13 D = D ∪Di

14 J = 1
tfT/dT

∑
L(êf (D[x])+êg(D[x])D[k]+

ˆ̇
h, ḣ)

15 θ = θ − αdJdθ

We feed this algorithm a number of experiments T or
episodes for collecting data, a time step dT since we imple-
ment the controller in discrete time, and a final time tf for
the end of the experiment. Also, we provide zero-initialized
estimators êf,i=0 and êg,i=0 such that θ = 0. The functions
V and h represent the formulation presented in (15), (16). We
should also set up a state space X0 from which we sample
an initial state x0. Because this is a deterministic system, we
set different initial states so more data could be collected.

The algorithm starts with an empty dataset D to be
filled through experiences. We set T experiments, where we
initialize x0 and a temporary dataset Di that collects data
in an experiment. We run the experiment tf/T times. We
choose as an input reference the rolling resistance, so the
vehicle can compensate for it. The algorithm also indicates
a function qp-controller() which refers to the solution
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Parameters Values
dT 0.02 (s)
tf 10 (s)
X0 [〈0, 4〉, 〈18, 22〉, 〈38, 42〉]
vlead 22 (m/s)
vd 24 (m/s)
m 1650 kg
[f0, f1, f2] [0.1, 5, 0.25]
ca, cd 0.3
Th 1.8 (s)
η 2× 10−2

λ 5.0
γ 5.0
T 9
L() Mean Squared Error
Gradient descent optimizer ADAM [19]
α 10−4

TABLE I: Parameters used for simulation implementation
and controller

of (21) and the calculations given from (16) and (19).
Similarly, the function dynamics() refers to the real ACC
system modeled in (14). It is possible to obtain the real ḣ
from simple numerical differentiation of (16)’s result. The
obtained data are appended to the temporary dataset, so it
can be aggregated to D. We consider modeling the estimators
êf and êg using a neural network so the rest of the procedure
corresponds to the gradient descent algorithm. Notice that the
algorithm defines a learning rate α for the gradient descent.

V. EXPERIMENTAL RESULTS

Fig. 2: Simulation results for odd-numbered experiments.
Evolution of the states v and z. Blue line indicates barrier
function. Blue shaded zone is the safe set C.

We implemented Algorithm 1 in a configured numerical
simulation based on (14). The parameters used in the sim-
ulation are shown in Table I. The estimators were modeled
as feedforward neural networks of input size the same as
the size of the state (n = 3) and two hidden layers of 50
nodes chosen arbitrarily. Each layer was configured to have
a sigmoid activation function except for the output layer that
returns the linear result directly. We used Torch as a base
library for fast implementation. Additional configurations are
also shown in Table I. Recalling the ACC real model is

different from the one used for the controller formulation,
it is required to simulate uncertainty. Hence, for validation
purposes we consider different nominal parameters f∗0 , f∗1 ,
and f∗2 for the rolling resistance. The values set in the
simulation are [f∗0 , f

∗
1 , f

∗
2 ] = 10[f0, f1, f2].

Fig. 3: Simulation results for odd-numbered experiments.
Evolution of the control barrier function h through the
experiments. Dashed black line represents the performance
of h if the controller were perfectly known.

Fig. 2 shows the evolution of the states v and z through
the experiments denoted as exp. For exp = 1 when no esti-
mation was made, it is evident that the controller drives the
system out of the safe set. We can validate the improvement
of the system for the exp = 9 where we can assume the
estimator had enough information It is worth mentioning
that trajectories for each experiment are different because
the initial state is obtained from sampling. Notice that as
more data are aggregated through the experiments, better
performance of the controller is obtained.

Fig. 4: êf results for odd-numbered experiments.

Similarly, Fig. 3 confirms the overstepping behavior of the
safe set, such that it does not accomplish (6). The h(x, u)
curve in exp = 9 overlaps the form of the real system. We
could say that the algorithm compensates for the error of the
uncertainty.
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(a) p(t) (b) v(t) (c) z(t) (d) u(t)

Fig. 5: Response in time of state and input signal for the experiment exp = 10

Fig. 6: êg results for odd-numbered experiments.

In Fig. 4, we show the evolution of êf in different exper-
iments. Notice that because of zero initialization, the value
for exp = 1 was zero. êf converges to an almost constant
function through the experiments. This curve differs from
the evolution of êg in Fig. 6, where the estimator converges
to zero. Remember that the only parameters changed belong
to the f function, so this behavior is expected. Also, the
êf curves have a constant behavior that compensates for the
uncertainty, but remember that Fr is a dynamical function
that depends on v. In Fig. 4, there is a slight transition at
the start of the experiment. The constant behavior of the
curves can be justified because there are unbalanced data.
Most of the data appear in a stable state, so the data could be
filled mostly with constant values. However, even under this
observation, it has been proved that the algorithm corrects the
uncertainty, as is shown in Fig. 3. A better understanding of
the estimator’s behavior could be analyzed in more complex
systems with more dynamical behavior.

We show in Fig. 5 the time response of the state and
input for exp = 10. Notice in Fig. 5b that the trajectory
tries at first to reach the desired velocity vd = 24 m/s, but
because of maintaining a safe distance, it decelerates. The
plot in Fig. 5d confirms this behavior such that it reduces
the velocity and stabilizes the safe distance shown in 5c.
It is worth mentioning that the velocity variance does not
change the linearity of the position p.

VI. CONCLUSIONS

We validate the performance of a learning-enabled CBF
controller for an ACC application. Results show that the
proposed controller reduces the error produced by parameter
uncertainty in the model. The performance of the distance
of the ego vehicle when using the controller is proved to
assure safety better than using only a traditional CBF con-
troller relying on a possibly inaccurate dynamic model. The
estimators in the controller converged such that it adequately
compensates the model uncertainty.

However, an imbalance in the dataset raises the question
of whether the proposed controller will be adequate for
more complex systems. Future work should also consider
that an uncertain model could have more sources of error
than only model parameters. The implemented estimators are
deterministic functions that could not work well for Gaussian
sensor noise. Stochastic estimators should also be tried under
the same framework presented in this work.
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Informative and Fast Exploration Planning Using UAV for
Reconnaissance Operations

Kaleb Ben Naveed∗1, Brady Moon2 and Sebastian Scherer2

Abstract— In the missions related to search and rescue
operations, reconnaissance Unmanned Aerial Vehicles (UAV)
are used to effectively search the given environment map and
return information about the detected objects with limited
flight time. This involves solving the NP-hard problem of
maintaining balance between the tasks of fast exploration
and data acquisition. Most of the existing work focuses on
optimizing only one of these factors. In this paper, we propose
Prioritized-FUEL, which is built on top of the FUEL (Fast UAV
Exploration) algorithm, a frontier-based exploration technique.
The proposed hierarchical structure maintains balance between
fast coverage and data acquisition through the introduction
of two high-level planner options: Exploration planning and
Informative planning. In order to facilitate decision making for
informative planner, we modify Frontier Information Structure
(FIS) in the original FUEL paper to incorporate information
about objects of interest. Moreover, we introduce Frontier
Priority Que (FPQ) to store information about all the frontiers,
which have a higher probability of the presence of the objects of
interest near them. The results from the experiments in the light
UAV simulation environment show that the proposed method
resulted in almost 2 times faster data acquisition as compared
to the original FUEL algorithm.

Index Terms— Search and Coverage, Informative Path Plan-
ning, Fast Exploration

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are widely used for the
purpose of data acquisition tasks. Some of the examples of
these tasks include victim search in rescue operations [1],
fault inspection for infrastructure [2], and water body explo-
ration for ecosystem management [3]. The main dilemma for
UAVs in these operations is maintaining a balance between
the tasks of fast exploration and information gathering. This
is specifically important in a scenario of search and rescue,
where the UAV does not only has to explore the region faster
but also has to periodically pause exploration to focus on
potential interesting areas where a victim could be present.

Some of the work [4][5] proposed for the task of optimal
and rapid exploration have shown great results in the real
world settings but do not consider information gain. On the
other hand, some of the work [6][7] proposed on informative
path planning or uncertainty reduction, which have shown
promising results by maximizing information gain during
exploration tasks, lack fast coverage guarantees. Thus most
of the existing work either focuses on rapid exploration or

1Student of Electronic and Information Engineering, The
Hong Kong Polytechnic University, Hong Kong, China.
kaleb-ben.naveed@connect.polyu.hk

2The Robotics Institute, Carnegie Mellon University
∗ Supported by CMU Robotics Institute Summer Scholars Program

Fig. 1. The Prioritized-FUEL (Fast UAV Exploration) proposes a hierar-
chical structure with two high-levels options: Exploration planning for faster
coverage and Informative planning for data acquisition. High-level option
of Informative planning uses Frontier Priority Que (FPQ) in addition to
Frontier Information Structure (FIS) for decision making. At lower level,
3-step planner is used for trajectory generation. Both high-level options use
same low-level 3-step planner. The only difference is the input to 3-step
planner.

information gain, which limits their ability to provide optimal
solutions in reconnaissance operations.

In order to solve this problem, we propose, Prioritized-
FUEL, which is inspired from FUEL (Fast UAV Exploration)
algorithm. The proposed method add the ability in existent
FUEL framework to balance exploration and exploitation
for information gain by using hierarchical structure, which
contains two high-level planning options: Exploration plan-
ning for faster coverage and informative planning for data
acquisition. The High-level option of exploration planning
is responsible for the task of fast coverage of the search
space, while the high-level option of informative planning
is responsible for the task of information gathering of the
detected objects. The selection of the high-level option is
made based on the contents of Frontier Information Structure
(FIS) and the proposed Frontier Priority Que (FPQ). FIS
contains essential information about the search space and
frontiers. We modify the original structure of FIS introduced
in the FUEL algorithm [8] according to our decision making
requirements. Details about modification can be found in
Section III and Section IV.

The High-level option of Exploration planning only uses
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FIS; however, the Informative planning option uses both
FIS and FPQ for decision making and planning stage. The
overall structure can be seen in Figure 1. The proposed
FPQ stores information about the frontiers, which have an
overlap with the bounding box of the detected objects. After
the high-level planner option is selected, a 3-step planner
is used for generating minimum-time trajectories. The three
steps include creating optimal global paths by posing the
problem as the Travelling Salesman Problem (TSP), refining
local viewpoints for maximum coverage, and generating
minimum-time B-spline trajectories which are safe, obstacle-
aware, and dynamically feasible.

The main contributions of this paper can be summarised
as follows:

• The hierarchical structure, which ensures balance be-
tween fast coverage and data acquisition through high-
level options of Exploration planning and Informative
planning;

• The Frontiers Priority Que (FPQ) that facilitates deci-
sion making for high-level planner options by storing
information about the frontiers, which have an overlap
with detected objects bounding box.

The remainder of the paper is organized as follows:
Section II gives a detailed overview of the related work done
in the scope of exploration planning and informative path
planning (IPP). Section III overviews system and prelimi-
naries. Section IV describes the proposed methodology in
detail. Section V evaluates the proposed methodology, lists
down preliminary results and comments on future work and,
lastly, section VI concludes the paper.

II. RELATED WORK
The area of exploring and mapping unknown environ-

ments through mobile robots has received considerable at-
tention in the recent past. Some of the state of the art ap-
proaches for mapping and exploration include frontier based
approaches, information-theoretic approaches and adaptive
sampling based approaches.

Frontier based approaches [9] for exploration are geo-
metric in nature and explore the region by travelling to
the boundaries between unknown and known regions. These
boundaries are called frontiers. According to the original
approach, during the exploration task, the closest frontier
is chosen greedily as the next frontier to visit. There are a
number of improvements made on this method. Instead of
greedily selecting the closest frontier, [4] selects the next
frontier that minimizes the velocity change to ensure max-
imum exploration speed. [10] introduced a method, which
generated shorter exploration trajectories, by amalgamating
a frontier based approach with local vector field strategy.
In order to solve the problem of optimal coverage and fast
exploration, [8] proposed the FUEL (Fast UAV Exploration)
algorithm. This method proposed the Frontier Information
Structure (FIS), which contains important information about
the search space and is updated incrementally as exploration
continues. By using FIS, they proposed a hierarchical 3-step
planner for trajectory generation. The three steps are finding

global coverage paths, refining the local set of viewpoints,
and generating minimum-time B-spline trajectories. This
approach resulted in much faster exploration of the search
area but did not prioritize information gain for the objects of
interest, thus limiting its use for search and rescue operations.

Another approach, Adaptive sampling, requires random
sampling of the search space to create viewpoints for explo-
ration planning. [11] proposed an algorithm called Adaptive
Search Space Coverage Path Planner (ASSCP) to generate
a set of viewpoints by performing adaptive sampling that
directs research towards areas with low accuracy and low
coverage. [12] presented a new RRT*-inspired algorithm,
which continuously expanded the single tree of candidate
trajectories and refined intermediate paths. This method en-
sured global coverage and path utility function maximization.
Some work involving a team of robots has also been ex-
plored. [13] proposed a method, using an adaptive sampling
based approach, exploiting a team of Autonomous Underwa-
ter vehicles (AUVs) to explore the region. In this method,
overall search space was partitioned in the regions close to
each given AUV using voronoi diagrams and each robot runs
adaptive sampling within its partition using map entropy of
the environment. The environment used in this method has
communication constraints and requires vehicles to initiate
data sharing after some time. [14] further improved the
partitioning procedure of search space by proposing voronoi
partitioning which considers newly discovered obstacles and
also updates regions continuously to improve load balancing
between robots. The sampling-based approaches have shown
state of the art results but they are computationally expensive
which limits their usage for real world applications.

An alternative approach to sampling-based and frontier-
based approaches include Information-Theoretic Planning.
These methods normally optimize an information theoretic
measure for exploration. [15] used a map entropy measure to
select the next frontier to visit in a Frontier-based approach.
[6] proposed method for information-theoretic planning ap-
proach, which chooses a trajectory from a set of global and
local trajectories. Then they use gradient-based optimization
to refine the chosen trajectory to maximize the Cauchy-
Schwarz quadratic mutual information (CSQMI) objective.
[16] proposed a method for target search problem which
combines informative planning and obstacle awareness.They
used layered optimization approach using Bayesian Op-
timization (BO) that balances the exploration-exploitation
trade off between information gain, altitude dependent sensor
performance, Field of View (FOV) and target re-observation.
Another approach proposed by [7] solved the problem of
exploration and informative planning by posing the problem
as a correlated orienteering problem and travelling salesman
problem. The proposed method provided anytime solutions
in adaptive scenarios and also used a multiresolution sensor
to gather target information.

In this paper, our approach is based on the work of [8]
and add the ability in the structure to prioritize information
gain for the detected objects of interest while maintaining a
fast exploration rate. We propose Prioritized-FUEL, which
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TABLE I
FRONTIER INFORMATION STRUCTURE OF THE CLUSTER

Data Description
Celli Frontier cells that belong to the cluster

Cellavg,i Average position of the cluster
BCi Bounding box of the cluster
BIj Bounding box of the object of interest

Probdetect,j Probability of the Detected Object
V Pi Viewpoints around the cluster
Costi Connection costs to other clusters

either selects a high-level exploration planner or informative
planner based on information contained in Frontier Infor-
mation Structure (FIS) and Frontier Priority Que (FPQ).
Afterwards, both high level planners use common 3-step low-
level planner to generate minimum-time trajectories.

III. PRELIMINARIES AND SYSTEM OVERVIEW

A. Frontier Information Structure

In frontier-based exploration [9], frontiers are defined
as known-free voxel cells adjacent to the unknown cells.
Clusters are defined as known-free voxel cells combined
together. The method proposed by [8] introduced Frontier
Information Structure (FIS) which provides richer and more
organized information about the search space.

Whenever a new frontier Fri is detected, all the relevant
information about that particular cluster is stored in the FIS
using the cylindrical coordinate system. Table 1 summaries
the data contained in the FIS. In our method, for the task
of informative planning, we also add information about
the object of interest to the FIS Structure. This includes
the bounding box BIj and the Probability of detection
Probdetect,j of the jth detected object. These two entries
are used for decision making and will be explained later in
the next section. When the map is updated, the information
about the updated region is fetched and the bounding box
BBupdated is drawn around it. Afterwards it is checked if
there is any overlap between the updated region bounding
box BBupdated and cluster bounding box BCi. Similar
to FUEL paper [8], for searching and clustering of new
frontiers, we use region growing algorithm and then use
Principal Component Analysis (PCA) to split each large
cluster recursively in order to ensure robust decision making
as large clusters do not help in characterizing different
unknown regions.

B. Viewpoint Generation and Inter Frontier Cost Update

In our work, we use the methods proposed by [8] and [9]
for the generation of viewpoints and for inter-frontier cost
update. When a cluster Fri is created, the rich number of
viewpoints V Pi = {xi,1, xi,2, ..., xi,ni

} are generated so that
the viewpoint with the maximum coverage can be selected
through optimization. For each viewpoint, the information
about the sampled point Pi, in cylindrical coordinate system,
and its yaw angle ψ is stored i.e. xi,j = (Pi,j , ψi,j). In addi-
tion to generating viewpoints, we also compute costs between
frontier clusters. The connection cost is calculated as time

lower bound tlb(xk1,j1 , xk2,j2) between two viewpoints of
clusters. The formula for calculating time lower

Algorithm 1 Prioritized FUEL
1: Initialize Frontier Information Structure FIS and Fron-

tier Priority Que FPQ.
2: while Not whole region explored do
3: Search for new frontiers fri
4: Generate Viewpoints and inter frontier cost using

time-lower bounds eq.1
5: if BCi ∩BIj then
6: if Probdetect,j > ε) then
7: Append fri to FPQ
8: while FPQ 6= ∅ do
9: InformativeP lanner() // Information gath-

ering
10: end while
11: end if
12: else
13: ExplorationP lanning() // faster coverage
14: end if
15: end while

bound is given in equation 1, where P (pk1,j1 , pk2,j2) de-
notes collision free path between pk1,j1 and pk2,j2 , and vmax

and ψmax are velocity and yaw angle limits respectively. The
collision free path is searched through A∗ algorithm.

tlb(xk1,j1 , xk2,j2) = max
[ length(P (pk1,j1 , pk2,j2))

vmax
,

min(|ψk1,j1 − ψk2,j2 |, 2π − |ψk1,j1 − ψk2,j2 |)
ψmax

]
(1)

IV. METHODOLOGY

In the proposed Prioritized-FUEL, we develop a hier-
archical structure with two high-level options: Exploration
planning and Informative planning. The overall structure is
shown in Figure 1. The exploration planner is responsible for
generating paths which result in faster coverage of the search
area while informative path planner generates information-
theoretic paths for gathering information about the detected
objects. Both exploration and informative planners plan
paths in three steps, which is similar to the original FUEL
paper [8]. The detailed working of the Prioritized-FUEL is
described in Algorithm 1 and explained below.

A. Detected Object Information and Frontier Priority Que

When new frontiers are searched, the information about
all the clusters is maintained in the FIS. For the purpose
of informative path planning, we also keep the information
about detected objects, if any, in the FIS structure. According
to the Table 1, we keep track of the bounding box BIj and
probability of the confidence of detection Probdetect,j of the
detected object.

If and when the object is detected, the bounding box
BIj is drawn around it. Then precise checks are made
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for all clusters and a list of all those clusters is returned
whose bounding box BCi intersects with the detected object
bounding box. Afterwards, the probability of confidence of
the detected object is checked and if it is greater than ε, then
that cluster is added into the Frontier Priority Que (FPQ).
Then the latter check is made to avoid the presence of false
positives in detection.

B. Exploration vs Information theoretic Planning

Based on the status of the FPQ, different planners are
activated accordingly. The only difference between informa-
tive planner and exploration planner is that in the former
some of the clusters are given higher priority based on
the possibility of the presence of an object of interest,
while exploration planner does not prioritize any frontier
but creates a minimum-time trajectory between any set of
candidate clusters. The two different cases are mentioned
here for further elaboration.

1) FPQ contains at least one cluster: If FPQ contains
at least one cluster, the high-level option of exploration
planning will pause and an informative planning option
will be activated. In this case, clusters present in the FPQ
are given higher priority and global paths are created to
cover those clusters first. During this time, the UAV focuses
on gathering data about the detected objects rather than
exploring new areas. This might decrease the overall search
time but ensures faster detection of the objects of interest,
which can save lives in search and rescue operations. Here
for data gathering, instead of circling around the object as in
[7], we purely rely on local viewpoint refinement to select
viewpoints which give maximum information of the object
while not wasting energy circling around the object. The
description of the working of the 3-step planner is given in
the next subsection.

2) FPQ contains no cluster: If FPQ contains no cluster,
then an exploration planner is chosen. Under the exploration
planner, minimum-time trajectories are generated through all
active clusters. This happens incrementally as new clusters
are made along the search path. The purpose of the explo-
ration planner is to ensure fast coverage of the search area.
The detailed steps involved in generating minimum-time
trajectories through a 3-step motion planner are mentioned
in the next section.

C. 3-Step Planner

The 3-step planner is adopted from the original FUEL
algorithm structure [8] and some modifications are made
to incorporate our structure into it . The low-level planning
procedure for both the high-level exploration planning option
and informative path planning option is the same. The only
difference is that during informative path planning, only
selected or prioritized clusters are considered, while explo-
ration planner considers all active clusters. The overall low-
level 3-step planner includes Global Path Planning, Local
Viewpoint refinement, and minimum-time B-spline trajectory
generation. The overall structure can be shown in Figure 2.

1) Global Path Planning: Global planner creates a global
path through the planner by posing the problem as the
Asymmetric Travelling Salesman Problem, which creates
an open-loop tour starting from the current viewpoint of

Fig. 2. The 3-step planner include Global Path Planning, Local Viewpoint
Refinement and Minimum-time B-spline Trajectory Generation

cluster Ci and passing to all clusters. The cost from the
current viewpoint x0 to the xk cluster can be evaluated
using equation 2. Here time-lower bound tlb(x0, xk,1) is used
which was calculated and stored in FIS when frontiers were
detected.

TSPcost(x0, xk) = tlb(x0, xk,1) + wc · cc(xk,1),

where, k ∈ {1, 2, 3, ...Ncluster} (2)

In equation 2, cc(xk,1) is used as motion consistency cost
which eliminates inconsistency by penalizing large changes
in flight conditions. This inconsistency might rise due to
several paths having similar time-lower bound.

2) Local Viewpoint Refinement: Here in this second step,
the global path is improved based on the different viewpoints
which were computed earlier. In original classical frontier-
based approach, while calculating the global path, only a sin-
gle viewpoint from each cluster is considered, which might
not provide optimal collective coverage. For local viewpoint
refinement, we create a graph of nodes from the current
viewpoint x0 to all viewpoints V Pi. In our method, we
consider all active clusters and use the notation Nat to refer
to them. After connecting nodes between clusters through
directed edge, Dijkstra algorithm is used to search for the
optimal local tour by minimizing the cost LTcost(x0, xNat)
shown in equation 3. This approach is similar to some of the
other proposed methods [8], [5], and [17].

LTcost(x0, xNat
) = tlb(x0, x1,j1) + wc · cc(x1,j1),

+ tlb(xNat,jNat
, xNat+1,1) +

Nat−1∑
k=1

tlb(xk,jk , xk+1,jk+1
)

(3)

3) B-spline Trajectory generation: For generating
minimum-time B-spline trajectory, we use the method de-
veloped by [8] and [18]. The trajectory planner generates
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smooth, safe, and dynamically feasible B-spline trajectories,
and also optimizes all the parameters for the B-spline, which
result in minimum-time trajectories.

The quad-rotor used during experiments is considered
to be flat, so thus flat outputs include x ∈ (p, ψ) where

Fig. 3. Here the UAV is shown ready for exploring the area. The light
blue point cloud represents occupied region and colourful boundaries around
occupied region represents frontier clusters. The red rectangle represents
search area specified. The bounding box BIj represents the bouding box
around the object of interest. The grey shadows are the obstacles present in
the environment.

p ∈ (x, y, z). Thus the output can be shown as Xc,b =
{xc,0, xc,1, ..., xc,Nb

}, where xc,i = (pc,i, ψc,i) are the Nb+1
are control points in pd degree uniform B-spline. The knot
number represents a number of control points used with a
curve degree. The knot span here is referred to as ∆tb. The
overall optimization problem can be written as equation 4
and we suggest the reader to refer to work of [8] and [18]
for more details.

arg min
Xc,b,∆tb

fs + wtT + λcfc + λd(fv + fa) + λbsfbs (4)

Here in this equation, fs is the elastic band smoothness
cost, Rs is the penalty matrix and fc, fv , fa are penalties
to ensure safe and dynamic feasibility and T is the total
trajectory time. The detailed equations can be found in [8]
and [18].

V. EXPERIMENTS

A. Scenario and Experiment Setup

In this section, we test the proposed Prioritized-FUEL
algorithm in light simulator. The purpose of this experiment
is to test the validity of the idea and its preliminary perfor-
mance. The screenshot from the simulator is shown in Figure
3. The red boundary specifies search area, which needs to be
explored. The black coloured bounding boxes BIj represent
bounding boxes which are drawn around objects of interest
when detected. The grey color shadows represent unknown
obstacles. Initially, UAV does not have any information about
the presence of objects of interest or obstacles.

In our work, we assume that we have a perfect perception
system, so that we can focus on improving the planning part
of the system. This assumption helps us with two important

pieces of information. Firstly, the system knows the exact
position of the object of interest so a perfect bounding box
BIj can be drawn around it, but UAV does not have any
clue about the position of the object of interest at the start
of the exploration process. It only comes to know about the
presence of the object of interest when the bounding box

Fig. 4. The trajectory of the UAV is shown after fully exploring the region.
The light blue point cloud represents the known region. objects with label
”1” are objects of interest. Objects with label ”2” are obstacles.

BIj of the object of interest intersects with the bounding
box BCi of the frontier cluster. Secondly, we assume that
Probdetect,j is always greater than ε, which is one of the
requirements for informative planning as shown in algorithm
1. In experiments, with a focus on both perception and
planning, bounding box BIj of the object of interest and
Probdetect,j would change as detection is carried out using
some detection models [19], which might cause instability
in the execution of planning routines. But in our system,
this information is stable and reliable as we assume perfect
perception system.

B. Results and Discussion

In order to evaluate the effectiveness of our proposed
algorithm, Prioritized-FUEL, we compared it with the FUEL
algorithm using the mentioned metrics over sample size of
10 experiments for each method:

• Data Acquisition Time: Time spent on exploring fron-
tier clusters, whose bounding box BCi have an overlap
with the bounding box of the object of interest BIj ,
once object of interest is detected;

• Total Exploration Time: Total time spent exploring the
whole region.

The detailed results are shown in Table II. In our given
simulation environment, Prioritized-FUEL was able to out-
perform the FUEL algorithm in the data acquisition part by
focusing on exploring objects of interest first if detected,
while keeping total exploration time almost the same.

As shown in Table II, the original FUEL algorithm spends
on average 4.31 seconds on exploring the frontiers near
objects of interest once the object is detected. While the
proposed Prioritized-FUEL algorithm spends on average 2.38
seconds on exploring the frontiers near objects of interest.
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TABLE II
COMPARISON OF FUEL AND PRIORITIZED-FUEL

Method Data Acquisition Time (sec) Total Exploration Time (sec)
Avg Std Min Max Avg Std Min Max

FUEL [8] 4.31 1.38 1.79 9.00 55.50 2.99 49.21 59.43
Prioritized-FUEL 2.28 0.80 1.78 4.21 56.60 3.60 48.87 61.21

Fig. 5. The overall sequence of exploration is shown from one of the experiments from frames 1 to 8.

This is because in the original FUEL algorithm, UAV con-
siders all frontiers as the same and generates minimum-time
trajectories between them. This results in faster exploration
of the environment. While in the Prioritized-FUEL algorithm,
frontier clusters whose bounding box BCi overlap with the
object of interest BIj are given higher priority and are
added into Frontier Priority Que (FPQ). Thus UAV explores
the high priority frontiers first by generating minimum-time
trajectories between them, before exploring other normal
frontiers.

Moreover it is shown in Table II that the total exploration
time is not much affected. This is mainly because even while
planning informative paths for data acquisition, minimum-
time trajectories are generated and viewpoints are adjusted
accordingly using Local Viewpoint refinement to maximize
coverage. This shows that Prioritized-FUEL not only guar-
antees faster data acquisition but also faster exploration.

The sequence of the exploration from one of the exper-
iments can be seen in Figure 5. The UAV can be seen to
focus on objects of interest in frames 3 to 5 once it detects
the first object of interest (cicle) in frame 2. This can also be
seen in frame 7 when the second object of interest (circle) is
detected by checking the overlap between the bounding box
of the cluster and of the circle. The final map is shown in
Figure 4.

C. Future Work

The Proposed structure Prioritized-FUEL (Fast UAV Ex-
ploration) ensures a balance between faster coverage and
informative planning. There are several more components
which can be added to the structure to make it more robust.
This includes altitude-aware data acquisition, multi-UAV

search and further testing in high fidelity simulations such
as unreal engine and AirSim simulator.

Considering altitude while gathering information can help
reduce uncertainty in sensor measurements. Obstacle-aware
Adaptive Path Planning (OA-IPP) [12] incorporates altitude
in it and shows that altitude-dependent sensor performance
can be incorporated into cost or objective function. Moreover,
Multi-UAV Search can help reduce overall search time by
dividing search effort between multiple UAVs. One of the
approaches famously used in the literature to divide the
whole search region into partitions is voronoi partitions. One
of the approaches proposed by [14] improved the partitioning
procedure of search space by proposing voronoi partitioning
which considers newly discovered obstacles and also updates
regions continuously to improve load balancing between
robots.

VI. CONCLUSION

In this paper, we proposed Prioritized-FUEL (Fast UAV
Exploration) in order to ensure balance between fast explo-
ration and data acquisition during reconnaissance operations.
The hierarchical structure provides two high-level options:
Exploration planning for faster coverage and Informative
planning for data acquisition. In order to facilitate decision
making for informative planner we modify Frontier Infor-
mation Structure in the original FUEL paper to incorporate
information about objects of interest. Moreover, we introduce
Frontier Priority Que (FPQ) to store information about all the
frontiers, which have a higher probability of the presence
of the objects of interest near them. We test the proposed
framework in a light UAV simulator and show that the
prioritized-FUEL algorithm decreases the time to explore
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objects’ interest by almost 40% as compared to the original
FUEL algorithm while keeping total exploration time of the
search space almost the same. In future, we want to test and
compare the algorithms in the AirSim simulator with the
scenario of open sea reconnaissance operations.
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Human Detection, Classification & Tracking in Context of Transit
Systems

Chigozie Ofodike1 and Christoph Mertz2

Abstract— With the advent and popularity of algorithms
capable of detection-based tracking (DBT), one of its grow-
ing applications is in human detection and tracking (HDT).
Leading research in HDT can be seen in surveillance systems,
anomaly detection (e.g fall detection for senior citizens), and
recently, social distance monitoring. In this paper, we present
an application of contemporary HDT algorithms, on a real-
time and ubiquitous entity–the mid-tech public transit bus
system. All forms of DBT follow two innate steps: first, object
detection, then association of the current object with the
previous object. In the case of human detection, every instance
of a detected human is then analyzed. In our project, we
want to perform visual tracking from the transit bus. Each
implementation is done by aggregating data (mainly pictorial)
from cameras mounted on a bus with the Robotics Operating
System (ROS) acting as the architecture supporting both the
bus and the server structures. Our proposed system will allow
for technological automations and implementations for human-
specific observations.

Index Terms— keywords, Intelligent Transportation Systems,
Surveillance Robotic Systems, Software, Middle-ware and Pro-
gramming Environments, Computer Vision for Transportation

I. INTRODUCTION

With its wide use cases, algorithms involved in Human
Detection and Tracking (HDT) have become relevant in
recent years. Applications of these algorithms can be seen in
surveillance systems, self-driving cars and even anomalous
action detection in environments (i.e. a fall or a vandalism)
[1]. The core steps of these algorithms are: informative
region selection, feature extraction then classification (spec-
ifying person) [2]. Beyond these stages, most of the compu-
tation overhead occurs during the tracking stage [3]. Under-
standing that humans tend to be erratic, and often without
a standardized shape, movement pattern or appearance, this
overhead becomes more evident in cluttered environments
or scenes with dense crowds [1], [4], [5]. Fortunately, many
state-of-the-art (SOA) paradigms have suitable and efficient
means to handle some of these resulting issues.

Our implementation is currently done on a single bus
provided by Freedom Transit, a bus transportation service in
Pennsylvania. Currently, in order for their analysts to review
the recorded video of a bus’ route, they must wait until
the end of the day, when bus drivers are completely done
with their respective routes. Then and only then are they
able to gain access to it. After which analysts must sit and

1Chigozie Ofodike is with Kean University, Union NJ, USA.
Ofodikch@kean.edu

2Christoph Mertz with the Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, USA cmertz@andrew.cmu.edu

manually annotate the highly-repetitive and long streams of
videos. This process is not only tediously time-consuming, it
is prone to errors and it causes delays for timely information
extraction. In this paper, we propose an implementation of
real-time HDT to assist this system. Our proposed system
will involve object detection and classification, to train a
model to detect pedestrians. A classification mechanism to
differentiate pedestrians from passengers either exiting or
entering the bus.

The structure of this paper is as follows: In section II,
we present our background study, showing related works,
SOA object detection and tracking architectures. In section
III, we present our system overview and our contributions to
this system. Section IV will be our results and evaluations.
V will be our conclusions and finally, VI will be our future
work and discussions.

II. BACKGROUND STUDY

A. Related works

1) General Object Detection: Research in object detec-
tion and tracking (ODT) architectures have grown preva-
lent in recent times. Applications of ODT can be seen in
medical imaging, automated robotics, image recognition and
even surveillance systems [6], [7]. As mentioned in [1],
[5] traditional object detection works by informative region
selection, feature extraction, and classification. Traditional
region selection is done with a sliding window approach.
This method works by taking exhaustive sliding rectangular
“patches” of fixed width and height for each image. Fea-
ture extraction then happens on each derived patch. After
which a classifier is used to distinguish between objects in
each frame. Due to the exhaustive nature required with the
sliding windows, this traditional method is ineffective with
real-time analysis [5], [8]. Nowadays, with the prevalence
and utilization of Convolution Neural Networks (CNN) and
deeply trained models, detections algorithms can occur at a
much faster rate. We briefly discuss these SOA models in a
later section.

2) Object Detection on Embedded Devices: Since these
architectures need to be deployed to put to use, another
popular research area is real-time object detection on embed-
ded devices. Applications of object detection on embedded
devices could be seen on autonomous vehicles, robotics, and
C. Ye’s BusEdge system [6]. Despite the recent successes
of these algorithms, an issue common with the applications
of object detection and tracking on embedded systems is
the limited resources of these micro-systems. It becomes
a question of which object detection architectures give us
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the best tradeoff between speed and accuracy, while still
effectively running on much lighter processors [9]. With
the combination of significantly smaller processors and a
computationally expensive algorithm, this is a difficult task.
For one thing, when analyzing real-time data, [6] points out
that most are unusable and very redundant. To that avail,
there have been several successes that circumvent this issue.
For example, Mobileye is a self-driving car company that
implements a Road Experience Management system (REM).
The company claims this system works by automatically
uploading and processes anonymized data from cars already
running its technology onboard [7]. Another company rele-
vant in this space is RoadBotics. RoadBotics allows users to
upload road-specific data to their server, then their deployed
model handles the classification and analysis [10]. Specific to
our needs, another leading approach facilitating this complex
problem is NavLab’s BusEdge system [6]. It employs an
edge computing paradigm and an application called Auto-
Detectron. Being that our system is an extension of his, we
talk more about this in our “System Overview” section.

3) Pedestrian Detection and Tracking: Being that our
project is fixated on how humans interact in relation to the
transit system, our focus is strongly on pedestrian detection,
tracking and observation. With the vast applications of hu-
man specific observations of object detections, there have
been a multitude of implementations of SOA algorithms in
this area. Zhang et al. [11] propose a method based on
Tiny Yolo, training a model to detect the upper body of
passengers entering/exiting a bus. Valastin et al. [12] show
their different approaches to detection, tracking and crowd
counting of pedestrians getting on and off a Metropolitan
Train. They carry out their experiments in their reshape-
able lab Pedestrian Accessibility Movement Environment
Laboratory (PAMELA). This re-shapeable feature allows
their lab to properly train pedestrian models no matter how
rare, common, or messy of an event it is. They are able
to handle problems we meet in our implementation such
as properly detecting passenger flow (i.e. they are able to
differentiate passengers entering from those exiting) and
crowd counting of an active and crowded scene.

B. State of the Art Object Detection Architectures

1) Faster RCNN: Originally proposed by Ren et al. [13]
RCNN, these architectures mainly consist of a layer of
convolution neural networks (CNN) and Region Proposal
Network (RPN). CNN is trained to extract appropriate fea-
tures from the image, in this case features that appropriately
describe humans. The RPN is a small neural network sliding
on the last feature map of the convolution layer, predicting
the existence of an object and the bounding box if an object
is detected. The massive increase in analysis speed from 10
milliseconds per image to 2 milliseconds per image is heavily
credited to this layer.

2) YOLO (You Only Look Once): Redmon et al. [14]
propose a regression approach to object detection that re-
quires only a single look at an image for object detection. It
consists of 24 convolutional layers and two fully connected

layers and as the name suggests, it requires only one single
forward propagation through the layers to detect objects.
When compared to the architectures of RCNN, it tends to
make more localization errors, but false positives are far less
likely. In terms of speed of processing, YOLO’s base model
easily outperforms the already fast Faster RCNN–processing
at 45 frames per second (fps) [15]. YOLO like RCNN comes
with other versions, with its fast version processing at more
than 150 fps. With such a massive processing rate, it is
very suitable for live video processing with less than 25
milliseconds of latency [15].

3) H-YOLO: A Single-Shot Ship Detection Approach
Based on Region of Interest Pre-selected Network: Although
about ships, Tang et al. [16]. proposal of a single-shot
detector on the pre-selected region of interest was the starting
point of our passenger classifier. Using hue, saturation and
value color space operations and a one-shot detector, they
were able to extract pre-processed regions of interest at close
to real-time.

4) Single Shot MultiBox Detector (SSD): Proposed by Liu
et al. [17], SSD is a competing object detection model that
works with a single phase analysis to detect multiple objects
within the image. The SSD network is built on the VGG-
16 model, where the feature map is extracted without the
need of the bounding box proposals like that of RCNN. This
map is then processed through six progressively decreasing
convolution filters (the multi-box), generating. The use of
multiple levels of filters allows about 8732 detections per
object (class). The final layer, non-max suppression layer,
eliminates the overlapping box by performing a bounding
box regression effectively leaving the calculated final box
with the highest overlap [17]. SSD’s strength lies with its
balance of ease of training speed and accuracy–being faster
than both Faster RCNN and the base YOLO model, and more
accurate than other single-stage methods.

C. State of the Art Tracking Models

1) Simple Online and Real-time Tracking with a Deep
Association (Deep SORT): Deep SORT is the successor of
SORT [18]. SORT is a high-performing two-stage tracking-
by-detection framework that performs Kalman filtering in
image space and data association using the Hungarian
method. Put forth by Wojke et al. [18], Deep SORT builds
upon its predecessor by adopting a deep association metric
with recursive Kalman filtering on frame-by-frame data [5].
Although slower than its predecessor, the added association
step drastically reduces the occurrence of identity switches
among detected instances [18].

2) Joint Detection and Embedding (JDE): Proposed by
Wang et al., unlike the two-stage tracking style of Deep
SORT, JDE integrates the detector and embedding model into
a single network. The combination of both stages removes
the need for an additional layer of computation, therefore
reducing the inference time [19]. Unfortunately, with this
combination, these methods tend to be significantly less
accurate than 2-stage methods, although capable of achieving
near video rate inference [1].
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3) FairMOT: A one-stage tracker that aims to bal-
ance speed and accuracy. Using an anchor-free detector, a
heatmap, then a multiple-level data association step involving
bounding box intersection over union, re-id features and
Kalman filtering [20]. FairMOT’s advantage comes from
understanding that previous SOA’s re-identification system is
poor, due to its detection module being heavily favored over
its re-id module. This work proposed by Zhang et al., aims
to balance both modules. By implementing a multi-layer
feature aggregation framework, its re-id module improves
significantly.

III. SYSTEM OVERVIEW

Our detection pipeline will be deployed on the Gabriel
BusEdge system as proposed and explained by C. Ye. [6].
The system’s major components are hardware, early-discard
filters, cognitive engines and finally sinks. Hardware on the
bus are multiple wide angle cameras mounted at different
positions on the bus, interior cameras, GPS, network antenna
and an accelerometer (see Figures 1 and 2). The early-
discard filters are Ye’s lightweight preprocessing mecha-
nism, and we choose SSD with MobileNet. This allows ad
hoc analysis instead of analysis on highly-repetitive data
effectively promoting scalability. Cognitive engines are the
more computationally heavy computer vision models that
handle and analyze distilled data from the bus, YOLO is
our choice here. Finally the sinks, which represent the final
component used for data analytics and visualizations. Our
choice here is Christensen’s proposed LiveMap system [21].
The complete system uses Robotics Operating System (ROS)
as its base architecture. See [6] for a more detailed and
thorough description for the Gabriel BusEdge system.

Fig. 1: An abstraction of C Ye’s BusEdge pipeline.

Fig. 2: Pictures of the Hardware. (From left to right: bus computer;
exterior camera; interior camera; GPS and network antenna.)

A. Our Contributions

Our implementation is centered around aggregating data
for human activity around the transit system. Although at

the beginning stages, we implement a human detection
model, then a classification module capable of differentiating
pedestrians around from those boarding on a specific transit
route. Being that humans are the focal point of public transit,
this creates a solid starting point for future automations.

B. Proposed Methodology for our Pedestrian Detection and
Passenger Classification.

1) Grab and read a frame.
2) Apply a fine-tuned object detection model to each

individual frame. To only detect people, we simply
discard the information of every other class.

3) Get and store bounding boxes, scores and labels of each
instance of each detected human.

4) Select only pedestrians above a .70 confidence score–
this way we eliminate false positives such as man-
nequins and road signs at a distance.

5) Instantiate a passenger counter.
6) Create an invisible bounding box (we call this our

boarding zone) where passengers must enter or exit.
7) For each properly identified pedestrian instance, if the

instance crosses the boarding zone, we compute the
intersection over union (IoU) of our zone against the
detected pedestrian.

8) If the resulting confidence score is greater than .50, this
person instance is treated as a passenger.

IV. RESULTS AND EVALUATIONS

1) Results: Although promising, there are still some
challenges with our pipeline. First off, as shown in Fig 3,
there tends to be some mislabelling of pedestrian instances.
Instances such as this, and accidental mannequin selections
occur at a confidence threshold of .75. Increasing the thresh-
old further would cause the model to ignore instances in
darkened scenes (such as that in Fig 4). Another common
issue that came up are pedestrian instances missed because
of slight occlusions (shown in Fig 5). This specific instance
is barely covered by the obstructing sign, yet it was com-
pletely ignored. This same instance in the frame before
commanded a .90 confidence score. This can easily be fixed
by either implementing a SOA tracker, allowing preservation
of the identity of each instance between each frame change,
even behind partial obstructions or the re-identification of
instances even through complete obstruction.

Fig. 3: Sign to the extreme right mislabelled as a person.

2) Evaluations: Evaluating our logic on unseen data, we
see some issues. Our pedestrian detector seems to get all
pedestrians in a given scene, but it fails to differentiate
between a reflection and the actual passenger as seen in
Fig. 6b. This was an unanticipated event, as it is the first
time such a detection occurred. Being that the passenger
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(a) Original frame.

(b) Object detection.

(c) Fine-tuning for pedestrians.

(d) Passenger specification.

Fig. 4: Successful pedestrian detector and passenger selection.

classification module only cares about the instance in the
invisible boarding zone, this still seems like an effective
method of passenger classification.

V. CONCLUSIONS

In this paper, we proposed an addition to Freedom Tran-
sit’s current analysis pipeline. With the help of SOA al-
gorithms, and C Ye’s BusEgde system as the architecture
behind this, we were able to effectively detect humans
around specific bus routes. The research and work done here
provides a foundation to assist Freedom transit with their
data analysis processes.

VI. FUTURE AND DISCUSSIONS

Future plans will be to use already existing bench-
marks such as those provided by [22], [11] and [23]. [22]
works well with detecting occluded instances in urban ar-
eas, whereas [11] is a significantly more diverse pedes-
trian dataset. [23] claims to have a strong generalization
ability. Evaluation of these datasets, recommended training
paradigms and more were presented well by Hasan et al.
[2]. Another implementation we plan on is for people with
disabilities. Rarely are they adequately represented in popular
pedestrian datasets. Then, a tracker for all instances. Giving
our system the ability to tell detected humans apart, effec-
tively establishing metrics for possible analysis. A counter-

(a) Pedestrian on the extreme left will
be missed in the next frame.

(b) Instance missed due to occlusion.

Fig. 5: Interesting, yet correctable misses.

(a) Original frame.

(b) Person detection evaluation.

(c) Passenger specification evaluation.

Fig. 6: Evaluation of pedestrian detector and passenger selection.

intuitive, yet interesting notion put forth by [2] is that general
object detection models tend to work better than current
SOA pedestrian-specific detectors on new and population-
dense scenes. We will analyze and compare SOA pedestrian-
detectors, SOA general object detection models, and our
pedestrian-specific model, specific to the Pittsburgh area to
see how each fares and which is best for our specific needs.
To correct the issue with detection reflections as humans,
being that having the bus in the image is not necessary
for any of our analysis, we will simply only perform our
detection in a section of each frame without the bus in it.
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Control System Modeling for Closed-Loop Controlled Ventilator using
MATLAB Simulink

Zaria Oliver1 Lu Li2 and Howie Choset2

Abstract— Made more apparent due to the ongoing COVID-
19 global pandemic, is the lack of efficient ventilators ready to
provide aid to the numerous lives impacted by widespread dis-
ease. Intensive care unit (ICU) ventilators are sizable and costly,
while existing low-cost, portable ventilators require further
development to tackle treatment of acute respiratory distress
syndrome (ARDS) injuries including COVID-19. The Roboven-
tilator (RoboVent) is a compact, low-cost mechanical ventilator
whose performance is comparable to that of sophisticated ICU
ventilators. The device combines mechanical and pneumatic
design with robotic control. This project develops a model for
the RoboVent closed-loop control system to regulate behavior
of the actuation and sensing components. By using Simulink,
a graphical modeling program through MATLAB, a control
model can be created and developed allowing for adjustment of
RoboVent parameters. This includes values such as respiratory
rate, tidal volume, and set pressure. The contribution of this
work is a control model permitting for system validation and
digital twins virtual testing to be performed without heavy
modification of the RoboVent hardware. Specifically, this paper
focuses on the overall ventilator layout and the gas mixer
component of the RoboVent.

Index Terms— Medical Robots and Systems, Human Cen-
tered Robotics, Control Architectures

I. INTRODUCTION

Ventilators are medical devices which fully provide or
assist in breathing for patients with respiratory distress
[1]. When patients are unable to breathe independently, a
ventilator is used to consistently force air into the lungs
with positive pressure [2] for the needed period of time. A
2020 study referenced by the National Institutes of Health
(NIH), conveys the urgent need for efficient ventilators to
address the large demand created by widespread disease [3].
56 percent of COVID-19 ICU patients required mechanical
ventilation at a hospital in Wuhan China. 76 percent of those
patients required invasive mechanical ventilation, which is
ventilation in which an endotracheal tube is used to deliver
air to a patient. 79 and 86 percent were the mortality rates of
patients relying on non-invasive versus invasive mechanical
ventilation. Many COVID-19 ICU patients have an increased
chance of developing ARDS, a fatal lung injury involving
fluid leakage into the lungs [4]. Mechanical ventilation is
necessary for supporting ARDS patients through recovery.
Shockingly, by March of 2020, there was a shortage of

1Zaria Oliver is with the Department of Mechanical Engineering,
University of Maryland, Baltimore County, Baltimore, MD, 21250
zoliver1@umbc.edu

2Lu Li and Dr. Howie Choset are with the Biorobotics
Lab, Robotics Institute, Carnegie Mellon University, Pitts-
burgh, PA 15213 lilu12@andrew.cmu.edu and
choset@andrew.cmu.edu

ventilators for sale from medical equipment providers [5]
During a global pandemic such as COVID-19, the high
demand, high cost, and low availability of ventilators is a
recipe for disaster.

A. About the Ventilator

The RoboVentilator is a compact, low-cost ventilator with
advanced functionality and rapid deploy ability. Not only is
its performance equivalent to sophisticated level ventilators,
it is also more easily producible, an important feature to
have in preparation for possible future disease outbreaks.
Current low cost ventilators are not advanced enough for
COVID-19 complications. The ventilator allows for param-
eter customization, providing a specifically catered device
for the patient’s particular needs. These parameters include:
tidal volume, set pressure, respiratory rate, and positive end-
expiratory pressure (PEEP). Averaging 400-500 mL in a
healthy person [6], tidal volume is the amount of air moving
into and out of the lungs per breath. Respiratory rate refers
to the amount of breaths per minute a person takes [7]. A
fascinating parameter is the positive end-expiratory pressure
(PEEP), a pressure that maintains airway pressure upon
exhalation. This prevents collapsing of air sacs within the
lungs of ARDS patients. The RoboVent parameters are tested
based on current COVID-19 ICU patient data such as O2
saturation measurements, respiratory rates, CO2 levels, toxin
measurements and more.

