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Welcome to the 10th Volume of the Carnegie Mellon Robotics Institute Summer Scholars (RISS) 
Working Papers Journal. We are pleased to present this collection of articles that reflects the range of topics 
and diversity of research to which the scholars contributed in the summer of 2022. 

Founded in 2006, the CMU RISS program and community create opportunities for undergraduate students 
from across the country and around the world to explore robotics. A diverse and inclusive working and 
learning environment where all students are actively welcomed, included, and supported is fostered. Scholars 
build knowledge, skills, and a network that will open doors for years to come. RISS is part of a powerful 
coalition of stakeholders growing and diversifying the robotics workforce. Over 95% of RISS alumni state 
that the RISS experience had a profound impact on their future education and career trajectory. The RISS 
community successfully helps to launch students into robotics.

The RISS community has hosted research experiences for students from over 75 home countries plus 
cities and towns across the United States. 2022 scholars’ home countries included the United States, China, 
Germany, India, Japan, Mexico, Nigeria, Poland, 
Puerto Rico, Saudi Arabia, and Vietnam. The 
RISS program strives to be diverse, global, 
and inclusive. 

The RISS 2022 Cohort: 
• 47 scholars
• 40 home universities
• 11 countries of citizenship

The RISS 2022 program was a homecoming that brought students, mentors, and the community back 
to campus for our first in-person program in more than two years. The 2022 cohort was selected from an 
applicant pool of over 700 applications from more than 40 countries and over 300 institutions worldwide. 

RI community engagement with RI Summer Scholars lasts for years. Core to the RISS values is ongoing 
support and connections. One concrete example is the opportunity to return for additional mentored 
research experiences. The following cohort members were returning RISS alumni: Jacob Adkins, Shaden 
Alshammari, Rayna Hata, Chigozie Ofodike, Ernest Propek, Conner Pulling, Grace Su, and Renos Zabounidis.

Dear Colleagues

Puerto Rico
Mexico

United States

Germany

Saudi Arabia

Nigeria
India

Poland

China

Vietnam

Japan

ROBOTICS INSTITUTE      7



Dr. John M. Dolan 
Director of RISS Program  
& Principal Systems Scientist
jdolan@andrew.cmu.edu

Ms. Rachel Burcin 
Co-Director of RISS Program & 
Global Programs Manager
rachel@cmu.edu

With gratitude, 

John & Rachel

RISS scales access. Two new initiatives were launched in 2022 to scale access and engagement in robotics: 
RISS Robolaunch and the Pennsylvania Robotics Scholars. Our continued collaboration with the United Air 
Force Academy and the German Academic Exchange Service (DAAD) connects domestic and transatlantic 
robotics research communities. These partnerships were strengthened in 2022. The RI Community also began 
to explore connections with scholars in Poland. 

The RISS Robolaunch virtual seminar series reached thousands of participants 
worldwide. The RISS RoboLaunch series featured smart, digestible, and inspirational 
robotics briefings from scientists, entrepreneurs, and educators. The talks and 
workshops brought “big ideas” in robotics, automation, and artificial intelligence to 
thousands of participants worldwide. We thank the TC Energy Foundation for their 
generous support that made RISS Robolaunch possible!

The Pennsylvania Robotics Scholars pilot connected five PA undergraduate 
students with faculty mentors and projects, scholarship funding, and professional development. We 
would like to thank all of our partners that joined us in a campaign to increase awareness and open doors 
to funded research opportunities — with special thanks to CMU’s School of Computer Science and the 
Robotics Institute for providing the funding & support that makes this work possible and to the Pennsylvania 
Department of Education (PDE), Dr. Tanya Garcia, and Judd Pittman for their work to increase access and 
awareness of STEM opportunities across the state. 

The German Academic Exchange Service (DAAD) collaboration opened RI doors to German scholars. 
The DAAD RISE Worldwide scholarship program enables German undergraduate students to conduct scientific 
research around the world. Immersing in global research and lived experience enables these emerging 
scholars to build connections and human understanding vital to shaping a more equitable and sustainable 
future. Three students were awarded DAAD RISE scholarships to join Carnegie Mellon’s Robotics Institute 
Summer Scholar’s (RISS) 2022 cohort. Rachel Burcin was awarded a 2021 Germany Today fellowship to meet 
with leaders & innovators from German higher education institutions. In 2022, scholars met with delegations 
from the Ruhr Region and Baden-Württemberg (Germany) to discuss global science and technology networks. 

RISS explores science and technology policy with leaders. Scholars explore economic development, STEM 
education pathways, and policy through facilitated visits with political, industry, and community leaders. 
Scholars participated in policy dialogue with German industry and government leaders and Pennsylvania 
education and policymakers. 

Carnegie Mellon, our sponsors, mentors, alumni, and partners are committed to building more 
inclusive pathways in robotics. We extend our sincere thanks to all the heroes that make this happen!
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Pennsylvania  
Scholars’ Pilot 
Anisa Callis 

Joel Julin 

Kaylie Barber 

Kylie Barber 

William Scott

Thank you Judd Pittman & 
Pennsylvania Department of 
Education, for partnering to launch 
the PA Scholars Pilot.

Online Outreach

RISS Instagram Launched! 

@cmu_riss 

RISS Twitter: 

@cmu_riss

RISS LinkedIn: 

CMU Robotics 
Institute Summer 
Scholars Program

Robotics Outreach

Outreach led  
by Scholar  

William Scott  
for the Gelfand 

Center

Feedback 
Control and PID 

RoboLaunch 
Workshop

STEM 
Education 

Policy 
Dialogues

Rapid Prototyping Workshop with Dr. Jordi Albo

Meeting 
with County 

Commissioner 
Chip Abramovic
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The RISS RoboLaunch Initiative is a robotics outreach & broadening 
participation initiative developed by the RISS community.

Rachel Burcin

RISS Co-director & 
Global Programs 

Manager

Carnegie Mellon 
University

John M. Dolan, PhD

RISS Director & 
Principal Systems 

Scientist

Carnegie Mellon 
University

Nikhil Varma Keetha

Masters Student

Carnegie Mellon 
University

Taylor Koda

RISS Intern

Carnegie Mellon 
University

Daniel Young

Media Intern

Slippery Rock  
University

Brady Moon

PhD Student

Carnegie Mellon 
University

RoboLaunch Organizers

A special thank you to  
the RoboLaunch sponsor:

RoboLaunch TALKS | WORKSHOPS | COMPETITIONS

riss.ri.cmu.edu/robolaunch

Viewers
13,000+
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From the Scholars...
The Robotics Institute Summer Scholars Working Papers Journal is 
an annual publication of the Robotics Institute’s Summer Scholars 
Program at Carnegie Mellon University. The journal allows the RI 
Summer Scholars to communicate their research contributions 
and experiences. The journal explores a variety of robotics 
domains, including localization, mapping, computer vision, motion 
planning, controls, haptics, aerial systems, medical robotics, multi-
agent systems, machine learning, and reinforcement learning. 

The RISS Scholar Journal Team would like to thank fellow scholars for guiding 
the peer-review process and enhancing the quality of the papers. Additionally, the 
scholars would like to acknowledge all the support that Carnegie Mellon, especially 
the CMU Center for Student Academic Success Center, provided through its writing, 
professional development, and research programming. 

The scholars would like to thank the mentors for their invaluable guidance and feedback 
throughout the program. The scholars would also like to acknowledge all the outstanding speakers 
who joined us for RoboLaunch and the RISS External Marketing Team for their organization and 
support of RoboLaunch and Social Media platforms. 

Finally, the cohort would like to thank RISS co-directors Ms. Rachel Burcin and Dr. John M Dolan, 
who have tirelessly put their time and effort into making this program possible in person for the 
first time in two years. The RISS experience was only possible with their hard work, coordination, 
advice, and enthusiasm. We are also thankful to the RISS community for their contributions and 
support of the program.

 — The RISS Scholar Journal Team
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Thank You 
Program Sponsors & Partners

We gratefully acknowledge the 
support of the National Science 
Foundation IIS Div of Information 
& Intelligent Systems through 
the Research Experience for 
Undergraduates (REU) program 
(Grant # 1950811).

Student Academic Success Center University Libraries Mechanical Engineering
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Improving Conflict Detection in Scalable Multi-Robot Motion Planning

Abdel Zaro1, Ardalan Tajbakhsh 2, and Aaron M. Johnson 2

Abstract— Multi-Agent Motion Planning involves finding dy-
namically feasible plans for robots to reach their goal states.
While scalable methods with hundreds of robots have been pre-
sented, many assumptions made limit real-world deployment.
Conflict-Based Search (CBS) is an effective approach for finding
optimal and complete paths; however, robot kinematics, such as
turn radius, are not considered. Second, many CBS approaches
assume a robot occupies a location at a single timestep rather
than over an interval of possible times. Finally, current methods
utilize pairwise collision detection, which is computationally
expensive and often a scalability bottleneck, especially for real-
world implementation. In this study, these assumptions are
relaxed. To decrease the computation complexity of current
CBS collision detection methods, quadtrees are utilized to limit
collision checking to nearby robots. Model Predictive Control is
utilized as the low-level planner of CBS to generate future robot
trajectories. Experimental results show the implementation of
quadtrees can decrease the total collision checking time from
4.568 seconds down to 0.046 seconds for a 100-robot system.
The time savings demonstrated hold promise for scalable real-
world robot motion planning.

Index Terms— Multi-Robot Systems, Path Planning for Mul-
tiple Mobile Robots, Collision Avoidance, Conflict-Based Search

I. INTRODUCTION

Multi-Agent Motion Planning (MAMP) simultaneously
directs many robots to their goal positions while respecting
dynamics and avoiding collisions with other robots and the
environment, as illustrated in Fig. 1. Solving this problem
enables applications including warehouse fulfillment, envi-
ronmental sampling, disaster recovery, and material handling.
These all require many robots to perform numerous tasks
while interacting with each other and the environment.
Moreover, these robots need to plan their motions in real-
time in order to react to any unexpected changes in the
environment.

While existing MAMP solutions such as Conflict-Based
Search (CBS) can generate conflict-free trajectories for many
robots [1], many assumptions are made that limit their ability
to be implemented in real-world settings. Robot kinematics
are often not taken into account. Further, the environment,
time, and the action space are often discretized and unit
action duration at each timestep is assumed. Current methods
handle robot-robot conflicts as a rigid location-time pair,
which can be inaccurate considering execution imperfections

1Abdel Zaro is with the Robotics Institute Summer Scholars Program
at Carnegie Mellon University, Pittsburgh, PA 15213, USA and also with
the Department of Mechanical Engineering at The University of California,
Berkeley, CA 94720, USA abdelzaro@berkeley.edu

2Ardalan Tajbakhsh and A. M. Johnson are with the Department of
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USA atajbakh, amj1@andrew.cmu.edu

Fig. 1: Illustration of multiple robot plans that avoid other
robots and environmental obstacles.

Fig. 2: Visualization of a collision between robot ai and
another robot at location v and timestep t.

such as localization drift, wheel slippage, and tracking error.
Most of these assumptions will likely be violated during
execution when robots turn, interact closely with one another,
or accelerate. In this paper, these assumptions are not made.
Robot kinematics are taken into account and robot actions
are carried out in continuous time to account for execution
imperfections.

Although variations of CBS that relax some of these
assumptions have been studied, there has not been a focus
on improving the efficiency of the collision detection part
of the algorithm. Current methods involve pairwise collision
detection, which does not scale well with many robots. In
this paper, a modified CBS algorithm that addresses the scal-
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ability issue is proposed. Model Predictive Control (MPC)
is used as CBS’s low-level planner, allowing for planning
over a receding horizon. Additionally, MPC provides more
natural incorporation of constraints than other CBS low-level
planners such as A*. The main contribution of this paper is
using quadtrees to improve the efficiency of CBS collision
checking for large-scale problems.

II. RELATED WORKS

A. MAMP Solvers

Centralized MAMP approaches have a single CPU con-
trolling all agents and they fall under two major categories,
decoupled and coupled. In the decoupled approach, motions
are planned for each individual robot separately and conflicts
are resolved on-demand. With the coupled approaches, the
problem is solved jointly for all robots at the same time.
Decoupled approaches are often faster than the coupled ones
but do not provide the same optimality or completeness
guarantees.

Conflict-Based Search (CBS) is a popular centralized two-
level optimal search algorithm. In the low-level portion of
the algorithm, individual plans are generated for each robot
separately [1]. Various decoupled algorithms can be used as
the low-level planner. The high-level planner detects conflicts
between the paths generated by the low-level planner. A
state in the search space is described by a location and
timestep (v, t). When a collision is detected, as shown in
Fig. 2, a constraint is added to prevent the robot, denoted
by ai, from being at location v at timestep t, represented
as <ai, v, t>. A binary constraint tree is formed. Each node
has constraints, a solution, and the total cost. Constraints of
each child node of the tree are inherited from the parent node.
Additional constraints may be added during the progression
of the search to prevent collisions between robots. Within
the solution of the node, each agent has a set of paths
generated by the low-level planner, all of which satisfy the
constraints at that time step. It’s important to note that if
the constraints are not sufficient at that time step, meaning
that the current constraints do not prevent all the collisions,
additional constraints must be added. The total cost of the
node is the summation of all the path costs. The search is
ended once a solution that only contains collision-free paths
is found.

Algorithm 1 shows the basic CBS algorithm proposed by
Sharon [1]. The low-level planner is used to find the shortest
path for each robot without considering the other robots (line
2). The constraints, solutions and solution cost describe a
node of the constraint tree and are passed into the open list
(OPEN) (line 4). Each node is iterated over and checked for
whether the solution it holds would result in a collision-free
path (line 8). If a collision-free solution is found, the solution
is returned (line 9). Otherwise, for every robot, ai, involved
in the collision, new constraints are added to prevent that
robot from being at location v at time step t (line 11). With
the addition of the new constraint, the low-level planner is
called to generate a new path for the robot at hand (line 15).

Finally, this node is added to OPEN again to be iterated over
once again.

B. Collision detection

One of the most time-consuming parts of CBS is colli-
sion detection. This is mainly due to the pairwise-collision
checking method, which involves computing the distance
between every pair of robots at each time step [2], as shown
in Fig. 3. A collision is detected when the shapes of the two
robots overlap. If there are n robots, then pairwise-collision
checking operates in O(n× (n-1)/2) time [3], which has to
be repeated at each timestep.

Multiple methods have been proposed to overcome the
computational complexity of pairwise collision checking.
Velocity obstacle is a method in which robots adjust their
velocities to avoid other robots [4]. This is done by construct-
ing a region called a velocity obstacle for each robot, which
depicts all the velocities that would result in a collision.
As long as the robot selects a velocity outside the velocity
obstacle, the collision is prevented.

Another method proposed to speed up the collision check-
ing process involves safety certificate regions [5]. These
regions are formed by measuring the distance from the robot
to the closest obstacle and then forming a circle around the
robot with a radius equal to that distance. If the robot is
within the safety certificate, then a collision check can be
skipped.

These methods still require distance computations between
robot pairs at each time step and the safety certificate method
does not account for dynamic obstacles, such as other robots.
In order to address these issues, quadtrees are utilized in this
paper. The high-level idea of quadtrees is to partition the area
the robots occupy into smaller regions. These regions can
be described by a tree data structure that provides a simple
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Fig. 3: Illustration of pairwise collision checking for a single
robot. Ten collision checks must be done for each robot in
the system to detect conflicts between every robot pair.

method for identifying which robots are near each other.
This information can be used to restrict collision checking to
only robots that are within proximity. The algorithm starts
by drawing a bounding box around all the robots. Let m
be the maximum number of robots allowed to be contained
within the bounding box. In this paper, this value is set to two
robots. When there are more than m occupying a space, the
quadtree algorithm creates four new quadrants, as illustrated
in Fig. 4.

Fig. 4 a.) shows two robots within the same bounding box.
Since m was set to two, no new quadrants are formed. Fig. 4
b.) illustrates what happens when a third robot, C, is added.
The space is partitioned into four equal-sized quadrants. As
the bounding boxes are split, a tree is constructed, as shown
on the left. The outer bounding box is called the parent node
and the four quadrants within it are called the child nodes.
Each robot is placed into the child node of the tree that
corresponds to the quadrant that they occupy. For example,
robots B and C are in the third quadrant and thus are placed
in the corresponding child nodes of the tree. Whenever the
number of robots occupying a bounding box exceeds m,
the quadrant they occupy is yet again split into four smaller
quadrants, and a new level of the tree is formed. Fig. 4 c.)
and d.) demonstrate the tree expansion as even more robots
are added.

The main advantage of quadtrees is limiting the number
of collision checks to only the nearby robots. The reduced
number of collision checks allows quadtrees to operate in
O(nlog(n)) time [6].

III. APPROACH

A. Overview

Each robot position (x, y) is represented as a circle with
a radius of 3. Tests with 10, 50, and 100 robots arranged
in a circle with a radius of 20, 50, and 75, respectively,
are conducted. Robots were placed in a 500x800 pixel area.
Each robot swapped positions with a robot on the other end
of the circle as shown in Fig. 5. Model Predictive Control
(MPC) is used to predict each robot’s current and future
trajectories at every timestep of 0.2 seconds. This is done to
enable early collision detection. Experiments were done in

Fig. 4: a). Only two robots are within the bounding box,
which is equal to m, so splitting the box is not required.
b). A third robot is added to the bounding box and the total
number of robots exceeds m, so the space must be split into
quadrants. c). An additional robot, C, is added. d). The space
must again be split.

Python on a laptop with an Intel® Core™ i7-7700HQ with
16 GB of RAM. The Euclidean distance was computed for
every collision check between robots.

A collision between robot ai and aj occurs when the
distance between them is less than the sum of their radii.
It is assumed that all the robots are the same shape and size.
Collisions are checked over the entire MPC horizon, which
holds the predicted trajectory information of the robot up to
5 timesteps in the future.

B. Implementation

A naive pairwise collision checking approach is taken as
the baseline. At every timestep, each robot does a collision
check with all the other robots. It operates in O(n×(n-1)/2)
time; thus, it scales quadratically with the addition of robots.

Next, a quadtree is tested to minimize the number of
collision checks between every robot. At every timestep,
collision checks are only done between robots within the
same bounding box, which limits collision checks to only
nearby robots.

IV. RESULTS

As shown in Table 1, in a 100-robot system, the use
of quadtrees decreased the total collision checking time
from 4.568 seconds down to .046 seconds. This is because
quadtrees enable the algorithm to only do collision checks
on robots that are nearby and within the same bounding box.
The benefit of quadtrees becomes even more apparent as the
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TABLE I: Total collision checking time and number of collision checks

# Robots Pairwise collision checking time (sec) Quadtree collision checking time (sec) # Pairwise collision checks # Quadtree collision checks
10 0.048 0.008 3,780 316
50 1.279 0.031 139,650 1,882
100 4.568 0.046 405,900 2,349

Fig. 5: Ten robots swapping positions with a quadtree
implemented.

number of robots increases. Thus, it contributes to solving
the scaling issue of multi-robot systems. Conversely, pairwise
collision checking faces a quadratically increase in collision
checks when more robots are added. This is because every
robot has to be checked against all the other robots, which
causes pairwise collision detection to operate in O(n × (n-
1)/2) time.

V. CONCLUSIONS
This paper implemented quadtrees to improve the scal-

ability of multi-robot motion planning algorithms such as
Conflict Based Search. It was demonstrated that quadtrees
could decrease the number of collision checks by 400,000 for
a 100-robot system. This improvement was due to organizing
robot locations in a quadtree which improves the scaling of
collision detection by limiting checks to only nearby robots.
Future studies can further investigate methods to improve
collision checking, such as skipping collision checks between
timesteps.
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A tensioning mechanism for an open source educational jacquard loom

Ana P. Garcia-Alonzo, Samantha Speer, James McCann and Melisa Orta Martinez

Abstract— This paper introduces the design of a novel three
stage tensioning mechanism for an open source, automated,
Jacquard table loom designed specifically for educational ap-
plications that can be assembled by students. Our aim is
to motivate and concretize learning in math, computational
thinking, and robotics through craft practices and hands-on
learning activities associated with weaving. To be able to relate
math concepts to weaving patterns, it is important for students
to be able to create distinguishable high quality patterns.
To produce such high quality cloth, uniform tension in the
warp threads needs to be maintained throughout the weaving
process. In this work we propose the design of a tensioning
mechanism that allows for individual thread tension force
adjustment and measurement during the weaving process. This
mechanism provides a unique approach in the application of
spring, friction, and normal forces in order to maintain uniform
tension throughout the cloth.

Index Terms— weaving, yarn tension, interactive learning,
mathematics, hands-on education

I. INTRODUCTION
A. Motivation

Students often encounter difficulty in understanding ab-
stract concepts in STEM subjects such as physics and
mathematics. Mulwa [1] proposed that part of the problem
is the lack of grounding of the abstract terminology. To
address this problem, it has been proposed to modify the
teaching methods of these subjects by increasing the use
of technology, hands-on activities, and use of real world
objects and examples [2]–[5]. Successful examples of such
technologies that aid in the understanding of theoretical
concepts are Hapkit [5] and Phogo [6]. These robotics
projects have become accessible to students through 3D
printing technology and a wide research community sharing
a common goal of making education more accessible.

The nature of the weaving process and design of weaving
structure which can be interpreted as matrix operations and
analyzed through computational thinking paradigms, pro-
vides a unique opportunity to ground abstract mathematical
concepts in art. In order to connect these concepts together
we have designed an open source Jacquard loom kit meant to
be assembled by groups of 4 students and programmed using
matrix operations and the Arduino programming language.
In this paper we introduce the design and analysis of the
tensioning mechanism which is crucial to the functioning of
the loom and integrity of the produced cloth.

B. Background

Weaving is a fabrication technique that has been around
for thousands of years. Different cultures have developed
their own processes and techniques, incorporating a wide
variety of materials. The foundation of weaving lies in the

Fig. 1. Robotic loom, with 40 individually actuated threads, designed
to be assembled as a kit by teams of students to encourage collaborative
learning. Made from readily available components and 3D printed parts.
The combined tensioning mechanism allows users to tension each thread
individually, as well as modify the force of the tension as they weave. The
loom is controlled through an Arduino Mega board and programmed in the
Arduino platform.

manipulation of warp threads, which run vertically, and weft
threads, which run horizontally (Figure 2). Woven fabrics
have a wide range of usages, each requiring different looms
to fit the complexity of the weave. Contemporary industrial
Jacquard looms, which allow for complex fabrics, are very
expensive for individual use. Their price is proportional to the
size and fineness of the cloth they can weave. In e-commerce
companies, such as Alibaba, one can buy a computerized
industrial GINYI Jacquard loom from a starting price of
$7,500 USD or a WGT16 high-speed electronic Jacquard
weaving loom for $60,000 USD. On the other hand, simpler
commercial hand or table looms do not support complex
patterns and often require a previous study on weaving and
specific techniques [7]. In this project we consider the trade-
offs in cost, performance, and accessibility to create a lower
cost Jacquard robotic loom.

There have been other low-cost robotic Jacquard looms
which seek to innovate on specific parts of the loom. One
example is a computer controlled loom designed by Schae-
fer [8], which lifts or lowers the yarn by shifting hooks
through cams that sit on an automated rotating square shaft
which can be controlled by a cellphone. This loom was de-
signed as a Do-It-Yourself (DIY) project and made from 3D
printed materials and simple electronic components. Other

18



Fig. 2. Visual representation of warp & weft packages. The vertical strings
correspond to the wrap, which are held by the tensioning system of the loom,
and alternate their position with respect to the weft. In contrast, the weft
corresponds to the horizontal rows which are woven manually by the user.

small mechanical looms have been created from popular
components such as LEGO, which provide a wide range of
mechanical and electronic components that can emulate up
to a fully automated Jacquard loom [9]. Albaugh et al. [7]
created a 3D printed low-cost Jacquard Loom that offers fully
computational pattering, while maintaining flexibility of hand
weaving, and allows for multiple levels of complexity. Said
design aims to serve artisans and researchers by facilitating
a rapid prototyping and accessible computational interface
for skill-building and creative development.

Our loom aims to combine a creative, low-cost design,
such as the ones created by Kurt and Nichols, with the com-
putational and mechanical flexibility that Albaugh’s design
provides in order to facilitate the integration of weaving and
computational thinking.

II. DESIGN PROCESS

Our main goal in designing the tensioning mechanism for
RoboLoom, was to design a mechanism that allowed for each
thread to be individually tensioned at a load between 50 and
200 g and was easy for students to assemble and adjust.

Figures 3, 4, and 5 present the evolution of our mechanism.
Figures 6 and 7 show the final design. In the following
sections, we describe the design goals and design evolution
for this mechanism.

A. Design Goals

The aim of this open source Jacquard loom is to allow
undergraduate students to fully assemble, interact and skill-
fully apply the theoretical knowledge acquired during an
interdisciplinary course combining concepts in mathematics,
robotics, computational thinking and weaving. Therefore, the
loom should be robust, intuitive, and easy to assemble and
use. It should also allow for corrections, since mistakes are
bound to be frequent amongst students. Especially those with
no prior experience in weaving.

One of the biggest challenges in designing a loom is
designing a tensioning mechanism which maintains uniform
tension amongst threads whilst allowing for adjustments as
one weaves. In weaving, having sufficient -between 50 and
200 grams of tension- and consistent tension in the yarn
is crucial for fabric integrity. In order to achieve this, we
propose a design which allows for individual manipulation
and tensioning of the warp threads. This mechanism also
aims to reduce the points of friction which each wrap may
encounter along the loom, avoiding rupture or inappropriate
pull caused by the movement of the heddles. Finally, taking
in consideration that the desired application for this loom
is for it to be used within introductory courses for robotics,
mechatronics and computer science, the assembly should be
able to be completed in a reasonable amount of time by
teams of 4 students.

B. Manufacturing

In order for RoboLoom to be an accessible educational
tool, students, as well as educators, should be able to obtain,
modify, and replicate the parts as easy as possible. Our loom
is composed of 60% readily available materials, 20% laser-
cut acrylic, and a remaining 20% of 3D printed parts.

In order to make the assembly process as unambiguous as
possible, the 3D modeled parts aim to reduce the mechanism
to a minimal number of parts and lower the inconsistencies
while printing. The material for each of the printed com-
ponents was carefully selected depending on its interaction
with the yarn threads. For the compressing system found in
the tensioning discs, we decided to use stereo lithography
(SLA) 3D printing because of the highly-precise layer to
layer quality to avoid scratchy edges, making it easier for
the thread to slide through despite all the force that is being
applied, thus reducing possible points of rupture. For other
components whose function is mainly as storage, the chosen
material was poly lactic acid filament (PLA), commonly used
in 3D nozzle extruding printing machines which are more
readily available and inexpensive.

C. Design Evolution

The initial designs aimed to increase the manipulation of
the individual warp threads within a 40 thread loom. The
system found in traditional table looms allows for control
over sets of threads but not individual threads. Control over
each single thread allows for more complex, flexible and
creative patterns.

The first design (Figure 4) was a fixed tension-system with
a bobbin and the tensioning spring were held inside a case.
The force on the tensioning discs was set by the distance
between the lid and the base. Having the bobbin fixed in the
base, so it had to be spooled inside the structure, proved to
be impractical and hard to assemble.

As the design evolved, we sought to make a mechanism
where the tension could be readjusted as needed and the
bobbin was easier to wind. This then resulted in the design
shown in Figure 5, where the spool was a rolling component,
and the tension on the discs was adjustable with a spring
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Fig. 3. Design evolution of tensioning system, a) first design with no grip over bobbin, b) second design with fixed tension, no spring, c) third design
with spring, d) forth design with rolling bobbin and small spring, e) fifth design suitable for vertical assembly and adjustable tension, f) bobbin holder
separated form tensioning system.

Fig. 4. Initial tensioning mechanism design. The tension is fixed in the
discs by an established distance between the lid and the base. The spool
was also fixed in the base, which made it complicated to weave the thread
into it.

and nut. The rolling spool allows for easier movement
of the thread as it leaves the case. The spring facilitated
the readjustment of the tension, however, it proved to be
imprecise when the exact position of the nut had to be
replicated for each of 40 threads.

The final tensioning mechanism design was split into two
parts since we found it was impractical to hold the thread
so close to the tensioning mechanism if there was any need
to pull back the thread and readjust. The first part (Figure

Fig. 5. Evolving tensioning mechanism design. The space between the lid
and base is bigger to allow adjustment of the spring with a nut, increasing
the tension between the discs. The discs are held by a 20 mm screw that
fits into the lid, bounding the structure together. The spool is a separate
component that holds around 24 ft (7.32 m) of yarn. The side slots allow
the assembly of the entire case into a secondary structure that sits in the
back of the loom.

6), is the storage system, and includes an freely-spinning
bobbin and an arrow to guide users in threading. The second
part (Figure 7), is the tensioning system, which resolves
the issue of having to calibrate 40 systems by combining
a tensioning spring with a fixed-spacing carrier assembly. To
save on assembly time and materials, we built a 10-tensioner
module using a 3D printed a spacing rod. Only four of these
modules are needed for the 40-thread loom.
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Fig. 6. Storage system for the final tensioning mechanism. A spool that
holds around 24 ft (7.32 m) of yarn is held by a sliding case that rests
below the tensioning system. The arrow slot helps orient the thread in the
right direction during the assembly process.

Fig. 7. Final tensioning mechanism design. A structure that holds a fixed
14 mm spacing allows for consistent tension between 10 threads at the
time. The springs are compressed in this fixed spacing against the discs,
which are all held by the same stainless steel rod. The amount of threads is
equivalent to one heddle frame, which holds these same threads, facilitating
the organization of the yarn through the loom.

D. Tensioning mechanisms

The tensioning mechanism was designed so it could be
adjusted and hold the tension it was adjusted to throughout
the weaving process. We focused on designing a mechanism
that was passive (with no active actuation components) in
order to minimize cost. Here we describe the tensioning
paradigms which informed our design.

1) Additive tensioning systems: The simplest way of ap-
plying tension to yarn is to rub it against another surface [10].
The magnitude of the tension depends on the force with
which the thread is held against the disk and the coefficient
of friction (µ1) of the resin the disk is made out of. This
is known as an additive tensioning system, and is usually

made of two solid stainless steel discs compressed by a
spring (Figure 8). The force applied by the system is given
by Equation 1:

F = µ1N + µ1N = 2µ1N (1)

If a yarn is fed through this system with an initial tension
Ti, then its output tension, Tf , is determined by Equation 2:

Tf = Ti + 2µ1N (2)

Fig. 8. An additive tensioning mechanism with two discs. The discs
compress the yarn as it passes through them, resulting in an increase in
its final tension. Figure from [10].

2) Multiplicative tensioning systems: Another traditional
method is known as a multiplicative system, Figure 9, in
which the yarn passes around a fixed, curved shaft [10]. The
output tension, Tf , on the thread is now determined by the
angle of the curvature and the coefficient friction of the shaft
(µ2), as per Equation 3:

Tf = Tie
µ2θ (3)

With this method, tension can be adjusted by changing the
final direction of the thread as it gets ready to go through the
heddles until its final tie down. However, the final tension is
also dependent on the initial tension – which must be greater
than zero, else this holds no effect.

Fig. 9. A multiplicative tensioning system. The friction of the post and
angle of the direction change multiply the initial tension. Figure from [10].
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3) Combined tensioning system: For our design, we de-
cided to combine both the additive and multiplicative ten-
sioning systems. Using this combined tensioning system,
we were able to create a mechanism that was easy to
assemble and provides control over the tension magnitude
and direction through the loom as proposed by [10]. The
output tension Tf is then modeled as the addition of both
systems and will depend on the normal force applied by
the discs, the initial tension, the angle of the warp, and the
coefficient of friction of each system, as per Equation 4:

Tf = Ti(1 + eµ1θ) + 2µ2N (4)

E. Assembly Process

Figure 10 outlines the different sections that make up
the final design of the loom as well as how the warp
thread interfaces each section. Here we describe the assembly
process of the tensioning mechanism shown in sections A,
B, and C in Figure 10.

Fig. 10. Schematic of the path of the yarn across the loom (red line)
and critical tension points. A) Winding & storage station: grid that holds
compartments with approximately 24 ft (7.32 m) of yarn. B) Additive
tensioning system. C) Multiplicative tensioning system. D) Individually
actuated heddles that raise or lower the warp threads to enable the weft
threads to be woven in. E) Warp beam where the warp threads are tied
down.

The different sections in the loom tensioning mechanism
are mounted to a C-like structure made of aluminum using
laser-cut acrylic. The laser-cut acrylic pieces are designed to
hold each case with a yarn bobbin at fixed distances from
each other, the tensioning disks, and heddles in order to
reduce possible points of friction and tangling of the threads.
This C-like aluminum structure is attached to the loom’s
main structure using aluminum brackets and screws.

Each section of the tensioning mechanism should be
assembled in order (A,B,C).

To assemble stage A an acrylic cutout with 40 square slots
is first mounted into the aluminum rails. Then, each of the
yarn spools are assembled into its own storage cases, shown
in Figure 6, and held by a flat head screw and a nut. The
thread should cross through the arrow slot so that, as it un-
spools, the thread remains vertical to avoid entanglement.
Finally, each case should be slid into the acrylic base and
secured by a second acrylic piece on top to avoid the cases
from sliding out.

In order to assemble section B, ten pairs of discs and
their respective springs are mounted on a rod with a spacing
structure in between (Figure 7 shows the final assembled
rod). The rod is longer than the spacing structure and held
by acrylic mounts above stage A. The amount of tension
in each warp thread is controlled by the spacing in the 3D
printed spacing structure which determines the compression
of each tensioning spring. Finally each warp thread, which
is held in its individual case, is looped around the pair of
discs directly above it.

Finally, to assemble section C, smooth aluminum rods are
secured into their respective acrylic mount. Then the thread
that was looped around the discs is bent over the aluminum
rod directly above it, which is the same as the row number
from which it left stage A. After the last step, the thread is
ready to go through its respective heddle with its own motor
(shown in Figure 10 as stage D) and tied around the warp
beam (shown in Figure 10 as stage E).

III. ANALYSIS

A. Methodology

In order to analyze the performance of the tensioning
mechanism, we evaluated the time it took to assemble it and
whether the assembly process was easy and unambiguous.
Student users of this loom are not experts in the craft of
weaving thus the weaving process should be user-friendly
and straightforward.

We also wove three basic patterns in order to analyze how
well the tension was maintained whilst weaving. Preserving
the quality of the fabric allows the user to see the different
patterns resulting from their mathematical designs in weaved
form. This allows students to better engage both with the
art of weaving and mathematics and computational thinking
lessons. If the tension were not maintained, the cloth would
be uneven and not of high quality, and the planned pattern
would not be apparent.

B. Results

This robotic loom is designed to be assembled as a kit by a
team of students of at least 4 people. A single researcher was
able to assemble the final loom prototype in approximately 5
hours. From this, we estimate a team of four novice students
will be able to construct the loom in less than 10 hours. We
are also taking in consideration that one of the more time-
consuming components, manually winding the thread around
the bobbins, will not be a part of the assembly process the
students will be required to do. In future work, we aim to
introduce an accessory to automate the process of winding.
During the assembly process, the threading of all the yarns
from their bobbin, through the tensioning discs, over the back
shaft, through their corresponding heddle, through the reed
and tying to the wrap beam was achieved approximately
in 2 hours with 2 people. This path can be observed in
Figure 10. We found that the best way to facilitate the process
of threading the loom is to have a clear code that helps
identify which thread corresponds to each heddle and frame.
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Therefore we are working on introducing a color code to
avoid confusion.

In order to test the capabilities of our adjustable tensioning
mechanism, we tested three weaving patterns: Plain weave,
Twill weave, and Herringbone weave. These patterns are the
basis for several more complicated weaving patterns. The
results of these experiments are presented in Figure 11

Fig. 11. Comparison between desired (right) and resulting (left) patterns.
a) Plain weave. b) Twill weave. c) Herringbone weave.

1) Plain weave: A plain weave pattern is achieved by
making the weft go under and over each warp thread, creating
a checkerboard pattern. Figure 11.a shows a plain weave
draft (right) and cloth created on RoboLoom (left). We can
observe that most of the fabric holds an even distribution of
the pattern. We can also see that some rows in the middle of
the frame have a stronger green color, which means that at
that time in the weaving process, the tension was slightly off.
Thanks to the affordances of the tensioning mechanism, after
realizing that the plain weave pattern showed some uneven
spacing of the weft and warp, we corrected the tension as
can be seen on the rest of the fabric by the even distribution
of weft and warp threads.

2) Twill weave: Twill weave is characterized by a diago-
nal rib pattern that results from offsetting the two-over two-
under structure of the weft thread interlacing. The tension in
the warp threads needed to be frequently adjusted to maintain
consistent tension in the cloth.

3) Herringbone weave: The Herringbone weave is com-
posed of an alternating twill weave. We found that the tension
stayed consistent, and it was possible to maintain a zigzag-
like pattern, which resulted in a well-made cloth.

Another interesting experiment which allowed us to test
the capabilities of our mechanism happened by accident.

Fig. 12. Correction of an individual warp thread while actively weaving:
One warp thread was not weaved into the pattern for several rows due to its
lack of tension. Once the weaver realized this, they adjusted the tension of
that warp thread without having to untie the rest of the warp threads. The
correction can be observed by the evenness of the pattern in the following
rows.

Figure 12 shows a simple pattern where a warp thread was
not woven into the fabric for a few rows. This happened be-
cause that particular warp thread was not tensioned properly
initially. This is a common mistake in weaving, especially
for beginners. Thanks to the fact that each warp thread is
individually controlled and tensioned, the mistake was easily
corrected by adjusting the tension of that particular warp
thread without having to untie or correct any of the other
warp threads in the pattern.

IV. DISCUSSION

In this paper, we presented a novel tensioning mechanism
for a robotic loom that is easy to assemble and allows
for dynamic adjustment of the individual tension across the
warp threads. We evaluated the benefits of having individual
warp thread control by weaving a set of basic patterns and
measuring the consistency of the tension across the warp
threads throughout the weaving process. We observed that it
was easy to correct the tension in the warp threads to ensure
high-quality cloth production.

We are currently working to design an undergraduate
course, IDEATe: Re-Crafting Computational Thinking with
Soft Technologies, which will use the robotic loom to teach
introductory concepts of robotics, mathematics, weaving, and
computational thinking.

A. Future work

We are working to simplify the assembly process by
associating each warp thread to its corresponding heddle
through color coding the cases and heddles. We also aim
to continuously monitor the tension of the individual threads
through an active tensioning mechanism. We also expect to
find more areas of improvement after our first use case in
the course.
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Using log data to improve RoboTutor: A Multi-Armed Bandit Approach

Abstract— The Android tablet tutor, RoboTutor, was a
million-dollar finalist in the Global Learning XPRIZE to
help children without access to schooling develop literacy and
numeracy. We analyzed previously collected log data from the
Swahili version of RoboTutor using four criteria crucial to the
effectiveness of an intelligent tutor: reliability, usability, engage-
ment, and learning. A Multi-Arm Bandit (MAB) algorithm will
use metrics for these four criteria to incrementally adjust the
frequency of alternatives (arms) based on the distribution of
rewards that they have achieved so far. The algorithm trades
off the exploitation of the arm with the highest mean reward
against exploration of other arms that have lower mean reward
so far but might turn out to have higher reward. The arms are
two versions of RoboTutor’s curricular sequence of educational
activities for which we have log data. We use this data to
predict the expected increase in learning gains. The impact
should be to increase total learning gains even as children are
using RoboTutor in the field

Index Terms— Keywords: RoboTutor, Multi-Armed Bandit,
Adaptive Learning

I. INTRODUCTION

Thousands of people use technology daily to grow their
skills and knowledge. RoboTutor is an intelligent tutor sys-
tem (ITS) tablet first deployed in Tanzania, and is one way
technology is supporting children who do not have access to
school.

Fig. 1. Two students in Tanzania using RoboTutor (the tablet).

II. ROBOTUTOR

RoboTutor and other ITS systems ”aim to propose to
students the activities most likely to increase their average
competence level and overall knowledge components based
on previous students’ performances.” [1] RoboTutor teaches
children through adaptive learning. RoboTutor is an adaptive
learning software that uses student progress to adjust the
difficulty level

Fig. 2. The process of adaptive learning in RoboTutor

For this project, we chose to analyze how RoboTutor
can improve the sequence of activities it provides students.
The effectiveness of RoboTutor is measured by metrics that
quantify the criteria mentioned above: reliability, usability,
engagement, and learning.

This work builds on previously collected RoboTutor log
data from two versions of RoboTutor to drive a Multi-Armed
Bandit (MAB) algorithm to see which version produces the
best student learning results. We consider an arm within the
MAB algorithm to be a version of RoboTutor. We measured
the learning rate as the number of activities passed per
hour according to the percentage of correct student actions.
Applying the multi-armed bandit algorithm will allow us to
concurrently improve RoboTutor’s activity sequence and to
analyze the impact of the changes being made.

III. MULTI-ARMED BANDIT (MAB)

MAB was initially developed by Herbert Robins in re-
sponse to the question, ”How should we draw a sample
from two populations if our object is to achieve the greatest
possible expected value of the sum S=xi + ...+ xn?” [2]

Since then, the multi-armed bandit has developed into a
useful tool for addressing complex issues with options. ”A
bandit problem can be expressed in its most basic form
(sometimes referred to as stochastic) as a set of K proba-
bility distributions with corresponding expected values and
variances. These distributions are typically seen as matching
to the arms of a slot machine;” [3] In this typical example
of MAB, the gambler eventually wishes to determine which
Slot machines offer the best payout.

If there are only two machines, one solution could be to
keep pulling the lever on both machines until one machine
eventually produces a higher reward over time. However,
when hundreds of thousands of slot machines are involved,
this approach can become complicated. ”At each turn (pull),
t = 1, 2,..., the player chooses an arm with index j(t) and
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receives r(t) Dj as a reward” (t). Bandit algorithms define a
strategy for the player to select an arm j(t) at each turn.” [3]
The MAB algorithm repeatedly selects arms based on a spec-
ified exploration vs. exploitation rate. It provides feedback on
which arm should be selected after a set number of rounds.
This comes down to the ”exploration/exploitation” trade-off
in machine learning, in which we must simultaneously try
new activities to determine which ones are the best and select
the best ones so that the student learns. We here adapt such
approaches to ITS.” [4] The arms for MAB in this study are
two different versions of RoboTutor, referred to as CD2 and
CD3.