The RoboVent, shown in Figures 2 and 3, is a closed-loop
system that allows for processes to be carried out to desired
states without human interaction.

Fig. 1. RoboVentilator Computer Aided Design

B. RoboVent Design

The device’s design, displayed in Figure 3, starts at the
oxygen and air gas sources of the ICU environment. The
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Fig. 2. RoboVentilator Device with Digital Monitor Displaying Pressure,
Flow, and Volume

inspiratory section of the system deals with the patient’s
breath in, while the expiratory components have to do with
the breath out. Oxygen is sourced from an oxygen cylinder,
most commonly of size E (660L) [8] at 50psi. The air supply
is compressed external air at a pressure of around 58psi
[9]. Each of the gas streams runs through a corresponding
valve allowing for inspiratory flow rate adjustment based on
data from a flow sensor down-the-line of the device path.
These streams join a gas blender which mixes the gasses
and outputs a deliberate flow of mixed gas at a pressure
based on prior values. The tube following this output leads
to the patient. However, along this route is an emergency
breathing valve, an inspiratory flow sensor, an inspiratory
pressure sensor, and a check valve. These components allow
for a patient to breathe external air if needed, relay flow and
pressure information to other components of the device and
the medical professional, and ensure that air is flowing in the
correct direction. Should the pressure through the emergency
breathing valve exceed a set value at the inlet, the valve will
open and remain open until the measured pressure is again
within the acceptable range. The check valve measures the
input pressure compared to the outlet pressure. A negative
pressure read across the valve indicates that the inspiratory
airflow is going in the wrong direction, away from the
patient. The process described thus far encompasses the
inspiratory section of the ventilator. The expiratory section
starts at the patient, and also moves through a corresponding
check valve which makes sure the exhaled air is flowing
away from the patient. The expiratory tube is also met
with a pressure sensor and flow sensor, where the pressure
sensor not only reads general expiratory pressure values, but
also provides information to the emergency pressure release
valve. This valve is essential in relieving excess pressure
preventing a possible build-up in the lungs.

In order to alter values for testing the main parameters of
the device, hardware must be modified. This inconvenience is
why a model that allows for hands-off testing of the computer
system, parameters, and digital representation of the physical
processes is such a valuable tool to have. The objective of
this project is to: 1. Produce a general layout of the RoboVent
system using the MATLAB block library tools. 2. Create a
gas mixer model to replicate the O2/Air source gas-blending

subsystem. The models created in this project are novel and
do not yet exist in the current Simulink library.

Fig. 3. Flow Diagram Representing General RoboVentilator Design

II. METHODS
The MATLAB Simulink graphical programming environ-

ment was used for modeling the ventilator due to its ability
to model a nonlinear system and have set initial conditions.
This resource is beneficial to a design team, as it allows
for multiple domain environments [10] where subsystems
and their overall arrangement can be modeled. The block
diagramming tool enables system modeling in an organized
fashion and also permits parameter setting of that correlating
to each block tool. This allows for the models created to
be easily understood by users and for specific conditions
to be set. To create the more complex gas system models
for the RoboVent system, the block tools were integrated
together. Block functions used for this project included
mathematical tools, signal type converter blocks, and gas
system specific instruments. To guide the creation of the
model using Simulink tools, based on the general layout of
the RoboVent design, a MATLAB Simulink example medical
ventilator model [11] was referenced.

III. MATHEMATICAL MODEL
A. Gas Mixer Subsystem

As shown in Figure 3, oxygen and compressed air each
run through a proportional valve providing a change in
output flows and pressures. The two gas streams are then
combined in a gas blender system. Simulink’s gas chamber
specific block tools were not intricate enough to model this
mixing apparatus. The program’s constant volume chamber
block does not allow for an outlet stream, and the controlled
reservoir block assumes that volume is infinite which is not
true for the gas blender. A new model was needed in order
to represent this mixture of input gas. The following math
model was used to provide basis for the gas mixer block
diagram:

Ideal Gas Equation

Where P is pressure in Pascals (Pa), V is volume in
liters (L), n is the number of moles, R is the gas constant

232



in liter-Pascals per Kelvin-mole (L·Pa·K-1·mol-1), and T is
temperature in Kelvin (K). It was assumed that the gas
particles move randomly and are therefore ideal. The fact that
volume is the integral of flow rate over time was important
in the gas mixer modeling process.

IV. MATLAB SIMULINK MODEL
It is important to note that all purple wires in the following

models represent ventilation tubes, and that the symbols A
and B associated with each block represent the input and the
output of the respective block tool.

A. RoboVent System Model

A gas source block starts off the inspiratory section of
the model shown in Figure 3, representing a mixture of
oxygen and air. A pressure source block connects to this
path and contains the output value from the gas mixer
subsystem. The value emerging from this block is the value
for the pressure of the gas mixture based on calculations
conducted with Equations 1 and 2. The pressure source
adjusts the previous pressure value of the data flowing from
the gas source block. An inspiratory flow valve following
this path was represented by a gas local restriction block
in Simulink. This block allows for changes in a restriction
area, the size of the space through which air can flow. The
local restriction was implemented to control flow rate of
the gas stream. A larger restriction area allows for more
gas molecules to pass through the tube and therefore passes
through more liters of air per minute. A smaller restriction
area does the opposite, resulting in a lower flow rate. To
obtain maximum flow rate, the restriction area can be set
to the equivalent area of a 15 mm inner diameter tube
used for ventilation. The tube component is a pipe block
and simply represents the inspiratory tube. While the pipe
allows for heat transfer, thermal components, like humidity,
were not focused on for this project. The pressure and
flow sensors attached to the path measure a pressure and
flow rate values at the connection point. These sensors are
built in Simulink blocks, and both connect to a scope. The
scope is a graphical representation of the sensor readings.
The connection from the sensors to their respective scopes
contain PS-Simulink converters, which convert a physical
signal (PS) to a Simulink signal. The final component of
the inspiration process is the check valve subsystem. The
inspiratory and expiratory check valve subsystems consist of
their own models, which were not focused on for this project.
The inspiratory tube is met with the input source of a gas
chamber block representing the patient. The gas chamber
volume is adjustable and represents the lung volume, and
the area of the inlet and outlet can also be adjusted. This
model allows for direct adjustment of the gas flow rates and

the restriction area of the inspiratory tube, and provides a
user with the inspiratory pressure and flow rate values as
well as the pressure of the mixed gas.

The expiratory model starts with the gas chamber repre-
senting the patient. Just like the inspiratory tube, a pressure
and flow sensor is attached along with the corresponding
scopes. The scopes will now read the pressure and flow
rate values of exhalation. The emergency pressure check
subsystem follows the sensors. Once again, this subsystem
depends on the pressure sensor value and was also not
focused on for this project. However, the pressure check
outputs lead to two different paths. The flow is directed
to another local restriction valve for flow adjustment, and
released into an air sink modeled by a gas reservoir; however,
pressure that exists in excess is directed to an atmosphere
sink.

Fig. 4. MATLAB Model of RoboVent System

B. Gas Mixer Subsystem Model

The gas mixer model begins with two constant value
blocks representing the flow rates of oxygen and air. These
values and their simulation times are adjustable, and in
Figure 5, the average flow of 60 liters per minute (LPM)
[12] for an infinite simulation time is used for each flow. The
flow values are connected to integrator blocks that take the
integral of the input signal. Mathematically, this represents
the integral of the volumetric flow rate which is volume,
shown in Equation 2. The volume of oxygen and air is
necessary in order to calculate the number of moles of
each gas using the ideal gas equation shown in Equation 1.
Scope blocks are connected to the outputs of each constant
and integrator block, providing the user with a graphical
model of the volumetric flow rate versus the volume over the
simulation time. The MATLAB Function blocks allow for the
input signal to run through a code integrated into the block.
The function blocks connected to the integrator outputs each
contain a MATLAB code for the ideal gas equation, where
the number of moles of the respective gas is found given the
volume, pressure, temperature, and gas constant. The value of
the gas constant used for each block was 8314 L·Pa·K-1·mol-
1. Room temperature was used for each function as well,
since this is the environment that exists within the hospital
ICU. Pressure values were set to 50 and 58 psi for oxygen
and air respectively, as mentioned in the RoboVent design.
The pressure values were converted to Pascals in order to
keep units constant. The output signal values for the number
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of moles of oxygen and air meet at a sum block. This block
allows for an adjustment of the number of inputs and whether
each input is a positive or negative value. The number of
moles was summed in order to obtain the total number of
moles of a mixture of the two gases. The summed value is
then entered into another MATLAB function block which
also contains the code for the ideal gas equation. However,
this block has two inputs, one for the value n of the mixed
gas and another for the volume once again. Given the values
of T, n, R, and V, an output is provided for the pressure of
the mixed gas. This output leads to a display block which
simply shows the value outputted in Pascals. The output is
also connected to a scope block for graphical modeling of
the pressure over the simulation time. This subsystem exists
within the larger RoboVent model. Specifically, the overall
output of the gas mixer model is the input for the RoboVent
model pressure source. The ability to modify the flow rates
and the run time for this subsystem allows for alteration of
the set pressure and tidal volume parameters.

Fig. 5. MATLAB Model of Gas Mixer Subsytem

V. DISCUSSION
The collaboration of the model components allow for

various values for flow and pressures to be tested. These
values affect the parameters of tidal volume and respiratory
rate. The gas mixer subsystem and flow valves, specifi-
cally, affect the set pressure parameter. Also, the emergency
pressure check subsystem works along with the model’s
customizability to allow for testing of the PEEP parameter.
These models are useful tools in device testing to ensure that
the Robot Ventilator performance is comparable or superior
to a sophisticated ICU device. Also, developing a control
model for the RoboVentilator allows for the design and
physical system to be updated with components that have
not yet been included. Specifically, the gas mixer focused
model allows for flow rates to be adjusted prior to mixing,
which the current design layout does not include. Not only
does this project provide models that can be added to the
MATLAB specific and various other forums, but it also
highlights the need for further development of more com-
plex Simulink modeling tools. Future work for this project
includes development of detailed models for the remaining
check and emergency valves. It is also proposed that addition
of a mass flow rate block, instead of a local restriction block
in the overall model, would be a better tool for flow rate
adjustment. Overall, this research brings us a step closer to
ensuring efficient ventilators for future ARDS patients and
strengthens our emergency preparedness for future global
disease outbreaks.
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Model-Based Reinforcement Learning for Off-Road Navigation

Ashley Peake1, Samuel Triest2, Wenshan Wang2, and Sebastian Scherer2

Abstract— Autonomous off-road driving is an important
extension of unmanned vehicle technology for applications in
exploration, search and rescue, and construction. In any off-
road driving task, vehicles must be able to navigate within
cluttered, dynamic environments and interact with various
obstacles. Because the dynamic properties of the environment
are critical for successful navigation, semantic and geometric
features alone are insufficient for planning. However, explicitly
modeling the dynamics is difficult due to the size and complexity
of such environments. To overcome this, we use model-based
reinforcement learning (MBRL) to learn a physics model of the
environment that can be incorporated into planning. We train
our model by extending the MuZero framework developed by
DeepMind [1] and use a Monte Carlo Tree Search for planning.
Furthermore, we incorporate multimodal sensor information
into our model by learning a robust latent space representation.
We evaluate the success and efficiency of this method in several
simulated environments.

Index Terms— Reinforcement Learning, Autonomous Vehicle
Navigation, Machine Learning for Robot Control

I. INTRODUCTION

Recent developments in deep learning and robotic control
have opened a host of possibilities for autonomous driv-
ing [2], [3]. These autonomous systems utilize on-board
sensors to extract information about the structure of their
environments to make safe and efficient driving decisions.
Although often considered in the context of traditional driv-
ing applications, these developments are also relevant for
off-road driving. Autonomous off-road driving is important
for applications in search and rescue and ground exploration.
In these tasks, vehicles must navigate unknown and dynamic
environments, often without roads or predefined traffic pat-
terns. The time-sensitive and potentially dangerous nature
of these tasks makes autonomous vehicles a particularly
beneficial option. It is thus critical to develop intelligent,
efficient, and safe planning algorithms for unmanned ground
vehicles.

There are, however, significant challenges to overcome.
Off-road environments are generally dynamic and cluttered
with obstacles. By definition, they lack roads, but in many
cases these environments also lack visually distinct paths
to follow. As such, the semantic and geometric features
alone are insufficient for planning; the dynamic properties
of the environment must be considered. However, the size
and complexity of such environments makes the dynamics
difficult to explicitly model. Even when possible to construct,
such an analytic model would be time consuming to build
and brittle to environmental changes.

1Department of Applied Mathematics at Wake Forest University
2Robotics Institute at Carnegie Mellon University

To overcome this, we propose a model-based reinforce-
ment learning (MBRL) approach for off-road driving. MBRL
is a common method for learning optimal behavior in
complex, unknown environments. In a MBRL approach, an
agent collects experience from the environment to learn
a dynamics model (i.e. how the environment responds to
different actions). In this way, we avoid the need to have a
completed, pre-determined model of the environment. The
learned model can then be efficiently used for planning. In
this paper, we present an MBRL method that makes the
following contributions:
• We propose an architecture for learning environment

dynamics relevant for planning.
• We design a latent space to encode state information.
• We use Monte Carlo Tree Search with the learned

model to select actions for optimal vehicle control. This
is an extension of the MuZero framework developed
by DeepMind [1], and we test it in several simulated
environments.

The remainder of this paper is organized as follows. In
Section II, we discuss related approaches to the off-road
driving problem. In Section III, we introduce the necessary
reinforcement learning background. In Section IV, we dis-
cuss the details of our approach. In Section V, we present
preliminary results for two simulated environments. Finally,
in Section VI, we detail plans for future work.

II. RELATED WORK
In previous work, model-free reinforcement learning meth-

ods have been proposed for autonomous off-road driving
[4]. Unlike MBRL, this approach involves directly learning
optimal behavior by collecting experience from environment.
However, the interactions between agent and environment
are ultimately inefficient for planning in an off-road setting.
Furthermore, the environment dynamics are never explicitly
modeled, meaning they cannot be exploited in downstream
navigation tasks.

Bajracharya et al. propose an end-to-end learning frame-
work for off-road driving that employs the use of classifiers
to determine and map terrain traversability [5]. These clas-
sifiers extract geometric features from the environment to
predict traversability. This information is subsequently used
for path planning. In this case, model predictions are limited
strictly to the environment’s geometry. In complex, dynamic
environments, geometric features alone are insufficient for
optimal navigation. Our approach follows a similar frame-
work by planning based on a learned model, but we allow
the model to learn the relevant dynamic properties of the
environment.
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Rhinehart et al. devised a deep imatative model approach
for autonomous driving [6]. This method combines MBRL
with imitation learning – i.e. learning from expert demon-
stration. This combination maintains the benefits of MBRL
without relying on reward function crafting. However, this
method still requires sufficient expert demonstration. Fur-
thermore, it is tested only in on-road driving tasks. Off-road
driving requires more adaptability and generalizabilty at test
time than imitation learning offers.

MBRL has been previously successful in autonomous
driving applications. Wu et al. propose a Dyna-style MBRL
approach [7]. This method uses a learned dynamics model
to forward simulate state transitions. These transitions are
stored as experience to train a reinforcement learning model
to select actions. This is significantly more complex and
computationally expensive than using a simple planning
algorithm. Furthermore, they explore this approach only in
an on-road driving case.

III. MODEL BASED REINFORCEMENT LEARNING

Reinforcement learning is an appropriate approach for
solving Markov Decision Processes (MDPs). An MDP is
formally defined as a tuple {S,A, T ,R}, where S is the
state space, A is the action space, T is the transition
function T : S × A → p(S), and R is the reward function
R : S ×A× S → R. In this formulation, we observe a state
st ∈ S at time step t and the agent selects an action at ∈ A.
The environment returns the next state st+1 ∈ S according
to the transition function T (·|st, at). The agent then receives
a reward rt = R(st, at, st+1) representing the value of its
current position in the environment.

The agent selects actions according to its policy π : S →
p(A). We define the state-action value function Qπ(s, a) for
a given policy π:

Qπ(s, a) = Eπ,τ

[
K∑
k=0

γkrt+k|st = s, at = a

]
(1)

where γ is the discount factor and K is the number of
state transitions made. In its recursive form, Qπ(s, a) is
recognizable as the Bellman equation:

Qπ(s, a) = Es′∼τ(·|s,a) +[
R(s, a, s′) + γ Ea′∼π(·|s′) [Qπ(s′, a′)]

]
(2)

In other words, Qπ(s, a) is the expected cumulative return
for π. An optimal policy π∗ will maximize the state-action
value function.

Qπ
∗
(s, a) = argmax

π
Qπ(s, a) (3)

We know at least one such policy π∗ must exist [8]. It is
then the objective of the reinforcement learning algorithm to
find an optimal policy.

In model-based reinforcement learning (MBRL) [9], rather
than implicitly learning an environment’s dynamics to com-
pute an optimal policy π∗, an agent explicitly learns a dy-
namics model (st, at)→ st+1. This model is supervised by

experience (i.e. trajectories) collected from the environment.
We can similarly train models to predict the action at+1 that
will be taken under a current policy or the value of the current
state. In this way, we approximate the relevant aspects of
the MDP simply by interacting with the environment. These
models can then be used for traditional planning algorithms
in environments with unknown dynamics.

IV. APPROACH

A. Dynamics Model

Large, outdoor environments are often too complex to
explicitly model. Since off-road driving necessitates navi-
gating such environments, we propose a MBRL approach to
solve this problem. In our approach, the agent first learns a
dynamics model of the environment by collecting experience
within it. It subsequently uses this model in one of two
traditional planning methods, described in detail below.

Specifically, we train a neural network model to predict
relevant aspects of the environment from current state ob-
servations. The full model architecture is shown in Fig.1.
The input state is made up of stacked observations from the
environment. This state information is encoded as a latent
vector and fed into three fully connected networks predicting
the value of the current state, the policy at the current
state, and the next state transition, respectively. Learning
is supervised by state-action trajectories collected from the
environment, and we train the model using back-propagation
through time.

B. Latent Space Representation

When encoding the input state of this model, we must
consider the expected observations. In our problem domain,
autonomous off-road vehicles are equipped with a variety
of sensors for collecting information about the environment.
For example, LiDAR, IMU, image, and stereo sensors each
provide different information relevant to decision making. To
provide a general model that can be adapted to any number
and modality of sensors, we propose using a latent vector
representation for state encoding.

Latent dynamics models have been used to predict future
states from high-dimensional observations [10]. These latent
space models allow for simpler and faster computations than
analogous image space models. We combine this method
with the MBRL architecture described in Fig. 1 by using
a latent space representation of multi-modal sensing data as
input for the three networks. To construct the latent space, we
use a convolutional neural network (CNN) model to extract
latent information from sensor observations. This model is
supervised by trajectories collected from the environment and
trained according to a contrastive loss. By incorporating the
accuracy and robustness that comes from high-dimensional
sensor data, this low-dimensional latent space ultimately
improves the accuracy of the dynamics model.

C. Planning

From this dynamics model, we can predict information
about environment transitions necessary for planning. We
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Fig. 1. MBRL Architecture. We predict the transition (i.e. next state, reward), value, and policy from the observation at time t. We can then roll out this
model for use in traditional planning algorithms.

Fig. 2. MuZero Framework. The dynamics model is used to roll out state-
action trajectories, and values are updated with back propagation.

present a MuZero framework using Monte Carlo Tree Search
for incorporating our model into planning.

1) MuZero: The MuZero algorithm was proposed by [1]
as a MBRL method for solving problems in complex do-
mains without knowledge of their underlying dynamics. Sim-
ilar to the archiecture described in Fig. 1, in this algorithm
a model is used to predict aspects of future state relevant
for planning. Building on the success of lookahead search
methods for planning, MuZero uses the model predictions in
a Monte Carlo Tree Search (MCTS) to select optimal actions
at each time step t.

We extend this framework to our problem domain using
the network architecture described in Fig. 1. At each node
in the tree search, we use our model to predict next state
and reward. We roll out 50 iterations at each time step, and
update the node values using back-propagation. The result of
the MCTS is used to select an action and take a step in the
environment. This updates the agent’s experience, which in
turn updates model training. A diagram of this process can be
seen in Fig. 2. Because we are modeling only the aspects of
state relevant to planning, this framework allows for efficient
planning even in a complex and unknown environment. We
evaluate preliminary results for this approach in Section V.

V. EXPERIMENTS

A. Lunar Lander

We test our MuZero framework on the OpenAI Gym
environment ‘LunarLander-v2’ [11]. In this game, an aerial
vehicle must properly land in a specified landing zone. While
this scenario diverges from our ultimate off-road driving
application, it is a toy example that allows us to model
control parameters for a robotic vehicle. In this way, it
provides a baseline for discussion. We further note in Section
V our plans for adapting this method to the off-road driving
application.

In this environment, an agent’s state is made up of the
vehicle’s position, orientation, and velocity. The actions
available to the agent are to fire the left engine, fire the right
engine, fire the main engine, or do nothing. The reward is
defined based on the orientation and position of the landed
vehicle. Specifically, we set

rt =



+100 if landed
−100 if crashed
−100 ∗ |velocityt|
−0.03 ∗ orientationt else
−0.3 ∗ powert

where orientationt and velocityt represent the respective
aspects of state at time t and powert is based on the action
taken at time t.

Following [12], we use fully connected networks with a
hidden layer of size 64 to model each of dynamics, value, and
policy. We use Adam optimization [13], a sigmoid activation
function, and a log softmax loss. We define a constant
learning rate λ = 0.005. We train for 50,000 steps with a
batch size of 64. Training results are shown in Fig.3.

A positive final reward indicates the vehicle landed within
the specified ‘landing zone.’ A perfect run corresponds to a
reward of 200. Notice in Fig.3 that training converges to a
positive reward, but never reaches the optimal value. We can
see in Fig. 4 that, in testing, this model does achieve the
goal of landing the vehicle in the desired zone. This result
suggests that this method is valid to consider for the off-road
driving problem. However, the vehicle does not take the most
direct path, meaning it’s policy remains sub-optimal. We
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Fig. 3. Training performance for LunarLander-v2 simulation

Fig. 4. Representative test trajectory for LunarLander-v2 environment.
Each purple vehicle represents the agent’s position at a distinct point in
time. Notice that the agent successfully lands in the landing zone, but does
not take the most direct path.

postulate that the control problem may be better solved with
a simpler method. For this reason, we consider a modified
MuZero in the next section.

B. Robot Simulation

We additionally test the MuZero framework in a simu-
lation environment for off-road driving. This simulation is
run through a pybullet engine [14]. We generate height and
friction maps to build simulated terrain. The goal in this
environment is for the vehicle to reach a predefined target
location.

Due to the inefficiencies discussed in the previous section,
we test a modified MuZero approach in this environment. In
this setup, we use only the predictions from the Dynamics
Network. Rather than using model predictions for the value
of the state, we calculate it directly from the reward function.
We note that because this task is straightforward, it is
appropriate to assume that we have full access to the reward
function.

The agent’s state is made up of position, orientation, and
the respective derivatives. We also extract the local height
map and friction map for use in input state. Our framework
is generalizable to include any other sensor information. The
actions available to the agent are steer and throttle [steer,
throttle] ∈ (−1, 1) × (−1, 1). Because the goal is to reach

Fig. 5. Off-road driving simulation. In this task, the robot must reach the
target indicated by the green laser.

a target position, the reward should encourage the agent to
move towards the target. As such, we define the reward as
the negative l2 distance from the target.

Note that this study is still ongoing, and we plan to collect
full experimental results as part of future work.

VI. FUTURE WORK

The results presented in this paper are still preliminary
and have several limitations. We plan to implement the full
MuZero approach in the pybullet simulation environment.
As discussed in the previous section, in the ’LunarLander-
v2’ game the MuZero framework reaches satisfactory but
not optimal reward. The highly complex model also requires
16 GiB of memory for training and currently takes 6 hours
to reach convergence. Before extending this to the pybullet
simulation, these inefficiencies must be solved.

In future work, we plan to evaluate different combinations
of sensing modalities for improving state estimation. Further-
more, we want to incorporate considerations of uncertainty
into the model. Finally, we plan to extend this setup for
testing on a physical all terrain vehicle (ATV). The ATV will
have the same task of reaching a target position over varying
terrain, and will be equipped with LiDAR, GPS, IMU, Stero,
and Racepak systems. Physical experiments will allow us to
evaluate the approach in a more complex environment with
greater uncertainty and to explore a greater range of sensing
modalities.

VII. CONCLUSION

Autonomous off-road driving is a difficult task because the
size and complexity of off-road environments makes their
dynamics difficult to explicitly model. We have proposed
a model-based reinforcement learning approach to learn a
model of the environment by interacting with it. Traditional
planning, such as optimization or MCTS, can be done on
this model to select the best actions. We demonstrated
preliminary results in two simulation environments, each
suggesting promise for further study. Ultimately, this work
can be used in applications such as search and rescue and
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ground exploration. It is critical that algorithms for such
applications be both safe and efficient, further motivating
the development of our approach.
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ROCCER Evaluation Within Federated Classifier Selection for
Improved Identification of Center Collaboration Opportunities
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Abstract— Data heterogeneity among hospital centers due to
varying quality of care highlights the need for collaboration
among centers. An explicit and translatable understanding of
center expertise is important to promote collaboration among
centers for best practice adaptation and risk model develop-
ment. Decision lists are interpretable models and thus, have
considerable value for this purpose. The Federated Classifier
Selection (FRLCS) algorithm leverages decision lists for use in
providing insight into beneficial collaborations among centers.
To generate a decision list for this purpose, FRCLS performs
rule selection using a heuristic that maximizes the lower bound
on the mean (MLBM) of a target variable. ROCCER is an
alternative rule selection algorithm that uses receiver operating
characteristic (ROC) analysis for the purpose of maximizing
area under the ROC curve (AUC). Optimizing for AUC can
result in more robust models for data with smaller sample
sizes. This research contributes a novel application of ROCCER
within FRCLS to assess if rule selection using ROC analysis
generates decision lists with improved insight into potentially
beneficial collaborations among centers. The results from this
research show that rule selection using ROC analysis can
potentially improve decision list rule utility for certain center
collaborations.

I. INTRODUCTION

Data is inherently heterogeneous between hospital centers
due to varying patient population characteristics and hospital
practices [1], [2]. As patient population characteristics and
practices vary between hospitals, centers may specialize
to certain populations or sub-populations and so possess
expertise that can be shared to benefit other centers [2].
This expertise may be easily distinguished, such as for
certain disease institutes, and thus is already understood and
shared between centers. Expertise could also be a result
of the center’s adaptation to their local population and its
needs. Expertise of this type is not easily identifiable, which
prevents this useful information from being leveraged by
other centers. Identifying expertise of this type could lead
to improved quality of care and better outcomes for patients
through collaboration among centers [1].

An explicit and translatable understanding of center ex-

1Willa Potosnak is a student in her 4th year in the Biomedical
Engineering Department at Duquesne University, Pittsburgh, PA, USA
potosnakw@duq.edu
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Mellon University, Pittsburgh, PA, USA scaldas@cmu.edu,
mille856@andrew.cmu.edu, awd@cs.cmu.edu

pertise is important to promote collaboration among centers
for best practice adaptation and risk model development.
However, understanding which collaborations are beneficial
is also necessary as not all external expertise may be useful
for a particular center. Machine learning (ML) can be used
to determine center expertise that could result in beneficial
collaborations. It is crucial that ML models applied for
this purpose be both reliable and interpretable if they are
to gain clinician trust and ultimately promote collaboration
among centers when it can prove beneficial. Decision lists
are interpretable models and thus, have considerable value
for this purpose.

This research contributes a novel application of ROCCER
within Federated Classifier Selection (FRCLS) to assess if
rule selection using receiver operating characteristic (ROC)
analysis generates decision lists with improved insight into
potentially beneficial collaborations among centers.

II. CONTEXT

A. Decision List

Decision lists are ML models that comprise an ordered list
of rules. The appeal of decision lists are the explicit rules
that make them interpretable for regression or classification
tasks and their ability to generalize decision trees in their
simple list-like structure shown in figure 1 [3]. Decision list
construction is composed of two tasks, rule generation and
rule selection.

Rule generation is the process of producing rules for
potential inclusion in the decision list. The rule genera-
tion algorithm of particular interest for this research is an
implementation of the RADSEARCH algorithm [4]. The
implementation can function as an association rule learning
algorithm to generate rules for a specified target variable and
is equipped to handle both binary and real-valued targets.
To generate rules, it requires the user set certain constraints
in the form of hyper-parameters to filter rules. As decision
list generation is an NP-complete problem [5], [6], the use
of heuristics is generally applied to guide rule selection
or pruning. Different rule heuristics have been applied in
research for this purpose such as accuracy [7], entropy [8],
description length [9], [10], and area under ROC curve
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(AUC) [6], [11].

ROCCER is a rule selection algorithm that uses ROC
analysis for the purpose of maximizing AUC of the decision
list model [11]. ROCCER was chosen as an rule selection
method to evaluate within FRCLS for the following reasons:

1) Optimizing for AUC can result in more robust models
for data with smaller sample sizes [12]. This has
applications for research with smaller hospital centers
as these especially may derive benefit from center
collaboration.

2) In using ROC analysis, ROCCER compares potential
rules to a default rule with random performance to
ensure the inclusion of a rule in the decision list offers
improvement over random decision making.

3) ROCCER allows for disjoint rule sets to be selected in
place of a single decision list rule, which could allow
for clinicians to customize the model by choosing more
relevant rules for their specific healthcare purposes.

Fig. 1: A decision list is an ML model that comprises a list
of rules. It can be used for classification or regression tasks
where rules are tried consecutively in the list until a rule or
no rule describes the queried sample.

B. Federated Classifier Selection

The FRCLS algorithm is based on the idea that center
practices or models may be more robust for particular sub-
populations [2]. This algorithm generates a decision list that
dynamically guides classification model selection for patients
as shown in figure 2. In addition to model selection, the rules
generated by this algorithm have particular application for
providing insight into when a classification model developed
using data from the external center is more competent for
patients within a particular region of the feature space than
a classification model developed using data from the local
center [2]. This insight can be used to determine center ex-
pertise as well as potentially beneficial center collaborations.

FRCLS generates a decision list for the target variable
ln(pE) as outlined in [2] where pE can be described as
a ratio of local model to external model average cross-

entropy losses computed for k-nearest neighbors of the
selected sample. After FRCLS generates a decision list, it
iterates through the list and computes a binomial test p-value
from the cumulative number of successfully flipped samples.
(Successfully flipped samples have incorrectly predicted out-
comes by the local model but are described by a decision
list rule and directed to the external model which predicts a
correct outcome. Failure flipped samples are those with the
reverse predicted outcomes in the previous scenario.) After
FRCLS iterates through the decision list and computes p-
values for each rule, it truncates the decision list after the
rule with the smallest p-value result. If the the number of
successfully flipped samples is statistically significant (p-
value < 0.05), then the decision list is recommended to guide
model selection.

Reliable rule selection for decision list generation within
FRCLS is important to better determine potentially bene-
ficial collaborations among centers and increase user trust
in the recommended collaboration. FRCLS incorporates an
implementation of the RADSEARCH algorithm [4] for rule
generation. To generate a decision list, FRCLS performs rule
selection using a heuristic that maximizes the lower bound
on the mean of ln(pE) [2]. This paper will refer to this rule
selection method as MLBM.

III. DATA

Two datasets were used to evaluate the application of
each rule selection method within FRCLS. The first dataset
was processed using data collected from the University
of Pittsburgh Medical Center (UPMC) under a research
project titled, ’Machine Learning of Physiological Variables
to Predict, Diagnose and Test Cardio-respiratory Instability,’
or MLADI. The second dataset was used for a case study on
indwelling arterial catheters and procured from the MIMIC-
II database through PhysioNet [13]–[15].

A. MLADI

This paper refers to data from the MLADI project as
’MLADI’. The MLADI data was used for a classification
task to predict the binary outcome of a first hypotension
episode one hour in advance. For this research, a hypotension
episode was defined as at least 2 hypotension events no more
than 1 hour apart where a hypotension event was defined as
systolic blood pressure less than 90 mmHg and mean arterial
pressure less than 65 mmHg. The processed data consists of
1,563 patients and 25 features of both patient demographics
and physiological measurements. The 15 minutes of data
prior to one hour before the first hypotension episode was
used to generate features for patients with this outcome.
For patients without a hypotension outcome, the median
time after the first two hours from admission until the first
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Fig. 2: FRCLS generates a decision list that can be used to guide model selection for patients. For patients described by a
rule in the decision list, the classification model developed using data from the external center is recommended. If no rule in
the list describes the patient, then the default model developed using data from the local center is recommended. In addition
to guiding model selection, the rules provide insight for when the external model is more competent for patients within a
particular region of the feature space than the local model.

hypotension episode was used to determine the 15 minutes
of data used for feature generation. Two intensive care units
(ICU) of medical (MICU) and surgical (SICU) are present
and used to partition the data into artificial data silos for
application with FRCLS. The MICU silo consists of 590
patients with 224 labeled ‘positive’ for hypotension outcome.
The SICU silo consists of 973 patients with 336 labeled
‘positive’ for this outcome.

B. MIMIC-II

Data was extracted from the MIMIC-II database [14], [15]
and recreated for use in a case study in [13]. This paper refers
to the data as ’MIMIC-II’. The classification task of this data
is to predict the binary outcome of death within 28 days of
admission as this was the main outcome of interest in [13]. It
consists of 1,776 patients and 31 features of both demograph-
ics and physiological measurements. Two ICU units, MICU
and SICU, are present and used to partition the data into
artificial data silos for application with FRCLS. The MICU
silo consists of 732 patients with 127 labeled ‘positive’ for
the outcome of death within 28 days of admission. The SICU
silo consists of 982 patients with 153 labeled ‘positive’ for
this outcome.

IV. METHOD

A. Data Partitioning

The ICU stay descriptor variable was used to partition
patients into two artificial data silos of ‘MICU’ and ‘SICU’
where each silo’s data were considered separate centers.
After the centers were generated, each center’s data was split
into training, validation, and test sets for the respective pro-
portions of the data, 10%, 45%, 45%. The training data was
proportioned at 10% to allocate more samples for decision
list generation and evaluation. The training set was used for
model development where random forest algorithms were

trained on each center’s data using 5-fold cross-validation
for hyper-parameter selection. The validation set was used
for decision list generation through FRCLS and the test set
was used for a final evaluation of the decision list on unseen
data.

B. Rule Selection Algorithm

The ROCCER algorithm was re-created from the methods
described in [11]. An implementation of the RADSEARCH
algorithm proposed in [4] was used to generate rules. MLBM
and ROCCER were evaluated within FRCLS to assess if rule
selection using ROC analysis generates decision lists with
improved insight into potentially beneficial collaborations
among centers.

C. Evaluation Metrics

Each center collaboration was evaluated. More specifi-
cally, FRCLS was evaluated for when the MICU data and
model were considered ’local’ and the SICU data and model
were considered ’external’ and vice versa as shown in figure
3. The decision list generated using each rule selection
method within FRCLS was evaluated to determine if the
number of patients with predictions flipped from incorrect to
correct using the external classifier is statistically significant
using a binomial test [2]. Significant results (p-value < 0.05)
would indicate the utility of the decision list rules to discern
patients who would benefit from the use of the external
model rather than the local model. The following results for
the validation and test set were obtained over a range of
random forest model false positives rate (FPR) values:

• Binomial test p-value
• Number of samples described by the decision list rules

and directed to the external classifier
• Local and external model accuracy for samples de-

scribed by the decision list rules
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Python 3.8 (Python Software Foundation, Beaverton, Ore-
gon) and scikit-learn software [16] were used in this research.

Fig. 3: The decision list generated using each rule selection
method within FRCLS was evaluated to determine if the
number of patients with predictions flipped from incorrect
to correct using the external model is statistically significant
using a binomial test. Significant results would indicate the
utility of the decision list rules to discern patients who would
benefit from use of the external model rather than the local
model.

V. RESULTS

A. MLADI

Rule selection using MLBM generates shorter decision
lists with higher rule support (the number of samples de-
scribed by the rule) than the decision lists generated using
ROCCER as shown in tables II and III of the appendix. The
FRCLS test set results for MICU as the local center and
SICU as the external center in figure 4 (a) show FPR regions
with significant p-values for both rule selection methods.
The FRCLS test set results for SICU as the local center
and MICU as the external center in figure 4 (d) show a
larger range of significant p-value results for MLBM at an
approximate FPR range of 30% to 60% compared to the
results for ROCCER. For patients described by decision list
rules selected using either MLBM or ROCCER, the external
model has a higher accuracy than the local model as shown
in figure 4 (f).

B. MIMIC-II

Rule selection using MLBM generates shorter decision
lists than the decision lists generated using ROCCER yet
with comparable rule support as shown in tables IV and V
of the appendix. The FRCLS test set results for MICU as the
local center and SICU as the external center in figure 5 (a)
show FPR regions with significant p-values for MLBM. The

FRCLS test set results for the SICU as the local center and
MICU as the external center in figure 5 (d) show significant
p-values for ROCCER following a FPR of 40%. For patients
described by the decision list rules selected using ROCCER,
the external model has a higher accuracy than the local model
as well as a higher accuracy compared to the results for
MLBM as shown in figure 5 (f)

VI. DISCUSSION

The FRCLS test set results for the decision list produced
using ROCCER show FPR regions with statistically signif-
icant p-values. This is most notable for the MIMIC-II data
center collaboration of SICU as the local center and MICU
as the external center. This could indicate that ROCCER has
utility in discerning patients who would benefit from use of
the external model rather than the local model. In practice,
this information can be used to infer that the MICU external
center may have expertise that could benefit the SICU local
center through collaboration. The FRCLS test set results for
the decision list generated using MLBM also show FPR
regions with statistically significant p-values. This is most
notable for the MLADI data center collaboration of SICU as
the local center and MICU as the external center. Interest-
ingly, the rule selection methods show few overlapping FPR
regions of statistical significance. This could indicate that
the rule selection methods may individually perform better
within FRCLS for particular data.

VII. CONCLUSION

Rule selection using ROC analysis can potentially improve
rule utility over MLBM for certain center collaborations.
Significant results at more model FPR values, particularly
within 10%, would be needed to help confirm this conclusion
and the application of ROCCER within FRCLS. Future
work will include incorporating rule significance testing in
ROCCER to ensure reliable rule inclusion in the decision
list and performing additional evaluations on larger datasets.
Research regarding best practice discovery and FRCLS anal-
ysis with artificial data silo partitions based on time period
will also be explored.
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Fig. 4: FRCLS results for MLADI data computed for a range of random forest model FPR values are shown for decision
lists generated using MLBM (blue) and ROCCER (orange). The top row of plots corresponds to MICU as the local center
and SICU as the external center. The bottom row of plots corresponds to SICU as the local center and MICU as the external
center. Plots (a) and (d) show the binomial test p-values for the validation (dashed line) and test (solid line) sets. Plots (b)
and (e) show the number of samples described by the decision list for the validation (dashed line) and test (solid line) sets.
Plots (c) and (f) show the local (dashed line) and external (solid line) random forest model accuracy for samples described
by the decision list for the test set. Plot (d) shows a larger range of significant p-value results for MLBM at an approximate
FPR range of 30% to 60% compared to the results for ROCCER. For patients described by decision list rules selected using
either MLBM or ROCCER, the external model has a higher accuracy than the local model as shown in (f).
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center. Plots (a) and (d) show the binomial test p-values for the validation (dashed line) and test (solid line) sets. Plots (b)
and (e) show the number of samples described by the decision list for the validation (dashed line) and test (solid line) sets.
Plots (c) and (f) show the local (dashed line) and external (solid line) random forest model accuracy for samples described
by the decision list for the test set. Plot (d) shows significant p-values for ROCCER following a FPR of 40%. For patients
described by the decision list rules selected using ROCCER, the external model has a higher accuracy than the local model
as well as a higher accuracy compared to the results for MLBM as shown in (f).
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IX. APPENDIX

Code for the re-created ROCCER algorithm used in this
research is available at the following GitHub repository link:
https://github.com/PotosnakW/ROCCER Implementation.git

Abbreviation Feature
MAP Mean arterial pressure
RR Respiratory rate
SBP Systolic blood pressure
DBP Diastolic blood pressure
HR Heart rate

BUN Blood urea nitrogen

TABLE I: Abbreviations for decision list features
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MLBM

Rule
Number Rule Features Rule Conditions

Rule
Support
(Val,Test)

1 MAP median ≤ 80 mmHg 40, 33RR median > 20 br/m

2 SBP median ≤ 100 mmHg 34, 44HR median ≤ 80 bpm

ROCCER

Rule
Number Rule Features Rule Conditions

Rule
Support
(Val,Test)

1 SBP mean > 80 and ≤ 160 mmHg 15, 18DBP median ≤ 50 mmHg

2 Ethinicity Hispanic or Latino 4, 3RR median ≤ 14 br/m

3 Race White 7, 13RR median > 28 br/m
... ... ... ...

TABLE II: Decision lists generated using MLBM and ROCCER for the MLADI MICU local center to guide the use of the
SICU external model over the MICU local model. Rule selection using MLBM results in a shorter decision list with larger
rule support (the number of samples described by the decision list rule) than the decision list produced using ROCCER.

MLBM

Rule
Number Rule Features Rule Conditions

Rule
Support
(Val,Test)

1 SBP median > 100 mmHg 58, 59HR median > 80 bpm

2 SBP median > 100 mmHg 168, 167DBP median ≤ 80 mmHg

3 Race Declined response 8, 17HR SD ≤ 4 bpm

ROCCER

Rule
Number Rule Features Rule Conditions

Rule
Support
(Val,Test)

1 SBP median > 80 and ≤ 160 mmHg 27, 27DBP median ≤ 50 mmHg

2 DBP median > 100 mmHg 5, 11MAP median > 120 mmHg

3 Age > 75 years 4, 5Race African American
... ... ... ...

TABLE III: Decision lists generated using MLBM and ROCCER for the MLADI SICU local center to guide the use of the
MICU external model over the SICU local model. Rule selection using MLBM results in a shorter decision list with larger
rule support than the decision list produced using ROCCER.

MLBM

Rule
Number Rule Features Rule Conditions

Rule
Support
(Val,Test)

1 ICU admit hour > 12 6, 7MAP > 120 mmHg

2 SAPS I score ≤ 14 25, 25Bicarbonate > 30 mEq/L

3 Weight > 140 kg 7, 6ICU admit day Not Sunday
... ... ... ...

ROCCER

Rule
Number Rule Features Rule Conditions

Rule
Support
(Val,Test)

1 Age > 90 years 6, 4ICU admit hour > 16

2 SOFA score > 10 4, 6MAP > 80 and ≤ 160 mmHg

3 SAPS I score > 20 8, 4Bicarbonate ≤ 20 mEq/L
... ... ... ...

TABLE IV: Decision lists generated using MLBM and ROCCER for the MIMIC-II MICU local center to guide the use
of the SICU external model over the MICU local model. Rule selection using MLBM results in a shorter decision list with
comparable rule support to the decision list produced using ROCCER.

MLBM

Rule
Number Rule Features Rule Conditions

Rule
Support
(Val,Test)

1 BUN > 50 mg/dL 5, 6

ROCCER

Rule
Number Rule Features Rule Conditions

Rule
Support
(Val,Test)

1 SAPS I score > 20 7, 5PaO2 > 400 mmHg

2 SAPS I score > 20 8, 10PaO2 > 200 and ≤400 mmHg

3 SAPS I score > 20 1, 6Bicarbonate > 12 and ≤ 24 mEq/L
... ... ... ...

TABLE V: Decision lists generated using MLBM and ROCCER for the MIMIC-II SICU local center to guide the use of
the MICU external model over the SICU local model. Rule selection using MLBM results in a shorter decision list with
comparable rule support to the decision list produced using ROCCER.
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Learning with Noisy Camera Extrinsics for Robust and Real-Time
Omnidirectional Depth Prediction

Conner Pulling1, Yaoyu Hu2, and Sebastian Scherer3

Abstract— Real-time omnidirectional depth prediction is vital
for aerial robotics to accurately perceive their surroundings.
Among methods that use multiple fisheye camera images as
inputs, recent work using deep learning has shown promising
performance, but is not real-time. While recent non-learning
methods have achieved real-time performance, all previous
work fundamentally assumes constant camera positions with no
calibration errors. This is not always a practical assumption,
especially for low-cost drones and when using standard multi-
camera calibration tools. This work presents a novel deep
learning model capable of real-time, robust omnidirectional
depth prediction using multiple fisheye images while main-
taining low GPU memory consumption. To achieve robustness
against calibration errors, this work utilizes a novel synthetic
dataset that uses noisy camera extrinsics. With a low memory
footprint, fast runtime, and robustness against calibration
errors, this model architecture takes a step towards enabling
omnidirectional depth prediction capabilities for low-cost drone
autonomy applications.

Index Terms— Datasets for Robotic Vision, Deep Learning
for Visual Perception, Omnidirectional Vision, Aerial Systems,
Perception and Autonomy, Field Robots

I. INTRODUCTION

Efficient and reliable scene understanding is a principle
technology that drives advances in unmanned aerial vehicle
(UAV) autonomy. Applications such as large infrastructure
inspection [1] and agriculture [2] rely on dense depth pre-
dictions to provide the agent with 3D scene understanding.
UAVs used for these applications need a constant flow of
omnidirectional depth predictions to react to all possible ob-
stacles in real-time. Recent work has proposed deep learning
approaches that use multiple fisheye images to perform omni-
direction depth estimation with success, but fail to reach real-
time inference times [3] [4]. Similar to recent non-learning
methods, these deep-learning methods assume one set of
camera positions as the ground truth and use this singular
extrinsic configuration throughout training and evaluation.
This assumption is not realistic as calibration errors are all
too common in practical applications of drones and multi-
camera configurations are often difficult to calibrate.

To address robustness and real-time concerns, this work
presents a novel deep learning architecture that operates in

1Conner Pulling is a Robotics Institute Summer Scholar at Carnegie
Mellon University and an undergraduate Mechanical Engineering senior at
Place. cwilliampulling@vt.edu

2Yaoyu Hu is a Postdoctoral Researcher with AirLabs at the Robotics
Institute in Carnegie Mellon University. yaoyuh@andrew.cmu.edu

3Sebastian Scherer is an Associate Professor at the Robotics Institute
in Carnegie Mellon University and the Principal Investigator at AirLabs.
basti@andrew.cmu.edu

Fig. 1. Overview. a) 686-by-686 Fisheye Images that serve as input to the
deep learning model. b) The predicted depth panorama by our deep learning
model. c) The ground truth panorama generated by AirSim. Warmer colors
indicate depths closer to the rig origin frame.

real-time by reducing the resolution of the final feature maps
and drastically reducing the depth of the cost volume after
spherical sweeping. This work shows that sweeping with
lower sphere count drastically speeds up inference time while
actually slightly improving accuracy. Additionally, the model
was trained on a novel synthetic dataset that adds noise to
the camera extrinsics while still achieving good performance
metrics. This work shows that noisy camera extrinsics in the
training data makes the model more robust against calibration
errors.

In summary, this work presents the following contribu-
tions:

• This work presents a deep learning model that can in-
ference at real-time while achieving comparable quality
in the depth panorama outputs.

• This work proposes a new synthetic dataset of over
3k samples collected by AirSim that adds noise to the
camera extrinsics.

II. RELATED WORK
A. Conventional Binocular Stereo Vision

Typically, most conventional binocular stereo methods that
produce dense predictions take two rectified images as input
where one image is called the reference. The goal of conven-
tional methods is to find the disparity between the reference
and pair image. With a known relative distance between
the two cameras, called the baseline, disparity is defined
as the distance in pixels between correspondences in each
image. For dense depth prediction, disparity must be found
for every pixel in the image. One of the most popular non-
learning methods is Semi-Global Matching (SGM), which
generates disparities by minimizing an energy function [5].
The Pyramid Stereo Matching Network (PSMN) is popular
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Fig. 2. Comparison of fisheye distortion between different camera orientations. a) Source Panorama Image, generated by AirSim. b) Fisheye Image
generated with vertical orientiation, pointing upwards. c) Fisheye Image generated with outward orientation, facing forward. d) Fisheye Image generated
with vertical orientation, pointing downwards. Black border indicates regions outside of the fisheye camera’s FOV.

learning-based architecture that focuses on evaluating the
two input images at different spatial scales through spatial
pyramid pooling to exploit global context information [6].
Another popular method for high-resolution depth predic-
tions evaluates inputs at different resolutions for multi-stage
output that can prioritize depth maps for the scene closer
to the agent [7]. Hybrid methods have begun to use deep
learning to guide non-learning methods, providing improved
performance over either learning or non-learning methods
[8].