A. Algorithms and Usages

a) Epsilon (e)-greedy: E-greedy. The e-greedy algo-
rithm is widely used thanks to ”its simplicity and obvi-
ous generalizations for sequential decision problems.” Each
round, t = 1, 2,... With probability 1-e, the algorithm chooses
the arm with the highest empirical mean, and with probability
e, it chooses a random arm. To put it another way, given
initial empirical means µ1(0), ..., µK(0), [3]

Fig. 3. E-greedy mathematical algorithm.

b) Upper Confidence Bound (UCB): ”In addition to the
empirical means, the simplest algorithm, UCB1, keeps track
of the number of times each arm has been played, denoted
by ni(t). Each arm is initially played once.” [3] In this case,
UCB pulls the reward for each version of RoboTutor, as
measured by the number of activities passed satisfactorily
per hour of use. ”Following that, at round t, the algorithm
greedily selects the arm j(t) as follows based on:” [3]

Fig. 4. UCB mathematical algorithm.

Based on the above function, the UCB algorithm selects
the arm (i.e. RoboTutor version). In this case, the argmax
function takes the mean up to a specified point. So it’s the
mean until the next session. The function then takes the log
of t and adds the square root of two, which is the upper
confidence level, which is the number of times each arm
was pulled. This function keeps track of whether RoboTutor
version CD2 or CD3 was used. It then divides that total by
the number of arms, which is two in this case because we
have two versions.

B. Applications of MAB to Intelligent Tutor Systems (ITS)

An intelligent tutor system was tested on ”11 different
schools in the Bordeaux metropolitan area” in a similar study.

We had 400 students between the ages of 7 and 8. This study
assessed students’ learning by having them take a pre-test a
few days before and a post-test a few days after using the
ITS. The results of the study show that this [MAB] approach
achieves comparable, if not better, learning results than the
sequence created by an expert teacher.” [1]

IV. RELATION TO PRIOR WORK WITH ROBOTUTOR

This project expands on previously collected data and
previously written code to sort through the data returned
by the RoboTutor tablet. The majority of the code in
this project was derived from Yuanhang’s Student Analysis
scripts and Sanjana’s simulation code. Yuanhang’s Student
Analyses Scripts sorted through all of the log files returned
by RoboTutor and compiled them into a csv file based on
the previously mentioned four criteria: reliability, usability,
engagement, and learning. Yunaghan’s csv file contained
metrics computed from students’ activities in RoboTutor. A
few such metrics are in the table below. The complete list
can be found in the appendix:

Fig. 5. A few measures of reliability, usability, engagement, and learning
computed from RoboTutor logs

Below each criterion in the provided snippet of the full
spreadsheet are metrics that quantify it. For this project, we
used the highlighted cell ”number of activities passed per
hours of use” to calculate student learning using the UCB
multi-armed bandit algorithm.

We computed the minimum, maximum, mean, median,
and standard deviation of each metric for each session. The
data for each row in the full spreadsheet was recorded for
many RoboTutor sessions.

The MAB algorithm is guided by which arm yielded the
highest reward. The reward for RoboTutor in this case is
learning. The other section of code uses code from San-
jana’s simulation experiments. This code ran simulation data
through two MAB algorithms (Epsilon Greedy and UCB)
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and discovered that UCB was the most accurate at predicting
which arm had a higher reward. This work will employ the
UCB algorithm.

V. METHODOLOGY

The MAB algorithm was tested on two RoboTutor ver-
sions, CD2 and CD3. The same metrics and computations
were used for each version. Coding an MAB approach to
compare the two versions of RoboTutor required several
steps. MAB requires arms. The arms are the versions in this
scenario, so the terms can be used interchangeably.

A. Extracting the version from the log file name

Once the MAB algorithm has been run on the various
RoboTutor versions, the output data must specify which
version (arm) is being examined. The first section of this
project’s code extracts the version name from the log files
that contain the collected data.

B. Calculating the Arm Rewards

After the version names have been properly extracted, the
next step is to create the Arms environment. As previously
stated, the arms in this case are versions (CD2 and CD3).
The parameters for each arm are stored in an Arm class (mu,
sigma, val, and weight). Each arm (version) incorporates
the mu and sigma parameters, which in this case are the
average and standard deviation discovered when calculating
the number of activities passed per hour. Each time an arm
is pulled by the UCB algorithm, a method is developed to
record the the reward for that arm and compare it to the
reward when the other arm is pulled.

A path is created to the RoboTutor data spreadsheets for
each version. The code that follows implements a function
that sets mu and sigma. When simulating the sum of rewards
for each arm, mu was set to the mean number of activities
passed per hour for each RoboTutor session, and sigma was
set to the standard deviation for number of activities passed
per hour for each RoboTutor session. When simulating multi-
armed bandit, mu was set to the cumulative mean number
of activities passed per hour for each RoboTutor session,
and sigma was left as the standard deviation for number of
activities passed per hour for each RoboTutor session. The
arms are then added to an array to be chosen from.

When simulating multi-armed bandit on the provided data,
a method was developed to compute the cumulative average,
which represents the average of each RoboTutor session
added until the most recent session.

The final section of code is the UCB algorithm, which
repeatedly chooses each arm based on the rewards, weight,
and uncertainty for each arm. As initial parameters, the UCB
algorithm considers the arms and the confidence level. The
initial reward for each arm is also zero and t. (number of
times an arm has been pulled is set to one). When UCB
pulls an arm, it considers the level of uncertainty.

The uncertainty is calculated by adding the upper confi-
dence bound interval to the reward each time an arm is called.
The final step is a method called Makedecision, which is used

to pull one of the two arms. The reward value is updated
every time an arm is pulled.

VI. RESULTS

For the first part of the results, we simulated a total of
rewards for each arm using the data collected, yielding a
total of activities passed per hour of use.

Fig. 6. Average cumulative reward value over n iterations of RoboTutor
sessions

Over time, the reward value, which is the number of
activities passed per hour of use, significantly outperformed
CD2, indicating that CD3 had a higher reward value. The
graphs below depict simulations of multi-armed bandit on the
given data using the UCB algorithm. The UCB algorithm for
multi-armed bandits pulls each arm over time based on some
exploration vs exploitation and eventually pulls the arm with
the highest cumulative reward value (number of activities
passed per hour of use).

Fig. 7. Simulation of Multi-armed bandit

The graph on the left shows that UCB was pulling both
versions of RoboTutor up until around 800 iterations. Then
it discovered from itself that CD3 yielded a higher reward.
As a result, the red line is no longer used. The graph to
the right is a magnified version of the graph to the left. The
right graph has been zoomed in to show where UCB learns
to start selecting CD3.

Because these plots show each reward at the time when
each arm is pulled, the results of the simulated sum of
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rewards and the simulated MAB behavior indicate that CD3
of RoboTutor performed better and had a higher overall
average amount of learning for each session collected.

VII. DISCUSSION

A challenge in this project was distinguishing between
the historical and simulated rewards. The historical reward
is the average that was given based on the column values
from the analysis spreadsheet, whereas the simulated reward
is what we actually computed, and it represents how the
reward would grow over time. We had to consider how we
are constrained by the data we currently have. This multi-
armed bandit strategy is only applied to data that has been
provided to us. It does not account for new data, which can be
a problem because new data may change which arm should
be chosen. In the future, we’d like to find a way to run
multi-armed bandits on RoboTutor at run time so that it can
account for any incoming data. We also looked at how many
iterations of running the UCB algorithm it took for the two
versions of RoboTutor to converge. 7 demonstrates that it
took approximately 800 iterations for the UCB algorithm to
determine that CD3 performed better than CD2.

VIII. FUTURE WORK

Calculating how much data would determine which arm
is best by calculating the effect size on each arm would
be a step toward a more accurate analysis of RoboTutor.
The effect size would provide a definite number indicating
which arm is superior. Developing a more accurate function
for measuring a student’s learning with RoboTutor would
provide a more valuable understanding of how well students
learn with RoboTutor. The current learning measurement is
the number of activities passed per hour. This metric does
not provide objective evidence that a student is learning. The
metric ”percentage of promotion activities passed” would be
used for objective learning. This metric indicates the number
of activities performed in PROMOTION mode rather than
PLACEMENT mode. Each time a student completes a more
complex activity than the previous one, the percentage of
promotion activities passed is calculated. Given that if a
student completes PROMOTION activity, they have learned
from the previous activity, the percentage of promotion
activities passed could be a more accurate metric for learning.

APPENDIX

Link to Yuanhang Wang’s Student Analysis Code
- https://colab.research.google.com/
drive/1Xd6KZbAxb8MU6WvfGsUqIq6nGuQrlzjn?
authuser=1

RoboTutor Data Spreadsheets must be downloaded and
uploaded as files into the below google colab notebooks to
run properly -

CD2 dataset - https://docs.google.
com/spreadsheets/d/1CIPL-JJz_
IoYYwgdw24e22AR_yykf2s94QA7LfOFLe4/edit#
gid=399644296

CD3 dataset - https://docs.
google.com/spreadsheets/d/
1DhfpkclpkOFRUP3OORB3ZDK5v_
12uCtTBmw3H3NWir8/edit#gid=651261727

Code for multi-armed bandit for simulated rewards
- https://colab.research.google.com/
drive/1roLh5aUni3oHirD4jcbRMnCPlGrZRDcF?
authuser=1#scrollTo=24compleoOTz0q1jIt

Code for simulating multi-armed bandit on given Robo-
Tutor data - https://colab.research.google.
com/drive/15bPUDegz-mKngpRdXAq3yad9t6zj_
i0y?authuser=1#scrollTo=24oOTz0q1jIt
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AirLoc: Object-based Indoor Relocalization

Aryan1, Chen Wang2, and Sebastian Scherer2

Abstract— Indoor relocalization is vital for robotic tasks such
as autonomous exploration and semantic scene understanding.
Many previous approaches attempt geometry-based methods
to carry out indoor relocalization, but these methods are not
robust. Objects are more informative than geometry elements,
and places are often unique due to the placement of objects.
The critical challenges in object-based relocalization are object
reidentification and remembering object relationships. In this
context, we propose a novel object-based indoor relocalization
approach, dubbed AirLoc. We use objects’ appearance and
geometric relationships to extract qualitative information which
is utilized to perform higher-level task of relocalization. Specif-
ically, we use object embeddings to get appearance based room
similarity and pixel location based features to get geometry
based room similarity which are collectively used for room
level localization. We demonstrate that AirLoc performs very
well for room reidentification and is robust to severe occlusion,
perceptual aliasing, viewpoint shift, deformation, and scale
transformation. To the best of our knowledge, AirLoc is one of
the first object-based indoor relocalization approach.

Index Terms— Indoor Re-Localization

I. INTRODUCTION
Recently, indoor relocalization has gained unprecedented

attention with the development of numerous location-based
mobile phone and robotic applications such as augmented
reality (AR) [1], mobile robot navigation, and simultaneous
localization and mapping (SLAM) [2], [3].It can be em-
ployed in large indoor buildings such as shopping malls,
offices where one can use his cell phone to relocalize
himself when lost. Several existing mobile robot localization
techniques, such as visual odometry and simultaneous local-
ization and mapping (SLAM), require indoor relcalization to
correct their drift. The robot continues its work even if its
tracking fails by performing global relocalization to recover
the camera’s pose estimation. This problem is sometimes
known as the kidnapped robot problem also, where the task
is to localize a robot in an unknown environment when a
prior estimate of the location is unavailable.

In recent years, methods have been developed to address
the indoor relocalization problem [4]. Some are keyframe
based with store keyframe images and some are feature
based which store keypoints extracted from keyframe images.
However, these algorithms either require a 3D model of the
scene or multiple database images to get good results. But
getting such 3D models or multiple database images is not
easy in most real-world indoor applications, such as large

1Aryan is with the Department of Electronics An Com-
munication, Delhi Technological University, Delhi, India
aryan 2k19ec032@dtu.ac.in

2Chen Wang and Sebastian Scherer are with the Robotics In-
stitute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
chenwang@dr.com; basti@andrew.cmu.edu

Fig. 1. Indoor Relocalization

offices and supermarkets. Apart from it, several methods
do not work well in situations, such as occlusion, light
changes, and the interference of personnel access. It remains
questionable whether illumination changes and occlusion can
be compensated while maintaining only limited overlap be-
tween the localization query and database. Therefore, rather
than merely concentrating on geometric mapping, semantic
mapping also strongly needs to be considered.

Researchers have shown increased performance for object
encoding and re-identification tasks in recent years. As
objects are more informative than geometry elements, and the
location of objects makes spaces often distinctive. We pro-
pose AirLoc: an object-based indoor relocalization approach
where we show that object similarity and relative object
geometry can be a highly efficient technique to relocalize a
query given a database of rooms. Further, a room embedding
can be obtained from a minimal number of database images
and even from a single image, reducing the database size
required for relocalization.

In summary, the main contributions of this paper are:

• We introduce AirLoc, a simple yet effective indoor relo-
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Fig. 2. The proposed object matching framework, which matches query objects with database objects to generate a room similarity and uses the room
similarity for room level localization

calization approach that utilizes geometric and semantic
information using objects in a scene.

• We extract appearance based features using object en-
coders and geometry based features using the novel
geometry module which extracts relative position be-
tween objects. Finally, we perform relocalization using
the matching module which performs object and room
level descriptor matching.

• AirLoc gives reliable results and outperforms the state-
of-the-art methods in room-level localization task. We
evaluate AirLoc on custom generated Mp3d dataset
which contains room level divisions, depth and semantic
data for every image.

II. RELATED WORK

This section reviews 6-DOF pose estimation frameworks
and feature-based representation methods. Furthermore, we
also review localization methods based on object-level data
association.

A. 6-DOF Pose Estimation

Recent years have seen an increased interest in convolu-
tional neural networks (CNN)-based visual positioning al-
gorithms. Using neural networks, PoseNet [5] provides end-
to-end visual positioning. It directly performs 6-DoF camera
pose regression on input RGB images using a fully connected
layer based on GoogleLeNet [6]. In large-scale outdoor
scenes, it can achieve 2m and 3°accuracy, while in indoor
scenes, it can achieve 0.5m and 5°accuracy. In subsequent
years, many improved versions have been developed based
on this idea. Walch and Hazirbas [7] add LSTM after the
fully connected layer to solve the problem of over-fitting,
which could improve the positioning accuracy by 32–37%.

To perform pose regression and odometry on continuous
images, Valada and Radwan [8] proposed a multi-task model
of a CNN. Hard parameters were shared between the global
pose and the odometer subnetwork. A consistent pose esti-
mation can be achieved by limiting the search space by the

relative pose between the two images. This method improved
positioning accuracy significantly and approached close to
traditional local feature-based positioning. Based on [8], [9]
added semantic information to the localization stream by
aggregating motion-specific temporal information and adding
semantic information together with 6-DoF pose regression
and odometer information.

Geometric consistency requirements have also been uti-
lized to increase the precision of pose regression, and they
have been found to be more effective than employing only
euclidean distance constraints. Using depth image data, [10]
simultaneously adds the geometric similarity error and photo-
metric error to the loss function. The reprojection error was
first presented by [11], who projected the 3D point in the
environment onto the 2D picture plane using the camera’s
predicted pose and used the pixel location deviation as a
constraint.

These methods require a lot of training data before in-
ference and require model retraining for every new environ-
ment. In this context, our proposed object-based framework
relies on the object encoders, which are robust to environ-
mental changes. Hence, the framework can be easily applied
to new environments without retraining.

B. Feature-based representation methods

In conventional methods such as loop closure detec-
tion, object matching, and VPR, handcrafted features such
as SIFT [12] and SURF [13] have been widely applied.
Fast appearance-based mapping (FABMAP) [14] identifies
revisited objects through feature distribution matching in
the trained visual vocabulary of SURF features. A binary
descriptor ORB [15] was utilized in DBoW2 [16] to extend
this concept further and increase speed. Several approaches
[17]–[19] have been suggested to expand on the idea of
vocabulary-based retrieval. However, when the local descrip-
tors are not discriminative, these handcrafted feature-based
algorithms become susceptible to environmental changes and
produce false matches.

30



 24 76  64

 34 35  48

 65 75  66

● ● ●

● ● ●

Object-Wise 
Keypoint Extraction

Superpoint NetVlad

Keypoint Feature 
Aggregation Object Descriptors

Fig. 3. Appearance based database creation pipeline: Database images
along with their semantic labels are passed through a object descriptor to
generate object descriptors for objects present in the room

Compared to handcrafted features, approaches using deep
learned features have demonstrated enormous improvements.
One such technique, [20], generates CNN features that are
viewpoint invariant using a multi-scale feature encoding
across two CNN architectures, significantly improving per-
formance. NetVLAD [21] is a similar method, which uses
a Generalized end-to-end deep learning-based VLAD layer,
inspired by the ”Vector of Locally Aggregated Descriptors”.
Incorporating spatial/depth data into the RGB domain for
object recognition has been addressed using several tech-
niques [22]–[24], which have further explored various input
modalities such as RGB-D pictures and point cloud data.

SuperPoint [25], a recently proposed deep learning
method, uses self-supervised learning for training interest
point detectors and descriptors. Expanding upon Super-
Point, SuperGlue [26] introduced a graph neural network
that matches two sets of local features by jointly finding
correspondences and rejecting non-matchable points. For
the tasks such as feature matching and hierarchical VPR,
both SuperPoint and SuperGlue have received widespread
adoption [27], [28].

C. Object Based Methods

In order to bridge the gap between perception and action,
the robotics community has taken a keen interest in semantic
SLAM. The pioneering work of SLAM++ [29] performs
object-level SLAM using a depth camera. The main restric-
tion is that an object database of 3D shape and global de-
scription must be built in advance. [30] develop a quadratic-
programming-based semantic object initialization scheme to
achieve high-accuracy object-level data association and real-
time semantic mapping. [31] integrated object detection and
localization module together to obtain the semantic maps
of the environment and improve localization. X-View [32]
can localize aerial-to-ground globally and ground-to-ground
robot data of drastically different viewpoints using graph
descriptors based on random walks.

Recently, AirCode [33] proposed a feature sparse en-
coding and object dense encoding method which is robust
to viewpoint changes, scaling, occlusion, and even object
deformation. Building upon that, AirObject [34] uses a tem-
poral CNN across structural information of multiple frames
obtained from a graph attention-based encoding to perform
temporal 3D object encoding. However, using these object
descriptors for relocalization still remains an open question.
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Fig. 4. Appearance-Based Matching: Maximum Object Similairty for every
query-databse pair is summed up to form room similarity. Room similarity
is further used for localization

Taking motivation from above examples, we use object
encoders such as AirCode to extract object embeddings
which are further used in relocalization.

III. PROPOSED APPROACH

We propose AirLoc, a new architecture shown in Fig. 2,
which uses qualitative object features for indoor relocaliza-
tion . In this section, we will first explain the object-encoding
frameworks with a comparison among all the available object
encoders. Then, we will present the appearance and geometry
modules and their ensembling. Finally, we will discuss the
loss function used for training the geometry module.

A. Object Encoders

Intuitively, keypoint features and their descriptors on an
object are distinctive features of the object. Considering
previous works from the literature, we believe these keypoint
features can provide robust object embeddings. Hence based
on this hypothesis, we use keypoint features and try different
aggregators to aggregate the keypoint features into a single
embedding vector. The object encoder is show in Fig. 3

We extract feature points on the objects using point
detector SuperPoint [25], where the position of each feature
point is denoted as pi = (x, y), i ∈ [1, N ], and the associated
descriptor as di ∈ RDp , (Dp is the descriptor dimension).
To segment objects in an image, we either use ground-
truth instance segmentations or masks from commonly used
networks like Mask R-CNN [35] or an open-world object
detector [36]. Given these object-wise grouped feature points,
we aim to aggregate the individual point features to form
a collective object encoding. We try different models for
this aggregation. Firstly, we try a graph attention encoder by
using the keypoint descriptors as nodes and thus forming a
topological graph representation. We pass this graph through
two layers of the graph attention network and use the
arithmetic mean to aggregate all the nodes into an object
embedding. Similar to what we have done in the case
of Graph Attention, we try a different model, i.e., graph
convolution network as well.

Graphs perform well if the training data and test data
are from the same environment. However, if the train and
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test data are not from the same environment, the graph
models tend to overfit. To solve this problem of overfitting,
we use NetVLAD, one of the most commonly used image
retrieval frameworks. The NetVLAD model we use for our
experiments on Mp3D dataset is trained on COCO [37] and
YT-VIS [38] dataset but it performs well on Mp3d as well,
indicating its robustness to environmental changes.. Given N
Superpoint descriptors of dimention Dp and K cluster centres
output of NetVLAD V is a K×Dp dimentional vector given
by:

V (k) =

N∑
i=1

ak(xi)(xi − ck) (1)

where xi and cj are i-th Superppoint descriptor and k-th
Cluster centre respectively. ak(xi) is the learnable parameter
that denotes the soft assignment of descriptor xi to cluster
ck. The matrix V is first intra-normalized and then converted
into a vector. The vector of is again L2-normalized to form
the output vector O .

B. Appearance Module

1) Database Construction: We show results on room-
level localization, where given a query image, the task is
to localize it to the room to which it belongs. In order to
scale the model to new environments, the framework should
not need a large number of images from the new environment
as a database. In this context, we just take a few (K) images
(1,2,5,10) from every room to create our database. The
images are further passed to an object encoder described
above to generate object embeddings for the objects present.
If the same object is present in multiple images, we take the
arithmetic mean over multiple object embedding. Finally, we
get a list of object embeddings for all the objects in the room.
The database creation framework is shown in Fig. 3.

2) Relocalization: Finally, after generating the database,
we use the novel matching architecture to match the query
image with the database. Given a query, we first extract all
the query object descriptors using the same method we used
for database collection. Once we have the desired object
descriptors for the database and query, we perform object
matching, using cosine similarity as matching metric. After

exhaustively matching the query objects with the database
objects, we get an object similarity matrix S where each
column contains a matching score of a query object with all
the database objects. This can be conputed as :

S(m,n) = Od(m) ·Oq(n) (2)

where m and n are m-th database object and n-th query
object. Od is database object embeddings and Oq are query
object embeddings and · is used to denote dot product.

The database object having a maximum similarity score
with a query object is considered a match. We sum up the
cosine similarities of the matched objects and form a query-
database room similarity score.

R(p, q) =
N∑

n=0

max(Spq(m,n)) (3)

where m and n are m-th database object and n-th query
object. p and q are p-th database room and q-th query room.
Spq is the the object similairty matirx for p-th database room
and q-th query room. R is the room similairty matrix. Finally,
after computuing room similairty matrix, the room having
maximum similarity with the query is considered a match.
The matching framework is shown in Fig. 4.

C. Geometry Module

It is observed that sometimes two rooms have similar
objects but are placed in different relative positions. The
above proposed appearance based method may not be able
to correctly classify rooms in such situation. Hence, there is
a need to incorporate some geometry based information to
assist appearance based matching in such kind of situations.
We propose a novel geometry-based learning approach where
we learn the relative positive between two objects and use it
for relocalization. This approach is shown in Fig. 5

Firstly, we extract the location features of every object
which are mean pixel location (µi), standard deviation pixel
location (σi) , 1st, 2nd and 3rd Order Moment of pixel
location (m1

i ,m
2
i ,m

3
i ) , singular Value decomposition of

pixel location (svdi). These locations are passed through a
Multi Layered Perceptron (MLP) to get absolute location
features of dimention Ei. The final object-wise absolute
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location features are subtracted from each other to get
relative object features. In this way, if there are m objects
we get mC2 relative location features between them. These
features can be computed as:

vi = [µi, σi,m
1
i ,m

2
i ,m

3
i , svdi] (4)

eij = g(vi)− g(vj) (5)

where [] is concatenation, eij is the relative location feature
between i-th and j-th object and g() denotes MLP layer.

These relative location features are then passed through a
two-layered Graph Attention Encoder to enable structured
attention-based message propagation between the location
features. This evolves a global sense into the location features
using global interaction. Afterwards, the updated node fea-
tures are average pooled to get graph features corresponding
to a room. These room level embeddings can be obtained as:

eti = σ
∑

j∈N (i)

aj ·W · et−1
j (6)

r =

∑N
i=0 ei
N

(7)

where eti is the i-th location feature at t-th graph layer.
aj is the learnable attention weight [39]. r is room level
embedding of dimention Eo.

Once we have a room level embedding of database and
query, we use cosine similarity to get a room similarity
matrix analogous to appearance based matching technique.
Every element of the room similarity matrix is cosine simi-
lairty of the corresponding query and database room.

Rloc(p, q) = rp · rq (8)

where rp and rq and p-th database and q-th query room.

D. Ensembling Appearance and Geometry

Now, as we have two room similarity matrices (Appear-
ance based and geometry based), we can ensemble them for
final matching. We use weighted sum technique where we
add the two room similarity matrices with some weights to
get the final room similarity matrix (R’) used for classifica-
tion.

R′ = m ·R+Rloc (9)

Furthermore, it is observed that the most of the appear-
ance based false matches have little difference in highest
and second highest room similarity. True matches from
the appearance based methods generally have a large gap
between highest and second highest similarity. Hence, we
apply geometry based assistance only to those queries where
the difference between the similarity of highest and second
highest match is less than some threshold which we call
as appearance threshold(Tdiff ). The classifications having
this difference greater than threshold are classified using
appearance matching only.

E. Loss Function

The graph attention encoder in geometry module is super-
vised by the room matching loss. The room matching loss
Lr maximizes the cosine similarity of positive room pairs
and minimises the cosine similarity of negative room pairs.

Lm =
∑

{p,q}∈P+

(1− C(Rp, Rq))

+
∑

{p,q}∈P−

max(0, C(Rp, Rq)− ζ)
(10)

where ζ = 0.2 is a constant margin, S is the cosine
similarity, and P+, P− are positive and negative object pairs,
respectively.

IV. EXPERIMENTAL RESULTS

A. Dataset

1) Background: Many datasets have been collected for
semantic understanding of scenes. The Places365-Standard
dataset contains 1.8 million train images from 365 scene
categories. There are 50 images per category in the validation
set and 900 images per category in the testing set. ADE20k
dataset contains 20,210 images in the training set, 2,000
images in the validation set, and 3,000 images in the testing
set. All the images are exhaustively annotated with objects.
Many objects are also annotated with their parts. For each
object, there is additional information about whether it is
occluded or cropped. MIT Indoor scenes database contains
67 Indoor categories and a total of 15620 images. The
number of images varies across categories, but there are
at least 100 images per category. A recently introduced
indoor RGB-D dataset of changing indoor environments is
RIO10. It consists of 74 sequences. They provide splits into
training, validation (one sequence per scene), and testing sets,
leaving us with ten train, ten validation, and 54 test sequences
overall.

Considering the task of object-based scene understanding
and using the encoded scene for re-localization, the dataset
must contain hierarchical scene labels such as room level and
building level labels for the images. However, none of those
mentioned above datasets contain such hierarchical labels.
Apart from that, there are some particulars essential for better
learning such as :

• Ground truth semantic segmentation and depth labels
• Multiple images from the same scene but a varying

viewpoint
• Ground truth 6D pose data for every image.
Existing datasets miss at least one of the above-described

characteristics. So there is a need for a dataset with Hierar-
chical labels and all the specifications mentioned above.

B. Dataset Generation

We require multiple images from the same scene but
varying viewpoints, and the best way to generate such a
dataset with ground truth labels is to use a 3D simulator.
We use Habitat-Sim, a high-performance physics-enabled
3D simulator supporting 3D scans of indoor/outdoor spaces
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Fig. 6. Precision-Recall plots showing comparison between AirLoc and different baselines for different K values

and rigid-body mechanics. We want the simulation to real-
world gap as less as possible, and for this purpose, we use
Matterport3D, a large-scale RGB-D dataset that contains
90 building-scale scenes. All the scenes are in the form
of textured 3D meshes and are created from 194,400 real-
world RGB-D images. Annotations are provided with surface
reconstructions, camera poses, and 2D and 3D semantic
segmentations.

We select 15 scenes from the dataset, and for every room
present in a scene, we extract approx 2500 random navigable
poses. Here navigable pose means a pose that is easily
navigable for a human or a robot, i.e., not present inside a
wall or below the ground. Hence, by collecting these poses,
we are making sure that the images which will further be
generated from these poses are similar to what humans or
robots perceive in thier general actions. We then generate
corresponding RGB image, semantic segmentation and depth
images for all the collected poses. In this way, the dataset
is divided into buildings and rooms. We further divide the
dataset into test and train split as well where 80% images
from every room are train split and remaining are test split.

C. Implementation Details
The AirLoc configurations for appearance based matching

are superpoint input dimention Dp = 256 and NetVLAD
number of clusters K = 32. To test the generalizability of
method, NetVLAD is not trained on the Mp3D dataset.
Configuration for geometric matching are reltive position
feature dimention Ei = 256, hidden dimention of graph layer
Eh = 512, output dimention of grpah Eh = 1024. For GAT
we use 8 number of heads and dropout of 0.5. For training,
we employ a batchsize of 256, learning rate of 1e−4 and
Adam optimizer.

D. Evaluation Criterion
For evaluation of room level localization performance,

we use the test split of Mp3d dataset. To switch between
appearance only and appearance-geometry matching, we
use the difference in highest and second highest room
similarity(Tdiff ) as 0.1. For appearance-geometry matching
the weight (m) for the weighted sum of appearance and
geometry is 10. We calculate the accuracy as the ratio of
correctly classified rooms to total number of rooms.

E. Comparison to State-of-the-art Methods
We compare our proposed approach with two kinds of

benchmark baselines. First kind of baselines extract room

TABLE I
THE RESULTS COMPARING AIRLOC WITH BASELINES

Method Accuracy
K=1 K=2 K=3 K=5 K = 10

Baseline 1 31 50 59.27 65.54 75.24
Baseline 2 34 41.9 48.43 51.84 57.58
NetVLAD 50.9 65.3 75.65 84.22 91.45

GCN 56 71.5 80.66 86.84 93.33
AirLoc 65 82.2 89.17 93.16 97.17

level features directly from query and database and then
match them to generate room matching scores. Second
kind of baselines extract object information from query
and database and match object level data to generate room
similarity scores. The room level baselines are Baseline 1,
Baseline 2, NetVLAD. The object level baseline is gcn.

For Baseline 1 we first extract NetVLAD based object
descriptors for the input images and then a room level em-
bedding is obtained by averaging over the object descriptors.
Baseline 2 is similar to Baseline 1 except for the fact that we
use a Graph Attention Network as object encoder instead of
NetVLAD. For NetVLAD baseline, we pass the input images
through a NetVLAD layer and use the output descriptors
as room level features. In gcn baseline, we use the similar
framework as AirLoc but replace NetVLAD with a two
layers Graph Attention Network.

Table I and Fig. 6 contain qualitative comparisons of
AirLoc and baseline methods. In terms of accuracy and PR-
AUC, AirLoc exceeds all other approaches hands down. It
can be seen that AirLoc performs well, especially outper-
forming the best baseline by an average of 12% in PR-AUC%
and 8% in accuracy. Additionally, for both the metrics,
the performance gap between object-based approaches and
room-based methods is consistently large, demonstrating the
importance of object level data.
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Uncertainty Quantification for Image Segmentation

Brad Shook1, Ifigeneia Apostolopoulou2, Jieshi Chen2, and Artur Dubrawski2

Abstract— During the last decade, deep learning has yielded
unprecedented results in computer vision. However, the deci-
sions made by these models have inherent uncertainties associ-
ated with them. In safety-critical applications where certainty
is paramount, like autonomous driving, these uncertainties are
vital. Due to the importance of uncertainty quantification in ma-
chine learning models and the lack of code and data availability,
Google Research developed a standardized framework contain-
ing state-of-the-art methods, datasets, and evaluation metrics.
In this paper, we convert the image segmentation architectures
and methods from Evaluating Scalable Bayesian Deep Learning
Methods for Robust Computer Vision to Google Research’s
framework and reproduce their results. The conversion is on-
going so we present preliminary results for a single model at
this time.

Index Terms— Deep Learning Methods, Computer Vision for
Automation, Segmentation

I. INTRODUCTION

The uncertainties associated with deep learning models are
of utmost importance in safety-critical applications such as
health care and autonomous driving where models must be
certain about their decisions [1] [2]. This has led to increased
research into methods for quantifying uncertainties inherent
to deep learning models and their data [3]. However, there
is a lack of code and data availability in many uncertainty
quantification (UQ) studies which leads to issues with repro-
ducibility [4].

This issue led Google Research to create a framework
[5] that implements state-of-the-art UQ models, datasets,
and evaluation metrics. The framework allows researchers
to extend current methods while providing baselines to
compare with. One important task that is not included in the
framework is image segmentation, which involves identifying
what class each pixel in an image belongs to. For example,
when given an image from a car dash camera, the model aims
to label each pixel as belonging to a car, pedestrian, road,
etc. Given the importance of UQ for this task in applications
such as medical imaging [6] and crash-prevention in cars [2],
it is crucial that the repository is expanded to include this
task in order to provide a baseline for researchers to build
off of.

Prior works focusing on UQ for image segmentation have
primarily implemented Monte-Carlo (MC) dropout [7] and
ensembling [8]. Additionally, Bayesian neural networks [9]
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2Ifigeneia Apostolopoulou, Jieshi Chen, and Artur Dubrawski are
with the Auton Lab, Robotics Institute, Carnegie Mellon Uni-
versity, Pittsburgh, PA, USA iapostol@andrew.cmu.edu,
jieshic@andrew.cmu.edu, awd@andrew.cmu.edu

are able to quantify uncertainties. These methods have advan-
tages and disadvantages so it is important that comparisons
can be made between them.

In this paper, we expand upon the work of [5] by con-
verting the PyTorch [10] training and evaluation pipeline for
image segmentation from [11] into a TensorFlow [12] version
that works with [5]. Then, we demonstrate preliminary
results of our implementation and discuss the current issues
with our implementation.

II. RELATED WORKS

A. Ensembling and MC-Dropout

Ensembling involves training k models where each model
is trained on bootstrapped samples of the original training set.
By aggregating the outputs of the models in an ensemble, we
are able to quantify the predictive uncertainty. The parallel
nature of ensembling helps with time complexity, but in-
creases the computational resources needed for training. This
method has proven to be a strong approach for predictive
uncertainty estimation [8].

While ensembling reduces time complexity, the benefit of
MC-dropout is that it trains a single model. In MC-dropout,
dropout layers are used in the model architecture [4]. In these
dropout layers, a percent of random nodes are dropped from
the network. Dropout is often used to combat overfitting in
neural networks but also allows the single model to act as
many different models since different sets of neurons are
dropped each forward pass through the network. In [7], it
is demonstrated that by gathering outputs from k forward
passes through a network, the predictive uncertainty of the
model can be captured.

B. Evaluating Scalable Deep Learning Methods

In [11], scalable deep learning methods for uncertainty
quantification in computer vision tasks are investigated.
There are two types of uncertainty, epistemic and aleatoric.
Epistemic uncertainty measures the inherent uncertainty in
the model. This type of uncertainty can lead to over-or-under
confidence in the model’s predictions. Aleatoric uncertainty
refers to the uncertainty in the training data. Both ensembling
and MC-dropout are able to quantify these uncertainties [11].

These UQ methods were tested on the Cityscapes dataset
and a synthetic dataset. For each uncertainty metric, ensem-
bling consistently outperformed MC-dropout. The authors
identified the simplicity of ensembling as another added
benefit. However, they noted the main drawback present in
both methods is the computational cost at test time, limiting
the applicability of these methods in time-critical tasks.
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III. METHODOLOGY

A. Training Data

The Cityscapes [13] dataset is often used for semantic seg-
mentation of urban scenes. Images contained in the dataset
were captured from 50 different cities and were not captured
in adverse weather [13]. Each image is 1024 by 2048 and has
a corresponding pixel-level annotation. Annotations include
30 classes, ranging from human to void. However, only 19
of these classes are used in training and evaluation, in order
to match with [11]. The other 11 classes are ignored. The
dataset includes 2975 train images, 500 validation images,
and 1525 test images within the dataset. An example of this
dataset is shown in Figure 1.

Fig. 1. Example of an image and segmentation mask for the Cityscapes
dataset.

B. Data Augmentation

In order to match with [11], before training, each image
in the training dataset is augmented. First, the images are
randomly scaled between 0.5 and 2.1. Next, the RGB chan-
nels in the images are normalized by (102.9801, 115.9465,
122.7717). Then, the images are randomly cropped to a
resolution of 512 by 512. Lastly, the images are randomly
flipped across the vertical axis. As for the validation set,
which is used for evaluation, the only data augmentation is
the same normalization applied to the training dataset.

C. Model Architecture

For the architecture of the model, we use the deep
neural network model presented in [11]. This model is the
DeepLabv3 model detailed in [14]. The input of the model is
an image x which is processed by a ResNet101 [15] module
resulting in a feature map. The feature map is then passed
through an Atrous Spatial Pyramid Pooling (ASPP) [16]
module which classifies each pixel. The resulting output of
the model is 1/8 of the original resolution, thus, upscaling

with bilinear interpolation is applied to the output. The final
output of the model is a tensor of size (batch size, height,
width, number of classes). The aforementioned architecture
is used when training ensembles while an alternate version
is employed when training for MC-dropout. The adjusted
version for MC-dropout places dropout layers with p = 0.5
following the last four ResNet blocks [11].

D. Training Procedure

For ensembling, each model is trained with the hyper-
parameters shown in Section V. There are a total of 26
models, each trained with the same hyperparameters. To note,
though bootstrapping is not used, each model does train on an
augmented training dataset due to the randomness introduced
by Sub-section III-B. The training procedure for MC-dropout
trains only 8 models. MC-dropout uses the architecture that
includes the dropout layers.

E. Evaluation

There are three metrics used for evaluation. The first
metric is Area Under the Sparsification Error curve (AUSE)
[17]. AUSE quantifies the sparsification error with a sin-
gle value, measuring how much the estimated predictive
uncertainties coincide with the true prediction errors [11].
The second metric is the Expected Calibration Error (ECE)
[18]. This metric measures the calibration of the model,
indicating whether the model is over-or-under confident in
its classifications. The final metric is the Mean Intersection
Over Union (mIoU) [19]. mIoU quantifies the ability of the
model to correctly classify pixels into the correct semantic
class.

After training, both ensembling and MC-dropout methods
are evaluated according to the evaluation completed in [11].
For ensembling, 8 ensembles of models are randomly chosen
(without replacement) for sizes M ∈ {1, 2, 4, 8, 16}. The
mean and standard deviation of the 8 ensembles’ metrics
are calculated for each M . When evaluating MC-dropout,
the number of forward passes through each model is M ∈
{1, 2, 4, 8, 16}. Once again, the mean and standard deviation
of the 8 models’ metrics are calculated for each M .

IV. RESULTS

The conversion of the code in [11] is still on-going as we
are currently ensuring that our implementation behaves as
expected and that the two implementations match in terms
of the resulting AUSE, ECE, and mIoU. At this time, we
only have preliminary results.

In Figure 2, we see that the MC-dropout model per-
forms strongly in the classification of cars, roads, build-
ings, and vegetation. However, the predicted segmentation
image demonstrates the model’s difficulty in classifying more
minute objects, such as road signs and humans. In terms of
entropy, the model’s uncertainty is minimized where multiple
pixels are connected that belong to the same class, like
cars. The uncertainty is maximized in pixels pertaining to
boundaries between multiple classes.
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Fig. 2. Preliminary result showing the input image which is passed to a
trained MC-dropout model, the true segmentation of the input image, the
predicted segmentation output by the model, and the entropy between the
true segmentation and the predicted segmentation. In the entropy image,
the black pixels represent minimal uncertainty while white pixels represent
maximum uncertainty.

Figure 3 allows us to further analyze the segmentation
performance of the model. We confirm that the model
misclassifies pixels as buildings and cars most frequently.
Moreover, sidewalks and roads are often misclassified for
one another. This misclassification can be attributed to how
sidewalks and roads appear similar to one another and
frequently beside one another.

A. Issues and Limitations

While converting the PyTorch implementation in [11] to
TensorFlow, there has been numerous conversion problems
and lessons to be learned. Firstly, the original architecture
makes use of In-Place Activated BatchNorm [20] layers
which has its original implementation in PyTorch. Thus,
our TensorFlow implementation replaced these layers with
a batch normalization layer followed by a LeakyReLU
activation layer. Secondly, [11] makes use of PyTorch’s
CrossEntropyLoss, which has both class weighting and an
ignore index as parameters. There is no direct conversion

Fig. 3. Confusion matrix heatmap for a single MC-dropout model evaluated
on the validation dataset.

of this in TensorFlow, so we manually perform the loss
calculation while performing class weighting and using an
ignore index. Another issue that arose was that the original
implementation uses no specific early stopping mechanism
and only trains for a set number of steps. This has resulted
in our implementation converting their number of training
steps to an approximate number of epochs. Through our
calculations, it was determined that training should last
for 162 epochs, however, our results have shown that this
results in odd behavior in the loss curves occurring around
epoch 120. Lastly, [11] uses the train split for training and
the validation split for evaluation. This restricts us from
determining whether the model is overfitting or underfitting.
These aforementioned issues have impeded our progress but
we have future steps to address these issues.

V. CONCLUSION AND FUTURE WORK

By extending Google Research’s UQ framework to include
image segmentation, we enable further research on this topic
to be explored in the future. Moreover, we provide modular
code that can be easily modified to use different models, UQ
methods, datasets, and evaluation metrics. We are continuing
our work on the code conversion at this time. A thorough
review and juxtaposition of the two implementations is
planned to determine the root of our current issues. Once
our evaluation metrics match with the results in [11], we
will use this code base to implement various models and
methods.

Further work using this research will focus on anomaly
detection. We plan to perform anomaly detection on traffic
camera images in order to identify car accidents. Specifically,
we will use trajectory images from a novel traffic camera
dataset in order to encode multiple video frames into a single
image. Through the use of image segmentation as a proxy
task, we can perform anomaly detection via uncertainty
estimation, outlier exposure, or image re-synthesis [21]. Such
anomaly detection on car accidents could determine the
safety of specific areas while tracking minor accidents that
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go unreported.

APPENDIX

Hyperparameters:
• Learning rate: 0.01
• Optimizer: SGD with weighted decay

– Weight decay: 0.0005
– Momentum: 0.9

• Crop size: (512, 512)
• Number of classes: 19
• Batch Size: 8 (across 2 NVIDIA RTX A6000 GPUs)
• Training epochs: 81
• Class weighting: 0.8373, 0.918, 0.866, 1.0345, 1.0166,

0.9969, 0.9754, 1.0489, 0.8786, 1.0023, 0.9539, 0.9843,
1.1116, 0.9037, 1.0865, 1.0955, 1.0865, 1.1529, 1.0507
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Causality-Based Estimation of Traffic Interaction Dynamics

Caleb Chang1, Yiwei Lyu2 and John M. Dolan3

Abstract— Model-based safety-critical control techniques
such as Control Barrier Functions (CBF) enable autonomous
vehicles to avoid multiple objects safely. A recent applica-
tion of CBF is the Safe Adaptive Merging Algorithm using
Parametric-CBF—a prediction-based approach that enables the
ego vehicle to efficiently merge lanes with another vehicle (the
prediction vehicle) given its driving behavior derived from past
observations. However, the algorithm assumes that pairwise
interactions between the prediction vehicle and other surround-
ing vehicles are already known and that all observations are
noiseless. This paper relaxes these assumptions by 1) applying
the Cross Map Smoothness (CMS) algorithm in an autonomous
vehicle context and 2) developing a robust parameter estimation
(RPE) algorithm insusceptible to noise. We take advantage of
the CBF controller to identify the causal relationship between
the prediction vehicle’s acceleration and the CBF of each
surrounding vehicle using CMS at each time step. After es-
tablishing Granger-causality between surrounding vehicles and
the prediction vehicle, we perform robust parameter estimation
on the prediction vehicle and formulate the ego’s parameters
to act accordingly.

I. INTRODUCTION

Human drivers and autonomous vehicles are constantly
aware of other vehicles on the road. Intuitively, human
drivers are able to provide a reason for their actions. For
example, if a lead vehicle slows down in front of the
human-driven vehicle, the latter will brake due to the sudden
reduced distance between the lead vehicle and itself. In
other words, the human is able to identify the lead vehicle
as the causal source of the human-driven vehicle’s reactive
behavior. Autonomous vehicles on the other hand try to
keep track of every object all the time. While autonomous
vehicles actively try to avoid any unsafe situations [1], the
vehicle cannot intuitively reason which obstacle is the cause
for its reactive behavior. Understanding the cause for an
AV’s actions can help quantitatively describe the AV’s safety
behavior.

CBF-based methods [2] have gained increasing popular-
ity due to their forward-invariant property that provides a
theoretical safety-guarantee. A less popularized property of
CBF formulation is the adjustable weight in its quadratic
programming constraint. This weight or parameter helps
describe the admissible control space that the AV can act in
[2]- [3]. Essentially, it describes what safety-actions the AV

1The author is a visiting researcher from the School of Electrical and
Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332
USA. Email: calebwychang@gatech.edu

2The author is with the Department of Electrical and Computer Engi-
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3The author is with the Robotics Institute, Carnegie Mellon University,
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Fig. 1. Ego vehicle seeks to establish pairwise vehicle dynamics and learn
α’s of all surrounding vehicles. Then, the ego seeks to formulate its own α
and control inputs to merge with the other vehicles.

is allowed to take as it approaches an unsafe state, thereby
describing the safety behavior of the autonomous vehicle.
Typically, this parameter is chosen by the designers of the
AV [3] to prioritize safer actions over aggressive ones. To
test the effectiveness of the safe controller, a ramp merging
scenario is typically used. In the case where multiple cars are
on one side of the ramp and the autonomous vehicle on the
other, the AV will wait until all other cars have passed before
merging to maximize the safety of the scenario. However, in
the case of constant traffic on the ramp, the AV will never
be able to merge, since its control space is too conservative.
To address this, the autonomous vehicle should be less
conservative and squeeze its way between other vehicles. We
aim to achieve this by learning the safety-behaviors of other
vehicles on the ramp to determine which pair of vehicles
is the safest to merge between. Our main contributions
are: 1) introducing a causality identification algorithm into
an autonomous vehicle context to establish pairwise-vehicle
interactions and 2) developing a novel robust parameter
estimation algorithm to learn the safety-behavior of vehicles.

II. RELATED WORKS

A primary aspect of autonomous driving is the vehicle’s
safety functionality [1], [4]. This has sparked many advances
in safety critical control. Recently, a popular method to
formally guarantee a vehicle’s safety is the Control Barrier
Function [2]- [5]. In multi-agent systems, Wang et al. and
Luo et al. guarantee safe robot swarm behavior [6], [7].
Other non-CBF approaches to safety behavior are presented
by van den Berg and Alonso-Mora in Reciprocal Velocity
Obstacles [8], [9]. This work primarily focuses on Lyu’s
Parametric-Control Barrier Functions that provide a richer
and more descriptive safety set compared to its vanilla variant
by parameterizing the safety function [3].

A great interest of many researchers is system identifi-
cation for autonomous vehicles. Basic approaches include
variants of the Kalman Filter [10], [11]. Grover et al.
provides a method to learn parameters of multi-robot systems
[12], but no current works focus on parameter identifica-
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tion of the constraint parameter of CBFs. Lyu provides a
simple and efficient optimization to learn the parameters of
CBFs under the assumption of zero noise. However, many
works introduce noise to evaluate parameter learning in
more realistic scenarios [7], [13], [14] so there is a need to
learn CBF parameters in uncertain environments. However,
one requirement to learn the CBF parameter is that the
pairwise-interactions between vehicles need to be known to
generate the dataset to learn from [3]. Since not all vehicles
are affecting the same vehicle on the road, we need to
understand which vehicles cause a change in the behavior
of the prediction vehicle. Knowing the causal relationships
between vehicles establishes the pairwise vehicle interaction.
A widely accepted theory on causality by Pearl [15], [16]
uses the notion of interventions to determine cause and
effect between variables. Interventions, on a high-level, fix
certain variables to a value to determine how the other
variables react in response to that fixed-value. Pearl and
subsequent researchers use structural equation models (SEM)
and graphical approaches to mathematically calculate causal-
ity [17]. However, Pearl-causality has limited applicability
to scenarios in which the cause and effect variables do
not reach an equilibrium (eg. in a Bertrand duopoly two-
player gamer) [18]. We turn to Granger-causality for a more
practical approach to determining causality.

Granger first introduced his theory in [19]. He used cross-
spectral methods and Cramer’s representation to formally
prove causality. Granger-causality involves probabilistic de-
pendence instead of interventions and functional models as
in Pearl-causality [18] and is defined to be the following:
“For two simultaneously measured signals, if we can predict
the first signal better by using the past information from
the second one than by using the information without it,
then we call the second signal causal to the first one.” [20].
(For the rest of this paper, Granger-causality, will simply
be referred to as causality.) Causality has applications to
many fields including economics, biology, and ecology. For
example, Hesse applies causality to EEG data to understand
brain functionality [21]. Bressler et al. uses it to study the
general nervous system [22]. Sugihara et al. uses it to study
predator-prey relations [23].

Lungarella et al. survey different methods (entropy, re-
gression, similarity index, and predictability improvement
techniques) to identify causal relationships, including a way
to formulate causality for linear models [24]. A key draw-
back to most approaches (including the ones just listed) is
that they all require large amounts of noise-free data [25].
Later, Sugihara et al. develop the Cross Convergent Mapping
(CCM) algorithm to detect causality between different factors
in an ecosystem using time-embeddings [23]. However, like
the methods mentioned by Lungarella, CCM still requires
hundreds to thousands of observations. Another work by
Ancona et al. uses Radial Basis Functions to handle nonlinear
cases for causality detection [26]. Ma et al. expand on
Ancona’s and Sugihara’s work by introducing the Cross
Map Smoothness (CMS) algorithm [27]. Unlike previous
approaches that required large amounts of noise free data,

CMS only requires a few observations, is robust to noise, and
works for nonlinear time-series in dynamical systems. These
properties make CMS the ideal algorithm for establishing
pairwise vehicle dynamics since vehicle models can be
nonlinear and are heavily susceptible to noise in the real
world.

III. METHODS & TESTING

A. Background on Parametric Control Barrier Functions

1) Vanilla Control Barrier Function: Control Barrier
Functions (CBF) [5] are used to define an admissible control
space for provable safety in dynamical systems. One of
the method’s important properties is its forward-invariance
guarantee of a desired safe set that repels safe states near
the boundary back into the safe set. Consider the following
nonlinear system in control affine form:

ẋ = f(x) + g(x)u (1)

where x ∈ X ⊂ Rn and u ∈ U ⊂ Rm are the system state
and control input with f and g assumed to be locally Lipschitz
continuous. A desired safe set x ∈ H can be denoted by a
safety function h(x):

H = {x ∈ Rn : h(x) ≥ 0} (2)

Thus, the control barrier function for the system to remain
in the safety set can be defined as follows [5]:

Definition 1. (Control Barrier Function) Given a dynamical
system (1) and the set H defined in (2) with a continuously
differentiable function h : Rn → R, then h is a control
barrier function (CBF) if there exists a class K function for
all x ∈ X such that

sup
u∈U
{Lfh(x) + Lgh(x)u} ≥ −κ(h(x)) (3)

where ḣ(x, u) = Lfh(x) +Lgh(x)u with Lf and Lg as the
Lie derivatives of h along the vector fields f and g.

A commonly selected class K function is κ(h(x)) =
γh(x) [4] [5], where γ ∈ R≥0 is a CBF design parameter
controlling system behaviors near the boundary of h(x) = 0.
Hence, the admissible control space in (3) can be redefined
as

B(x) = {u ∈ U : ḣ(x, u) + γh(x) ≥ 0} (4)

It is proved in [5] that any controller u ∈ B(x) will render
the safe state set H forward-invariant, i.e., if the system
(1) starts inside the set H with x(t = 0) ∈ H, then it
implies x(t) ∈ H for all t > 0 under controller u ∈ B(x).
However, the particular form κ(h(x)) = γh(x) is limited in
describing complicated system behaviors when approaching
the boundary of h(x) = 0. The Parametric-Control Barrier
Function expands on the vanilla Control Barrier Function to
address this weakness.
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2) Parametric Control Barrier Function: Lyu et al. intro-
duce the Parametric-CBF, an extension of the vanilla CBF.
They address the limited description disadvantage of the
vanilla CBF by changing the mapping function κ(h(x)) to
be a q-degree polynomial [3]:

Definition 2. (Parametric-Control Barrier Function) Given a
dynamical system (1) and the set H defined in (2) with a
continuously differentiable function h : Rn → R, then h is
a Parametric-Control Barrier Function (Parametric-CBF) for
all x ∈ X such that

sup
u∈U
{ḣ(x, u)}+ αH ≥ 0 (5)

where parameter vector α = [α1, α2, ..., αq] ∈ Rq

with ∀αp ∈ R≥0 for p ∈ [q]. H(x) =
[h(x), h3(x), h5(x), ..., h2q−1(x)]T , q ∈ N .

The proof of properties of the Parametric-CBF can be
found in [5]. The advantages of the Parametric-CBF over
its vanilla variant are its richer descriptive information and
its broader applications to autonomous vehicles. The poly-
nomial nature of the κ(h(x)) allows the Parametric-CBF
to describe the safety behavior to differing degrees by the
linear combination of parameter vector α and the high-
order safety measurement vector H(x). In a broader context,
machine learning can be used to learn and predict the driving
behavior of a Parametric-CBF-based controller by learning
the parameter α over time observations. The authors use
linear Ridge regression in an ideal noiseless driving scenario.

An important contribution from [3] is the Safe Adaptive
Merging Algorithm, which uses Parametric-CBF to safely
and efficiently merge with another vehicle. The algorithm
is used in a ramp merging scenario which proceeds in
the following fashion: 1) A surrounding vehicle (k) and
prediction vehicle (j) are interacting on one side of the ramp.
2) The ego vehicle (i) learns the prediction vehicle’s αj based
on observations between the surrounding and prediction
vehicle from the other side of the ramp. 3) The ego vehicle
handcrafts its own αi to efficiently merge with the prediction
vehicle. The presented algorithm has two major assumptions.
First, in the event of multiple surrounding vehicles, the
ego vehicle assumes it knows which surrounding vehicle
the prediction vehicle interacts with. Second, the estimation
technique, linear Ridge regression, is highly susceptible to
noise. Thus, a method to establish inter-vehicle causality and
a robust estimate technique is needed to better exemplify a
real driving scenario.

B. Problem Statement

The ramp merging situation is shown in Fig. 1. The
goal is to allow the ego vehicle to merge effectively with
other vehicles on the opposite side of the ramp with motion
uncertainty. The system dynamics can be described as a
double integrator as follows:

Ẋ =

[
02×2 I2×2

02×2 02×2

] [
x
v

]
+

[
02×2 I2×2

I2×2 02×2

] [
u
ϵ

]
(6)

where x ∈ X ⊂ R2, v ∈ R2 are the position and linear
velocity of each car and u ∈ R2 is the acceleration control
input. ϵ N (ϵ̂,Σ) is a random uniform noise variable with
known mean ϵ̂ ∈ R2 and variance Σ ∈ R2×2, representing
uncertainty in each vehicle’s motion. All vehicles deploy a
heterogeneous Parametric-CBF controller and are expected
to maintain task efficiency. The objective function can be
formulated as a quadratic programming problem for all pairs
of vehicles in the scenario:

argmin
ui∈Ui

∥ui − ūi∥2

s.t. Umin
i < ui < Umax

i

ḣij(x, u) + αHij ≥ 0

(7)

where i and j are the indices of the pairwise vehicles. ūi

is the nominal acceleration for the ith vehicle to follow; it
is assumed to be computed by a higher-level task-related
planner. Umax

i and Umin
i are the maximum and minimum

input acceleration limits. We consider the following choice
of safety function hij(x) and safety set Hi.

Hi(x) = {x ∈ X : hij(x) = ∥xi = xj∥2−R2
safe ≥ 0 ∀i ̸= j}

(8)
where xi and xj are the positions of each pairwise set of
vehicles and Rsafe ∈ R+ is the minimum allowed safety
distance.

For general convention, we consider the i vehicle to be the
ego vehicle whose ui and αi can be controlled. We consider
the j vehicle to be the prediction vehicle whose αj is learned
by the ego vehicle. We consider the k1, ... , kn vehicles
to be the n surrounding vehicles which may interact with the
prediction vehicle. All vehicles deploy a Parametric-CBF-
based controller with different α’s.

C. Causality Detection for Pairwise Vehicle Dynamics

An adaptive cruise control (ACC) vehicle that deploys a
Control Barrier Function and Control Lyapunov Function is
able to accelerate towards its desired velocity permitted that
it maintains a safe distance from its lead vehicle [2]. In the
event that the ACC vehicle slows down to satisfy the CBF
constraint between the lead vehicle and ACC vehicle, we say
that the lead vehicle causally influences the ACC vehicle.
We introduce the Cross Map Smoothness algorithm [27] as
a way to quantify “how much” the behavior of one vehicle
influences the behavior of another.

1) Cross Map Smoothness: The algorithm is based on
state space reconstruction through time-delayed embeddings
[27]. Consider two discrete-time observations x(t) and y(t)
in which we seek to understand the influence of x on y, or
more succinctly: x → y. Given an embedding dimension L
and time delay τ , the time-delayed coordinate vectors are
formulated as x(t) = [x(t), x(t − τ), ..., x(t − (L − 1)τ)]T

and y(t) = [y(t), y(t − τ), ..., y(t − (L − 1)τ)]T . Together,
a set of vectors x(t) form the reconstructed attractor Mx,
likewise for My . The k-nearest neighbors of a point y(t0) on
My are y(ty,1),y(ty,2), ...,y(ty,k). The k-nearest neighbors
have corresponding mutual neighbors of x(t0) on attractor
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Mx: x(ty,1),x(ty,2), ...,x(ty,k) for the same points in time.
If x causally influences y, there is a smooth cross map
Φyx that maps two close states on the attractor My to two
corresponding close states on Mx. If x does not causally
influence y, the corresponding states are not necessarily close
to each other. In other words, there would be no smooth
mapping from points on My to points on Mx. Further details
and explanation can be found in [27].

The central idea of the CMS algorithm according to Ma
et al. is the ability of a neural network to represent any
smooth map [27]. A Radial Basis Function Neural Network
(RBFNN) is trained on a set of data y(t) as the input and
the corresponding set of data x(t) as the output. The training
error of the RBFNN is reflective of the smoothness of the
cross mapping Φyx. A small error indicates a smooth map-
ping, which indicates a causal influence of x on y. Likewise,
a large error indicates a rough mapping, which indicates no
causality between the two variables. Additionally, a finding
by Ma et al. is that the algorithm is generally robust to noise.
The algorithm is presented below.

Algorithm 1: Cross Map Smoothness Algorithm

Data: x1,x2, ...,xn ∈ RL and y1,y2, ...,yn ∈ RL,
let Si = {1, 2, ..., n}\i be the leave-one-out
index set.

Result: Causality Index: Rxy ∈ [0, 1]
1 for i = 1, 2, ..., n do
2 train radial basis function neural network Ni

based on Ni(yj) = xj , j ∈ Si

3 x̂i ← Ni(yj)
4 ϵi ← ∥xi − x̂i∥

5 Normalize the error: ∆← rms(ϵ)
rms(∥x−x̄∥)

/* σ is a positive constant used to
normalize Rxy. σ = 5 is used. */

6 Causality Index: Rxy ← 1
exp(∆/σ)

2) Autonomous Vehicle Context: To determine the causal
influence of one vehicle on another, we apply the CMS
algorithm in an autonomous vehicle (AV) context. There
are many AV-specific candidate variables that could be used
as inputs x(t) and y(t) to the algorithm: position, velocity,
acceleration, distance from other vehicles, etc. In this paper,
we choose the CBF safety function as x(t) and the norm of
acceleration as y(t), which can be expressed as hjk → accj
for the prediction vehicle and surrounding vehicle. Since
acceleration is the control input (uj), the expression describes
how the safety measurement between two vehicles causally
influences the action of the prediction vehicle. The output of
the CMS algorithm Rxy is a number ranging from 0 to 1.
If x → y, then R > 0. If not, then R = 0 or R ≃ 0. The
value of R represents to a relative degree how causal x is
[27]. However, since we merely want to establish whether
or not one vehicle is influencing another, we treat R as
more of a binary term and say that there is a significant
interaction if R is greater than some threshold z. Also,

in the event that the prediction vehicle is interacting with
multiple surrounding vehicles, only one dynamic needs to
be established, since parameter estimation only relies on one
set of interaction observations between vehicles. It is easiest
to choose the surrounding vehicle with the most significant
interaction (indicated by the highest peak in R) as part of
the pair with the prediction vehicle.

Remark 1. When the CBF-QP constraint is active, h(x) = 0
and ḣ(x, u) = 0, thereby causing R = 0 since there is no
change in h(x) over time. Simulation results show that when
two vehicles start to interact, there is an increase in R. When
the constraint is finally active, R drops to 0. As the constraint
deactivates, R increases again before dropping off again to
0 to indicate no causality. The R plot of a vehicle activating
and deactivating its constraint looks like a ‘M’ with the
constraint activation period surrounded by two peaks (one
for activation and the other for deactivation).

Fig. 2. Adaptive Cruise Control Example. The lead vehicle slows down
t ≃ 0 − 6s; the constraint starts to activate. When the constraint is active
(t ≃ 6− 8.2s), the ACC vehicle maintains its safety distance and R = 0.
At t ≃ 8.2s, the lead vehicle significantly speeds up, allowing the ACC
vehicle to pursue its desired velocity; the constraint deactivates. The overall
‘M’ figure can be roughly seen as described in Remark 1.

Fig. 3. Multi-Agent Example. The autonomous vehicle first interacts
with the fourth surrounding vehicle (S4) and then interacts with the
first surrounding vehicle (S1). It never interacts with the second or third
surrounding vehicle. We observe the first dip between two peaks in S4
and the second dip in S1 in the R(t) curves. As expected, no causality is
detected for S2 or S3.
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Remark 2. Causality is not automatically detected by the
CMS algorithm. It may need some time to converge, as seen
in the first few time steps of the simulation in Figures 2 and
3.

D. Behavior Prediction

Once pairwise vehicle dynamics have been established,
regression techniques can be used to learn or estimate the
α of the prediction object. Since α describes the safety
behavior of the vehicle, it can only be learned when the
safety constraint is active. In other words, α can only be
learned during periods of causality between two vehicles.
Two parameter learning methods are presented for a noiseless
and noisy case.

1) Noiseless Parameter Estimation: Lyu et al. is able to
learn the parameters of the Parametric-CBF in [3]. Their
method utilizes Ridge linear regression to learn αj with
recorded errors in the 10−6 range. In the noiseless case,
another way to learn α is through a modified version of
least squares regression:

ᾱj = argmin
αj

m∑
t=1

||ḣt
jk − αjH

t
jk||22 (9)

Instead of posing parameter estimation as an optimization
problem, we can pose it as an inverse problem. Taking the
derivative of the error term E =

∑m
t=1(ḣ

t
jk −αjH

t
jk)

2 with
respect to α, we can simplify the result into Asumᾱj =
Bsum, where Asum and Bsum are summations of At and Bt

over time. We solve for ᾱj by taking the inverse of Asum:

ᾱj = [−A−1
sumBsum]T (10)

At and Bt can be calculated online from observations, which
allows for real-time parameter estimation.

At =Ht
jkH

t
jk

T

Bt =Ht
jkḣjk

(11)

Similar to [3], we wait for αj to converge before returning
the learned parameter. However, in the presence of noise, αj

will not converge.
2) Robust Parameter Estimation and Applications: We

introduce a novel heuristic check in addition to the required
convergence for predicting αj . In an ideal world where our
estimated ᾱj perfectly matches αj , the CBF constraint is
satisfied such that Ajuj − bj = 0 where Aj = −2∆xt

jk
T

and bj = 2∆xt
jk

T
(∆vtjk − uk∆t) + αjH

t
jk. Therefore, if

ᾱj ≃ αj , then Ājuj − b̄j ≃ 0 should also be true, where Āj

and b̄j are estimated CBF-QP constraints based on ᾱj . We
have αnew as the newly estimated ᾱj :

Āj = Aj = −2∆xt
jk

T (12)

b̄j = 2∆xt
jk

T
(∆vtjk − uk∆t) + αnewH

t
jk (13)

where ∆xjk = xj − xk and ∆vjk = vj − vk. The
Robust Parameter Estimation (RPE) algorithm checks for this
property when estimating ᾱj . Given that this is a heuristic
check, there are some estimated values that are not correct.

Thus, we add all estimated values into a dataset D and
perform k-means clustering as a sort of voting method to
remove any inaccurate estimations. However, if Ājuj− b̄j is
not close enough to 0, we restart the summation of A and B
and start recalculating a new estimate.
Remark 3. Calculating the true dot derivative of the dy-
namics presented in Eq. 6 actually results in a different bj
formulation than the one presented in Eq. 13:

bj = ∆xt
jk

T
(∆ϵjk +∆vtjk − uk∆t) + αnewH

t
jk (14)

The addition of the error term: ∆ϵjk = ϵj − ϵk ∼
N (∆ϵ̂jk,∆Σjk) is ignored when calculating the estimation
constraints. Instead, the noise is thought to be already built
into the dynamics, so the addition of the noise term is not
necessary when formulating constraints.

Algorithm 2: Robust Parameter Estimation
Data: ∆xjk,∆vjk, uj , uk,∆t, Rsafe

Result: ᾱj

1 Initialize Asum and Bsum to 0
2 for t = 1 : m do
3 Calculate At and Bt with (11)
4 Add At and Bt to their respective summations

Asum and Bsum

5 Calculate αnew with (10)
6 Calculate estimated constraints Āj and b̄j with

(12-13)
7 c← Ājuj − b̄j
8 ϵ← rmse(αnew, αold)
9 if c < δc then

10 Reinitialize Asum and Bsum to At and Bt

11 else if c ≤ 0 and ϵ < δrmse then
12 add αnew to dataset D
13 αold ← αnew

14 Perform k-means clustering on D
15 ᾱj ← average of the most populated cluster

The parameter estimation task is validated on 30 trials with
randomly generated driving styles with αj ∈ R2 and ϵ̂ = 0
and Σ = 10. Typical works such as [13] use zero-mean noise
with standard deviations less than 1, but we specifically chose
a much higher standard deviation to demonstrate robustness.
Also note that δc ∈ R− and δrmse ∈ R+ are hyperparameters
that need to be tuned. The closer these hyperparameters are
to zero, the stricter the heuristic check is. Effectively, more
accurate estimates of αj are found at the cost of finding them
less often. If the hyperparameters are too close to 0, there
is a chance that no estimates are added to D, resulting in
no ᾱj returning from the RPE algorithm. For these trials,
δc = −10−2 and δrmse = 10−4. The average rmse between
the true value and estimated value across all 30 trials is
2.35 × 10−3. A notable performance observation occurs
when we remove the top 3 most inaccurate observations: the
average rmse across the remaining 27 trials drops 3 orders
of magnitude lower to 8.93 × 10−6. The same trials are
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rerun under Gaussian noise (ϵ̂ = 0 and Σ = 1) for a more
standard scenario as in [3]; the average rsme is 2.34×10−3.
A histogram of the errors is shown in Fig. 4. Regardless

Fig. 4. RPE is tested under 30 trials under random α initializations for
both cases. Regardless of the noise, most of the rmse are concentrated in
the smallest bucket. Left: Histogram of average rsme between true and
estimated α with uniform noise. Right: Same histogram but with Gaussian
noise instead.

of which noise is considered, it has been demonstrated
that the RPE algorithm performs extremely well in the
presence of noisy dynamics. Even higher accuracies can be
achieved with filtering techniques such as a Kalman Filter
[10], [11]. Overall, the same conclusion from [3] can be
made: this Parametric-CBF-based prediction framework does
not lose its generality by achieving a consistent prediction
performance.

E. Robust Multi-Agent Safe Adaptive Merging control Algo-
rithm using Parametric-CBF

We present an extension of the Safe Adaptive Merging
Algorithm that allows for the ego vehicle to merge with
multiple heterogeneous robots in uncertain environments. In
Algorithm 2, we distinctly separate the prediction vehicle
from the surrounding vehicle. However, with Algorithm 3,
we treat all vehicles (except the ego) on the ramp to be the
prediction vehicle and all others with respect to that vehicle
to be the surrounding vehicles. Then, the causality index R
can be calculated for each vehicle at the same time. If a
causal relationship has been established given a vehicle and
its surrounding vehicle, we estimate its parameters with RPE.
After m time steps, we assume the parameters for all vehicles
have been learned: the overall system has been identified.
We handcraft our own αi for more efficient merges. Lyu
et al. suggests in [3] that the general tuning strategy to
avoid potential conflicts in safe-driving behavior between
vehicles is for the ego to demonstrate the opposite behavior
of the prediction vehicle. If the prediction vehicle is very
aggressive, the ego vehicle should be more defensive and
vice versa.

IV. CONCLUSION

In this work, we expand upon the Safe Adaptive Merg-
ing Algorithm by relaxing two key assumptions: vehicle
pairwise-interactions are known and the dynamics are noise-
free. We introduce the Cross Map Smoothness algorithm,
which is typically applied in fields like biology and ecology,

Algorithm 3: Robust Multi-Agent Safe Adaptive
Merging control Algorithm using Parametric-CBF

Data: ∆xij ,∆xjk1 , ...,∆xjkn ,∆vij ,∆vjk1 , ...,∆vjkn ,
∆t, Rsafe

Result: ᾱj , ui

1 Calculate controls inputs: uj , uk1
, ..., ukn

from
velocity observations

2 for t = 1 : m do
3 Perform CrossMapSmoothness concurrently

for all vehicles to determine vehicle interactions
over time

4 Perform RobustParameterEstimation
concurrently for all vehicles with active
constraints

5 Choose the appropriate αi based on ᾱk1 , ..., ᾱkn

6 for t=m:N do
7 Compute safety constraint parameter At

ij and btij
8 ut

i = argmin
ui∈Ui

∥ui − ūi∥2 with constraints in (7)

into an autonomous vehicle context to establish vehicle
pairwise-interactions. Then, we develop a novel heuristic-
based approach called Robust Parameter Estimation to learn
the safety-behavior of vehicles.

A. Future Work

Currently, RPE demonstrates promising experimental re-
sults but it is unknown why its heuristic is so effective es-
pecially since the estimated constraints completely disregard
the noise term. In future work, we would like to develop
a more rigorous understanding of RPE to fully justify its
robustness in the presence of noise. Second, the safety-
behavior parameter α is still a handcrafted value. We would
like to find an optimal α that allows for the most efficient
merge in multi-agent scenarios.
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AirMVS: Hierarchical Image Decomposition with Sparse Convolution
for Fast Multiview Stereo Vision with Fisheye Images

Conner Pulling1, Yaoyu Hu2, and Sebastian Scherer3

Abstract— Depth perception using stereo vision is a vital part
of robotic autonomy stacks for many fields such as manipula-
tion, 3D reconstruction, and field robotics. For aerial robotics,
stereo vision methods must be real-time and omnidirectional
to avoid collisions in all directions while flying at fast speeds.
One method to achieve omnidirectional stereo vision is the use
of multiple wide field-of-view (FOV) fisheye camera images.
Previous methods have shown that learning-based methods
work well for this task but are not real time. Additionally,
while previous non-learning methods are real-time, they cannot
take advantage of learned contextual information in images and
rely on photometric parallax effects alone. This work presents
a novel learning-based approach to real-time multiview omni-
directional stereo vision that achieves state-of-the-art (SOTA)
accuracy and resolution. Using image decomposition and sparse
convolution, resolution scales are separately processed and then
recombined. This method preserves high spatial frequency fea-
tures and reduces redundancies amongst low-spatial frequency
features without unnecessary computation. Additioanlly, this
work presents a synthetic multiview dataset of fisheye images
with approximately 9,000 samples made with a novel flexible
data collection pipeline.

I. INTRODUCTION
Depth Perception is an incredibly important capability for

humans and robots alike, giving agents important information
about how to navigate and manipulate their surroundings.
When determining how far to reach to pick up a cup or
navigate around obstacles, depth information is essential.
Many prior works in fields such as agriculture robotics, 3D
reconstruction, and aerial robotics often use depth informa-
tion in addition to RGB images as input to their methods
[1] [2] . Improving depth perception methods leads to better
performance on these downstream tasks and reduces the
propagation of error. Thus, having robust and accurate depth
perception methods provides a great foundation for research
that relies on depth information. Additionally, these methods
must be as fast as possible to better justify their use in real
world field robotics tasks.

This need for computationally efficient and fast depth
estimation algorithms is especially present for Unmanned
Aerial Vehicles (UAVs). UAVs, unlike many other robotic
systems, move three-dimensionally and often at high speeds.
Thus, UAVs need to employ omnidirectional depth estima-
tion methods so that the UAV simultaneously knows where

1Conner Pulling is a Robotics Institute Summer Scholar and first
year Master’s of Robotics (MSR) Student at Carnegie Mellon University.
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all obstacles are in the environment. LIDAR is a common
solution, however these systems can be heavy, expensive, and
often do not work well in dusty or reflective environments.
Additionally, LIDARs return sparse point clouds and are not
ideal for tasks that require a dense depth map, such as 3D
reconstruction. Camera-based stereo vision methods can be
less expensive, provide dense depth information, and work
better in environments where LIDAR fail. The tradeoff is that
typical pinhole cameras lenses cannot have fields-of-view
(FOVs) exceeding 180 degrees. Most commercial camera
systems do not even have FOVs that exceed 120 degrees.
Therefore, omnidirectional camera-based stereo vision might
require many pinhole cameras to be functional, increasing
hardware needs and computational complexity. However,
fisheye lenses can be used to achieve FOVs exceeding 180
degrees with the caveat that the image is heavily distorted.
However, learning-based and non-learning methods alike
have achieved success on predicting depth from fisheye
images [3], [4]. However, real-time inference with current
learning-based multiview stereo vision (MVS) methods using
multiple fisheye images is still a challenge and requires desk-
top or higher grade GPUs that would be impractical to use
on UAVs [3], [5], [6]. Recent non-learning methods achieve
real-time performance and outperform current learning-based
methods, yet this method only uses one stereo pair per
pixel [4]. Prior works have shown that resolving depth using
multiple stereo pairs in pinhole images can better resolve
ambiguities that prove challenging for traditional binocular
stereo vision [7]. Lastly, No prior learning-based methods
have used datasets with large intrasample variety, which
raises the concern that using data from a higher variety of
scenes may increase the performance of a learning-based
MVS system when it has been shown deep learning methods
benefit greatly from being given more data.

Addressing the above concerns, this working paper
presents a synthetic dataset of approximately 9,000 images
from a variety of virtual Unreal Engine 4 environments
along with the novel data collection pipeline used to collect
these images. Additionally, preliminary results of a baseline
deep learning model trained on this dataset are presented.
Lastly, this working paper presents an in-depth discussion
on a novel deep learning architecture that decomposes input
images into a hierarchical structure of progressively lower
resolution scales using a Laplacian Pyramid, processes each
resolution scale sparsely, and then reconstructs the depth
image to preserve high resolution details as well as reduce
visually redundant pixels without unnecessary computation.
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II. RELATED WORK

A. Binocular Stereo Vision

Recent deep-learning based dense stereo models demon-
strate good accuracy when computing resources are suffi-
cient. Binocular stereo depth estimation is widely applied
for robot perception due to its simple hardware requirement
and efficiency. The job of dense stereo vision is to assign a
disparity value to all the pixels in the reference image. Cur-
rent state-of-the-art binocular stereo model delivers superior
performance in terms of accuracy compared with classical
methods such as the SGM method [8]. From these learning
based models we can identify some key model structures
that lead to better accuracy. Among all the structures, the
cost volume is the most effective way of arranging the
visual features. Models such as the GCNet [9], PSMNet
[10], and HSM [11] all benefit from the cost volume. While
being effective, the cost volume consumes large amount of
GPU memory and computing time which also imposes a
major challenge for applying it to real-world robots with
edge devices. Models using correlation methods [12] instead
of a cost volume may have better efficiency but they are
less accurate in general. To improve efficiency, many mod-
els exploit the multi-scale structure [13], [14] or cascade
refinement [15], [16]. Based on the multi-scale structure,
Chang, et. al. [17] further applies attention mechanism to
boost the representational ability of the extracted visual
features. Chang, et. al. [18] achieve real-time performance by
leveraging non-learning procedures and shifting some load to
special computing hardware. We are inspired by these work
and we extend some of the key structures to be more efficient
to meet our requirements. Notably, the above learning based
methods’ inference time on an edge device normally range
from 80-300ms. And that was for a single stereo image pair
with about 0.5M pixels in resolution.

B. Omni-directional Multiview Stereo Vision

In hopes of better aggregating information from multiple
stereo pairs, some works have turned to using learning-
based approaches inspired by the performance gains that
deep learning has achieved for binocular stereo vision ap-
plications [10], [11]. SweepNet proposed warping the input
fisheye images into the panorama space and used pairwise
matching to compute the cost volume [19]. OmniMVS
proposed warping the feature maps after strided convolutions
to reduce memory and resource consumption before using
a encoder-decoder architecture to regularize the cost vol-
ume [3]. CrownConv proposed projecting the fisheye image
onto an icosahedron and using icosahedron-based spherical
sweeping to be more computationally efficient [5]. However,
none of the current learning-based omni-directional stereo
vision methods using multiple fisheye images have achieved
real-time performance. Recent work has developed a real-
time non-learning method to perform omni-directional depth
prediction, but does so by selectively using only the best
stereo pair per pixel in a reference image and computes the
cost volume only by using pixel intensities [4].

C. Synthetic Multiview Fisheye Datasets

The most notable omni-directional depth prediction
datasets are OmniThings and OmniHouse [3] where each
sample consists of four fisheye camera images that were
generated in Blender. However, the dataset assumes fixed
camera intrinsics and extrinsics, so the dataset is only useful
for a specific camera configuration. This work provides the
base panorama images as part of the presented dataset so that
other works can warp the source into fisheye images specific
to their camera orientations.

Fig. 1. Laplacian Pyramid Process.

D. Sparse Convolution and Image Decomposition

In many computer vision tasks, query images are quite
dense and contain an abundance of visual information. This
abundance of visual information can be seen in image clas-
sification and segmentation datasets such as ImageNet and
COCO that contain hundreds of thousands or even millions
of detailed and colorful images [20], [21]. For classification
and segmentation tasks, these details are essential for a
network to extract more informative features. However, for
images with a low number of features, most of the image
is not useful. Therefore, by only processing the parts of
the image that are useful, computer vision methods using
this sparse representation would be more efficient. Recent
sparse convolution methods show the potential for great
speedups as well as performance increases in sparse spatial
learning-based tasks such as handwriting classification and
point clouds [22]–[24]. One way to partially sparsify images
is through thresholding the image pyramids produced by im-
age decomposition techniques such as Laplacian Pyramids.
Laplacian Pyramids are a variant of Gaussian Pyramids,
where rather than simply downsampling and blurring the
resultant image, images are first blurred and then subtracted
against the original image before preceding down the pyra-
mid. The resulting images, except the bottom of the pyra-
mid, almost represent edge maps where higher magnitude
pixel values indicate edges, texture, and other high-spatial
frequency features. Conversely, pixel magnitudes close to
zero may represent smooth or textureless areas within the
image. The process of computing the Laplacian Pyramid is
presented in Figure 1.
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Fig. 2. Overview of the Nine Environments Collected. 1,000 samples were collected per environment using the novel flexible data collection pipeline.

III. DATASET GENERATION

A. Camera Configuration

Fig. 3. UAV Camera Configuration. At each green coordinate frame,
the top fisheye cameras are indicated. Each green arrow indicates a fisheye
camera that has been mounted underneath the UAV.

In prior works, four fisheye cameras are used to sample
images from the scene and are arranged in 90 degree intervals
such that the front of the camera points out into the scene
[3], [4]. This outward-facing camera configuration makes use
of the best part of the fisheye image, which is the center.
Because the fisheye is a circular image, the resolution of
the image is not constant and decreases radially along with
fisheye image. Thus, when the fisheye lens cameras are
pointed directly at the interesting parts of the scene, depth
estimation methods receive more details and edges to make
better depth predictions. However, mounting cameras on
UAVs is challenging. As shown in Figure 3, it is increasingly
more common to mount cameras on top of the drone such
that the camera is facing perpendicular with respect to the
forward direction of the drone.

This design choice means that the forward direction of the
drone is represented by low resolution fisheye pixels. Thus,
lower resolution pixels represent most of the interesting
objects in front of the UAV during level flight. With low
spatial resolution, only a lower resolution depth map can be

generated without using the network to create information
out of thin air. At the same time, the high resolution pixels
in the fisheye image are often pointed towards the ground or
the sky. Thus, this UAV camera configuration is not optimal
for depth estimation and adds difficulty to the problem
as compared to outward-facing camera configurations in
previous works.

B. Dataset Content

Our novel dataset consists of approximately 9,000 samples
that have been sampled from nine Unreal Engine game
environments. Using the AirSim plugin, a simulated drone
is flown around the game environment and a virtual camera
collects RGB panoramic images [25]. For each sample
location within the environment, three images are collected
to simulate the top half of the camera configuration dis-
cussed in the previous section. Because the UAV camera
configuration is symmetric, a model trained the top camera
arrangement approximately learns to inference on the bottom
camera arrangement. In addition to the three RGB panorama
images, a ground truth pixel-perfect depth image is collected.
Approximately 1,000 samples are collected per environment.
The dataset consists of a variety of indoor and outdoor
scenes, different lighting and weather conditions, and a
mix of urban and natural scenes. Additionally, some scenes
contain difficult features for stereo vision such as repeating
textures and objects, drastic changes in lighting, randomized
orientation of the simulated drone, and thin objects. Since a
UAV would be severely damaged if it ran into a thin line
object such as a pole or power line, the frequent inclusion
of thin line objects in the dataset can be used to evaluate a
model’s ability to predict their depth.

C. Preprocessing

After the panorama images are sampled from the Unreal
Engine environments, they need to be processed into a spe-
cific fisheye camera. The sample process requires a calibrated
camera model and camera orientation to correctly project
which pixels from the panorama image must be sampled.

As shown in Figure 4, the conversion process starts by
initializing a normalized coordinate grid in the shape of the
fisheye image. From each pixel location, a three-dimension
ray is unprojected from the camera using the Double Sphere
camera model [26]. The three dimensional rays are rotated to
correspond to the fisheye camera’s orientation with respect to
the panorama reference frame. The rays are then converted
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Fig. 4. AirMVS Architecture Overview.

to the longitude-latitude location of the ray on the panorama
image. Thus, we are able to calculate the precise location of
each fisheye pixel in the panorama image. When done for
every pixel in the fisheye image, a sampling grid is made,
which can be used to resample the panorama image into an
arbitrary fisheye image.

Fig. 5. Panorama to Fisheye Image Conversion Process.

IV. MULTI-VIEW OMNI-DIRECTIONAL STEREO

A. Architecture Overview

As shown in Figure 3, the model takes three RGB fisheye
camera images and three fisheye-to-panorama sampling grids
generated for spherical sweeping as input. Spherical seeping
[3] is similar to the process of building a cost volume in
binocular stereo models, e.g. [11]. Our model is inspired by
these implementations. The input RGB images are of shape
[B, 3, Hin,Win] where B is the batch size and Hin,Win are
the height and width of the inputs, respectively. The three
fisheye-to-panorama sampling grids for spherical sweeping
are of shape [B,P,Hout,Wout, 2] where P is the number of
sweepings, Hout and Wout are the height and width of the
output panorama cost volume, respectively. A shared feature
extractor is used by each camera with sparse convolution.
Sparse Convolutional layers using residual skip connections
are utilized as the basic building block in the feature ex-
tractor. During spherical sweeping, these feature maps are
then warped into the rig panorama space and swept for all
depth candidatesn. After the volume of the panoramas for all
cameras and for all depth candidates is built, a component

similar to the upsampling half of U-Net [27] is used to
compute the final costs. Softargmax is used to find the final
depth candidate panorama map similar to other learning
based binocular stereo models.