The issue arises that conventional binocular stereo vision
systems using planar lens cameras have narrow FOVs and
cannot effectively capture visual information in all directions.
Therefore, a multi-camera system is needed and visual in-
formation from multiple views must be fused into one depth
map panorama.

B. Omnidirectional Multiview Stereo Vision

In hopes of better aggregating information from multiple
stereo pairs, some works have turned to using learning-based
approaches, inspired by the performance gains that deep
learning has achieved for binocular stereo vision applications
[6] [7]. SweepNet proposed warping the input fisheye images
into the panorama space and used pairwise matching to
compute the cost volume [9]. OmniMVS proposed warping
the feature maps after strided convolutions to reduce memory
and resource consumption before using a encoder-decoder
architecture to regularize the cost volume [3]. CrownConv
proposed projecting the fisheye image onto an icosahedron
and using icosahedron-based spherical sweeping to be more
computationally efficient [4]. However, none of the current
learning-based omnidirectional stereo vision methods using
multiple fisheye images have achieved real-time perfor-
mance. Recent work has developed a real-time non-learning
method to perform omnidirectional depth prediction, but does
so by selectively using only the best stereo pair per pixel in
a reference image and computes the cost volume only by
using pixel intensities [10].

The current literature typically assumes a constant camera
configuration with no calibration errors. While tools exist
for multi-camera calibration, the process is often difficult,
and prone to human error and approximation. Especially
for low-cost drone applications, calibrations errors must be
considered and mitigated.

C. Multi-Camera Calibration

Camera models have been developed to correctly account
for distortion when rectifying or warping fisheye images.
These models have a set of parameters such as focal length
and image center that must be calibrated using tools like
Kalibr [11]. The Pinhole Camera Model is the standard
camera model to relate 3D physical coordinates to image
coordinates and visa versa, often used with planar cameras.
However, the pinhole camera model drastically becomes
less accurate for FOVs greater than 120◦ [12]. The highest
performing omnidirectional depth estimation methods use the
Double Sphere camera model [10] [3].

D. Synthetic Multiview Fisheye Datasets

The most notable omnidirectional depth prediction
datasets are OmniThings and OmniHouse [3] where each
sample consists of four fisheye camera images that were
generated in Blender. However, the dataset assumes fixed
camera extrinsics and intrinsics, so the dataset is only useful
for a specific camera configuration. This work provides the
base panorama images as part of the presented dataset so
that other works can warp the source into fisheye images
specific to their camera orientations. Additionally, while the
general location of each camera is fixed, noise was added
to the camera location so a trained model would have to be
robust against changes in camera extrinsics.

III. MULTI-RESOLUTION 360◦ STEREO

A. Reference Frames and Preprocessing

The predicted depth by the deep learning model uses
the rig coordinate frame as the origin while limiting the
minimum depth distance at 0.5 meters so the distance range
can be discretized. Before preprocessing, RGB panoramas
were collected with depth annotations using Unreal Engine
4 and a drone flight simulator called AirSim. AirSim uses
a North, East, and Down (NED) coordinate frame as shown
in Fig. 3 and the drone world position labels in the dataset
follow these conventions. To use the rig coordinate frame
as the origin, each camera has to be transformed to find
the relative translation from the rig. As seen in Fig. 3, Twr
| Rwr is the world to rig extrinsic camera matrix, Twb is
the world to camera translation vector, T rb is the relative
translation of the camera with the rig frame as the origin.
Therefore, the relative translation is found with the equation,
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Fig. 3. Coordinate Frame Definitions.

Trb = R−1
wr(Twb−Twr). Note, this relative translation vector

is not constant because Gaussian noise is added to the camera
location during data collection.

The fisheye images were created by using the double
sphere model to unproject the fisheye coordinates to find the
corresponding panorama sampling coordinate [12]. In this
work, the fisheye cameras have a FOV of 195◦ and Kalibr
was used to find the corresponding calibration coefficients
fx, fy, cx, cy, ξ, and α [11]. The unprojected camera coordi-
nate vectors are in the panorama coordinate system, as shown
in Fig. 3. To be translated into either the bottom camera
frame where the z-axis lies along the y-axis of the panorama
frame, the unprojected coordinate vectors are rotated along
the x-axis by π

2 . If the camera is pointed upwards, a x-axis
rotation of −π2 is applied before a z-axis rotation of π is
applied. These coordinate frame definitions are used to find
the corresponding sampling locations from the panorama to
the fisheye image. The fisheye images used with Kalibr to
calibrate the fisheye cameras were 686-by-686 in resolution,
so the resulting sampling locations were scaled to generate
a fisheye image of the same resolution to be compliant with
the calibration coefficients.

B. Architecture Overview

As shown in Figure 4, the model takes six RGB fish-
eye camera images and six fisheye-to-panorama sampling
grids generated for spherical sweeping as input. The in-
put 686-by-686 RGB images are of shape [B, 3, Hin,Win]
where B is the batch size and Hin,Win are the height
and width of the inputs, respectively. The six fisheye-to-
panorama sampling grids for spherical sweeping are of
shape [B,N/8, Hout,Wout, 2] where N is the number of
depth candidates and Hout,Wout is the height and width
of the output panorama cost volume, respectively. This
work uses 192 depth candidates with a minimum distance
dmin of 0.5 meters and a maximum distance dmax of
252. A shared feature extractor is used by each camera
with strided convolution to reduce the feature maps to a
final resolution of (Win, Hin). Convolutional layers using
residual skip connections are utilized as the basic building
block in the feature extractor. A final convolutional layer
with bias and without an activation function is used at the
end of the feature extraction layers to distinguish between
negative features and out-of-FOV regions [3]. This work
uses two convolutional layers with a stride of two during

the course of feature extraction, resulting in an output of
six feature maps of shape [B,C, Hin

4 , Win

4 ] where C is the
number of channels outputted by the feature extractor. During
spherical sweeping, these feature maps are then warped into
the panorama space and swept for all depth candidates.
This sweeping process is described more in the Spherical
Sweeping section. After the volume of the panoramas for
all cameras and for all depth candidates is built, a U-Net is
used to compute the final costs. Softargmax is used to find
the final depth candidate panorama map.

C. Spherical Sweeping

After the features have been extracted, the feature maps
are treated as fisheye images to define a mapping from
(Hin,Win) to (Hout,Wout). In this work, the output shape
is chosen as Hout = 176 and Wout = 320 to approximately
mimic the size of the panorama resulting from the warping
of a fisheye image of shape (Hin

4 , Win

4 ). However, the goal
of the network is to output a panorama. To incorporate
extrinsic and intrinsic information into the network, the
fisheye feature maps are warped into a partial panorama
with the double sphere model [12]. This creates six tensors
of shape [B,C,Hout,Wout] for each camera. Instead of
regressing the depth directly, which causes blurry depth
maps, discretized depth candidates are chosen and a cost
volume is built to compute the probability of each depth
candidate for the final depth map. The feature maps are
warped for all depth candidates, then concatenated together
in the channel dimension to create a 4D volume. This 4D
volume is to be called the Cost Volume and is of shape
[B, 3C, NS , Hout,Wout] where N is the total number of
depth candidates and S is the step size between spheres
during sweeping. This step size represents a memory and
computation cost-saving measure whereby only every S
depth candidate is used in sweeping in the whole range of
depth candidates.

This warping process uses a sampling grid, which is
created as input to the network before inference. Using the
conventions in Figure 3, an array of spherical rays R(θ, φ, di)
is initialized with eq.1 for each θ, φ in the panorama at
a specified depth candidate di with the NED rig frame as
origin.

R(θ, φ, di) = di

 sin(φ) cos(θ)
− cos(φ)

− sin(φ) sin(θ)

 (1)
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Fig. 4. Model Architecture. The six fisheye images use a shared feature extractor where strided convolutions reduces the feature map size to a quarter
of the input size. The feature maps warped into the panorama space, then interleaved and concatenated. Finally, the cost volume is computed by a U-Net.
Softargmax is applied to the final costs after interpolation to get final depth candidates.

These spherical rays are then transformed and rotated into
the top or bottom frame. Finally, the transformed rays are
projected into image coordinates (û, v̂) that are normalized
between [−1, 1] for grid sampling. With this, the sampling
locations (û, v̂) are found for every (θ, φ) in the rig frame
for all cameras. This process is repeated for all chosen
candidates di between (dmin.dmax) where i is an integer
such that i ∈ [0, NS ].

This work uses two changes to the sweeping process
to reduce the memory and computational cost of spherical
sweeping. First, the top and bottom partial panoramas are
cropped to the shape of (Wout,

Hout

2 ) and interleaved to-
gether onto one feature map. This reduces computational
and memory costs of the spherical sweeping process by
approximately half, yet it disallows any interaction between
the top and bottom cameras for depth estimation. Secondly,
unlike previous studies, this work uses a larger step size of
S = 8 to drastically reduce the depth of the cost volume.

D. Cost Volume, Loss Function, and Training

After the fisheye feature maps are spherically swept
for all depth candidates, a Cost Volume of shape
[B, 3C, NS , Hout,Wout] is created. The channel dimension of
the input Cost Volume is tripled due to the interleaving of the
top and bottom partial panoramas for three pairs of a top and
bottom fisheye image. This Cost Volume is passed through
a U-Net architecture, treating the depth regression problem
as semantic classification. The U-Net outputs a final volume
of shape [B, NS , Hout,Wout] where each element represents
the probability of that pixel being the ith depth candidate
where i ∈ [0, S, 2S, ..., N\S] where \ is the integer division
operator such that the remainder is truncated. Softargmax is
applied to the final cost volume to find the predicted depth
candidate for each pixel.

During training, masked smooth L1 loss is used where the
input to the loss function is the predicted and true inverse
depth index. The floating point inverse depth index n for a
depth candidate di is defined by eq.2:

n = (N − 1)
d−1
i − d−1

max

d−1
min − d

−1
max

s.t. n ∈ [0, N − 1] (2)

The loss function is masked to exclude losses on pixels where
n > N − 1, representing a point that is closer to the camera
than dmin. By masking the output, the network does not
learn multiple depths for n = N − 1 if the actual depth is
closer than the minimum distance. During training, a batch
size of seven was used for S = 8 while lower batch sizes
were used for lower S values due to the large memory cost
of sweeping with more spheres. A learning rate of 10−3 was
assumed with no scheduling.

IV. DATASET

This work also introduces a novel dataset for multiview
omnidirectional depth estimation with noisy extrinsics. The
data was collected through AirSim, using Unreal Engine
(UE) for rendering [13]. The dataset represents a diverse set
of real-world conditions. The composition of these conditions
is shown in Table I with labels such as Indoors, Outside,
Night, Winter, Urban, Industrial, and Nature. The dataset
contains 3021 viewpoints from 11 UE environments across
34 different aerial trajectories. Each sample contains a 2048-
by-1048 RGB panoramas for each of the 6 camera locations
and a 2048-by-1048 ground truth distance panorama ren-
dered at the rig coordinate frame for a total of 7 panoramas
per viewpoint. Additionally, the cartesian coordinates and
orientation of each camera and the rig frame are annotated.
In total, the dataset contains 21,147 panoramas for a storage
footprint of 60.8GB.

TABLE I
DATASET CHARACTERISTICS

Category # of
Frames Category # of

Frames
Urban 1339 Winter 294
Indoors 1092 Industrial 878
Outdoors 1929 Nature 902
Night 531
Total: 3021 Frames

The raw panoramas are saved and then processed into
the fisheye images using the given camera intrinsics. This
pipeline allows flexibility because the raw panorama contains
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Fig. 5. Validation Loss History. The validation losses of our model
employing various sphere sweeping steps and output channels over 50
epochs is shown. N -Channel in the legend refers to the number of channels
outputted by the feature extractor before sweeping, denoted as C in Sec.3.

all the information needed for produce a fisheye image for
an arbitrary orientation and with arbitrary camera intrinsics.
While a single panorama at the rig frame could be used to
replicate nearby cameras by translating the 3D rays during
warping, this does not account for any new occlusions that
the cameras would experience as a result of their new
location. Lastly, another benefit of collecting raw panoramas
is that the source image can be downsampled to replicate
fisheye cameras of resolutions lower than or equal to 1024-
by-1024 during the warping process, which is a more faithful
replication rather than downsampling the fisheye image itself.

V. QUANTITATIVE RESULTS
In this section, the results of training are discussed in a

quantitative manner. First, the losses of our model using vari-
ous spherical sweeping step sizes is presented and discussed.
Then, the effect of sweep size on runtime is analyzed and
compared with previous work. Lastly, a robustness analysis
is shown to validate the durability of the network against
changing extrinsics.

As shown in Figure V, the networks all begin to converge
after 30 epochs with the last 20 epochs demonstrating an
exhaustive training schedule. Note that during a 48 hour
training schedule, the S = 2 architecture was only able to
complete 32 epochs, which was enough to converge. The
graph of validation losses shows that while a lower step size
helps achieve a lower validation loss, adding more output
channels to the feature extractor can reach or outperform
models with lower spherical sweeping step sizes. While
achieving similar validation losses, the models with higher
S values also are much faster as shown in Table II.

By reducing the feature map size by 1
4 with similar S step

sizes, our model had better but not drastically faster inference
times compared to previous work. However, as we begin to
use higher S values, the inference time drastically improves.
With our chosen step size of S = 8, we achieve over a four

TABLE II
INFERENCE TIME COMPARISON

Input Channels Runtime (ms)
OmniMVS [3] 8 190
OmniMVS [3] 4 110
Real-Time Sphere Sweeping [10] - 2.8
(Ours) S=2 8 165.7±27.3
(Ours) S=4 8 67.8 ±6.95
(Ours) S=8 8 41.1±5.76
(Ours) S=8 16 39.3±6.64

times faster inference time with comparable validation loss
and performance.

In addition to faster runtime, Figure 6 shows that the model
is robust against deviations in camera extrinsics. As seen in
Figure 6, the best fit line of all samples in the validation set
has a slight upward slope of 0.048 loss points per mm of
average camera position deviation. This preliminary analysis
suggests that training on not only a diverse set of scenes but
a diverse set of extrinsics, the resulting model will learn to
be robust against measurement errors.

Fig. 6. Robustness Analysis. Graph shows a scatter plot of the smooth L1
loss values for each sample in the validation set over the average position
deviation of the six cameras relative to the ground truth configuration. The
red line is the best fit line of the data.

VI. QUALITATIVE DISCUSSION

In this section, the quality and limitations of the depth
panoramas are discussed by showing inferences performed
by the model with samples in the validation set. As seen in
Figure 7b, the model performs well in a variety of conditions
and settings. While edges are generally clear and defined,
even more of interest is that individual leaves start to become
visible and even the thin lines of the shelving and the lamp
pole are defined. However, there are some notable limitations
and failures seen in Figure 7. Thin, closely packed lines
are often distorted or even non-existent,like those in the
fencing or the rails of the panorama that is second from
the top. Overall, these preliminary results are impressive
and the model can understand a variety of diverse settings.
However, more work needs to be done to preserve fine
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Fig. 7. Qualitative Results Overview. Images are predicted from the validation set using the 16-channel model that uses every 8th sphere in spherical
sweeping. a) Input Fisheye Images. b) Predicted Depth Panoramas. c) Ground Truth Depth Panorama. Warmer colors indicate depths closer to the rig
origin frame.

edges. Additionally, the model needs to be evaluated on
environments that are completely unseen to see how the
model generalizes.

VII. CONCLUSIONS

In summation, this work presents initial findings for a real-
time deep learning model architecture for omnidirectional
depth prediction using multiple fisheye images that are facing
perpendicular to the scenes’ horizon. Additionally, a new
dataset of source panoramas is made available that simulates
calibration errors by adding noise to the camera positions.
More work needs to be done to evaluate the model when
trained on a larger dataset. Lastly, data needs to be collected
on the comparative performance of SOTA methods when
evaluated on samples with known calibration errors.
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Detecting and Classifying Waste Bin Garbage Levels
Along Transit Bus Routes

Elias Rotondo1 and Christoph Mertz2

Abstract— Waste bins assist in preventing the spread of
trash by serving as central locations where people can discard
their garbage. In recent years, researchers have explored using
computers to monitor waste bin garbage levels and eliminate
the need for human monitoring. Both Internet of Things
(IoT) and computer vision technologies have been exploited to
accomplish this task. However, IoT approaches require devices
to be attached to waste bins which can be costly and time-
consuming, and most computer vision methods have not been
analyzed in real-world settings. In this paper, we present a
waste bin detection and classification system designed for transit
buses that utilizes already installed bus cameras to observe the
bins. This application is needed because waste bin monitoring
systems that rely on humans are ineffective for transportation
companies whose bins are spread across large geographical
areas. We label bus camera data to create a dataset used to
train and evaluate our detection and classification models. Our
results show that we can reliably detect waste bins of interest.
Moving forward, we plan to complete our system’s pipeline and
deploy it on a transit bus to evaluate its live-action performance.

Index Terms— Computer Vision for Transportation, Intelli-
gent Transportation Systems, Object Detection, Segmentation
and Categorization

I. INTRODUCTION

It is estimated that the world produces approximately
two billion metric tons of trash annually [1]. High levels
of municipal solid waste resulting from the consumption
of goods, high standards of living, and population growth
threaten to pollute the planet if not properly handled [2].
Therefore, it is crucial that communities utilize trash disposal
methods, such as using waste bins, to reduce the amount
of new garbage introduced to the environment. Today, most
waste bins are monitored by humans to determine when
they must be emptied. However, this method is inefficient
as it becomes increasingly time consuming and tedious for
individuals to check on all waste bins when additional ones
are deployed. This is especially problematic in cities where
waste bins are commonly located on every block. As cities
continue to grow and expand, officials will need to develop
new methods of monitoring and determining when waste bins
located along streets need to be emptied to help reduce the
spread of garbage.

We propose accomplishing this job by using the cameras
found on public transportation vehicles to monitor street
waste bins. In particular, transit buses are well equipped
for this task as many have exterior cameras for security

1Elias Rotondo is with the College of Information and Computer
Sciences, University of Massachusetts Amherst, Amherst, MA, USA
erotondo@umass.edu

2Christoph Mertz with the Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, USA cmertz@andrew.cmu.edu

Fig. 1. Examples of an empty (left) and a full (right) waste bin found at
different bus stops.

purposes and drive along streets picking up and dropping off
individuals at bus stops. Additionally, since most bus routes
are traversed multiple times throughout the day, waste bins
along these routes can be continually monitored. Utilizing
buses for this task also benefits the transit companies as they
are often responsible for maintaining the waste bins along
their routes and therefore an automated monitoring system
would reduce their operation costs.

In this paper, we present a waste bin detector that will
eventually be deployed onto the BusEdge [3] system and
used in a garbage level classification pipeline designed to
determine when waste bins along bus routes need to be
emptied. Using recorded videos captured by a bus’s camera
while traveling along its route from Washington, PA to
Pittsburgh, PA, we create and label datasets using CVAT
[4]. We develop a RetinaNet [5] detector model created
using the detectron2 framework [6] and train on our custom
dataset. The detector’s success is measured using average
precision and recall metrics to determine if the detector can
consistently identify waste bins of interest. Based on the
collected results, our detector can detect the waste bins we
are most interested in with reasonable success. Even though
we developed this detector for transit buses, it can easily
be deployed on other mobile or fixed cameras that observe
waste bins.
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Fig. 2. A transit bus similar to the one above was used to collect our
training data. Likewise, our finished pipeline will be deployed onto such a
bus.

Once completed, a pipeline containing our trained model
will be deployed on a transit bus to evaluate its live-action
performance. Video frames captured by the bus’s camera
will be passed to the pipeline using Robot Operating System
(ROS) [7]. Waste bin detection using a light-weight model
will take place on the bus, and all images with detections
will be sent to a cloudlet server to be processed once more
by an increased performance detector. Once the system is
confident that a waste bin has been detected, the classifier
will determine if the bin must be emptied or needs to be
attended to. Whenever a waste bin is identified as needing
to be emptied, a notification will be generated and sent out
to the appropriate parties.

The structure of this paper is as follows: In Section II,
a literature review is given on previous works surrounding
detecting waste bins and monitoring their garbage levels.
Section III provides an overview of the proposed system.
The conducted experiments are described in Section IV, and
their results presented in Section V. Lastly, a conclusion is
provided in Section VI and future works are discussed.

II. RELATED WORK

A. Waste Bin Detection and Garbage Level Classification

Over the years, researchers have proposed using different
techniques to create autonomous waste bin garbage level
monitoring systems [8]–[11]. Existing works can be divided
into two groups based on the underlying technologies: Inter-
net of Things (IoT) and computer vision.

IoT methods address the waste level monitoring problem
by attaching IoT sensors to the waste bins [8], [9]. These
sensors monitor the fullness of waste bins and report back
to central monitoring systems. Different types of sensors can
be utilized to determine how full the bins are. For example,
Y. Zhao et al. [8] developed sensors that monitor how
full waste bins are by sensing changes in the bins’ motor-
induced vibrations. Alternatively, the sensors presented by S.
J. Ramson et al. [9] rely on ultrasonic waves to detect what
garbage level has been reached within the bins.

While IoT sensors have proven to be effective at monitor-
ing waste levels and are commercially available, they are not

without their faults. Each waste bin requires its own sensor,
making such an approach expensive when install these IoT
devices to a large number of bins. Additionally, as noted by
Y. Zhao et al. [8], sensors can become damaged or knocked
off after deployment. This greatly increases the difficulty of
maintaining such a system as someone must be prepared to
replace the sensors when necessary.

Computer vision algorithms have also been explored to
monitor the garbage level in waste bins [10], [11]. Such
algorithms are developed by extracting a set of key features
from images in a training dataset that are then used to train
a classifier. In [10], M. A. Hannan et al. propose two waste
level classifiers that extract the gray level aura matrix of
an images before using a multilayer perceptron or K-nearest
neighbor classifier to determine how full the waste bin is. F.
Aziz et al. [11] take a different approach. First, the waste bin
opening is located using the Canny Edge Operator followed
by applying the Hough transform. A Gabor filter is then
applied to the image to extract additional properties. Using
the collected features, F. Aziz et al. then pass them to a
support vector machine or multilayer perceptron classifier
that will place the image into one of three classes: empty,
partially full, or full [11].

As was the case with the IoT approaches, computer
vision algorithms still need to be improved and further
explored before they can be fully exploited for garbage
level monitoring. Such algorithms require large amounts of
training data to properly and reliably function as intended.
Creating appropriate datasets using real-world data is a time
consuming and often costly endeavor. To our knowledge, no
such datasets are publicly available for detecting waste bins
and classifying them based on their garbage levels. While
both [10] and [11] show promising results, these algorithms
were trained and evaluated using artificial datasets. As a
result, there is no guarantee that these approaches will work
in real-world environments, and so their performance is still
largely unknown from a practical application standpoint.

B. Deep Learning

In more recent years, computer vision research has heavily
shifted to using deep learning methods. Within the area of
waste management, many researchers have successfully uti-
lized deep learning algorithms to detect, segment, or classify
garbage and garbage-related objects in a wide arrangement
of environments [12]–[15]. Deep learning techniques are
also readily available to researchers through the use of
frameworks such as detectron2 [6]. One advantage of using
these frameworks is that they often provide common models
that are already pre-trained using popular datasets such as
ImageNet [16] and COCO [17] and therefore only need to
be fine-tuned.

Today, there exists many different object detection models
including RetinaNet [5], Faster R-CNN [18], R-FCN [19],
SSD [20], and YOLO [21]. Convolutional neural networks
(CNNs) approaches such as these have been shown to
produce high performing models for various object detec-
tion tasks [22]. When selecting which architecture to use,
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Fig. 3. Waste bin detection and classification pipeline.

researchers need to take into account model accuracy and
available resources as different approaches balance these
requirements differently and often put a heavier emphasis on
one over the other. Additionally, feature extractor methods
such as ResNet50 [23] and MobileNet V1 [24] can be used to
further improve the performance of object detection models.

C. Vehicle Edge Computing

As the automotive industry works to develop connected
vehicle systems, edge computing will play a crucial role in
balancing the need for real-time computing within vehicles
while allowing for some tasks to be offloaded to remote
servers [25]. While vehicle edge computer poses many
challenges, researchers such as X. Xu et al. [26] are working
to ensure that edge computing transmitting tasks can take
place without compromising the safety or functionality of
vehicles. One example of a system that utilizes vehicle edge
computing is proposed by C. Ye [3]. The system, referred
to as BusEdge, runs on public transit buses and provides a
platform for applications to access bus data in real-time such
as camera video streams and the bus’s latitude and longitude
coordinates.

III. SYSTEM OVERVIEW

In this section, we discuss the components that make up
our proposed system which was inspired by the pipeline
proposed in [3]. Fig. 3 visualizes how the individual pieces
are connected and provides an example of the output or
triggered response after each segment is finished running.

Fig. 4. Hardware components located on the bus (from left to right: onboard
computer, exterior camera, GPS and network antenna).

A. Bus Sensors and Data Pre-Processing

The transit bus is equipped with a series of sensors
including multiple exterior cameras and a global positioning
system (GPS). The sensors communicate with the bus’s
onboard computer using ROS [7] through individual topic
publish-subscription channels between each sensor and the
computer. For our application, we utilize the exterior camera
on the right side of the bus angled towards the front of
the bus and the GPS. Latitude and longitude coordinates
are encoded into the individual frames from the camera’s
video stream. These images are then continually processed
through a filter before being sent to the onboard waste
bin detector. This filter removes frames so that the overall
frames-per-second rate is lowered to ensure that the light-
weight detector can process new frames in real-time without
creating a bottleneck. Several components belonging to the
bus’s hardware system can be seen in Fig. 4.

B. Waste Bin Detection

Within the pipeline, there are two main constraints we
must address relating to the transit bus. The first is that
the bus is only equipped with a basic computer system that
has limited memory and no graphics processing unit. As
a result, the applications running on the bus must require
only minimal resources. The second limitation with using
the bus is that there only exists a finite amount of bandwidth
to be used when communicating between the bus’s onboard
system and the cloudlet server. Even after undergoing pre-
processing, it is infeasible to transfer all the data collected
by the bus’s sensors to the cloudlet. Therefore, we need
to further reduce the number of video frames by using a
model to identify the frames of interest within the waste bin
detection task.

To resolve these constraints, we propose the use of two
waste bin detection models within our pipeline. The transit
bus’s onboard computer will run a lightweight model, such as
an SSD [20], to detect waste bins as the bus drives past them.
While this simpler detector will have a lower performance
compared to models that consist of more complex neural
networks, it will significantly reduce the overhead on the
bus’s internal system. Additionally, this model can be tuned
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to be more lenient in identifying waste bins even if it results
in more false positives as these instances will be eliminated
later on the servers where more computational power is
available. Since most waste bins of interest appear in multiple
frames, this detector will also have multiple chances to
identify instances as the bus drives past them. Once this
model detects a waste bin instance in the current frame, the
system will send it to the cloudlet through the edge network.

Once the cloudlet server receives a frame from the bus,
it will pass the image to another detection model which has
more computing resources at its disposal. This detector will
use a more complex architecture, such as RetinaNet [5],
therefore enabling it to better recognize waste bins when
compared against the bus’s lightweight model. Additionally,
once a waste bin is detected by the cloudlet model, it
will crop the region containing the bin from the original
frame before passing it to the garbage level classifier. This
functionality eliminates the need for the classifier to locate
the waste bin of interest before assigning it to a class.

C. Garbage Level Classification

The final model within the pipeline will be the classifier
used to determine if a detected waste bin needs to be emptied.
To reduce the number of classes within the model, all waste
bins with no visible trash will be considered not full and any
bin with visible trash will be classified as full regardless of
how much trash is present. Additionally, the classifier will
also determine if there are any garbage bags surrounding the
waste bins as this signals that someone still needs to attend
these bins. Similar to the second detector, the garbage level
classifier will use a model that focuses on performance such
as a RetinaNet [5] or Faster R-CNN [18]. When a full waste
bin is detected, the information will be passed to the last
component within the pipeline responsible for notifying the
appropriate parties.

D. Full Waste Bin Response

The last piece of our proposed pipeline is responsible
for informing the transit bus company or associated party
that there is a waste bin that needs to be attended to. After
receiving a full classification instance, this system component
will decode the GPS location associated with the instance
to determine if the detected and classified waste bin is
within the jurisdiction of the overseeing parties. Once this
information is confirmed, an automatic email containing the
image associated with the full instance and its GPS location
will be sent to the necessary individuals. Additionally, this
information will be used to update an interactive webpage
that maps out the bus route so that the locations of all full
waste bins can be found in one centralized location. The
webpage will also contain the images of the full instances
so that the involved party members can confirm that the bins
are truly full before sending someone to collect the garbage
in the event that a false positive occurred.

IV. EXPERIMENTATION

A. Dataset

To evaluate the performance of our models, we created
custom datasets using recorded video streams obtained dur-
ing normal operations. Annotations were manually added to
the datasets through the use of CVAT [4]. Bounding boxes
were placed over instances of waste bins in the detection
dataset, and three classes were identified for the classification
dataset: full, not full, and garbage bag besides a waste bin.
For training purposes, both datasets were split by a 60-20-20
ratio for the training, validation, and test sets, respectively.
All images used in the training set were taken from the same
date. The images used in the validation and test sets come
from the same run taken at a different date than the training
set, although images are only used in one set and not the
other. Tables I and II provide the distribution of samples
in each subset. For grouping purposes, small refers to a
bounding box area less than 1,024 pixels, medium refers to a
bounding box area between 1,024 and 9,216 pixels, and large
refers to a bounding box area greater than 9,216 pixels. Our
datasets are publicly available and can be accessed through
the kraggle website [27], [28].

TABLE I
DETECTION DATASET - WASTE BIN DISTRIBUTION AMONGST THE

TRAINING, VALIDATION, AND TEST SETS

Bounding Box Size Training Validation Test

Small 818 268 268

Medium 604 247 247

Large 141 72 71

All Sizes 1563 587 586

TABLE II
CLASSIFICATION DATASET - CLASS DISTRIBUTIONS AMONGST THE

TRAINING, VALIDATION, AND TEST SETS

Class Bounding Box Size Training Validation Test

Not Full
Waste Bins

Small 767 265 268

Medium 518 241 239

Large 116 65 66

All Sizes 1401 571 573

Full Waste
Bins

Small 53 2 1

Medium 87 7 6

Large 26 7 5

All Sizes 166 16 12

Garbage
Bags

Small 54 31 31

Medium 61 42 47

Large 19 6 4

All Sizes 134 79 82
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B. Model Training and Evaluation

Within the scope of this paper, two experiments will be
analyzed. The first evaluates the performance of a RetinaNet
[5] waste bin detector similar to the final detector model
that will run on the cloudlet server. The second experiment
provides a proof-of-concept test to determine if a single
model can be used to both detect and classify full waste bins.
Our selected model for this proof-of-concept experiment
is a RetinaNet [5] multi-class detector. Both models are
created using the detectron2 framework and start with pre-
trained RetinaNets [5] that are then trained on their respective
datasets as previously described. Each model is trained for
20,000 iterations on the training dataset with periodic evalu-
ations on the validation set every 1,000 iterations. After the
training procedure is completed, both models are evaluated
on their respective test sets using the standard detectron2
COCO evaluator and their metric scores are recorded. These
results are presented in the following section.

V. RESULTS

A. Server-Based Waste Bin Detector

After training our waste bin detector as defined in the
previous section, our model achieves an overall average
precision of 44.2% as computed by the detectron2 COCO
evaluator when assessed on the test set. This score increases
to 67.4% when the Intersection over Union (IoU) metric
is restricted to 0.5. Additionally, the model yields an
average recall of 56.9%. However, we see that these scores
increase when we restrict the evaluation to take into account
different bounding box area sizes of detected waste bins.
For example, our model reaches an average precision of
57.3% and an average recall of 67.1% when detecting
medium-sized waste bins. These scores further increase
to AP = 74.8% and AR = 79.2% when only considering
the large-sized waste bin detections. Figs. 5 and 6 show
the precision-recall curves for the medium and large-sized
waste bins. Based on the results, there is still room for
improvement in training the server-based waste bin detector.
However, the average precision and recall metrics for
large-sized waste bins confirm that our current detector
can reasonably identify bins of interest since most fall
under the large-sized category in at least one video frame.
This is further supported by the precision-recall curve for
large-sized waste bins.

TABLE III
SERVER-BASED WASTE BIN DETECTOR METRICS

Bounding Box Size Average Precision Average Recall

All Sizes 44.2% 56.9%

Medium 57.3% 67.1%

Large 74.8% 79.2%

Fig. 5. Precision-recall curve for medium-sized waste bins (bounding box
area is between 1,024 and 9,216 pixels).

Fig. 6. Precision-recall curve for large-sized waste bins (bounding box
area is greater than 9,216 pixels).

B. Proof-of-Concept Waste Bin Multi-Class Detector

After following the training procedure detailed in Section
IV, our waste bin multi-class detector was evaluated using
the classification test set. For each class, the average pre-
cision score was recorded. The model achieves an average
precision of 45.3% for not-full waste bins, 7.0% for full
waste bins, and 54.0% for garbage bags. These metrics
signal that the multi-class detection approach is insufficient
for completing our desired task. Moving forward, we will
separate the detection and classification tasks from one
another to determine if using separate but connected models
improves the final classification performance.

VI. CONCLUSIONS

In this paper, we present a waste bin detection and garbage
level classification system that can be installed onto public
transit buses to monitor waste bins along bus routes. Our
results support that we can train detection models to identify
waste bins as the bus drives past them. In particular, our
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evaluated model frequently detects waste bins of interest
since these instances are always medium or large-sized
within the captured images. Additionally, important waste
bin instances are usually captured in several frames, further
increasing our system’s capabilities of detecting all bins of
interest. This paper also explores the possibility of using
a single model to both detect and classify full waste bins.
However, the results do not support that such a model can
successfully accomplish this task.

A. Future Works

Before advancing with the development of our proposed
pipeline, we will gather and label more bus data. While all
parts of the system will benefit from having access to more
training data, the classification of full waste bins will improve
the most as our dataset currently has very few instances
belonging to this class. The data will be collected along the
same bus route using the same transit bus company to keep
data collection consistent.

Upon completion of our pipeline, we will deploy the
respective models onto the transit bus and cloudlet server
to evaluate their performance in real-time. Once we have
collected enough results after deployment, we will re-analyze
our pipeline and make appropriate changes until it can detect
and classify full waste bins with high consistency. We will
then deploy the system onto other buses traveling along dif-
ferent routes within the same area to evaluate how the system
performs in environments independent of the training data.
We hope our work will inspire other researchers to develop
similar useful systems that utilize public transportation to
accomplish their tasks.
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Generalization in Reinforcement Learning through Representation

Rutav Shah1 and Vikash Kumar2 and Yunzhu Li4 and Abhinav Gupta2 3

Abstract— Developing agents that are capable of acquiring
complex behaviors which remain effective even in an unin-
strumented environment (like home, hospital etc) can lead
to generalist robots. Such agents can be used outside the
laboratory conditions in providing care and enhancing produc-
tivity. Such uninstrumented settings demands learning directly
from robot’s onboard sensors like camera, joint encoders
etc which poses the high dimensionality issue. Most of the
current approaches get away by learning narrow, task specific,
low-dimensional representations. These narrow representations
lack semantic understanding which inhibits its generalization
capabilities. To this end, we propose DDRL which learns
policy that is robust to large intra-category variations like
semantically similar tools (e.g spatula and spoon). In contrast
to previous approaches, the learned representations ignores
task irrelevant details while remaining effective to such intra-
category variations. DDRL trained on a set of tools (knife,
spatula, ratchet, screw driver, turned) and generalizes to new
unseen objects e.g hammer without any additional efforts.

Index Terms— Robotics, Reinforcement Learning,
Representation Learning

I. INTRODUCTION

Reinforcement Learning has seen tremendous progress
over a wide range of applications like games [1]–[4], finance
[5] [6], healthcare [7] [8], robotics [9] [10] and many more.
Recent success stories in robotics are not only limited to
simulation [11]–[13] but also real-world successes [14]–[16]
have a fair share. However, most real-world stories that
acquire complex manipulation skills are still limited to a
laboratory or in a highly instrumented setting mainly due
to (a) high sample complexity which makes it infeasible
to learn in the real world. (b) lack of direct access to the
underlying state information which hence must be extracted
from on board sensors. (c) high variability in real-world, for
e.g change in lightning conditions, background etc. These
limitations restrains the applicability of reinforcement learn-
ing in robotics in a more unstructured, real-world setting.
This work takes a small stride in this direction.

Learning without environment instrumentation in a more
realistic setting can be quite challenging for robots [17] ,
however, animals especially humans learn behaviors quite
efficiently and adapt very easily to the changes in the
surrounding. Two important factors that contributes to the

1Rutav Shah is with the Computer Science and Engineering Department,
Indian Institute of Technology Kharagpur rutavms@gmail.com

2Vikash Kumar and Abhinav Gupta are with the Facebook AI Research,
USA vikashplus@gmail.com

3Abhinav Gupta is with the Robotics Institute, Carnegie Mellon Univer-
sity, USA gabhinav@andrew.cmu.edu

4Yunzhu Li is with the Computer Science & Artificial Intelligence Lab,
Massachusetts Institute of Technology, USA liyunzhu@mit.edu

success (a) Efficiency - Humans acquire behaviors efficiently
while learning directly from the sensory information like
vision, touch etc. Such efficient learning can be attributed
to the representation of the information learned by humans
[18]. Most of the recent works [19] [20] focus on this aspect
of learning representation that efficiently solves the task
in hand. (b) Generalization capability - Unlike machines,
humans generalize to unseen objects/scenes very easily. We
can recognize an object even when seen under strikingly
different conditions [21]. This is due to the fact that we
have a very good semantic understanding of objects for e.g
while picking up a mug we inherently segment out the handle
from rest of the body irrespective of the shape/size of the
handle. However, very few works have focused on learn-
ing semantically meaningful representations [22] in order
to bring out the overall generalization capability. Learning
narrow, task-specific representation leads to sample efficient
solution but are quite brittle and break easily when subjected
to small variations in surroundings [23] [24] which hinders
the generalization performance.

The desiderata of a good representation in reinforcement
learning [25] can be summarized as follows (a) should be low
dimensional for sample efficient learning of policy. (b) pays
attention to the relevant part of the tasks and captures all the
necessary information (c) ignores the irrelevant information
like background, clutter etc (d) robust to the variations
in the environment which enhances the generalization per-
formance. (e) semantically meaningful representation that
remains consistent across intra-class variations. Towards this
goal, we propose DDRL that learns semantically consistent
representation across different instances of objects belonging
to the same class while being sample efficient.
Our contributions : We list our major contributions :

• We present a simple framework that combines the
progress of computer vision and learning representation
in reinforcement learning to provide a robust, sample
efficient solution with better generalization performance
than prior methods.

• Benchmark the sample efficiency of the policy learned
on a complex, dexterous manipulation ADROIT bench-
mark [13] and show competitive performance to state
of the art approaches.

• Investigate the performance of the representation
learned when subjected to various variations like change
in camera position, background, introduction of a new
object into the scene.
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Fig. 1: DDRL combines the progress from Representation
learning in Reinforcement learning and Computer Vision;
provides a framework that learns representation robust to var-
ious distractions and generalizes across new unseen objects
in a zero shot fashion. It learns a dense descriptor by bringing
the descriptor vectors corresponding to the same position
viewed from different camera angles closer, highlighted in
RED (Refer to Eq. 8). During the policy learning phase,
the dense descriptor feature map is passed through a feature
extractor to get a low-dimensional, compact representation
which in turn is used as a representative of the environment
state.

II. RELATED WORKS

A naive approach to learning from visual observations is
to learn directly in the pixel space without explicit distinction
between the feature encoder and policy. The seminal work
from [2] masters Atari games uses only raw image pixels.
Other works that successfully learns policies in real-world
directly from images include [26] [27]. Another recent work
that has shown success in real world [16] which uses the
sample-efficient off policy algorithm SAC [28] directly in
the pixel space. These approaches, however, require large
number of samples to extract the useful information from im-
ages which makes it infeasible to learn outside the laboratory
conditions. Our work learns an explicit feature representation
and then learns the policy in the feature space, this reduces
the sample complexity drastically.

Another technique is learn explicitly learn key-points from
images that can be used as a representative of the underlying
state information to solve the task [22] [29] [30] and more
recently [31]. [32] [33] learn a dense descriptor of the
input image and extract keypoints from the descriptor space.
Although these methods successfully learn low-dimensional,
compact representation of the images, learning task specific
keypoints makes it less robust to variations in the environ-

ment and difficult to scale with increasing complexity in the
task.

A different line of work is to learn feature representations
from the pixel space and use the extracted features as a
substitute of exact state of the environment. Works like [34]
[35] [17] [36] learn the representations using variational
inference techniques, while some [37] [19] use a contrastive
objective along with the RL objective to learn useful features.
[20] [38] make use of image augmentations and demonstrate
state comparable results on Deep Mind Control suite [39],
Atari [2]. Learning task specific representation in tandem
with the RL objective leads to the issue of non-stationarity
since the policy is dependent on the representation while the
representation depends on the distribution induced by the
policy. In order to avoid this issue, we learn the represen-
tation beforehand and freeze the parameters throughout the
training of agent.

III. METHODOLOGY

DDRL solves the manipulation tasks by combining three
major components : (a) Learning a robust dense descriptor
which ensures semantic consistency across the different vari-
ations introduced in the scene. (Section III-A) (b) Learning
a compact low dimensional representation of the descriptor
space eliminating the curse of dimensionality for the policy
learning. (Section III-B) (c) Finally, a sample efficient pol-
icy that solves the task using the obtained representations.
(Section III-C)

A. Learning a Dense Descriptor

Goal is to learn a visual representation of the input
image that i) ignores the task irrelevant details ii) robust
to environmental variations like lightning conditions iii)
remains semantically consistent when subjected to intra class
variations. Following the success of [32], [33], [40], [41], we
learn a dense descriptor using the learning strategy proposed
in [33]. The objective of the dense descriptor model

(
fθdd(.)

)
is to map a full resolution RGB image

(
RW×H×3

)
to a dense

descriptor space
(
RW×H×D

)
, i.e, fθdd(I) : RW×H×3 −→

RW×H×D where I represents the input image and each
pixel in the input image is mapped to a dense descriptor
vector of dimension D. The learning objective is to bring the
descriptor vectors corresponding to the same position (in the
actual world) viewed from different camera angles closer for
example in Figure 1 highlighted in RED. Let Ia, Ib represent
images of the same scene captured from two different camera
angles, fθdd(Ia)(ua) represents the descriptor vector of the
image Ia corresponding to the pixel location ua. We desire to
bring the descriptor vector - fθdd(Ia)(ua) and fθdd(Ib)(ub)
where ua, ub represent the pixel co-ordinates in images Ia, Ib
of the same point in the world frame. In order to achieve this,
two loss components are used [32], [33],
(1) Heatmap Loss : Let p be any pixel space location in
the image Ib, The ground truth heatmap with respect to the
pixel location ub can be defined as

H∗ub
(p) = exp

(
−
‖p− ub‖22

σ2

)
(1)
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A predicted heatmap is obtained using the descriptor vector
d∗ = fθdd(Ia)(ua) as the reference descriptor as follows :

Ĥub
(p) = exp

(
−
‖fθdd(Ib)(p)− d∗‖22

η2

)
(2)

Now, a simple Mean Squared Error loss (MSE) is applied
between the ground truth (H∗) and predicted (Ĥ) heatmap.

Lheatmap =
1

|Ω|
∑
p∈Ω

∥∥∥Ĥ(p)−H∗(p)
∥∥∥2

2
(3)

(2) Spatial Expectation Loss : We have the predicted
heatmap from Equation 2. This can be normalized to obtain
the probability distribution over the image Ib as

H̃ub
(p) =

Ĥub
(p)∑

p′∈Ω Ĥub
(p′)

(4)

So the predicted expected pixel location can be calculated
using the probability distribution :

Jpixel(ub) =
∑
p∈Ω

p ∗ H̃ub
(p) (5)

Given the depth map Z, the predicted expected depth can be
calculated

Jdepth(ub) =
∑
p∈Ω

Z(p) ∗ H̃ub
(p) (6)

The spatial expectation is calculated using the ground pixel
location ub and depth value Z(ub)

Lspatial = ‖ub − Jpixel(ub)‖+ ‖Z(ub)− Jdepth(ub)‖ (7)

Total Loss : The total loss is a weighted combinations of
both the terms

L = wheatmap ∗ Lheatmap + wspatial ∗ Lspatial (8)

As observed in [40], the matches (ua, ub) are sampled only
from the object which can be done using object masking
[42]1. Once the dense descriptor is trained using the loss
8, the weights are frozen throughout the training of the RL
agent.

B. Low-dimensional representation
The dense descriptor obtained using fθdd(.) is quite high

dimensional W × H × D, where in our setting H = 480,
W = 640 and D = 3. Such high dimensional input leads
to sample inefficiency during policy learning [19], [20],
[38], [43], which is undesirable. Thus, following [43], we
use a model pre-trained on a large class of real world
samples as a fixed feature extractor. Formally, let h(.) be
the fixed feature extractor, h : RW×H×D −→ Rd where
W ×H ×D >> d. We use the standard Resnet model [44]
pre-trained on ImageNet dataset [45] to extract the compact,
low-dimensional representation from the descriptor space.
Although, our method is agnostic to the policy learning
method used to acquire the policy, we describe in brief
the base Reinforcement learning algorithm used in the next
section.

1since we use a simulator to benchmark the performance object masking
can be done easily.

C. Policy Learning

The encoded representations obtained from the input
image using the dense descriptor and feature extractor as
discussed in Section III-A and III-B are used as a represen-
tative of the state information which is not readily available
in real-world. DDRL is built upon an on-policy algorithm
NPG [46] owing to its stability and effectiveness in solving
complex problems. Additionally, in complex environments
we augment the data with few human demonstrations as in
[13] that helps in (i) relaxing the domain expertise required
in reward shaping (ii) solving the early exploration issue
(iii) leading to more sample efficient solution. It is important
to note that our approach is agnostic to the policy learning
algorithm and in principle any base Reinforcement learning
method can be used.The encoded representations obtained
from the input image using the dense descriptor and feature
extractor as discussed in Section III-A and III-B are used as
a representative of the state information which is not readily
available in real-world. DDRL is built upon a on-policy
algorithm NPG [46] owing to its stability and effectiveness
in solving the tasks.

IV. EXPERIMENTAL EVALUATIONS

Our experimental evaluations aims to address the fol-
lowing points, (a) Compare the sample efficiency of our
approach with state of the art methods on a complex dexter-
ous manipulation benchmark, (b) How robust is the learned
descriptor when exposed to novel objects (c) show some
elementary results on the generalization performance of the
policy using our approach when exposed to unseen objects.

A. Benchmarking

Fig. 2: Performance on ADROIT manipulation benchmark
[13] : Natural Policy Gradient [46] fails to make any progress
in the task which suggests the difficulty of the task suite.
DAPG(State) [13] learns to solve the task with the help
of few demonstrations, however, it assumes access to the
underlying state information. DDRL quickly learns to solve
the task outperforming the SOTA approaches FERM [47],
RRL [43], which helps us evaluate the sample efficiency of
our method.
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In Figure 2, we benchmark the performance of DDRL on
the high dimensional dexterous manipulation benchmark [13]
in comparison to various state of the art methods. The
Natural Policy Gradient

(
NPG(State)

)
[46] [in Purple] even

with the privileged state information fails to make progress
in the task. This establishes the difficulty of our task suite.
Furthermore, DAPG(State) [13] [in RED] leverages a few
demonstrations to bootstrap the learning process and achieves
success using the privileged state information. However, such
information is not readily available when learning in real-
world.

DDRL [in BLUE] demonstrates better performance even
when compared to DAPG(State) [in RED] which can be
considered as an oracle of our method since it has access to
the underlying state information. Additionally, it also outper-
forms RRL [43] [in ORANGE] that directly uses Resnet-34
features and uses similar reinforcement learning framework.
For fair comparison, we keep the hyper-parameters same
as mentioned in RRL. FERM [47] is another baseline that
uses off-policy algorithm SAC [28] which shows competitive
performance, however, is quite unstable and saturates early.

0

25
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100
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DDRL FERM RRL

Hammer-v0

Fig. 3: Performance on visual distractors : In order to test
the robustness of the policy, we expose the environment to
various type of visual distractors in the scene like change
in lightning conditions, random object, change in color etc.
We observe that DDRL outperforms FERM in all the
evaluations and competitive performance to RRL while being
more robust to lightning conditions.

Furthermore, in Figure 3 similar to RRL [43], we subject
the policy to various visual distractors during evaluation and
observe superior performance to the competing baselines
in most scenarios like lightning condition, presence of an
random object into the scene. Interestingly, we observe a
degradation in performance when subjected to change in
color during inference, this suggests that the descriptors
learnt must be exposed to a broader set of object instances
(only one in this experiment) in order to make it more robust
to the color changes in the object.