B. Spherical Sweeping and Sparcity

As shown, the proposed architecture Spherically Sweeps
the fisheye features into the panorama space to create the cost
volume, first employed by OmniMVS [3]. This is a dense
process that uses sampling grids generated from the camera
calibration intrinsic parameters and the camera extrinsic
configuration to warp a fisheye image into a panorama at
specified distance candidates.

With using sparse feature vectors, a challenge is presented:
what is the most efficient way to warp the sparse fisheye
image into the panorama space when the model does not
know which pixels need to be warped ahead of time? This
paper proposes the use of a lookup table to precompute the
integer location of a fisheye pixel in the panorama space.
These panorama locations for each fisheye pixel at each
depth candidate are stored in a three-dimensional tensor.
Since the indices of each sparse feature are readily available,
the lookup table simply needs to be indexed with the fisheye
pixel location and depth candidate index to retrieve the cor-
responding panorama location. While very computationally
efficient, projection errors are introduced as the floating point
panorama location is truncated to an integer. Future work will
look to interpolate the floating point panorama location into
the corresponding integer locations by adding active sites to
the sparse feature vector.

V. PRELIMINARY QUALITATIVE RESULTS

Using a model architecture similar to OmniMVS, a base-
line model was trained on our novel dataset. A few of the
inferenced images that represent the total performance of the
network are presented in Figure 6.

VI. CONCLUSIONS

This paper has described the process of generating a
multiview stereo vision dataset consisting of raw RGB and
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Fig. 6. Preliminary Depth Images generated by the baseline model. Each set of images includes the true depth image (bottom) and the predicted
depth image output from the model (bottom). Warmer colors indicate closer depth. The more that the predicted depth map resembles the true depth, the
more accurate the baseline model is.

ground truth depth map panoramas in Section 3. Addi-
tionally, this paper presents the contents of the synthetic
dataset generated for training a novel deep learning MVS
model, whose architecture has been illustrated in Section 4.
Overall, this paper represents continuing work in the field
of fast learning-based multiview stereo vision using fisheye
images as input. Future work includes the evaluation of
SOTA methods trained on the generated dataset to show that
training on our novel and larger dataset can produce better
accuracy as compared to SOTA datasets. Additionally, future
work will implement the architecture described in Section 4
and present the qualitative and quantitative results of using
the model for the MVS task described in this paper.
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Object Detection & Mapping for a Robotic Harvester

Ekechi Nzewi1, George Kantor2 and Abhisesh Silwal3

Abstract— Object detection and tracking enables yield es-
timation in apple orchards to be more informed. Our goal
is to be able to improve on previous advancements in fruit
detection and tracking. Previous research employed the use of
a monocular camera to achieve performance comparable to
a state-of-the-art system which uses an expensive sensor suite.
Our system achieves this by employing the use of stereo cameras
with bounding box detection to supplement apple tracking. Our
pipeline starts with a stereo camera capturing the left and right
images of its current subject. The left image is then sent to a
CNN trained on data from the same orchard and bounding
boxes are generated for the apples in the image. In parallel, a
disparity map is generated from the left and right images. The
disparity map, along with the bounding boxes, is then used to
generate a depth map of the scene. The depth map was then
supposed to be used for EKF-SLAM, but we have been unable
to complete the pipeline. As a result, the next direction for
use would be to complete the pipeline and see how our pipeline
fares against others. In addition, we plan to incorporate instance
segmentation to further improve the accuracy of the model.

Index Terms— Computer Vision for Automation, Field
Robots, Robotics and Automation in Agriculture and Forestry

I. INTRODUCTION

Neural Networks have led to improvements in the field
of computer vision. Such improvement can be seen in the
field of object detection and tracking especially in terms
of performance [1]. As a result of this, there has been
an increase in the use of computer vision for agriculture.
The core improvements have been in tasks such as yield
estimation. Yield estimation works by using fruit detection
and counting models to generate an estimate of the crop yield
for that season. Fortunately, there exist many state-of-the-art
paradigms suitable for this task [2].

Our goal is to apply these techniques to supplement a
robotic harvesting system with a focus on apple harvesting.
Our implementation necessitates a system capable of taking
a frame from an apple orchard, detecting the apples in the
frame, and mapping these detections to the reference frame
of the robotic harvester. This will enable the harvester to
determine the locations of apples in need of harvesting. Our
pipeline incorporates object tracking and active canopy agi-
tation to supplement harvesting. The active canopy agitation
will be done through the use of a leaf blower which will

1Ekechi Nzewi is a student in the Computer Science
Department at Georgia Institute of Technology, Atlanta, GA, USA
enzewi3@gatech.edu

2George Kantor is with the Field Robotics Center, Carnegie
Mellon University Robotics Institute, Pittsburgh, PA, USA
gkantor@andrew.cmu.edu

3Abhisesh Silwal is with the Field Robotics Center, Carnegie
Mellon University Robotics Institute, Pittsburgh, PA, USA
asilwal@andrew.cmu.edu

agitate to ensure all apples are being detected properly and
are not obscured by leaves in the frame, while the object
tracking will be enabled through the use of EKF-SLAM
which ensures that detected apples persist across multiple
frames to prevent multiple detections of the same apple.

The structure of this paper is as follows: In section II, we
explain the background pertaining to our system, showing
related works, and our object detection and tracking architec-
tures. In section III, we explain the overview of our system,
our contribution to the system and the methodology of our
system. Section IV contain our results and evaluations of our
models. Section V will be for future work and discussions.

Fig. 1. Example of Frame being analyzed

II. BACKGROUND

A. Related works

1) General Object Detection: Research in object detec-
tion and tracking architectures has grown prevalent in recent
times. Applications of object detection and tracking can
be seen in medical imaging, automated robotics, image
recognition and even surveillance systems. Traditional object
detection works by informative region selection, feature
extraction, and classification. Traditional region selection is
done with a sliding window approach. This method works
by taking exhaustive sliding rectangular “patches” of fixed
width and height for each image. Feature extraction then
happens on each derived patch. After which a classifier is
used to distinguish between objects in each frame. Due to
the exhaustive nature required with the sliding windows,
this traditional method is ineffective with real-time analysis.
Nowadays, with the prevalence and utilization of Convolu-
tion Neural Networks (CNN) and deeply trained models,
detections algorithms can occur at a much faster rate. We
briefly discuss these state-of-the-art models in a later section.

53



2) Image Segmentation: Image segmentation is an exten-
sion of image classification where, in addition to classifica-
tion, we perform localization. Image segmentation thus is a
superset of image classification with the model pinpointing
where a corresponding object is present by outlining the
object’s boundary.

3) Monocular Based Fruit Counting and Mapping: Liu
et al. present a cheap, lightweight, and fast fruit counting
pipeline [3]. Their pipeline relied on a monocular camera and
achieved comparable performance to a state-of-the-art system
with a more extensive sensor suite. Their pipeline begins
with a detection component that uses convolutional neural
networks (CNNs). It then tracks fruits and tree trunks across
images, with a Kalman Filter fusing measurements from the
CNN detectors and an optical flow estimator. Finally, fruit
count and map are estimated by an efficient fruit-as-feature
semantic structure from motion (SfM) algorithm which con-
verts 2D tracks of fruits and trunks into 3D landmarks, and
uses these landmarks to identify double counting scenarios.

B. Object Detection Architectures

1) YOLO (You Only Look Once): Redmon et al. [4]
propose a regression approach to object detection that re-
quires only a single look at an image for object detection. It
consists of 24 convolutional layers and two fully connected
layers and as the name suggests, it requires only one single
forward propagation through the layers to detect objects.
When compared to the architectures of RCNN, it tends to
make more localization errors, but false positives are far less
likely. In terms of speed of processing, YOLO’s base model
easily outperforms the already fast Faster RCNN–processing
at 45 frames per second (fps). YOLO like RCNN comes
with other versions, with its fast version processing at more
than 150 fps. With such a massive processing rate, it is
very suitable for our tasks wherein a robotic harvester will
be moving across an apple orchard detecting apples for
harvesting.

2) Mask R-CNN: He et al. [5] present a framework
for object instance segmentation. It generates high-quality
segmentation masks for each instance of an object. The
Mask R-CNN framework does this by framework works by
extending Faster R-CNN to predict an object mask while still
performing bounding box recognition. When compared to
Faster R-CNN, Mask R-CNN adds a small overhead running
at 5 fps while being simple to train. Moreover, Mask R-
CNN is easy to generalize to other tasks. Mask R-CNN
showed top results in all three tracks of the COCO suite
of challenges, including instance segmentation, bounding-
box object detection, and person keypoint detection. Without
bells and whistles, Mask R-CNN outperforms all existing,
single-model entries on every task, including the COCO 2016
challenge winners.

III. SYSTEM OVERVIEW

Our system contains two major pipelines: the detection
pipeline and the image pipeline. The image pipeline makes
use of a stereo camera to capture a stereo image of the

orchard we are working with. These stereo images are
then passed through the detection pipeline which analyzes
them and generates detections based on the apples found
in the image. These detections are then used to map the
apples to the reference frame of the robotic harvester. The
detection pipeline is the continuation of our previous work.
The previous system involved a more manual setup wherein
the user had to hand label the frames being analyzed.
But our new system generates the detections based on the
models we trained. This enables us to set a threshold for the
detections generated which allows us to perform tasks such
as active canopy agitation. By setting a threshold for what
is considered a detection, we can set the leaf-blower to send
pressurized air towards detections that border the threshold.
The air would hopefully clear leaves out of the way so we
can get better detections with the models. Once the final
detections have been made, the bounding boxes, along with
the stereo images, are passed through parts of the original
ROS pipeline. The images are used to generate a disparity
map which is then used to generate a depth map. The pixels
belonging to the bounding boxes are then extracted from the
depth map, and from these, the pixels belonging to the apples
are further extracted. These are then used as a new depth map
for the system. The depth map information and bounding
box coordinates are then used for tracking and mapping the
locations of apples in frames.

A. Our Contribution

Our contribution is centered around automatically detect-
ing the apples. Previously, one would have needed to man-
ually label the images from the camera to achieve a result.
Our system, however, takes the already labeled files and uses
them as the ground truth to train a model for detecting new
apples in new files. We trained two models with the intention
of comparing their performance: YOLOv5 and Mask R-
CNN. YOLOv5 focuses specifically on object detection, and
Mask R-CNN was used for image segmentation. In the
updated ROS pipeline, the image is passed through the model
which detects the bounding boxes and passes that for use in
generating the new depth map.

B. Methodology of Our System

1) Grab and read the left and right images from the
camera.

2) Apply an object detection model to the frame for the
left image.

3) Get and store bounding boxes and scores for each
instance of detected apple.

4) If the confidence score is less than .6, try to get a better
score by letting the leaf blower blow away the portions
obstructed by leaves.

5) Update the bounding boxes and scores with the values
gotten after using the leaf blower.

6) Generate a disparity map from the left and right
images.

7) Generate a depth map from the disparity map.
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8) Using the depth map and the bounding boxes, extract
the pixels for the apples and store it as a new depth
map.

9) Using the new depth map, track the apples across all
frames and return the position of the apples.

Fig. 2. System Methodology

IV. RESULTS
We tested on YOLOv5 small and YOLOv5 medium for

our YOLOv5 models. On average, the mean average pre-
cision (mAP) for the models were above 0.8 with YOLOv5
performing better on average. However, we noticed that these
scores may have been a result of overfitting because the
model failed to generalize well on unseen data. To try and
prevent overfitting, we augmented the training, and reduced
the epoch size, but the model still failed to generalize to
unseen data. To try and understand why it was overfitting,
I looked through the data and noticed the training data was
nearly identical. Thus, I devised a new solution to combat
the overfitting. I randomly sampled the entire dataset to get
a more diverse training set and began training on the new
data. I trained a new YOLOv5s model on the new dataset
and noticed that though the mAP dropped, around 0.7 now,
the model then generalized better to unseen data.

This same phenomenon was noticeable with the Mask R-
CNN model. Not only was the model unable to generalize to
unseen data, but the model also failed to perform well on the
training/testing data. The same approach as above was taken
to improve the performance of the Mask R-CNN models.
And though the results were marginally better, there is still
room for improvement. We suspect the model performed as
it did because of the occlusion of certain apples by leaves.
Because of the nature of image segmentation which requires
one to label the pixels belonging to the object being detected,
it was difficult to accurately separate the leaf pixels from
the apple pixels during training which probably affected the
performance of the model. Despite all this, the Mask R-CNN
model was able to predict some of the same apples that were
predicted by the YOLOv5 model as can be seen in Fig. 3
and Fig. 4.

V. FUTURE WORK AND DISCUSSION
As was mentioned above, the Mask R-CNN model has

significant room for improvement. An avenue that was not
explored for increasing the performance of the model is
modifying training parameters. Due to time constraints, the
Mask R-CNN model was only able to be trained with the

Fig. 3. Yolov5 Results

Fig. 4. Mask R-CNN Results

bare minimum settings. For example, only the head of the
model was trained as opposed to the whole model, and the
model was only trained with the mask data and not the
bounding box data. By varying these settings, and others such
as training time, we aim to improve the model to performance
similar to that of the YOLOv5 model.

Fig. 5. YOLOv5 Ground Truth vs Predictions

Another avenue we are looking at is implementing apple
tracking through EKF-SLAM. The same time constraints
mentioned above led to us being unable to implement track-
ing across frames. As of now, the model, if deployed, will re-
detect previously detected apples because there is not object
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permanence across the frames being fed into the model.
By implementing tracking, we can mitigate the performance
costs that arise from continually detecting previously de-
tected apples. This also provides a benefit for the robotics
harvester because without apple tracking, errors may accrue
from the robot trying to harvest apples that were there in one
frame, and gone in the next or vice verse.

Finally, the implementation of the active canopy agitation
is needed. Currently, we have the necessary hardware to per-
form the canopy agitation, but it has yet to be implemented
in the pipeline. With all of these additions, all that would be
left would be fine-tuning the model’s performance.
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Learning Vehicle Dynamics through Interactions for Off-Road Driving

Parv Maheshwari1, Samuel Triest2, Wenshan Wang2 and Sebastian Scherer2

Abstract— In practical tasks such as off-road driving, robots
need to understand the physical properties of the world to
deal with its complexity. The aim of our work is to enhance
the performance of the vehicle model of a modified Yamaha
Viking ATV, by learning from its interactions with an ever-
changing environment. We show that this results in increased
model fidelity in challenging scenarios such as loose soil,
traversing over vegetation, etc. We perform traditional offline
system identification for our vehicle model combined with
two approaches for online system identification - a traditional
approach and a novel learning-based method. We then move on
to compare the accuracy of these vehicle models on real-world
data.

Index Terms— Model Learning for Control, Field Robots,
Autonomous Vehicle Navigation

I. INTRODUCTION

For off-road navigation, robots often have to perform
aggressive maneuvers on rough terrain. Not only this, but the
vehicle needs to adapt to changing environments and terrain.
Hence there is a need for a robust and adaptive vehicle model
which would allow the predicted future state of the robot to
be as close as possible to the ground truth. In history, such
an adaptive model is achieved by using system identification.

System identification aims to find a set of parameters (P )
to best describe the vehicle model on the basis of given
information. To the best of the authors’ knowledge, even
though there are no direct works on parameter estimation
of vehicle models in the off-road driving domain, the past
works show promising results of system identification in
various other applications. These applications are not just
restricted to on-road driving [1] as [2] leverages real-world
data for modeling an industrial car-like tractor. There also
exists use cases of system identification in both aerial [3]
and underwater vehicles [3], [4]. In literature, mainly the
works on system identification and parameter estimation of
vehicle models can be categorized into offline and online
approaches.

We formulate the problem of traditional system identifi-
cation similar to [5] which encourages the use of traditional
offline approaches like using the least squares methods to
estimate the value of the unknown parameters. We use a
gradient-based optimizer [6] to minimize our loss.

While the offline approaches have seemed to work fairly
well in the past, to identify the parameters when no prior
information is provided about them, some recent works like
[7], [8] explicitly show the advantage of online approaches
over using the offline approaches in real-life.

1 Department of Mathematics at Indian Institute of Technology
Kharagpur

2 Robotics Institute at Carnegie Mellon University

Fig. 1. We perform system identification for a Customized Yamaha Viking
ATV while traversing through various environments.

For traditional online system identification, we use the
same methodology as its offline variant. Our motivation to
continue using the least squares formulation with gradient
descent for online system identification similar to the offline
variant comes respectively from [9] and [10].

While the possibility and application of classical ap-
proaches have been well explored for system identification in
both online and offline variants, on the other hand, learning-
based approaches for system identification are quite uncom-
mon. One of them is [11] which combines images from
the front camera along with vehicle dynamics to learn the
coefficient of friction that is used in the vehicle model. While
this approach takes into account the future surroundings, it
does not leverage the history of the vehicle’s trajectory in
any form, which can especially help a lot in determining the
terrains that the vehicle has traversed on and most likely still
traversing on.

With this motivation in this paper, we present a learning-
based approach for online system identification which lever-
ages the recycling history of the trajectory that the vehicle
has already followed. This is done using a novel architecture
for the neural network which uses the current parameters of
the vehicle model along with a trajectory history to output
an individual Gaussian distribution for each parameter. We
further evaluate our approaches on real-world data collected
similar to [12] using our testing platform as shown in Fig. 1.
The result of this experiment shows that our learning-based
approach is more adaptive and robust than both the online
and offline variants of the traditional system identification.

The remainder of this paper is organized as follows. In
Section II, we provide background on our vehicle model
along with defining our aim. In Section III, we discuss the
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details of various approaches to System Identification. In
Section IV, we present the description of our testing platform
and explain about setting an experiment to measure the
robustness of our approaches. In Section V we analyze the
results of our experiment. Finally, in Section VI, we give
concluding remarks and mention scopes for future work.

II. PROBLEM DESCRIPTION

Our primary focus is to design a vehicle model that
accurately models the vehicle’s dynamics taking into account
its interactions with the real-world environment. We have
used the 2 Wheel drive mode on the ATV which allows
us to fundamentally formulate our vehicle modeling as a
Kinematic Bicycle Model(KBM) as shown in Figure 2. Here,
at ith timestep, the KBM state (X) consists of Xi = [pxi , pyi ,
θi, vi, δi] where pxi , p

y
i represent the position coordinates, θi

is the yaw of the vehicle, vi is the vehicle’s velocity and δi is
the steering angle. The control input (U ) at the ith timestep
is represented by Ui which consists of [v̇i, δ̇i] representing
the acceleration and steering rate respectively. If the vehicle
is moving at velocity vi and rotating around an Instantaneous
Centre of Rotation (ICR) with a steering of δi, the general
vehicle dynamics can be represented as Equation 1.

f(Xi, Ui) = Ẋi =


vi ∗ cosθi
vi ∗ sinθi

(vi tan δi)/L
v̇i
δ̇i

 (1)

Fig. 2. Geometry of the bicycle model. The distance between the wheels
is called wheelbase.

Now, at the ith timestep, the next predicted state Xi+1

can be denoted as Xi+1 = h(Xi, Ui) and can be calculated
using combination of Equations 1 and 3 as f in Equation 2.
For an improved estimate of the states, we use the 4th order

Runge-Kutta method instead of Euler discretization.

h(Xi, Ui) = Xi +
1

6
(k1 + 2k2 + 3k3 + k4) (2a)

k1 = ∆t ∗ f(Xi, Ui) (2b)

k2 = ∆t ∗ f(Xi +
k1
2
, Ui) (2c)

k3 = ∆t ∗ f(Xi +
k2
2
, Ui) (2d)

k4 = ∆t ∗ f(Xi + k3, Ui) (2e)

where ∆t is the resolution for the time step
Here we consider a modified version of the Kinematic

Bicycle model where we provide throttle (Ti) and steering
set point (δtargeti ) as actions. We define-

v̇i = Kt ∗ Ti −Kb ∗ vi −Kf

δ̇i = Kd ∗ (δtargeti − δi)
(3)

where P = (Kt,Kb,Kf ,Kd) represents the set of pa-
rameters for our vehicle model. Here, Kt accounts for
the effect of throttle on acceleration, Kb ∗ vi is used to
incorporate the engine braking of the vehicle as defined
by [13], Kf represents the frictional force on the vehicle
and Kd represents the proportional gain of the lower level
steering controller. Our aim is to predict and estimate these
parameters to increase the robustness and adaptive behavior
of the vehicle model. These parameters can be estimated
using system identification as further explained in Section
III-B

III. METHODOLOGY

A. Data Collection

We have collected 30 minutes of off-road driving data in
form of multiple discontinuous rosbags where each rosbag
consists of multiple 5-second trajectories. This dataset aims
to incorporate scenarios like acceleration, deceleration, turn-
ing, and special scenarios where the vehicle is traversing
over vegetation and small rocks. These scenarios help us to
find the right parameter as these cover different conditions
where the effect of throttle, engine braking, and friction can
influence the trajectory of the vehicle.

We have tried avoiding slopes while collecting data be-
cause as shown in Equation 3, v̇i does not incorporate
the effect of gravitational force, in the acceleration of the
longitudinal velocity, which is non-negligible on slopes.

B. General System Identification

Here we estimate the classical vehicle model on the basis
of the trajectory that the vehicle has followed. This is done
by using a sequence of KBM states along with the actions as
ground truth represented by GT 1:N and U1:N−1 respectively.
Here GTi and Ui represents the vehicle’s current state and
the commanded action at ith timestep. Then the predicted
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trajectory (S2:N ) can be calculated as shown in Equation 4.

S2:N = g(GT1, U1:N−1) where,

g(GT1, U1:N−1) =


h(GT1, U1)

h(h(GT1, U1), U2)
...

h(h(. . . h(GT1, U1) . . .), UN−1)

 (4)

Given the ground truth and predicted trajectory, we calculate
the loss as

L = (GT 2:N − S2:N )2 (5)

We can perform system identification in two modes - offline
or online.

C. Offline System Identification

We perform system identification to predict a set of values
for the parameters in our vehicle model. This set can be
represented as P o = (Ko

t ,K
o
b ,K

o
f ,K

o
d) which in general

can best describe the model. This is not done in real-time
but rather performed on the dataset (Section III-A). For this
mode, we minimize L to optimize the parameters set P by
using the Adam optimizer [6]. The initial value of parameters
can be arbitrarily set in this case.

D. Online System Identification

The online system identification similar to the offline
system identification works on the history of the trajectory
but unlike in the offline mode, the online mode uses real-
time history to provide an updated set of parameters -
P t = (Kt

t ,K
t
b,K

t
f ,K

t
d) at a time t. This is done because

while P o tries its best to represent the model in general, the
online system identification works to provide history-specific
parameters in real-time. For example, given the vehicle is
traversing over pebbles and rocks, the frictional force which
acts in the vehicle would be higher than what it would face
while traversing over areas covered with vegetation. Hence
the online system identification node would convey a higher
value for Kt

f to the vehicle model than Ko
f . This helps us to

increase the model accuracy in comparison to using a fixed
set of parameters over different terrains and environments.
The online system identification module conveys P t to the
vehicle model used by our local motion planning module as
explained in Section III-F.

We have implemented Online system identification using
two methods -

• Traditional Method - Similar to offline mode, we use
[6] to minimize L for estimating P t. Since the online
system identification module has to update parameters
in real-time, it is desirable for it to run at a frequency
matching the frequency of the limiting observation. In
our case, the limiting observation is the current position
of the steering wheel which is received at 6 Hz. But due
to the time taken in the forward and backward pass of a
gradient-included rollout of a 5-second trajectory, in the
current capacity, it is only possible to run the traditional
method for a single epoch in real-time even after which
this method can only run at 2 Hz.

• Learning Based Method - In this method, we use a
neural network as shown in Figure 3 to predict the
parameters when a history of trajectory and the current
vehicle model parameters are fed into the network.
Since our neural network can predict in real-time with
almost little latency, we are able to use this method at
a comparable rate to the limiting observation.

E. Learning-Based Online System Identification

1) Parameter Extraction: To train our architecture, we
first extract out labels for P t by using offline system
identification on individual trajectories instead of using the
entire collection of all the trajectories as done in the offline
mode. To speed up the parameter extraction process while
not hindering the accuracy of the extracted labels, we warm
start the initial parameters for each trajectory with the final
parameters of the last trajectory while using P o as the initial
parameters for the first trajectory for each individual rosbag.

2) Training of the architecture: As shown in Fig. 3, we
represent the history of the trajectory represents the trajectory
in the same KBM state space X , as explained in Section II,
by processing a 5 seconds sequence of Odometry data com-
bined with the position of the steering wheel. This KBM state
history is first passed through a Wavenet encoder [14] which
outputs a latent observation, which then is concatenated with
the current parameters of the vehicle model. This concate-
nated input is passed through a multilayer perceptron (MLP)
which outputs the mean and standard deviation of individual
Gaussian distributions for the next set of parameters which
are then selected by randomly sampling from the outputted
distribution.

F. Local motion Control

We use MPPI [15] as a trajectory optimizer which provides
us a local trajectory in form of a series of actions. We use
our vehicle models to rollout sample trajectories in MPPI
while optimizing for the following loss function -

J = C(Wpos) + (1v>=vvmax
)(ev−vmax − 1) ∗ (Kpenalty)

(6)
where, Wpos is the position of the vehicle on the costmap,
C(p) is the value of the costmap at the pth position, vmax is
the maximum allowed velocity for the vehicle and Kpenalty

is the speed penalty term usually kept as very high - for
example - 108

IV. EXPERIMENTAL SETUP

A. ATV Platform

Similar to [12], various exteroceptive and Proprioceptive
sensors were used to collect real-time data. We use a forward-
facing Carnegie Robotics Multisense S21 stereo camera that
provides us long-range high-resolution stereo RGB and depth
images. For raw inertial measurements and estimates of
position and velocity, a NovAtel PROPAK-V3-RT2i GNSS
unit is used. As an addition to the sensors used in [12], we
also use a forward-facing Velodyne LiDAR which provides
us with laser scans of range up to 40m. All sensors and servos
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Fig. 3. Learning-based online system identification. We have used M=5.

were connected through ROS on an onboard computer. We
have also relayed the joystick control inputs to the servos for
the driver to manually operate the vehicle through a joystick.
The sensors are integrated similar to Fig. 3 in [12].

Data from these sensors and servos are fed into our
systems pipeline as shown in Fig. 4 to record the following
data -

1) Robot Action: Actions a = (µt, µs) were two-
dimensional and corresponded to desired throttle and steering
positions. Throttle commands took values between 0 and 1,
with 1 corresponding to wide open throttle. Steering com-
mands took values between-1 and 1, with -1 corresponding
to a hard left turn. The commands were executed by the
servos using PID position control.

2) Robot Pose: As an improvement to [12], instead of just
using the raw measurements given by GNSS, we instead
the raw measurements along with the laser scans, to run
Super Odometry [16] which helps us achieve a more robust
state estimation than the raw measurements from GNSS.
We express the robot pose in the form of a concatenated
position vector p = (x, y, z), quaternion orientation q =
(qx, qy, qz, qw), linear velocity v = (vx, vy, vz) and angular
velocity w = (wx, wy, wz). This is an improvement to [12]
as we also consider linear and angular velocity and not just
the position and the orientation vectors

3) Images: At each timestep, two RGB images were
recorded from the onboard stereo camera.

4) Local Terrain Maps: : Similar to [12], we generate a
local top-down view height map Mh ∈ R(w × h× 2) (two
channels to represent the minimum height and maximum
height) and a local RGB map Mc ∈ R(w×h× 3) using the
stereo images from the Multisense S21 sensor and using the
Stereo and Lidar Mapping Nodes. The cost maps generated
from applying a lethal height threshold over the heightmaps

maps are then used as explained in Section III-F.

B. Vehicle Model Accuracy

The vehicle models have been evaluated for their model
accuracy on the data collected for system identification
as mentioned in Section III-C. The performance has been
measured in terms of the mean errors in all the individual
elements in the KBM state and all of them combined. The
results of this experiment have been reported in Table I.

V. RESULTS
As explained in Section III-D, to run the traditional online

system identification in real time - we are only able to
perform a single epoch of optimization over the previous
labels. As expected this leads to a disturbance in loss L
but since the offline optimization had already reached local
minima to generally express the vehicle model, a single
epoch results mostly in a downgrade of the performance
rather than an improvement. This can be seen from Table
I.

We further noticed that running many more optimization
epochs (30 - 50) over an individual trajectory results in a P t

which is more accurate than P o for that particular trajectory.
With this motivation, we trained a neural network architec-
ture and expected the performance, in general, of the vehicle
model with Learning-based Online System Identification to
be better than the other two models. This hypothesis is also
confirmed from Table I.

VI. CONCLUSION AND FUTURE WORK

We present various methods of system identification along
with a novel neural network to overcome the low-frequency
output of the traditional online methods. We have also
verified the accuracy of these models on real-world off-
road data. Moving on, along with using the existing dataset,
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Fig. 4. Our complete Navigation stack. Here the dotted lines are only valid if the End-to-End learning-based vehicle model is used. Remove if not
explaining learning based model

TABLE I
MEAN LOSSES FOR VARIOUS VEHICLE MODELS FOR INDIVIDUAL ELEMENTS IN THE STATE X AND ALL COMBINED

Model Type Lall Lx Ly Lθ Lv Lδ

KBM without Online System Identification 0.4285 1.4304 0.1251 0.0074 0.5790 0.0007

KBM with Traditional Online System Identification 0.5004 1.7164 0.1342 0.0075 0.6426 0.0011

KBM with Learning-based Online System Identification 0.3189 0.8585 0.1389 0.0073 0.5896 0.0002

we would also be using the entire TartanDrive Dataset [12]
which is a dataset containing more than 5 hours of off-road
driving data. This would not only help us achieve a more
robust estimation of both the offline system identification
and learning-based online system identification.

We are also motivated to incorporate additional input
modalities like forward-facing terrain maps in our learning-
based online system identification to also use the terrain
features in the prediction of the model parameters. This
would also shift the paradigm of the current online system to
a more predictive-reactive approach rather than only reactive
as it would use a map of the surroundings it has to traverse
in the future while also using a history of states. Along with
this future works can also incorporate the effect of gravity
in our vehicle models. This would help our vehicle model to
be more robust to changes in the pitch of the vehicle while
it is traversing slopes.
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[7] C. Böhm, C. Brommer, A. Hardt-Stremayr, and S. Weiss, “Combined
system identification and state estimation for a quadrotor uav,” in 2021
IEEE International Conference on Robotics and Automation (ICRA),
2021, pp. 585–591.

[8] M. Cooper, J. McGree, T. L. Molloy, and J. J. Ford, “Bayesian
experimental design with application to dynamical vehicle models,”
IEEE Transactions on Robotics, vol. 37, no. 5, pp. 1844–1851, 2021.

[9] X. Yang, C. Wu, Y. He, X.-Y. Lu, and T. Chen, “A dynamic rollover
prediction index of heavy-duty vehicles with a real-time parameter

61



estimation algorithm using nlms method,” IEEE Transactions on
Vehicular Technology, vol. 71, no. 3, pp. 2734–2748, 2022.

[10] W. Chen, D. Tan, and L. Zhao, “Vehicle sideslip angle and road
friction estimation using online gradient descent algorithm,” IEEE
Transactions on Vehicular Technology, vol. 67, no. 12, pp. 11 475–
11 485, 2018.

[11] D. Jin, B. Leng, X. Yang, L. Xiong, and Z. Yu, “Road friction
estimation method based on fusion of machine vision and vehicle
dynamics,” in 2020 IEEE Intelligent Vehicles Symposium (IV), 2020,
pp. 1771–1776.

[12] S. Triest, M. Sivaprakasam, S. J. Wang, W. Wang, A. M. Johnson, and
S. A. Scherer, “Tartandrive: A large-scale dataset for learning off-road
dynamics models,” ArXiv, vol. abs/2205.01791, 2022.

[13] J. Mai, “System design, modelling, and control for an off-road
autonomous ground vehicle,” Master’s thesis, Carnegie Mellon Uni-
versity, Pittsburgh, PA, August 2020.

[14] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. W. Senior, and K. Kavukcuoglu,
“Wavenet: A generative model for raw audio,” in SSW, 2016.

[15] G. Williams, A. Aldrich, and E. A. Theodorou, “Model predictive
path integral control using covariance variable importance sampling,”
ArXiv, vol. abs/1509.01149, 2015.

[16] S. Zhao, H. Zhang, P. Wang, L. Nogueira, and S. Scherer, “Super
odometry: Imu-centric lidar-visual-inertial estimator for challenging
environments,” in 2021 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), 2021, pp. 8729–8736.

62



Exploring Predictive Capabilities of Withdraw-Dwell-Reinfuse Cycles in
Trauma Care; The Case of Blood Loss Prediction

Ernest Pokropek1, Xinyu Li2, Nicholas Gisolfi2 and Artur Dubrawski2

Abstract— Trauma care is one of the most challenging tasks
in modern medicine, as with no prior information about the
patient’s health it is extremely difficult to interpret their,
notably heterogeneous, health status. Furthermore, in critical
emergencies we often do not know the whole picture of the
particular organism and we do not have time nor necessary
equipment to perform surgeries that would enable us to collect
invasive, but reliable vital sign measurements. In this work, we
explore the predictive and diagnostic capabilities of Withdraw-
Dwell-Reinfuse (WDR) cycles on animal data. The WDR cycle
consists of, firstly, withdrawing the blood from the subject (W),
then waiting (D), and finally reinjecting (R), all while collecting
the vital sign measurements, for total of 60 seconds. To prove
the capabilities of WDR cycles as a diagnosis tool, we present
a regression pipeline that estimates the amount of blood loss
given only non-invasive vital sign measurements from a single
WDR cycle without prior information about the subject as we
train and validate it on animal laboratory data.

Index Terms— Medical Robots and Systems

I. INTRODUCTION

Proper estimation of blood loss might be crucial for
patient’s survival, as untreated hemorrhage might be fatal
[1], annually causing 2 million deaths worldwide [2]. After
losing approximately 20% of blood in human body, the heart
is unable to pump enough blood through it, resulting in hy-
povolemic shock and killing the individual unless adequately
treated. Proper prediction of the severity of bleeding is cru-
cial in trauma care - with no prior access to patient’s medical
record, it is difficult to estimate how their bodily functions
behave differently from their heterogeneous baseline. This
becomes further complicated when the bleeding is internal,
as we are not aware of any clues that might lead us to
the correct diagnosis. Lastly, during the scenario of a traffic
accident or a battlefield, it is infeasible to promptly perform
a surgery to be able to collect reliable invasive measurements
of vital sign data, thus requiring us to ideally utilize the non-
invasive counterparts. Ideally, we would like to have a system
that we can quickly ”plug” into the patient and in short
time retrieve information about the amount of blood loss.
In order to retrieve essential from the body exposed to this
case of trauma, we will treat it as a dynamical system, where
a sudden intervention to it should yield essential information
about its state, resilience, and condition.

1Ernest Pokropek is with Division of Robotics, Perception and
Learning, KTH Royal Institute of Technology, Stockholm, Sweden
pokropek@kth.se

2Xinyu Li, Nicholas Gisolfi and Artur Dubrawski are with Auton
Lab, Robotics Institute, Carnegie Mellon University, Pittsburgh,
PA, USA xinyul2@andrew.cmu.edu , {ngisolfi,
awd}@cs.cmu.edu

An example of such intervention for biological system is
the Withdraw-Dwell-Reinfuse (WDR) cycle. Given patient
with unknown medical history, while we collect the vital
sign data we perform the intervention - first, the blood is
being withdrawn at a constant rate (W) for 20 seconds,
ideally at a faster pace than the actual bleeding is happening.
Then, for another 20 seconds, the dwell process is happening,
as we hold the collected blood and wait (D). Finally, we
re-inject it with the same rate as during the withdrawal,
again for 20 seconds, during the reinfuse cycle (R). This
intervention presents an exciting opportunity for diagnosis
of the dynamical system (in our case, human body) - we
expect a healthy individual to be more resilient during such
stress test than a subject exposed to notable amount of blood
loss, which should allow for proper prognosis using only
non-invasive measurements of the vital signs. Furthermore,
short duration of the WDR cycle makes it feasible to use
in extremely dynamic and active environments, such as
battlefield, where prompt diagnosis is crucial for survival.

In this work we address the problem of patient diagnosis
with unknown medical history in the dynamic environments
by utilizing vital sign data collected during bleeding of
laboratory animals (pigs). We use the data from WDR cycles
to train a regression model based pipeline that based on less
than 2 minutes of measurements is able to assess the amount
of bleeding the subject has been exposed to.

II. RELATED WORK

There is no surprise that given the importance of blood
loss prediction much academic effort has been put into it. In
[3], using data collected from rats, authors set up a support
vector machine pipeline in order to predict the percentage
volume of blood loss and calculated metrics in discretized
fashion suggested by Advanced Trauma Life Support (ATLS)
(severity classes based on the amount of blood loss) [4]. They
reported notable accuracy of the predictions (almost 90%),
however it must be noted that the study utilized invasive
measurements of vital sign data (e.g. mean arterial pressure
(MAP)). Another work by the same authors presented in [5]
shows another approach for ATLS hemorrhage class predic-
tion, but basing on perfusion index and lactate concentration
instead of vital signs, showing once again good classification
metrics with accuracy exceeding 80%.

Another, much earlier than aforementioned approach that
utilized machine learning for blood loss prediction has been
presented in [6]. Here, measurements of both vital signs
and additional information such as hemoglobin concentra-
tion were fed into an Genetic Algorithm Neural Network
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(GANN). The authors have showed 2.63% of RMS error for
estimated blood volume on rat data.

Apart from machine learning based methods, there is
unsurprisingly a wide variety of analytical methods for
blood loss estimation, which becomes extremely useful in
perioperative context. Examples of such are Moore’s [7] and
Nadler’s [8] formulas, which take into account weight, build,
and sex of the patient for estimation of the total blood volume
loss. When it comes to blood loss estimation itself, one of
the most common methods are involving the mean value of
hematocrit (proprtion of red cells in blood), e.g. [9]–[12],
often involving Moore’s or Nadler’s formulas.

III. METHODOLOGY

The dataset contains of 28 (2 subjects discarded due to
issues with annotations) healthy pigs which were sedated for
the time of the experiment. After approximately 30 minutes
of stabilization with all the measurement devices connected,
they were exposed to constant rate of bleeding of 10ml/min;
depending on the subject, this resulted in total bleeding
amount up to 1500ml. Data from 254 WDR cycles has been
extracted (60 seconds of WDR + 10 seconds of offset before
and 20 seconds after the WDR), of which we have used the
non-invasive ECG and Pulse Oximeter Pleth measurements.

To featurize the vital sign signals, we have used windows
of 10 seconds (with step size of 2 seconds), calculating
the aggregated statistics from the ECG waveform, such as
heart rate, approximate entropy, or powerbands obtained
from Discrete Fourier Transform (DFT), whereas the photo-
plethysmography data has been used to derive the beat-
to-beat features, such as Systolic Amplitudes, Peak-to-Peak
Interval, or Pulse Interval. Furthermore, from the beat-to-beat
measurements we also estimated invasive measurements, that
is Mean Arterial Pressure (MAP), Stroke Volume Variation
(SVV), Pulse Pressure Variation (PPV), and Dynamic Arte-
rial Elastance. This resulted in 42 features per window. Each
WDR cycle has been passed through the windowed featur-
ization, resulting in 45 vectors of features with associated
amount of bleeding (calculated at the end of the moving
window).

To train and validate our pipeline we have used leave-one-
subject-out cross validation methodology. For each subject,
we train the Gradient Boosting Regressor model on data from
27 pigs, and validate on 1. Then, the prediction metrics are
aggregated and averaged. No standardization has been used,
as to try to build the model for ”plug-and-play” applications
in trauma care, without need of collecting baseline. For
testing, we considered only 1 value of bleeding per WDR
cycle in the following manner: the model predicts estimated
value of blood loss for each window (10 seconds), and then
aggregates all the predictions (using mean) to produce a final
one. This value is then compared with the actual value of
bleeding. The whole pipeline is visualized on Figure 1.

IV. RESULTS

Cumulative results from the cross validation are presented
on Figure 2. We can see that the pipeline does pick the

linear trend of the bleeding, although with notable deviation
of the predictions. Interestingly, a consultation with medical
professionals responsible for the experiments pointed out that
the intercept being off (approximately 200ml) may be caused
by circulation of the fluids to keep the animal alive during
the experiment, which was of similar volume.

Fig. 2. Cumulated performance from all the folds of cross validation.

Another evaluation metric concerns the Advanced Trauma
Life Support (ATLS) hemorrhage classes in order to classify
and standardize the assessment of the patients exposed to
trauma injury. Here, four classes of hypovolaemic shock are
presented, with the biggest decisive factor being the fraction
of the total blood lost. This is a common classification
metric for blood loss prediction, and we decided to put our
regression model through that evaluation as well - based on
the actual value of bleeding predicted from our pipeline, the
blood volume was estimated by weight of the animals and
then the fraction of blood loss was calculated. The confusion
matrix of this procedure is presented on Figure 3.

Fig. 3. Confusion matrix based blood loss predictions grouped into ATLS
hemorrhage classes. The total blood volume of the animals is estimated as
1800ml.
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Fig. 1. Visualized pipeline of the experiment

The pipieline performs well for the extreme cases, that is
first and last ATLS class - it has to be noted that they are
also the most represented classes in the data. The middle
classes however are not predicted so well - the possible im-
provements and possible drawbacks are presented in Section
V.

V. DISCUSSION

In this work we presented a machine learning based
pipeline that uses only quick, non-invasive vital sign mea-
surements and is able to predict the amount of blood loss of
the subject. As much as it can pick up the trend of the bleed-
ing correctly, there are notable differences in performances
between the subjects. This means, that during the leave-one-
subject-out cross validation, on some test subjects the model
performs incredibly well, whereas on others not as much -
to illustrate that, please refer to Figure 4.