B. Generalization performance

The goal is to understand a) how well does the repre-
sentation learned generalises to new unseen objects. b) is it
possible to learn a policy that uses this representation and

completes the task with novel/unseen objects which require
similar semantic understanding.
Qualitative analysis of the dense descriptor
For testing the performance of the dense descriptor, we
train the model on five tools that have a similar semantic
understanding (handle, neck, head) – Kinfe, Screw Driver,
Spatula, Ratchet, Turner [Refer to Figure 4 in BLUE]. During
evaluation, we expose the model to a completely novel object
– Hammer [Refer to Figure 4 in RED]. We observe that the
model really builds an understanding of different parts of the
tools for e.g, neck is in the whitish pink space, the handle
is in the pink space (in the visualization) in all the tools
seen/unseen. Having such a generalised representation can
help learn a better, sample efficient policy that pays attention
to the right part of the tool while avoiding overfitting.
Policy Learning
In order to understand how good the policy generalizes to
novel objects when the representations acquired using seen
objects, we define the task of grasping and relocating the
tool to a target position and use behavior cloning to learn
the policy. The policy learned using 50 demonstrations for
behavior cloning, we achieve a success rate of 47% on seen
objects and 65% on unseen object. This provides some
rudimentary evidence that learning a representation with a
good semantic understanding helps in better generalization
of the policy to novel objects.

V. LIMITATIONS

While this work demonstrates the improvement in gen-
eralization performance in policy learning, it still requires
extra samples from the environment to learn the dense
descriptor beforehand. Although in our experiments, we
collect reasonable 200 trajectories, this might scale with the
increasing complexity of the tasks and get more difficult to
acquire. Futhermore, the dense descriptor adds an additional
compute intensive layer when compared to RRL that directly
uses Resnet-34 features.

VI. CONCLUSION

DDRL learns a semantically meaningful dense descriptor
that is robust to the changes in the surrounding. This dense
descriptor provides a good representation of the noisy image
acquired from on board cameras, which in turn helps in
improving the generalisation performance of the agent.
Such representations acquired also help in improving the
sample efficiency of the agent since the descriptor is free of
noise and irrelevant information. We benchmark the sample
efficiency of DDRL on the ADROIT dexterous manipulation
benchmark and show robustness of the policy learned to
various types of visual distractors. Finally, provide some
elementary evidence that the descriptors learned can be used
to generalize across different tools and even to previously
unseen objects.
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Fig. 4: Visualisation of the descriptor space. LEFT : Set of tools used for training the dense descriptor. RIGHT : During
test time, the descriptor is exposed to a completely unseen object. We observe that the descriptor remains consistent across
novel objects and provides a good semantically meaningful representation.
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Discovering Affordances from Visual Perception in the Carnegie Mellon
Ballbot

Dimitria Silveria1, Oliver Kroemer2 and Saumya Saxena2

Abstract— In order to interact with the environment effi-
ciently, autonomous manipulators need to learn objects’ affor-
dances. An effective way to do that is to allow the robot to build
up its own experiences over time, similarly to infants’ motor
skills development. In this paper, this infant-like developmental
framework was applied in the Carnegie Mellon Ballbot learning
process, by means of simulation. Force and vision sensors
feedback were combined with the clustering algorithm X-means
to detect affordances. After that, a visual classifier was trained
so the robot could predict which affordances corresponded to
each object, based on vision sensor feedback.

Index Terms— Affordances, Robotics Manipulators, Develop-
mental Framework, Visual Perception, Ballbot

I. INTRODUCTION

The Carnegie Mellon ballbot is an autonomous mobile ma-
nipulator equipped with two 7-DoF arms [1]. It is designed
to assist humans in tasks such as pushing into a wheelchair
while balancing itself over a ball. In order to execute its
manipulation tasks efficiently, the robot needs to learn the
objects’ affordances.

Affordances are all the possible interactions that an envi-
ronment provides to an agent [2]. For example, a wheelchair,
with a human sitting in, can be pushed but it cannot be lifted
up. The robot needs to have this kind of understanding of its
action capabilities to assist humans effectively. As humans
are excellent in perceiving such environmental characteristics
[3], techniques based on infant development are effective
ways to provide robot manipulators affordances of objects.
[4] [5]. Therefore, they were chosen as the basis for this
work.

In this research, the ballbot was provided with behavior
primitives (grasp and push) in order to explore and learn
these affordances through interaction, in a simulation en-
vironment. This way, the robot will be able to infer from
its visual perception which interactions an object affords,
preventing it to perform useless actions, like trying to lift a
heavy table.

The learning process occurred in two phases [5]. The first
stage corresponded to the unsupervised learning stage. The
robot applied the grasp and push actions to different objects
in the environment. Each of these interactions returned the
forces exerted by the joints the difference between initial

1Dimitria Silveria is with Electrical Engineering, Mechanics and Com-
puter School, Federal University of Goias, Goiânia, GO 74690-900, Brazil
dimitriasilveria.ds@gmail.com

2Oliver Kroemer is with the Robotics Institute, Carnegie Mellon Univer-
sity, Pittsburgh, PA 15213, USA okroemer@andrew.cmu.edu

2Saumya Saxena is with the Robotics Institute, Carnegie Mellon Univer-
sity, Pittsburgh, PA 15213, USA saumyas@andrew.cmu.edu

and final objects’ and actuator’s positions. We use these
parameters to cluster these actions. Each cluster corresponds
to how an object responded to an action.

In the second stage, the robot used RGB images patches,
centered on each interaction point, as well as the clusters as
labels to these images, to train a classifier.

Then, images from a test set were used as input to this
classifier, so it could classify to each cluster each object
belonged. Figure 1 represents an overview of the learning
process.

Fig. 1. Illustration of the learning process used in this work

II. RELATED WORK

Emre et al. [5] tested a three-staged developmental frame-
work in an anthropomorphic manipulator. The manipulator
was equipped with vision and tactile sensors. In Stage
I, the robot executed random interactions with an object
while collected the generated tactile effects. Some objects’
characteristics (size, shape, and position) were also collected
by means of a vision sensor. These tactile signatures are
clustered. Each cluster corresponded to a behavior primitive.
At the end of this stage, the robot learned parameters of
behavior primitives along with its tactile profiles. In Stage II,
the robot executed the learned behaviors in different objects
in order to conclude what behaviors were afforded by each
object. After that, the robot learned to predict what effects
each behavior caused on objects. In Stage III, the robot
learned to perform complex tasks by imitating human tutors’
actions. The tutor performs their actions stopping at some
points. The robot mapped these stopping points as subgoals
and apply its previous knowledge to achieve these subgoals
as well as the final goal. In our work, we used this idea
of a learning process composed of an unsupervised stage
followed by a supervised stage.

Savastano et al. [4] presented a sophisticated developmen-
tal framework, based on infants’ development. They designed
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a neural controller and a sensory-motor system for the iCub
humanoid robot. The neural controller was composed by
a recurrent neural network that received input from many
sensors along the robot’s superior body. The sensory-motor
system was composed by two connected layers in this
neural network: a sensory and a motor. These two systems
combined emulated the neural and motor development of
infants in their first 4 to 18 months, by means of adjusting the
neurons gains according to each phase. The robot undergoes
a trial and error learning process, divided in three phases.
In the pre-reaching phase the robot was equipped with head
orientation and grasping reflex behaviors and a low vision
insight. The distal DoF was frozen and the robot used motor
babbling to perform the interactions in this phase. In the
gross-reaching phase, the robot had its visual skills improved.
The distal DoF was un-freezed and the use of motor babbling
was reduced. In the fine-reaching state, the role played by
the vision increased. With more exploration of the target and
hand visual information, the robot improved its reaching and
grasping reflexes. We didn’t reproduce the exact idea of this
paper, but we used the fine-reaching state as inspiration for
our learning process. The ballbot executed the environment
exploration counting on more refined reaching and grasping
reflexes and visual perception. (To see more details, read
section IV-B)

The work in [6], consists of collecting data from many
sensors employing interactive exploration to train a manip-
ulator to identify different food characteristics even without
having previous contact with that kind of food before. The
robot interacted autonomously with many foods and data
were acquired from vision, audio, proprioceptive, and force
sensors. First, they trained a neural network to output the
food embeddings. Then they used these food embeddings
to train perceptron classifiers and regressors. After that, the
trained classifier was used in a food class that they had
left out of the classification. The classifier was supposed
to determine food type, hardness, juiciness slice type, and
to predict slice width. Similarly, our research also trained
a visual classifier, in order to provide the ballbot with
the ability to determine affordances of objects from visual
perception.

Gao et al. [7] proposed a model that took as input the
semantic point and a dense geometry to plan robot trajecto-
ries to accomplish tasks even in the objects that the robot had
never seen before. These 2 representations combined allowed
the robot to infer about object physical characteristics, such
as collision, static equilibrium and etc., and also extend these
conclusion to same category objects that it had never seen
before. To detect the 3D points, the authors used the kPAM
method, which consists of representing the object by a set of
3D key points. Each robot action was represented by a rigid
transformation applied to one of these points. To obtain the
dense geometry, the ShapeHD method was used, to turn the
RGBD images into 3D points. Based on this work, we used
dense geometry and 3D points to plan robot trajectories.

The work developed by [8] consists of analyzing depth or
color images from objects to infer which action primitives

Fig. 2. Difference between initial and final depth images

are afforded by a pixel/point. The robot, in a simulation, was
given six behavior primitives to interact with points selected,
randomly, from the images. They took the ground truth
position of the object, to narrow down the region of action
from the point clouds. Each interaction could be classified as
successful or not, according to a scoring system. In our work,
we used a similar strategy to select the point of action, but
instead of six interaction primitives, our robot was provided
with two.

III. TECHNICAL APPROACH

A. Data Collection

The two interaction primitives (see more details in section
IV-B) were realized in three frames, in order to analyze affor-
dances from different frames. In the global and robot frames,
the grasp and push actions performed in the +x, -x, +y, -y,
+z and -z directions. In the object frame, the objects were
grasped and pushed in the normal and tangent directions.
The table and the cuboid were also pushed downwards.

First, each interaction primitive returned an output vector
with 9 parameters:

φ = [ fx, fy, fz,∆
ob j
x ,∆ob j

y ,∆ob j
z ,∆act

x ,∆act
y ,∆act

z ] (1)

where fx, fy, fz are the forces, collected directly from each
joint, using vrep built-in function. We tried to collect data
from the force sensors, at the fist moment, but we realized
that collecting forces directly from the joints was a better ap-
proach for our work. ∆

ob j
x ,∆

ob j
y ,∆

ob j
z are delta, the difference

between the initial and final object positions, read from the
respective point clouds. To calculate delta, the depth images
before and after the interaction were subtracted and two point
clouds were generated from the result. One for the negative
points and other for the positive points. Then the average
of these two point clouds were calculated and subtracted.
The negative points corresponded to the points that were
foreground before the interaction and became background
after that. The positive points were the opposite. Figure 2
shows the difference between two depth images before and
after one interaction.

∆act
x ,∆act

y ,∆act
z are the actuator position, which was the

difference between the initial and final actuator positions,
provided by v-rep. These parameters were collected in the
global, robot and object frames.
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Fig. 3. Clusters in the global frame (x axis) and the points belonging to
them (y axis)

B. Clustering Effects

The algorithm X-means [9] was chosen to cluster the data
because it is able to decide how many clusters are necessary.
The feature vector was the vector showed in the equation 1,
for each interaction.

First, all the data from the 3 frames we clustered, together.
However, it wasn’t possible to take any significant conclusion
from the results, because there were many clusters.

Then, we decided to cluster the data from the 3 different
frames separately.

Each cluster was composed of points, on the objects, that
provided similar outputs for one action. This means that they
could represent actions that the objects affords or not (more
details in section VI)

C. Clustering Variations

1) Global Frame: In figure 3 it is possible to see the
5 clusters obtained, in the global frame, and all the points
belonging to them.

The points up to 100 correspond to points in the cuboid.
The points from 101 to 650 were on the table and the rest
were on the wall. There are 2 clusters containing only cuboid
points, one for the wall points, 1 for table points, and one
containing table and cuboid points.

The two clusters with cuboid points corresponded to the
grasp and push affordances. There was only one cluster with
wall points representing the fact that the wall doesn’t have
any affordance. There was a cluster with points in the table
and the cuboid because whenever the robot tried to push the
cuboid down, it didn’t move. In this sense, both, the table and
the cuboid, don’t have this affordance. The cluster containing
only table points represents the grasp action, which the table
doesn’t afford.

2) Object Frame: In figure 4 it is possible to see the
5 clusters obtained, in the object frame, and all the points
belonging to them.

Cluster 0 contained only table points representing the
grasp and push tangent direction affordances for this object.
Cluster number 1 represented the outputs, from the push
action in the normal direction, from the wall, and some of
these from the cuboid. The cluster containing points on the

Fig. 4. Clusters in the object frame (x axis) and the points belonging to
them (y axis)

Fig. 5. Clusters in the robot frame (x axis) and the points belonging to
them (y axis)

cuboid and on the table represented, the push downwards
and in the normal direction affordances. Cluster number 3
represented all the grasp affordances plus push in a tangent
direction, from the cuboid.

3) Robot Frame: In figure 5 it is possible to see the 4
clusters obtained, in the Robot frame, and all the points
belonging to them.

Cluster number 0 grouped most of the cuboid affordances,
except for the push downwards, that was represented in
cluster number 3, together with the same affordance for
points on the table. Cluster number 1 showed the fact that the
wall doesn’t afford any action. Cluster number 2, containing
just table, points represent the grasp action, which the table
also doesn’t afford.

D. Classifying Visual Interaction Points

The RGB images from each interaction were cropped [10]
in squares around the interaction point and used, as well as
its corresponding cluster number to train a visual classifier
[6] using the python library pytorch [11], for each reference
frame. Figure 6 shows some examples of image patches used
in the classifier.
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(a)
Cuboid

(b) table (c) Wall

Fig. 6. Some image patches used in the classification

The classifier was trained using 85% of the data set. The
other 15% were used as the test set

IV. EXPERIMENTS

A. Simulation Environment

This work didn’t require a sophisticated model to represent
the robot. Therefore we used a simplified one. The simulated
robot was composed of a cylinder of 1.71m height and 0.5m
diameter, without the ball in its base, because it was not
necessary to include the robot dynamics in this work. Instead
of the 7 DoF arms, the used robot had Cartesian arms,
with 3 prismatic joints (each one moved in one ax of the
Cartesian space), and a sphere playing the actuator’s role.
This arms’ simplification was used because the focus was on
the interactions with the object, regardless of the end-effector
position in space. Figure 7 shows the difference between the
two robots.

(a) Real Ballbot (b) Ballbot used in the simulation

Fig. 7. The real ballbot and the ballbot used for this work

A force sensor was placed between the y joint and the final
actuator, to measure the forces in each interaction. A Kinect
sensor was placed on the cylinder’s top, in order to collect
depth and RGB images. There were also 4 force sensors
attached to the final actuator, in order to emulate the grasp
actions (this is detailed in section IV-B).

B. Interaction Primitives

Similarly to [12], the robot was given the reach, grasp,
and additionally, push primitives. The actions were executed
in three frames: global frame, robot frame, and object frame.
In each frame, the robot performed the actions, in many
directions.

The grasp reflex was emulated by combining the object’s
3D coordinates with dense geometry information [7]. RGB
and depth images were used with the library Open3D to

obtain the correspondent point cloud from the depth images.
The 3D coordinates were used to extract only points on the
object from the 3D representation. Then the robot selected
random points in the object point cloud to interact with. The
grasp movement was emulated by attaching the object to one
of the 4 sensors in the final actuator. The push action was
accomplished by the sphere, sweeping the object.

(a) End effector approaching the object

(b) End effector interacting with the ob-
ject

Fig. 8. The two steps in the grasp primitive, z direction

The grasp behavior was composed of three steps. In step
one, the robot approached the object in the respective axis
of action. In the second step, it grasped the object. In the
third step, the actuator moved in the direction of the axis of
action and upwards. After that, the object was released. The
push behavior was executed in two steps. First, the robot
approached the object in the respective axis of action, then,
it swept the object, linearly, in the direction of the respective
axis action.

Figure 8 shows two steps for the grasp action in the z-
direction. In the sub-figure a), the robot is approaching in
the z-direction. In the sub-figure b), it is trying to grasp the
table.

V. RESULTS

A. Global Frame

The classifier showed an 82% accuracy over the test set.

Cluster Accuracy
0 100%
1 100%
2 0%
3 0%
4 100%

TABLE I
EACH CLUSTER’S ACCURACY OVER THE TEST SET, IN THE GLOBAL

FRAME
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Table I shows each cluster performance over the test data
set. Clusters number 0, 1 and 4, had a 100% accuracy, while
the others had 0%

B. Object Frame

The classifier predicted correctly 52% of the images in the
test set.

Cluster Accuracy
0 0%
1 0%
2 100%
3 0%
4 100%

TABLE II
EACH CLUSTER’S ACCURACY OVER THE TEST SET, IN THE OBJECT

FRAME

Table III shows each cluster performance over the test set.
Clusters 2 and 3 had 100% accuracy, while the others had
0%.

C. Robot Frame

The classification algorithm predicted correctly 84% of the
images from the test set.

Cluster Accuracy
0 100%
1 100%
2 100%
3 0%

TABLE III
EACH CLUSTER’S ACCURACY OVER THE TEST SET, IN THE ROBOT

FRAME

Table III shows each cluster performance over the test set.
Clusters 0, 1, and 2 had 100% accuracy, while the number
3 had 0%.

VI. DISCUSSION

Comparing the clusters in the three frames, it is possible
to realize that although the robot performed the same actions
in the global and object frame, it got different numbers and
kinds of clusters.

The classifiers presented good results for the 3 frames.
However, there were two issues preventing it from present
better results. The first one is that the robot performed
multiple interactions with the same point, but collected
the same image for all of them. Therefore, similar cuboid
images, for example, could belong to the grasp and push
downwards clusters, which makes it hard for the classifier
to distinguish them. Another issue was a delay in the vrep
Kinect sensor, which made it collect the images as though
the object was in the final position of the last interaction. It
didn’t harm the table and wall pictures, after all, they didn’t
move. However, it affected the cuboid images, capturing only
the table, in some of them.

VII. CONCLUSION AND FUTURE WORK

The proposed method was able to autonomously detect
clusters corresponding to different objects and interaction
constraints. This means that the framework developed is
efficient to detect affordances from visual perception.

It is possible to conclude that the reference frames influ-
ence affordances perception.

In future work, it is necessary to collect data, with different
objects, and test the classifier in objects different from those
used for training it. It is also important to implement a
classifier capable of returning more than one label per image.
It is also crucial to use a better vision sensor, to avoid delay
in the images capturing. It is also fundamental to implement
this framework in the real robot
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Explanations in Multi-Agent Search and Rescue Task

Manav Singhal1, Vidhi Jain2, Dana Hughes2, and Katia Sycara2

Abstract— Interpreting the reasoning behind decisions being
taken by an agent is as important as making the right decision.
Once the reasoning behind the decision is understood, the
decision making process can also be improved by making timely
interventions. In a search and rescue task, the importance
of each decision is very high as the life of a human is at
stake. Currently very few works have delved into interpreting
actions. Prior to our study, in the search and rescue task belief
modeling has been experimented in the single-agent setting to
comprehend the belief of the agent about its environment while
making its decision. Given that these tasks are generally carried
out in a team which changes the dynamics of decision making,
our study aims to model the belief that each agent possesses
about other agents and objects at a given time-step influencing
the decisions it takes.

Index Terms— belief modeling, multi-agent, search and res-
cue task

I. INTRODUCTION

The theory of mind is the human capacity for reasoning
about agents’ mental states such as beliefs and desires. It
deals with explaining and predicting the observable actions
taken by an agent at a given time-step based on the belief
and desires held by the agent. The unobservable mental state
depends on the information possessed by the agent about
the environment around it. The inconsistencies in beliefs
hence actions arise from differences between the past and
the present reality, as well as the mental states of agents
who may have false beliefs about the world or about the
mental states of other agents.

A. Theory of Mind Experiments

The famous Sally-Anne experiment goes as follows [1]:
• Sally and Anne are two friends who have two contain-

ers, a basket and a box respectively.
• After putting a marble in her basket, Sally leaves the

room (and is not able to observe the events anymore).
• After Sally’s departure, Anne moves the marble to her

box.
• Then, Sally returns to the room.

Based on the false belief possessed by Sally, she is expected
to search the basket for the marble, however the reality of
the situation is that the the marble exists in the box. This
experiment helps in posing three questions evaluating the
theory of mind for which the answers can be sought from
the observers:

1Manav Singhal is with the Department of Electrical and Electronics
Engineering, National Institute of Technology Karnataka, Surathkal, India
manavsinghal157@gmail.com

2Vidhi Jain, Dana Hughes, and Katia Sycara are with the Robotics
Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
{vidhij,danahugh,sycara}@andrew.cmu.edu

Fig. 1: The Sally-Anne experiment setup from [1]

• Where will Sally look for the marble? [First-order
belief]

• Where was the marble at the beginning? [Memory]
• Where is the marble really? [Reality]

The first question test the reasoning ability about Sally’s
belief about the location of the marble. Interestingly [1]
found that most children below the age of three were unable
to answer this question correctly as Sally’s belief is different
from the reality of the world.

This experiment, however, only modeled the first order
belief. People can even reason about other’s beliefs: Anne
believes that Sally believes that the marble is in the basket.
[2] experimented on second order beliefs. In their setup Mary
and John see an ice-cream van in the park, and the ice-cream
man tells them that he will be in the park until later in the
afternoon. Mary leaves the park and goes home. The ice-
cream man then decides to leave the park informing John
that he is going to the church. On the way, on seeing Mary
he informs her that he will be selling ice-creams close to the
church all afternoon. The question then posed was: ”Where
does John think Mary goes to get the ice-cream?”. Thus, John
has a second-order false belief about Mary’s belief. This is
a more complex cognitive task.

B. Related Work

To represent the agent desires and beliefs about the
environment, [3] models the agent planning and inference
problem as a Partial Observable Markov Decision Process
(POMDP). From the agents behaviour in the environment,
the beliefs can be attributed. A Dynamic Bayes Net (DBN)
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is employed to jointly model belief and desire inference over
time.

Inspired by the Sally-Anne experiment [1], and building
on the Bayesian theory of mind [3], [4] creates a fresh theory
of mind framework representing the mental state of minds.
This framework determines the actions and beliefs from a
latent state representation of the observation. It builds a
strong prior model to adapt to richer predictions and mental
states using a small number of observations thus increasing
the generalization capability. The limited data autonomously
modeling helps in greater reach of the framework. The agent
uses meta-learning to develop the prior from the behaviour
of the new agents.

Adopting visual cues to build on the theory of mind, [5]
focuses on identifying which agent has an incorrect belief
and when they are mistaken in a simple animated story. A
person can have a false belief for reasons such as including
occlusion or misinterpreting intentions. A person-centric
approach has been adopted to understand the belief of the
agent. A convolutional logistic regression is used for learning
over the images in the animated story. To answer the question
of who is mistaken, the classifier response is marginalized
across time while to answer the question of when they
are mistaken, the classifier response is marginalized across
people.

In contrast to the visual cues [5], [6] took to the language
modeling of the stories to model beliefs. [6] helps in compar-
ing existing theory of mind models on three created datasets
inferring beliefs from textual stories. Their proposed dataset
helps in addressing the problems in the existing bAbI dataset
[7] as they help to incorporate the observers of each event
in the story as well as add on to task of finding answers
to the second-order belief of the Sally-Anne experiment.
Keeping track of the belief held by an agent about other
agents is a hard problem. Hence, this resulted in existing
models performing worse on the dataset in comparison to
the one in [7].

None of the prior works have yet specifically delved into
the nuances of the search and rescue task. Hence, in our
work we aim to to do that by using the insights from [6] to
model our data generation for the search and rescue task as
well as create our framework inspired by [8] by maintaining
an observation annotation matrix.

Section II defines the general search-and-rescue problem
and our initial experiment design. Section III describes
the results of belief questions posed to the agent about
the location of the victim. Section IV concludes the main
takeaways from the results, brief about the challenges faced,
and discusses the future work.

II. METHODOLOGY

In this section, we describe the actual experiment design
for the search and rescue task performed by humans players
in the Minecraft environment along with our current basic
design to model the beliefs simulating a toy scenario of the

Fig. 2: Our current experiment map

case. We further delved into the data format and highlight
our technique to model the beliefs of the agents.

A. Experiment Design

In the search and rescue task, human players are given
the task of navigating an office building simulated in the
Minecraft environment [9]. There are three players who in
a collaborative effort try to rescue victims in this building
within a stipulated time. The three roles include a medic who
can triage the victims, a searcher who can move victims from
one location to another, and an engineer who can break the
rubble that might be found at different locations of the map
due to the disaster scenario. The players are supposed to save
both the critical victims yielding more reward and the regular
victims yielding lesser reward with the goal of maximizing
their score. The players are given partial maps indicating the
locations of a few victims. They also have communication
amongst the players to discuss their strategies. In addition to
this, the players also have three different markers represent-
ing no victim, a regular victim or a critical victim which they
can place to convey their observation of a particular location
to other players. However, the marker semantics given to
the three players varies, thus inducing false beliefs about the
semantics amongst the players.

Inspired by this design we broke the problem down to a
simpler version (Fig. 2), where we have three agents namely
the engineer, searcher and medic having the same roles as
mentioned above. With these three roles, we create a simple
representation map with two rooms, the hall, and one victim
in each room. We create stories illustrating a simple event
of searcher moving a victim and then try to understand the
belief possessed by the agent about the location of the victim.

B. Data Generation

Initially, we worked on manually creating the data to
represent the dataset created in [6]. This includes stories in
the form of sentences including the agent, its location, its
activity, and the observers of this event.

Example Data
Event Observers
Medic enters Hall 1
Searcher enters Hall 1 2
Engineer enters Hall 1 2 3
Searcher enters Room2 1 2 3
Medic enters Room1 1 2 3
Engineer enters Room2 1 2 3
Searcher moves Victim2 from Room2 to Hall 2
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Fig. 3: The framework we aim to implement

The numbers in the observers section follow the following
semantics: 1 is assigned to the medic, 2 is assigned to the
searcher, and 3 is assigned to the engineer respectively.

Once we established the required format for our case, we
worked on automating the data generation. We created key
verbs such as ’picks’, ’drops’, ’triages’, and ’enters’. From
this list of verbs we randomly generated a verb and checked
if it matched the activities that can be performed by the
randomly generated role of the agent. The sequence of the
verbs was kept in mind by generating verbs such as ’drops’
only after verbs such as ’picks’ so that the random generation
does not lead to arbitrary data being generated. The observers
for each line of input are generated from the matrix tracking
the location of the agents.

C. Belief modeling

The memory network model (MemN2N) which was pro-
posed by [10] used an external memory cache to read and
write into the memory as the story is parsed. [8] builds on
this work to incorporate an observation annotation matrix in
addition to memory network to improve the performance.
The observation annotation matrix is (M + 1) ∗ N matrix
where (M + 1) represents the number of agents along with
the oracle agent while N represents the input items for a
story. The matrix S is such that Sij = 1 if input item xi

is observable to agent j and 0 otherwise, where they assign
the oracle observer (who observes all input items) to the first
index. [6] which compared the performance of the different
models on the dataset created found the multiple observer
model to perform best on the ToM-Easy (each story has one
task) and second best in the ToM task with noise (stories with
multiple tasks along with random events added in between).
[8] demonstrates the cases of how an action can induce a
belief or a belief can result in an action. We aim to see
similar cases in our study. An example would be: An agent
on seeing Marker1 enters the room indicating they believe
a victim is there (Action inducing belief), An agent believes
Marker1 indicates a regular victim is present hence enters
the room (Belief leading to an action).

Given the good performance of [8], we aim to extend
this model to our use case. In our model (Fig. 3), we
aim to incorporate the agent observation along with the

Fig. 4: An example story input describing the searcher
moving the victim

Fig. 5: Output for the above story

communication between the agents at each time-step. The
field of view extractor is a grid within a perimeter of the
agent at a time-step from which the other objects/agents
present are represented. This information is passed through
a learning based processor (neural network), which along
with the history of beliefs of the agents will predict an
integer in the observer annotation matrix of an input item
corresponding to an agent. This integer is prior mapped to
a location of the input item or mapped to an indication
to a specific semantic. The training data for the learning
based processor will be obtained from the data generation
step where a similar matrix is generated for obtaining the
observers of an event. This matrix will hence indicate the
belief of the agent about an input item. The last column being
the oracle observer or in our case the artificial agent has the
ground truth values. From this matrix, based on the question
posed following a lookup based selection the theory of mind
predictions can be sought to answer the question about the
belief of the agent.

This paper explores the memory processing and the ob-
server annotation matrix of the proposed framework; incor-
porating vision and communication events from the test-bed
being envisioned as future work.

III. RESULTS

In this section, we describe the results of our current
implementation of the framework proposed. We generated
stories to model the different scenarios that might be encoun-
tered when the searcher moves a victim to another location
or the different marker semantics possessed by the agents.
From the events in the stories we generated the observation
annotation matrix as described in the previous section. Ques-
tions querying the matrix asking the questions similar to the
Sally-Anne experiment [1] outputted the correct results with
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respect to the memory, reality and first order belief. As it

Fig. 6: An example story input describing the marker being
placed

Fig. 7: Output for the above story

can be seen in the story (Fig. 4), the Medic witnesses the
event of the Searcher moving Victim1 from Room1 to the
Hall. Given the ground beliefs possessed by the three agents,
it can be seen that the Medic still believes Victim1 to be in
Room1 (False Belief). The memory based question indicates
correctly (Fig. 5) that the Victim1 was present in the Room1
initially while the reality question posed indicates correctly
the Victim1 is in the Hall. (Fig.7) demonstrates the answers
to the queries for the beliefs about the marker semantics and
the reality of the case. Overall, this method showed promise
in modeling the history of the locations of the agents and
victims, thus adequately modeling the beliefs.

IV. CONCLUSIONS

We found promising initial results on using the observation
annotation matrix to model the beliefs of the agents and
answer the queries about the theory of mind posed. The
observation annotation matrix helped to keep track of the
various beliefs held by the players while navigating the
environment in a model search and rescue task. We have
currently finished implementing the data generation, the
observation annotation matrix and the lookup-based selection
for the false belief induced by the searcher moving a victim.
We aim to scale the map and generate the field of view from
the story to incorporate that along with the communication
so that we could switch to a learning based method for the
processor. Further, we aim to delve into changing the input
items in the matrix into facts to standardize the value of the
matrix into binary.
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Evaluation of AutoML Systems Using OpenML Datasets

Maya Sitaram1, Jieshi Chen2, and Artur Dubrawski2

Abstract— Building machine learning (ML) models for real-
world data problems requires collaboration between domain
experts and data scientists, with manual programming efforts in
data cleaning, featurization, hyperparameter tuning and model
selection. With the introduction of automated machine learning
(AutoML), these processes could be handled automatically.
AutoML enables domain experts and data scientists to focus
on the underlying problem construction, to quickly prototype
solutions to new problems, and to boost productivity. As part of
Data Driven Discovery (D3M) program by Defense Advanced
Research Projects Agency (DARPA), the Auton Lab at Carnegie
Mellon University (CMU) has created an automated machine
learning tool, AutonML, which has outperformed other com-
peting D3M AutoML frameworks in several periodic DARPA
evaluations. In this paper, we evaluated the performance of
our AutonML system with comparison to three open source
AutoML tools such as H2O AutoML, Tree-Based Pipeline
Optimization Tool (TPOT) and Auto-Sklearn by computing
lift statistics and rank statistics under different time limit
experiment settings. We found that our AutonML did not
always outperform the other AutoML systems with the “top” 1
pipeline from training data. For some datasets, an alternative
“best” pipeline achieves highest performance on unseen test
data, which implies potential area of improvement of our
AutonML given the characteristics of datasets.

Index Terms— AutoML, automated machine learning, model
selection

I. INTRODUCTION
Machine learning models need to be individually tuned

with proper parameters and the best feature sets from the
data provided to improve the performance. This manual
tuning and data-cleaning process, also referred to as “Com-
bined Algorithm selection and Hyperparameter optimization
(CASH)”, requires the help of data scientists who are familiar
with ML algorithms and statistics [1]. As a result, ML model
development limits the involvement of experts familiar with
the problem domain, and is bottlenecked by the number
of available data scientists. With the advent of Automated
Machine learning (AutoML), the best ML model given a
prediction task is found automatically, allowing the end-user
to output predictions from unformatted data, without relying
on a data scientist [1].

An ML pipeline is a sequence of primitive algorithms
or modeling steps that are combined to transform the input
space (x) into target values (y). Primitive algorithms are gen-
erally learnable functions or models for data-cleaning, featur-
ization, hyperparameter tuning, model fitting, evaluation, etc.

1Maya Sitaram is with the Department of Mechanical Engineering and
Department of Computer Science, Johns Hopkins University, Baltimore,
MD, USA msitara1@jhu.edu

2Jieshi Chen and Artur Dubrawski, PhD, are with the Auton Lab,
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA
jieshic@andrew.cmu.edu, awd@cs.cmu.edu

An AutoML framework generates multiple pipelines which
are validated against a portion of the training data and ranked
by the scoring metric defined specific to the modeling task.
Then the pipeline that ranks the first on training data will be
applied to predict the unseen test data [2].

AutonML, which constructs prediction pipelines from a set
of primitive algorithms, is an open-source AutoML system
developed for the DARPA D3M project and has consistently
outperformed other AutoML systems in periodic DARPA
D3M evaluations. However, our system has not yet been
evaluated against non-D3M open source AutoML systems
such as H2O AutoML and Auto-Sklearn. The following
experiments aim to evaluate the performance of AutonML
and selected non-D3M AutoML systems and uncover the
advantages and limitations of our AutonML for further
improvement.

In this paper, we evaluated the prediction performance of
the Auton Lab AutoML framework, AutonML, with those of
selected open source AutoML frameworks, including Auto-
Sklearn, TPOT, and H2O AutoML. Each AutoML varies
in the complexity of the available algorithms in its search
space, searching processes and resulted pipelines. This paper
is not about the differences in implementations or pipeline
searching process among AutoML systems. Instead, we
perform a comparison of multiple AutoML systems based on
prediction performance given the same data task and same
training time. The datasets used for this evaluation are limited
to classification tasks of the OpenML datasets.

II. RELATED WORK

Studies on evaluation of open source AutoML frameworks
often use established AutoML benchmark datasets from
OpenML and Kaggle. Gsjibers et. al proposed an open source
AutoML Benchmark based on 39 OpenML datasets [3], [4].
Other studies have been curated for the specific evaluation
from Kaggle competitions or highly-dimensional datasets
that have been prepared into training sets of increasing size
(10K, 100K, 1 million,... instances) [1], [3]–[5].

A notable framework evaluation by Zoller and Huber, uses
137 datasets from OpenML benchmarking suites to evaluate
six publicly-available AutoML systems: TPOT, Hyperopt-
Sklearn, Auto-Sklearn, Random Search, Auto Tune Models
(ATM), and H2O AutoML. To establish baseline perfor-
mance measures, a simple Random Forest pipeline and a
Dummy Classifier used to make random predictions are
also run in tandem. The evaluation is run with 8-core
processors and 30GB memory. During evaluation, 4-fold
cross validation is performed per dataset, where 3 folds
are used for training and the last fold is used to calculate

274



test performance. The AutoML systems are provided with
binary and multiclass classification tasks, using datasets
which contain 500, 000 to 600, 000 samples and less than
7, 500 features. The AutoML systems are trained for a soft
limit of an hour, and a “hard limit” of 1.25 hours (at which
point the program is aborted). The AutoML systems are
compared using metrics such as average accuracy across
all data sets, normalized performance compared to baseline
learners, and average learning-test overfit (the difference
between performance on the train dataset and performance
on the test dataset). As a result, TPOT outperformed the
most frameworks averaged over all datasets [1]. Through this
objective evaluation, TPOT appears as a worthy candidate for
comparison against AutonML.

Other evaluations have been published by the developers
of AutoML systems themselves, and present the results
of their AutoML system performance compared to oth-
ers’. For instance, an evaluation published by developers
of AutoGluon Tabular compares their AutoML against five
other frameworks: AutoWEKA, Auto-Sklearn, TPOT, H2O
AutoML, and Google Cloud Platform (GCP) Tables. Similar
to the evaluation by Zoller and Huber, the evaluation is
run with 8-core processors and 32GB memory. Binary and
multiclass classification problems and regression problems
are provided to the AutoML systems from the Gsjibers
Benchmarking Dataset and selective datasets from previous
Kaggle competitions, and the AutoML systems are trained
for 1 hour. However, the metrics for comparison include
the rank of each framework (1-6) and loss [i.e. 1-Area
Under the Curve (AUC)]. In addition, AutoGluon Tabular
looks at each frameworks’ relative performance as compared
to AutoGluon AutoML – such as the number and types
of datasets in which the framework produced better or
worse predictions. As a result, AutoGluon ranks among the
top two frameworks on average is more robust with less
system failures [3]. Though AutoGluon is not included as
a candidate in our experiments, this evaluation presents a
list of AutoML frameworks commonly used for framework
evaluation. It also presents potential metrics for comparison
in our evaluation.

Similarly, the framework evaluation by developers of H2O
AutoML, compares H2O AutoML to AutoWEKA, Auto-
Sklearn, and TPOT. The hardware protocols, benchmark
datasets, and training time limits for each AutoML are con-
sistent with the previous two evaluations mentioned above.
The metrics for evaluation include log loss and AUC per
dataset. As a result, H2O performs favorably compared
to most frameworks on a variety of data types and for
large datasets [4]. This presents H2O AutoML as a worthy
candidate for comparison against AutonML.

Developers of Automatic Gradient Boosting AutoML
(“Auto-xgboost”). evaluate performance with comparison to
AutoWEKA and Auto-Sklearn. The experimental parame-
ters of this evaluation differ slightly as it is run with 28-
core processors and 64GB memory and the AutoMLs are
given a maximum runtime of 6h. Surprisingly, Auto-Sklearn
outperforms Autoxgboost and AutoWEKA on a majority of

the tested datasets (i.e. 9 out of 16 datasets), even though the
paper suggests that Auto-Sklearn has a larger “tuning space”
and more than one learning algorithm, which could present a
disadvantage compared to the single-learning algorithm used
in Autoxgboost [5]. However, given the performance results
of Auto-Sklearn and its repeated mention in other frame-
work evaluations, Auto-Sklearn is selected for comparison
against our AutonML. Patterns in the experimental setup and
comparison metrics of the evaluations mentioned above also
influence the methods of our evaluation.

III. METHODS

Experiments are setup to answer the following research
questions pertaining to the input space and performance of
different AutoML systems:

• How significantly does AutonML outperform others in
general? To answer this question, we computed relative
performance measures, or lift metrics, by normalizing
the performance of AutonML and other AutoML frame-
works by that of the baseline/majority-vote model.

• How does the distribution of predictions resulting from
our AutonML differ from those of other systems?

• What types of data tasks do our AutoML system out-
perform other frameworks by the defined metrics of the
problem?

• What datasets do AutonML fail to beat the other three
AutoML systems?

We evaluated our AutonML and selected three AutoML
systems, H2O AutoML, TPOT and Auto-Sklearn on 76
OpenML datasets of binary classification tasks. Experiments
were run on an 8-core Linux machine. A systematic eval-
uation framework was written to automate the experiments.
First, the evaluation framework randomly split each dataset
into training and test datasets. Then, it passes the identical
train-test split to each AutoML framework as inputs. With the
given inputs, pipeline search and fitting were executed under
three training time limits, which are 1 minute, 10 minutes,
and 20 minutes.

The AutoML systems search for the most optimal predic-
tion pipeline from training data to optimize the AUC score
as the ranking metric. For each AutoML, top 10 pipelines
and corresponding results were output and stored. For each
pipeline, the output included a .json file of the pipeline’s
model structure, the pipeline’s predictions of the training
data, the pipeline’s predictions of the test data, and the
pipeline’s AUC score on the training data.

The prediction files were used to calculate performance
metrics during runtime as well. We used the predicted labels
on the training data to calculate each pipeline’s accuracy
score as a second performance metric. Similarly, we used the
predicted labels on the test data to calculate each pipeline’s
accuracy and AUC scores on the test data. To obtain a
baseline accuracy score, a default classifier, which predicts
the majority-class label from the dataset for every data point
and performs similarly to a random classifier, was also
computed and recorded. Those forementioned performance

275



metrics were collected in a summary .csv file for each (1-,
10-, and 20-minute) training time limit

The 76 OpenML datasets vary in data sizes as well as di-
mensionalities. Some high dimensionality and sparse datasets
were chosen to challenge the AutoML systems’ predictive
abilities. For complex datasets, AutonML would oftentimes
override the allotted training time limit. Therefore, we allow
all AutoML systems to exceed the training time limit if
necessary, and the system execution will not be stopped.

We computed Rank and Lift metrics to normalize the
performance across datasets for fair comparison and feasi-
bility in summary statistics. For each dataset, the AutoML
systems were ranked from 1 to 5 based on the AUC score
of their predictions on the training data (“Training” AUC
score). They were also ranked based on the AUC score of
their predictions on the test data (“Test” AUC score). The
“Test” Lift, or the relative performance of each AutoML
compared to the default classifier, was computed by dividing
its accuracy score by the default accuracy on the test dataset.
Similarly, the “Training” Lift metric was also computed
by dividing each AutoML’s accuracy score by the default
accuracy score on the training dataset.

IV. RESULTS

After reviewing the output predictions from AutonML,
in the majority of the 76 datasets evaluated, the “top”-
scoring pipelines found from training data does not perform
well on the unseen test data. As mentioned previously, the
“top” pipeline has the highest AUC score on the training
data amongst all the pipelines searched. For these datasets,
however, the pipelines searched have poor predictive per-
formance; their AUC scores on the training data fall below
0.1, within the possible range of 0 to 1. Thus, we sus-
pect the pipelines might not be ranked properly by AUC,
and the “top” pipeline outperforms the rest pipelines by a
small margin. As we cannot guarantee the performance of
AutonML’s “top” pipeline on the test data, we collected
metrics from the AutonML’s “best” pipeline per dataset,
which outputs the highest AUC score on the test data.
Therefore, for our framework evaluation, we consider the
following five pipelines to represent the selected AutoML
systems for further comparison, the top pipelines of Auto-
Sklearn, TPOT AutoML, H2O AutoML, and AutonML, and
the best pipeline of AutonML.

A. Performance Over Time Budget

To illustrate performance over different time budget con-
straints, we plot the performance metrics on the test data
(AUC-based Rank and Accuracy-based Lift) for 1-minute-,
10-minute-, and 20-minute training time limits. Each data
point on Figure (1) and Figure (2) represents the average
performance of an AutoML system for the given training
time limit across all datasets. In addition, these figures
illustrate the performance of the other AutoML systems
tested relative to the performance of AutonML.

In Figure (1), the AutonML “best” pipeline remains the
top-scoring pipeline in terms of average AUC ranking, re-

Fig. 1. Average Rank per AutoML on Test Predictions across datasets for
each training time limit (1 minute, 10 minutes, 20 minutes).

Fig. 2. Average Lift on Test Predictions across datasets for each training
time limit (1 minute, 10 minutes, 20 minutes)

gardless of training time limit. For easier readability, the
y-axis is inverted such that the highest ranking pipelines
appear at the top. We observe that AutonML “best” pipeline
achieves the highest rank under the limited training time
constraint of 1 minute, which is significantly better in com-
parison to those of other AutoML systems. Following the
AutonML “best” pipeline are Auto-Sklearn, TPOT, H2O,
and AutonML “top” pipeline from highest-to-lowest rank.
Unexpectedly, there exists a large discrepancy between the
AutonML “top” pipeline (ranked from training performance)
and AutonML “best” pipeline (ranked from test-data per-
formance). The AutonML “top” pipeline ranks lowest for
all training time limits, and it ranks significantly lower than
TPOT for the 10 minute training time limit. As the ranking
is based on AUC, AutonML’s “top”pipeline has the lowest
AUC score and the “best” pipeline has the highest AUC score
on the test data on-average, over all training time limits. This
is contrary to the fact that, during pipeline search, the “top”
pipeline ranks above “best’ pipeline by the same scoring
metric of AUC.

As shown in Figure (2), the AutonML “best” pipeline
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TABLE I
LIFT AND RANK STATISTICS ON TRAINING DATA PER TRAINING TIMELIMIT, AVERAGED ACROSS N=76 DATASETS, ± STANDARD ERROR OF THE MEAN

1 minute 10 minutes 20 minutes
Avg. Rank Avg. Lift Avg. Rank Avg. Lift Avg. Rank Avg. Lift

Auto-sklearn(Top) 1.95 ±0.10 1.52 ±0.04 1.91 ±0.09 1.49 ±0.04 1.91 ±0.09 1.50 ±0.04
H2O(Top) 2.37 ±0.12 1.50 ±0.03 2.32 ±0.12 1.47 ±0.04 2.39 ±0.11 1.47 ±0.04

TPOT(Top) 1.63 ±0.10 1.54 ±0.04 1.61 ±0.11 1.54 ±0.04 1.50 ±0.09 1.54 ±0.04
AutoˆnML(Top) 3.90 ±0.07 0.89 ±0.06 3.86 ±0.07 0.89 ±0.06 3.92 ±0.07 0.89 ±0.06
AutoˆnML(Best) 4.59 ±0.09 0.76 ±0.07 4.63 ±0.09 0.76 ±0.07 4.66 ±0.07 0.76 ±0.07

TABLE II
LIFT AND RANK STATISTICS ON TEST DATA PER TRAINING TIMELIMIT, AVERAGED ACROSS N=76 DATASETS, ± STANDARD ERROR OF THE MEAN

1 minute 10 minutes 20 minutes
Avg. Rank Avg. Lift Avg. Rank Avg. Lift Avg. Rank Avg. Lift

Auto-sklearn(Top) 2.61 ±0.15 1.39 ±0.04 2.53 ±0.16 1.38 ±0.04 2.22 ±0.15 1.40 ±0.04
H2O(Top) 3.42 ±0.17 1.37 ±0.04 3.17 ±0.17 1.37 ±0.04 3.55 ±0.16 1.36 ±0.04

TPOT(Top) 2.70 ±0.17 1.41 ±0.04 2.66 ±0.18 1.42 ±0.04 2.49 ±0.16 1.42 ±0.04
AutoˆnML(Top) 3.58 ±0.18 1.26 ±0.05 3.71 ±0.17 1.26 ±0.04 3.75 ±0.16 1.26 ±0.04
AutoˆnML(Best) 1.63 ±0.09 1.43 ±0.04 1.82 ±0.10 1.43 ±0.04 1.92 ±0.11 1.43 ±0.03

achieves the highest average lift of accuracy on the test data.
Following the AutonML “best” pipeline are TPOT, Auto-
sklearn, H2O, and AutonML“top” pipeline from highest-to-
lowest lift. Unlike Figure (1), the top four pipelines do not
differ significantly in performance; AutonML “best” pipeline
does not achieve significantly higher lift for any of the
training time limits. Similar to Figure (1), though, the “top”
pipeline shows significantly poor performance and the lowest
average lift regardless of training time limit. As the lift is
based on accuracy, this means that the “top” pipeline has
the lowest accuracy and the “best” pipeline has the highest
accuracy on the test data on-average, over all training time
limits.

B. Training-Test Performance Discrepancies

To illustrate performance and relative training performance
compared to test performance, we compare the performance
metrics (accuracy-based lift and AUC-based rank) from the
test data versus those from the training data. Each data
point in Figure (3) and (4) represents performance of an
AutoML system on a single dataset, averaged across the three
time limits tested. Points along the diagonal at y=x indicate
identical training- and test- data performance.

Figure (3) indicates discrepancies between the rank of our
AutonML on training data and on testing data. The plot
compares the rank metric on training data versus that on test
data for each AutoML system. On this plot, the most ideal
performance is toward the upper right, which indicates that
an AutoML pipeline has the highest rank (based on AUC
scores) on both the training and test datasets. We observe
that AutonML’s “top” and “best” pipelines have a higher
AUC score on the test data than on the training data for the
majority of data tasks, which are those data points lie above
the y=x line. The other AutoML systems achieve higher AUC
scores on the training data than on the unseen test data, which
are data points that fall below the y=x line. It is expected that
models which fit to (and predict well on) the training data
are subject to perform relatively poorly on unseen test data.

Fig. 3. Average Rank per AutoML (based on AUC score) on Test
Predictions versus Average Rank of each AutoML (based on AUC score)
on Training Predictions

Fig. 4. Average Lift (based on accuracy) of Test Predictions versus Average
Lift (based on accuracy) of Training Predictions per dataset
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Fig. 5. Box and Whisker plot of the average difference between lift on
training-data predictions and lift on test-data predictions

In addition, we observe a cluster of datasets in the upper-
left, for which AutonML’s “best” pipeline ranks first on the
test dataset and ranks lowest on the training dataset. There
also exists a cluster of datasets at the lower left, for which
AutonML’s “top” pipeline ranks lowest for both training and
test datasets.

Figure (4) further illustrates the poor performance of
AutonML on the training dataset than on the test dataset.
AutonML “top” and “best” pipelines achieve higher lift
(based on accuracy) on the test data than on the training
data. For the majority of datasets evaluated, data points
of the AutonML’s “best” pipeline lie above the y=x line.
Similar to Figure (3), the data points of performance of
Auto-Sklearn, TPOT, and H2O fall below the line y=x; this
indicates greater accuracy on the training dataset than on the
unseen test dataset. AutoML systems with the most ideal
performance are toward the upper right, with high lift on the
training and test datasets. Very few of the “best” pipeline’s
data points lie in the upper right of the plot, indicating high
accuracy on the training and test dataset predictions. Instead,
we observe a cluster of datasets in the upper-right, for which
other AutoML systems (such as TPOT) have high training
and test accuracy.

To summarize the performance discrepancies, the box-and-
whisker plots in Figure (5) show the median and quartiles
of the lift statistics, as opposed to averaged lift statistics
in Figure (4). The y-axis is the difference between the
lift on training data and the lift on the test data, where
ideal performance is a difference close to 0. For more than
half of datasets provided to TPOT, Auto-Sklearn, and H2O,
the “training lift” is greater than “test lift” per dataset. In
contrast, for more than half of the datasets provided to
either “top” or “best” pipeline of Auto-Sklearn, test lift is
greater than training lift. In particular, the “best” pipeline
of Auto-Sklearn is more likely to have greater accuracy on
the test dataset, as the median of “lift” difference is below
0. Although the TPOT, Auto-Sklearn, and H2O boxplots
show several outliers, these outliers are within a smaller
range compared to the range of data points of the AutonML

boxplots. Therefore, there is greater variance between the
training and test lift of AutonML pipelines where some
datasets have severely poor training performance compared
to test performance.

C. Dependency of Performance on Dataset

To illustrate the performance of each AutoML system
based on size and type of data task, we explored the
correlation between performance metrics (AUC-based Rank
and Accuracy-based Lift) and various meta features of the
input datasets. In Figure (6) and Figure (7), we plot the
performance metrics versus the dimensionality (number of
columns) of the input datasets. Each data point represents
the performance of an AutoML system on a single dataset
at the 20-minute training time limit. Figure (6) compares
the AUC ranks of all AutoML systems on the test data, and
Figure (7) compares the lift scores in accuracy on test data
from “best” and “top” pipelines of AutonML.

Fig. 6. Raw rank (based on AUC score) of each AutoML system at 20
minute training time limit versus the number of columns per input dataset

Fig. 7. Raw lift (based on accuracy) of ”best” and ”top” AutonML pipelines
at 20 minute training time limit versus the number of columns per the input
dataset

By visual inspection of Figure (6), the AutonML “best”
pipelines achieve the highest ranks on the test datasets for
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various dimensionalities. We observe a cluster of datasets in
the upper left of the graph that AutonML “best” pipeline
outperforms other pipelines for low dimensional data with
fewer than 50 features. By visual inspection of Figure (7),
AutonML “best” pipelines show unexpected poor lift on low
dimensional datasets, some of which have lift below 1, indi-
cating that those pipelines fail to beat the baseline/majority-
vote classifier model accuracy.

Figure (6) and Figure (7) do not illustrate a clear linear
relationship between performance and various features of the
input space. To explore how AutoML performance metrics
are related to the meta features of the datasets, we devised
five binary classification tasks. We first compiled a list of
meta features and outcomes from our framework evaluation
over all 76 OpenML datasets under three training time limits
(228 data points in total). For each classification task, we
will train Random Forest models on meta features of the
input dataset to predict whether an outcome related to the
performance of AutonML pipelines will occur (‘1’) or will
not occur (‘0’). The target outcomes are defined as follows:

• AutonTopWins-Rank: the “top” pipeline outperforms
other pipelines by AUC-based Rank on test data

• AutonTopWins-Lift: the “top” pipeline outperforms all
other pipelines by accuracy-based Lift on test data

• AutonBestWins-Lift: the “best” pipeline outperforms
other pipelines by accuracy-based Lift on test data

• TopAndBestPipelinesIdentical: the “top” AutonML
pipeline found during training is the same pipeline as
the “best” AutonML pipeline on the test dataset

From the best model per classification task, we also
explored the feature importance and the distribution of the
top features across different class labels to get insights on
which datasets our AutonML might outperform others and
which datasets that our AutonML has poor performance.

As shown in Table (III), we train three models with
varying selections of input dataset features. The first model
is trained using OpenML dataset metadata only– such
as number of rows (‘NumberOfInstances’), number of
columns (‘NumberOfFeatures’), and number of missing val-
ues (‘NumberOfMissingValues’), and the accuracy of pre-
dicting the majority class on all datavalues (‘MajorityClass-
Accuracy’). The second model is trained using the metadata
features and a binary feature derived from whether the top
pipeline ranked from training data performs the best on
test data (‘TopAndBestPipelinesIdentical’). The third model
is trained using the metadata features and training time
limits, in seconds (‘Timelimit(s)’). The best model for each
classification task is selected by highest AUC score, marked
in bold in Table(III).

The feature importances of these best models are shown
in Table (IV). For every task, the top three important
features for prediction derive from the meta features of
the input dataset alone: including ‘MajorityClassAccuracy’,
‘NumberOfInstances’, and ‘NumberOfFeatures’. Additional
statistics obtained after running our framework evaluation
such as ‘TopAndBestPipelinesIdentical’ and ‘Timelimit(s)’
are comparatively unimportant. Next, we will analyse the

(a) (b)

Fig. 8. Distribution of ’MajorityClassAccuracy’ for (a) ’AutonBestWins-
Lift’ and (b) ’AutonTopWins-Lift’ Classification Tasks

(a) (b)

(c) (d)

Fig. 9. Distribution of ’NumberofInstances’ for (a) ’AutonBestWins-
Rank’, (b) ’AutonTopWins-Rank’, (c) ’AutonBestWins-Lift’, and (d)
’AutonTopWins-Lift’ Classification Tasks

value distribution of the top three most important features
within the ‘0’ and ‘1’ classes of each classification task:

1) ‘MajorityClassAccuracy’: In Figure (8), class=1 rep-
resents experiments for which “top” or “best” pipelines
achieve the highest lift among all pipelines. In either plot, the
distribution of ‘MajorityClassAccuracy’ between two classes
is not significantly different.

2) ‘NumberOfInstances’: Figures in (9) indicate that
AutonML may have higher chance to outperform other
frameworks by both lift and rank on smaller datasets with
fewer number of instances, but not outperform others on
large datasets.
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TABLE III
AUC SCORE FOR EACH MODEL (3) WITH VARYING SELECTIONS OF INPUT DATASET FEATURES, PER CLASSIFICATION TASK (5)

Input: metadata only
[228,4]

Input: metadata &
identical pipelines condition

[228,5]

Input: metadata &
training timelimits

[228,5]
Target Task [TopAndBestPipelinesIdentical] 1.0000 - 0.9605

[AutonTopWins-Rank] 0.9886 0.9837 0.9902
[AutonTopWins-Lift] 0.8734 0.9213 0.8851

[AutonBestWins-Rank] 0.8093 0.8043 0.8099
[AutonBestWins-Lift] 0.8750 0.8894 0.8300

TABLE IV
TOP THREE FEATURES OF BEST-MODELS FOR EACH CLASSIFICATION TASK, RANKED HIGHEST TO LOWEST IMPORTANCE

[TopAndBestPipelinesIdentical] MajorityClass-Accuracy (0.367), NumberOfFeatures (0.322), NumberOfInstances (0.262)
[AutonTopWins-Rank] MajorityClass-Accuracy (0.316), NumberOfInstances (0.307), NumberOfFeatures (0.287)
[AutonTopWins-Lift] MajorityClass-Accuracy (0.333), NumberOfInstances (0.316), NumberOfFeatures (0.219)
[AutonBestWins-Rank] NumberOfInstances (0.326), NumberOfFeatures (0.247), MajorityClass-Accuracy (0.241)
[AutonBestWins-Lift] MajorityClass-Accuracy (0.344), NumberOfInstances (0.340), NumberOfFeatures (0.218)

(a) (b)

Fig. 10. Distribution of ’NumberOfFeatures’ for (a) ’AutonBestWins-Rank’
and (b) ’AutonTopWins-Rank’ Classification Tasks

Fig. 11. Contingency Table between the number of experiments in which
AutonML’s top pipeline outperforms all pipelines, and the number of
experiments in which both AutonML pipelines are identical

3) ‘NumberOfFeatures’: In Figure (10), the AutonML
“best” pipeline outperforms the pipelines of other frame-
works for relatively lower-dimensional data with 25 or fewer
features. In contrast, the AutonML “top” pipeline is likely
to outperform other pipelines over a wider range of dimen-
sionalities– even for datasets with 50-70 features.

An interesting result is that the feature ‘TopAndBestPipeli-
nesIdentical’ did not rank among the top 3 features for
prediction of any of the five classification tasks. Although
‘TopAndBestPipelinesIdentical’ is not a meta feature of the
input dataset, it is interesting to determine if information

of whether the “top” and “best” pipelines are identical
(combined with information on the meta features of the
dataset) can predict the relative performance of AutonML
in a given experiment. Figure (11) illustrates a contingency
table of the feature of ‘TopAndBestPipelinesIdentical’ versus
outcomes of the classification task ‘AutonTopWins-Lift’. The
‘1’ class of the ‘AutonTopWins-Lift’ target column repre-
sents experiments for which the AutonML “top” pipeline
outperforms other pipelines by Lift. In element [‘0’,‘0’], we
observe that for the majority of experiments that the “top”
pipeline fails to outperform others, the “top” and “best”
pipelines are not identical. For experiments that the “top”
pipeline outperforms others, row [‘1’], there is an equal
likelihood that the “top” and “best” pipelines are identical
or different.

V. DISCUSSION

In most evaluations, our AutonML framework outperforms
TPOT, Auto-Sklearn and H2O AutoML, considering the
performance of AutonML’s “best” pipeline, or the pipeline
with the highest AUC score on the test data. Under the
current version of AutonML, however, the end-user would
typically apply the “top”-ranking pipeline with the highest
AUC score on the training data for prediction on the unseen
test data, which performs the worst compared to the other
publicly-available AutoML systems evaluated. An in-depth
review of pipeline ranking mechanism from training data is
needed given our observations. Furthermore, we have found
an interesting result that the “top” pipeline is more likely to
perform poorly when the “top” and “best” pipelines differ.

In our analyses, we also identified features of input
datasets for which our AutonML would likely outperform,
or perform poorly compared to other frameworks. Results of
our classification task suggest that AutonML pipelines have
the best performance on smaller-size input datasets, of 1000
or fewer rows. AutonML pipelines also appear to have the
best overall model performance (AUC) on lower-dimensional
datasets, of 25 or fewer features.
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A. Future Work

For a minority of datasets, AutonML the “top” and
“best”pipelines found during training and testing, respec-
tively, are identical. In future work, we need to review the
pipeline ranking process and ensure that the “best” pipeline
could be generalized with robust performance on testing
data. We also need to diagnose why the AUC scores during
training fall below 0.1, which might cause the “top”-ranking
pipeline to overshadow the true “best” pipeline for predic-
tion. Furthermore, we also want to identify the source of
discrepancies between training-and-test performance within
our system.

By understanding features of the data tasks which in-
fluence low AUC scores during training, we hope to find
ways to mitigate selecting the wrong pipeline. As an exten-
sion to this project, we may revise our classification tasks,
which use meta features of a dataset to predict whether
the AutonML “top” pipeline will win amongst all AutoML
systems, whether the AutonML “best” pipeline will win
amongst all AutoML systems, or whether the AutonML
“top” pipeline found during training will be identical to the
“best” pipeline for prediction

The current experiments and findings are limited to only
76 OpenML classification datasets. Thus, the findings might
not thoroughly represent other datasets and various data tasks
such as regression. Future work could focus on experiments
using a wider range of datasets and data tasks, as well as
longer training time constraints.

APPENDIX

Please See Table (V), attached, for summary of average
performance metrics and metadata features per OpenML
dataset evaluated.
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TABLE V
PERFORMANCE METRICS OF EACH AUTOML SYSTEM, AVERAGED ACROSS TRAINING TIMELIMITS, AND METADATA PER OPENML DATATASK

OpenML-
ID

No. of
Instances

No. of
Features

No. of
Missing
Values

MajorityClass-
Accuracy

AutonTop-
AvgRank

AutonTop-
AvgLift

AutonBest-
AvgRank

AutonBest-
AvgLift

15 699 10 16 0.6743 4.333 1.424 1.333 1.458
24 8124 23 2480 0.5022 5.000 1.000 1.000 1.991
27 368 23 1927 0.6630 4.667 1.180 1.667 1.295
31 1000 21 0 0.7040 5.000 0.420 1.000 1.091
37 768 9 0 0.6406 4.333 1.211 2.000 1.252
44 4601 58 0 0.6090 2.333 1.572 1.333 1.576
50 958 10 0 0.6458 5.000 1.194 3.333 1.535
56 435 17 392 0.6697 2.333 1.397 1.000 1.411
151 45312 9 0 0.5775 4.667 1.333 1.667 1.597
334 601 7 0 0.6821 5.000 0.883 2.667 1.466
466 340 15 834 0.5176 5.000 1.227 2.667 1.705
715 1000 26 0 0.5240 5.000 1.328 1.667 1.733
717 508 11 0 0.5748 5.000 1.425 3.000 1.534
723 1000 26 0 0.5680 4.333 1.620 2.667 1.592
728 4052 8 0 0.7720 5.000 1.000 1.000 1.293
729 44 4 0 0.6364 1.000 1.571 1.000 1.571
732 250 51 0 0.5238 4.333 1.485 1.333 1.515
733 209 7 0 0.6604 2.000 1.429 1.000 1.429
737 3107 7 0 0.5032 3.000 1.711 3.000 1.711
740 1000 11 0 0.6200 4.000 1.484 2.667 1.503
750 500 8 0 0.5280 1.000 1.318 1.000 1.318
755 62 6 0 0.5000 3.333 1.750 1.000 1.667
757 528 22 504 0.8864 5.000 0.128 2.000 0.974
758 67 15 0 0.7647 1.000 1.308 1.000 1.308
761 8192 22 0 0.7021 5.000 1.323 3.333 1.330
766 500 51 0 0.5440 5.000 1.132 3.000 1.662
767 475 4 0 0.8908 4.333 1.028 2.000 1.047
770 625 7 0 0.5159 5.000 1.185 1.000 1.938
792 500 6 0 0.5200 1.333 1.800 1.333 1.800
798 303 14 6 0.5789 2.333 1.023 1.000 1.091
799 1000 6 0 0.5360 5.000 1.590 3.000 1.627
803 7129 6 0 0.5311 5.000 1.776 1.333 1.772
805 500 51 0 0.6000 3.000 1.453 3.000 1.453
823 20640 9 0 0.5723 4.667 1.685 3.000 1.714
839 782 9 466 0.6122 2.333 1.558 1.000 1.542
841 950 10 0 0.5042 5.000 1.658 2.000 1.967
842 60 11 14 0.6667 4.667 0.500 1.667 1.300
873 250 51 0 0.5238 5.000 0.909 2.333 1.727
878 100 11 0 0.6000 4.667 0.933 1.000 1.400
903 1000 26 0 0.5560 2.000 1.655 2.000 1.655
913 1000 11 0 0.5680 2.000 1.655 2.000 1.655
936 500 11 0 0.5440 5.000 1.176 2.000 1.603
942 50 4 0 0.5385 5.000 0.571 2.000 1.048
945 76 7 0 0.6842 2.667 1.077 1.667 1.154
966 1340 17 20 0.9104 5.000 1.030 1.000 1.039
967 406 9 14 0.6275 3.000 1.469 3.000 1.469
968 365 4 30 0.9022 5.000 0.964 1.333 0.952
981 10108 69 2699 0.7341 3.000 1.226 3.000 1.226
983 1473 10 0 0.5637 5.000 1.048 2.000 1.317
987 500 23 0 0.8000 1.000 1.250 1.000 1.243
997 625 5 0 0.5287 5.000 1.627 2.333 1.880

1004 600 61 0 0.8667 1.000 1.154 1.000 1.154
1006 148 19 0 0.5405 5.000 0.850 1.000 1.550
1011 336 8 0 0.5357 3.000 1.822 1.000 1.822
1013 138 3 0 0.9429 3.667 1.000 1.000 1.000
1055 89 9 0 0.7391 5.000 1.000 1.000 1.059
1056 9466 39 0 0.9920 4.000 1.000 2.000 0.999
1073 274 9 0 0.5072 3.667 1.629 1.000 1.657
1444 1043 38 0 0.8851 4.000 0.978 2.333 0.978
1461 45211 17 0 0.8845 3.667 1.026 2.333 1.027
1462 1372 5 0 0.5627 5.000 1.725 1.000 1.775
1479 1212 101 0 0.5149 3.000 1.455 3.000 1.455
1488 195 23 0 0.7551 5.000 1.135 1.000 1.189
1489 5404 6 0 0.7054 1.333 1.295 1.333 1.295
1490 182 13 0 0.7174 2.000 0.818 2.000 0.818
1495 250 7 0 0.5714 1.000 1.750 1.000 1.750
1506 470 17 0 0.8475 2.000 1.010 1.000 1.000
40704 2201 4 0 0.6388 1.667 1.185 1.667 1.185
40713 3772 30 0 0.9894 5.000 0.011 2.333 1.001
40922 88588 7 0 0.5059 4.333 1.588 2.333 1.956
41143 2984 145 0 0.5054 5.000 1.000 1.667 1.605
41145 5832 309 0 0.5117 3.000 1.497 3.000 1.497
41156 4147 49 0 0.7753 3.667 1.114 2.000 1.123
41160 31406 23 29756 0.9019 5.000 0.989 2.667 1.008
41964 1424 257 0 0.5140 1.000 1.918 1.000 1.918
41973 319 257 0 0.5250 1.000 1.881 1.000 1.881
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OpenML-
ID

Autosk-
AvgRank

Autosk-
AvgLift

H2O-
AvgRank

H2O-
AvgLift

TPOT-
AvgRank

TPOT-
AvgLift

15 2.667 1.421 3.667 1.404 2.333 1.407
24 1.000 1.991 1.000 1.978 1.000 1.987
27 1.667 1.219 4.333 1.148 2.667 1.000
31 3.000 1.038 4.000 1.044 2.000 1.047
37 3.000 1.149 4.667 1.198 1.000 1.228
44 4.000 1.571 3.000 1.569 4.333 1.560
50 2.000 1.484 2.000 1.533 1.000 1.548
56 2.667 1.402 4.000 1.384 5.000 1.374

151 3.667 1.486 1.333 1.590 3.667 1.478
334 1.667 1.450 4.000 1.424 1.000 1.466
466 2.333 1.439 4.000 1.447 1.000 1.848
715 2.333 1.435 2.667 1.735 3.333 1.718
717 3.333 1.484 2.000 1.493 1.667 1.511
723 2.333 1.615 4.667 1.573 1.000 1.643
728 3.000 1.286 4.000 1.283 2.000 1.192
729 1.000 1.571 1.000 1.571 1.000 1.571
732 3.333 1.414 4.333 1.343 1.667 1.495
733 4.000 1.267 2.667 1.419 4.667 1.410
737 1.000 1.744 4.333 1.678 2.667 1.736
740 1.667 1.503 5.000 1.458 1.667 1.503
750 4.333 1.157 4.333 0.934 3.333 1.268
755 2.000 1.708 4.000 1.000 4.333 1.333
757 2.333 0.989 4.000 0.997 1.667 0.983
758 1.000 1.308 1.000 1.256 1.000 1.308
761 1.000 1.121 2.000 1.327 3.667 1.335
766 1.333 1.696 3.333 1.583 2.333 1.652
767 3.000 1.060 4.667 1.031 1.000 1.072
770 2.000 1.885 2.000 1.909 1.000 1.938
792 2.667 1.795 4.667 1.744 4.000 1.795
798 4.667 0.970 3.000 1.030 4.000 1.053
799 2.000 1.622 2.000 1.654 3.000 1.617
803 2.667 1.769 4.000 1.778 2.000 1.780
805 1.000 1.493 5.000 1.258 2.000 1.489
823 1.333 1.717 1.667 1.715 4.333 1.705
839 4.000 1.533 2.667 1.492 5.000 1.506
841 2.667 1.964 3.000 1.956 2.333 1.972
842 3.333 1.200 3.333 1.033 1.667 1.233
873 2.333 1.646 4.000 1.444 1.333 1.677
878 3.667 1.244 2.667 1.089 3.000 1.333
903 3.000 1.420 5.000 1.573 2.000 1.609
913 5.000 1.620 3.333 1.599 1.667 1.667
936 1.000 1.637 3.667 1.422 3.333 1.583
942 2.333 0.905 3.333 0.905 2.333 0.857
945 5.000 1.000 3.667 0.974 2.000 1.128
966 3.333 1.039 3.000 1.031 2.667 1.040
967 3.333 1.427 3.333 1.464 1.333 1.510
968 3.000 0.936 3.667 0.916 2.000 0.940
981 1.667 1.150 1.333 1.226 5.000 1.218
983 3.333 1.152 3.000 1.277 1.667 1.316
987 1.000 1.250 3.667 1.207 1.000 1.250
997 1.333 1.871 4.000 1.799 1.667 1.884
1004 1.000 1.154 4.333 1.144 4.667 1.131
1006 1.667 1.267 3.333 1.450 3.667 1.683
1011 3.333 1.822 2.667 1.807 5.000 1.793
1013 1.667 1.000 2.667 1.000 5.000 1.000
1055 3.000 1.000 3.667 1.020 2.333 1.039
1056 2.333 1.001 4.000 0.997 2.667 1.000
1073 2.333 1.210 3.333 1.571 4.667 1.429
1444 3.000 1.000 4.333 0.812 1.333 0.978
1461 3.000 1.008 1.000 1.005 5.000 1.020
1462 1.000 1.777 3.000 1.769 1.000 1.772
1479 1.000 1.932 5.000 1.840 1.333 1.917
1488 2.000 1.207 4.000 1.144 2.667 1.198
1489 3.667 1.257 5.000 1.261 2.667 1.282
1490 4.000 0.939 5.000 0.576 1.000 0.859
1495 1.000 1.750 1.000 1.704 1.000 1.722
1506 3.333 0.980 4.333 0.963 4.333 0.983

40704 2.000 1.205 3.667 1.138 4.333 1.175
40713 3.333 0.997 3.333 1.002 1.000 1.000
40922 3.333 1.744 1.000 1.958 4.000 1.931
41143 1.333 1.606 3.000 1.614 4.000 1.602
41145 1.000 1.593 4.000 1.454 3.000 1.508
41156 1.000 1.072 4.667 1.030 3.667 1.105
41160 2.000 1.002 1.667 1.014 3.667 1.010
41964 3.667 1.905 5.000 1.823 3.333 1.903
41973 1.000 1.873 5.000 1.635 1.000 1.905
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Ensembles for Online Dynamics Modeling of Off-road Terrain

Matthew Sivaprakasam1, Samuel Triest2, Wenshan Wang2, Sebastian Scherer2

Abstract— Planning for autonomous ground vehicles has
improved greatly over the past decades. They have become
effective by using algorithms that take into account inherent
structure and geometry in the surrounding environment. How-
ever, the same techniques are more likely to fail when brought
off-road where there is less structure and complex terrain.
There is still a need for planning techniques that effectively han-
dle physical interactions between a vehicle and its surroundings.
Motion planning for off-road terrain often employs some sort
of dynamics model specific to a given robot, but these often only
include properties specific to the robot itself, and don’t account
for the fact that these properties are affected by the robot’s
physical environment. We propose an approach which includes
an ensemble of classical models. These dynamics models are
generated offline in a semi-realistic simulation that accounts for
a wide array of physical environmental properties. A higher-
level model is then trained online to choose which dynamics
model to use given the performance of previous decisions. This
approach results in more accurate state predictions compared
to the baseline in simulation in complex terrain.

Index Terms— Learning from Experience, Dynamics, Model
Learning for Control

I. INTRODUCTION

Path planning and control for robots has made great strides
in the past years. In planning, hand-tuned costs can be
designed to take advantage of structure and geometry in
an environment in order to find an optimal path [1]. In
order to ensure that a path is kinodynamically feasible, some
planning algorithms will also employ some sort of vehicle
model that determines what states a robot can reach from
its current state. A controller can then use the same model
when outputting commands in order to track the desired path.
This general approach tends to work well for organized and
structured environments [2], [3]. For example, autonomous
driving in urban environments is a relatively constrained
problem, when it comes to physical interactions with the
environment. Due to urban infrastructure, there is a limited
number of types of surfaces a car is expected to drive on.
Each of these surfaces are generally consistent in terms of
physical properties like friction and deformability, which
means that simpler models can be used to predict how a
vehicle will respond on them.

The consistencies taken for granted in structured environ-
ments are often unknown and erratic in off-road environ-
ments. Due to obstacles like unpaved surfaces, shrubbery,
rocks, and deformable objects, the physical properties of the

1Matthew Sivaprakasam is with the University of Pittsburgh, Pittsburgh,
PA 15213, USA. mjs299@pitt.edu

2Samuel Triest, Wenshan Wang, and Sebastian Scherer are with the
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
{striest,wenshanw,basti}@andrew.cmu.edu

ground can change even within the span of a meter. This
makes it much more difficult to use a single simple model
to make predictions the same way it might be used in a
simpler environment, as the optimal model changes as the
environment changes. Moreover, it is difficult to determine
the best model prior to deployment without having extensive
knowledge of the given environment beforehand.

In order to use kinodynamic planners and controllers ef-
fectively in off-road environments, accurate vehicle modeling
is needed. Complex models can be used, for example neural
networks, but they require extensive amounts of diverse data
in order to be robust to a variety of terrains. Additionally,
they rely primarily on data collected prior to deployment
rather than on data collected in real-time. In this work we
instead propose an ensemble comprised of simple models,
that learns online in order to make effective predictions.
Transfer functions to predict velocity and steering angle were
trained on different types of surfaces, and each model uses
one of them to predict the next state of the robot. The
effectiveness of each expert in previous decisions is taken
into account when making the next decision. By updating
the model online, we demonstrate higher accuracy in state
predictions compared to the baseline of using a single static
model.

II. RELATED WORK

There are several prior works related to the deployment
of robots in off-road environments. Xiao et al. introduced a
data-driven kinodynamic planner for fast off-road navigation
[4]. They learn a neural net that takes in IMU information
and a desired state and outputs control commands. It takes in
no vision-based perception (e.g. lidar, camera), and instead
train the inverse kinodynamics model on the IMU data alone.
Their work establishes the fact that physical changes in
an environment are hard to model by hand but can still
significantly affect the dynamics of a vehicle. While Xiao’s
work employs a model trained offline, online approaches
are also becoming more common [5]–[7]. Work by Kumar
et al. introduces a framework with both an offline and an
online phase [8]. The first phase involves learning an encoder
to map environment properties (for example friction and
terrain height), and then using that as an input for model-free
reinforcement learning. The goal of the online component is
to map the previous states and actions to the latent vector
since physical properties of the environment aren’t easily
available outside of simulation. By using the different inputs
for the online component they are able to address some of
the problems that arise with sim-to-real transfer. There are
also a number of papers that use learned dynamics models
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Fig. 1. The car used in simulation, and an example of a randomized terrain.
Red areas correspond to lower friction and green areas correspond to higher
friction.

directly [9], [10]. Work by Tremblay et al. proposes a way of
supplementing prior state information with IMU, camera, and
lidar information in order to improve dynamics predictions
[11]. They treat each of the sensors as different experts, and
learn how to prioritize each modality based on the state,
which provides a promising method of indirectly extracting
environmental information off-road. Xiao’s, Kumar’s, and
Tremblay’s works all show the promise of using previous
state information in making new decisions in unstructured
environments.

III. METHODS

A. Physically-realistic Simulation Environment

Due to the necessity of realistic physics, a custom simula-
tion environment was set up in pybullet [12]. The vehicle in
simulation was a highly-configurable 4-wheeled robot with
parameters such as max throttle, max steering angle, mass,
friction, and suspension limits, damping, spring force. A
configurable sensor suite was also implemented for the robot,
including front-facing camera, IMU, lidar, shock travel (from
suspension), heightmaps, and friction maps. Together, the
accurate physics alongside thorough sensors are an attempt
to reduce future sim-to-real transfer problems.

B. System Identification and Dynamics Modeling

In order to perform system identification, data was sys-
tematically collected in various simulation environments that
were created by iterating through a range of slopes and
frictions. In each environment, step responses were collected
in a range of magnitudes for both commanded velocity and
steering angle. This allowed us to model transfer functions
that map from commanded to actual velocity and steering,
which was accomplished by fitting third-order ARX (autore-
gressive with exogenous input) time-series models. These
models, trained on the step response data using the L-BFGS
optimization algorithm [13], maintain buffers of the past 2

Fig. 2. Velocity and steering transfer functions collected on two surfaces
with different friction.

Fig. 3. Kinematic Bicycle Model

states and commands and use them along with the current
state and command to output a predicted state. The transfer
functions were generated systematically, so for N different
friction values and M slope values in data collection, there
are a resultant NxM total transfer functions each for velocity
and steering angle as shown in Fig. 2.

For modeling the system dynamics, the kinematic bicycle
model is used Fig. 3. The model has a three-dimensional state
space comprising of location and heading in 2D space (using
the rear axle as reference point). It has a single parameter
L (vehicle length) and, given an input velocity and steering
angle (yaw), predicts the change in state using the following
update rules: ẋẏ

θ̇

 =

 v ∗ cos(θ)
v ∗ sin(θ)
v ∗ tan(δ)/L


where x and y are horizontal and vertical position, θ is

heading, v is velocity, and δ is yaw. To predict the next state
of the robot, the input velocity and yaw are first predicted by
feeding in the commanded and current velocity and yaw into
their corresponding transfer functions. The predictions along
with the current state are then fed into the bicycle model
which outputs the next state.

As previously mentioned, all the transfer functions were
generated in environments with different physical charac-
teristics (slope and friction). Given the same input states,
there is a variation in predictions across all the transfer
functions, which impacts the predictions that come out of
the bicycle model (Fig. 4). In theory, the variations together
encompass the different possibilities of resultant states given
any physical properties of the environment, provided that
they are within the range of properties the ensemble of
transfer functions themselves were trained on. Moreover, the
set of transfer functions that results in the most accurate

Fig. 4. Predictions using various transfer functions forward-sampled 10
steps into the future
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Fig. 5. The index of the best expert over time

predictions changes over time as a vehicle moves through
complex terrain (Fig. 5).

C. Online Learning

In a ”constant” environment, in which the physical prop-
erties are the same across the whole terrain, there would
exist a single transfer function from the ensemble that always
results in the best predictions. In this case, it would only take
monitoring the predictions from the entire ensemble for a
few steps to evaluate which transfer function has the highest
performance. However, this strategy doesn’t work in more
realistic environments, where there are lots of variations
in the terrain. Changes in the physical properties of the
terrain means that the expert from the ensemble with the best
performance also changes as the vehicle navigates the terrain
(see Fig. 6). In order to address this problem, our method
acts online by taking immediate feedback into consideration
when choosing which transfer function to use to predict the
next state.

Prior to the online component, an ensemble of experts is
initialized offline. Each expert consists of a pair of transfer
functions, one for velocity and one for yaw generated from
a specific friction and slope, and a kinematics model (in this
case they are all the same bicycle model). The experts take in
an observed state (x, y, θ) and command (v, δ), feed it through
their corresponding transfer function and models, and output
a prediction for the next state. A vector of weights, one for
each expert, is also initialized so that all experts start with
the same weight.

The online component runs with each step in simulation.
In a given step, all experts output a prediction based on the
current state and command, and a pre-determined policy is

Fig. 6. The cumulative losses of various experts over the past 50 steps at
different points in time. Loss is defined as the distance between the predicted
state and the ground truth state.

used to select an expert based on their current weights. The
next state is then observed, and a loss vector is generated by
calculating the L2 distance between each expert’s predicted
state and the ground truth state (x, y, θ). This loss vector
is used to update the weights vector based on the policy,
and the new weights are used to make the decision in the
next simulation step. For the Randomized Weighted Majority
(RWM) policy [14], all weights are updated as follows:

W [i] =W [i] ∗ e−η∗l[i] (1)

where W is the weights vector, i is the index of the expert
in the ensemble, η is a fixed hyper-parameter, and l is the
loss vector. The weights are normalized to sum to 1 after
each update. For the Generalized Weighted Majority (GWM)
policy [14] only the weight for the chosen expert is updated:

W [i] =W [i] ∗ e−
√
log(S/T )∗l[i] (2)

where S is the number of experts, and T is the total number
of steps that have occurred. For the Exponential-weight
algorithm for Exploration and Exploitation (EXP3) policy
[15] again only the weight for the chosen expert is updated:

p =
W [i]∑
W

(3)

η =

√
log(S)

T ∗ S
(4)

W [i] =W [i] ∗ e−η∗l[i]/p (5)

All the policies implemented so far have the same decision
process for choosing an expert, which involves using the
weights as a probability vector and making a random deci-
sion based on those probabilities. However we did also use
another strategy where, instead of choosing an expert, a new
prediction is generated by taking the weighted average of all
the expert predictions. These policies allow the learner to use
the effectiveness of past predictions in the decision process
for current predictions.

IV. RESULTS

As established earlier, there is not one transfer function
that consistently results in the best predictions. Since the loss
of each expert relative to the others changes over time (Fig.
6), the improvement our method provides can be indicated
both by observing the distribution of expert predictions, as
well as by comparing it to the baseline method (using a single
transfer function for all predictions). Fig. 7 shows examples
of the predictions of all experts in 2D space over time. As the
vehicle moves across terrain in simulation, we observed that
there are some areas with a small spread of predictions as
well as areas with a wide distribution of predictions. Even
when the distribution gets wider, the learner’s predictions
stay close to the ground truth, which shows the benefit of
learning off of the varying loss of the experts relative to
one another. For example, Fig. 8 shows how using a single
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Fig. 7. Predictions of all experts in 2D space as the vehicle traverses terrain
in two separate experiments.

Fig. 8. Left: the distribution of all expert predictions in 2D space; Right:
the accuracy of predictions from the learner compared to using a single
transfer function.

transfer function for each prediction results in some areas
with inaccurate predictions compared to using a learned
prediction.

Additionally, the regret of the learner over time is ob-
served, where regret is defined by the difference between
the learner’s cumulative loss and the minimum possible
cumulative loss. Fig. 9 shows the regret of the learner
over time in two different experiments. Decreasing regret
values indicate good performance of the learner, since this
corresponds to being as accurate as the best expert at any
given time. The spikes of increased regret at various points
correspond to changes in the terrain. This can be explained
by the temporal nature of the learner, in that it will have
higher weights for the expert that has been the most accurate
recently. Therefore, when the terrain changes suddenly, the
best expert changes drastically and the learner needs time to
adjust accordingly.

Fig. 10 shows the performance of the different policies we
experimented with. The more jagged loss of the GWM and
EXP3 policies are likely explained by the fact that only one
expert’s weight is adjusted in each time step, compared to
the smoother changes in loss from the RWM and weighted
average resulting from all weights being updated at every
step. Overall, the weighted average policy consistently out-
performed the other policies.

Fig. 9. The regret of the learner over time in two different experiments.

V. DISCUSSION AND FUTURE WORK

In this work we first establish that a wide range of transfer
functions can be used to collectively represent the results of
a vehicle driving in uneven terrain with variable friction, and
that their individual performances vary as the terrain varies.
We then demonstrate that online ensemble methods can be
used to provide an improvement over using a single model
by taking into account previous rewards when making new
decisions. This behavior allows it to perform at least almost
as well as the best expert, which varies greatly over time, at
any given step.

Our immediate next step involves validating our method
on a physical platform. We have an all-terrain vehicle (ATV),
shown in Fig. 11 fitted with the same sensors that we setup
our simulator. We plan to collect an ensemble of transfer
functions on the ATV, and see if we observe the same
improvement from online ensembles in order to show that
our contribution has real-life applications.

Our method is also lightweight enough to integrate into
downstream tasks, like planning and control. There are both
planners, like kinodynamic RRT*, and controllers, like MPC,
that work best when they have highly accurate vehicle
models. They involve forward-sampling the vehicles state
over multiple steps, so any error in the model ends up causing
a drift in the predictions from the ground truth. In theory,
the improvement that the online ensemble provides should
help reduce this drift.

One limitation however, is its reliance on systematically
collected data, which is difficult to accomplish in real-life.
One way to address this is by collecting fewer transfer
functions and just interpolating their parameters to artificially

Fig. 10. The loss of the various learner policies over time.
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Fig. 11. Our physical platform for real-life testing

generate more. However, it would probably be better to
incorporate some approach that doesn’t require any prior
knowledge of the environment at all. This way, the ensemble
would be agnostic to the range of properties in a given
environment.
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Multi-robot Simulation Dataset to Analyze Distributed Inference Under
Perceptual Aliasing

Thomas Snyder1, Sudharshan Suresh2 and Michael Kaess3

Abstract— Distributed simultaneous localization and map-
ping (SLAM) allows multiple robots to map a larger area
and develop a common understanding of the environment with
a decreased single-robot workload. A persistent problem in
SLAM algorithms is perceptual ambiguity; different scenes may
induce similar sensory signals, causing the SLAM frontend to
create erroneous constraints between nodes in the underlying
pose graph. Identifying scenarios in which perceptual ambiguity
occurs is important in evaluating algorithm resilience. In this
paper, we simulate environments that may induce ambiguous
sensor readings in metric semantic SLAM with the iSAM2 algo-
rithm. We find inconclusive results, but detail future experiment
directions in environments for perceptual ambiguity.

Index Terms— Autonomous Agents; Data Sets for SLAM;
Multi-Robot SLAM; SLAM; Distributed Robot Systems

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is the
process of building an understanding of an environment
while also determining one’s pose (position and orientation)
within said environment. Robots typically perform active
SLAM — moving around and interacting with the environ-
ment in question — to build their map. Map building is often
accomplished by storing sensor measurements and landmarks
in a data structure known as a pose graph. Pose graphs incor-
porate robot poses and environmental features (landmarks)
as nodes connected by factors. Environments often contain
features that make localizalizing within (and by extension
mapping) them challenging. Unsafe scenarios occur when the
SLAM algorithm fails because SLAM constitutes the robot’s
world perception. Consequences range from the minor case
(e.g. a robot loses its way within a building) to catastropic
(e.g. an autonomous vehicle that fails to recognize a turn in
the road).

A common phenomenon that induces failure is perceptual
aliasing, where two different areas in the environment look
identical through the robot’s sensors. For example, two
corridors that look similar, but are on separate floors of a
building may induce perceptual aliasing and cause the robot
to believe it is on a different floor (See Figure 2). Perceptual
aliasing can cause incorrect data associations and result in
erroneous constraints within the robot’s pose graph, which
affects the final map produced by the SLAM algorithm.
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2Sudharshan Suresh is with the Robotics Institute, Carnegie Mellon
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Fig. 1: The complete simulation user interface with the farm
environment.

Failure in a single robot system often results in an incomplete
task and requires an expensive, well-equipped robot.

Robot teams have become an interest within the SLAM
literature. Multiple robots possess the ability to effectively
understand an environment while reducing the workload
of a single agent, requiring less computational power, and
ultimately, less cost per robot. Centralized multiple robot
SLAM systems use the team to gather and relay information
to a single robot, which then performs optimization. Decen-
tralized algorithms split the workload across the team, which
improves robustness and reduces the computational workload
of a single robot. Multiple robot systems are robust in that
they may withstand hardware failure and still complete the
task.

Despite utilizing multiple robots, perceptual aliasing re-
mains an important problem to solve due to its ability to
interfere with pose graph optimization via erroneous data
constraints from false loop closures. Real world research into
algorithm failure modes caused by perceptual aliasing intro-
duces safety hazards and nondeterministic conditions. Unsafe
conditions may result in expensive and time-consuming set-
backs due to hardware damage or injury. Simulation creates
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Fig. 2: (Top) The entrance to the bathrooms on the first
floor of the learning and innovation center at Oregon State
University. (Bottom) The entrance to the bathrooms on
the second floor of the same building. The two corridors
are identical in metric perception and are visually similar.
This scenario is likely to cause erroneous data associations
(perceptual aliasing).

a closed, safe environment to verify algorithms before testing
in the real world. Real world is also limited by the options
for variable environments. Environment reconfigurability is
important for testing generalizable algorithms; simulation
enables flexible dataset generation with less time and no
added cost when compared with real-world experiments. For
these reasons, we introduce three adversarial datasets that
target perceptual aliasing to test existing metric semantic
SLAM algorithms. These datasets may be easily extended
to the multiple robot distributed SLAM case.

This paper is organized as follows: Section II details
the distributed SLAM methods, SLAM datasets, and lack
of datasets with perceptual aliasing. Section III details the
three environments that we created. Section IV explains our
results, and Section V discusses the implications of this work
and future work.

II. RELATED WORK

Distributed SLAM enables multiple inexpensive robots to
efficiently map an area while maintaining data privacy and
independence from a powerful, centralized solver. Decen-
tralizing SLAM requires incorporating multiple, sometimes
inconsistent, measurements to assemble a coherent map of
an area. Distributed data fusion smoothing and mapping
2.0 (DDF-SAM 2.0) was proposed to solve this problem
[1]. The technique assembled local maps and periodically
ran batch summarization to share maps with neighboring
robots; data was fused through shared landmark observations.
Choudhary et al. approached data fusion through a different
pose graph formulation that incorporated inter-robot (robot-
to-robot) and intra-robot (e.g. odometry) constraints [2]. Tian
et al. proposed a distributed pose graph optimization (PGO)
algorithm for collaborative SLAM based on Riemannian
block coordinate descent, which is provably correct, but re-
quires robot synchronization [3]. Tian et al. later removed the
dependence on synchronization, which improved algorithmic
robustness [4].

Distributed SLAM extends the classic SLAM front-end to
incorporate factors from other robots. Wireless communica-
tion facilitates measurement dissemination between robots;
although, operational scenarios often require lightweight,
efficient wireless channel usage. Alongside their contribution
to back-end fusion, Choudhary et al. incorporated high-level
semantic representations in the front-end to address band-
width constraints when sharing information among neigh-
boring robots [2].

Robust distributed inference requires addressing algo-
rithmic failure-modes. Perceptual aliasing is a well-known
challenge, which often causes erroneous data associations
that may induce failure-modes in existing active SLAM
algorithms [5]. Methods commonly used to overcome this
issue in single robot SLAM include maintaining multiple
hypothesis on the environment [6], [7], explicitly modeling
the aliasing [8], [9], or consistency checking against a trusted
source of data [10]. Realizing, Reversing, and Recovering
(RRR) verified loop closures by topologically partitioning
the pose graph into “clusters,” which were checked for con-
sistency against other clusters and the sequential constraints
produced by robot odometry, which assumed odometry data
was outlier-free [10]. Lajoie et al. tackled the odometry
assumption by modeling the perceptual aliasing in the pose
graph with discrete switching constraints [8]. Both of the pre-
vious examples synthetically incorporated perceptual aliasing
via false data associations during experimentation.

Simulation is an important first step in algorithm verifica-
tion, especially when testing algorithmic safety in challeng-
ing scenarios. Many algorithms benchmark performance on
standard real world datasets in which erroneous constraints
are artificially added [8], [10], [11]. Few progress to testing
within photo-realistic 3D simulations, and even fewer im-
plementations are on real robots [11], [12]. DOOR-SLAM
tested a five-robot team using the ARGoS Simulator and a
single, empty 2D environment and progressed to real world
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Fig. 3: (Top) The view facing the x-axis from the point (20,
100). (Bottom) The view facing the y-axis from the point (20,
20) meters. Notice the only visual difference in the shadow
and lighting conditions.

robots [11]. Although DOOR-SLAM performed well in the
real world, the 2D environment introduced limited perceptual
ambiguity via sparse, similar features. The ARGoS map did
not encompass other, more challenging, real world scenar-
ios. For example, farming applications need to effectively
navigate kilometers of uniform rows.

This paper builds on previous datasets, which were uti-
lized in experiments involving GPS-denied scenarios. The
previous environments included a military base [13], a hos-
pital floor, and a bank [14]. More challenging scenarios
that incorporate features, such as environments with high
amounts of symmetry are necessary to verify algorithmic
robustness in a safe environment. We implemented three
simulation environments that incorporated semantic labels on
objects and features likely to induce erroneous constraints via
perceptual aliasing.

III. METHODS

We modeled three environments that may induce per-
ceptual aliasing: a farm, a parking garage, and a forest.
The environments were built using the Unity game engine
coupled with ROS to simulate and command the robots
and their stacks. For each dataset, we created a trajectory

based on velocity commands and performed ten trials. The
inference algorithm was benchmarked via computed absolute
trajectory error (ATE):

ATE =
( 1
N

N−1∑
i=0

‖Xi − X̂i‖2
) 1

2 , (1)

where X is ground truth trajectory and X̂ is estimated
trajectory.

A. Environment I: Tree Farm

The first environment we tested was the field of a tree
farm. Farms often possess large swaths of highly symmetric
land with regularly spaced produce. The farm environment
placed a two meter tall tree every 7.5 meters in a square
pattern with 15 rows on a side. The first row was placed 7.5
meters from the origin. Walls bound the dataset on all four
sides. Each wall is one meter thick with its center placed
7.5 meters away from the trees, totaling a square with 120
meter sides and walls placed at 120 meters from the origin.
Robots were placed 20 meters from the corner of the arena.
The regularly spaced trees and walls were meant to induce
perceptual ambiguity via similar visual footprint (see Figure
3).

B. Environment II: Parking Garage

An empty parking garage was also selected because each
floor is often identical to the previous floors (see Figure 2).
In this case, the parking garage we used was a free asset
from the Unity Asset store [15]. Each floor is 2.5 meters
tall. The garage consists of four floors, excluding the roof,
which may be accessed via a stairwell. Floors two and three
are highly symmetric, with minor differences. Each floor
has two ramps that provide access to the adjacent floors.
The first and fourth floors are similar, but contain unique
features, such as the parking garage entrance on the first
floor and the lack of ramps leading to the floor above (See
Figure 2). The Testing was not performed on this dataset
due to the lack of sufficient support for Warthog z-axis
navigation without manual intervention. Future work will
extend the robot navigation stack to incorporate the necessary
intelligence for traversing inclines with the express purpose
of attaining a goal in an elevated area.

C. Environment III: Forest

The final dataset is an old-growth forest, with five thou-
sand trees randomly dispersed throughout the one kilometer
square environment. Previous attempts with ten thousand
trees proved to be too dense for the robot’s planner. Al-
though tree placement is random, types of trees are not
distinguishable to the robot (all labels are simply “tree”),
and odometry drift coupled with the large number of trees
increases the likelihood of inducing erroneous loop closures
in the underlying pose graph. The forest environment is a
highly applicable scenario with a large body of single robot
work, yet distributed inference has not to our knowledge
begun testing on such datasets [16].
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Fig. 4: (Top left) The first floor of the parking garage, taken from the entrance. (Top right) Second floor of the parking
garage. (Bottom left) Third floor of the parking garage. (Bottom right) Fourth floor of the parking garage. Notice that the
floor layout on floors two and three is identical, causing similar metric and visual measurements. The fourth floor lacks the
ramps that access the upper floor, and the first floor includes the entrance (the view of the back wall is behind the camera
in the second, third, and fourth floors, but is identical for those three floors).

Fig. 5: Two views from the forest dataset that are 100 meters
apart in the x-axis.

Environment ATE Average (m) ATE Std. (m)

Farm 39.41 23.76
Forest 18.45 6.56

TABLE I: Absolute trajectory error for farm and forest
datasets averaged over all ten trials.

Parameter Value

Environement Farm/Forest/Parking Garage
Robot Clearpath Robotics Warthog
Sensing IMU, LIDAR, Stereo camera, Monocular camera
Max Velocity 2 m/s
Max Rotational Velocity 2.5 rad/s
Max Acceleration 20 m/s2
Inference Algorithm iSAM2
Trials 10

TABLE II: Summary of experimental parameters.

IV. RESULTS

Experiments were performed with Clearpath Robotics
Warthogs as the robotic platform due to their rich pre-
existing sensor suite. The robots possessed a LIDAR, single
forward-facing camera intended for object detection, and a
forward-facing stereo imaging system for depth information.
The robot’s top speed was limited to 2 m/s, its rotational
speed was limited to 2.5 rad/s, and its acceleration was
limited to 20 m/s2. Experimental constants are shown in
Table II.
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A. Qualitative Results

The robots were typically unable to complete the trials
without manual intervention. The planner often failed to
converge on a solution. Failure to converge usually occurred
when the robot was in close proximity to an object (e.g.
after a head-on collision); however, there were some cases
where the planner failed to complete the trajectory given
ample space. In the latter scenario, the robot’s planner was
reinitialized and it always completed the trajectory. When
the robot collided head-on with an obstacle, the robot was
always unable to re-plan, which ended the trial. The robot
was less likely to complete the farm trajectory than the forest
trajectory because the robot tended to collide with objects
more often in the farm dataset. This tendency is most likely
due to the amount of spacing between the trees; however,
there were scenarios in the forest environment when the robot
was able to navigate smaller spaces.