Fig. 4. Example performance on 2 different subjects showing notable
differences in pipeline’s performance for various subjects.

In the above figure, testing on subject 13 results in an
incredibly good fit of the model, with the error of prediction

within tens of milliliters. As perfect as it is, unfortunately
the same trend does not follow for all the subjects - in
the illustrated example, we can see that for the subject 28,
the model tends to undershoot quite heavily. We suspect,
that these changes in performance are caused by individual
differences between the subjects, as given the trauma care
application we did not use the vital sign data before the
experiment to standardize it, which is a standard practise
when encountering this kind of problems. Nonetheless, the
pipeline performs incredibly well on some of the subjects,
which gives us a lot of optimism for future works. The ideas
to overcome the problem of heterogeneity are discussed in
the next section, as time constraints made it impossible for
us to address them properly.

VI. FUTURE WORK

This work has much potential for the future. First of all,
we would like to conduct experiments that underline the
potential of the WDR cycles as an intervention test: we want
to compare how well the data obtained from 60 seconds of
WDR cycle impacts the model predictive capabilities versus
using 60 seconds outside of them. Furthermore, it would be
interesting to check, how these two approaches mentioned
previously work when the data is standardized to each of
the animal’s baseline. Also, the relationship between each
cycle during the WDR needs to be explored more thoroughly
- that is comparing the data from the withdraw part with
dwell, dwell with reinfuse, etc. Finding some hidden rela-
tionships/correlations within the WDR cycle can immensely
help the model not only with predictive capabilities, but also
making it more generalizable across the individuals.

ACKNOWLEDGMENT

The first author would like to thank Xinyu Li , Nicholas
Gisolfi and Artur Dubrawski for their mentorship throughout
this work. Furthermore, the first author would also thank
Xinyu Li for explaining the data and providing code that

65



handles it. Finally, the first author would like to thank Rachel
Burcin and John M. Dolan for perfectly managing the RISS
summer internship program that made this work possible.
This work was supported by by the U.S. Department of De-
fense under awards W81XWH-19-C-0083 and W81XWH-
19-C-0101.

REFERENCES

[1] A. B. Johnson and B. Burns, “Hemorrhage,” in
StatPearls. StatPearls Publishing. [Online]. Available:
http://www.ncbi.nlm.nih.gov/books/NBK542273/

[2] J. W. Cannon, “Hemorrhagic shock,” vol. 378, no. 4,
pp. 370–379, publisher: Massachusetts Medical Society
eprint: https://doi.org/10.1056/NEJMra1705649. [Online]. Available:

https://doi.org/10.1056/NEJMra1705649
[3] S. B. Choi, J. Y. Choi, J. S. Park, and D. W. Kim, “Atls hypovolemic

shock classification by prediction of blood loss in rats using regression
models,” SHOCK, vol. 46, p. 92–98, 2016.

[4] M. Mutschler, T. Paffrath, C. Wölfl, C. Probst, U. Nienaber, I. B.
Schipper, B. Bouillon, and M. Maegele, “The ATLS® classification of
hypovolaemic shock: A well established teaching tool on the edge?”
Injury, vol. 45, pp. S35–S38, Oct. 2014, publisher: Elsevier.
[Online]. Available: https://www.injuryjournal.com/article/S0020-
1383(14)00375-1/fulltext

[5] S. B. Choi, J. S. Park, J. W. Chung, S. W. Kim, and D. W. Kim,
“Prediction of atls hypovolemic shock class in rats using the perfusion
index and lactate concentration,” Shock, vol. 43, p. 361–368, 2015.

[6] M. F. Jefferson, N. Pendleton, S. Mohamed, E. Kirkman, R. A. Little,
S. B. Lucas, and M. A. Horan, “Prediction of hemorrhagic blood
loss with a genetic algorithm neural network.” Journal of applied
physiology, vol. 84 1, pp. 357–61, 1998.

[7] “Metabolic care of the surgical patient. By Francis D. Moore, M.D.,
Moseley Professor of Surgery, Harvard Medical School. 10¾ × 7¾
in. Pp. 1011 + x, with 14 2illustrations. 1959. Philadelphia and
London: W. B. Saunders Co. 140s,” British Journal of Surgery,
vol. 47, no. 204, pp. 455–455, 12 2005. [Online]. Available:
https://doi.org/10.1002/bjs.18004720451

[8] S. B. Nadler, J. Hidalgo, and T. Bloch, “Prediction of blood volume
in normal human adults.” Surgery, vol. 51 2, pp. 224–32, 1962.

[9] D. L. Bourke and T. C. Smith, “Estimating allowable hemodilution.”
Anesthesiology, vol. 41 6, pp. 609–12, 1974.

[10] C. Ward, E. Meathe, J. Benumof, and F. Trousdale, “A
COMPUTER NOMOGRAM FOR BLOOD LOSS REPLACEMENT,”
Anesthesiology, vol. 53, no. 3 Suppl, pp. S126–S126, 09 1980.
[Online]. Available: https://doi.org/10.1097/00000542-198009001-
00126

[11] F. Mercuriali and G. Inghilleri, “Proposal of an algorithm to help the
choice of the best transfusion strategy.” Current medical research and
opinion, vol. 13 8, pp. 465–78, 1996.

[12] A. Meunier, A. Petersson, L. Good, and G. Berlin, “Validation of
a haemoglobin dilution method for estimation of blood loss,” Vox
Sanguinis, vol. 95, 2008.

66



Mixed Reality Synthetic Data Generation

Grace Su1, Khiem Vuong2, N. Dinesh Reddy2, Srinivasa Narasimhan2

Abstract— Synthetic data generation augments existing vision
datasets and consequently helps train more robust computer
vision models. However, synthetic image generation techniques
proposed by prior works still face limitations in generating
photorealistic data, maintaining low computation costs, and
granting fine control over scene generation parameters. In
particular, synthetic data generation would be especially useful
for training deep learning models for traffic analysis tasks.
Therefore, we propose a photorealistic synthetic road scene
generation method that inserts rendered 3D objects into a
real 2D photo. We first estimate the ground plane equation,
camera parameters, possible vehicle trajectories, and environ-
ment illumination map from the road scene photo. Then, these
scene parameters are used to render the 3D objects in a
physically-based renderer. Finally, we compose the rendered
object smoothly into the road scene. Simultaneously, the ren-
derer can generate precise depth maps. Our “mixed reality”
approach’s results are higher resolution and more photorealistic
compared to similar previous works while addressing their limi-
tations. Thus, our approach can generate high quality synthetic
images and ground truth labels for a variety of computer
vision tasks. In future work, we plan to evaluate whether
our synthetic data and ground truth labels can improve deep
neural network performance on challenging tasks like amodal
segmentation. Code for the road scene generation method is
available at https://github.com/graceduansu/mixed_
reality_synthetic_data_generation.

Index Terms— Deep Learning, Visual Perception, Object
Detection, Segmentation and Categorization, Computer Vision
for Automation, Synthetic Data Generation

I. INTRODUCTION

One of the most ubiquitous challenges in developing
computer vision models is obtaining realistic, accurately-
labeled, diverse, and large computer vision datasets. Firstly,
it is difficult, time-consuming, and expensive to acquire and
label real-world data. Secondly, real-world image data is
often characterized by a long tail distribution, where only
a minority of different scenarios comprise the majority of
collected images. This means the dataset may not encompass
the full range of possible nuances and variations in each
image. Synthetic data generation addresses these issues by
automatically computing new images that imitate the data
distributions found in existing images of the real world. The
process also allows users to configure and quickly generate
more diverse scenarios that are difficult to obtain from the
real world while obtaining high-accuracy ground truth labels.
Then, the synthetic images can augment existing datasets
and consequently train more robust computer vision models.
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2 Khiem Vuong, N. Dinesh Reddy, and Srinivasa Narasimhan are with
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For instance, creating object segmentation datasets often
requires a time-consuming process where human annotators
must select the regions of pixels for each segmentation mask
by hand. However, if a synthetic image is generated by
a computer, the ground-truth, pixel-accurate segmentation
masks for each object can also be easily accessed during
the generation process. Thus, a method that generates image
data that is highly faithful to real image data could be useful
for improving the training of many different computer vision
tasks.

Additionally, when curating a computer vision dataset, we
cannot rely on fully real image data because the images
must be labeled by humans and humans cannot consistently
produce pixel-accurate annotations. On the other hand, we
cannot use fully synthetic images because machine learning
models trained on such images will encounter significant
domain adaptation problems (the sim-to-real gap) when they
are tested on real-world images. Therefore, a “mixed reality”
dataset that combines elements of real-world and synthetic
image data would balance the advantages and drawbacks of
both sources.

In the current literature, a number of works have generated
synthetic object segmentation datasets by inserting 3D ren-
dered objects into real-world scenes, but few attempt to take
advantage of the 3D ground-truth information to generate
labels for other vision tasks. In particular, synthetic data
and 3D ground truth label generation would be especially
valuable for vision tasks that predict 3D world information
from 2D image data. One such application area is training
deep learning models for traffic analysis tasks since it is
important to obtain accurate data annotations and predict rare
traffic patterns.

In this paper, we begin to investigate whether a mixed
reality method can generate synthetic, realistic road scenes
and facilitate the training of computer vision models. We
chose to focus on road scene generation in order to assist
training of traffic analysis-related computer vision tasks like
object segmentation, 3D pose estimation, object tracking,
anomaly detection, etc. Section II gives background infor-
mation and reviews previous work related to synthetic image
data generation, including 2D image composition, neural
rendering techniques, and 3D object insertion. Section III
discusses the proposed 3D object insertion and composition
automated pipeline. Section IV presents and evaluates our
object insertion results. Section V concludes the paper,
describes potential applications, and outlines future work.
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II. RELATED WORK

A. 2D Image Composition

2D image composition methods typically “cut and paste”
new objects onto desired background images, then blend
the new objects into the background to make the resulting
composite image look more realistic. Because this image
generation method cuts and pastes images of real objects,
it is closer to using fully real image data. This technique
is also relatively simple and thus easier to scale. But as [1]
describes, the resulting composite images are frequently un-
realistic because of “appearance inconsistency (e.g., incom-
patible illumination), geometry inconsistency (e.g., unrea-
sonable size), and semantic inconsistency (e.g., mismatched
semantic context).” Many works address these issues by
training neural networks, especially GANs (generative ad-
versarial networks), to adjust for these inconsistencies. For
instance, [2] enables object and texture editing by training
a GAN to replace and blend objects. [3] also uses GAN-
based models to remove and insert objects and their shadows.
However, neural networks trained to blend “pasted” objects
still struggle to produce consistent, photorealistic results.
The networks do not always learn and apply all physical
rules of photos like how perspective affects perceived object
size, how occluding objects cast shadows, etc. Additionally,
2D image composition methods have no way to access 3D
ground-truth information or generate such data annotations.

B. Neural Rendering Techniques

Neural rendering techniques train neural networks to learn
a scene’s neural radiance field (NeRF) representation and
therefore produce novel views of the scene. These ap-
proaches can achieve photorealistic results by representing
scenes using implicit fields of volume density and view-
dependent color. Many neural rendering techniques also
encode the entire scene as a whole. To ensure that the NeRF
representation allows for object-level editing, [4] designs an
architecture that encodes individual object information. [5]
also learns object-level representations by proposing a neural
rendering approach that observes a scene video, then decom-
poses the scene into scene graphs. These works show that
NeRFs can be extended to learn object-level representations
and enable object manipulation. However, there still exist
several cons of using NeRFs for novel view synthesis:

• Low-interpretability and editability for dataset parame-
ter control

• An inherent lack of 3D ground-truth information
• Higher computation costs when learning the NeRF

C. 3D Object Insertion

To generate a high-fidelity image dataset, it is advanta-
geous to render and insert 3D, physically accurate models of
objects into existing real-world backgrounds. Then, the ren-
dering process computes the correct scene geometry, reflec-
tions, based on user-selected scene parameters, and outputs
realistic images. Thus, 3D object insertion is a mixed reality
approach. For example, [6] uses Blender’s Cycles renderer

and post-processing workflow to photorealistically render
and insert 3D cars. Their results suggest that object detection
and instance segmentation models trained on augmented
imagery generalize better than those only trained on synthetic
data or those trained on limited amounts of annotated real
data. Realism of the background image also significantly
affects performance. However, while their pipeline estimates
the road plane and camera pose for each background image,
they only use background images captured by driving cars.
This means that they do not use other viewpoints like those
from traffic cameras. They use a fixed set of 3D car models,
locations, and environment maps to augment real street
scene datasets. Their synthetic dataset and code are also not
released. In addition, they only evaluate their dataset on 2D
tasks (segmentation and detection) and lack benchmarks for
3D vision tasks.

Recently, Chen et al. [7] further leverages available real
world data by inserting objects that were viewed with similar
viewpoints and distance to the camera in its original footage.
Then, they reconstruct observed objects as 3D assets and
warp them to the novel target view using a differentiable
neural renderer. Finally, they train a generative image in-
painting synthesis network to do post-composition. When
using their method for data augmentation, there are small im-
provements on semantic segementation performance. How-
ever, their augmentation method only uses a single cloudy
environment map and does not perform lighting estimation.
Their synthetic dataset and code are also not released.

On the other hand, inverse rendering and lighting es-
timation allows one to obtain a desired background im-
age’s scene appearance parameters that can then be used
to render inserted objects with the correct lighting and
geometry. For example, [8] uses a deep neural network to
achieve single-image inverse rendering of indoor scenes.
The network simultaneously estimates the scene’s depths,
normals, spatially-varying albedo, roughness and lighting,
thus enabling photorealistic material editing, object insertion,
and rendering. However, the estimations for depths, normals,
albedo, etc. are not as accurate for outdoor scenes because
there is a lack of ground-truth lighting data for outdoor
viewpoints.

Overall, current works in 3D object insertion for data aug-
mentation demonstrate small improvements for traditional
object segmentation and detection tasks, but do not evaluate
3D object insertion for other vision tasks that requires
accurate 3D ground-truth information.

III. METHODS

After reviewing related work in synthetic image data
generation, we chose to design a 3D object insertion-based
approach for road scene generation. We first obtain the
desired background image’s scene appearance parameters:
the road plane equation, vehicle trajectories, intrinsic and
extrinsic camera parameters, and sun direction. Next, we
use physics-based rendering to render 3D vehicle models
with the obtained scene parameters. We also produce the
corresponding, unoccluded depth maps for each vehicle.
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Fig. 1: Our proposed synthetic scene generation method

Finally, we composite the rendered cars onto the desired
background using pixel-wise computations as described in
[8]. Our synthetic scene generation method is illustrated in
Fig. 1.

A. Incorporating Scene Geometry

To incorporate the desired background image’s scene
geometry into our vehicle renderings, we obtain the road
plane equation, possible vehicle trajectories (Fig. 2), and
intrinsic and extrinsic parameters of the camera that captured
the desired background image. Note that our estimated scene
geometry is in metric scale, thus allowing physically accurate
renderings of objects.

Given the camera’s GPS location, we leverage Google
Street View (GSV) [9] to build the scene’s geometry at that
location. GSV is a street-level imagery database and a rich
source of millions of panorama images with wide coverage
all over the world. Every panorama image is geo-tagged with
accurate GPS coordinates, capturing 360◦ horizontal and
180◦ vertical field-of-view with high resolution. We sample
multiple panoramas around the desired camera’s location
inside a radius of 40 meters and use structure-from-motion
(SfM) [10] to reconstruct the scene. Note that we also
geo-registered the up-to-scale SfM reconstruction using the
provided GPS coordinates of the GSV panoramas. Thus, our
final 3D reconstruction of the scene is in metric scale.

To obtain the camera’s intrinsic and extrinsic parameters,
we follow the typical visual localization pipeline by localiz-
ing the desired background image (i.e., query image) w.r.t.
the 3D reconstruction built with GSV images (i.e., database
images). To establish robust 2D-3D correspondences, we
follow hloc [11] by using learned feature matching method
SuperGlue [12] with SuperPoint [13] features descriptors to
match the query image with the database images. Given the

2D-3D correspondences, we perform a bundle adjustment
step to retrieve the camera intrinsic and its 6DoF extrinsic
parameters. Note that the large number of accurate matches
between the query image and the rich GSV database im-
ages, produced by SuperPoint and SuperGlue, allows us to
robustly recover both intrinsic and extrinsics parameters of
the camera.

The road plane equation is estimated by fitting a plane to
the set of 3D points whose 2D pixel locations are lying on
the road obtained from off-the-shelf semantic segmentation
method [14]. The possible vehicle trajectories are estimated
from the real data by tracking multiple vehicles during a long
period of time in 2D, which is then lifted to 3D using the
road plane estimated above. We then perform spline-fitting
followed by hierarchical clustering [15], where the average
direction of each cluster is considered a possible vehicle
trajectory. Additionally, when placing each 3D vehicle model
into the scene along the vehicle trajectories, we employ
collision checking between all models’ 3D bounding boxes
to ensure no models intersect each other in an unrealistic
manner.

By incorporating the physically accurate scene geometry,
as long as the inserted objects have correct metric scale, we
are able to render geometrically accurate, scale-consistent
road scenes (Fig. 3) and avoid inconsistencies such as
unreasonable object sizes, incorrect distortions, or occlusions
in our generated road scenes.

B. Lighting Estimation

We also estimate the environment map of the desired
background image. After obtaining the time, date, and GPS
coordinates for when and where the road scene photo was
captured, our rendering software, Mitsuba [16], computes the
sun’s direction and generates environment map using sun
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Fig. 2: All possible vehicle trajectories for this example road
scene photo are visualized on the left. An illustration of one
possible vehicle trajectory is generated on the right.

Fig. 3: Demonstration of our method’s geometry, perspective,
and size consistency as a result of using an estimated road
plane equation and camera parameters. The same car model
has been rendered and inserted at constantly increasing
distances from the camera.

and sky illumination models. To avoid modeling the sun as
a point light source and ensure that specular reflections are
appropriately sized, we set Mitsuba’s sun radius parameter
to 5.

C. Physically-Based Rendering

We chose to render 3D objects using Mitsuba 0.5.0 [16]
because it accurately models the physics of light scattering
and can easily provide the corresponding, high resolution,
ground truth rendering data such as depth maps, albedo maps,
surface normals, and 3D coordinates in the world space.
Other physically-based renderers also exist [8], [17], [18].
While these renderers are optimized and GPU-accelerated to
be much faster than Mitsuba 0.5.0, their drawbacks include
not being open-source, requiring RTX GPUs, and/or lacking
crucial options that Mitsuba 0.5.0 provides. The specific
options we require for our method’s current implementation
are the sun and sky illumination modeling plugin and the
option to hide directly visible emitters.

Another vital part of physically-based rendering is incor-
porating the appropriate surface-scattering models for each
type of material present in the scene. To achieve this, we

Fig. 4: A summary of our material mapping rules. For each
material name, we search the name for keywords and related
substrings (left column), then match it to the appropriate
Mitsuba surface scattering model (right column).

first curate a set of 11 high quality 3D vehicle models
covering 5 categories (SUV, sedan, mini-van, van, pickup
truck). Each 3D models must have a high polygon count and
meaningful material names in its material file. Then, based
on the material names, we can map each of the material
definitions to the appropriate Mitsuba BRDF (bidirectional
reflectance distribution function) surface scattering model.
Our material mapping rules are summarized in Fig. 4.

D. Image Composition

We use an image composition method described in [8] to
insert the 3D objects while blending their shadows into the
background image. We render the following images for each
road scene to obtain the necessary images for final image
composition and depth maps:

• Iall: Road plane and 3D car models
• Iobj : 3D car models only
• Ipl: Road plane only
• Individual depth map for each 3D car model
All images are rendered with Mitsuba’s options to hide

directly visible emitters (in our case, the environment map)
and enable the image’s alpha channel. Then, the masks Mall

and Mobj for Iall and Mobj , respectively, are easily obtained.
To remove potential pixel artifacts on object and plane

edges, we erode the boundaries of regions of foreground
pixels. Next, we calculate the edges, or contours, of the
object mask Mobj and apply Gaussian blurring. Then, we
alpha blend the blurred contours with the original contours.

Finally, to compute the new, composited image Inew, we
calculate the pixel values in the object region by pixel-wise
multiplication (indicated by ⊙):

Inew ⊙Mobj = Iall ⊙Mobj (1)

For the pixel values in the plane region:

Inew ⊙ (Mall −Mobj) = I ⊙ Iall
Ipl

⊙ (Mall −Mobj) (2)

IV. RESULTS

We present image examples of results produced from our
synthetic road scene generation method (Fig. 5, Fig. 6).
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Note in each generated result, the rendered cars respect
the scene lighting and geometry while exhibiting physically
accurate reflections. Additionally, there are very few visible
differences between the synthetic images and real world
photos.

Fig. 5: An image example produced using our augmented
reality-based data generation method. All cars in the image
were rendered and inserted.

Fig. 6: An example of a real traffic camera photo, with one
rendered vehicle inserted for comparison (the black SUV
second from the bottom of the image)

For our rendering settings, we chose a volumetric path
tracer in order to handle the relatively glossy car materials.
We chose to render 1000× 750 images at a sample count of
32 with a maximum path depth of 4 to balance the tradeoff
between higher quality results and longer rendering times. In
addition, we decided to render a random number between 10
and 20 vehicles, inclusive, to provide many vehicle examples
in one image while maintaining reasonable rendering times.

Using these settings, we found that on one machine with
16 CPU cores, the rendering times for a single scene roughly

vary between 200 and 400 seconds, with times largely being
determined by the number of vehicles in the image. However,
because one Mitsuba process will use at most 2GB of RAM
for our method, multiple dataset generation and rendering
processes can be launched simultaneously to produce a large
synthetic image dataset.

V. CONCLUSION AND FUTURE WORK

The results demonstrate that our augmented reality-based
method for synthetic road scene generation produces more
photorealistic results compared to previous 3D object in-
sertion works. Additionally, the results suggest that our
approach can be readily used to generate road scene images
and precise ground truth labels for computer vision tasks
like object segmentation, construction zone detection, object
tracking, 3D pose estimation, and more.

In future work, we plan to evaluate whether our synthetic
data and precise depth maps (Fig. 7) improve training and
performance of amodal segmentation models, which aim to
predict the object’s full segmentation mask despite visual
occlusions [19]. We also plan to generate sets of traffic scenes
that contain rare objects (Fig. 8) and object configurations
(Fig. 9). We will evaluate whether adding these scenes helps
improve object detection training and robustness.

Overall, these steps will allow us to discover how syn-
thetic data generation can potentially augment existing vision
datasets and train more robust computer vision models.

Fig. 7: We can compute the unoccluded segmentation masks
from our output depth map and use them to train amodal
segmentation models.

Fig. 8: Examples of rare objects: ambulance, firetruck, con-
struction vehicle
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Fig. 9: Example of a rare object configuration: Anomalous
traffic pattern
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Control Strategy Design for Bridge Painting using Image-based
Visual-servoing on a Fully-Actuated UAV

Guanqi He1, Junyi Geng2, and Sebastian Scherer2

Abstract— Bridge painting is an essential work in urban
maintenance. However, so far most of these works are mainly
carried out by humans, which have the disadvantages of low
efficiency, inconsistent quality, and issues of safety and health
for human. A new vision-based hybrid motion and force con-
troller is proposed for fully-actuated aerial vehicles to automate
the bridge-painting work. Most of related interactive force
control schemes for fully-actuated multi-rotors are designed
for an indoor setting, where the position and velocity are
measured with extra setup, i.e. motion capture system. However,
in practical outdoor situations, the global position measurement
can hardly be acquired. To tackle this challenge, we take
advantage of image based visual-servo motion control strategy:
recognize image features and directly compute control output
via the pixel error rather than pose or velocity feedback. This
approach does not rely on additional external sensors, such as
RTK, GPS or ground station but only a minimal set of local
sensors. Wall painting simulations is conducted to illustrate the
performance of the proposed control scheme.

Index Terms— Aerial Systems: Applications, Force Control,
Motion Control, Visual Servoing

I. INTRODUCTION

Bridge painting is an essential work in urban maintenance.
Currently most the bridge painting works are completed
manually, which suffers from low efficiency and safety risks.
Also, the manual approach has the problem of increasing
manpower costs and shortage of skilled workers at present,
leading to the decline in the painting quality. Apart from
painting by workers, some introduce robotic arm to com-
plete bridge polishing and painting tasks. However, because
robotic arms are fixed on the ground and lack of mobility, it
is challenging for traditional manipulators to flexibly paint
the bridge surface.

In this paper, we propose an our-door setting bridge-
painting strategy using Fully-Actuated UAV. In the outdoor
situation, the robot can only rely on a minimal set of local
sensors, like IMU and camera. To tackle this challenge, we
develop a hybrid force and visual-servoing control scheme.
The rest of the paper is developed as follow: Section II in-
troduces related works about line-based visual-servoing and
force control with multi-rotors; Section III gives an overview
of the painting strategy; In section IV, multi-rotor system
dynamics is described; Section V illustrates the details of
controller design, including contact force controller, visual-
servo controller and attitude controller. And finally, Section
VI presents the simulation experiments and results.

1 ShanghaiTech University, Shanghai, China
hegq@shanghaitech.edu.cn

2 The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA
15213, USA. {junyigen, basti}@andrew.cmu.edu

Fig. 1. A fully-actuated hexarotor used in this work

II. RELATED WORKS

A. Line-based visual-servoing

Line-based visual servoing has been widely discussed. In
[1], Espiau and Chaumette derived the interaction matrix
of visual-servoing with line tracking feature. In [2], Araar
and Aouf proposed a classical image-based visual servoing
(IBVS) approach for the real time navigation of a quadrotor
tracking power lines. [3] proposed an approach that solves
the problem of automatic selection of the threshold during
line tracking.

According to [1], a 3-D line can be represented as the
intersection of two planes:{

A1X +B1Y + C1Z +D1 = 0
A2X +B2Y + C2Z +D2 = 0

Its 2-D projection on the image plane is parameterized
with (ρ, θ) ∈ [0,∞) × [0, 2π), as known as the Hough
parameter. In [1], the interaction matrix between the line
feature parameter and the camera frame velocity has been
derived:

[
θ̇
ρ̇

]
= L

[
V
Ω

]
(1)

with

L=

[
λθ cos θ λθ sin θ −λθρ −ρ cos θ −ρ sin θ −1
λp cos θ λp sin θ −λpρ (1 + ρ2) sin θ −(1 + ρ2) cos θ 0

]
(2)

where λθ = (Ai sin θ−Bi cos θ)/Di and λp = (Aiρ cos θ+
Biρ sin θ + Ci)/Di. It is worth to mention that the 3-D
line expression (1) is expressed in the camera frame, which
means the parameters Ai, Bi, Ci and Di are varying with
the movement of the drone. Basically, we need to extract the
target tracking line on the image then reconstruct the line
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parameters to calculate the time-varying interaction matrix
L.

B. Accurate force control with multi-rotor

Accurately control of the interaction force between the end
effect and the bridge surface is essential to keep high bridge-
painting quality. [4] proposed an impedance controller to
realize the force interaction between UAV and environment.
On this basis, the accurate feedback of the force is added
to achieve accurate force control. In [5], [6], an energy-
tank based wrench control algorithm is proposed, which
effectively control the interaction force with dynamic envi-
ronment, and the stability of the scheme has been rigorously
proved. In this paper, we adopt an impedance integral force
controller based on RGBD camera depth feedback and force
sensor to control the interaction force when brushing the
bridge.

III. STRATEGY OVERVIEW

In this section, we will present our bridge painting strategy.
Precise motion control of the UAV in the outdoor environ-
ment are required in the bridge-painting. Due to the poor
GPS signal near the bridge, the global position measurement
can hardly be acquired during the painting process. To tackle
this challenge, we directly use image features and pixel error
to feedback and control the motion of the robot, that is, image
based visual-servoing control.

We assume that the boundary edges of the painting surface
can be detected if they appear in camera view. In the first
step, the drone moves close to the bridge to a pre-selected
starting point by GPS Here we assume that the drone selects
the bottom right corner as the starting point. Then the drone
starts to track the bottom edge and paints the bridge side
from right to left. As the robot arrives to the other side,
it tracks the vertical edge to move up and then switches
literal moving direction to paint back. When the robot is
painting, the new edge is forming between the painted and
unpainted area, which serves as visual tracking signal for
future painting process. For example, in figure 3, the drone
will track the yellow line (bottom edge) first and paint the
blue area. Then the drone will move up and track the red
line (new formed painting edge) to paint back.

Fig. 2. visual-servoing based wall painting

Fig. 3. Sketch of bridge painting strategy

IV. MULTI-ROTOR DYNAMICS

The dynamics of the fully-actuated UAV is governed by

mV̇ = −mΩ×V + F

JΩ̇ = −Ω× JΩ+M (3)

where F = −T +mgR⊤e3, Ω ∈ R3, and V ∈ R3 denotes
the angular and linear velocity of the vehicle with respect
to body frame {B}, m is the mass of the vehicle, e3 =[
0 0 1

]⊤
is the unit vector, J is the body frame inertia,

F ∈ R3 and M ∈ R3 are the general external force and
torque vector which expressed in the body frame, g ∈ R is
the gravity acceleration and R ∈ SO(3) is the rotation matrix
describing the gravity direction. What’s more, three sets of
reference frames are defined for further controller design and
analysis: a body-fixed frame {B}, a camera frame {C} and
an end-effector frame {E}.

V. CONTROLLER DESIGN

We divide the objective of the bridge painting task into
three sub-tasks: 1) force control orthogonal to the contact
surface. 2) attitude control ensuring end-effector opposite to
the contact surface 3) motion control in the plane parallel to
the wall.

For interaction force control, we utilize force sensor to
acquire accurate contact force feedback. For the attitude
control, the normal vector of the contact surface is obtained
by the depth camera to feedback the attitude of the robot.
And visual-servoing line-tracking is used for motion control.

For simplicity, before we illustrate the detailed design of
controller, let’s set up a reference frame {W} on the working
surface (the wall to be painted) first. Let xW , yW , zW be
the X axis, Y axis and Z axis unit vector of frame {W},
respectively, where xW is aligned with surface norm pointing
into the contact surface, yW is aligned with line direction,
and zW = xW×yW . The origin OW is placed on the contact
point. The transition matrix WTC can be obtained through the
surface normal vector Cn ∈ R3 with respect to camera frame
and the line direction vector l ∈ R2 on image plane. By the
definition of wall frame {W},

CxW = Cn (4)
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As line direction vector l is the projection of CyW on the
image plane, we have

ly
lx

=
CyWy

CyWx
CxW · CyW = 0

∥CyW∥ = 1 (5)

CyW can be obtained by solving the equation above, and
CzW = CxW × CyW . Then the obtained results is applied
to construct the rotation matrix CRW =

[
xW yW zW

]
.

Since the origin of wall frame and end-effector frame is
overlapped, COW = COE . Next, the design of the force,
attitude and visual servo controller will be discussed.

A. Force controller

One of the requirements of painting task is to keep the end-
effecot touch with the contact surface and maintain a certain
pushing force while the drone is moving. Here an explicit
force controller is introduced to achieve stable force control.
Define contact force error F̃w = Fw,s − Fw,d, where Fw,s
denotes the contact force measured by the force/torque sensor
and Fw,d denotes the desired contact force. The explicit form
of generated contact force F is as follow

Ḟw = KwF̃w, Fw(0) = F0 ∈ R (6)

where Kw is the tuning gain. Due to the control input F is
defined and generated in body frame {B}, we convert Fw
from wall frame {W} to the body frame {B}.[

Fw
Mw

]
= BVWFwe1 (7)

where e1 =
[
1 0 0 0 0 0

]⊤
is the unit vector, BVW

is the matrix that transforms velocities from the wall frame
to the body frame.

BVW =

[ BRW 03×3

[BtW ]×
BRW

BRW

]
(8)

where BRW is the rotation matrix between the wall frame
and the robot body, BtW is the corresponding constant
translation vector and [t×] is the skew-symmetric matrix
related to t.

B. Contact attitude controller

Another important factor which effects the painting quality
is the attitude of the end-effector during the painting process.
The ideal condition is keeping the end-effector orthogonal to
the contact surface . To achieve this goal, we use the normal
vector n of contact surface obtained via RGB-D camera as
the attitude feedback.

Here a simple state-feedback attitude controller is pro-
posed. Define yaw angle error eψ = ψ − ψd, pitch angle
error eθ = θ−θd and ea =

[
0 0 0 0 eθ eψ

]⊤
, where

relative angle measurements ψ and θ are calculated using
surface normal vector.

En = ERC
Cn

ψ = arctan

( Eny
Enx

)

θ = arctan

 Enz√
En2

x +
En2

y

 (9)

A PI controller is implemented to control the robot attitude
orthogonal to the surface.[

Fa
Ma

]
=BVC

(
Kpea(t)+Ki

∫ t

0

ea(τ)dτ

)
−Kd

[
03

Ω

]
(10)

where 03 =
[
0 0 0

]⊤ ∈ R3.

C. visual-servoing tracking controller

As discussed in previous sections, the drone needs to
smoothly track the edge of the bridge or the line painted
previous. Here we introduce a line-based IBVS controller to
ensure the motion of end-effector is aligned with the tracking
line.

Let q = (θ, ρ)⊤ denotes the line parameter on the image
plane, qs = (θs, ρs)

⊤ denotes the tracking target and eq =
q− qs denotes the visual servoing error. The error dynamics
reads as

ėq = q̇ − q̇s (11)

= Lsc

[
V
Ω

]
− q̇s (12)

ëq = Lsc

[
−Ω×V +m−1F

−J−1Ω× JΩ+ J−1M

]
− q̇s (13)

The visual servoing controller is then given as below.[
Fv0
Mv0

]
=

[
03

Ω× JΩ

]
+

L†
sc

[
Kv,peq +Kv,i

∫ t

0

eq(τ)dτ +Kv,dėq(t) + q̇s

]
(14)

where L†
sc is the pseudo-inverse of matrix Lsc Consider the

fact that the controller only focuses on roll angle ϕ and z-
direction distance Wz in wall frame, define the selection
matrix

WSv = O2×2 ⊕ I1×1 ⊕O2×2 ⊕ I1×1 ∈ R6×6 (15)

Convert the selection matrix into body frame we have

BSv =
BRW

WSv
WRB (16)

Finally, the expression of visual servo controller is written
as bellow [

Fv
Mv

]
= BSv

[
Fv0
Mv0

]
(17)
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D. General Controller Form

In the end, sum all three controllers proposed above, the
general form of the controller is given below.[

F
M

]
=

[
Fw
Mw

]
+

[
Fa
Ma

]
+

[
Fv
Mv

]
(18)

In our controller frame work, desired contact force Fw,d,
desired tracking line parameter (ρd, θd) and desired attitude
ψd, θd are serve as the input, and wrench {F,M} are the
output. The low-level firmware of the PX4-fully-actuated [7]
allocates the force and torque to the propeller speed. The
scheme of the proposed controller is shown in the diagram
below Fig 4.

Fig. 4. Architecture of the wall-painting controller

VI. EXPERIMENTS AND RESULTS

To assess the performance of the proposed control scheme,
we model the fully-actuated UAV in both Gazebo simulator
and Matlab Simulink based on the design described in [7].
The dynamic control allocation is developed on top of the
PX4 source code, which can run directly on real aircraft.

In the simulation, the drone is initialized at the origin. The
drone moves close to the bridge using GPS guidance, then
starts to paint 8 meters bridge side wall. Simulation results
show that the proposed approach succeeded in tracking the
bottom line, maintaining a stable attitude and desired contact
force. Figure 6 presents the 3D motion trajectory of the
drone with visual-servo controller. For visual-servo controller
(Figure 7), the average tracking error is less than 0.04 (about
1.6 cm) , providing a efficient height control. For force
controller, Figure 9 shows that average force tracking error
is within 0.11N, ensuring stable wall painting.

VII. CONCLUSION

In this paper, a novel image-based visual-servoing bridge-
painting scheme for fully-actuated UAV is proposed. The
scheme consists of three controllers: visual-servoing height
controller, surface norm based attitude controller and
impedance integral contact force controller. Simulation re-
sults present the validity of the proposed approach.

In the future, the algorithm will be migrated to the
hardware platform and tested in both indoor and outdoor

Fig. 5. Wall-painting in Gazebo

Fig. 6. 3D trajectory of the painting task

environment. What’s more, the velocity control on the track-
ing direction WY only takes IMU as the feedback, which
suffers from integral drift. Next step we will add an optical
flow controller on this direction, using sparse visual feature
to achieve velocity close-loop control.
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Introspective, Explainable Action Advising

Gus Brocchini1, Yue Guo2, Joseph Campbell2, Simon Stepputtis2, and Katia Sycara2

Abstract— Action advising on a budget is a common frame-
work for transfer reinforcement learning. Recent work [1] has
extended action advising to provide an explanation along with
the action so that advice can be reused, improving performance
on the same advice budget. However, often in transfer learning,
we want to use a teacher that has been trained on a different
but related task to the student’s. In this case, advice reuse
could stop the student from visiting preferable states to the
ones the teacher tends towards, decreasing performance. We
propose a framework for teacher introspection that allows the
teacher to avoid or retract bad advice. By treating the student’s
experience as off-policy RL data for the teacher, we calculate the
temporal difference (TD) error according to the teacher’s value
function. If the states associated with a certain explanation have
a large, consistent TD error, the teacher can avoid giving that
explanation, or retract it if already given.

Index Terms— Deep Learning Methods, Reinforcement
Learning, Transfer Learning,

I. INTRODUCTION

A central problem in machine learning is sample ineffi-
ciency; it often takes artificial agents orders of magnitude
more experience than human agents to achieve comparable
performance on a task. If we already have an agent that
performs well at a similar task, we can leverage that expert
agent’s knowledge to teach a new agent, thereby accelerating
learning. [2] In reinforcement learning, a standard method
for transferring knowledge between agents is action advising
on a budget, where the teacher recommends actions to the
student, constrained by a communicatioin budget. [3]

Part of the reason that action advising is effective in
reinforcement learning is because the student’s training data
is dependent on its performance. If the student behaves
more like an expert early in training, it is more likely to
develop experience—and therefore good decision making—
in the areas it will encounter when it becomes an expert
at its task. One can imagine the case of a self-driving car;
without action advising, the student is likely to spend the
early stages of training learning effective strategies for how
to get back on the road after having driven off. Of course,
this knowledge will largely be wasted once it learns to simply
stay on the road. Ideally, action advising lets us skip learning
these intermediate skills that are primarily needed for non-
expert agents.

A limitation of action advising, when compared to human
teaching and learning, is the inability to reuse advice except
when the exact same state occurs. [1], [4] Several methods

1Gus Brocchini is with the Department of Computer Science, Yale
University, New Haven, CT, USA gus.brocchini@yale.edu

2Yue Guo, Joseph Campbell, Simon Stepputtis, and Katia Sycara are with
the Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA
{yueguo,jcampbell,stepputtis,katia}@cmu.edu

have been proposed to address this. In this paper, we extend
the method proposed in [1], which provides an explanation
with the advice. If this explanation fits for other states, the
student can reuse the advice.

The most common motivating factor for using student-
teacher interactions—with some exceptions, notably if either
agent is a human or if a different policy model is preferable
for some reason—is that the teacher and the student are
trained on distinct but related tasks. In this transfer learning
scenario, there is some theoretical danger to [1]’s explainable
action advising. Because the teacher is not an expert agent, in
certain states, the teacher will systematically bias the student
away from expert states instead of towards them.

So, we must somehow avoid giving bad advice. The naı̈ve
approach is to use the student’s value function to evaluate
the teacher’s advice. This, however, depends on the student’s
value function being approximately accurate, and once the
student achieves that level of performance it is better to
ignore the teacher’s advice altogether. In other words, the
teacher is only useful when the student is bad. Therefore,
we cannot rely on the student’s model at all.

Instead, we can use the student’s experience as off-policy
RL data to evaluate the teacher’s policy. At each timestep,
we use the teacher’s Q function to calculate its TD error,
giving a measure of how well the teacher predicts the
environment’s behavior. The TD error has the advantage of
directly measuring the teacher’s knowledge of the student’s
task—even if the student is experiencing states very different
from the teacher’s, the teacher will give advice if its error
is low. These errors can be aggregated by the leaves of the
decision tree, thereby giving a score for each explanation.
The teacher can avoid giving explanations that have large
errors, and can even retract past explanations if it realizes
they may be wrong.

II. BACKGROUND

A. Reinforcement Learning

Reinforcement learning describes a class of methods for
training an artificial agent on decision making problems. The
task and environment are modeled as a Markov Decision
Process (MDP), which is a tuple (S,A,R, T, γ), where S is
the set of states, A is the set of actions, R : S×A×S → R
is the reward function, T : S × A × S → R defines the
state transitions and γ ≤ 1 is the discount factor. At each
timestep t, the agent recieves a state st and performs an
action at, transitioning to state st+1 and recieving reward
rt. Actions are determined by a policy π : S → A and the
agent optimizes the total discounted reward

∑
t γ

trt.
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B. Action Advising

In reinforcement learning, action advising on a budget has
been proposed as a model-agnostic method for transfer learn-
ing. [3] In action advising, the student announces its observed
state and the action it intends to take at each time step. Then,
the teacher decides (using a heuristic function) whether or not
to recommend a different action to take instead. The teacher
is constrained by an “advice budget”—the number of times it
is allowed to issue advice. Action advising has the significant
benefit of not making any assumption about the architectures
of either the teacher or student; they need only share an
action set. This makes teaching across architectures—or even
between humans and artificial agents—easy.

There are several common heuristic functions used to
determine whether or not to issue advice. [3] The sim-
plest is early advising, where the teacher issues advice at
every timestep until the advice budget runs out. Another
heuristic is importance advising, where the teacher uses
its Q function to calculate the importance of a state s as
I(s, a) = maxa Q(s, a) −mina Q(s, a) and gives advice if
this importance crosses a certain threshold. In mistake cor-
recting, the teacher gives advice only if a state is important
enough and the student’s announced action differs from the
teacher’s recommended action.

III. RELATED WORK

A. Advising under uncertainty

Some work has been done on action advising under
uncertainty, especially in the multi-agent case. In [5], agents
learn and teach each other simultaneously, using the number
of times a state has been visited as a proxy for confidence in
prediction. This works best with a small, discrete state space,
although it can be adapted for continuous environments by
segmenting the state space into regions. The main drawback
of this work is that it relies on the students and teachers
sharing the same environment. In our scenario, the number
of times the teacher has visited a state has no bearing
on whether that state behaves simlilarly in the student’s
environment.

In [6], agents, in addition to learning to perform their task,
learn to ask for and give advice. This is a theoretically robust
method for teaching and learning, but introduces complexity
with a second learning step, and is again tailored for the case
where all agents share a single environment.

In [7], the student requests advice when it is highly
uncertain about what action to take. This does not translate
well to our task-transfer scenario, where the teacher, having
converged on its original task, is likely to be very confident
in its predictions regardless of whether they are correct for
the student’s task.

B. Advice Reuse

In [4], the student’s exploration method is modified to oc-
caisionally reuse previously recieved advice using imitation
learning. This makes the connection between action advice
and better exploration explicit. The authors use early advising

which allows the student to collect a full dataset of teacher
advice before using behavioral cloning to imitate it.

[8] proposes several methods for the student to decide
whether to explore, reuse advice, or follow its own actions.
These methods include using the student’s value function to
evaluate past advice; following the advice a set number of
times and then forgetting it; and a decaying reuse probability.

In [1], an explanation, in the form of a path down a
decision tree, is provided with the action advice so that the
student can generalize advice to similar states. This leads to
better performance on the same advice budget as the student
is able to use the teacher’s advice in more situations, and
is the basis for this work. The student reuses advice with a
decaying probability, as in [8].

IV. METHODOLOGY

Algorithm 1 Introspective Explainable Action Advising
Inputs: Teacher value function Q, teacher policy π∗, heuris-
tic function h. Parameters: Advice budget b, memory decay
rate λ < 1, error threshold e.

1: Distilled decision tree π̂∗ = V IPER(π∗)
2: Reconstructed tree π′ = ∅
3: Initialize student policy π
4: Initialize TD error aggregate E to 0 for all paths on π̂∗

5: for iter i = 1, 2, . . . do
6: for timestep t = 1, . . . , T do
7: δ = Q(st−1, at−1)− rt−1 − γQ(st, at)
8: update E with δ, path(π̂∗, st−1)
9: if st ∈ π′ then

10: with probability λi: take π′(st)
11: otherwise: take π(st)
12: else if b > 0 and h(st) and |E(st)| < e then
13: give advice at = ˆπ∗(st)
14: reconstruct tree π′ = π′ ∪ path(π̂∗, st)
15: b = b− 1
16: else
17: take student action π(st)
18: end if
19: end for
20: for path p in π̂∗ do
21: if b > 0 and p ∈ π′ and |E(p)| > e then:
22: π′ = π′ \ p
23: b = b− 1
24: end if
25: end for
26: update π according to policy optimization
27: end for

The algorithm for IE-AA is derivative of the original E-AA
algorithm from [1]. It takes the teacher’s policy and value
function, along with parameters for advice budget and the
rate of memory decay. The error threshold is the threshold
above which advice will be retracted. The first step of the
algorithm is to distill the teacher’s policy into a decision
tree using VIPER, as described in [9]. Then, the algorithm
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runs largely the same as E-AA, reusing advice with a certain
probability dependent on the memory decay rate, and giving
advice when the heuristic function says to.

The differences are in that each timestep, the running
average TD error E is updated, and if E is greater than
the threshold e, advice is not given. Then, at the end of
each episode, if any previously given advice now has error
over the threshold, the teacher retracts the advice. (This also
decrements the advice budget, as the budget is meant to
constrain communication between the teacher and student.)

V. EXPERIMENTAL SETUP

Due to difficulties in training and a desire to get at least
preliminary results for this paper, we used a simplified 8x8
gridworld environment. The students were trained on an
environment that had a wall with a one-unit gap between
the agent and the goal, and the teacher was trained on the
same environment without the wall. An exploration bonus in
the form of a penalty for shortest-path distance to the goal
was included to speed up training.

Also for simplicity, we represented the state symbolically.
The location of the opening in the wall and the goal were
represented relative to the position and direction of the
agent, and two additional variables were included to indicate
whether the agent was past the opening in the wall and
whether the tile directly in front of the agent is a wall. The
decision tree was trained on these same features.

VI. RESULTS

Fig. 1. Preliminary results showing average episode length for four
different advising schemes. The heuristic function used for all schemes was
alternating advising with an interval of 5. Dotted lines indicate when the
advising budget ran out.

At this time, we only have extremely preliminary results.
These results, using alternating advising with an interval of
5, demonstrate that explanations can in fact lead to decreased
performance compared to standard action advising, or even
no advising. The results from introspection are inconclusive,
as the introspection parameters have not been tuned.

ACKNOWLEDGMENT

This work was supported by the Robotics Institute Sum-
mer Scholars program. A special thanks goes to the directors
of the program, Rachel Burcin and Dr. John M. Dolan, for
their direction.

REFERENCES

[1] Y. Guo, J. Campbell, S. Stepputtis, R. Li, D. Hughes, F. Fang, and
K. Sycara, “A teacher-student policy transfer framework for giving
explainable action advice in multi-agent reinforcement learning,” 2022.

[2] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and
Q. He, “A comprehensive survey on transfer learning,” Proceedings of
the IEEE, vol. 109, no. 1, pp. 43–76, 2020.

[3] L. Torrey and M. Taylor, “Teaching on a budget: Agents advising
agents in reinforcement learning,” in Proceedings of the 2013 inter-
national conference on Autonomous agents and multi-agent systems,
2013, pp. 1053–1060.

[4] E. Ilhan, J. Gow, and D. Perez-Liebana, “Action advising with
advice imitation in deep reinforcement learning,” arXiv preprint
arXiv:2104.08441, 2021.

[5] F. L. Da Silva, R. Glatt, and A. H. R. Costa, “Simultaneously learning
and advising in multiagent reinforcement learning,” in Proceedings of
the 16th conference on autonomous agents and multiagent systems,
2017, pp. 1100–1108.

[6] S. Omidshafiei, D.-K. Kim, M. Liu, G. Tesauro, M. Riemer, C. Amato,
M. Campbell, and J. P. How, “Learning to teach in cooperative multi-
agent reinforcement learning,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 33, no. 01, 2019, pp. 6128–6136.

[7] F. L. Da Silva, P. Hernandez-Leal, B. Kartal, and M. E. Taylor,
“Uncertainty-aware action advising for deep reinforcement learning
agents,” in Proceedings of the AAAI conference on artificial intelli-
gence, vol. 34, no. 04, 2020, pp. 5792–5799.

[8] C. Zhu, Y. Cai, H.-f. Leung, and S. Hu, “Learning by reusing
previous advice in teacher-student paradigm,” in Proceedings of the
19th International Conference on Autonomous Agents and MultiAgent
Systems, 2020, pp. 1674–1682.

[9] O. Bastani, Y. Pu, and A. Solar-Lezama, “Verifiable reinforcement
learning via policy extraction,” Advances in neural information pro-
cessing systems, vol. 31, 2018.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

80



Leveraging Structure from Motion to Localize Inaccessible Bus Stops

Indu Panigrahi1, Tom Bu2, and Christoph Mertz2

Abstract— The detection of hazardous conditions near pub-
lic transit stations is necessary for ensuring the safety and
accessibility of public transit. Smart city infrastructures aim
to facilitate this task among many others through the use
of computer vision. However, most state-of-the-art computer
vision models require thousands of images in order to perform
accurate detection, and there exist few images of hazardous
conditions as they are generally rare.

In this paper, we examine the detection of snow-covered
sidewalks along bus routes. Previous work has focused on
detecting other vehicles in heavy snowfall or simply detect-
ing the presence of snow. However, our application has an
added complication of determining if the snow covers areas
of importance and can cause falls or other accidents (e.g.
snow covering a sidewalk) or simply covers some background
area (e.g. snow on a neighboring field). This problem involves
localizing the positions of the areas of importance when they
are not necessarily visible.

We introduce a method that utilizes Structure from Motion
(SfM) rather than additional annotated data to address this
issue. Specifically, our method learns the locations of sidewalks
in a given scene by applying a segmentation model and SfM
to images from bus cameras during clear weather. Then, we
use the learned locations to detect if and where the sidewalks
become obscured with snow. After evaluating across various
threshold parameters, we identify an optimal range at which
our method consistently classifies different categories of side-
walk images correctly. Although we demonstrate an application
for snow coverage along bus routes, this method can extend
to other hazardous conditions as well. Code for this project
is available at https://github.com/ind1010/SfM_for_
BusEdge.

Index Terms— Computer Vision for Transportation, Intelli-
gent Transportation Systems, Localization, Segmentation and
Categorization

I. INTRODUCTION

Smart city infrastructures aim to use fields like computer
vision to facilitate city management, part of which involves
overseeing transportation systems. As transportation systems
become more intelligent, an increasing amount of public
transit vehicles are equipped with cameras that capture thou-
sands of images of the city per day along with geographic
positioning information. City infrastructures can use this
immense amount of raw data to monitor the conditions of
public transit stations and the surrounding areas.

Our application focuses on detecting snow-covered side-
walks along bus routes; snow-covered sidewalks are one

1Indu Panigrahi is with Robotics Institute Summer Scholars Program at
Carnegie Mellon University, Pittsburgh, PA 15213, USA and also with the
Department of Computer Science at Princeton University, NJ 08544, USA
indup@princeton.edu

2Tom Bu and Christoph Mertz are with the Robotics Institute
at Carnegie Mellon University, Pittsburgh, PA 15213, USA tomb,
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type of hazardous condition that can limit the safety and
accessibility of public buses as pedestrians can lose access
to bus stops and/or slip (Fig. 1). We use images that are
captured on-board a public bus as data. However, instead
of annotating this data, we leverage the fact that the bus
travels around a set route and apply Structure from Motion
and a segmentation model to learn the locations of the
sidewalks in clear weather. Then, in future rounds, when
the bus encounters snowfall, we compare the detected snow
coverage to the learned locations of the sidewalks. If the
coverage exceeds a set threshold, we generate an alert, and
the bus company can contact the city to clear the sidewalk.

Fig. 1: Snow-covered sidewalk leading to a bus stop.

When evaluating on a few categories of sidewalk images,
we identify a set of thresholds at which our method per-
forms well across all categories for this bus route. Though
we demonstrate an application for detecting snow-covered
sidewalks, our method can generalize to detecting other
conditions such as snow on roads or bike lanes.

Our contributions are as follows:
• We present a method that combines Structure from

Motion with a segmentation model to learn the expected
locations of sidewalks and detect whether or not the
learned sidewalk locations become covered by snow.

• Although we demonstrate by detecting snow-covered
sidewalks, our method can easily generalize to other
problems.

• We collect a small dataset of images depicting sidewalks
in clear and snowy weather that we use for evaluation.
Additionally, we compile other categories of images that
may be relevant for other works.

II. RELATED WORK

A. Existing Municipal Infrastructures
Many American cities use the telephone number 311 that

allows anyone to report issues for the city to fix, such
as snow-covered sidewalks. However, this process can be
inefficient as it is decentralized and relies on the motivation
of people.
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B. BusEdge

Since buses regularly travel around cities, and many are
equipped with cameras, we can facilitate the detection of
municipal problems by regularly analyzing bus camera im-
ages. We use a platform called BusEdge [1] that captures and
packages images with GPS information from the client (bus)
and sends the data to the server (cloudlet) to be analyzed
(Fig. 2). Intensive on-board analysis can be limited because
the bus is equipped with a CPU.

Fig. 2: Overview of BusEdge Platform. Figure adapted from
Fig. 3.1 in [1].

C. Panoptic Segmentation

Panoptic segmentation combines semantic and instance
segmentation by both categorizing pixels that represent un-
countable areas (e.g. snow) and grouping pixels into in-
stances if they belong to countable objects (e.g. cars) [2].
Although our application involves semantic segmentation
categories, we employ a panoptic segmentation model so
that our method can be extended more easily for applications
where instances are needed.

We apply an off-the-shelf segmentation model called
Mask2Former [3]. This model incorporates a Transformer
decoder. Transformers have recently become a popular op-
tion for computer vision models in terms of accuracy [4].
They are not necessarily more efficient; however, since our
application is not significantly time-sensitive (i.e. the bus
company can be informed of a snow-covered sidewalk within
a few hours rather than within a few seconds), we prioritize
accuracy over efficiency.

D. Snow Detection.

Most work has focused on detecting the presence of
snowfall [5]–[8] and localizing the presence of vehicles and
other objects in adverse weather conditions such as snow [9]–
[11]. However, in addition to detecting snow, our application
has the added complication of localizing the positions of
sidewalks that are occluded by snow.

To our knowledge, there exists no dataset that contains
labeled snow-covered sidewalks. Synthetic images are com-
monly used to artificially enlarge datasets; however, they
are difficult to render realistic-looking [12]. Furthermore,
training a deep learning model to classify an image as a
“snow-covered sidewalk” would not be straightforward as
any miscellaneous snow-covered area could look identical to
a snow-covered sidewalk (Fig. 3).

Fig. 3: Classifying an image as a snow-covered sidewalk is
difficult because the area under the snow is not visible.

E. Image Localization.

LiDAR is often used to localize the positions of objects
surrounding an autonomous vehicle, such as other vehicles
[13]–[18]. However, LiDAR is expensive, and we already
have thousands of images available from bus cameras [19].
Furthermore, weather conditions like snow can interfere with
LiDAR measurements [19].

Some methods have been developed for an analogous
problem of localizing roads in adverse weather conditions.
Some applications depend on a previously generated map
of the terrain [20]; we apply a similar idea of generating
a preconception of where the sidewalks should be. A few
methods use the geometry of the road, such as the vanishing
point of the road and the horizon in the image, to generate an
expected target area for where the road could be [21], [22].
Another method uses self-supervision to generate a pseudo-
mask of where the road is expected to be [23]. However,
these approaches are more effective in weather conditions
under which the road is partially occluded, such as fog or
rain. They are generally unable to localize roads that are
fully occluded by snow. Furthermore, these methods target
the autonomous driving domain where they must anticipate
completely novel surroundings on any given drive. On the
other hand, we leverage the fact that we work with images
from a mostly repetitive bus route.

Structure from Motion (SfM) [24], [25] is a classic com-
puter vision algorithm that uses several two-dimensional
images taken at different angles of a scene to construct a
three-dimensional point cloud representation of the scene.
Furthermore, SfM can deduce the pose of the camera for
each image and for new images of the same scene [26]. We
use a pipeline for SfM called COLMAP [27], [28]. More
specifically, COLMAP implements incremental SfM which
gradually adds images when reconstructing a scene (Fig. 4);
this is as opposed to global SfM [29].

Visual odometry (VO) methods can also localize images
[30] and tend to run faster than COLMAP; however, they are
not as accurate. Furthermore, VO methods that involve deep
learning [31] are inherently data-hungry, and our method
aims to reduce the amount of annotated data needed. Since
our application is not significantly time-sensitive, and we
need to accurately classify a sidewalk as snow-covered or
clear, we require a robust pipeline like COLMAP. Further-
more, the COLMAP software is well-documented and often
referenced as a baseline method by these new methods.
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Fig. 4: Steps for incremental SfM. Figure from Fig. 2 in [27].

III. METHOD

For simplicity, we describe our method for one stretch of
road that includes a bus stop.

A. Data collection
We use images captured from the dash camera on a

bus (Fig. 5a) that travels around Pittsburgh and Washington
County, Pennsylvania (Fig. 5b). The camera captures 5
frames per second. Duplicate and blurry images are removed,
and the remaining images are sent to a server via the
BusEdge Platform [1]. The images, along with their GPS
and IMU information, are stored as EXIF files in folders of
.bag files. We have data beginning from February 2021.

We choose images corresponding to a stretch of the route
with a visible sidewalk in clear weather. Then, using the
GPS information of the selected images, we filter images
from other clear-weather days to obtain a few runs of the
same sidewalk stretch.

We omit images within the selected GPS range where the
bus travels on the opposite side of the road (i.e. returning on
the same route) so as to focus on one side of the road. This
omission is not strictly necessary. Some images have a strong
glare from the sunlight and consequently the scenes in these
images are extremely dim, so we remove these images. In the
end, we keep three runs of the same stretch of sidewalk in
clear weather. We use a similar process to collect different
categories of sidewalk images for evaluation (described in
Sec. IV).

B. Reconstruction of ground truth sidewalks
The steps detailed in this section are adapted from an

analogous work in the detection of changes in crosswalks
[32]. For this application, the overall idea is to save the
sidewalk locations into a 3D rendering of the scene (Fig.
6a).

1) Use reference images to render a point cloud of the
scene.

We feed the images of the sidewalk stretch from
multiple clear-weather runs (i.e. reference images) into
COLMAP [27], [28] and obtain a point cloud repre-
sentation of the stretch.
SfM has three main steps [33] (Fig. 4):

a) Identify keypoints.
Keypoints are points in the scene that are some-
what salient and specific to the scene. Objects

(a) Picture of the bus and camera. See [1] for camera specifications.

(b) Bus route.

Fig. 5: Information about the bus that is used to collect data.

like monuments and store signs tend to provide
robust keypoints.

b) Represent the keypoints as vectors.
COLMAP uses the SIFT descriptor [34] to extract
the features of the keypoints and their local
surroundings as vectors 1.

c) Reconstruction.
First, the pairwise relationships between images
are determined by using RANSAC [36] and the
extracted feature vectors. Then, reconstruction
begins with the image pair containing the most
inliers. Images are gradually added while solving
bundle adjustment.

We run COLMAP on images from multiple runs of
the same stretch because one run tends to produce too
sparse a point cloud. Since the bus camera is unlikely
to be in the exact same orientation between runs (e.g.
not always centered in the lane), we are effectively
guaranteed reasonable stereo pairs which improves the
3D reconstruction.

2) Estimate the ground plane of the scene.
First, we segment the road in each reference image

by applying the Mask2Former [3] model. We select the

1There also exist other descriptors such as SuperPoint [35] that can be
used instead.
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panoptic segmentation model with a Swin-L (IN21k)
backbone that is pre-trained on Mapillary Vistas. Map-
illary Vistas [37] is a dataset that contains street-
level images, and its panoptic segmentation categories
include snow, sidewalks, and roads.

Then, we use the pixel-to-3D point correspondences
provided by COLMAP to identify the points in the
point cloud that correspond to the road pixels. Next,
we use RANSAC to fit a plane to the identified points;
this plane is the estimated ground plane. Finally, we
re-orient all the points such that the z-axis of the point
cloud aligns with the normal of the ground plane.

3) Segment the sidewalk in each reference image.
For this step, we obtain masks of the sidewalks in the

reference images by again applying the Mask2Former
model [3]. Using the assumption that the bus is driving
on the right side of the road as is the convention in the
United States, we omit identified sidewalk pixels that
are to the left of and/or above the midpoint of the
image. This helps restrict the view of the bus to the
sidewalk closest to it. The driving assumption would
need to be adjusted in locations where the driving
conventions differ.

4) Use the estimated ground plane to project the
sidewalk masks into the point cloud and save the
projected points.

In order to save the sidewalk locations into the point
cloud, we use the road to determine the homography
from the image to the point cloud. We can assume that
the road is a flat reference area and that the slight lift
of the sidewalk does not contribute much error as seen
in our example qualitative results (Fig. 9).

Let us consider one reference image. First, we find
the homography from the road pixels in the image to
the corresponding 3D points that lie on the estimated
ground plane. This is effectively the homography from
the image to the estimated ground plane. Next, we use
the homography matrix to project each pixel in the
sidewalk mask onto the estimated ground plane. Lastly,
we save coordinates of the projected sidewalk points.
We repeat this process for each reference image, and
the combined points form a 3D model of the expected
sidewalk locations.

C. Classification of query image

In our application, query images are images from future
runs of the bus when there could be snowfall. This part of
the method involves classifying a query image as Clear or
Snow-covered (Fig. 6c).

1) Check if the query image belongs to the scene.
For a given query image, we use GPS information
to check if the query belongs to the point cloud. If
the query is within the GPS range for the scene, we
proceed.

2) Identify the snow coverage in the query, if any is
present.

We use the Mask2Former model [3] to segment the
snow in the query and proceed if snow is present.

3) Estimate the camera pose of the query.
If the query does belong to the scene, we add the
query to the collection of reference images and re-run
COLMAP to obtain an estimated camera pose for the
query. Sometimes, COLMAP needs to be re-run more
than once to obtain an accurate pose for the query. This
reconstruction does not take as long as the initial point
cloud rendering because the query is simply added to
the existing reconstruction.

4) Compare the snow coverage to the expected side-
walk area.
Using the estimated camera pose and ground plane, we
project the saved sidewalk points from the point cloud
into the image. Finally, we calculate the proportion of
the projected sidewalk that overlaps with the snow.

5) Generate an alert if the snow significantly covers
the expected sidewalk area.
If the coverage is greater than a set threshold, we gen-
erate an alert. See Sec. IV for details about selecting
an alert threshold.

IV. RESULTS

We evaluate by first reconstructing the ground truth side-
walks for two stretches that include bus stops. These stretches
were chosen based on where there were images from the
categories described below. We select and evenly split 66 test
images taken during daylight hours into three categories:

(a) (b) (c)

Fig. 7: Categories of test images. (a) is clear, (b) is snow-
covered, and (c) is cleared.

1) Clear
This category includes images in clear weather from
February 2022 when the sidewalk in the chosen stretch
is clear (Fig. 7a). These images should be classified
as Clear and are distinct from the reference images
originally used to render the point cloud.

2) Snow-covered
This category includes images in which the sidewalks
are obscured by snow (Fig. 7b). These images should
be classified as Snow-covered and were taken on
January 7th, 2022 when a snowstorm occurred in the
Pittsburgh area.

3) Cleared
This category includes images in which the sidewalks
are surrounded by but not covered with snow (i.e. the
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(a) Reconstructing the ground truth sidewalks. (b) Key.

(c) Classifying a query image.

Fig. 6: We describe this method in terms of one stretch of road that has a bus stop: Our method begins by using clear-weather
images of the stretch to render a 3D model of the sidewalks as shown in (a). This involves running SfM on the reference
images to render a point cloud of the scene, estimating the ground plane of the point cloud, and then projecting the portion of
the sidewalk mask that is closest to the bus in each reference image onto the estimated plane. When the bus encounters snow
coverage, our method compares the snow to the expected sidewalk area as shown in (c). This process involves estimating
the camera pose of the query by re-running COLMAP with the query added to the reference images and using the estimated
pose to project the saved sidewalk points into the query image (i.e. the inverse projection of (a)). Finally, if the proportion
of the expected sidewalk area that is covered by snow exceeds a set alert threshold, we generate an alert.
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sidewalks have been cleared) (Fig. 7c). These images
are important because snow is present in the image but
does not obstruct the sidewalk. These images should
be classified as Clear; we do not need to distinguish
between clear and cleared sidewalks. Like the snow-
covered images, these images were taken on January
7th, 2022 though in a different stretch.

For each category, we obtain the percent of images that are
correctly classified as either Snow-covered or Clear across
incremented alert thresholds. For clear images, our method
trivially performs well across all thresholds because there
is no snow present in any of the images (Fig. 8a). For
snow-covered sidewalks, our method performs well until a
threshold of around 0.7 (Fig. 8b). This trend is reasonable
because a snow-covered sidewalk will have a high, but not
necessarily perfect, overlap with the snow in the image.
Finally, for cleared sidewalks, our method performs better
as the threshold increases (Fig. 8c). This trend is reasonable
because a stricter (i.e. higher) threshold will classify more
images as Clear.

Since we need a threshold that will perform well across
all categories, we identify 0.58 to 0.62 as a good range of
thresholds. We include some example qualitative results from
each test category at an alert threshold of 0.60 (Fig. 9). The
saved sidewalk points that are projected into the query image
generally align well with the real sidewalk in the query. The
few misalignments that we observe (Fig. 9c) are most likely
due to an inaccurate estimated camera pose for the query
and/or for some of the reference images when projecting the
ground truth sidewalk masks into the point cloud.

V. CONCLUSIONS

In this paper, we present and demonstrate a less data-
intensive method for detecting snow-covered sidewalks along
bus routes. Our method leverages Structure from Motion
to learn the expected locations of sidewalks during clear
weather and then uses the learned locations to determine
if the sidewalks become covered with snow. By evaluating
on different categories of sidewalks, we identify a range of
thresholds across which this method performs well for our
bus route.

For our particular application, an immediate extension of
this method is to incorporate GPS information to form a
full route of point clouds. However, our method can also
extend to other hazardous conditions such as snow-covered
bike lanes or roads.

One limitation of this method is its dependence on key-
points. The effectiveness of the SIFT descriptors in the
SfM process depends on the presence of robust and unique
keypoints. This, in turn, can affect the estimated camera
poses for each image.

In urban scenes, there exist many buildings, signs, and
sometimes monuments that provide such keypoints. How-
ever, there may not exist many salient keypoints in rural areas
Likewise, in night settings, keypoints can be less visible. In
these cases, it would be interesting to experiment with adding
GPS information for feature matching in SfM.

(a) Results for clear sidewalks. Our method trivially performs
well at all thresholds because there is no snow in images from this
category.

(b) Results for snow-covered sidewalks. Our method performs
well until around a threshold of 0.70 when the percent of images
classified correctly begins decreasing more rapidly.

(c) Results for cleared sidewalks. Our method performs well after
a threshold of 0.40 when the percent of images classified correctly
begins to stabilize.

Fig. 8: These graphs depict the percent of images correctly
classified across alert thresholds from 0 to 0.95 incremented
by 0.05. (a) shows results for clear sidewalks, (b) shows
results for snow-covered sidewalks, and (c) shows results
for cleared sidewalks. Alert thresholds ranging from 0.58 to
0.62 produce an optimal performance across all three test
categories.
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(a) This is an example of a clear query that is correctly classified
as Clear (coverage = 0). No snow is identified in the image, and
the projected sidewalk (shown in yellow) aligns fairly well with the
actual sidewalk.

(b) This is an example of a snow-covered query that is correctly
classified as Snow-covered (coverage = 0.91). The projected side-
walk (mostly colored in green due to overlap with snow) aligns
almost perfectly with the actual sidewalk which is not visible.

(c) This is an example of a cleared query that is correctly classified
as Clear (coverage = 0.36). The projected sidewalk aligns, though
not perfectly, with the sidewalk in the image. The misalignment
present towards the top left can occur due to an inaccurate estimated
camera pose for the query or for some of the reference images when
reconstructing the ground truth sidewalks. In this case, the latter
probably occurred as there are full patches of projected sidewalk
off to the side.

Fig. 9: These images depict an example of a qualitative result
for each of the three test categories at an alert threshold
of 0.60. The left panels depict a query image from each
category. The right panels display snow in blue, the saved
sidewalk projected into the image in yellow, and overlap
between snow and the projected sidewalk in green.
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Sim2Real transfer for capacitive sensors
utilizing Assistive Gym’s capacitive sensing simulation framework

Jacob M. Delgado-López1, Yufei Wang2 and Zackory Erickson3

Abstract— Capacitive sensing is a type of near-range sensing
technology with a unique feature of sensing through non-
conductive occlusions. Such a feature is especially useful for
assistive robots that provide caregiving services as they can
improve the quality of life of people with disabilities. For
example, in robot-assisted dressing, capacitive sensors can be
used to track the person’s arms even under the occlusion of
the cloth. That being said, directly designing and collecting data
with capacitive sensors for robots interacting with humans in
the real world can be slow, costy, and unsafe. On the other hand,
robotics simulation provides a cheaper, safer, and more instruc-
tive alternative to real-world experimentation. In this project,
we aim 1) to leverage a recently developed capacitive sensing
simulation framework in Assistive Gym to optimize the design
of capacitive sensors for assistive robots, 2) to learn a controller
using simulated capacitive data for several assistive tasks, and
3) perform simulation to real-world (Sim2Real) transfer of the
results to real-world robots. We first show that the gap between
the simulation and the real world can be closed via optimizing
simulation parameters. We then optimize the capacitive sensor
design and train robotic controllers for a set of caregiving
tasks in Assistive Gym using a large amount of the simulated
capacitive data. At last, we build real-world replications of the
simulated assistive tasks and show the capacitive sensor design
and controllers obtained in the simulation can be transferred to
real-world robots. Overall, we showcase the benefits of utilizing
capacitive sensors in caregiving tasks and the advantages of
utilizing simulation to train capacitive sensing models prior to
real world experimentation.

Index Terms— Physical Human-Robot Interaction, Physically
Assistive Devices, Simulation

I. INTRODUCTION

During COVID-19, 18.4% of older adults living alone
reported difficulties with activities of daily living (ADLs)
which ranged from 8.8% in Switzerland up to 29.2% in
the USA [1]. Furthermore, only 56.8% of those reporting
difficulties received ADL assistance [1]. Robotic assistance
presents an alternative method for providing help to those
who require support conducting everyday tasks. With this in
mind, capacitive sensing, a novel near-range sensing technol-
ogy, has been utilized for caregiving services as it provides
the unique advantage of sensing through non-conductive
oclusions. For example, in robot-assistive bathing, capacitive

1Jacob Delgado is a Robotics Institute Summer Scholar at Carnegie
Mellon University and an undergraduate junior in Computer Science and
Engineering, University of Puerto Rico, Mayagüez, 00682, Puerto Rico
jacob.delgado@upr.edu

3Yufei Wang is a PhD student with the RCHI lab at the
Robotics Institute in Carnegie Mellon University, PA 15213, USA
yufeiw2@andrew.cmu.edu

2Zackory Erickson is an Associate Professor at the Robotics Institute in
Carnegie Mellon University and the Principal Investigator at RCHI lab, PA
15213, USA zackory@cmu.edu

sensors can be used to track the position of a person’s limb
despite the oclusion of the cloth being used for bathing. How-
ever, directly designing and collecting data with capacitive
sensors for robots interacting with humans in the real world
can be slow, costy, and unsafe.

To overcome this, robotics simulation is used as it provides
a cheaper, safer and more instructive alternative to real-
world experimentation. In this work, we aim to leverage the
novel capacitive sensing simulation framework CapSense in
Assistive Gym to optimize the design of capacitive sensors
for use in assistive robots, to learn a controller using simu-
lated capacitive data for several assistive tasks, and perform
simulation to real-world (Sim2Real) transfer of the results to
real-world robots.

Our approach looks to capture real-world capacitive sens-
ing data around a human limb with the use of a Stretch RE1
robot with a Dexwrist. The robot utilizes a 3D printed tool
with a mounted capacitive sensor and follow predetermined
trajectories around a static human limb which allows us to
capture the changes in capacitance as the sensors approach
the limb. Hence, we can map the changes in capacitance
and the distance from the sensors to the closest point on
the arm; allowing us to predict the sensor’s position based
on the capacitance reading. Then, the same trajectories are
replicated in simulation where we match our simulated
data with our real world data via optimization to bridge
the sim2real gap. With this, we can train a controller in
simulation for assistive tasks and transfer this into a real
world environment.

We first show that the gap between the simulation and
the real world can be closed via optimizing simulation
parameters. With this, several assistive tasks can be per-
formed in simulation with high accuracy to their real world
counterparts. Hence, we can train a policy in simulation
utilizing the capacitance measurements collected. Lastly, we
transfer this controller into the real world and investigate its
performance which will allow us to optimize the design of
the capacitive sensors.

II. RELATED WORKS

A. Capacitive Sensors

Capacitive sensing technology has been implemented in
common consumer goods such as touchscreens, MP3 players
and mobile phones [2] [3]. More recently, capacitive sensing
technology can be seen in industrial applications such as
proximity sensing, position sensing, humidity sensing and
tilt sensing [4]. Mayank Shadwani et al. [5] provides an
overview of how capcitive sensing is being utilized in modern
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technology, especially in human interaction applications such
as helmets that utilize the human ears’ capacitance as input
to minimize the percentage of road accidents as the vehicle
will only move as long as the helmet is being worn by the
driver.

In the area of robotics, capacitive sensors have frequently
been used for proximity sensing in cluttered environments
[6]. Alwin Hoffman et al. [6] present a comprehensive study
on proximity sensing in a human-centered workspace. They
record an environment model containing the expected sensor
values for relevant robot poses which leads to accurate dis-
tance estimation and thus real-time reaction to these distances
regardless of the presence of other conductive objects in the
workspace. Wearable capacitive sensors have also gained
prominence with an array of applications such as health
monitoring [7] [8], locomotion classification [9] and activity
recognition [10].

Capacitive sensors have also been used in Physical human-
robot interaction as the sensors allow the robots to accurately
sense the human body, follow trajectories around the body,
and track human motion [11]. With this in mind, capacitive
sensors have gained prominence for carrying out caregiving
tasks as they are mounted on the robot’s end effector and
provide high resolution force sensing when interacting with
human subjects. For example, Zackory Erickson et al. [12].
have utilized capacitive sensors for tracking the human pose
during assistive dressing. By tracking the human’s change
in pose in real-time, a robot can adjust for errors in the
estimated pose of a person and physically follow the contours
and movements of the person while providing dressing as-
sistance [12]. Moreover, multidimensional capacitive sensing
have also been utilized for assistive bathing as it allows the
robot to follow the contours of the human body during the
bathing task [13].

B. Sim2Real

Simulation is highly prevalent in the field of research as
it provides a cheaper, safer, and more informative alternative
to real-life experimentation [14]. Simulation has a variety of
applications from healthcare applications [15] to crop pro-
duction [16]. In the field of robotics, simulation is a powerful
visualization, planning, and strategic tool as it allows exper-
imentation before real-world implementation. However, the
current state of simulation in robotics is plagued with various
challenges. Afsoon Afzal et al. [17] provide a comprehensive
study on how researchers in the field of robotics detail their
struggles, the gap between simulation and reality, a lack of
reproducibility, and considerable resource costs associated
with using simulators.

Sim2Real transfer in robotics is the concept of taking
a controller learned in simulation and transfer the results
learned with simulated data to a real-world robot. To suc-
cessfully complete the transfer, the gap between a simulated
experiment and a real world experiment must be negligible.
Thus, proving that the simulated controller has practical use
as it obtains similar results to the real world environment.
Sim2Real transfer is utilized with various techniques in mind.

Manuel Kaspar et al. [18] present Sim2Real transfer of
a Reinforcement Learning controller without implementing
Dynamics Randomization which speeds up training, can
increase performance and reduces the number of hyperpa-
rameters.

C. Robotic Assistance

As robots have become more accepted in the area of robot-
human interaction [19], several works have explored robot-
assistance for a variety of caregiving tasks. For example,
robotic arms have been used for robotic-assistive feeding
[20]. Robotic arms have also been used to assist with ADL’s
of people living with limited mobility or dexterity. Nathaniel
Dennier et al. [21] present an approach for enabling general
robot manipulators to assist with a hair-combing task.

Researchers have also investigated the use of robots in
assistance with bathing tasks, M. Manti et al. [22] implement
soft robotics to build soft modular manipulators for assistive
robotics that can safely interact with people during a bathing
task. Moreover, there has been multiple efforts to incorporate
capacitive sensing into robotic-bathing assistance [23], giving
the robot the advantage of sensing the human body through
occlusions. We build upon this prior research by replicating
similar tasks in simulation and tweaking parameters in order
to obtain a faithful reproduction of the data obtained in a
real world environment.

III. EXPERIMENTS

A. Capacitive Sensor Design

First of all, a tool was designed and 3-D printed with the
purpose of performing a cleaning task on a person’s limb
while taking into account safety and efficiency. Moreover,
the tool looked to accommodate a mounted capacitive sensor
created with the use of a teensy-3.2 development board
and copper foil tape. The teensy’s unique touch pin sensor
hardware was utilized to implement a sensor design that
included a 3x2 grid with 6 electrodes.

Fig. 1. Capacitive Sensor mounted on 3-D printed washing tool

B. Real World Data collection

Data collection is carried out by utilizing a Stretch RE1
robot with a Dextwrist as it allows us great range of motion.
A set of seven trajectories are determined for the data
collection. Amongst these trajectories, three of them focus on
translational motions, two focus on rotational motions using
the Dextwrist, and the last two are combinations of both
translational and rotational motions. For example, for one of
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the translation motions, the trajectory is to first lift the stretch
arm 5 cm above the human arm and then move the sensor
straight across the arm. On the other hand, for the rotational
motions, one of the trajectories is to lift up the stretch arm
5 cm above the human arm and then move the sensor in a
semicircular fashion. These tasks are all performed on a static
human arm with a circumference of approximately 2.30 m.

Fig. 2. Experimental setup for collecting data of different trajectories
around the human arm

With this setup, we capture the changes in capacitance as
the sensors approaches the arm, and also record the distance
between the sensor and the human arm. This allows us to
learn a model that maps the changes in capacitance to the
distance from the sensors to the closest point on the arm,
which allows us to predict the sensor’s position based on
the capacitance reading. The data collected from the varying
trajectories show the expected behaviour as electrodes 1-3
(front of the tool) have a spike in capacitance first while 4-6
present the same behaviour a few seconds later. This occurs
as electrodes 1-3 pass by the human arm before the latter.

Fig. 3. Capacitance vs, Time plot of the sensor moving in a straight fashion
through the arm

C. Replication in Simulation

After performing the trajectories and collecting data in the
real world, the same trajectories were replicated in simulation
where we perform system identification in order to create a
faithful simulation environment. Here, we look to capture
capacitance readings and compare them to our real world
dataset in order to optimize the simulation parameters via
Covariance Matrix Adaptation Evolution Strategy (CMA-
ES).

Fig. 4. Assistive Gym simulation environment setup for collecting data

IV. FUTURE WORK

For future work, we will further optimize the simulation
parameters to obtain further fidelity in simulation as well
as further reducing noise in real world data collection. In
addition, we will look to utilize our capacitance readings
and distance measurements as the basis for a pose estimation
model. This way we can predict the pose of the human
relative to the tool. At last, with the optimized simulation
parameters that minimize the sim2real gap, we look to utilize
the tuned simulation to collect data and train controllers and
transfer these into a real word robot. Amongst the controllers,
we will look into utilizing the washing tool to clean different
human limbs such as arms, legs, chest, etc.

V. CONCLUSIONS

In summation, this work presents the foundation and initial
findings for performing Sim2Real transfer of capacitive sen-
sors utilizing Assistive Gym’s capacitive sensing simulation
framework. Additionally, we present some insight on the
process for bridging the gap between simulation and the
real world. Lastly, for future work, the simulation with
optimized parameters will be used to train a robot controller
for performing an assistive task utilizing the washing tool
such as cleaning along different human limbs.
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Shape and Texture Classification with ReSkin

Jacob Adkins1, Raunaq Bhirangi2, Abhinav Gupta2

Abstract— Tactile sensors have growing interest in robotics
due to the desire for robots to perform dexterous manipulation
tasks which vision alone cannot solve due to occlusion and
other limitations. Examples of tasks are reaching into a bag
and pulling out a specific object without being able to look
into the bag. Or knowing how much force to apply when
grasping. Recent developments in soft sensors have enabled
passive conformal contact and active data collection. ReSkin is
a recent soft sensor which enables low-cost magnetic sensing
data from which inferences about contact can be made. This
work utilizes a machine learning approach to utilize ReSkin
magnetic data in such a way that robot systems can infer
shape and texture information about objects that they touch.
The ability to infer information from touch will enable robots
to solve tasks that would otherwise be impossible with vision
alone. This work coducts a classification study of the ReSkin
sensor’s ability to classify object shape and texture.

Index Terms— Tactile Sensing, Object classification

I. INTRODUCTION

The majority of robots that operate today use parallel
jaw grippers. These types of robots are sufficient in settings
such as factories which are controlled and have limited
variability in the environment.
However, there has been a recent push in the field of
robotics to design robots that can provide assistance to
humans in unstructured environments, such as homes or
offices.
Dexterous multi-fingered hands are essential for complex
tasks such as sewing, typing, painting etc. Therefore, it
seems that in order for robots to become more useful in
real-world unstructured environments, they must become
able control objects with dexterity; i.e., have complete
6 degree of freedom control over the object. In order to
develop dexterous manipulation systems, we can look to
humans for inspiration. It is apparent that human hands
have all-over sensing tactile sense which is imperative to
our ability to effectively interact with objects. This points
to the need to integrate the tactile sensing modality into the
system and the learning algorithm for manipulation.

As a first step, we look to ReSkin, a recently developed
promising new tactile sensor which is conformal,
replaceable, and allows for large area sensing [1]. ReSkin
sensors detect changes in the magnetic field when contact
is made with an object. Previously, [1] demonstrated that

1 Jacob Adkins is with the departments of mathematics and Computer
Science, New College of Florida, Sarasota, FL, USA,
jacob.adkins18@ncf.edu

2Raunaq Bhirangi and Abhinav Gupta are with the Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA, USA, {rbhirangi,agupta} @an-
drew.cmu.edu

ReSkin data can be used to train a multi-layered perceptron
model to predict position and force on the ReSkin sensor.
In this work, we seek to demonstrate that ReSkin data can
be used not just for detection force and position but for
classifiying obejcts as well. In search of creating systems
that allow for dexterous manipulation, several sensing
modalities have been used; namely, vision and audio [2],
[3]. However, one modality has been largely ignored, tactile
sense. Tactile receptors are all over the skin of humans
and numerous other animals. We use our sense of touch
countless times per day and it seems intuitively obvious
that tactile sensing is essential to performing daily tasks.
Why then should robots not be able to feel objects just as
we humans do. The combination of tactile sense with other
modalities already in use should allow for the creation of
more robust robot manipulation schemes.

II. RELATED WORKS

There has been recent success with several vision-based
tactile sensors that have been proposed in recent years. Such
as Gelsight [4] and DIGIT [5]. In addition, there is OmniTact
which uses micro cameras to detect deformations of a gel-
based skin [6]. These sensors have been popular due to their
high resolution as well as the existence of neural architec-
tures for processing these signals. These sensors however are
bulky, difficult to fabricate and have limited spatial coverage.
A number of other modalities like capacitative [7], resistive
[8] and piezoelectric [9] sensing have also been explored as
tactile sensing alternatives for robotics. These technologies
however, often need direct electrical connections between the
circuitry and the interface, lack shear sensing capabilities,
and/or are difficult to scale-up in size.