B. Quantitative Results

The robot performed poorly on all datasets with 39.41
m average ATE on the farm dataset and 18.45 m average
ATE on the forest dataset, excluding outliers. A trial was
considered an outlier if the ATE was greater than two
standard deviations from the mean when included in the
computations. One trial was an outlier on the forest dataset
and there were zero outliers on the farm dataset. The metrics
are summarized in Table I.

Notably, the performance varied significantly between
trials, which was captured by the ATE standard deviation.
The wide variance may be attributed to the robot’s freedom
to plan its path between waypoints, which may have changed
the portion of the environment that the robot sensed. The
robot’s freedom does not explain the marked difference be-
tween the ATE across the two environments. The difference
reflects the robot’s success in completing each dataset. The
robot completed the farm dataset less than the forest dataset,
which meant that the SLAM front end found less or no
loop closures in the farm when compared to the forest.
The farm dataset’s trajectory was also longer than the forest
dataset’s trajectory, which contributed to increased odometry
drift without correction. This effectively tested the planning
algorithm, but the experiment failed to provide meaningful
results as to whether these environments induced perceptual
aliasing in the SLAM front end.

V. DISCUSSION AND CONCLUSION

This paper contributes three adversarial environments for
SLAM algorithms that were expected to produce scenarios
that increase the probability of perceptual aliasing. The
environments are commonly found in real world scenarios,
which facilitates a smooth transition from simulation to the
real world. We showed two results in which a single robot
attempting to build a map of the environment using the
iSAM2 inference framework failed to do so because of
difficulty in planning around the dataset, which often meant
that loop closures were not present in the data.

Future work will tune the planner for these environments
or change the environments, such that the planner is able
to navigate without faults. Future work also includes in-
corporating a framework that entertains multiple hypotheses
for a new data association to overcome perceptual aliasing
in the backend. These datasets are extensible to multiple
robot scenarios, allowing their use in distributed SLAM
frameworks, ultimately assisting the development of robust
and safe distributed inference algorithms.
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Concept Whitening for Transfer of Concepts in Imitation Learning

Grace Su1, Ini Oguntola2, Katia Sycara2, Dana Hughes2, Joseph Campbell2

Abstract— Robots and other autonomous agents often re-
quire large amounts of training data in order to accomplish
specifically-defined tasks. At the same time, these agents are
limited to certain environments and their performances are
negatively impacted by domain shifts. Concept whitening is an
interpretable machine learning mechanism proposed by Chen
et al. [1] that aligns the latent space of a neural network’s layer
with concepts of interest without hurting performance. Though
concept whitening was initially proposed for image recognition,
it is a generalizable deep interpretability technique that has the
potential to be applied to other neural networks to improve the
interpretability of the model. However, in the current literature,
it is unknown whether such an interpretability technique can be
used as a general method to transfer learned concepts between
similar tasks. In the present paper, we use concept whitening on
single-agent, recurrent actor-critic imitation learning models for
tasks in a simple 2D gridworld to investigate whether learned
relationships between gridworld objects help reduce the amount
of training data needed in order to train the same models
on similar tasks. The results show that in recurrent imitation
learning, concept whitening can perform a small amount of
latent space alignment towards defined concepts but applying
concept whitening to this task is not trivial.

Index Terms— Concept Whitening, Interpretability, Transfer
Learning, Imitation Learning, Deep Learning

I. INTRODUCTION

In order for autonomous agents to be successfully de-
ployed in the real world, these agents should be able to
interact with humans and accomplish their goals despite
ever-changing environmental conditions. Thus, one of the
most important challenges in developing autonomous agents
is developing adaptive, robust, and intelligent systems. In
addition to these qualities, these systems must also be
interpretable to facilitate human-agent interaction. However,
these characteristics are difficult to obtain. This is especially
true in deep reinforcement learning, a method that can allow
agents to achieve high performance on tasks but requires
large amounts of data. The resultant policy is only applicable
to tasks and environments that are similar to those that were
also in the training data [2]. Thus, transfer learning, where
learned parameters are shared with a new model that is
then fine-tuned and trained further, can improve the new
model’s generalization and learning efficiency [3]. In the
current literature, a number of transfer learning techniques
have been proposed, but few attempt to utilize interpretable
components of trained models [2].

1Grace Su is with the Computer Science Department, Columbia Univer-
sity, New York, NY., USA. g.su@columbia.edu

2Ini Oguntola, Katia Sycara, Dana Hughes, and Joseph Campbell are with
the Robotics Institute, Carnegie Mellon University, Pittsburgh, PA., USA.
{ioguntol,sycara,
danahugh, jcampbell}@andrew.cmu.edu

Agents that interact with humans need to be interpretable.
However, a search-and-rescue agent, compared to humans,
need lots of demonstration data to navigate a certain type of
environment. The agent does not perform well on environ-
ments with slightly different parameters, rules, or objectives.
In addition, the agent does not recognize which rules are
shared among different environments.

In this paper, we investigate if using interpretable com-
ponents of trained models, specifically layers trained with
concept whitening, can facilitate transfer learning. Section
II gives a background on related work and what strengths
and weaknesses concept whitening has as an interpretability
technique. Section III discusses the specific machine learning
algorithms we use to train a simple autonomous agent. Sec-
tion IV details the experiments performed to evaluate model
interpretability and transfer learning. Section V presents and
analyzes experimental results. Finally, we conclude the paper
and describe future work and potential applications.

II. RELATED WORK

A. Imitation Learning

Imitation learning is a method in which the autonomous
agent extracts useful skills and learns to replicate behaviors
from expert demonstrations [4]. It has demonstrated strong
performance in areas such as object manipulation, video
games, and autonomous driving. But, the performance of
agents trained with imitation learning are limited by the qual-
ity and scope of the demonstrations the agents were trained
on. Some imitation learning methods employ techniques to
make the models more interpretable. One approach uses
human-readable programmatic policies instead of black-box
networks [5]. Another approach, InfoGAIL, uses information
theoretic losses to infer the latent structure of demonstrations
and therefore reveal semantically meaningful data variations
[6]. However, most imitation learning methods do not nec-
essarily consider interpretability.

B. Transfer Learning

Transfer learning methods help solve problems in which
there is a lack of data from the target domain, like
robotics. Within robotics, three approaches to transfer learn-
ing emerge: better simulation, policy randomization, and
robust policy [2]. The first approach is improving the sim-
ulation environments in which data is generated so that
behavior learned from the simulation is transferred more
effectively to an agent operating in the real world. This
method provides an abundant source of data but is prone to
modeling errors. A second approach is policy randomization,
which can produce highly adaptive strategies, reduce reliance
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upon modeling, and therefore aid transfer from simulation
to the real world [7]–[9]. A final approach is learning a
robust policy that learns skills important for generalization
in addition to completing tasks [10], [11].

C. Deep Interpretability

In order to make deep learning models more interpretable,
post-hoc methods provide interpretability after the model is
trained, and are thus easily applicable to many different mod-
els. Concept-vector methods attempt to provide explanations
based on higher-level concepts, but make assumptions about
the model’s latent space that may not hold [12]. Meanwhile,
saliency methods highlight the most important input features,
but these features tend to be low-level and not as human-
interpretable.

There are also methods with models that are interpretable
by design so the latent space is aligned with human-
interpretable concepts. For instance, concept whitening in
image classification led model activations to be aligned
with different image classes [1]. Concept whitening has also
been applied to theory of mind models for modeling other
entities’ intentions, which not only increased interpretability,
but also increased predictive performance [12]. This increase
in performance causes reason to suspect that aspects of a
model trained with concept whitening could be effectively
used for transfer learning in autonomous agents.

III. METHODS

We chose to train imitation learning models with con-
cept whitening because the demonstrations can be used to
generate concept datasets, which are necessary for concept
whitening. Concept whitening is the most useful when the
concepts used potentially have information that is not imme-
diately obvious from the model input data.

Thus, to obtain suitable, simple gridworld environments
and tasks for single-agent deep reinforcement learning mod-
els, we used the BabyAI research platform [13]. The platform
is “an extensible suite of 19 levels of increasing difficulty,”
in which each level is an instruction-following task.

A. Imitation Learning Model

The BabyAI platform includes an imitation learning
model. The model architecture is shown in the appendix in
Figure 6. It is a recurrent actor-critic model with the objective
of achieving behavioral cloning from the expert demonstra-
tions provided as training data. The GRU (Gated Recurrent
Unit) [14] encodes the language input instruction. Then, two
batch-normalized FiLM (Feature-wise Linear Modulation)
[15] layers and a convolutional network jointly processes
the observation and instruction. At each step, a LSTM
(Long Short-Term Memory) cell [16] temporally integrates
representations produced by the FiLM layers at each step.
The memory has 128 units and encodes the instruction with
a unidirectional GRU and no attention mechanism because
the task domain we chose is relatively simple. The model
uses the Adam optimizer [17] with the hyperparameters used
by the BabyAI research platform.

B. Concept Whitening

The original concept whitening module developed by Chen
et al. [1] was for use in image classification models. Imitation
learning, in comparison, is a significantly different machine
learning task because the environment is sequential and only
partially observable while image classification is episodic
and fully observable. However, we can apply concept whiten-
ing to imitation learning because the technique is model-
agnostic and has been successfully implemented in theory
of mind models for inferring intents of other agents [12].

The concept whitening mechanism trains a neural network
layer’s latent space to align with an explicitly-defined set of
concepts. To implement this, a concept whitening module
can be substituted for a normalization module, such as batch
normalization. Then, the module requires datasets of the
desired concepts in order to learn an orthogonal matrix that
aligns the latent space with those concepts. To incorporate
concept whitening in the BabyAI imitation learning model,
we replaced the first batch normalization layer with a concept
whitening layer as shown in the appendix, Figure 7. Replac-
ing the first batch normalization layer led to more concept
alignment than replacing the second batch normalization
layer.

During the forward pass of the overall model’s training
algorithm, we use the same forward pass algorithm from the
original concept whitening implementation [1]:

Algorithm 1 Forward Pass of CW Module

Input: mini-batch input Z ∈ Rd×m

Optimization Variables: orthogonal matrix Qd×d (learned
in Algorithm 2)

Output: whitened representation Ẑ ∈ Rd×m (learned in
Algorithm 2)

1: calculate batch mean: µ = 1
mZ · 1, and center the

activation: ZC = Z− µ · 1T
2: calculate ZCA-whitening matrix W, for details see Al-

gorithm 1 of [18]
3: calculate the whitened representation: Ẑ = QT WZC

As Chen et al. [1] explains, “Zd×n is the latent represen-
tation matrix of n samples, in which each column zi ∈ Rd

contains the latent features of the ith sample.” Qd×d is
the orthogonal matrix whose column qj is the jth axis
and is learned during optimization of the concept whitening
module.

C. Training

We replaced the first batch normalization layer with a
concept whitening layer as shown in the appendix, Figure
15. Then, model training alternates between optimizing for
main objective function of behavioral cloning of expert,
in order to succeed in level missions, and optimization
of the concept whitening objective. The concept whitening
objective updates the orthogonal matrix Q with concepts by
maximizing the matrix’s activation along axis j for each
concept j ’s data [1].
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The model optimization algorithm we use is summarized
in Algorithm 1. It is similar to Algorithm 2 used in [1], but
because there is an LSTM cell before the concept whitening
layer that affects the input to the concept whitening layer,
memory data corresponding to each concept data batch must
also be used to update the concept whitening layer.

Algorithm 2 Recurrent Actor-Critic Concept Whitening
Training

Input: main objective dataset D, concept datasets
Xc1 ,Xc1 , ...,Xck

Parameters: β = number of concept batches to use during
training

1: for epoch 1 to N do
2: Complete one epoch of training for the model’s main

objective function using batches sampled from D
3: for r = 0 to β do
4: for j =1, ..., k do
5: Load one random batch b from concept dataset

Xcj

6: Load a batch P containing each full demonstra-
tion the concepts in batch b belong to

7: memory m← pass P through the model
8: mconcept ← m at timesteps in P corresponding

to data in b
9: Using concept data inputs mconcept and b, calcu-

late G = ∇Q
10: Update matrix Q using G. For details see Algo-

rithm 2 of [1]
11: end for
12: end for
13: end for

IV. EXPERIMENTS

A. Task Domain

Initially, we chose the BabyAI [13] “GoToImpUnlock”
level as our task domain. Missions given to the agent are of
the form “Go to the [color] [object]”. The agent must navi-
gate a a 3x3 maze of 6x6 rooms, randomly inter-connected
by doors and unlock doors when necessary. Colored doors
are unlocked by keys with the matching color. An example
of a randomly generated level is shown in Figure [].

“GoToImpUnlock” is considered one of the more difficult
levels in BabyAI because it requires the agent to learn
many different competencies. It includes basic competencies
such as going to a specified object, navigating a maze
with multiple rooms, and ignoring distractor objects. At
the same time, “GoToImpUnlock” requires the agent to
determine if the mission instructions implicitly require a
door to be unlocked with a key. The benefit of using such a
relatively difficult BabyAI is that understanding the behavior
of the agent is nontrivial, so concept whitening would likely
provide a helpful improvement in model interpretability.
However, after training several concept whitening models
with different hyperparameters on the “GoToImpUnlock”

Fig. 1: Example BabyAI “GoToImpUnlock” level with mis-
sion “Go to the purple ball”. The agent and the direction
it is currently facing is represented by the red triangle. The
highlighted area around the agent represents the environment
tiles currently visible to the agent.

level, we found that the concept whitening layer did not
seem to be effecting any significant changes on the model’s
latent space. The concept whitening layer’s mean activations
for each concept showed no significant differences when the
concept of the input data changed. The mean activation plots
and significance are further discussed in Section V: Results.

Thus, using the BabyAI research platform, we created our
own ”UnlockRGB” level as our task domain. It is a simple
environment that still encourages the model to learn latent
concepts in the input data to perform better at the main
imitation learning task. Missions are of the form ”Open the
[color] door”. [Color] is limited to either “red”, “green”, or
“blue”. The environment consists of 2 rooms connected by a
colored door, which always must be unlocked the key of the
matching color. An example of a randomly generated level
is shown in Figure 2.

Fig. 2: Example “UnlockRGB” level with mission “Open
the blue door”. The agent and the direction it is currently
facing is represented by the red triangle. The highlighted area
around the agent represents the environment tiles currently
visible to the agent.

B. Demonstrations

Demonstrations are generated by the hand-crafted bot
agent provided by BabyAI. In order to perform the role of a
simulated human teacher, it parses the mission instructions
and environment parameters, then creates and maintains
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a stack of subgoals to complete the given mission. The
subgoals which the bot implements are:

• Open: Open a door that is in front of the agent.
• Close: Close a door that is in front of the agent.
• Pickup: Execute the pickup action (pick up an object).
• Drop: Execute the drop action (drop an object being

carried).
• GoNextTo: Go next to an object matching a given (type,

color) description or next to a cell at a given position.

A demonstration consists of a list of (observation, action,
done) Observations are partial and egocentric. The agent
observes a square of 7x7 tiles in the direction agent is facing,
includes the tile the agent is standing on, but at the same
time the agent cannot see through walls or closed doors.
Additional input: Mission in the form of a simple language
input. Following the precedent set by the BabyAI paper, we
generate a set of 1 million demonstrations [13].

C. Concepts

We designed “UnlockRGB” to help the agent learn that the
key color must match the door color in order for unlocking
to succeed. This color relationship between objects can be
learned through processing of the demonstration data, but it
is still a latent input data feature that would not be revealed
unless the model is made more interpretable through concept
whitening.

The concept datasets are created by labeling demonstration
data at each timestep with the corresponding subgoal used by
the bot at that timestep. For example: a demonstration with a
mission asking the agent to “Open the red door” would have
the timesteps from when the bot first moves towards the key
with the “GoNextTo” subgoal, to when the bot picks up the
key, labeled as concept “0. Search for red key”. Then, the
timesteps from when the bot picks up the key, to when the
bot performs the unlocking action on the door, are labeled
as concept “3. Take red key to door”.

For demonstrations asking the agent to “Open the green
door”, the demonstration data is labeled with concepts at
the correct timesteps using the same method, but the labels
are “1. Search for green key” and “4. Take green key to
door” instead. Similarly, for demonstrations asking the agent
to “Open the blue door”, the data is labeled using the same
method, but the labels are “1. Search for blue key” and “4.
Take blue key to door” instead. The set of concept labels
used are shown in Figure 3:

Fig. 3: “UnlockRGB” concept labels, color-coded by the
mission door color

V. RESULTS

A. Training Metrics

After developing a new level tailored for evaluating con-
cept whitening in imitation learning on the BabyAI plat-
form, and generating the level’s training demonstrations and
concept datasets, we show that the baseline model training
results are the same as the model trained with concept
whitening, as expected. The training metrics entropy, policy
loss, training accuracy, validation accuracy, validation return,
and validation success rate remain approximately the same
across all training timesteps, as shown in Figure 4, while the
concept whitening additionally aligns the latent layer to be
more interpretable.

This demonstrates we have been able to create an im-
plementation and application of concept whitening for a re-
current actor-critic imitation learning model. Our developed
framework for training the concept whitening model and
analyzing the concept whitening layer’s activations can be
used in future work.

Fig. 4: Training metrics across all training timesteps

B. Mean Concept Activations and Analysis

The objective of concept whitening is to maximize the
activation of a given concept’s data input on the correspond-
ing concept column in the orthogonal matrix Q [1]. Thus,
we ideally expect a concept’s mean activations to be highest
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when the model receives that concept as input. The activation
for each column j of Q is given by

aj = qT
j ẑj (1)

where ẑj is the concept-whitened latent representation for
one demonstration data input belonging to concept j.

To conduct some preliminary analysis, we sample 300
different demonstrations from each concept dataset. The
resulting number of samples belonging to each concept are
shown in Table 1:

TABLE I: Number of Samples Belonging to Each Concept

Concept 0 9692
Concept 1 9531
Concept 2 9703
Concept 3 11757
Concept 4 11579
Concept 5 11667

Then, we calculate the mean activations of the concept
whitening layer for each concept’s samples, and visualize
them as bar plots in Figure 5.

Analyzing the bar plots reveals that the mean activation
on a concept column has a small relative increase when its
corresponding concept data is passed through the concept
whitening layer. At the same time, there also appears to be
a small relative increase for the other concept column with
the same color. This suggests that the model is learning that
there is some positive correlation between searching for a
key of a specific color and taking that key of the same color
to the door, which is what we would expect in order for the
model to learn how to unlock colored doors.

To measure how effective the concept whitening was at
aligning the latent space axes with each of the concepts, we
also train a decision tree classifier to predict which concept
data input generated each activation vector. The decision tree
achieves an accuracy of 84.5 percent, which is better than
random.

These quantitative assessments show that the concept
whitening layer is able to align the latent space with the
chosen concepts to a small degree. But overall, compared to
concept whitening results from [1] and [12], the recurrent
model type and imitation learning task appear to decrease
the potency of the concept whitening layer’s alignment
procedure. This suggests that using concept whitening in
this recurrent imitation learning task is not a trivial matter
of replacing one of the model’s batch normalization layers
with concept whitening and tuning the hyperparameters.

C. Hyperparameters

The hyperparameters of the concept whitening were de-
termined through multiple trials of training. We find that
iteration frequency T = 8 and momentum p = 0.5 facilitate
separation between mean concept activation values the most.
There were four different calculations proposed by [1] to
define activation based on the feature map: (a) mean of all

Fig. 5: Plots of mean activations for data inputs from
concepts 0 through 5, in that order. Each bar represents the
mean activation of each concept column in matrix Q and
has its value written in white text. Bars are labeled on the
horizontal axis with the concept columns they correspond to.

feature map values; (b) max of all feature map values; (c)
mean of all positive feature map values; (d) mean of down-
sampled feature map obtained by max pooling. After testing
all activations, we found that (a) taking the mean of all
feature map values allowed the concept whitened model to
achieve the closest performance to the baseline model. This
is likely because our imitation learning task there is no spatial
encoding of the input observation data required to the degree
necessary in image classification.

For β = the number of concept batches to use during
training as defined in Algorithm 2, we found that β = 150
facilitates separation between mean concept activation values
the most. This is because the number of batches used from
the main objective dataset during training was 100. If β
is not at least as large as the number of main objective
dataset batches, the concept whitening updates are not strong
enough to consistently increase the activation values of a
given concept’s data on the corresponding concept column
of Q.
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VI. FUTURE WORK

The results suggest that concept-whitening in the recurrent
imitation learning context is able to align the latent space
with the chosen concepts to a small degree, but it is non-
trivial to implement and requires additional considerations
specific to the learning task. Thus, the next steps include
testing different concept definitions and strengthening the
concept whitening updates.

To strengthen the concept whitening updates, different
models may be considered. For instance, the recurrence in
our model caused the concept whitening to require con-
cept data memories in addition to labeled demonstration
timesteps. The memory data contains information about the
entire demonstration up to the timestep of the concept data
batch, so removing recurrence could help ensure the concept
data inputs, and therefore the resulting activations, remain
separate from each other.

Additionally, the behavioral cloning objective of our model
may not require learning about different concepts, so then
concept whitening layer would not have latent space data
with encoded concepts to align towards. In that case, a rein-
forcement learning-only model may be desirable. Different
levels with concepts certain to be latent in the main objective
could provide additional assistance to the concept whitening
layer.

Obtaining concept whitening layers with strongly-aligned
concept activations can then help us better investigate
whether transferring a trained concept whitening layer to
levels that use the same concepts, but have somewhat differ-
ent objectives, improves data efficiency. Overall, these steps
will allow us to discover whether using whitened concept
representations produced by a model trained on one task
domain A helps reduce the amount of training data needed or
improve performance on a similar, but different task domain
B.
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APPENDIX

Fig. 6: BabyAI imitation learning model (baseline)

301



Fig. 7: BabyAI imitation learning model with first batch normalization layer replaced with a concept whitening layer (labeled
as IterNormRotation and boxed in red)
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Multi-Agent Path Finding for Convex Polygon-Shaped Agents

Nayana Suvarna1 and Zhongqiang Ren2 and Howie Choset2

Abstract— Multi-agent path finding (MAPF) aims to compute
collision-free paths for multiple agents between their respective
start and goal positions. With most MAPF approaches, the
shapes of agents are often inflated to circles or over-simplified
as points to reduce the computational complexity of collision
checking operations. As a result, valid configurations and tra-
jectories for these non-circular agents may be rejected. To make
matters worse, employing an exact collision checking method
could greatly slow down MAPF planners as this expensive
collision checking method is repeatedly invoked during planning
operations. In this work, we explore a collision checking method
for convex polygon-shaped agents. We test our method by
planning for teams of convex polygon-shaped agents in various
grid environments. Through these preliminary tests, we observe
that the time for collision checking with our approach is lower
when compared to a cell-based collision checking method.

Index Terms— Multi-Robot Systems and Motion and Path
Planning

I. INTRODUCTION
Multi-agent path finding (MAPF) aims to compute

collision-free paths for multiple agents between their respec-
tive start and goal positions. In this work, we strive to plan
for teams of agents who carry parts larger than themselves
such as poles, beams, and doors while also navigating in
cluttered environments such as construction sites. In these
scenarios, the shape and orientation of these agents need to
be considered to ensure collision-free plans. For applications
in simulation and real-world systems, collision checking
methods that use the exact shape of an agent may slow
down planning. As a result, most MAPF approaches typically
oversimplify the shape of these agents as bounding circles or
points to defer expensive collision checking operations. But,
with these naive methods, valid trajectories may be rejected
even if they exist as seen in Figure 1.

In this work, we explore a collision checking approach for
convex polygon-shaped agents that can rotate in place. With
our approach, we use this convex polygon representation of
an agent to determine if the shape of any pair of agents
overlaps. During movement, the positions of agents are
interpolated for collision checking. To baseline our approach,
we compare it to a cell-based collision checking method,
where the shapes of agents are approximated by cells on an
occupancy grid. For this approach, to determine if a collision
exists, we check to see if the approximate shapes of two
agents occupy the same cells at a given time. We then test
these two approaches using different sets of convex polygon-
shaped agents in various grid environments. From our results,

1Nayana Suvarna is with the Department of Computer Engineering,
University of Pittsburgh, Pittsburgh, PA, USA

2Zhongquiang Ren and Howie Choset are with the Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA USA

Fig. 1: In this figure, an agent is carrying a large beam
through a hallway. Using the traditional method of a bound-
ing circle, a planner would fail to find a solution through the
hallway even though one exists

we observe that the time for collision checking with our
approach is lower than the cell-based approach.

The rest of this paper is organized as follows: Section
II summarizes various related works. After formulating our
problem in Section III, we present our approach in Section
IV. We show our experimental results in Section V and
discuss future works in Section VI.

II. RELATED WORKS

A. Multi-Agent Path Finding (MAPF)

Multi-agent path finding approaches lie on a spectrum
from centralized to decentralized approaches. Centralized
approaches, such as A*, plan in the joint configuration for all
agents. As a result, they offer complete and optimal plans at
the cost of poor scalability due to exponential scaling as the
number of agents increases. On the other hand, decentralized
approaches decompose the search problem into a sequence
of single agent problems to provide suboptimal plans with
better scalability.

Several approaches have been developed that fall in the
middle of the spectrum. Rule-based approaches [1] [2] rely
on rule primitives to resolve conflicts between agents. So-
lutions can be found quickly with these approaches but the
plans are not guaranteed to be optimal. Conflict-based Search
(CBS) [3] is a two-level search algorithm. The higher level
resolves conflicts and adds constraints on the lower level.
The lower level then uses these constraints when computing
plans for agents.
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Subdimensional expansion [4] is a framework that dynam-
ically increases the dimensions of a search space to resolve
conflicts between agents. M* [5] offers complete and optimal
plans through combining A* and subdimensional expansion.
M* initially computes a set of individual policies for each
agent. All agents then follow their individual policies while
ignoring collisions with other agents. If a collision is de-
tected, the subset of agents involved in the collision are
coupled together and collisions are resolved in this new
joint search space. Collision checking serves as an important
building block for MAPF problems. For this work, we use
our approach to detect collisions between agents which are
then resolved by M*.

B. MAPF Collision Checking

MAPF problems broadly consider two main collisions:
vertex and edge collisions. Vertex collisions occur when
two agents occupy the same node at the same time. Edge
collisions occur when two agents approach from opposite
directions along the same edge. With simplified descriptions
of agents such as circles or points, collisions can be detected
by determining if the distance between agents is below a
certain threshold.

Many groups, however, have made progress in consider-
ing shapes for agents outside of circles or points. Multi-
Constraint CBS (MC-CBS) [6], is a variation of CBS that
can plan for ”large agents” that occupy multiple points at
once. During single state expansion, there are more ways
for agents to collide with one another compared to when we
consider non-point agents. As a result, more intermediate
states are expanded and planning time is increased. To
circumvent this larger state expansion, MC-CBS introduces
multiple constraints to the higher level of CBS to reduce
the number of collisions between agents that are within
close proximity. Another planning algorithm that uses non-
simplified representations for agents is Continuous-Time
Conflict Based Search (CCBS) [7]. CCBS combines Safe-
Interval Path Planning (SIPP) [8] and CBS to plan for
geometrically shaped agents in continuous time.

With these previous works, the authors only consider
limited actions for agents which include either translating or
waiting in place. With our work, we consider the additional
action of rotation in place for agents. With the addition of
rotation, we can compute more realistic plans for agents.
However, this introduces the additional challenge of consid-
ering the swept volume occupied by an agent during rotation
for collision checking.

C. Collision Detection Between Shapes

Significant progress has been made in the game design
field to develop approaches for fast collision detection
between complex shapes. Axis-Aligned Bounding Boxes
(AABB) [9]is often used for fast collision detection. With
this method, each shape is contained within a rectangular
bounding box aligned on the x and y-axis. To check for
overlap, a simple check is performed along the x and y-axis
to determine if an overlap exists on either axis. Although

this method is fast, it can result in false positives due to the
shape of agents being inflated as bounding rectangles. As a
result, AABB is often used as a primitive test to determine if
agents are within range of one another before more expensive
collision checking operations are performed.

Another method for checking for an overlap between
shapes is the Separating Axis Theorem (SAT) [9]. This
theorem states that an overlap does not exist between two
convex shapes if we can find an axis that separates the two
shapes. With SAT, a normal axis is first computed relative
to every axis of each shape. An overlap check is then done
using the projection of each agents vertices on each normal
axis to check for a collision. If an overlap exists on every
normal axis, then the two shapes are said to be overlapping.
With SAT, overlap checks can be done on arbitrarily oriented
shapes. For our approach, we need to consider interpolated
orientations for agents to approximate the space occupied
by agents during rotation. Using AABB checks may result
in many false positives, therefore we use SAT to determine
if overlap exists between arbitrarily oriented agents.

III. PROBLEM DEFINITION

Let index set I = {1, 2, . . . , N} denote a set of N
agents. Let G = (V,E) denote a finite graph that describes
the workspace shared by all agents, where vertex set V
represents a set of possible configurations for agents in
SE(2), i.e. V ⊂ SE(2), and the edge set E = V × V
denotes the set of all the possible actions that can move an
agent i between any two adjacent vertices in V . An edge
between two vertices u, v ∈ V is denoted as (u, v) ∈ E and
the cost of an edge e ∈ E is a strictly positive real value
cost(e) > 0.

In this work, we use a superscript i ∈ I over a variable
to represent the specific agent to which the variable belongs
(e.g. vi ∈ V means a vertex with respect to agent i). Let
πi(vi1, v

i
`) be a path that connects vertices vi1 and vi` via

a sequence of vertices (vi1, v
i
2, . . . , v

i
`) in the graph G. Let

gi(πi(vi1, v
i
`)) denote the cost value associated with the path,

which is the sum of the cost values of all the edges present in
the path, i.e., gi(πi(vi1, v

i
`)) = Σj=1,2,...,`−1cost(v

i
j , v

i
j+1).

Without loss of generality, to simplify the notations, we also
refer to a path πi(vio, v

i
f ) for agent i between its initial

and final locations as simply πi. Let π = (π1, π2, . . . , πN )
represent a joint path for all the agents. The cost value of
this joint path is defined as the sum of the individual path
costs over all the agents, i.e., g(π) = Σig

i(πi).
All agents share a global clock. Each action, either wait or

move, for any agent requires one unit of time. When agent
i go through an edge (u, v) ∈ E between time [t, t + 1],
let qi = qi(u, v, t, τ), τ ∈ [t, t + 1] denote the motion
function, which describes the configuration of agent i during
the transition through edge (u, v) at any time τ ∈ [t, t+ 1].
Note that this definition allows for different motion functions
for different agents.

Let R(qi) denote the shape function of agent i which
maps a configuration of agent i to a subset of SE(2) that
is occupied by agent i, i.e. R(qi) ⊂ SE(2). Note that, this
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definition allows agents to have different shapes and even
varying shapes at different configurations.

For any pairs of agents i, j that move through edges
(vi1, v

i
2) and (vj1, v

j
2) respectively between time [t, t + 1],

they are claimed to be in conflict if the there exists some
τ ∈ [t, t+ 1] such that Ri(qi) ∩Rj(qj) 6= ∅.

The objective of the Multi-agent Path Finding in SE(2)
is to find a conflict-free joint path π connecting vio, v

i
f for

all agents i ∈ I with g(π) at its minimum.

IV. OUR APPROACH

A. Overview

We represent the possible (x,y,theta) positions for agents as
vertices in our graph. x and y represent the center coordinates
and θ represents the orientation of an agent. Using this
reference coordinate, we determine the vertices for the shape
of an agent. For this work, we assume that the agents move
on a 4-connected grid and can rotate in place.

For a given pair of agents, we use a collision checking
function to check for collisions between agents. For our
work, we consider collisions to be an overlap between the
shapes of two agents. Let vi and vj represent two different
vertices on our graph G. We define a vertex collision as when
agent i1 is at vertex vi and agent i2 is at vertex vj such that
the shapes of these two agents overlap with one another. For
edge collisions, we check for an overlap between the shapes
of a pair of agents before, during, and after movement. To
account for the space occupied during movement, we use an
interpolation function that rotates the vertices for the shape
of an agent around the (x, y) reference point. Through this
function, we can estimate the space occupied by an agent at
an arbitrary orientation.

B. Collision Checking

For our approach, we first use a bounding circle check
to determine if agents are within range of one another. For
vertex collisions, we then use the Separating Axis Theorem
[9] to determine if an overlap exists between two agents a the
given time. For edge collisions, we determine if an overlap
exists before, during, and after movement for agents. We use
an interpolation function to determine the approximate shape
of an agent during movement.

C. Implementation

For our implementation, we considered agents that occupy
multiple adjacent cells along the x or y-axis. An example of
these agents planning in a grid environment can be seen in
Figure 2. With our implementation, we consider agents of the
same size and shape. Additionally, we chose half timesteps
for the interpolation in positions of agents.

D. Baseline Approach

To baseline our approach, we compare it to a cell-based
collision checking approach that uses the reference point of
an agent to determine the approximate cells occupied by the
shape of an agent. To determine if a collision exists, a cell
comparison is done to see if the shapes of two agents occupy

Fig. 2: Visualization of multiple rectangular agents planning
in a grid environment. The solid rectangles represent the cur-
rent positions for agents and the outlined boxes represent the
goal positions for each agent. The line pointing outward from
each agent represents the direction of forward movement.

(a) Cell Collision Checking (b) SAT Collision Checking

Fig. 3: The cell-based collision checking method on the left
classifies the two agents as colliding since the shape of both
agents occupy the bolded cell. With our approach on the
right, these two agents would not be considered as colliding
as an axis exists that separates the shapes of both agents.

the same cell at a given time. Because we’re considering
rotating agents, this approach also has to consider cells that
agents partially occupy. In these cases, we locally increase
the discretization of a minimum-maximum bounding box
containing the two agents by 4x. To check for overlap we
then iterate through these locally discretized cells and use
SAT to determine if the shapes of two agents overlap with
the same discretized cell.

Because we approximate the shape of an agent with this
baseline approach, collisions are classified differently when
compared to our approach. These differences can be observed
in Figure 3.

V. RESULTS

We implemented our approach and the cell-based collision
checking approach using M* as the MAPF planner. We
tested sets of 2,3,5 and 7 agents with lengths 3 and 5.
We ran 50 tests per set of agents and had a 120 second
time limit for planning. We tested both approaches using the
benchmark 16x16 empty grid world and 64x64 grid world
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Success Rate / Path Length / Total Runtime / Collision Checking Runtime
Map Method K = 2 K = 3 K = 5 K = 7

16x16 empty grid world

Cell for 3-cell agents 1.00 / 12.42 / 1.26 / 1.04 0.88 / 13.90 / 18.09 / 15.50 0.46 / 14.826 / 66.68 / 57.33 0.08 / 17.25 / 111.67 / 95.84
SAT for 3-cell agents 1.00 / 12.42 / 0.30 / 0.09 0.86 / 13.76 / 17.65 / 6.27 0.30 / 14.6 / 84.17 / 31.16 0.02 / 6.00 / 117.6 / 44.01
Cell for 5 cell agents 0.94 / 12.31 / 13.73 / 9.43 0.40 / 12.3 / 77.89 / 57.56 0.00 / 0.00 / 120.0 / 57.56 -
SAT for 5 cell Agents 0.98 / 12.59 / 5.67 / 0.55 0.50 / 12.96 / 65.25 / 9.76 0.00 / 0.00 / 120.0 / 15.07 -

64x64 grid world 10% obstacle density

Cell for 3-cell agents 0.94 / 51.65 / 9.53 / 6.34 0.82 / 58.56 / 22.28 / 16.37 0.54 / 64.88 / 55.89 / 43.94 0.28 / 74.0 / 86.97 / 72.20
SAT for 3-cell agents 0.94 / 51.65 / 8.70 / 1.25 0.82 / 58.56 / 22.23 / 5.95 0.48 / 65.0 / 63.00 / 17.05 22.0 / 73.27 / 94.07 / 26.52
Cell for 5 cell agents 0.82 / 64.39 / 21.12 / 16.22 0.54 / 74.51 / 60.02 / 42.85 0.16 / 78.25 / 102.97 / 69.59 0.02 / 61.0 / 119.55 / 84.33
SAT for 5 cell Agents 0.86 / 63.90 / 20.30 / 1.82 0.52 / 74.03 / 59.44 / 6.54 0.18 / 74.77 / 99.83 / 10.85 0.0 / 0.0 / 120.0 / 14.26

TABLE I: Experimental Results for Cell-Based and SAT-Based Collision Checking

with 10% random obstacle density. From this benchmark
set, we randomly generated orientations for agents and only
considered sets of valid configurations for agents. We define
valid configurations as when the shape of the agent is within
bounds of the map.

All our approaches were implemented in Python and ran
on a laptop with an Intel® Core™ i7-8550U CPU with
16 GB of RAM. For each set of tests, we measured the
success rate (out of 50 tests), average path length, average
total runtime, and average runtime for collision checking.
The results from our experiments can be found in Table 1.

For the 16x16 grid world, our SAT-based method outper-
formed the cell-based collision checking method. This can
be observed through the higher collision checking runtime,
higher overall runtime, and lower success rate for the cell-
collision checking method across all tests. Even in the case
of five agents where both approaches have a 0% success rate,
the runtime for collision checking for our approach is lower
than the cell-based one. With the 64x64 grid world with 10%
obstacle density, the performance was more similar. For the
3-cell agents, the success rate and path length for sets of
three and five agents were the same. But, the overall runtime
and runtime for collision checking with our approach was
lower. When scaling sets of three and five agents, the cell-
based collision checking method had a higher success rate
and a lower overall runtime compared to our approach. But,
the time for collision checking was significantly larger than
our approach. This may be attributed to the differences in
the classification of collisions as demonstrated in Figure 3.
For the same map with 5-cell agents, overall performance
was similar with the runtime for collision checking with our
approach being lower than the cell-based method. Because
the time for collision checking with our approach was lower
than the cell-based method in every test, these results suggest
that our approach may scale well when applied to both larger
shaped agents and larger sets of agents.

VI. CONCLUSION AND FUTURE WORK

We proposed a collision checking method for multi-agent
path finding problems in which the shape of agents can
be represented as convex-polygon shapes. We tested our
approach by comparing our approach to a cell-based collision
checking method and presented some preliminary results.
For future work, we plan on testing our approach in more
environments as well as with heterogeneous-shaped agents.
Another route we could pursue is modifying the search
procedure to reduce the runtime complexity of planning.
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Optimal Control for High-Relative-Degree Systems Under
Uncertainty using Exponential Control Barrier Functions

Spencer Van Koevering1, Yiwei Lyu2, Wenhao Luo2, John Dolan2

Abstract— Control barrier functions are a formal
method that ensures motion safety for constraining au-
tonomous vehicle controllers. However, for general Control
Lyapunov Function-Control Barrier Function-Quadratic
Programming (CLF-CBF-QP) controllers, the solution fea-
sibility of these driving tasks cannot be guaranteed due to
possibly conflicting constraints. In this paper we adapt
a method for achieving formally provable safety in high-
relative-degree systems using exponential control barrier
functions while taking uncertainty into consideration. More
importantly, we provide a solution feasibility guarantee in
run time using a proposed bi-level optimization framework.
The usage of exponential Control Barrier Functions with
a high-relative-degree system allows for more robust and
general constraints than existing physics-based approaches.
Furthermore, we apply this technique to lane changing
within the context of autonomous driving and provide
experiment results to demonstrate the effectiveness of the
proposed technique.

Index Terms— Collision Avoidance, Optimization and
Optimal Control

I. INTRODUCTION

Autonomous vehicles will be sharing space with
human-controlled vehicles. Safety is critical for any
control solution for an autonomous vehicle for this
reason. Human drivers can be difficult to predict and
hence robust safety measures are needed. Traditional
Automated Cruise Control methods are known to lead
to aggressive and even dangerous behavior in the pursuit
of optimal control [1]. Lane changing is a common
scenario that an autonomous vehicle may find itself
in that requires tracking multiple other vehicles and
maintaining safe distances while performing a turning
maneuver.

Control Barrier Functions (CBF) offer a robust
method for constraining control of autonomous vehicles
and are seeing increased usage [2]. Control Barrier
Functions offer a method by which the continuing safety
of a system can be guaranteed based upon the forward
invariance of a set of safe states [3], [4]. However,
if a solution that adheres to the constraints of a CBF

1Spencer Van Koevering is with the Departments of Computer
Science and Mathematics, Whitman College, Walla Walla WA, USA.
vankoesd@whitman.edu

2Yiwei Lyu, Wenhao Luo and John Dolan are with the
Robotics Institute, Carnegie Mellon University, Pittsburgh
PA, USA. {yiweilyu,jdolan}@andrew.cmu.edu,
wenhao@cs.cmu.edu

cannot be found, then continuing safety is no longer
guaranteed and the search for a safe input fails. Due to
this, it is critical to ensure feasibility whenever possible.
A method for optimizing barriers proposed by Lyu et al.
has been used to ensure that any feasible solution will
be found even in stochastic models [2].

While this method is compelling it is limited only to
barriers of degree one, in which the state of the vehicle
relevant to safety is directly dependent upon the control
input [2]. However, desired barriers often have higher
relative degree, where multiple derivatives of the state
of the vehicle relevant to safety are needed to arrive at an
equation depending on input. One situation that can be
addressed with a higher-degree extension is that of lane
changing under a model where input does not directly
affect the position of the vehicle. This sort of model
allows for the usage of acceleration, which is a much
more accurate representation of the control of a vehicle.
First-degree barriers have been used to constrain these
sorts of systems [5] using physics based barriers, but a
higher-degree barrier would have greater generality and
robustness, as explicit physics modelling in the barrier
function would no longer be needed. Furthermore, the
work done on feasibility guarantees and probabilistic
barriers is highly beneficial in a CBF-based controller
[2]

In this paper barrier functions of the second-degree
will be used to ensure safety of the ego vehicle while
lane changing is taking place. Our main contributions
are:
• An extension of the first-degree feasibility guaran-

tee from [2] to higher relative degree.
• An extension of the probabilistic framework from

[2] to higher relative degree. The second-degree
barriers will be guaranteed with exponential Con-
trol Barrier Functions.

The methods used in this paper offer a framework
with which to widen search spaces for safe control in
higher-degree barrier functions.

II. RELATED WORK
CBF validity and applicability to problems like adap-

tive cruise control lane changing are well known [3]–[5].
An explicit quantitative analysis of solution feasibility
conditions and a method for accounting for unbounded
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uncertainty are proposed in [2] and [6]. However, the
model choice is very simple and does not represent
realistic inputs to a vehicle. The kinematic bicycle model
is a commonly used model for vehicles, and is robust
for how simple it is [5], [7]. This model is consistent
at varying speeds if lateral acceleration is kept small
[7], [8]. Due to its simplicity, using the kinematic
bicycle model allows the construction of more efficient
controllers while also remaining robust [7], [8].

The optimization done in [2] is done on a barrier
of relative degree 1, meaning that inputs directly affect
the state of the vehicle. A position based barrier in the
kinematic bicycle model, on the other hand, would be of
degree 2 because the second derivative of the position
depends on all of the input, but the first derivative
does not [3]. In general, for a barrier of degree n the
nth derivative of the barrier depends on input and the
n − 1th derivative does not. This allows for modelling
of acceleration as an input, as opposed to inputting
velocity at each time step. The extension of the frame-
work for probabilistic barriers and feasibility guarantees
to a degree two system would show the effectiveness
of this strategy in more realistic control systems and
demonstrate the extensibility of this approach to other
high-degree systems.

The kinematic bicycle model has been used to address
the lane changing scenario in [5]. However, instead of
exponential barrier functions, a more complex physics-
based barrier is used [5]. In this barrier, the displacement
needed to decelerate and avoid collision is explicitly
calculated and included in the barrier, which makes it
degree 1. While this does work, an exponential barrier
function would provide greater simplicity in the barrier
and would be independent of deceleration formulas
about the system being used. Furthermore, a feasibility
guarantee should also provide the ability for the con-
troller to find more optimal solutions.

III. METHOD

A. Background

A general affine control system takes the form

ẋ = f(x) + g(x)u (1)

Given an affine control system of the form 1 where f
and g are locally Lipschitz and x ∈ D ⊂ Rn is the state
and u ∈ U ⊂ Rm is the set of admissible inputs [3].
We can define a function h(x) : D ⊂ Rn → R, where
the set C = {x ∈ D ⊂ Rn : h(x) ≥ 0} is called the
safe set [3]. This allows for the barrier function to be
defined [3]:

Definition 1. Let C ⊂ D ⊂ Rn be the superlevel set of
a continuously differentiable function h : D → R, then

h is a control barrier function if there exists an extended
class Kinf function α such that for the control system 1

sup
u∈U

[Lfh(x) + Lg(h(x)u) ≥ −α(h(x))] (2)

for all x ∈ D
This allows for the definition of the set of all inputs

that render the set safe as stated in [3] to be

Kcbf(x) = {u ∈ U : Lfh(x) + Lgh(x)u+ α(h(x)) ≥ 0} (3)

The condition in 2 can also be expressed as
supu∈U

[
ḣ(x, u) ≥ −α(h(x))

]
[2]. It is proved in [3]

that any control that satisfies this condition, will render
the safe set invariant.

Since the definition of control barrier function only
includes a first derivative, the input of a second-degree
affine system, will not be constrained. If we are to
use a higher relative degree constraint on the dynamics
model (16), then a stronger condition will be needed.
The exponential Control Barrier Function (eCBF) as
proposed in [3] permits Control Barrier Functions of
higher relative degree than one. One issue is that the
formal definition of a barrier of degree n, i.e., h(n)

depends on u and h(n−1) does not, does not apply
cleanly to the desired barrier [3].

Let

ηb =


h(x, u)

ḣ(x, u)

...
h(n−1)(x, u)

 , F =


0 1 0 . . . 0
0 0 1 . . . 0

...
...

...
. . .

...
0 0 0 . . . 1
0 0 0 . . . 0

 , G =


0
0

...
0
1

 (4)

Where F is n× n, ηb is n× 1 and G is n× 1. Given
this, the definition of an eCBF given in [3] is:

Definition 2. Given a set C ⊂ D ⊂ Rn defined as the
superlevel set of a n-times continuously differentiable
function h : D → R, then h is an exponential Control
Barrier Function if there exists a row vector Kα ∈ Rn
such that for the control system 1

sup
u∈U

[
h(n)(x, u)

]
≥ −Kαηb(x) (5)

There are some constraints on Kα. If we define:

v0 = h(x, u)

v1 = v̇0 + p1v0

v2 = v̇1 + p2v1

where p are the eigenvalues of F−GKα, then Kα must
satisfy

∀pi =λ (F −GKα) (6)

pi > 0 (7)

pi ≥ −
v̇i−1(x0, u0)

vi−1(x0, u0)
(8)

[3].
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B. Probabilistic Barriers and Kα Optimization
The affine controller can be made stochastic by adding

random variables as in [2]

gs =
[
G I

]
, us =

[
u
ε

]
(9)

The affine controller then becomes:

ẋ = f(x) + gs(x)us (10)

Where ε is a column vector of n gaussian random
variables. Each entry of ε will introduce uncertainty to
the corresponding entry of the state vector, so many of
them may be set with µ = σ = 0. The constraints (5)
and (8) will now contain random variables. Hence we
will have to satisfy it probabilistically

P

(
sup
u∈U

[
h

(n)
(x, u)

]
≥ −Kαηb(x)

)
≥ η (11)

P

(
pi ≥ −

v̇i−1(x0, u0)

vi−1(x0, u0)

)
≥ η (12)

Where η is our confidence level. Both of these can
be approached with standard probability theoretic tech-
niques.

Remark. When there is one non-zero ε, this can be
solved up to degree 5 as a regular polynomial. For an
arbitrary number of independent ε, as long as no term
exceeds degree 2 with respect to these random variables,
the distribution can be approximated as a Generalized
χ2 distribution [9].

While selection of Kα need only be done at the
beginning of the control period, we can choose it at
every time step to guaruntee the feasibility of the eCBF,
while also keeping the entries of Kα as close as possible
to some desired values.

min p
2
i − c

2
i (13)

pi > 0 (14)

P

(
pi ≥ −

v̇i−1(x, u)

vi−1(x, u)

)
≥ η (15)

for i = {1, . . . , n}, where n is the degree of the barrier.
Note that h(a) : a ≥ n will depend on u, hence (8) will
depend on u which in turn depends on (11). Therefore
{pi : i ≥ n} will have to be optimized in the same
program as u. Depending on the barrier in use, {pi :
i < n} may need to be included as well as (8) for all
l ≥ i may depend on pi.

Employing both of these techniques will offer a
probabilistic safety guaruntee and a feasibility guaruntee
at each time-step.