In this paper, we examine ReSkin [1], a magnetic
elastomer-based tactile sensor that seeks to avoid these
pitfalls by using magnetic microparticles embedded in elas-
tomer as the sensing interface and a circuit of magnetometers
underneath to detect the deformation.

III. RESKIN OVERVIEW

The choice of using ReSkin was because of several attrac-
tive attributes that it provides. First, ReSkin is conformal,
i.e. it conforms around objects that the robot is trying
to grasp and allows for stable grasp. Secondly, ReSkin
allows for large area sensing. Therefore, the robot is able
to feel several sides of the object at once. And Finally,
ReSkin is low cost as it only requires approximately $6 of
materials to create a ReSkin sensor. Because of all of these
reasons, ReSkin was chosen as the sensor to perform the
object classification study with. ReSkin is composed of an
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Fig. 1. 3D printed finger used in shape classification experiment

elastomer with magnetic micro-particles and a ciruit board
that contains several magnotrometers. When contact with an
object is made, the elastomer conforms around it and changes
the magnetic-field of the microparticles. The X ,Y , and Z
components of magnetic field changes are detected by the
magnotrometers and reported by the ReSkin sensor.

IV. EXPERIMENTS

Building up to the larger goal of using tactile sensing for
dexterous manipulation, we began with some preliminary
experiments to see how the ReSkin sensor performs at
providing data for the classification of various shapes and
textures.

A. Shape Classification

As a first experiment, a ReSkin sensor was attached to a
3D printed robot finger that was actuated by a dynamixel
motor. See figure 1. A policy was written for the finger to
apply a fixed torque for 5 seconds to an object and record
ReSkin measurements of the change magnetic flux in the
X ,Y ,Z coordinate system. See fig. 2. Six different objects
were used in the shape classification study. The shapes clas-
sified were triangular prism, rhombohedron, pentagrammic
prism, 4-leaf clover prism, and Hexagonal prism. See fig 3
Three labelled datasets were collected consisting of 30 taken
trajectories for each of the 6 objects (25 training set sample
and 5 validation set samples), i.e. 180 trajectories total for
each dataset.
In the first dataset, in between each of the 30 samples,
the object was translated to a different position so that
contact could be made at different locations on the sensor.
During the collection of the second dataset, the objects
were both translated to a different position and horizontally
rotated. In the third and final dataset, objects were translated,
horizontally rotated as well as vertically rotated.
After data was collected, a 4-layer multi-layered perceptron

Fig. 2. finger policy being executed

Fig. 3. Object shapes that were classified

model was trained on the labelled data to created a clas-
sification model. As can be seen in IV-A the accuracy of
the classification model decreased as additional variance in
the position and orientation of the objects were added. This
demonstrates the need for large area sensing of objects. Since
the finger only had limited contact area with the objects, as
the number of different object orientations were introduced,
the number of samples requires to maintain a certain level
of accuracy increased. Therefore, for the same dataset size,
we saw diminished classification accuracy.

Shape Dataset Classification Accuracy
Translation 0.94

Translation + horizontal rotation 0.84
Translation + horizontal + vertical rotation 0.39
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Fig. 4. Robot hand

V. TEXTURE CLASSIFICATION

The next experiment conducted was a texture classifi-
cation. In order to access the ReSkin sensor’s ability to
differentiate between object textures, an experiment was
conducted where 6 identical balls were wrapped in various
textures. The balls that were classified were: the original
ball with no additional texture (Plain Ball), a ball wrapped
in small bubble wrap (Small Bubble Ball), a ball wrapped
in large bubble wrap (Big Bubble Ball), a ball covered in
silicone sponge (Sponge Ball), a ball covered in cardboard
(Cardboard Ball), and a composite ball that contained a
combination of all the other materials used (Mixed Ball) See
fig 4.

ReSkin sensors were attached to the fingers and palm
of a three fingered robotic hand. See fig 6. A policy was
written such that the ReSkin sensors would make contact
with objects and ”feel” various points of contact. See fig
5 A labelled data set was collected where the hand policy
was run on each of the 6 different objects and ReSkin
data was acquired. Then, similar to the first experiment,
a multi-layered perceptron neural network was trained to
classify the object’s texture from the ReSkin data.

Texture Classification Accuracy
Sponge Ball 0.93
Plain Ball 0.87

Big Bubble Ball 0.78
Cardboard Ball 0.76

Small Bubble Ball 0.59
Mixed Ball 0.38

VI. CONCLUSIONS AND FUTURE WORK

This small study demonstrated that at least for small sets
of objects, ReSkin sensor data can be used to differentiate
objects based on their shape as well as their texture. This
type of study can be expanded in many directions. Firstly,
a larger study with more objects should be conducted to

Fig. 5. Robot hand policy

Fig. 6. Robot hand

verify the results presented here. Secondly, studies can be
performed to assess the ReSkin sensors ability to provide
signal about other object properties: such as softness, density,
Ferromagnetism, etc. In addition, work should be done to
access how tactile data can be used in combination with
already existing vision based systems to improve robot
performance at various tasks.
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Predicting Tree Deformation under External Force with Graph Neural
Networks

Jan-Malte Giannikos, Moonyoung Lee, Oliver Kroemer

Abstract— In light of labor shortages in agriculture, robotics
can be an effective solution to automating labor-intensive
tasks. However, for robots to robustly interact with trees in
a closed-loop manner, an accurate and efficient model of tree
deformation is required. Prior work proposed modeling tree
dynamics as a spring-damper system, but such an approach
introduces approximation errors and quickly grows compu-
tationally expensive for complex trees with a large number
of branches. We instead propose to use Convolutional Graph
Neural Networks (GCN) to learn the complex tree dynamics
and predict tree deformation under external load. Preliminary
work on this method showed promising results, but was limited
by small datasets and therefore could not make strong claims
about the generalizability of the model. We are using residual
graph convolution networks with a linear stem and classification
layer and adjustable depth. The models were trained and tested
in simulation using synthetic datasets generated using the Space
Colonization Algorithm (SCA). The proposed approach resulted
in an average node position error of 0.01m when working with
familiar tree topologies and an average node position error of
0.039m when working with unknown trees.

As our testing shows, the proposed method of prediction can
be applied to varying tree topologies, and we hope it will lead
to safer and more accurate agricultural robots in the future.

Index Terms— Field Robots, Agricultural Automation, Data
Sets for Robot Learning, Dynamics

I. INTRODUCTION

The application of robotics in an agricultural context has
greatly improved productivity and has reduced the need for
menial human labor. However, some tasks could so far not
be automated because they require interaction with plants,
which are often complex in both shape and dynamics. Trees
are a prominent example of this issue. More specifically,
predicting how they will deform under external force is a
difficult problem, that needs to be solved in order to create
closed-loop systems that automate tasks such as pruning trees
or harvesting fruit.

Crop manipulation tasks are usually modeled as a 3 stage
process: Creating a 3D representation of the crop, modeling
their physical properties, and finally planning a policy for
interacting with the crops. Our work is targeting the second
stage of the process, taking a graph representation of a tree
and modeling its dynamic properties.

Our work proposes learning tree behavior with a Graph
Neural Network (GNN). We model trees as a collection of
tree points representing 3D joints that are connected through
edges representing branch sections. We then translate this
model into a graph representation where each node stores the
physical properties of the tree. We also specify the external
force acting on each branch segment as part of our graph.

The graph representation is then fed into our GNN in order
to predict the position of the tree under influence of the force.

In conclusion, our work provides:

• A novel approach to modeling tree deformation accu-
rately by using a GNN

• A new synthetic dataset that simulates the physical
deformation of trees under influence of external force.

II. RELATED WORK

A. Crop Manipulation

Using 3D reconstructions of crops to reason about their
behavior under external influence is a popular approach in
Field Robotics and has been proposed by several papers [1]
[2]. Yandun et al. [1] in particular used a spring damping
model for joint connected branch segments to predict tree
deformation under external force, an approach that inspired
our physical simulation setup with which we generated our
data-set. The Idea of modeling tree dynamics through joints
with spring-damping coefficients was further reinforced by
the results of Spatz and Theckes research into tree dynamics
under the influence of wind [3]

B. Tree Generation

To generate a large data-set of tree deformations we need
to acquire a large number of 3D tree models. However,
creating such models from real tree data was deemed too
costly. Therefore we decided to synthetically generate tree
topologies with the Space Colonization Algorithm (SCA)
presented in [4]. Branch radii were assigned using the pipe
model from [5] and used to estimate joint stiffness.

C. Graph Neural Networks

GNNs are Neural Networks that operate on graphs by
passing messages between their nodes. They were inspired
by Sperduti et al. [6] who first introduced the idea of
using neural networks on acyclic graphs. GNNs were first
formalized by Gori et al. [7] and were further extended by
[8] and [9].

Using GNNs to model physical Interactions between mul-
tiple entities is a technique that has been successfully applied
by both [10] and [11].

In this project, we are using Graph Convolutional Neural
Networks, since their application to modeling the deforma-
tion of simple tree topologies showed promising results in
[12].
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Fig. 1. Three example steps of the Space Colonization Algorithm

III. DATASET DESCRIPTION

To train a model, which generalizes well we need a suffi-
ciently large dataset containing multiple different topologies.
Since attaining such a dataset from real-world interactions is
infeasible we instead opted for simulated tree-force interac-
tions.

Each data point in our dataset consists of several positions,
representing points in the tree (so-called tree points) that are
connected by branch segments. We save these positions as
well as the orientation of the connecting branch segments
before and after the push occurred. We also save the external
force acting upon each tree point.

The following sub-sections will explain the process of
generating our synthetic dataset in more detail.

A. Tree Generation

We used the Space Colonization Algorithm (SCA) to
generate tree topologies that were then used to generate a
dataset of 10,000 pushes per topology in simulation. The
SCA uses randomly distributed attraction points to simulate
the competition for space between branches that occurs when
trees are growing. Our implementation of the algorithm
iteratively generates tree points until a user-defined number
of tree points is reached. In each iteration it generates a
child for each tree node that is being affected by at least one
attraction point, as can be seen in Fig. 1.

Each attraction point affects only the tree point that is
closest to it, while a tree point may be attracted by multiple
attraction points. This means that we generate a set of
relevant attraction points S(v) for each tree point v. To
calculate the position of a child, we use the following
formula:

v′ =
n⃗

∥n⃗∥
·D (1)

where

n⃗ =
∑

s∈S(v)

s− v

∥s− v∥
(2)

And where s is the position of the parent, v is the position
of an attraction point. D is the distance between parent and
child, given as a parameter of the SCA.

If a child comes within termination range of any attraction
points those points are removed and can no longer attract any
tree points.

After each round of tree point generation, we decreased the
step size D. This allowed us to use long branch sections for
the relatively homogenous tree trunk while simultaneously
modeling the more complicated structure of the tree crown.
This approach was crucial since we had a strong restriction
on the number of tree points that could be imported into the
simulation environment Isaac Gym [13].

We also introduced a new early stopping criterion, that
allowed us to set the number of generated tree points exactly
by potentially aborting the algorithm in the middle of a round
of point generation as opposed to checking if the maximum
number of tree points was reached only after each round was
completed. Pseudo code for our version of the SCA can be
found in the Appendix 1

After the general topology of the tree was created we
calculated the radius of each branch segment by following
the rule proposed in [5]. In short, branch segments without
children were assigned a fixed tip radius, while all other
branch segments were assigned a branch radius r based
on the radius of their children rc ∈ Rc according to the
following formula:

r = 3

√ ∑
rc∈Rc

r3c (3)

The stiffness s of each joint was determined based on the
radius of the parent branch segment i.e., the branch segment
that was closer to the root of the tree. The equation used to
calculate the stiffness was the following:

s = C · r4 (4)

Where C was a constant that allowed us to fine-tune the tree’s
behavior and the proportionality of s and r4 was derived
from the formula for the Modulus of Elasticity found in [14]
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under the assumption that a round branch segment could be
roughly approximated by a square beam with b = h

B. Physical Simulation

To generate data for tree deformation under external force
we used the Physx-based simulator Isaac Gym [13]. We
imported the branch segments generated by the SCA as rigid
bodies connected through 3D joints.

In cases where branching occurred all outgoing branch
segments had separate joints, allowing them to move inde-
pendently from one another.

We also added leaf segments that were used to track
the tip position of every branch, since that information
could otherwise not have been obtained directly through
Isaac Gym. It should be noted, that the leaf segments were
excluded when randomly choosing a segment to apply force
on.

We then applied a random force (random both in magni-
tude and direction) to a random branch segment in the tree.
Each force was constrained to a maximum magnitude of 17.3
Newton to prevent situations where the deformation of our
tree would no longer be elastic in the real world. The force
was applied until the tree stabilized i.e. stopped moving. We
will refer to each of these force interactions as a ”push”. To
generate positional data before and after each push, we saved
the root position and orientation of every branch segment
before and after the push had occurred.

After each push, we waited until the tree had reset to its
original position and repeated the procedure.

We generated two datasets with the method described
above. The first set contains 250,000 pushes on 25 tree
topologies with 8 tree points each. The second contains
240,000 pushes on 24 tree topologies with 10 tree points
each. Most of our work focuses on the first dataset with
the second serving as a way to check how well our model
generalizes to more complex tree structures.

IV. METHODOLOGY

Since we model our trees as branch segments connected
by joints we can easily formalize our tree structure as a
graph, and use the message passing performed by our Graph
Neural Network (GNN) to model the interaction between
two neighboring branch segments. We can therefore guide
the interactions occurring between nodes of the network
to follow physically realistic constraints (e.g. preventing
non neighboring branch segments from directly interacting
with one another). This also means that the method of
transformation between our tree structure and the graph used
by the GNN as well as the properties of each node in that
graph, have a large impact on the performance of the model
overall.

A. Graph Representation

Choosing a method to transform a given tree structure
into a graph representation for our GNN was a non-trivial
task, as several approaches were promising. Ultimately two

graph formalizations emerged as viable, each with different
advantages.

The first method aimed at predicting the final positions of
each tree node directly, by representing each branch segment
as a node in the graph. The parameters for each graph node
of the input graph were the root position, the orientation and
the force acting on the corresponding branch or leaf segment.
These values were then used to predict the root position of
each segment after the push had occurred.

The second method, instead attempted to predict the
rotation of each branch segment to then reconstruct the tree
from the root node up, calculating the position of each tree
node in a post-processing step. In this graph formalization
each branch segment was represented by a node with the
following input parameters: root position, orientation, branch
segment length, and force vector acting on it. Orientation
was formalized as local rotation relative to the parent (the
neighboring branch segment closest to the root of the tree) in
quaternion. The rotation parameter was therefore represent-
ing what rotation would have to occur so that a hypothetical
branch segment pointing in the direction of its parent would
have the same orientation as the actual branch segment of
the tree model. We then trained the model to predict the local
orientation of each branch segment after the push.

This method allowed us to ignore most branch movements
that were not directly caused by force since all orientations
were relative to the branch segment’s parent. Therefore
orientation changes due to an orientation change of the parent
would not have to be predicted by the network, but could
instead be computed in post-processing.

As suggested in [12] introduced prior knowledge about
the dynamics of the tree by making some graph edges uni-
directional. All edges that were not part of the path between
the force node and the root node were made unidirectional,
pointing towards the branch tips, away from the bidirectional
section of the graph. This structure allowed us to encode the
assumption that branches that are not under the influence
of force will not impact the deformation of the part of the
tree that is. For the first graph formalization, we also chose
the edge from the root node to its child to be unidirectional
to encode the assumption that the position of the root node
should never be changed, not even through force. Preventing
message-passing into the root node means that no change in
the state of any graph node can have an impact on the state
of the root node, allowing us to enforce this assumption.

A side-by-side comparison for both graph formalizations
for a given example tree can be seen in Fig. 2, where each
node is visualized with its relevant features next to it. Note
that there is an additional feature, which encodes the external
force acting on a branch segment, that was left out of this
figure for space reasons, instead, the node under force was
marked red.

B. Residual Graph Convolutional Networks
Since the application of Residual Graph Convolutional

Networks (RGCN) was shown to be successful on the
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Fig. 2. The two graph structures for predicting orientation and position for an example push

problem in [12] we used the same model and architecture
for this project. A Graph Convolutional Network (GCN) is
a form of Message Passing Neural Network (MPNN) that
was first introduced in [15]. It takes an input graph with
parameters attached to each node and returns an output graph
with the same structure. During inference time the network
passes messages between each node and its neighbors in the
next layer of the network. This means that the total number
of message passing steps is dictated by the number of layers
in the network.

A GCN takes an input matrix of node features X and an
adjacency matrix A, representing the edges in the graph. X
has the dimensions N ×D where N is the number of nodes
and D is the number of features per node, while A has the
dimensions N ×N .

A GCN layer generally has the following structure:

H(l+1) = f(H(l), A) (5)

Where H(0) = X and H(L)=Z with Z as our output
matrix and L as the number of layers in our network. We
define the propagation function f as:

f(H(l), A) = σ(ÂH(l)W (l)) (6)

Where Â is the normalized adjacency matrix with added
edges from nodes to themselves, to allow for information
retention in the nodes:

Â = D− 1
2 (A+ I)D− 1

2 (7)

Where D is the diagonal node degree matrix and I is the
identity matrix, used to add connections from each node to

itself.

A Residual Graph Convolutional Network (RGCN) is a
Graph Convolutional Network with residual connections.
Each RGCN layer is constructed by concatenating a GCN
layer with a linear layer and a skip connection.

C. Model Implementation

We used the GCN implementations from the libraries torch
and torch.geometric as a baseline to implement our RGCN
network.

We used a linear input layer to map our input data onto
the RGCN layers, which each had 1280 node features and
applied one-dimensional batch normalization [16] as well as
dropout [17] after every layer, to prevent over-fitting. The
number of layers was chosen, depending on the maximum
tree size in the training dataset, by setting it to the number
of nodes in the input graph. This allowed us to guarantee
that message passing could occur between every node in
the tree, even in worst-case conditions. The output layer
was again chosen to be linear, mapping the output of the
last RGCN layer to the output features determined by the
respective graph formalization.

D. Loss Functions and Baselines

During training, we used the Mean Squared Error (MSE)
as the loss on our first graph formalism, since we only had
to optimize for distances between points. For the second
formalism, we had to define a custom loss, since MSE was
not viable for quaternion outputs. We chose the following
loss function:

1− (qpred × qgt)
2 (8)
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(a) Positional Prediction on familiar Topologies (b) Positional Prediction on unfamiliar Topologies

(c) Orientational Prediction on familiar Topologies (d) Orientational Prediction on unfamiliar Topologies

Fig. 3. Example Predictions for 8 Node Trees

Where qpred is the normalized output quaternion and qgt was
the ground truth quaternion.

When evaluating we used the average node error e calcu-
lated with the help of the L2 Norm as our metric. It represents
the Euclidean Distance between the predicted position of
each tree node and the true position of the corresponding
tree node averaged over every node n and every push p in
the test data-set.

e =

∑
p∈D

∑
n∈p ∥vpred − vgt∥
|D||p|

(9)

Where ∥·∥ is the L2 Norm, vpred is the predicted position of
a given node n and vgt is the true position of a given node
n.

In order to make grounded claims about our models
performance we also established a baseline b to compare it
to. Since no other sophisticated models had been trained on
this novel dataset we chose to simply compare ourselves to
the average total displacement. This baseline was calculated
for the entire test-set D containing 2000 pushes p:

b =

∑
p∈D

∑
n∈p ∥vbefore − vafter∥
|D||p|

(10)

Where n is a single graph node, ∥·∥ is the L2 Norm, vbefore
represents the relevant output parameters of n before the push
and vafter represents them after the push.

In order to be able to fairly compare two models with
each other, even if the average total displacement of their
test set is different we also provide e’s percentage of overall
displacement r:

r =
e

b
· 100 (11)

V. RESULTS

When evaluating the two graph structures on our data-set
it quickly became clear that the predictions were much more
accurate if the model had been trained on the tree topology
it was evaluated on.

A. Training and Evaluating on Identical Topologies

Predicting positions directly as well as predicting orien-
tations before reconstructing positions achieved satisfactory
results, as can be seen in I. It is clear that predicting positions
outperforms predicting orientations by a significant margin,
making it the preferred choice, when the tree topologies the
model will be deployed on are known.
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TABLE I
PERFORMANCE OF GRAPH FORMALIZATIONS ON FAMILIAR AND UNFAMILIAR TOPOLOGIES

Model Average Node Error Baseline Displacement Percentage of Overall Displacement
Positional prediction on familiar topologies 0.011m 0.126m 8.6%

Orientational prediction on familiar topologies 0.042m 0.145m 29%
Positional prediction on unfamiliar topologies 0.039m 0.123m 31.7%

Orientational prediction on unfamiliar topologies 0.074m 0.14m 52.9%
Positional prediction on trees with higher complexity 0.082m 0.134m 61.3%

Orientational prediction on trees with higher complexity 0.114m 0.145m 79.1%

It should be noted that when predicting orientation the
node error increased towards the tips of the tree, most likely
due to error propagation: Since the post-processing step
reconstructs the tree from the root up, errors in the prediction
for nodes close to the root propagate into nodes further out.
This effect can be seen in 3(c)

Fig. 4. Example of the two forms of tree warping when using positional
prediction

B. Training and Evaluating on Seperate Topologies
Since it is unrealistic to assume the tree topologies our

model will be deployed on are known during training time
unless the field robots perform some form of online learning,
we also tested our models on tree topologies that did not
occur within the training set.

When evaluating on topologies that were not trained on
we can see a sharp drop in performance, as evident in Table
I. Predicting positions still performs better, but when looking
at plotted predictions a weakness of the positional approach
becomes apparent. Since all positions were predicted in-
dependently of one another, the model is able to change
the distance between parent and child nodes, shortening or
lengthening branch segments. Additionally since some node
positions are duplicated (as can be seen in 2) the model
can theoretically predict different positional values for these
nodes leading to branch splitting.

Both of these effects lead to tree warping that fundamen-
tally changes the tree topology, an issue that cannot come
up when predicting orientations.

C. Evaluating on More Complex Topologies

To get an idea of how well our model generalizes to more
realistic trees with a higher number of tree points we also
tested models trained on trees with 8 tree points on trees with
10 tree points. As expected performance decreased again,
however, it did not become arbitrarily bad, showing that a
limited level of generalization is possible with the applied
model architecture.

The issues of tree warping when using positional predic-
tion described in the previous subsection became even more
pronounced. An example can be seen in 4.

VI. DISCUSSION

While predicting positional data seems to be the over-
all most accurate method, its tendency to warp the tree
topology when interacting with unknown and more complex
tree structures was deemed to be a critical flaw. Predicting
the orientation might therefore be preferable, especially in
environments in which keeping the tree topology consistent
is important, like for example the planning of longer policies.
Additionally, errors stemming from error propagation along
the tree structure are easier to reason about than seemingly
random warping errors. Generally, our experiments showed,
that the application of GCNs on this task can be success-
ful, even when predicting tree deformations on topologies
that had not been trained on. This leaves us hopeful, that
generalization to trees with different levels of complexity
is also possible. However, we also realized that there are
inherent limitations to GCNs that we cannot overcome. Most
prominently the commitment to a fixed number of layers at
training time makes it difficult to generalize to trees with
a significant jump in complexity compared to our training
data. Using more flexible graph-based learning algorithms,
therefore, seems to be necessary to successfully solve the
larger problem at hand.
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APPENDIX

Input: max tree pts, termination radius;
attraction points← random attraction points;
tree points← [initial tree point] ;
edges← [] ;
while number of attraction points > 0 do

for v ∈ tree points do
S(v)← attraction points that v is closest tree
point to;
child← generate child based on S(v);
tree points append child;
edges append (index(v), index(child));
for a ∈ attraction points do

if ∥a− child∥ < termination radius
then

remove a from attraction points;
end

end
if len(tree points) >= max tree pts then

stop;
end

end
end

Algorithm 1: Space Colonization Algorithm
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Treating Video as an Image

Jana Zeller1, Deva Ramanan2 and Jonathon Luiten3

Abstract— Many applications for dense video understanding
task require harsh memory or time constraints, like Au-
tonomous Vehicles or mobile Augmented Reality. Past research
tried to address the problem by either down-sampling the
resolution of inputted video or by trying to slim / prune
single pass models. While these solution lead to reasonable
results, most of them do not take advantage of the similarity of
consecutive frames in video. In order to address this issue we
are working on Treating Video as an Image. In this paper we
show, that our proposed method is significantly faster than just
running a vision transformer on video and that our method
has the potential to significantly decrease compute time with
only minor drops in accuracy.

I. INTRODUCTION

Dense video understanding tasks, such as Video Object
Segmentation, Video Instance Segmentation [1] and Video
Panoptic Segmentation [2] have recently found use in a
number of applications, for example in Autonomous Vehicles
(AV) [3] and Augmented Reality (AR). Oftentimes these
applications require strict time and/or memory constraints,
e.g. AVs demand real-time segmentation while mobile AR
relies on memory-efficient solutions. Even if there are no
strict constraints most common offline approaches manage
only to analyse videos of between 6 and 10 seconds at a
frame-rate of around 6 fps [1], [4], since anything beyond
this dramatically increases the compute time and the required
GPU memory. This significantly slows down research trying
to learn long-term behaviour from videos or using Computer
Vision for Video Editing or Augmented Reality.

Most state-of-the-art approaches for video understand-
ing rely on architectures that have been constructed for
images, that were then adapted to video by incorporating
temporal context [5]–[7]. Generally these approaches process
the majority of the video on a frame-by-frame basis. For
instance, Mask2Former for video understanding [4], [7] runs
the backbone and the pixel decoder once per frame. Only the
transformer decoder is run once per video, but according to
our measurements the transformer decoder only accounts for
21% of the whole compute time. Note that this measurement
has been taken with a relatively simple R50 backbone and
that this number would shrink further if we would use a more
complex R100 or Swin-Transformer backbone (see fig. 1).

We hypothesize that this frame-by-frame inference intro-
duces a lot of unnecessary overhead, mostly since consec-

1Jana Zeller is with Karlsruhe Institute of Technology
jana.zeller@student.kit.edu This work was written
during an internship at Carnegie Mellon University.

2Deva Ramanan is with Carnegie Mellon University and ARGO AI
deva@andrew.cmu.edu

3Jonathon Luiten is with RWTH Aachen and Carnegie Mellon University.
jluiten@andrew.cmu.edu
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backbone

pixelDecoder

transformerDecoder

Fig. 1. Compute time of Mask2Former with a R50 backbone. The backbone
and the pixel decoder are computed on a frame-by-frame basis.

utive frames in a video are highly correlated. Therefore we
introduce “Treating Video as an Image” (TVI).

Inspired by DataMUXing in Neural Networks [8] TVI pro-
cesses multiple frames simultaneously by the same backbone
and pixel decoder. We achieve this by simply concatenating
consecutive frames together as though they were a single
frame with more input channels. The key to allowing this
architecture to be useful for dense prediction tasks is a
‘video expansion’ layer which, after processing the combined
frames, extracts dense features for each frame individually.
This way TVI learns which features should be shared be-
tween frames and which features should be extracted per
frame.

For simplicity we demonstrate in this paper how TVI en-
hances the Mask2Former architecture with a R50 backbone.

II. RELATED WORK

A. Speedup in a given model

There are two main approaches to gain speed-up in video
understanding. Either sub-sampling the input video, in a
spatial or temporal way, or optimizing the model itself.

Sub-sampling the input’s frames has been a common
approach to optimize global video analysing tasks, like
action recognition. Salient clips are significant snippets of
a video, that when analysed increase the accuracy of ac-
tion recognisers compared to analysing the whole video
[9]. “Dynamic images” take the idea of sub-sampling even
further. They condense a whole video into a single frame and
then only classify this image [10]. While these approaches
show significant speed-up for global task, they are not
applicable for dense task, because dense tasks require labels
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for each and every pixel. Thus, only looking at every x-th
frame significantly decreases performance, whereas action
recognition can already be solved reasonably well when only
looking at a single frame [11].

However, a question arises: Is it possible to apply a similar
approach to dense tasks? Since simply skipping on frames
does not yield reasonable performance (see fig. 6), a possible
answer has to be incorporated within the model’s design.

Optimizing the model: There have been a multitude of
endeavours trying to create better speed/accuracy/memory
trade-offs for object detectors, however most of the current
research focuses on single-pass detectors [12]. A common
way to create speed-up in single-pass detectors is to prune
or slim models. This approach is backed by the lottery ticket
hypothesis. This hypothesis states that only a fraction of
each neural network is relevant to solving a given task [13].
However, there is debate regarding whether pruning models
actually improves performance compared to randomly ini-
tializing weights [14].

Multi-Input-Multi-Output Networks: While leaning
down models is one way to interpret the lottery ticket hy-
pothesis, the hypothesis also backs Multi-Input-Multi-Output
networks. The main idea behind these networks is that
multiple inputs can be mixed and passed through a neural
network once. Afterwards the output can be “unmixed”
again, generating per instance labels. This approach has been
applied to both CNNs [8], [15], [16] as well as Vision
Transformers [17]. However, most prior research focuses on
mixing unrelated images together [8], [17] or on mixing the
same image in order to achieve a better accuracy [15], [16].

With TVI we hope to show, that mixing related frames
from the same video can outperform current State-of-the-Art
approaches on accuracy-latency-trade-offs.

B. Current Vision Transformers

While TVI has the potential to speed-up any offline Vision
Transformer for video that runs on a frame-by-frame basis,
in this working paper we only demonstrate how TVI can
speed up Mask2Former with a R50 backbone.

Mask2Former for Video Instance Segmentation is a Vi-
sion Transformer built for images, that has been adapted to
work on video.

The original Mask2Former architecture for images con-
sists of a backbone, pixel decoder and a transformer de-
coder. First the backbone extracts low-resolution features.
The pixel decoder then takes these features as input and
gradually scales those up to achieve per-pixel high resolution
embeddings. A transformer decoder in return converts those
embeddings to object queries. The final binary mask is a
result of combining the per-pixel embeddings and the object
queries. For more detail please refer to [4].

To adapt this architecture to video the transformer decoder
is run once per video instead of once per image. This way
the transformer decoder can attend to 3D spatial-temporal
features instead of attending to 2D spatial features. This way
the transformer decoder can track objects across space and
time. For further information please refer to [7].

Because the adapted architecture is so similar to the
architecture used for image segmentation tasks, it can highly
benefit from pre-trained weights for images. This and the
small youtube-vis dataset (2k videos) results in little needed
training time (8k iterations for the youtubevis 2021 dataset
with a batch size of 16). During training each video is
composed of 2 randomly sampled frame in a 20 frame range.
Different randomly created transformation are applied for
each of those two frames. This leads us to believe, that
there is a opportunity to gain even more performance by
incorporating more context and taking more advantage of
the highly correlated data.

TVI has the potential to fill this gap. Because TVI is
trained in a teacher-student fashion, TVI can be trained on
unlabeled data. This allows TVI to be trained for longer and
to actually learn which features should be shared between
consecutive frames. This way TVI incorporates context,
while being faster than other state-of-the-art architectures.

III. METHOD
We make two major adaptions to the Vision Transformer

architecture used by Mask2Former: 1) We merge images in
the stem of the backbone and 2) we expand the outputted
features of the pixel decoder to multiple frames (see fig. 2).

We treat videos as a volume of dimension T × C × H
× W, where H and W denote the width and height of each
individual frame and T the time, i.e. the total number of
frames in the video and C the feature dimension, e.g. 3 for
RGB colored videos. Let M denote the number of frames
which we want to merge together.

A. MERGING FRAMES

During pre-processing we concatenate M frames together
using the C dimension. Thus we convert our video of
dimensions T × C × H × W to dimensions T/M × C*M
× H × W.

We also adjust the stem, i.e. the first convolution in the
backbone, to expect C*M input channels instead of C. This
way, the 2D convolution can attend to all 3 spatial-temporal
dimensions, while only being as compute-expensive, as a 2D
convolution. We initialize the weights by simply concatenat-
ing the original weights together using the feature channel
C and then dividing by the number of merged frames M.

B. EXPANDING TO VIDEO

The original pixel decoder returns multiple volumes of
dimensions C × Ĥ × Ŵ, where C denotes the number of
feature channels after both the backbone and pixel decoder
have been applied and Ĥ and Ŵ denote the corresponding
post-processing height and width.

We take each of these volumes and pass them through a
simple linear, one-layer neural network which expands C ×
H × W to M × C × H × W. We initialize the weights using
a simple copying function.

IV. EXPERIMENTS
We evaluate TVI on the Mask2Former architecture on the

Youtube-VIS 2019 dataset. We used a R50 backbone.
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A. SPEED UP

All in all, we only altered the first convolution and added
very simple, fast networks in order to get per frame features.
Thus, we only need to process the backbone and pixel de-
coder roughly 1/M-th of the time compared to Mask2Former
(see fig. 3). The added overhead from the expansion and
merging step are only minor in comparison (see fig. 4). All
in all, we achieve a major speed-up the more frames we
merge (see fig. 5).
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Fig. 3. Relative total compute time for 200 videos ( 5,000 frames) during
inference

B. PERFORMANCE

We trained our model by sampling at least M, i.e. the num-
ber of merged frames, frames in a consecutive fashion from
each video. We applied the same transformation proposed in
Mask2Former for all frames in a video, while making sure

Fig. 4. Absolute total compute time per frame per stage during inference

that the identical transformation are applied to each frame in
the same video. All of this allows our custom backbone and
pixel decoder to learn temporal features from consecutive
frames.

We first trained on the mask loss proposed by
Mask2Former on the youtube-vis 2019 dataset. This however
yielded poor performance. We hypothesize that this is be-
cause the youtube-vis 2019 dataset only consist of 2k training
videos, which are not enough to learn temporal features.

V. FUTURE WORK

We plan to train our model in a student-teacher-learning
manner. We want to train using videos from the WebVid
Dataset [18], which we preselect on the basis of whether
their video description contained one of the object categories
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of the youtube-vis 2019 dataset. We want to first run the
original model for each frame of the video and use then the
original high-resolution per-pixel embeddings outputted from
the pixel-decoder as our target.

Finally we want to compare our method against an
interpolation-based pixel-wise nearest neighbour baseline
(see fig. 6).

Fig. 6. A baseline based on frame-subsampling for dense video under-
standing tasks

We want to explore whether we can improve performance
further. Either by fitting our model after it has been trained
on WebVid to the Youtube-vis dataset or by first computing
the loss through the output of the pixel-decoder and then
moving to compute the loss using the outputted masks.

We currently hypothesize that the performance of TVI is
more limited by the time between the first and last frame,
rather than the number of frames merged. In order to test
our hypothesis, we want to compare how TVI performs on
6fps videos and 30 fps videos at different merge rates.

Moreover, we want to show that TVI cannot only speed-
up Mask2Former with a R50 backbone, but also different

transformer based backbones, like Swin and other offline
architectures. We also want to have a look at how much
less memory TVI uses compared to the original architecture.

Finally, we also want to explore if and how much memory
TVI uses compared to the original Mask2Former architec-
ture.

VI. CONCLUSION

We present a new way to process video for dense video
understanding tasks. Treating Video as an Image has the
potential to create massive speedups with only minor drops
in accuracy.
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Object Manipulation with Simple Box Gripper

Jessica Ahner1 and Oliver Kroemer2

Abstract— The creation of advanced robotics systems with
the ability to manipulate small objects, bringing them to precise
positions and orientations, has proved to be an important, yet
challenging, task in the world of robotics. Manipulation of
small items is typically done with complex dexterous manip-
ulators, using fingertips that require fragile strategies given the
constraints of having to maintain contact. In this paper, we
propose a box gripper design for robust in-hand manipulation
without the complexity of common approaches. We run a
series of experiments testing the picking up, manipulation,
and placement of a variety of objects. We do this by utilizing
extrinsic dexterity with the box gripper implemented on the
Franka Panda Robot Arm. The goal of this work is to develop
a general understanding and background on the manipulation
capabilities of a simple box gripper and how the capabilities
vary with objects of different size and shape.

I. INTRODUCTION

In today’s world of fast technology, it is important to
consider the tradeoff between time spent creating a design
and functionality. Although complex dexterous manipulators
may be more successful at specific functions, we must ask
if the time and money required to create these manipulators
are actually necessary to complete the task. Many studies
have shown that simple hands still possess many usable
manipulation capabilities. Our goal in this paper is to find
an effective way to complete a broad task without the same
complexities as the dextrous hand.

Our approach is just the beginning of more well-rounded
future projects. We will be using a controlled environment
with known locations and orientations of the small objects
that will be manipulated. It is important to start small,
learning the foundation of the experiments, before adding
more complexities like irregular shaped objects. With a very
simple box gripper design, it is easy to make small edits
and create new iterations in a short amount of time. This
allowed for numerous variations to be created and either
tested or disposed of based on whether or not they appeared
viable for the experiments. These grippers have no sensors or
actuators and rely completely on extrinsic dexterity to create
movement and assortment.

When it comes to extrinsic dexterity, most previous ex-
periments have used fingers to aid in the use of these
extrinsic forces, however, we will be using an even simpler
method for our object manipulation. With the use of the
tilt caused by gravity, we will experiment the abilities of a

1Jessica Ahner is with the Electrical/Computer Engineering Department,
United States Air Force Academy, Colorado Springs, USA and Robotics
Institute Summer Scholars, Carnegie Mellon University, Pittsburgh, USA.
c23jessica.ahner@afacademy.af.edu

2Oliver Kroemer is with the Robotics Institute, Carnegie Mellon Univer-
sity, Pittsburgh, USA. okroemer@andrew.cmu.edu

Fig. 1. Box Gripper Design

simple box gripper to move, maintain control of, and orient
different objects. These broad manipulation capabilities may
not appear complex enough to be necessary, but these simple
tasks are still extremely desired and useful.

The central goal of this paper is to examine and further
prove the idea that simple manipulators like a box gripper
can perform important tasks without the added complexity or
time and money requirements of more complex manipulators.
In our experiments, we run several trials of picking up,
orienting, and relocating items through the use of our box
gripper on a Franka Panda Robotic Arm. From this data, we
can assess the success of simple manipulators, addressing
the following objectives:

-Pick and Place
-In-hand Movement
-Multi-Object Grasping
-Simple Gripper Design
Section III walks through our approach for creating and

implementing the box gripper design as well as our desired
path of motion for the robot to complete each objective
listed above. Section IV describes our experimental setting
and the specific actions we took to evaluate the abilities of
the box gripper. This is also where we discuss the results
obtained from the different experimental trials based on each
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objective. Finally, section V discusses the impact of the
results as well as the improvements that can be included
as future work is conducted based around these ideas.

II. RELATED WORK

In this section, we explore related work on previously
researched object manipulation by simple robotic systems.
This work involves the use of extrinsic dexterity, box ma-
nipulators, and basic anthropomorphic hands.

Many approaches to object manipulation involve complex
robotic hands, using intrinsic dexterity to move and reorient
an object. This strategy has proven to be expensive in time
and materials. The related work provided shows the broad
and quite beneficial abilities of using less complex designs
in order to accomplish similar tasks of object manipulation.

Most similar to the experiments that will be completed in
this paper is Erdmann and Mason’s exploration of robotic
manipulation through motion strategies without the use of
sensors. [1] Through a planned path, objects can be oriented
by tilt to achieve a desired position. These experiments
required restrictive assumptions that, if not met, ultimately
resulted in the object maneuvering in an unplanned path. This
research presents how nontrivial sensorless manipulation can
be. However, the manipulation does not involve collection
and placement of these oriented objects. This idea will be
explored with our implementation of the box gripper.

Other approaches involve in-hand manipulation through
use of extrinsic dexterity. This means the objects are manip-
ulated with forces such as tilt, gravity, squeezing, rolling, and
many other techniques that are extrinsic to the hand. Nikhil
Chavan Dafle and others studied a series of regrasp actions
with sufficient successful experiments to show that in-hand
manipulation is possible even on very simple hands. [2]

Another related research area revolves around the benefits
and abilities of a simple hand design when compared to a
more complex design. These simple hands have less actuators
and sensors, but are therefore lighter and less expensive. Matt
Mason and others explore the trade off between simplicity
in design and robotic hand function. Although there were
high success rates with bin-picking tasks, there was noise
due to high clutter, pose uncertainty, and overlapping fingers.
These are the concerns with simple hands, however machine
learning and manipulation of error and confidence parameters
helped Mason allow for more accurate detection of object
singulation. [3] The box gripper explored in our experiments
will further work to represent how simple manipulators can
accurately detect position and pose with an even simpler
design than the simple hand.

III. APPROACH

The central aspect to our approach is the design and mea-
surements of the box gripper. In order for the experiments to
be effective in testing the success of the pickup, organization,
and placement of objects, the box gripper design must be
accurate. Once a gripper design is created, we can explore
the best sequence of movement on the Franka Robot to test
the success parameters.

A. Gripper Design

First, we perfected and created the box gripper design,
including the box and the scooping mechanism. Based on
the dimensions of the Franka Robot and the desired dimen-
sions of the box, two different designs were presented and
ultimately adjusted numerous times. The initial box design
shown did not allow the scooper to easily slide under the box
and it did not provide sufficient stability when attached to
the robot. The second design improved in both these areas
and ultimately was the final design. With two supports to
connect to the robot, a compartment under the box for the
scooper to easily slide, and an elongated scooper to provide
more scooping ability, the second design shown would allow
for better experimentation.

Fig. 2. Box Design Variations

B. Action Path

Our approach to adequately assessing the success of the
box gripper would be through picking up multiple objects,
storing them in the back compartment of the box, bringing
all objects back to the front of the box, then releasing them in
a precise location. This would allow us to evaluate a variety
of different motions in relation to the different objects we
were testing. Now that we had decided what our decided
actions for the gripper were for our experiments, we needed
to design an adequate sequence of motions on the Franka
Panda Robotic Arm. To approach this, we began by testing
for a small yet significant enough tilt angle to sort the
objects without losing the inability to pick up more objects.
The tilt angles for many of the motions ended up different
because some in-hand manipulation inside the box required a
harsher tilt than others. We also needed to analyze the precise
picking up and dropping off height and location for the robot
arm in order to ensure successful trials. These things were
necessary to examine before implementing the box gripper
to prevent inaccurate and potentially destructive motion of
the box gripper on the robotic arm.
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With the desired path, pickup and drop off heights, and
tilt angles figured out, we could code the process for the
robotic arm to complete. We created numerous functions for
the Robot including tilting, closing hands, opening hands,
and we also included a neutral position for the arm to return
to after each task. We realized this was necessary to avoid
disruption in the joints and to get the robot to reach precise
locations. It was expected that the desired path would not
completely match the actual path implemented, so the code
was designed with the intent of being easily adjusted and
modified.