IV. APPLICATIONS: PROBABILISTIC BARRIERS AND
Kα OPTIMIZATION FOR LANE CHANGING

A. Method
Here we take lane changing in a two-lane context

using the kinematic bicycle model as an example. The

kinematic bicycle model can essentially be captured with
the affine control system

ẋ =


ẋ
ẏ

ψ̇
v̇

 =

v cos(ψ)
v sin(ψ)

0
0

+

0 −v sin(ψ) 1 0 0 0
0 v cos(ψ) 0 1 0 0
0 v/lr 0 0 1 0
1 0 0 0 0 1



a
β
ε1
0
0
0


(16)

where x and y are position variables, ψ is the inertial
heading and v is speed. a is acceleration in the direction
of currrent velocity and β is side slip, the angle between
the current velocity and the longitudinal axis of the
vehicle [5]. In order to get the kinematic bicycle model
into affine form we assume that β is small and hence that
cosβ = 1 and sinβ = β. While uncertainty in the y di-
rection could be included, the lane changing application
depends only on x position, so it is unessecary for the
following analysis. The kinematic bicycle affine system
is strictly degree 1, as the first derivative does depend
on β but not on a. However, in order for acceleration
to be considered in a position barrier, a second degree
barrier must be used.

In this scenario the ego vehicle must track at most:
one vehicle in front of it in the starting lane, one vehicle
in front of it in the target lane, and one vehicle behind
it in the target lane. Let us denote these fc, ft, and
bt, respectively. Preventing collisions with any of these
three vehicles can be seen as maintaining some distance
in the direction of the road between the vehicles. We
can then define our general barrier (assuming the road
runs in the x direction)

hm(x, u) =



1

0
0
0

 xe −

1
0
0
0

 xm


2

− r2

 = (xe − xm)
2 − r2

(17)

where e denotes the ego vehicle, m denotes the other
vehicle under consideration, and r is some constant that
represents a required distance between the centers of
mass of the two vehicles.

We also use a trio of Control Lyapunov Functions
to implement a nominal controller for the ego vehicle
[3]–[5]:

Vv(x) = (v − vd)
2
Vy(x) = (y − yl)2

Vψ(x) = (ψ)
2

Where vd and yl are the desired velocity and y position,
respectively. These functions implement the vehicle’s
nominal behavior.
Theorem 1. If hm is an exponential Control Barrier
Function for the affine system 16, then the admissible
control space B(x, u)

B(x, u) =

{
ue ∈ Ue :

b1 − ∆̄ε1

σ
≤ Φ

−1
(1− η)

}
∪{

ue ∈ Ue :
b2 − ∆̄ε1

σ
≥ Φ

−1
(η)

} (18)

where

bi = −(∆ẋ) +
α2(∆x)

2
+

(−1)
i−1

√
−8α2(∆x)(∆ẋ) + α2

2∆2
x − 2α1((∆x)2 − r2)− 4(∆x)(∆ẍ)

2
(19)
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TABLE I
PARAMETERS FOR OPTIMIZATION OBJECTIVE

cae 10 cαft2 .0001 cδ3 1× 106

cβe 1000 cαbt1 .0001 cαfc1 .0001

cδ1 .001 cαbt2 .0001 cαft2 .0001

cδ2 10000 cαft1 .0001

TABLE II
VARIABLES FOR OPTIMIZATION CONSTRAINTS

lef 1 lbtf 1 g 9.81
ler 1 lbtr 1 rf lef + lmr + 1

lfcf 1 limslip rate
15◦

t
rb ler + lmf + 1

lfcr 1 limacc .3g kv 10
lftf 1 limβ 15◦ ky 1
lftr 1 µ .9 kψ 1

and i ∈ {1, 2}, ∆x = xe − xm, ∆ẋ = ẋe − ẋm,∆ẍ =
ẍe − ẍm, with respect to the deterministic affine system
(1), ∆ε1 = εe1 − εm1

, ∆̄ε1 and σ are the mean and

standard deviation of ∆ε1 , and Kα =

[
α1

α2

]
, will ensure

the continued safety of hm with confidence η.

Theorem 2. If hm is an exponential Control Barrier
Function for the affine system 16, then the admissible
space for Kα is

p1 > 0, p2 > 0 (20)

pi =
α2

2
±

(α2
2 − 4α1)1/2

2
(21)

− p1((∆x)
2 − r2

)− 2∆x∆ẋ − 2∆x∆̄ε1
−

Φ
−1

(1− η)σ∆ε1
2∆x ≤ 0 ∆x > 0

− p1((∆x)
2 − r2

)− 2∆x∆ẋ − 2∆x∆̄ε1
−

Φ
−1

(η)σ∆ε1
2∆x ≤ 0 ∆x < 0

p1r
2 ≤ 0 ∆x = 0

(22)

{
d1 − ∆̄ε1

σ
≤ Φ

−1
(1− η)

}
∨
{
d2 − ∆̄ε1

σ
≥ Φ

−1

}
(23)

where

di =
−(2p1∆x + 2p2∆x + 4∆ẋ)

4
+ (−1)

i−1

√
R

4
(24)

for i ∈ {1, 2}, and

R =(2p1∆x + 2p2∆x + 4∆ẋ)
2−

8(2∆
2
ẋ + 2∆x∆ẍ + 2p1∆x∆ẋ + 2p2∆x∆ẋ + p1p2h)

(25)

where equation 20 is the same constraint as equation
7 since p is not stochastic, and solving equation 8 when
a random variable is included gives equation 22 when
i = 1, and equation 23 when i = 2.

These constraints are nonlinear, so quadratic program-
ming as used in [2], [5] is no longer an option, and
nonlinear programming (NLP) will be required. With
both of these probabilistic constraints defined we can
now define the CBF-CLF-NLP optimization problem
which will be the controller [10].

min
{ae,Be,δ,α}

caea
2
e + cβeβ

2
e + cδ1δ

2
1 + cδ2δ

2
2 + cδ3δ

2
3+

cαm1
α

2
m1

+ cαm2
α

2
m2

(26)

|a|≤ limacc (27)

|β|≤ limβ (28)

± cos(ψ + βt−1) ≤ .5µg (29)

β ≤ βt−1 + limslip ratedt (30)

− β ≤ −βt−1 + limslip ratedt (31)

LfVv(x) + LgVv(x)u ≤ −kvVv(x) + δ1 (32)

LfVy(x) + LgVy(x)u ≤ −kyVy(x) + δ2 (33)

LfVψ(x) + LgVψ(x)u ≤ −kψVψ(x) + δ3 (34)

bm1
− ∆̄εm1

σ
≤ Φ

−1
(1− η) ∨

bm2 − ∆̄εm1

σ
≥ Φ

−1
(η) (35)

pm1
> 0, pm2

> 0 (36)

− pm1 ((∆mx )
2 − r2

)− 2∆mx∆mẋ
− 2∆mx ∆̄εm1

−
Φ
−1

(1− η)σ∆εm1
2∆mx ≤ 0 ∆mx > 0

− pm1
((∆mx )

2 − r2
)− 2∆mx∆mẋ

− 2∆mx ∆̄εm1
−

Φ
−1

(η)σ∆εm1
2∆mx ≤ 0 ∆mx < 0

pm1
r
2 ≤ 0 ∆mx = 0

(37){
dm1

− ∆̄εm1

σ∆εm1

≤ Φ
−1

(1− η)

}
∨
{
dm2

− ∆̄εm1

σ∆εm1

≥ Φ
−1

}
(38)

for m = {fc, ft, bt}, depending on which vehicles
are currently being tracked. For deciding when to lane
change, we can use a similar approach to that of the
finite state machine proposed in [5], and simply test
whether the ego vehicle is in the safe set for all relevant
vehicles. If so, and if the full NLP is satisfiable, then
the lane change manuever can begin and the full NLP
is used until the lane change is complete.

The details of the CLF constraints are beyond the
scope of this paper; they implement a nominal controller
and details can be read in [3]. However, we have
added δ as a slack variable to make these goal-oriented
constraints since they are non-critical, as in [5]. The
first five constraints are actuation constraints meant to
enforce the assumptions of the affine system 16 and
kinematic bicycle model. The first constraint represents
the maximum allowable acceleration, and prevents the
system from breaking physical limits [5]. Constraint 2
keeps β small so the earlier assumption used to derive 16
is valid [5]. Constraint 3 is to keep lateral acceleration
below 0.5µg, where µ is the friction coefficient, as the
kinematic bicycle model has better validity inside this
range [5], [8]. βt−1 as the lateral acceleration will be
dependent upon the slip from the last time step [5].
Similarly constraints 4 and 5 are limits on how quickly
slip angle can change [5].

For all c, c ∈ R+, and we can weight them to
prioritize different variables. This way feasibility is
guaranteed and there is some control over behavior
beyond merely safety.

The solution of the step-wise optimization problem
serves as the input for the affine controller at that time-
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step. One key difference from the degree 1 case is
that Kα need only be selected at the beginning of the
optimization problem, so at each time step the choice is
to use the new optimal Kα or to use the Kα from the
previous time step [2]. We also relax r if the problem is
not feasible, until at most r = 0 to avoid the controller
driving itself to infeasibility. This could be more robustly
approached with the method in [11], though this is
beyond the scope of this paper. We can greedily use
the new, optimal, Kα, and default to the choice from
the last time step if the problem is infeasible. In either
of these cases, safety is still guaranteed [3]. This is done
for each eCBF used to constrain the controller.

B. Experiment

The situation used for our experiment was lane-
changing on a road with two lanes. This makes the
BL and BR states in [5] unnecessary, as this state
was intended to account for a possibilities presente by
a third lane. In order to initiate a lane change, the
controller tests if the ego vehicle is in the safe set for
all 3 position barriers, and if there is a feasible solution
to the corresponding optimization problem. If so, then
lane changing is initiated and all barriers remain in
place until lane changing is finished. Before the lane
change, only the vehicle in front of the ego vehicle is
critical. Therefore the controller attempts to enforce all
3 position barriers to align the ego vehicle for the lane
change, but if it cannot, then it defaults to only the front
vehicle barrier. After the lane change is complete, only
the vehicles in front of and behind the ego vehicle in the
new lane are taken into consideration for the constraints.
These are the ACC and the L/R state in [5]. Note that
there are cases in which no feasible solution exists, there
can be no safe input regardless of what controller we
use. For example, if the lane change is finished, and the
rear vehicle is travelling faster than the front vehicle,
eventually there will be no safe input. There is no input
that prevents collision with both the rear vehicle and the
front vehicle, as we have no control over these vehicles.
This is distinct from a controller being unable to find a
safe input. We denote the second-degree controller with
probabilistic barriers Prob, and one with deterministic
constaints Det. Similarly we if Kα is optimized then we
denote the controller Optim, and otherwise we denote it
Const.

The use of both probabilistic barriers and Kα op-
timization had strong positive impacts on safety and
optimality of the solutions found by the controller.
Probabilistic barriers had a positive impact on collision
rate and a small negative impact on feasibility. This was
expected, as a probabilistic barrier forces the controller
to pick an input deeper into the feasible region to
account for motion uncertainty. Overall, safety appears

Fig. 1. First-Degree is the controller with first-degree barrier functions
from [5]. The other controllers represent our second-degree barrier
with Kα barrier constraints and Kα constraints probabilistic or
deterministic, Prob/Det, and optimization on or off, Optim/Const. All
controllers were governed by a simplified version of the deterministic
finite automata used in [5]. The affine controller (16) was used, and
non-ego vehicles maintained constant velocity and heading. ε was
normally distributed with mean 0 and standard deviation .25, and
η = .99 for the probabilistic controller. Each controller was given the
same set of 100 randomly generated lane changing scenarios where
velocities ranged betwen 0 and 2.2. Each simulation was run for
10 epochs after the ego vehicle was in the target lane and facing
straight forward, or to a maximum of 1000 epochs. The histograms
for performance only include instances where a lane change was
successfully completed.

to have increased, as the collision rate has drastically
decreased and the infeasibility rate is roughly the same
when Kα optimization is employed. It is important to
note that infeasibilty is also an unsafe outcome, as it
means that no safe input could be found, though it
is not as bad as collision. There also seems to have
been some increase in performance, i.e., a decrease
in the number of epochs required to complete lane
change, when using probabilistic barriers, especially
in the case without Kα optimization. It appears that
Kα optimization has a strong effect on feasibility in
addition to performance, furthermore, only Det/Const
and Prob/Const were ever unable to finish the lane
change. The impact of Kα optimization on collision was
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positive. This was surprising, but it may be the case that
this is because with an optimal choice of Kα the ego
vehicle will drive minimally aggressively to satisfy its
actuation, CBF, and CLF constraints, preventing unsafe
scenarios.

The new Prob/Optim barriers had greater safety and
better performance than the barriers from [5]. There are
the same number of collisions with Prob/Const, and less
infeasibility than in the controller using the first-degree
barriers. It seems that the control has a very strong
condition, that it is able to prevent collision at the same
rate as the Prob/Optim controller even under uncertainty.
However, its condition may be too strong, which causes
infeasibility. The probabilistic barrier, however, is able
to be as safe with respect to collisions but also greatly
decreases infeasibility. It is interesting that the first-
degree barriers from [5] outperformed the Det/Const
controller with respect to collision and success rate, as
Det/Const is the analogous second-degree choice. This
illustrates the nature of the first-degree barrier used in
[5]. It is great at preventing collision, but often becomes
infeasibile. Since these the second-degree controllers
had a different objective function than the first-degree
controller, performance differences cannot be attributed
entirely to the new barriers.

While the comparison of the full Prob/Optim con-
troller to the original first-degree controller in figure
1 depends on the level of uncertainty in the system,
we saw increased safety and performance. Though the
number of collisions was small for both, the difference is
infeasibility was large. Hence the safety difference may
be larger than the collision rate suggests. Furthermore,
the second-degree controller was able to change lanes
more quickly, which indicates its ability to find more op-
timal control solutions at each time step. The increased
safety was unsurprising, as we are accounting for un-
certainty. In addition Kα optimization increases the size
of feasible regions, which is seen in the comparison to
probabilistic controller without Kα optimization.

C. Discussion

While the methods used in [2] do extend to the
lane changing problem, some of the features are lost.
The ability to separate the problem into a bi-level
optimization greatly simplifies both problems, and that
is not possible in the second-degree case. Furthermore,
constraints become significantly more complex. While
deterministic eCBFs may need nonlinear constraints,
the quadratic nature of the barrier and of the Kα

constraints is unfortunate. In this case, it is not obvious
that the degree of this polynomial will increase with
the degree of the barrier, so this is mostly a matter of
inconvienience. Furthermore our approach in which we
discretize the updates of the ego vehicle based on solving

an optimization problem can cause infeasibilty at the
edge of the safe set, as mentioned in [11].

Despite this, the key features of [2] were retained.
Feasibility of the CBF-CLF-QP/NLP is guaranteed if a
safe input exists, and probabilistic choices of both u and
Kα are possible. Furthermore, the probabilistic and dual
optimization does not significantly complicate the NLP
beyond what a regular usage of an eCBF barrier would
do, as they are often nonlinear anyway.

The approach to probabilistic constraints and opti-
mization of Kα has a profound impact on safety, feasi-
bility, and optimality of the solutions that a controller
can find. Probabililistic constraints greatly increased
safety of the controller, and also seem to have had
a small positive impact on performance, which was
unexpected. Kα optimization greatly increased feasi-
bility and increased performance. The combination of
these two techniques gave us strictly better constraints
second-degree. The first-degree physics based controller
performed exceptionally well when compared to the
analogous second-degree controller. Despite this initial
difference, our experiment shows increased safety and
feasibility when using the Prob/Optim barrier relative to
the first-degree physics-based barrier, with uncertainty
in the system.

V. CONCLUSION

The methods proposed by [2] in order to account for
uncertainty and guarantee the feasibility of safe solutions
do extend to the second-degree in a general way. While
this extension can be inconvienent, depending on the
barrier function and affine system in use, the key proper-
ties are preserved. We tested this extension and were able
to create a powerful controller for an existing problem
that outperformed known solutions in situations with
uncertainty, and has strong theoretical guarantees while
also being a generally applicable method. Furthermore
the proposed method for extension works for barriers of
arbitrary degree.

VI. FUTURE WORK

The primary drawback of this extension is the move
to a single level optimization problem, and this means
that characterizing the optimal Kα choice is not as
straightforward as in [2]. Some theoretical work to char-
acterize this single level optimization problem would be
another direction of future research. Application of the
discretized feasibility guarantee from [11] would also
increase the ability of our controller to find feasible
input, by preventing it from being driven to infeasibility,
at the edge of the safe set, as a result of the discretization
of time.
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APPENDIX

Proof. [Theorem 1]
Taking the first derivative of the barrier with respect to
the affine system (16) gives:

ḣ (x̂, u) = 2 (xe − xm) (ẋe − ẋm + εe1 − εm1
) (39)

= 2




1
0
0
0

 x̂e −


1
0
0
0

 x̂m
 ·




1
0
0
0

 (fe + geue)−


1
0
0
0

 (fm + gmum)


(40)

and the second derivative gives:

ḧ = 2(ẋe − ẋm + εe1 − εm1
)2 + 2(xe − xm)(ẍe − ẍm)

(41)

where

ẍ =


0
0

−v sinψ − βv cosψ
cosψ − β sinψ

 (f + gu) (42)

=

(
−v

2β

lr
sinψ − β2v2

lr
cosψ + a cosψ − aβ sinψ

)
(43)

Using the condition in 5, the input needs to satisfy

ḧ(x, u) ≥ −Kαηb(x, u)

Which takes the form:

2(ẋe − ẋm + εe1 − εm1
)2 + 2(xe − xm)(ẍe − ẍm) ≥[

α1

α2

]
·
[

(xe − xm)2 − r2

2 (xe − xm) (ẋe − ẋm + εe1 − εm1)

]
(44)

Let

∆x = xe − xm =


1
0
0
0

 x̂e −


1
0
0
0

 x̂m (45)

∆ẋ = ẋe − ẋm =


1
0
0
0

 (fe + geue)−


1
0
0
0

 (fm + gmum)

(46)

∆ẍ = ẍe − ẍm =


0
0

−ve sinψe − βeve cosψe
cosψe − βe sinψe

 (geue)−


0
0

−vm sinψm − βmvm cosψm
cosψm − βm sinψm

 (gmum)

(47)

with respect to the affine system without uncertainty,
so these do not include the ε terms. This will allow us
to simplify notation, and keep ε separate. Let us also
denote: ∆ε1 = εe1 − εm1 and ∆ε2 = εe2 − εm2 .
Isolating the random variable gives:

2((∆ẋ) + (∆ε1 ))
2

+ 2(∆x)(∆ẍ) ≥ −Kα
[

(∆x)2 − r2

2(∆x)(∆ẋ + ∆ε1
)

]
(∆ε1 )((∆ε1 ) + 2(∆ẋ)− α2(∆x)) ≥

− (∆ẋ)
2 −

1

2
α1((∆x)

2 − r2
)− α2(∆x)(∆ẋ)− (∆x)(∆ẍ)

Applying the quadratic formula

(∆ε1
) ≥ −(∆ẋ) +

α2(∆x)

2
±√

−8α2(∆x)(∆ẋ) + α2
2∆2

x − 2α1((∆x)2 − r2)− 4(∆x)(∆ẍ))

2

Recall that the input vectors ue and um are only in the
ẋ and ẍ terms (and therefore ∆ẋ and ∆ẍ). We assume
that ∆ε1 is a normally distributed random variable. Let
its mean and standard deviation be ∆̄ε1 and Σ. Let

b1 =− (∆ẋ) +
α2(∆x)

2
+√

−8α2(∆x)(∆ẋ) + α2
2∆2

x − 2α1((∆x)2 − r2)− 4(∆x)(∆ẍ))

2
(48)

b2 =− (∆ẋ) +
α2(∆x)

2
−√

−8α2(∆x)(∆ẋ) + α2
2∆2

x − 2α1((∆x)2 − r2)− 4(∆x)(∆ẍ))

2
(49)

As this is quadratic, we split into the union of two
inequalities:

∆ε1 ≥ b1 ∨∆ε1 ≤ b2

This should be true with probability η. We can use the
inverse cumulative distribution function Φ−1.
In case 1:

P (∆ε1 ≥ b1) = 1− Φ(
b− ∆̄ε1

σ
)

P (∆ε1 ≥ b1) ≥ η ⇐⇒ 1− Φ(
b− ∆̄ε1

σ
) ≥ η

b1 − ∆̄ε1
σ

≤ Φ−1(1− η)

In case 2:

P (∆ε1 ≤ b2) = Φ(
b− ∆̄ε1

σ
)
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P (∆ε1 ≤ b2) ≥ η ⇐⇒ Φ(
b− ∆̄ε1

σ
) ≥ η

b2 − ∆̄ε1
σ

≥ Φ−1(η)

Proof. [Theorem 2] pi are defined as the two eigenval-
ues of F − GKα [3]. Hence solving for p in general
gives

pi =
α2

2
± (α2

2 − 4α1)1/2

2

The assignment of the plus or minus term to the different
i is arbitrary, we account for both possibilities. The
first condition pi > 0 is trivial. The second condition
(8) must be split into two cases. Using the alternate
formulation, v̇0 +p1v0 ≥ 0, from [3], the first case takes
the form:

∆ε1 ≥
−p1((∆x)2−r2)

2∆x
−∆ẋ ∆x > 0

∆ε1 ≤
−p1((∆x)2−r2)

2∆x
−∆ẋ ∆x < 0

0 ≥ −p1((∆x)2 − r2) ∆x = 0

(50)

Only the first two cases are stochastic. These give us the
constraints:

−p1((∆x)2−r2)
2∆x

−∆ẋ−∆̄ε1

σ∆ε1

− Φ−1(1− η) ≤ 0 ∆x > 0

−
(
−p1((∆x)2−r2)

2∆x
−∆ẋ−∆̄ε1

σ∆ε1

− Φ−1(η)

)
≤ 0 ∆x < 0

p1r
2 ≤ 0 ∆x = 0

(51)

Note that the third case is unsatisfiable. Let us expand
these to a more inuitive form:
−p1((∆x)2−r2)

2∆x
−∆ẋ − ∆̄ε1

− Φ−1(1− η)σ∆ε1
≤ 0 ∆x > 0

−
(
−p1((∆x)2−r2)

2∆x
−∆ẋ − ∆̄ε1

− Φ−1(η)σ∆ε1

)
≤ 0 ∆x < 0

(52)
− p1((∆x)

2 − r2
)− 2∆x∆ẋ − 2∆x∆̄ε1

−
Φ
−1

(1− η)σ∆ε1
2∆x ≤ 0 ∆x > 0

− p1((∆x)
2 − r2

)− 2∆x∆ẋ − 2∆x∆̄ε1
−

Φ
−1

(η)σ∆ε1
2∆x ≤ 0 ∆x < 0

(53)

For the second constraint, let us again use the alternative
formulation from [3]:

v1 = ḣ+ p1h = 2(∆x(∆ẋ + ∆ε1)) + p1h

The constraint then is:
(2)∆

2
ε1

+ (2p1∆x + 2p2∆x + 4∆ẋ)∆ε1 + (2∆
2
ẋ + 2∆x∆ẍ+

2p1∆x∆ẋ + 2p2∆x∆ẋ + p1p2h) ≥ 0
(54)

let us apply the quadratic formula as in the proof of
theorem 1.

d1 =
−(2p1∆x + 2p2∆x + 4∆ẋ)

4
+

√
R

4

d1 =
−(2p1∆x + 2p2∆x + 4∆ẋ)

4
−
√
R

4

(55)

Where
R =(2p1∆x + 2p2∆x + 4∆ẋ)

2−

8(2∆
2
ẋ + 2∆x∆ẍ + 2p1∆x∆ẋ + 2p2∆x∆ẋ + p1p2h)

(56)

Then the constraints become:

∆ε1 ≥ d1 ∨∆ε1 ≤ d2 (57)

The same approach as used in the proof of theorem 1
can be used to arrive at the final constraints.
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Context-Sensitive Template-Based Text Generation for Robotic Agents

Peter Angel Vanegas1, Roshni Kaushik2, Reid Simmons2

Abstract— The efficacy of communication in human-robot
interaction scenarios is of increasingly greater interest as
robotic agents, and thus these interaction scenarios, grow ever
more pervasive in our lives. It does not suffice merely that the
correct information is conveyed, but instead that it is delivered
along with proper affect, tone, and mood. We hone this into
the domain of teachable robots: agents capable of learning new
information, ideas, and rules from us, which ultimately they
may reciprocate to others. Accordingly, it is within our interest
that these human-facing robots are both effective and socially
appropriate in communicating with us. To this end, we propose
a step towards a socially-sensitive synthesis model, capable
of dynamic expression using pre-defined base phrases with
context sensitivity by appending appropriate “satellite phrases.”
These satellite phrases are sentimentally-tagged modifiers that
can be added to base phrases in accordance with desired
mood parameters. This templating model allows for some novel
elasticity in generating informative responses, which when used
in conjunction with other communication aspects (such as facial
expressions and body language), creates a more holistic and
desirable interaction experience.

Index Terms— human computer interaction, text-synthesis,
sentiment analysis, word embeddings

I. INTRODUCTION

From familiar smartphone personalities to human-assistive
robots, we are increasingly interacting with, and becoming
dependent on, autonomous robotic agents intended to speak
and function all their own. Naturally this comes with a set
of challenges – it is not so simple that we simply program
language comprehension and reasoning skills into an agent,
as such an ability is strongly gated by what for humans is
layers of inherent grammatical intuition codified by a lifetime
of language use. To this end, much of what our autonomous
robotic agents say and do is established in pre-programmed
dialogue sequences dependent on extensively hard-coded
rules, which inherently prohibits a level of flexibility and
novelty that is present in natural speech. In essence, these
agents tend to speak in repetitive, tonally flat and neutral
sequences.[1]

In recent years, various text-processing tools of interest
have arisen that can be appropriated to attend to this issue.
Sentiment analysis, which can be used to measure the
polarity, or level of positivity / negativity present within
a text, and word embedding vectors, which measure the

1Peter Angel Vanegas is a Computer Science student at Florida Interna-
tional University in Miami, FL. pvane003@fiu.edu

2Roshni Kaushik is a graduate student working under the direction of
Dr. Reid Simmons at Carnegie Mellon University’s Robotics Institute in
Pittsburgh, PA. roshnika@andrew.cmu.edu

2Dr. Reid Simmons is a Research Professor and director of the Reliable
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various levels of relation between discrete words, can be
adapted to instead filter, then systematically generate novel
phrases that can be leveled against various environmental
factors – tone, mood, and emotions that a human interacting
with the agent is expressing. Naturally, responses that a
robotic agent generates are expected to be sensitive to such
aforementioned factors. By utilizing the values returned by
these text-processing tools, it is possible to move towards
creating agents that have an improved level of sensitivity to
sentimentally or emotionally charged scenarios.

In this work, we have so far implemented a system of
scoring for word selection in template-based contexts that
utilize tags. The program developed allows for a user or
agent to feed tagged ”maps” of phrases. These tagged maps
may contain collections of words to collections of complete
phrases (which may themselves have tags embedded within
them). Tags correspond to the type of information or part of
speech - a tag may be labeled ”ADJ” or ”ADV” for adjectives
and adverbs (respectively), ”THANKS” or ”GREETINGS”
for generic and common immutable phrases, or may be
labeled as containing purpose-specific information. These
lists may themselves have tags embedded within in the case
where certain flexibility may be desired in certain parts of
speech, particularly adjectives and adverbs, though this may
be extended to verbs and nouns.

In contexts in which it is wanted, scoring is used to select
what replaces a tag. Be this a word or a phrase (or a combi-
nation of them - again, tags can themselves contain tags),
the phrases can be passed through a proposed algorithm
that provides a numeric score using Sentiment Analysis and
Word Embeddings. These scores can be adjusted to desired
effect in order to influence selection in the event we favor a
certain level of affect or how semantically related the words
in a phrase are. Utilizing this system, we have observed and
shown that this process can be used to meaningfully choose
words with appropriate tone and affect. However, due to the
limitations of our resources, this also at the current lacks
human nuance and is currently viable in specific, simple and,
and limited scenarios.

II. BACKGROUND

The inspiration behind this work is contingent on the idea
that certain parameters of language can be used to sup-
plement text generation approaches. Current deep-learning
approaches (such as those found in GPT-3) rely heavily
on statistical prediction, and as a result has some practical
limitations on maintaining precise affect.[2] There is, how-
ever, work to target different components of language to
address this issue. In this project, the aim is to take into
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account specific aspects of which sentences and language
are composed (tone and semantic relation) and use them
as parameters or standards with which affect can be fine
tuned to create more genuine and engaging responses. This
is achieved through the values provided from sentiment
analysis and word embeddings. [3][4]

A. Sentiment Analysis

The sentiment analysis here is performed principally by
two open-use python libraries – VADER-Sentiment, and
TextBlob. Both packages are readily available online and
have been trained in different contexts. TextBlob is a gen-
eral Natural Language Processing (NLP) library built upon
NLTK, based on the pattern library.[5] VADER-Sentiment
is purposed specifically for sentiment analysis, having been
trained on social media data. Both tools return a numerical,
decimal score that measures the polarity of phrases fed into
it, indicating whether a word or phrase is generally perceived
positively or negatively.[6] These tools are yet naı̈ve and lack
the ability to reason certain contexts, such as sarcasm, and
will fail to reflect these situations, but for the purposes of
this work, its general scoring is sufficient.

B. Word Vectors

Word embeddings are reliant on word vectors, which are
the result of the vectorization of discrete words into a set of
values, represented as dimensions, which then can be used
to find similarities in usage, context, and semantics. The
similarities between a set of given words are represented by
the distance between those set of vectors and their values;
extremely similar words generally share a short distance
between them, where unrelated words share a large distance
between them.

In this project, the Stanford provided Global Vectors
for Word Representation (or GloVe) set is utilized. These
vectors are trained on a general English corpus scraped from
Wikipedia and come in a set dimensions ranging from 50 to
300.[7] As a compromise on time and accuracy, since the
intent of this system is to function in real time with humans,
the 50d vectors are utilized to facilitate better load time at
the cost of accuracy and diversity of vectors.

III. METHODS

A. Input and Phrase Formation

The system utilizes two main input options: manual sen-
tence entry, and template construction. The former input
allows for a user to input a sentence that has been manually
tagged (to be elaborated upon) with specific markers to
replace specific portions of a statement with the appropriate
parts of speech or phrases. This functions as a basic utility for
pre-established phrases that may request a level variability in
single words, such as adjectives, adverbs, and simple nouns.

Templatic input functions more distinctly. This is intended
for the formation of longer, more diverse phrases and even
set of sentences by drawing from a list of curated “core”
phrases that may themselves have embedded tags for chang-
ing various smaller parts of speech within a larger phrase.

Examples of these core phrases can include game rules,
system notifications, and advisory text. These can themselves
be modified by satellite phrases, modifying phrases that serve
some effect on changing the delivery of tone, mood, or
information in the text, that are meant to fit around the core
piece of informative text.

Tags generally take the form of either an open part of
speech (nouns, verbs, adjective, and adverbs), or type of
phrase which serves a specific function. These functions
depend on the intent behind of the dialogue designer, i.e.,
someone who is curating phrases for the specific purpose of
this system. A phrase may serve to deliver a comment on a
specific object or action a user takes, functioning discretely
on its own. This is again an example of a “core” phrase.
Some phrases may serve as modifiers that are unable to stand
on their own. Suppose the following examples:

“Your performance was subpar.”

“I think Your performance was subpar.”

The former phrase is an objective statement of one’s per-
formance, but may be interpreted as a blunt statement and
may be inconsiderate or inappropriate of the environment
in which the comment was made. The latter phrase is a
“softened” by the addition of a personal (that is, using the
1st person singular pronoun “I”) modifying phrase snippet.
The addition of phrases like these is generally arbitrary but
meaningful and diverse and attunes to the attitudes at hand.
In an active educational or advisory scenario, it may be
beneficial to address students with softer, more personalized
tone in the event of high levels of frustration or stress, rather
than blunt statements of performance (which of course, may
have their own use).

Other, smaller phrases can be substituted and written into
the aforementioned place. “I believe,” “I feel [like],” “It
seems,” may substitute this the place of “I think,” and these
are generally left to the discretion of the dialogue designer.

Conversely, this system can also be used to generate more
assertive phrases. As stated before, an unmodified statement
as in the previous example may be considered blunt, but not
necessarily assertive or imperative. In this scenario, consider:

“Leave the building.”

“Please leave the building.”

“Leave the building immediately.”

”You must leave the building now.”

These smaller, non-core satellite phrases can be utilized to
create a level of imperativeness or urgency.

Suppose a chess-based game rule: “Protect the king.” This
rule may be harbored in a file that reacts to the tag [RULE-
KING]. In the event it is detected that the user is frustrated,
a program interacting with the phrase mapping system may
deem it appropriate to add a preceding softening phrase,
which itself is harbored with the tag [SOFT]. It should be
noted that the position of these phrases is grammatically
significant; meaningful organization of tags is necessary
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(for the moment, there is a tentative internal system being
developed to indicate necessary positioning that can be
manually codified). Appropriately, [CONSEQUENCE] may
be required as well to convey the result of recent or further
actions. The combination of these are be sent as an array to
fit in phrases appropriately, taking the form of

[SOFT] [RULE-KING] [CONSEQUENCE]

- which itself can, once phrases are chosen and fitted,
ultimately create a phrase like “Please protect the king,
or else you will lose,” or “Remember to protect the king,
otherwise the game will end.” The choice and wording of
curated satellites currently must be deliberate to facilitate
grammaticality and clarity. It should be noted phrase maps
do not require grammatically open phrases for generating
responses, and can utilize stand-alone phrases as well (for
example, greetings like ”Hello,” or ”Good morning,” or
expressions of thanks like ”Thank you” and ”You’re wel-
come”).

Utilizing the previous examples, we may see those exam-
ples can be generated from phrase maps like the following:

[SOFT] [PERFORMANCE]
[IMPERATIVE] [EVACUATE] [TIME]

Which would generate the ”I think your performance was
subpar” and ”You must leave the building now” examples
respectively. Additionally, tags may themselves have embed-
ded sub-tags that perform certain functions as well, such
as declaring that a set of generated phrases or specific
modifications must be scored to fit the scenario, or declaring
that we would like to score the semantic distance between a
set of modifying words and a target word. Taking for instance
the [PERFORMANCE] example, the phrase may be saved
in text as so:

Your performance was **ADJ**.

Where **ADJ** indicates that an adjective from the ad-
jective set is meant to take its place. Tags inside of other
tags (subtags) are currently identified using two surroundings
asterisks. In most scenarios, this modifying word is also
scored, as it must of course fit the requested sentiment for
the context. The process of scoring and selection is described
in the next subsection.

B. Scoring and Selection

A standard must be applied in order to filter and correctly
choose what words and phrases are most appropriate in a
given context. This is done by utilizing sentiment analysis
and word vectors. If a tag contains the appropriate signal
(currently, a ”+” in the tag name), then it generates a set
of phrases using the contents of that tag and sends them
to be selected according to a mood parameter. A mood
parameter at the present is a simple value, arbitrarily decided
by integers -2 to 2, with -2 meaning ”strongly negative,” 0
”neutral,” and 2 ”strongly positive.” -1 and 1 are moderately
negative or positive, respectively. TextBlob and VADER-
Sentiment both return decimal values independent from the

mood parameter’s integers (which function only as stand-ins
to call for the desired tone of sentiment). TextBlob returns
decimal values from -1 to 1 (negative to positive sentiment
respectively); VADER returns values from 0 - 1, separated by
how strongly they lean in either positive, negative, or neutral
sentiment, all of which are factored into a compound score,
of which we utilize rather than the previous 3.

For selection of moderately tonal sentiments utilize a score
range from 0.00 - 0.65, while strongly tonal sentiments will
favor sentiments at strictly at .5 and greater, however, these
boundaries are adjustable in code by a dialogue designer.
These values are negated for negative sentiments. Neutral
sentiments generally are scored between the interval of -0.4
to 0.4. From a selection of phrases closest to the desired
affect, a variable, arbitrary number of them that best fit are
chosen, and from those, a random completed phrase is chosen
to add a level of novelty to prevent monotony in responses.

At a more thorough level, specific words and parts of
speech can also be targeted if desired, although these must
be manually tagged within the design of the phrases as well.
Translating this to our program, we can opt to modify a noun
with an adjective, or an adjective with an adverb.

When determining an appropriate modifier, the sentiment
is taken into account along with the semantic distance of the
modifying word from the target word. The semantic distance
of words is a decimal within the range inclusively of 0.0
to 8.0 or above (results above 8 are possible, but unseen
given current conditions), and are normalized to produce
d according to the following formula, where delta is the
semantic distance:[

d = 10− 1

1− log8(δ)

]
· 0.1 (1)

This reduces scores to a decimal between 0 and 1. Beyond
an input distance of 6.498, these scores (along with their
associated word) are discarded for being determined to
be significantly irrelevant. This value is not arbitrary; An
input of 6.498 for delta is the zero of this expression that
tends downward, meaning values at this or above produce
results that are negative and thus discarded for their supreme
irrelevancy.

Sentiment scores are then averaged, and distance from
the mean for a given word’s sentiment score is used to
determine the weight or “score of the score.” This value,
s, is then summated with the normalized semantic distance,
d, weighted by a hyperparameter α that is arbitrarily chosen
to decide whether semantic distance or sentiment distance is
valued more (this, again, is left to the designer or writer’s
specifications).

s · α+ d · (1− α) (2)

Scores for a set of words are aggregated, placed into a
phrase’s appropriate tag, and those set of phrases can po-
tentially be scored as well. An arbitrary n amount of the
best fit are chosen (for our experiment, we set n = 5), from
which a random phrase is selected for output. A smaller n
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seeks to choose from the absolute best fit, while a larger n
broadens the acceptable range.

IV. RESULTS
The utilization of sentiment analysis and semantic distance

shows promise and displays desirable variance in its selection
process. Precisely, it can be seen that varying the weight of
semantic distance versus sentiment score can produce results
that change outcomes. As seen in figure 1, variance in the
alpha hyperparameter will vary the scoring and selection of
certain words. Some words consistently appear, while others
do not appear until the parameters have been sufficiently
adjusted. The examples provided here are additionally the
sample of words which appeared; various appropriate words
were omitted by the system altogether, words such as ”splen-
did” or ”incredible.”

Fig. 1. The word targeted for modification was ”move,” aiming for
a moderately positive sentiment. Some elementary, common words like
”good” and ”nice” appear frequently regardless of alpha value. As alpha
increased, which biases towards sentiment rather than semantic distance,
more strongly positively sentimental, rather than close-by-vector distance
words were chosen, such as ”astounding,” or ”amazing.”

The selections made by this process fit to a generalized
idea of sentiment (the concept of being “positive,” “negative,”
or ”neutral”), but even provided this scoring system, it some-
times may favor words that do not accurately fit the tonal
context. It is possible for it to use superlative words in mild
scenarios (for example calling something ”amazing” when
an action was only satisfactory), and this lack of nuance
and may cause awkward or tone-inappropriate responses.
Regardless, the level of flexibility in response generation
for a set of circumstances is beneficial, and if necessary,
a dialogue designer can choose to tighten its selection
criteria by changing the aforementioned mood parameters
(see Methods: Scoring and Selection), but presents another
hurdle in user friendliness and is currently detrimental to
diversity of phrase generation.

V. CONCLUSIONS AND FUTURE WORK
The system handles construction of phrases using its

phrase maps well, however, faces issues of necessary gram-
maticality. Phrases must be heavily manually curated to as-
sure grammaticality, as no grammar checks are implemented
to assure for features such as agreement or orthographic
features such as capitalization. This required “grammatical

smoothing” currently presents some challenges to user /
designer friendliness and is to be taken for further consider-
ation.

This system is not intended for independent use and is
meant to be utilized with separate systems that are capable
of creating more holistic experiences. For example, when
creating agents that are robotic tutors, one possibly able to
detect our emotions and attitudes, which may have systems to
determine body or facial language. In this respect, although
there are limitations on dialogue creation, it nonetheless
potentially adds a layer of novelty to such experiences. In
addition, although the processes shown here are trained on
general English corpora, these tools can potentially be trained
on specific ones (for example, product reviews or educational
materials) to hone in on the purpose of the grander projects.

Its main potential benefits lie within the simplification
of dialogue creation; although writers may still be required
to curate specific phrases and terms to be used, instead
of manually hard-coding or typing in a corpus of phrases,
this allows for recombination of phrases that are adaptive
to specific scenarios by calling upon appropriate phrases.
Although this yet is a level away from true language
comprehension, the systems described herein are a step
towards creating more comprehensive and dynamic robotic
interaction environments.
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H. Horacek, and P. Cimiano, Eds. Cham: Springer International
Publishing, 2020, pp. 213–224.

[4] Z. Zeng, Y. Yin, Y. Song, and M. Zhang, “Socialized word
embeddings,” in Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI-17, 2017, pp. 3915–3921.
[Online]. Available: https://doi.org/10.24963/ijcai.2017/547

[5] S. Loria, “Textblob: Simplified text processing,” Release 0.16, 2020.
[Online]. Available: https://textblob.readthedocs.io/en/dev/

[6] C. Hutto and E. Gilbert, “Vader: A parsimonious rule-based model for
sentiment analysis of social media text,” 01 2015.

[7] J. Pennington, R. Socher, and C. Manning, “GloVe: Global vectors
for word representation,” in Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing (EMNLP).
Doha, Qatar: Association for Computational Linguistics, Oct. 2014,
pp. 1532–1543. [Online]. Available: https://aclanthology.org/D14-1162

319



Toward the Use of Model Predictive Control for Quadrotor Flight

Fausto Vega1 and Zachary Manchester2

Abstract— In this paper, we present promising results to-
wards the use of optimal control for a quadrotor. One method
is model predictive control (MPC) which utilizes the model and
dynamics of the quadrotor to select an optimal control action
over a set horizon. MPC also allows constraints on the environ-
ment and hardware to be added to the control scheme which
allows for safe maneuvers at every time step. A quaternion-
based approach for rotations will also be implemented to avoid
singularities that happen with Euler angles. Many roboticists
use the PX4 Pixhawk as their flight controller which uses
PID controllers to stabilize the quadrotor and does not allow
for aggressive maneuvers. Other optimization methods such
as a Linear Quadratic Regulator (LQR) controller were also
implemented on a quadrotor model as it is unconstrained MPC.
However LQR can lack robustness for aggressive trajectories
and experience singularities. Experimental results show that
the LQR controller ensures safe trajectories for simple paths
over a discrete time. MPC options were also explored, and these
results converged to their goal at a faster rate in a safe manner.

Index Terms— Optimization and Optimal Control, Aerial
Systems: Mechanics and Control

I. INTRODUCTION

Quadrotors have rapidly advanced in control and design
within the last decade due to their interest in use in several
applications. Some of these applications include disaster
response [1], automated delivery [2], and agriculture [3].
Their dynamics allow them to be controllable which enables
quadrotors follow a reference trajectory with precision. Com-
mon control systems on a quadrotor include PID control,
yet this type of control does not take into account obstacles
and safety constraints of the system. Some safety constraints
while flying a quadrotor are the torque limits in the motors
as well as the boundary from the flying zone. MPC treats
the control of the quadrotor as an optimization problem
and allows safety constraints such as torque limits to be
implemented in the problem. To accurately arrive to a goal
state, a quadrotor must perform three dimensional transla-
tions and rotations. A three dimensional representation of a
rotation that utilizes Euler angles experiences singularities
and leads to less degrees of freedom due to a gimbal lock.
However, this is avoided by representing rotations as quater-
nions and Rodriguez parameters which allow rotations to be
represented through linear algebra and vector calculus. Other
methods for optimal control rely on differential geometry and
Lie group theory which are non trivial and not common to
roboticists.

1Fausto Vega is with the University of Nevada, Las
Vegas, 4505 S Maryland Pkwy, Las Vegas, NV 89104, USA
faustovega10@gmail.com

2Zachary Manchester is an Assistant Professor at The Robotics Institute,
Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA
zacm@cmu.edu

Fig. 1. Quadrotor Hovering in a Julia Simulation Environment

Other control systems have been implemented on quadro-
tors and have shown positive results. Kumar and Mellinger
developed optimal trajectories in real time for the control of
quadrotors through corridors [4]. Aggressive maneuvers with
were also implemented by Kumar and the the GRASP Lab
by designing optimal feasible trajectories and controllers [5].
Yet, both of these controllers used Euler angles to express
the attitude of the quadrotor which may lead to gimbal lock
at certain states. Bouabdallah presented a combination of
a PID and backstepping technique guaranteed asymptotic
stability and robustness while switching states [6]. However,
a disadvantage is an external sensor had to be used to avoid
colliding into the walls which is not a problem with MPC
as the constraints are part of the optimization problem.

Model predictive control with nonlinear dynamics is also
a popular subject among control theory. Kim presented the
use of a nonlinear MPC controller for position and heading
tracking of a helicopter [7]. The optimization method used
was gradient descent which can be subject to overshoot and
cause a zig-zag behavior when finding the minimum. Real
time solvers have been developed to avoid these errors and
solve optimization problems extremely fast. State-of-the-art
trajectory optimization solvers such as ALTRO have been
developed to find a solution quickly [8].

In this paper, we study the use of a LQR controller
and a model predictive control (MPC) algorithm to drive
a quadrotor to a desired state. This state includes the posi-
tion, orientation, linear velocity, and angular velocity of the
quadrotor. Control using a linear quadratic regulator (LQR)
was implemented and results were collected to compare to
the MPC solution once results are collected. The communi-



cation between the flight controller and the on board LQR
controller was also studied for efficient data transmission.
MPC is not common among flight controllers as this method
only guarantees convergence when the linearized model
is fully controllable. Yet, in this work, we linearize the
dynamics model of the quadrotor about a hover position and
obtain a controllable system. However, the linearized model
utilizes small angle approximations that are only valid at
small roll and pitch angles. Therefore, simple trajectories will
be executed to ensure the validity of the linearization. This
paper also focuses on the modeling of the quadrotor using
quaternions to avoid the singularities experienced using Euler
angles. The quadrotor position data will be shown for each
controller to show the speed and robustness of the controller.

The remainder of the paper is organized as follows:
Section II describes the dynamics of the quadrotor, the
method of data transfer between multiple components, and
the experimental setup. Section III will present the results of
the LQR controller and MPC controller, and Section IV will
address conclusions and future work on this project.

II. METHODS

A. Dynamics

The quadrotor dynamics will be derived in this section. A
quadrotor model is shown in Figure 2 to depict the forces (Ti)
and moments (Mi) where i = 1,2,3,4. Each motor produces
a thrust and a moment which are modeled with Equations 1
and 2. In these equations kf and km represent the thrust and
moment coefficients and they obtained using thrust test data
provided by the motor manufacturer.

Fig. 2. Quadrotor Forces and Moments

Ti = ktui (1)

Mi = kmui (2)

The state of the quadrotor consists of 13 elements which
are position in the inertial frame (x, y, z), a quaternion
(qx, qy, qz, qw), linear velocity in the body frame (vx,vy,vz),
and the angular velocity in the body frame (ωx, ωy, ωz)
Equation 3 depicts a summary of the elements in the state
vector and Figure 3 shows the frames and notation of the
quadrotor.

Fig. 3. Quadrotor Coordinate Systems

x =


rN ∈ <3

q ∈ H
vB ∈ <3

ωB ∈ <3

 (3)

Next, the kinematics of the quadrotor will be discussed
as these equations map the velocities to the position. The
kinematics related to the position are shown in Equation 4.
Since the position is expressed in the body frame, a rotation
matrix or quaternion is needed to transform the velocity
measurement to the inertial frame (N).

ṙN = QvB (4)

The derivative of the quaternion is shown in Equation
5. The notations for the L, H, and the skew symmetric
operator ([x]×) are shown in the following equations (5,6,7).
In Equation 7, qs refers to the scalar part of the quaternion
(qs ∈ <) and qv represents the vector part (qv ∈ <3).
This notation is established in a prior paper published by
the Robotics Exploration Laboratory at Carnegie Mellon
University [9].

q̇ =
1

2
L(q)HωB (5)

H =

[
0
I3

]
(6)

L(q) =

[
qs (−qv)T
qv qsI + [qv]

×

]
(7)

[x]× =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 (8)

The translational dynamics of the quadrotor follow New-
tons second law of motion. However, rotations were applied
to obtain the force and acceleration in the body frame, and
this results in an additional term to the standard second law.
This relation is shown in Equation 9.

v̇B =
1

m
FB − ωB × vB (9)



The forces that the quadrotor experiences are expressed
in Equation 10. Gravity is the first force and it is rotated
to obtain the result in the body frame. The following term
corresponds to the thrust force generated by the 4 motors
onboard the quadrotor which is expressed in Equation 1.

FB = QT

 0
0
−mg

+

 0 0 0 0
0 0 0 0
kt kt kt kt

u (10)

Finally, the rotational dynamics are described by Euler’s
equation (Equation 11). J corresponds to the inertia matrix
which is dependent on the quadrotor size and mass. A 3D
model of the quadrotor was designed on Solidworks to obtain
the inertia matrix using the mass properties function. The
variable τ represents the total torque of the system which
comprises of two sources. The first source is the thrust
(Equation 1) muliplied by the distance (l) between the motor
and the center of gravity, and the second is the propellers as
they generate a torque with the moment coefficient (shown
in Equation 12).

τB = JBω̇ + ωB × JωB (11)

τB =

 lkt(u2 − u4)
lkt(u3 − u1)

km(u1 − u2 + u3 − u4)

 (12)

B. LQR Control

The Linear Quadratic Regulator (LQR) is a common
method in control theory that provides feedback gains that
ensure a closed loop stable system. This method only applies
to linear systems in the following form.

ẋ = Ax+Bu (13)

Using the Runga-Kutta iterative method, the future states in
discrete time can be estimated. A Taylor series expansion
can also be applied to the state and result in Equation 14.
This linearization results in the A and B matrices being the
partial derivative of the dynamics with respect to the state
and the control. For this experiment, the A and B matrices
were linearized about a hover position which accounted for
gravity.

δxk+1 =
∂fk
∂x

δx+
∂fk
∂u

δu (14)

An attitude Jacobian was then applied to the quaternion
part of the state as simply linearizing a system with a
quaternion state results in an uncontrollable linear system.
This is because the quaternion causes the A matrix to be
rank deficient due to the quaternion unit norm constraint. To
determine whether the system was controllable, the control-
lability matrix was used.

The cost function that is minimized throughout a discrete
time step is shown in Equation 15. Q and R represent con-
stant matrices that act as gains to tune the system depending
on the characteristics needed. The Q matrix must be positive

definite and the R matrix must be positive semi-definite for
LQR to work.

min
N−1∑
k=1

1

2
(xk)

TQkxk +
1

2
(uk)

TRkuk +
1

2
(xN )TQNxN

(15)

Figure 4 shows the feedback loop. The error state is
multiplied by the K matrix and drives the system to the
reference state. The goal of the system is to drive the error
state to zero. In this case, the reference state is a hover
position and the initial position is a random position and
orientation in the air.

Fig. 4. LQR Control Diagram

C. Model Predictive Control

Model predictive control utilizes the model of the system
to predict the future output behavior. Using this prediction,
the optimal control problem is solved. Constraints on the
inputs and states can be set and the problem will take
these relations into account when solving the optimization
problem. For example, torque limits are a potential constraint
to not have unrealistic PWM commands to the motor. The
optimization problem for MPC is shown in Equation 16. H
represents the horizon of the problem which is the discrete
time the plant has to reach the reference state. The xN
term is the terminal cost which will be estimated as the
solution to the Ricatti equation. The solver will solve the
entire trajectory, select the first optimal control input, move
to the optimal state, and repeat the process until the quadrotor
reaches the goal state.

The Augmented Lagrangian Trajectory Optimizer (AL-
TRO) solver was the solver used to solve the constrained
optimization problem shown in Equation 16. ALTRO is a
fast solver for trajectory optimization and solves problems
with inequality and equality constraints as well as nonlinear
dynamics [8]. ALTRO displays high performance compared
to other optimization solvers like OSQP, and more details
are available in Reference 8. OSQP was the other solver
studied to solve Equation 16, and this solver uses the ADMM
algorithm throughout a step size [10]. For this solver to
work, the optimization problem is modeled as a QP problem.
Details on this algorithm are shown in Reference 10. ALTRO
was used in this project due to the fast solve time over OSQP
and these results are shown in Reference 11.
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n=1
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s.t. xk+1 = Akxk +Bkuk

umin <= uk <= umax

(16)

D. Communication/Hardware

An NVIDIA Jetson Nano was used as the companion
computer on the quadrotor and it handles all the controller
scripts on board. The flight controller used was an Arduino
Uno as it can efficiently send PWM signals to the motors.
A Holybro X-500 kit was the drone used and the model
parameters were calculated based off of the drone dimensions
and hardware. By modeling the drone on Solidworks with
accurate mass properties, the inertia matrix was found, and
performance data from APC propellers was used to find
the thrust and moment coefficients. Four Holybro 800 KV
motors were the main sources of thrust, and a 14.8 V 5000
mAh battery was used to power the entire system. The
thrust coefficient was found to be 0.11 and the moment
coefficient was 0.044. However, these values were scaled
up by a factor of 10 to allow the simulation to run. The
voltage of the battery was measured using an analog pin
on the Arduino, and this value will be a factor in the PWM
signals that are sent to the drone to keep a hover position. The
drone undergoes a calibration script that sets the maximum
and minimum PWM signals to 1832 and 1148 which will
correspond to the constraint set on the MPC controller. The
quadrotor used in the project is shown in Figure 6.

A publisher subscriber pattern was used to communicate
between various components of the system. Figure 5 shows
all the nodes in the system along with the corresponding
hardware. The goal was to pass the controller output to
the Arduino efficiently. A networking library called Zero
MQ was used to bridge different languages together via
sockets and the library also provides asynchronous message
processing tasks. The controller was developed in the Julia
programming language which is a dynamic language for
scientific and numerical computing. This script will subscribe
to a state publisher and determined the control actions needed
to keep the drone at a hover position. For the Julia simulation,
the future drone positions were simulated using the Runga
Kutta 4th order iteration method. The optimal control actions
are then published to a C++ script. The main function of
the C++ script is to process the information and publish the
four motor commands via serial. The boost serial library was
used to transfer data between the NVIDIA Jetson Nano and
the Arduino Uno which commanded the motors to move at
the desired PWM signal. The data transmitted between Julia
and C++ is serialized using protocol buffers for efficient data
transfer. Protocol buffers are Google’s method of serializing
structured data via any language.

Fig. 5. Quadrotor Control Components

Fig. 6. Quadrotor used for Communication Testing

III. RESULTS

A. LQR Controller and MPC Controller

For both controller simulations, the quadrotor was set at an
initial position of (2,2,2) and the reference position was set to
(0,0,1). The initial orientation was also offset by 45 degrees
on each axis to show the robustness of each controller.
Figure 7 shows the drone position along the x axis versus
time. The drone reaches the target position in the x position
in 5 seconds with the LQR controller and does not show
significant overshoot between 0-2 seconds. With the MPC
controller, the drone reaches the reference position within
2 seconds which shows the effectiveness of the controller.
For the y position (shown in 8), the drone undergoes an
overshoot between 2-3 seconds with the LQR controller
and then reaches the goal state within the 5 seconds. The
MPC controller reaches the reference position within 2-3
seconds and does not experience significant overshoot while
moving. The z position of the drone with the LQR controller
converges quickly to the goal state despite the offset starting
angle (shown in 9). However, MPC experiences high over-
shoot, yet reaches the goal state within 3 seconds. Overall the
quadrotor successfully reached the reference position with
both controllers despite the offset starting angle in a discrete
time frame. However, MPC converged faster by 2-3 seconds
in the X and Y positions which can be significant time for
longer trajectories. Other start positions were also tested and



provided the same results. The Q and R matrices for LQR
can be tuned to allow for aggressive control depending on
the quadrotor application. However, MPC is a safer method
of control as constraints are followed.

Fig. 7. Quadrotor X Position versus Time

Fig. 8. Quadrotor Y Position versus Time

A video of the simulation can be accessed using the
following link:
https://drive.google.com/file/d/1sMGBAzQvgY xA7d0PvE9

dTKNF-YO2u-p/view?usp=sharing

IV. CONCLUSION AND FUTURE WORK

This work presents the results of a linear quadratic reg-
ulator and a model predictive controller on a quadrotor
via simulation. The dynamics and quaternion representation
were detailed to show the linearization done to solve the
problem and the methods towards modeling a quadrotor.
Promising results were shown with the LQR contorller as it
provided optimal control inputs for the quadrotor to achieve
the goal state. The model predictive controller also generated
safe trajectories while following torque limit constraints. A
communication framework was also developed to test the
algorithm on the quadrotor for future work.

Future work consists of implementing the controller on
actual hardware. Additional constraints such as a limit in
the z position will also be implemented to avoid the drone
position to be near the ground. Another topic that will be

Fig. 9. Quadrotor Z Position versus Time

addressed in the future is establishing communication with
a state estimator node. This will allow the drone to run the
LQR/MPC controller on board and allow the controller to
find an optimal control action as soon as a new state is read.
The system will then be tuned by the Q and R matrices based
on the performance on real hardware testing.
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Semantic Segmentation in Complex Scenes for Robotics Navigation

Zhanxin Wu1, Xinjie Yao2 and Jean Oh3

Abstract— Semantic image segmentation has been an impor-
tant technique for the safe navigation of a robot in complex
scenes. It is a difficult task due to the complex environment
including uneven lands, indefinite boundaries, and irregular
features. The complicated environmental condition makes the
scene hard to understand for the robot. Most image semantic
segmentation models require extremely large computing re-
sources to reach satisfying results including high precision and
short inference time. Besides, for some extreme images affected
by their surroundings, such as brightness, the segmentation
results may become awful in current models. To overcome
these issues, this paper proposes a lightweight encoder-decoder
framework for semantic segmentation to (i) recover information
from uninformative pixels and (ii) project 3D LiDAR point
cloud into the 2D plane to improve semantic understanding of
scenes.

Index Terms— Semantic Segmentation, 3D LiDAR, RGB
imagery, Extreme Image.

I. INTRODUCTION

Recent years have witnessed huge progress in autonomous
driving. The autonomous driving environment becomes com-
plicated and diverse, shown in Figure 1. In general, au-
tonomous driving is divided into two categories, on-road
and off-road. In previous years, autonomous on-road driving
has received significant attention in terms of datasets for
segmentation. Besides, due to the wide range of applications
of autonomous off-road driving, such as exploration and
rescue, there is more and more attention on autonomous off-
road driving. Compared to the on-road driving environment,
autonomous off-road driving is always viewed as a hard task
due to its unstructured environment. Most researchers study
the on-road and off-road environment separately, thus the
robustness of their models is unsatisfying. Though the public
scene datasets contain a mass of images, the type of images is
similar. For example, Cityscapes [1] only covers urban scenes
while RUGD [2] only includes the unstructured environment.
Therefore, due to the limit of datasets, most models for
autonomous driving only achieve high performance in a
specific type of environment.

Autonomous on-road driving is mainly used in the urban
environment. The structured environment including buildings
and pavements makes scenes easy to understand. However,
this characteristic also restricts most advanced autonomous
driving models in an on-road environment. Because these

1Zhanxin Wu is with the School of Data Science, The Chinese
University of Hong Kong, Shenzhen, Shenzhen, Guangdong, China,
zhanxinwu@link.cuhk.edu.cn

2Xinjie Yao is with the Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA., USA, xinjieya@andrew.cmu.edu

3Jean Oh is with the Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA., USA, jeanoh@nrec.ri.cmu.edu

(a) (b)

(c) (d)

Fig. 1: (a), (b) are on-road scenes from Cityscapes [1], and
(c), (d) are off-road scenes from RUGD [2].

models highly depend on lane extraction [3] and traffic sign
recognition [4], which are not contained in off-road scenes.
Unlike the on-road dataset including detailed classes, such as
signboard, the feature class in each off-road dataset is much
less. This allows research to pool classes into several regions,
such as sky, traversable and non-traversable. By grouping all
the classes, the low pixel density resulting in class imbalance
can be solved.

In the real world, the scenes are not simple. The real
environment is highly possible mixed with the on-road
environment and off-road environment. To solve this issue,
[5] introduced a transfer learning framework with seman-
tic segmentation for off-road environments. This approach
achieves good performance on obstacles, grass, road, and
trees, which are crucial in path planning.

The extreme images, in reality, are another challenge in
autonomous driving. Extreme images are defined as RGB
images with enormous uninformative pixels. These pixels
affected by surroundings such as light are too bright or
too dark to provide information. The lack of data causes
the misunderstanding of scenes and thus leads to awful
performance in semantic segmentation results and interfere
with path planning.

To solve the above problems, this paper proposes a
lightweight semantic segmentation module with high preci-
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sion and short inference time. Besides, this paper provides
an enhanced method for extreme images: (i) label bright
pixels and dark pixels as uninformative at first. (ii) classify
these pixels based on their nearby classes to recover infor-
mation. Then, better segmentation results can be achieved.
Meanwhile, with the assistance of the point clouds from
3D LiDAR, the color error caused by the camera and
environment could be minimized. Finally, the traversability
of each area can be confirmed.

The remainder of this paper is organized as follows.
A review of related literature is provided in section II.
Section III introduces the technical approach of the problem.
Section IV details the evaluation metric this paper used and
experiment results compared with commonly used models.
Finally, a summary and suggestions for future research are
provided in section V.

II. RELATED WORK

A. Assumption-based models

Assumption-based models are named by assuming the
color and boundaries of a target region. Due to the rough
assumption, the segmentation results are always coarse-
grained. For each pixel, the label is binary. All the
assumption-based models can be further divided into rule-
based and segmentation-based methods [6].

Rule-based method applies the presumed boundary and
shape information of each class for segmentation. For ex-
ample, the authors presented an algorithm to limit vanishing
point search, which mainly relies on road edges cues [7].

Segmentation-based methods focus on specific visual char-
acteristics of the pavement, such as color contrasts or edges
in the image. Some methods utilize the structured road by
fixing its shape, such as triangular [8].

B. Deep learning models

With the rapid development of the deep neural network,
deep learning models could achieve higher precision in
semantic segmentation than assumption-based models. With
the help of fine-annotation datasets, such as Cityscapes, cur-
rent deep learning methods could gain pixel-level semantic
segmentation. However, the deep learning methods require
large computing resources and storage. Due to the multiple
layers in the neural network, most models’ inference time
is more than 1.5 seconds which makes real-time navigation
impossible. To reduce inference time, most models have the
encoder-decoder architecture, such as [9] and [10]. Apart
from that, another challenge is the lack of varieties in the
dataset. Most fine-annotated datasets are mainly for urban
environments. To study complex environments including
unstructured scenes, scholars have to try various methods
to avoid relying on these datasets. The mainstream method
is to do transform training from existing datasets, such as
Cityscapes and Ade20k [11]. Another main idea is to ask
other synthetic data for help, such as 3D LiDAR data [12] or
audio data [13] to achieve the height and distance of objects
in the environment.

III. METHODOLOGY

A. Architecture

The whole architecture is represented in Figure 2. This
paper consists of two primary streams, RGB image and
LiDAR point cloud data [14]. The RGB images are input
into the semantic segmentation model and finally, become a
pixel-wise labeling result. Meanwhile, the 3D LiDAR point
clouds would be projected into the 2D plane. According to
the height of each object in the point clouds, we could predict
whether it is traversable or not. Therefore, we could gain
a 2D binary map including traversable and non-traversable
regions from the point clouds. Then, the pixel-wise segmen-
tation results and the projected 2D plane should be combined
to predict the traversable region for robotics. The result is a
binary map showing traversable region continuously updated
estimates of relevant traversable information for navigation.

All computers run Ubuntu Linux. The codes are imple-
mented in Python, using CUDA to make effective use of the
GPU(Tesla T4).

B. First stream: Semantic Segmentation on Images

1) Encoders and Decoders: The Xception [15] architec-
ture is a linear stack of depthwise separable convolution
layers with residual connections. It has the same number
of parameters as Inception V3 but improves performance
by efficiently using model parameters. In [16], MobileNetv2
was introduced to mobile device. The main purpose of
MobileNetv2 is to solve computer vision tasks with as few
parameters as possible. Researchers are allowed to ensure
high accuracy and precision with limited resources. In [17],
the author proposed DeepLabv3 holding abundant seman-
tic information from the encoder module. In the encoder-
decoder framework, the decoder module recovers class edge
information, and the encoder module extract features by
applying convolution.

2) Tricks on Extreme Images: In the public datasets
including both on-road and off-road datasets, the images
always have appropriate brightness, contrast, etc. However,
in reality, imagery from a camera could have extremely
low brightness or high brightness, due to the effect of
surroundings. For example, in the days of strong sunlight,
imagery has plenty of pixels with high brightness and thus
contains little information. To deal with this issue, this paper
proposes a trick: (i) label extreme pixels as uninformative,
and a mask full of uninformative pixels. (ii) lock each pixel
in the mask with a rectangular block to make sure the
pixel is in the center of the block. (iii) calculate the most
frequent class in each block and provide it to the central
pixel. (iv) combine the results with the previous image and
gain the final product. Finally, we could retrieve information
on uninformative pixels.

C. Second Stream: 3D LiDAR Point Cloud Projection

From 3D LiDAR, a point cloud can be achieved. To gain
a 2D view of a scene, each 3D point should be projected
into the image plane using a perspective transformation and
thus the 3D point could become the matching pixel p in the
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Fig. 2: Overview of the Model. Note: First stream is RGB images from the camera and Second stream is point clouds from
the 3D LiDAR

Fig. 3: Semantic Segmentation Framework including tricks on extreme images (uninformative mask)

2D image plane. Both the 3D point and its pixel point to
the homogeneous location in reality. From the 3D LiDAR
point cloud, this model gets the height of each point, and
then views all the areas that are above the threshold, such
as 30 centimeters, as non-traversable. Finally, this model can
attain a 2D binary map including the traversable region and
the non-traversable region.

D. Streams Combination

The outputs for semantic segmentation and 3D LiDAR
projection are both pixel-wise. The purpose to combine these
two maps is to get more clear edges for unstructured classes,
such as terrain and vegetation. Therefore, for the structured
class, we trust the most frequent label in the point cloud.
For example, if most pixels in the projected 2D plane are
traversable, we will view this whole area as a traversable
region. Through this rule, we maintain the shape of structured
classes and keep their edge information. For the unstructured
class, we highly depend on the point cloud, so that the shape
of such classes in the final map could be changed and become
discrete. In this case, we better collect unstructured classes’
shapes. Through the combination method, the model not only
understands the scene through color in imagery but also the
height of each object. In this case, the color error caused by
the environment and the camera could be minimized, which
could help better path planning for robotics navigation.

IV. EVALUATION

In this section, the model has experimented on two
datasets, Cityscapes, and our campus frame. The evalu-
ation of image semantic segmentation of Cityscapes and
our campus frames was done using different combinations
of encoders and decoders. The model is trained on the
Cityscapes train set to gain pre-trained weights.

A. Segmentation Precision

The results of the model are shown in Table I. The mean
IoU for the datasets can be calculated by:

IoU =
1

n

n∑
n=1

(TP )n
(TP )n + (FP )n + (FN)n

(1)

where n is the number of classes. TP represents True Positive,
and FP represents False Positive, and FN represents False
Negative.

TABLE I: Semantic Segmentation Results on Cityscapes

Decoder Encoder mIoU(%)

DeeplabV3
MobileNetv2 70.71
Xception65 78.79
Xception71 80.31

Figure 4 and Tabel II show the effect of information
retrieval on extreme images. In Figure 4(a), the road contains
exceedingly bright pixels, so that part of the road is classified
as the sky. According to the uninformative mask mentioned
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TABLE II: Semantic Segmentation Results on Campus Frame

Metric(%) road mIoU building mIoU terrain mIoU sky mIoU mean
totalclass mIoU

mean
pixel accuracy

Original Results 59.12 83.35 46.69 36.44 63.13 76.36
Enhanced Results 87.76 83.64 47.11 88.73 77.45 89.24

in Figure 3, the information of these extreme pixels can
be recovered. Thanks to the method, the mIoU of road
class increased from 0.59 to 0.87. Besides, the mean pixel
accuracy could achieve 0.89. The semantic segmentation
accuracy becomes satisfying.

(a) Curb (b) Original Semantic Segmentation

(c) Enhanced Semantic Segmentation (d) Ground Truth of Curb Image

Fig. 4: Enhanced Semantic Segmentation Results on Extreme
Images.

B. Inference time
The inference speed of the model was tested on Tesla

T4. The input resolution of campus frames is 1280*1024.
Table III shows the inference speed of different models. This
distinguishes the performance of encoders and decoders.

TABLE III: Inference Time on Campus Frame

Decoder Encoder Inference Time(ms)

DeeplabV3
MobileNet2 276
Xception65 5087
Xception71 592

According to Table I and Table III, even though the mIoU
and pixel accuracy for Xception65 are high, the price is a
long inference time. It costs almost ten times Xception71’s
inference time. For each image, the time needed for Xcep-
tion65 is 5 seconds, which makes it impossible for robotics to
do real-time path planning. The performance of MobileNetv2
and Xception71 are acceptable. However, the precision for
lightweight MobileNetv2 is too low to be applied in reality.
Therefore, the DeeplabV3 and Xception71 become the best
choice among these three models.

C. Combination Results

Based on 3D LiDAR data and RGB imagery, we could
obtain two images with binary labels, traversable and un-
traversable regions. Since RGB imagery could be affected
by surroundings, and there is an inevitable error in the
semantic segmentation model, it is hard to only depend on
semantic segmentation for navigation. The 3D LiDAR data
could assist path planning by providing the height of each
pixel. In this model, we combine height gained from 3D
LiDAR and semantic segmentation results to achieve a final
traversable path. Figure 5 shows the final results. If the model
only considers RGB images or 3D LiDAR point cloud, the
pixel accuracy is 0.7195 and 0.4652 respectively. However,
the framework proposed in this paper could increase the
pixel accuracy to 0.8754, because it makes good use of both
images and points clouds.

(a) Ground Truth (b) Binary Map based on Imagey

(c) Binary Map based on LiDAR (d) Binary Map based on Imagery and
LiDAR

Fig. 5: Results using Different Information (Note: For seg-
mentation results, grey represents non-traversable and green
represents traversable. For point cloud, black represent non-
traversable and white represent traversable)

V. CONCLUSION

This paper has presented a semantic segmentation model
on two datasets. This model achieves good performance not
only in mIoU but also in inference time. The traversable
region obtained from the model could assist robotics to un-
derstand complex scenes and thus contribute to path planning

323



for navigation. This model could be extended to extreme
images with a high density of uninformative pixels. With the
help of RGB imagery and 3D LiDAR data, the high accuracy
of predicting traversable regions can be promised.

To progress closer towards complex scene understanding,
some steps can be taken to further improve the model
performance. First, we could study the robustness of the
approach under different climatic conditions changes [18].
Because the color of vegetation class varies in different
seasons, the model that is only trained on the scenes collected
for a short period needs to be proved its robustness in all
the conditions. Second, current 3D LiDAR data point clouds
are sparse. In this case, some obstacles like rocks may be
ignored. Therefore, denser point clouds could be collected
in the future and better help path planning.
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Concept Whitening for Interpretability in Multi Agent Reinforcement
Learning

Renos Zabounidis1, Joseph Campbell2, Ini Oguntola2, Dana Hughes2, and Katia Sycara2

Abstract— Deep Multi Agent Inverse Reinforcement learning
(MAIRL) has imbued artificial agents with the capability of
understanding and adapting to human behavior. However,
the black box, data driven nature of these agents poses an
obstacle to interpretability. Posthoc analysis of neural networks
is often insufficient, either requiring extraneous assumptions or
surveying humans. Concept whitening a data driven technique
developed for computer vision neural network interpretability.
In this paper, we propose an extension of Concept Whitening
for MAIRL. We implement our algorithm on top of several
state of the art MAIRL models including CoDAIRL, GAIL,
and AIRL. Models including concept whitening are shown to
retain similar levels of performance to their counterparts, while
increasing interpretability.

Index Terms— keywords, choose from
https://www.ieee-ras.org/publications/ra-l/keywords

I. INTRODUCTION

Real world multi agent autonomous systems require not
only the ability of an agent to display precise control and
decision making in complex environments, but the ability to
compete and coordinate with other agents. Learning optimal
behavior for each agent is especially difficult to the intrica-
cies arising from the interplay between agents. Capturing
these eccentricities in hard coded, rule based agents has
proved to be cumbersome and in most cases impossible.
Success has been found in data driven algorithms, which use
self play or expert demonstrations to learn optimal behavior.
The most common framework used to learn optimal behavior
in complex environments has been Deep Reinforcement
Learning.

Deep Reinforcement Learning has enabled agents to
achieve superhuman performance in many tasks, including
real world robotics [1] [2] and games [3] [4] [5]. These
successes directly result in most Multi Agent RL Algo-
rithms (MARL) being direct analogues of their single agent
counterparts [6] [7]. The nieve solution is to directly model
the joint policy of all the agents. However, as the joint
action space scales exponentially with the number of agents,
decentralized execution and centralized training algorithms
have been created in order to make training computation-
ally feasible. In doing so, MARL algorithms have to deal
with three additional challenges: Nonstationarity, shadowed
equilibrium, and the credit assignment problem.

1Renos Zabounidis is an Undergraduate at the University of Mas-
sachusetts Amherst, rzabounidis@cs.umass.edu

2J. Campbell, I. Oguntola, D. Hughes, and K. Sycara are with
the School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA, USA {jacampbe, ioguntol, danahugh,
katia}@cs.cmu.edu

The nonstationarity problem results from the fact that the
transition function of an MARL agent constantly changes due
to the changing policies of the other agents. The shadowed
equilibrium problem occurs in a prisoners dilemma style
scenario where a suboptimal nash equilibrium in the joint-
policy space is preferred in training over the optimal policy.
The credit assignment problem occures when rewards are
shared among cooperative agents. Since multiple agents
contribute towards the gaining of a reward, the problem exists
of who to credit with the gain of that reward.

In solving these problems,especially in a partially ob-
servable setting, MARL agents optimally would model the
beliefs, desires, and intentions of other agents. Yet it is not
relatively obvious how successful agents are at this task, as
no explicit mental state of other agents is learned in training.
Instead, agents must learn to extract the beliefs, desires, and
intentions (BDI) of other agents from the state of the world.

This implicit modeling is a problem, especially for tasks
which contain people, who contain extremely high variability
with respect to BDI. In such cases, it is not enough to
model a human as another environmental dynamic, as the
humans responses to the agents actions becomes central to
any optimal policy for the agent. Additionally, an implicit,
black box BDI model is not desirable in real world, high
stakes scenarios where humans being able to understand
the beliefs of autonomous agents they are working with is
essential to building trust.

In this work, we enable existing MARL and MAIRL
agents to learn a limited theory of mind. We do this by
applying Concept Whitening, a neural network module intro-
duced by Chen et Al [8] meant to increase interpretability. By
learning concepts which correspond to beliefs within a theory
of mind, we can both make existing MARL MAIRL methods
more interpretable and provide guaranties as to which beliefs
the network is able to learn.

II. RELATED WORK

Many papers in Multi Agent Reinforcement Learning
attempt to extend a single agent algorithm to the Multi
Agent domain [6] [7]. Two main approaches currently exist:
distributed and centralized training [9]. Under distributed
training, no explicit information or parameters are shared
between agents during training. In practice, this limitation
has been shown have inferior performance compared to
centralized training [10].

Under centralized training, agents can explicitly exchange
information during training, but not during testing [11]. This
approach has yielded state of the art MARL models [12]
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[13] [14]. These models state of the art performance can be
attributed to the extra information given to them at training
time [14]. For example, [14] learns an additional neural
network which predicts opponents policies given the current
joint state. These networks allow agents to more effectively
model each others policies. However, the extent to which
this modeling is successful remains unknown to a human
onlooker, due to the fact the use of deep neural networks
makes the problem uninterpretable. Current literature in
Multi Agent RL has not explored the effect of interpretability
on the learned models, and whether this is capable of
impacting performance.

Interpretability has been most actively studied in the field
of computer vision, in which there are two main schools of
thought: ad hoc and post hoc models. Concept whitening is a
method in the latter school, along with This Looks Like That
(TLLT) [15]. TLLT uses sailency maps to learn prototypical
images in each class. It is therefore not suited to RL, where
no classifier is used. Other posthoc models exist for neural
networks; however, these networks are not optimal, as their
pos hoc nature force the models to make assumptions, rather
then constraints, on the latent spaces they try to explain [8].

III. PRELIMINARIES

A. Markov Games

A Markov game (MG) [16] is defined as an extension of
a Markov Decision Process (MDP). An MG of N agents
is defined as a tupple 〈N,S,A1, ..., An, P, r1, ..., rn, p0, γ〉
with S being the set of states, each Ai and ri : S × A1 ×
...×AN → R corresponding to the action space and reward
function of the ith agent, P : S×A1×AN×S → [0, 1] is the
state transition probability distribution, p0 is the probability
distribution of the initial state s0, and γ ∈ [0, 1] is the
discounted factor.

Let −i denote the set of agents except for i. For example,
(ai, a−1 represents (a1, ..., an). π denotes the joint policy, r
denotes the (r1, .., rn), and a denotes (a1, ..., an). Expecta-
tion with resepct to a policy π denotes taking an expectation
with respect to the trajectories it generates if the expectation
is taken over a state. Otherwise the policy only samples over
the next step-action a.

B. ε-Nash Equilibrium

An ε-Nash Equilibrium is a relaxed version of a nash
equilibrium [17] [14]. We define a ε − NE as a stratagy
profile (πi∗, π

−i
∗ ) such that ∃ε > 0. s.t.

v(i)(s, π
(i)
∗ , π

(−i)
∗ ) ≥ v(i)(s, π(i), π

(−i)
∗ )− ε,∀π(i) ∈ Π(i)

where v(i) = Eπ(i),π(−i),s0=s

[
r(i)(st, a

(i)
t , a

(−i)
t

]
is the

value function of agent i under state s, and Π(i) is the set
of all possible policies of agent i. ε−NE is strictly weaker
then NE, since every NE is equivalent to an ε −NE when
ε = 0.

C. Multi-agent actor-critic with Kronecker factor (MACK)

MACK is a multi agent version of Multi-agent actor-critic
with Kronecker factor Trust Region without the trust region
[6] [18].MACK uses centralized training with decentralized
execution, a framework in which policies are trained with
centralized information, but that information is not given
during test time [19]. Under this paradigm, the advantage
functon for an agent is defined as a function of all agents
observations and actions:

Aπi

φi
(S, at) =

k−1∑
j=0

(γjr(st+j , at+j) +

γkV πi

φi
(st+k, a−i,t))V

πi

φi
(st, a−i,t) (1)

where V πi

φi
(sk, a−i) is the baseline for i, utilizing the ad-

ditional infromation for variance reduction. Approximated
neural policy gradients are used to optimize both φ and θ
with a linear decay learning rate schedule.

D. Concept Whitening

Concept whitening consists of two parts: whitening and
orthogonal transformation [8]. Whitening is achieved using
iterative normalization [20] and the orthogonal transforma-
tion is iterativly learned it by gradient methods on the Stiefel
manifold as defined in [8].

Let Zd×n be the output of a layer before concept whiten-
ing, where n denotes the batch size and each column zi ∈ Rd
contains the latent space of the ith sample in the batch.

The whitening transformation decorrelates and standard-
izes the data:

ψ(Z) = W (Z − µ · 1Tn×1 (2)

where µ is the batch mean and W is the whitening matrix
such that WTW = Σ−1, where Σ = 1

n (Z−µ1T )(Z−µ1T )T

is the covariance matrix.
Whitening matrices remain invariant under orthogonal

transformation, and thus W ′ = QW will satisfy equation
III-D. Concept whitening takes advantage of this property to
learn QT such that for each concept in the output ψ(Z) is
activated alone one column. Formally, this means we need
to find an orthogonal matrix Q such that for every concept i,
the ith collumn of Q is optimized in the following fashion:

max
q,q2,..,qk

k∑
i=1

1

ni
qTi ψ(Zcj ) · 1nj×1

s.t. QTQ = Id

(3)

The forward pass of the concept whitening module is dis-
played in Algorithm 2.

IV. METHODOLOGY

A. Conceptual Theory of Mind ”Choosing Concepts”

Here we list a methodology for choosing appropriate
concepts. Concepts which are useful should not be able to
be directly learned from the world state, as that is given to
the agent at every timestep. Instead, aligning with theory of
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Algorithm 1 Forward Pass of CW Module
Input: mini-batch input Z ∈ Rd×m, Q ∈ Rd×d (Rotation

Matrix), momentum parameter B ∈ [0, 1]
Output: concept whitened representation Ẑ ∈ Rd×m

1: Optimization Variables: Running ZCA whitening ma-
trix W ∈ Rd×d, Running Batch Mean µ ∈ Rd

2: calculate batch mean µ = 1
mZ · 1. If test time, use

running batch mean µ
3: Calculate center of activation: ZC = Z − µ cot 1T

4: Calculate ZCA-whitening Matrix W (Algorithm 1 of [?],
see appendix for conveinance)

5: Calculate Concept whitened representation: Ẑ = QT ·
W · ZC

6: if Training then
7: Update running mean V as B · µ + (1 − B) · V and

Update running rotation matrixW as B·Q+(1−B)·Q
8: end if
9: return P

mind, concepts should represent different verifiable beliefs
the agent holds about the world. Being verifiable means that
looking back at a trajectory, one can automatically label
whether a concept should have been active at a certain
timestep.

B. Concept Whitening MACK

Below is the algorithm for training CW MACK.

Algorithm 2 CW MACK Training
Input: num batches, num epochs
Output: out

Initialisation :
1: first statement
2: for i = 0 to number batches do
3: Run Model on the environment until num batches

trajectories are accumulated
4: take MACK training step on Model
5: if i mod 20 = 0 then
6: statement..
7: for j =1, ..., num concepts do
8: load concept dataset j
9: pass a batch of concept j through each agents

model
10: end for
11: Update Orthogonal matrix in whitening Using al-

gorithm based on equation 2
12: end if
13: end for
14: return P

The running mean and whitening matrix is iteratively
updated during each training pass as seen in Algorithm 1.
The rotation matrix stays constant until it is updated using
the optimization process defined in equation 2.

V. EXPERIMENTAL SETUP

A. Particle Environments

In this paper, we use the Multi Agent particle environ-
ments, a set of competitive and cooperative environments
with multiple agents.

1) Predator-Pray: In the Predator-Pray task, each agent
learns five concepts:

1) Whether predator 1 will tag the pray in 5 timesteps
2) Whether predator 2 will tag the pray in 5 timesteps
3) Whether predator 5 will tag the pray in 5 timesteps
4) Whether the pray will hit landmark 1 in 5 timesteps
5) Whether the pray will hit landmark 2 in 5 timesteps

Fig. 1. An example of the Predator Pray Environment. There are two
landmarks, three predators, and one pray.

VI. EXPERIMENTAL RESULTS

Currently results are limited due to the model not con-
verging.

VII. CONCLUSION

APPENDIX
A. MODEL ARCHITECTURES

Three layer MLP networks with 128 neurons were used
for policy networks for all actors used in the paper. After the
first two layers, Concept Whitening modules were applied.
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Drone Camera Calibration via Neural and Heuristic Method

Longwen Zhang1 , Yaoyu Hu2 and Sebastian Scherer2

Abstract— Camera calibration is an indispensable part of
drone tasks, especially in tasks that need to reconstruct the
colored RGB surface. In order to make the reconstructed
color better match the user’s perception, white balance and
vignetting reduction are mainly needed. Despite the existence
of tools such as automatic white balance correction, drones
in the production environment still mainly perform camera
calibration by manually calibrating colors with a standard
color chart before every flight to ensure color consistency
during the whole flight. To this end, this work proposes a
neural-network-based method to replace manual operations,
which enables automatic white balance and vignetting reduction
through multiple cameras with a few shot on a color chart.
The proposed method can accurately detect arbitrary color
charts without any prior knowledge and adopt optimization
to accomplish calibration. Extensive real-world experiments
demonstrate the effectiveness of our method for automatic
camera calibration even using edge devices.

Index Terms— AI-Based Methods, Object Detection, Seg-
mentation and Categorization, Camera Calibration, Vignetting
Correction

I. INTRODUCTION

Drones have been widely used in reconstruction tasks all
the time. Camera color calibration is always an indispensable
part of drone tasks. How to calibrate the camera fast and
conveniently remains unsolved.

The important reason for color and brightness correction
is (1) we need the stereo cameras produce the same color and
brightness on the same object observed in the scene; (2) we
need the color and brightness to be consistent across different
viewing angle and camera locations. These reason rules out
most of the single-camera auto-white balance functionalities.
For vignetting correction, it needs a dedicated and controlled
environment to be able to conduct the calibration.

In this paper, we present a novel approach to achieve
color calibration, as illustrated in Fig. 1. Our approach
combines both neural and traditional methods to achieve
color calibration and reduce the vignetting effect.

To summarize, our main contributions include:
• We present a fast neural color calibration chart recog-

nition and localization approach, which robustly works
under extreme environmental conditions.

• We propose a heuristic approach based on the traditional
computer vision method to enable automatic color cal-
ibration with no prior information on the appearance

1Longwen Zhang is with the School of Informa-
tion Science and Technology, ShanghaiTech University
zhanglw2@shanghaitech.edu.cn

2Yaoyu Hu, Sebastian Scherer are with Robotics In-
stitute, Carnegie Mellon University, Pittsburgh, PA, USA
{yaoyuh,basti}@andrew.cmu.edu

Fig. 1. Process overview.

of the color calibration chart, with only making few
assumptions of the color patches pattern in various color
charts.

• We further adopted a simple and novel approach to
reduce the vignetting effect caused by the lens, which
is inspired by [1].

II. RELATED WORKS

Automatic white balance. The gray world algorithm
assumes the average of reflectance of a scene is chromatic
in an image with sufficient color variations [2]. Perflect
Reflector Method assumes that the brightest pixel in an image
corresponds to an object point on specular surface, which
reflects the true color of the light and could be used as a
reference color [2]. Fuzzy Rule Method uses fuzzy logic
rules for determination of the color parameters in order to
minimize the color temperature difference of various light
sources [3]. However, these methods could not ensure stereo
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Fig. 2. Sample images from Open Images Challenge 2018/2019 test set.

Fig. 3. Sample color calibration charts.

cameras to produce the same color and brightness on the
same object observed in the scene.

Vignetting effect reduction. An automatic method [4]
was proposed to estimate vignetting function based on two
images acquired with difference settings of lens aperture
and focal length, which will change the effect of vignetting
in images. An online method [1] was proposed to estimate
vignetting function based on multiple frames in a sequence.

III. COLOR CHART DATASET OVERVIEW

Our goal is to robustly recognize the color calibration
chart in the wild under extreme environmental conditions
where images are overexposed or underexposed and with
bluring and noise, and recover its position precisely. To
provide ground truth supervision for color calibration chart
recognition and localization, we generate a high-quality color
calibration chart dataset. As illustrated in Fig. 2, we use
Open Images Challenge 2018/2019 test set [5] as background
to generate our dataset, which contains 99,999 images of
various scenes that have been annotated with labels spanning
over 6000 categories. In this dataset generation, we do not
use annotations. As illustrated in Fig. 3, we use several
random sample color calibration charts in the market as the
foreground to generate our dataset, which can generalize to
arbitrary color calibration charts after learning.

With the prior knowledge that color calibration charts are
rectangular, we apply random homography transformation on
the foreground and guarantee it is in the proper ratio with
a high probability. After that, several kinds of data augmen-
tations like noise, exposure, and gamma are applied. Then
we put the foreground onto the background with smoothing
edge transitions to keep them look natural. In the last, noise,
exposure, gamma, white balance, and vignetting effect are
randomly applied to the combined image to simulate the
extreme conditions in the wild. As illustrated in Fig. 4, we
could generate infinite images as training data. With this kind

Fig. 4. Sample generated images of our dataset.
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Fig. 5. UNet model structure.

of generation, our dataset provides sufficient supervision to
train our neural model, which can generalize to in-the-wild
scenarios.

IV. METHOD

Our scheme achieves fast and robust camera calibration
only using mobile computing and RGB stream. First, a neural
model is introduced and trained for color calibration chart
recognition and localization (Sec. IV-A). Then, a heuristic
approach based on the traditional method is adopted to
automatically configure color calibration (Sec. IV-B). We
also introduce a novel method to reduce the vignetting effect
of the lens by human interaction (Sec. IV-C).
Notations. To achieve high performance, we adopt the
UNet [6] architecture to the RGB stream sequentially ob-
tained by the camera, as illustrated in Fig. 5. Given an input
image I, our network Φ predicts both a binary image B̂ and
a corresponding heat map P̂:

B̂, P̂ = Φ(I). (1)

where B̂ is a binary mask which indicates if pixel is part of
the color calibration chart and P̂ is the gaussian heat map of
its four corners. B and P will be properly defined in later
sections.

A. Neural recognition and localization

The intuitive idea is to regress the probability of every
pixel being part of a color calibration chart, which could be
formulated as a parsing task. During training we optimize the
following loss for probability regressing, which minimizes
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Input image GT parsing GT heatmap

Fig. 6. Sample training data with input images and corresponding ground
truth output.

the probability distance between the prediction and the
ground truth from our dataset:

Lbasic = ∥B̂−B∥22, (2)

where B is the ground truth binary parsing and B̂ is the
prediction of the network.

However, only using this basic scheme fails to provide a
simple way to recover the accurate coordinates of the color
calibration chart. The prediction from the network will be
approximately quadrilateral with a high probability, but it is
still hard to recover the transformation from only a binary
image, especially with much noise often. Inspired by the
heatmap regression method [7], [8], which is widely used
for semantic landmarks localization, we utilize a similar
approach to predict the four corners of the color calibration
chart. First, we construct the ground truth heatmap by putting
2D Gaussian kernels on the four corners of the generated in-
put image, where the pixel values on the heatmaps represent
the probabilities of the corresponding pixels being one of
the corners. Then, we minimize the heatmap loss between
the prediction and the generated ground truth:

Lheatmap = ∥P̂−P∥22, (3)

where P is the generated ground truth heatmap and P̂ is the
prediction of network.

The final training data is illustrated in Fig. 6. During
training our total loss is formulated as follows:

L = λ1Lbasic + λ2Lheatmap (4)

where the weights for each term λ is set to be 1.0 in
our experiments. Our network’s parameters are optimized
by Adam algorithm with an initial learning rate of 0.001.
After the training process, the network is able to predict the
area of the color calibration chart and output the heatmap of
its corners, which could be further processed to recover the
precise coordinates and transformation.
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Fig. 7. Example output from network and the retrieved corners. The input
image is taken in the wild.

B. Heuristic color calibration

After the network predicting the binary parsing and the
heatmap, we could recover the coordinates and transforma-
tion by adopting classical image processing techniques. First,
we combine both binary parsing and the heatmap to retrieve
the four Gaussian kernels which have the highest possibilities
to be the corners, in case sometimes the predicted heatmap
has more than four gaussian kernels due to noise. Then,
for each kernel we retrieved, we make a cross-correlation
between it and a coordinates map, which represents the
coordinates of each pixel, to obtain the precise coordinates of
it. The calculation on a 640×480 image could be formulated
as:

x = ∑ ⋆


0 1 2 . . . 639
0 1 2 . . . 639
0 1 2 . . . 639

...
0 1 2 . . . 639



y = ∑ ⋆


0 0 0 . . . 0
1 1 1 . . . 1
2 2 2 . . . 2

...
479 479 479 . . . 479



(5)

where ⋆ represents cross-correlation. As illustrated in 7, once
we get the predicted output from the network, we could
precisely get the coordinates of every corner.

Once the coordinates of four corners are obtained, with
the prior knowledge that color calibration charts are planar,
a homography transformation H could be solved to warp the
color calibration chart in the input image back into normal.
With the solved H, we further project the input image into
a nominal square, where we do not need to know the actual
orientation in the input image. As illustrated in the first
column in Fig. 8, the chart is approximately aligned with
two axes after homography warping using H.

To retrieve the position of color patches, a traditional
method Canny edge detection [9] is applied. After the edges
are obtained, we could enumerate connected components in
the result to find every color chart, with the prior knowledge
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that color patches are rectangular as well. Color patches
often have clear edges in most cases. However, since the
input images are often over blurred or underexposure, some
patches could not be separated from the input images, as
illustrated in the second column in Fig. 8. To retrieve the
rest color patches, we would use another prior knowledge
that most color patches are arranged in a grid. Then we
could collect the coordinates of known color patches and
apply a simple clustering method to obtain the grid interval
along both the x-axis and y-axis. After that, we could
reconstruct the grid and find every color patch, as illustrated
in the third column in Fig. 8. Note to avoid false detection
caused by wrong transformation or uncommon color patches
arrangement, the predicted color patches with high RGB
variance should be filtered out.

The final target is to achieve color calibration without
knowing the the patches pattern of the color calibration chart.
However, whatever the chart is, it must have a line of patches
that form a uniform gray lightness scale. A uniform gray
lightness scale means stable and strict positive or negative
color gradient, which other lines of color patches could not
possess. To find this specific line, we enumerate every lines
in the grid and compute the color gradients of them. After
filtering out the non-strict positive or negative gradients, we
select the line with its gradient having the least standard
deviation. The result is illustrated in the third column in
Fig. 8 with bold circles.

The first and last patches in the selected line tend to
be underexposed or overexposed. After filtering out the
underexposed and overexposed gray patches, the value of
other gray patches is obtained as (Ri, Gi, Bi), i = 1, . . . , n.
Then the coefficients c of every channel could be obatined
based on the fact that gray patches should have same value on
each channel in the image due to the manufacturers assure
they have same value on each channel in the sRGB [10]
colorspace, which is formulated as:

v =



1
1
n

∑n
i=1 Ri
1

1
n

∑n
i=1 Gi
1

1
n

∑n
i=1 Bi

 ,

c =
v

∥v∥−∞
,

(6)

where ∥ · ∥−∞ represents the minimum numerical value.
As illustrated in the right most column in Fig. 8, a simple
corrected image Ī could be obtained by:

Ī = c⊗ I, (7)

where c is the per channel coefficients and ⊗ represents per
channel multiplication.

C. Vignetting effect reduction

Vignetting effect is a reduction of brightness toward the
periphery compared to the center of the input image, which
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Fig. 8. Example color patches detection. The input image is taken in the
wild.

could be formulated as:

I = V ⊙ I∗, (8)

where ⊙ represents element-wise multiplication, I is the
image with vignetting effect, I∗ is the ideal image without
vignetting effect, and V is the true vignetting field. Without
the loss of generality, we assume V has only one single
channel. To approximate the true vignetting field V, we
construct V̂ by a six-even-order polynomial:

(V̂)ij = α0 + α1d
2
ij + α2d

4
ij + α3d

6
ij , (9)

where dij is the distance to image center of the pixel in the
ith row and jth column.

We request the user to move the color calibration chart
in front of the camera to complete this process. Whenever
the color calibration chart is recognized and localized, a pair
of (xi, yi) is recorded, where xi is the distance between the
color calibration chart and the image center and yi is the
average brightness of the whole chart. Through the recorded
data, least square method is applied to regress α, which could
be formulated as:

min
α

∥Xα− y∥22 + λαTα,

s.t. X =

1 x2
1 x4

1 x6
1

...
...

...
...

1 x2
n x4

n x6
n

 ,

y =

y1...
yn

 .

(10)

Since least square solver often takes a time complexity of
O(kn) or O(n2), which would be slow when the total data
is getting larger and larger if we try to preserve all the data
point, we prefer a method that has constant cost each time
in practice. The incremental least square method could be
formulated as:

A0 = λE4×4,

b0 = 04×1,
(11)

Ak = Ak−1 +XT
kXk,

bk = bk−1 +XT
k yk,

αk = A†
kbk,

(12)
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Fig. 9. Example of reducing vignetting effect. The input images are taken in the wild.

Input Parsing Corners Wrapped chart

Canny edges Patches Corrected Corrected Input

Fig. 10. Example of applying our method on arbitrary color chart which
is never seen before.

where † represents the pseudo inverse of matrix, which takes
a time complexity of O(1) each time to update. As shown in
Fig. 9, the corrected image significantly reduce the vignetting
effect.

V. EXPERIMENT

Here we evaluate our method in various challenging sce-
narios. We run our experiments on an edge device with Intel
NUC, where our model achieves recognition and localization
on 4112×3008 RGB input in 160 ms, and further processing
finishes in 100 ms. Fig. 11 demonstrates several more results
of our approach, which can successfully correct the color
in the wild. As shown in Fig. 11, blurring, overexposure
and extreme distance could significantly reduce the rate for
successful calibration.

As illustrated in Fig. 10, our method could directly apply
on a new color calibration chart which is not in the dataset,
as long as it has the similar pattern like other charts.

Note that under some scenes, the result after color cali-
bration and vignetting reduction may seem overexposed. It
could be avoided if we multiply a constant on all the channels
in practical use.

VI. CONCLUSION

Limitations. As a trial to explore neural and heuristic
methods, our approach still owns limitations as follows. First,
our approach cannot handle the input with extreme motion
blur, like images from a long exposure time, where patches
are hard to retrieve. Besides, the model fails to recognize
charts when they are at extreme distances. The performance
of computing time of our approach on edge devices could
be improved in the future.

Conclusion. We have presented a fast neural color calibra-
tion chart recognition and localization approach, a heuristic
approach to enable automatic color calibration, and a novel
approach to reduce the vignetting effect. Our method could
work in the wild without prior knowledge of the appearance
of the color calibration card. We believe that our approach
will make the color calibration process much easier.
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