The primary goal of our approach to this design is to
create a solid foundation to run the following experiments. It
was important to have a stable and durable box design with
an adequate path of motion to allow for grasping, in-hand
movement, and relocation.

IV. EXPERIMENTS

A. Setup

Fig. 3. Box Gripper on Franka Panda Robot

In the experimental set up, the box gripper was attached
to the Franka Panda Robot Arm as shown in figure 3. The
objects will be picked up and placed on the same area of the
platform for each trial so that we can maintain a controlled
environment. The platform sits at a slight angle which is ac-
counted for in the code. We have chosen numerous different
objects to test against the preprogrammed plan that evaluates
the objective of this experiment. The variety of objects help
show what characteristics of the objects affect the success
of the gripper. We are testing rolling objects, larger objects,
rectangular shaped objects, objects that wont slide as well in
the box, and objects that do not have symmetrical designs
like screws. These objects are shown in Figure 4.

Through these experiments we ran the same program on
the Franka Robot Arm. This program would next perform a
series of tilts that were established in the approach section in
order to move the objects picked up in the front of the box to
the back of the box behind the wall inside the box. Once this

Fig. 4. Trial Objects

was completed, the robot would one by one, pick up more
objects, each time placing the object behind the wall before
picking up the next one. We ran the program 10 times for
each object, ultimately testing the success and consistency of
the program with the different sizes and shapes of objects.

B. Pickup Results

A rectangle was marked on the platform to indicate the
size of the opening of the box gripper. As long as the objects
were placed inside the marked area on the table, the box
gripper would be able to pick them up. Any items placed
outside that area will not be successfully picked up since they
would not be located inside the box when the box approached
the table. The only issue with this was that the platform was
not flat, so there was a slight gap between the box and the
table on one side, causing certain objects to squeeze through
and not get picked up. This had to be accounted for in the
code so we created a slight tilt in the box as it approached
the table to pick up items. With the slight slope on the edge
of the scooper, the round objects tested were easily slid on
top of the scooper and into the box. However, the rigid
objects failed to be picked up most of the time. Completely
rigid objects with no rolling capabilities failed each trial
and could not be picked up. Objects with slight rolling
capabilities, but rigid characteristics failed when placed in
certain orientations, but were successful when picked up at
other orientations. Objects with complete rolling capabilities,
like the marble, were successfully picked up on each of the
10 trials.

C. Manipulation Results

The first manipulation experiment conducted was the
movement of objects from the front of the box to the back for
storage. The storage of items in the back of the box would
allow for pickup of more items in the front without spilling
the previously picked up objects out of the box. In Figure
5, the sequence of tilts can be seen that move the objects
from where they are picked up in the front to the back.
Similar to the results of the pickup operations, completely
rigid objects could not adequately slide and therefore could
not successfully be moved around in the box. The Lego block
failed each time in moving to the back of the box. Objects
that we partially round and partially rigid, had successes and
failures moving throughout the box. These objects included
the die and the screws. Fully round objects like the marbles
successfully completed the motion on every trial.
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Fig. 5. First Sequence of Motion

The second portion of the experiment consisted of picking
up multiple objects, storing each one in the back of the box
before picking up the next object. Then, the objects were
repositioned to the front of the box, together, in order to
precisely place them back on the platform. The reasoning
for the curved edge in the middle of the box was to keep
the objects in the back from rolling forward when more
objects were being picked up. Figure 6 shows the sequence
of movements to move all the objects to the front of the box.
The results for this portion were the same as the results for
the first manipulation sequence as they both had to do with
the movement of objects through the box.

Fig. 6. Second Sequence of Motion

D. Placement Results

The placement trials demonstrated a lot of variance with
the results. The placement trials with the die were successful
and easy to observe, but the trials with round objects were
much more difficult to observe due to the slanted platform.
Figure 7 shows a few examples of precise placement withe
the 10-sided die. No matter where the die were to begin with,
the die ended up in the same place after the manipulation in
the box. However, when these trials were done with round
objects, they were placed in the correct location, but they
would roll down the platform because of the slope. This
made precise result collection difficult for the more rounded
objects. In each of the trials with the round objects like the
marbles, we found that no matter where the marbles were
picked up from, they would be placed in the same precise
location when they were released.

V. CONCLUSION

Our experimental trials indicate the usefulness of a simple
box gripper to complete broad tasks such as picking up, ma-
nipulating, and precisely placing objects down on a surface.
Through use of extrinsic dexterity, we were able to find a
level of functionality without the expensive and complex
nature of dexterous hands and other more complex designs.

This project exists at a very elementary stage, as many
desired changes to allow for better experimentation were not
possible. The experiments were used to build a foundational

Fig. 7. Precise Placement of Die

understanding of a simple box gripper and to learn the
limitations that would come with the simple design. There
was small room for change during the experimentation
process, therefore if we came across small errors, we could
not easily go back and change the entire process. We found
the results for each object were relatively consistent across
the three objectives. Rigid objects were incredibly difficult
to manipulate due to the added friction. The more round
characteristics that an object possessed, the easier it was to
manipulate inside the box. These limitations are things that
should be explored in future work in order to find ways to
overcome them.

A. Future Work

This project requires more time and resources than were
provided in this initial exploration. Future work should
target one specific area of simple object manipulation and
deconstruct it in order to further explore these ideas with
more detail. First, I will explain my recommendations for
improvements as this project is continued. Then, I will
elaborate on different projects that may stem from this
elementary research.

The most important things to improve would be the
experimental setup and design quality. The platform utilized
in this experiment was slanted, therefore altering our results.
With a flat surface, there would have been less roll off from
the objects and outcomes of the placement would be easier
to examine. For design quality, I would recommend creating
a box gripper out of a material with less friction and ridges.
Creating the box gripper on a 3D printer caused difficulty
for many of the trial objects to slide around inside the box.
A flat metal would be a great alternative.

Further experimentation can involve box gripper with task
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specific barriers for more accurate sorting of objects. Adding
a second compartment in the back of the current box gripper
would allow for more precise storage and manipulation of
more than two objects at one time. Exploring new potential
strategies of in-hand manipulation with the box gripper is
another great path to pursue. For example, using the box
gripper to orient a screw onto its flat head to limit rolling
would increase manipulation capabilities. These further ex-
periments should also involve the use of different materials to
build the box gripper in order to evaluate how the capabilities
change with each box. These can include metal, wood, and
more cohesively built plastic materials.
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Automated Content Editing in NeRFs

Joel Julin1,2, Heng Yu2, László Jeni2

Abstract— Neural rendering for novel view synthesis has
been a rising problem within the computer vision community.
Among the many proposed techniques, neural radiance fields
(NeRF) have proven to be one of the most effective. The system
introduced by NeRF builds a 3D representation of a scene
given a number of 2D images. When applied to dynamic scenes,
NeRF’s performance significantly declines. Recent strides have
been made towards solving this problem with the likes of
CoNeRF and Non-Rigid NeRF; both works have shown to
be effective in re-rendering and manipulating neural radiance
fields despite the presence of dynamic objects. However, this
previous research is hindered in both the labor and function
domain. CoNeRF requires the tedious task of manually annotat-
ing the dynamic component of the input images; whereas Non-
Rigid NeRF is unable to generalize to new movements and only
works with a single deformable object. We propose a followup
method capable of re-rendering and manipulating a dynamic
object within a radiance field without the need for manual
annotation. With our proposed method, dynamic scenes with
simple movement of the human shape (i.e. raising/lowering of
the arm) can be more easily rendered and manipulated through
automatic masking of the component in motion. In addition to
dynamic scenes, our work also brings benefits to static scene
manipulation through selective ray rendering that allows for
entire removal of humans from the scene, or inversely, the
removal of the background. We hope that this work sheds light
on future NeRF manipulation methods.

Index Terms— Computer Vision, Neural Rendering, Com-
puter Graphics

I. INTRODUCTION

Neural Radiance Field (NeRF) has recently become the
standard method for view synthesis. This is certainly not
without reason, as NeRF has outstanding performance on
both static [1]–[5] and dynamic objects [6]–[9]. Despite this
performance in both domains, radiance field manipulation
and usability remains an open research question. There is
a large amount of research dedicated to the application of
NeRF to dynamic scenes, but it is often tedious and requires
much work.

One such work that aims to control the dynamic movement
within neural radiance fields is CoNeRF. CoNeRF yields
impressive results, but its scalability is largely limited due
to the need for manual annotation of the controllable com-
ponent. There also exist few methods that utilize automatic
segmentation of the dynamic and static components but fail
to provide fine-tuned rendering selection, such as Non-Rigid
NeRF [6]. In this paper, we propose a method capable of
automatically, and accurately, annotating both a dynamic and

1Joel Julin is with the School of Computing and Information, University
of Pittsburgh, Pittsburgh, PA 15260, USA jmj96@pitt.edu

2Joel Julin, Heng Yu, and László Jeni are with the Robotics Insti-
tute, Carnegie Mellon University, Pittsburgh, PA 15260, USA jjulin,
hengyu, laszlojeni@andrew.cmu.edu

static human body for use in neural radiance field control
and manipulation. For use in dynamic scenes, our method
proves to be effective at radiance field control with CoNeRF.
Within the static domain, the same method is effective at seg-
mentation and rendering control. This work predominantly
showcases efficient usage of image segmentation for dynamic
scene control while also revealing an additional use-case for
static scenes. In specific, this paper describes a method that
offers:

• Automatic Selection of the Human Shape for Neu-
ral Rendering. Automatically selecting the shape of
interest within a scene brings heaps of improvements
to both static and dynamic neural rendering, namely
the elimination of manual annotation. While currently
structured to solely segment human bodies, this work
can be extended to a variety of other classes.

• Dynamic Scene Manipulation. Many of the NeRF
methods that apply to dynamic scenes [9] require a
degree of manual annotation or are limited in function
[6]. This work applies automatic segmentation methods
to this dynamic scene control.

• Static Scene Manipulation. Given the selected ob-
ject(s) the neural radiance field can be rendered without
the selected objects, or without the background.

II. RELATED WORKS

Our work is closely related to a number of recent devel-
opments made within neural rendering.

A. Neural Rendering for Novel View Synthesis

NeRF has led to cascades of research on neural rendering
for novel view synthesis. The original method proposed by
Mildenhall et al. [1] is capable of building a high fidelity
3D representation of a scene given a number of 2D images.
When initially published, a large constraint of this method
was its inability to represent non-rigid or dynamic scenes.
Since then, there have been a few works that extend NeRF’s
exemplary performance on static objects to objects in motion
[6]–[9].

B. CoNeRF: Controllable Neural Radiance Fields

CoNeRF is one of the most influential NeRF followup
works that propose a method for neural radiance field control
[9]. The method proposed in this work controls object
movement through tedious annotation of the controllable
component (i.e. arm moving) and a value assignment. To
annotate the controllable component, CoNeRF uses a manual
click and drag annotation software known as labelme [10].
At each annotated frame, a value is assigned to represent
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Fig. 1. NeRF architecture

the transition status. For instance, an arm fully located at a
person’s side would be assigned a value of -1.0, an arm that is
fully stretched out would be given a value of 1.0, and an arm
that is somewhere in the middle would be assigned a value of
0.0. Since our work brings automatic annotation to CoNeRF
and improves its usage, it is closely related. However, our
work does not overlap with that of CoNeRF’s [9] in terms of
contribution. We only use this preexisting work as a means
to display our application of automatic annotation.

C. Non-Rigid NeRF

Non-Rigid NeRF [6] focuses on the automatic separation
and manipulation of a scenes rigid (static) and non-rigid
(dynamic) counterparts. Non-Rigid NeRF is largely limited
in function, as this work only achieves scene manipulation
when composed of both static and dynamic objects. Our
work significantly extends upon theirs since we enable radi-
ance field manipulation regardless of the scenes composition;
meaning that distinct dynamic and static components are not
required.

III. METHOD

Our method consists of four components (i) data collection
and preparation, (ii) automatic segmentation, (iii) NeRF ar-
chitecture for automated content editing, and (iv) automated
segmentation for dynamic scenes.

A. Data Collection and Preparation

The data used for this work was captured using an
iPhone 13 Pro’s 240fps slo-mo camera. For a thorough 3D
representation of the scene and a large number of viewing
angles, the video was captured in a circular motion with a
moving camera. After the video is captured, a sparse set of
the captured frames (approximately 300) are passed through
COLMAP to obtain the camera poses that are needed to
determine where the camera is located during each frame.
This is important because without the poses, there is no
structural information of where these images were captured
in relation to other images, and are needed as inputs to
NeRF’s fully connected network that will later be discussed
in further detail.

B. Automatic Segmentation

Fig. 2. Body Pix 2.0 generates near perfect masks. These binary masks
are used to determine the object of interest. Areas marked as white are
editable and areas marked as black are unaffected. It is important to note
that these masks can be inverted. When this happens, the areas marked as
white become black and the areas that were once marked as black become
white, effectively switching the areas of interest.

BodyPix 2.0 is an effective segmentation software that is
directly trained to recognize, and segment, the human shape.
As shown in Fig. 2, the masks that BodyPix 2.0 creates are
quite accurate. The masks generated by this software are
used to determine which object in our scene we wish to
manipulate.

C. NeRF Architecture for Automated Content Editing

At the heart of this work is the standard NeRF method.
[1]. This method works by representing a static scene as a
fully-connected deep network with a 5D coordinate (x, y, z,
θ, ϕ) and an output of color and density (RGBσ). As shown
in Fig. 1, given an image from a given viewing direction or
camera position (θ, ϕ) a ray is passed through each pixel. As
that ray is sent through the pixel at location (x,y), a sampled
point z is sent through a fully connected deep network and
is outputted a color (RGB) and density (σ) where density is
a value that denotes whether or not an object is present.
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Fig. 3. The standard NeRF method yields impressive results when applied to our own image sequences. The inputs to both of the above experiments
contain approximately 150 images from a variety of different viewing directions.

This process of sampling a point along the ray and passing
it through the deep network to receive an output of color and
density is repeated for every sample along the ray as shown in
part b of the figure. Whenever this process is completed, all
of the sampled points are combined using a classical volume
rendering technique [11] to receive the final prediction of the
pixel’s color as shown in part c. The final step (d) within
the NeRF architecture is to compute the loss between the
rendered color and the ground truth, then take that loss to
reduce the rendering error in future iterations.

With the standard NeRF method now being outlined, we
will now present our simple, yet successful, modification that
allows for automated content editing. Since NeRF renders the
color of a pixel from a sampled ray, removing the entire ray
effectively prevents portions of a scene from being rendered.
When this ray removal is applied at a larger scale, by utilizing
selective binary masking, entire objects can be removed from
the scene. Partnering binary object masking with ray removal
is the extent of our method that allows for static scene
manipulation.

D. Automated Segmentation for Dynamic Scenes

Fig. 4. Body Pix 2.0 is capable of automatically generating masks for
parts of the body, such as an arm.

Our method of utilizing automatic segmentation for static
NeRFs, also brings benefits to NeRFs representing dynamic
scenes. Instead of removing components of a scene, we
applied this method to more easily control a scene. CoNeRF
[9] acted as our standard dynamic method to which we made

modifications to. This method uses manual annotation to
signify which component within a scene is in motion, which
is oftentimes a tedious task. The automatic segmentation
software, Body Pix 2.0, entirely removes the need for manual
annotation of the controllable segment of the scene as shown
in Fig. 4. The primary modification made to CoNeRF was to
directly accept binary images as labels instead of a json file
containing the mask coordinates generated by labelme [10]
(a manual annotation software). Other than this modification,
the original CoNeRF code was used for our experiments.

IV. EXPERIMENTS

The experiments that were conducted for this work include
standard NeRF without modifications acting as our baseline,
static NeRF modifications with both manual and automatic
annotations, and dynamic NeRF modifications with auto-
matic annotation. In the following sections we will explain
each of these experiments in complete detail.

A. Baseline: Standard NeRF

This first experiments conducted for this project used the
standard NeRF code without any modifications. The NeRF
architecture, as shown in Fig. 1, sends rays through every
pixel from a given viewing direction, samples along each
of the rays to obtain (RGBσ), and applies a volumetric
rendering technique [11] to accumulate the sampled points
and render each pixel’s predicted color. The loss between
the ground-truth and this prediction is used to reduce the
rendering error in future iterations. We applied this method
to two of our own image sequences, a toy and a person
(Fig. 3), with each sequence containing approximately 150
images.

B. Static NeRF Modifications

The two experiments for static NeRF modifications con-
cerned object and background removal. For both of these
experiments, the standard NeRF model was modified such
that certain rays falling within a masked region are not
rendered.
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Fig. 5. Our method is capable of fully removing an object from a
neural radiance field (bottom). This successful removal becomes even more
apparent when compared to the standard NeRF output and depth map
generated from the same images (top).

1) Object Removal: Our method for object removal was
first tested on a manually annotated image sequence as shown
in Fig. 5. As expected, manual annotating a large amount
of images is tedious. Nevertheless, this experiment demon-
strated the effectiveness of our method before introducing
automatic annotations from Body Pix 2.0.

The success of this method continues to hold when using
Body Pix 2.0’s automatic annotation to generate binary
masks. As shown in Fig. 6, the person is removed from
the neural radiance field. By using a much more efficient
annotation method, these experiments become much more
feasible.

2) Background Removal: Similar to the object removal
experiments, we first observed the result of our background
removal method using a manually annotated scene before
using an automatically annotated one. Fig. 7 showcases a
viewpoint taken from this experiment. Since annotations for
our project are binary (i.e. selected component is marked as
white and unaffected as black), it took little modification to
our object removal method to remove the background. Using
the automatic annotations from Body Pix 2.0 we can more
easily remove the background from NeRFs, as shown in Fig.
8.

C. Dynamic NeRF Modifications using CoNeRF

In order to apply our usage of automatic segmentation
to CoNeRF, a NeRF variant that aims to control dynamic

Fig. 6. When applied to scenes in which the object is automatically
annotated by Body Pix 2.0, we see similar performance. The standard NeRF
rendering (left) compared to the modified rendering (right) show that the
person is almost entirely removed from the scene. The shoes of the person
partially remain. This can be explained by imperfect annotations.

Fig. 7. By inverting the manually annotated binary mask, we can select
and remove the background of the scene as opposed to the toy.

Fig. 8. Inverting the automatically annotated binary mask lets us select
and remove the background of the scene as opposed to the person.
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Fig. 9. Controlled output obtained from CoNeRF using automatic annotation for the arm from transition states -1.0-1.0 where -1.0 is the start state and
1.0 is the final state.

scenes, a minor modification was needed. The original CoN-
eRF code only accepts manual annotations generated from
labelme [10] in the form of a json file and then converts those
coordinates to a binary mask. To make this code suitable
for our automatically generated masks, we simply removed
the json conversion and directly used our binary masks of
the dynamic component. With CoNeRF accepting our binary
masks, we now supplied transition values, from -1 - 1, to
a sparse set of the captured frames. The final controllable
output for this experiment of both right arm and left arm
movement can be found in Fig. 9.

V. CONCLUSIONS

This work proposed a method for automated content
editing in NeRFs that allows for simple manipulation of
both static and dynamic neural radiance fields. Using the
automatically generated masks from Body Pix 2.0 and our
ray removal method, static scenes can be rendered without
a person present and the background intact or without the
background and the person unaffected. When applying our
use of automatic annotation to preexisting dynamic NeRF
methods, such as CoNeRF, we can remove the need for man-
ual annotation of the controllable component. Both intended
applications of this method proves to be successful.

While the experiments presented within this paper were
a success, there still remains numerous directions for future
work. A few of the most promising steps are to improve the
masking coverage to more fully capture the object of inter-
est, apply different segmentation methods to automatically
annotate objects of different classes, extend this method to
other dynamic NeRF variants that rely on manual annotation,
and increase the editing possibilities.
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Foldable Compliant Origami Swimmer

Kaylie Alexandra Barber1∗, Kylie Marie Barber1∗, and Zeynep Temel2

Abstract— Swimming is a useful form of locomotion to
achieve in robotics for exploration in inaccessible underwater
locations. This paper presents an underwater swimmer that uses
origami-based mechanisms to achieve its locomotion. Origami
mechanisms allow for rapid, low-cost, two-dimensional manu-
facturing, compact storage, and the use of compliant materials
that can withstand and adapt to environmental changes and
pressure. Strategic placement of folds within the mechanisms
allow the design to be structured for specific applications.
Thus, origami is a useful tool in creating underwater robots.
In this paper, we present three origami mechanisms designed
through lamination procedures that demonstrate propulsion in
water. One of these mechanisms, which combines the other
two mechanisms, is developed into an underwater swimmer
which measures 160 mm by 260 mm by 65 mm with 130 mm
propulsion fins and weighs 105 g with the actuator. It is actuated
in water to demonstrate its propulsion capabilities and reaches
a linear speed of of 2.1 cm/s. This mechanism shows potential
for future control of both direction and depth with improved
actuation systems and constraints.

Index Terms— Mechanism Design, Compliant Joints and
Mechanisms, Biologically-Inspired Robots, Kinematics, Marine
Robotics

I. INTRODUCTION

A. Swimming

Swimming is an abundant form of locomotion in nature
with many creatures exhibiting unique modes of swimming
locomotion. Sea scallops, create thrust through jet propul-
sion, quickly opening and closing their two shells to create
a jet of water to propel themselves [1]. Frogs exhibit drag-
based propulsion by using their webbed feet to stroke their
legs opposite their desired direction of motion, which pushes
them forwards [2]. Most fish use either undulatory motion,
oscillatory motion, or a combination of these motions to
achieve propulsion. While eels move their flexible bodies
back and forth in undulatory motion, boxfish have more rigid
bodies and generate thrust through their fins [3].

All these types of swimming break symmetry in some
way. There are two different types of symmetry that can
be broken to allow for swimming: time symmetry or shape
symmetry. Breaking time symmetry entails moving through
a motion quickly in one direction and slowly in the opposite
direction. Breaking shape symmetry entails the mechanism
or animal changing its geometry based on the direction that it
is moving [4]. Swimming robots follow these same principles

1Kaylie Alexandra Barber and Kylie Marie Barber are in Mechanical
and Mechatronics Engineering with the Schreyer Honors College at The
Pennsylvania State University.

2Zeynep Temel is with the Robotics Institute at Carnegie Mellon Uni-
versity.

∗Equal contributors.

of breaking symmetry. Without breaking symmetry, a swim-
ming robot robot would oscillate, but breakage of either time
or shape symmetry allows it to achieve a dominate direction
of movement.

B. Origami

Our research incorporates origami into swimming robot
design which will provide the benefits of soft robots with
the control of rigid robots. Origami is a method of folding
materials in different ways to achieve desired structures and
motions. It has been employed within many engineering
applications to achieve geometrical transformation and create
new designs and movements, such as space applications
with a deployable solar panel array [5]. In incorporation
of origami into engineering designs, materials must often
be changed from the traditional material of the art, i.e.,
papers. This can introduce challenges with thickness accom-
modation, where the inherent thicknesses of materials can
inhibit the folding of the mechanism [5]. Furthermore, cuts,
although not traditionally used in origami, may be used to
simplify the mechanism and remove unnecessary sections.
This broader definition of origami will be used in the design
of the mechanisms within this paper.

Using rigid materials as planar components and flexible
materials at the folding points, we can create origami that
behaves in a compliant manner. Careful placement of these
folding points allows the motion of the overall mechanism
to be designed according to the desired trajectory. Folds can
also be strategically placed to create multistability, allowing
the mechanism to store energy and use its elasticity to actuate
itself and reduce the need for complex actuation systems [6].
Lamination procedures, consisting of the alteration of rigid,
adhesive, and compliant layers, can be used to create fast,
low cost, and durable methods for fabrication that can be
easily modified such that the design is tunable and adapt-
able [7]. Origami offers an efficient manufacturing process,
allowing one to manufacture a mechanism from a two-
dimensional state and assemble the mechanism into a three-
dimensional state. The mechanism can be fixed into a three-
dimensional state after fabrication, or it can be designed
as deployable where it converts from a two-dimensional to
three-dimensional state when actuated. [8].

II. LITERATURE REVIEW

Origami has been successfully applied to robotics due
to its easy manufacturability, low cost, and compliance.
Research has shown promise for using origami in robots
targeted towards land environments. For instance, Peri, a
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bio-inspired, pseudo-compliant crawling robot, utilizes two
Kresling towers which are rigidly connected and indepen-
dently actuated by servo motors such that the towers expand
and contract to enable the robot to crawl forwards and
turn. The Kresling tower design gives this robot a high
level of flexibility to deform based upon actuation and its
environment [9]. Recently, origami is being explored within
aquatic environments. One origami design takes inspiration
from pelican eels, using the flexibility of origami to achieve
dual-morphing with derivations of Miura and Yoshimura
origami patterns. When actuated, this origami-based mecha-
nism can unfold and expand itself to another stable position
[10]. In another origami-design, researchers at the University
of Pennsylvania created a jet propulsion swimmer which
uses dielectric elastomers to actuate a flexible polyethylene
terephthalate film (PET) surrounding an acrylic tube which
contains the electronics of the system. The PET film is folded
into a magic ball origami waterbomb tessellation which
transitions between an ellipsoidal and spherical shape when
actuated. The jet swimmer weighs 620 g and can achieve a
velocity of 6.7 cm/s, which is 0.2 body lengths per second.
In its ellipsoidal shape, it is 30.5 cm long with a 19 cm
diameter mechanism, while in its spherical shape, it is 25 cm
long with a 23 cm diameter mechanism. The jet swimmer
propels forward but lacks steering and depth control over
its swimming [11]. Non-origami compliant swimmers have
achieved propulsion, steering, and depth control [12]; how-
ever, they often require complex molding processes, which
requires more steps resulting in a longer fabrication time as
compared to such emerging origami robots. To the best of our
knowledge, origami swimming robots have not yet offered
depth control or steering despite the flexibility in design and
actuation that they offer. In this paper, we demonstrate three
origami mechanisms which together demonstrate propulsion.
In future research, we plan to demonstrate these mechanisms’
potential for depth control and steering.

III. METHODOLOGY
A. Mechanism Design

The mechanisms were developed using origami folding
paper to establish base parameters and folding patterns for
the designs. After such iterations, the designs were optimized
in CAD software to improve motion constraints and achieve
the desired ranges of motion. Once these mechanisms were
designed, two-dimensional folding patterns were also drawn
in CAD software for use as the laser cutting patterns during
the lamination process.

YoFin, shown in Figure 1, is a bistable serial six-bar
linkage actuated with a single servo motor which transfers
the mechanism between its two stable positions. The servo
motor pushes the mechanism to its compressed stable state
as shown in Figure 1, while the elastic deformation of
the hinges allows for the mechanism to spring back to its
manufactured open stable state as shown in Figure 1. YoFin
mechanism slowly closes and forcefully extends to cause an
unequal amount of force which has the potential to propel
the mechanism when released.

Fig. 1. Model of YoFin mechanism in compressed position and open
position used for actuation in YoDiFin

DiamondFin, shown in Figure 2, is a parallel six-bar
linkage which has fins that can move together or separately
depending on the actuation. Just as in the YoFin design,
the actuation speed can be modified to close the mechanism
slowly and then allow the elastic deformation to spring the
mechanism to its original state. A single servo motor can
be used to pull the fins into a closed position from which
they can be released as shown in Figure 2, or each fin can be
actuated independently to allow for control over the direction
of the resulting propulsion as shown in Figure 3.

Fig. 2. Model of DiamondFin mechanism in compressed position and open
position used for propulsion in YoDiFIN

These mechanisms can be designed to combine together
as a single mechanisms to form the swimmer called Yo-
DiFin shown in Figure 4. YoDiFin measures 160 mm x
260 mm x 65 mm with 130 mm propulsion fins. YoDiFin
weighs 45 g without the actuation system and 105 g with
the 60 g actuation system. The combination of YoFin and
DiamondFin into a single mechanism allows for actuation
of both mechanisms together with a single servo motor as
seen in Figure 5. In Figure 5 the mechanism is in its open
position before actuation of the servo motor and then in its
closed position after it has been actuated.

B. Lamination

All mechanisms are manufactured using lamination, which
compresses multiple materials together into one cohesive
mechanism. The layers are composed of rigid, flexible, and

121



Fig. 3. DiamondFin with one fin actuated, showing future potential for
direction control of mechanism

Fig. 4. Image of YoDiFin in open position with the actuation system shown

Fig. 5. Image of YoDiFin in open position and closed position after being
actuated by the servo motor

adhesive materials as shown in Figure 6. The rigid layer
uses 0.508 mm thick FR-4, a glass fiber composite, which
provides structure to the mechanism. The flexible layer uses
0.1 mm thick polyethylene terephthalate (PET) to create
deformable hinges. 0.045 mm thick 3M double-sided tape
adheres these layers together. These individual layers are
shown in Figure 7. Cuts are placed in the rigid and adhesive
layers to create a section with only the flexible layer. This
creates compliant joints where the mechanism can bend for
a controllable distance and direction.

Fig. 6. Diagram of layers used in origami-lamination procedure

Fig. 7. Layers in the Lamination process with the rigid layer (left), adhesive
layer (middle), and flexible layer (right).

Each layer was designed using CAD software and cut
using a Universal laser cutter. Cuts are made in the rigid
and adhesive layers to accommodate for the thickness of
the material and create hinges where the adhesive material
could bend for a restricted distance controlled by the width
of the cuts. An exterior support is cut with each layer of the
mechanism to provide area for alignment pins. This exterior
support is removed once all layers are laminated together
using the laser cutter to release the mechanism’s joints.

Once the mechanism is released, it is assembled into
its designed three-dimensional orientation. This involved
folding the mechanism and securing it by adhering specified
panels together using Loctite 416 adhesive and Loctite 712
accelerator. Panels are cut and opened like doors in the
side panels intended to be rigid to constrain the angle to
90 degrees. These panels, shown in Figure 8, are likewise
adhered to the bottom surface with the same glue and
accelerator listed above.

C. Actuation
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Fig. 8. Panel that acts as a door to enforce 90 degree panels

To actuate YoDiFin, we harness the linear compression of
the YoFin mechanism to close the wings of the DiamondFin
mechanism. This allows for a single motor to compress both
fins. The servo motor used is a TIANKONGRC TD 8125MG
360 degree continuous waterproof digital servo motor which
weighs 60 g. This servo motor is fitted with a double
propeller attachment which presses the panel of the YoFin
mechanism, causing it to move to its compressed position
and thereby closing the fins of the connected DiamondFin
mechanism. Once the mechanism has been depressed, the
propeller on the motor slips off of the panel, releasing the
mechanism. The elasticity of the mechanism through the
bistable designs causes the mechanism to return to its open,
manufactured state.

D. Testing

To test the YoDiFin mechanism, the servo is fitted with a
double propeller attachment and glued to the motor support
panel. The lowest servo speed is used for actuation. Aver-
aging the times to reach 10 turns on the servo yields an
average angular speed of 0.6 revolutions per second. Since a
double propeller attachment is used, the mechanism would
be compressed 1.2 times each second under ideal conditions.

The tank used for the experiment is a 51.12 cm x 25.72
cm x 31.75 cm 37.85 liter glass aquarium full of water.
For flotation, pieces of foam are glued to specific areas of
the mechanism which had the most mass as determined by
analyzing how the robot sunk and tipped when placed in
the water without flotation devices. Foam is attached at the
base of the wings as well as on the motor. The tether of
three wires for controlling the servo motor with the external
Arduino rests in the water so that the robot moves freely
without support from the wires hanging over the edge of the
tank as shown in Figure 9.

Once setup is complete, the servo actuates the robot so
that it swims across the tank. Video footage is taken of the
robot during its progression and used to determine the time
taken to swim across the tank.

IV. RESULTS & DISCUSSION

A. Propulsion

Linear swimming speed for the mechanism is calculated
using the distance the robot swam as well as the time it took
the robot to swim the distance. Our trial yields a swimming
speed of 2.1 cm/s with the actively-controlled closing of
the fins generating the propulsion. However, the swimming
direction is counter-intuitive to our expectations and design.
The actuation system is designed as a slow close actuation
and a fast open passive elastic bistable snap to the original
position. Therefore, we expected that the robot would move
by using its fins to pull itself through the water. However,
the closing of the fins generates a water jet which is stronger
than the snap of the fins, causing the robot to swim in
the backwards direction. With adjustments to the timing
and actuation system, we believe that the robot’s speed will
increase and further that there may be potential to move both
forwards and backwards by alternating between a fast and
slow fin close.

B. Actuation

During the process of actuating the robot within the water,
the robot started to delaminate, with the FR-4 rigid material
peeling away from the flexible layer as shown in Figure 10.
We believe that this was caused due to the torsion imposed
on the system during actuation. As the propeller slides off of
the top panel, it causes that panel to twist, causing torsional
forces that pull the layers apart. To fix this issue, we suggest
either laminating using a stronger adhesive or devising a new
contact surface between the actuation system and the YoD-
iFin mechanism that would reduce the twist as the propeller
slides off to initiate the snap. The delamination caused severe
alterations to the dynamics of the system, preventing further
speed tests from being performed to better approximate the
swimmer’s speed. Furthermore, as the propeller applies force
to begin to actuate the mechanism, the support panel that
attaches it to the mechanism flexes, causing the motor to not
be able to fully compress the mechanism. We propose using
a more rigid material to keep this panel stable, allowing the
servo motor to fully actuate the YoDiFin mechanism. With
full actuation, this could also change the swimming direction
of the mechanism by increasing the distance that the bistable
snap acts over.

V. FUTURE WORK

Because the lamination process is manual, manufactur-
ing errors can be easily introduced into the design during
fabrication. Therefore, we would like to enforce additional
motion constraints into the design of the mechanism in
order to further constrain the mechanism to the desired
degrees of freedom. We would further like to experiment
with different rigid and adhesive materials since the rigid ma-
terial is bending during actuation and the resulting torsional
forces are causing damaging delamination to the mechanism.
Incorporating a more rigid outer layer and stronger adhesive
will help protect the mechanism from this delamination.
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Fig. 9. Testing setup with YoDiFin inside water-filled aquarium

Fig. 10. Delamination of YoDiFin panel

To better understand the propulsion direction of YoDiFin,
we would like to generate a mathematical model or simu-
lation to compare the different pressures and forces acting
on the mechanisms in order to incorporate better control
and optimize the geometry. Furthermore, since the designed
mechanisms show potential for further motion control with
respect to depth and direction, we would also like to explore
these aspects with other design iterations and actuation
systems. Control of the mechanisms can also be improved

through the incorporation of sensors to help guide the system
and make it autonomous. Making these design changes and
further characterizing the swimmer will allow us to apply it
in underwater discovery and better understand how to use
origami, lamination, and compliant mechanisms in robotics.

VI. CONCLUSIONS

YoDiFin exhibits successful use of origami to propel
forwards in water. It uses a simple actuation system and two
bistable compliant origami mechanisms to create this motion.
Though demonstrated in propulsion only, the individual
DiamondFin and YoFin mechanisms show promise for both
direction and depth control respectively. YoDiFin can be
used for exploration and education to demonstrate origami
in engineering, the lamination process, fluid dynamics, and
swimming methods.
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Benchmarking of AI-Driven Predictive Maintenance (PMx)

Maja Margul, Kyle Miller Ph.D., Robert Edman Ph.D., Merritt Kowaleski, Artur Dubrawski Ph.D.

Abstract— Predictive maintenance (PMx) forecasts the future
performance of a machinery component, given its historical
feature data. It encompasses a variety of topics, including
but not limited to: failure prediction, failure diagnosis (root
cause analysis), failure detection, failure type classification, and
recommendation of mitigation or maintenance actions after
failure. When predictive maintenance is done properly, it can
help reduce repair costs, cut production downtime, and enhance
operational safety. Conducting a PMx analysis on gathered data
allows us to identify patterns that lead to potential problems or
failures. We can use this detailed information to fix problems
before they happen, which allows us to optimize equipment
lifetime and minimize downtime. However, there are some
practical challenges that impede progress in PMx - one of
them is access to datasets which could be broadly available
for benchmarking AI-driven PMx. Most relevant datasets are
considered sensitive by their owners and are therefore very
difficult to obtain. Because of that, our main motivation is to
provide sources and data that could be used in the PMx field.
The goal is to research and assemble literature relevant to the
applications of PMx in various fields - particularly literature
with supporting data - and also provide summaries of those
papers. These summaries include essential information about
how to use the dataset to build the predictive model, and
provide the results received from the experiments conducted.
All the findings would be summarized in a research paper.
The final step is to create a repository on GitHub containing a
large collection of benchmark datasets found on the internet.
Based on our work, people all over the world would be able to
get information about PMx and related datasets with sample
algorithms given for analysis purposes.

Index Terms— Machine learning, Predictive Maintenance,
Deep Learning Methods

I. INTRODUCTION

Failures cause costly and extremely troublesome disrup-
tions to production processes. By predicting failures, it is
possible to take preventive measures in advance, thus avoid-
ing failures and minimizing their consequences. Predictive
Maintenance is based on the collection of data about the con-
dition of machines and the course of their processes. Based
on this data, models are created to predict the occurrence
of failures and determine the condition of the equipment,
such as the degree of wear. The models are applied on an
ongoing basis as processes are running to determine in real
time the risk of failure and alert for possible problems. By
implementing a predictive maintenance strategy, failure and
service costs can be reduced, equipment effectiveness can be
improved, downtime can be reduced, and up-time and safety
can be increased. Taking into consideration different types of
Predictive Maintenance models, we can distinguish 2 major
categories:

• data-driven (models using machine learning)
• physics-based models.

Most often, physics-based models are harder because they re-
quire very advanced knowledge about the particular domain,
while data-driven models attempt to create a predictive model
automatically from the given data.

II. HOW DOES PREDICTIVE MAINTENANCE WORK?

Predictive Maintenance (PMx) is a form of a proactive
maintenance that uses real-time sensor data, historical per-
formance data and advanced analytics to predict when asset
failure will occur. In other words, it is the analysis of data
coming directly from machines in order to predict potential
failures and take maintenance actions before the failures
occur. Predictive maintenance can significantly reduce costs
directly related to servicing machines, as well as additional
costs resulting from unplanned downtime.

Predictive Maintenance is based primarily on collecting
very large amounts of data provided directly from sensors
mounted on machines and also from the shop floor/hangar,
and then analyzing the resulting data to catch anomalies
that may indicate a risk of failure. Parameters that can be
measured include temperature, machine/component vibration
levels, oil consumption, and pressure. A very useful field
to help collect large amounts of data and analyze them is
IoT (Internet of Things). The use of tools from this field
gives the opportunity to monitor the production process,
machine operation, and production conditions in real time.
Data streams from various types of sensors are collected to
be further analyzed using machine learning models, which
makes it possible to predict with high accuracy the risk
of failure. In addition, having historical data and ongoing
analysis of failures makes it possible to continuously improve
the reliability of models and predict failures with greater
efficiency.

III. CHOOSING AN EFFECTIVE MACHINE LEARNING
TECHNIQUE FOR PREDICTIVE MAINTENANCE

In the field of predictive maintenance, various machine
learning techniques are used to learn from both historical and
live data and perform analysis of different failure patterns.
Thus, it is important to select a machine learning technique
that will produce the best possible results for the project.
The first step is to collect sufficient and high-quality time-
series data (to this end, one of the tasks of our project was
to create a repository that stores various databases that are
used in predictive maintenance analysis. A description of this
repository can be found in Chapter 5 of this article). Each
machine to be studied must be continuously monitored and
its sensor data collected. This data is then segregated to make
visible the factors affecting the machine’s operation. These
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factors vary widely and depend on the specific equipment
type. For example, in the case of engines, such factors could
be temperature, humidity, oil level and density, vibration,
etc. The process of locating relevant factors affecting the
operation of a machine is as follows: First, identify the
types of failures that are possible. Then, analyze the parts,
components and processes that may contribute to these types
of failure. Finally, determine which parameters will provide
useful information on the relevant processes occurring in the
machine. In order to obtain enough data to make a detailed
analysis, it is best to conduct monitoring and data collection
for several years. Once the data has been properly prepared
for analysis, the next step is to select the appropriate machine
learning technique. To this end, the first consideration is to
determine the type of output that the predictive model should
give. It is important to record, tag and identify all events
occurring, which will allow for quick filtering of the data.
Going forward, this will provide an opportunity to identify
indicators/sensors that are having a favorable impact on the
machine and those that may indicate a progressive failure.
It may also be helpful to determine if there is any potential
relationship between the number of events occurring and the
number of failures occurring, and to determine if there is an
event that occurs only before the failure occurs and never
under other circumstances. In addition, it may be useful
to determine the minimum time period required to signal
potential failures and hazards. With such information, it is
possible to decide what technique to adopt for creating a
predictive model in order to best fit the type of database being
used. For this purpose, we will consider 5 main machine
learning techniques:

1) Regression Models to Predict Remaining Useful Life
(RUL) - Both static data (such as the date the equip-
ment was made, the model, the start date of service,
and the location of the system) and historical data
(i.e., sensor data) are necessary here. It is necessary to
mark and record every event and failure that occurred.
Such information is used to train the model to predict
possible failures. At first, consider a scenario in which
the model will be focused only on one type of failure.
Then we are dealing with a gradual degradation pro-
cess. When the model is to consider different types of
failures, then this process proceeds differently, which
can affect the accuracy of the results. For this reason,
it is recommended that a different model be adopted
for each type of failure. The result of this technique is
a model that provides output in the form of the number
of days left before a failure occurs, or Remaining
Useful Life (RUL).

2) Regression Models to Predict Degradation State - This
is similar to RUL prediction, but the target variable
is something more directly representing wear, such as
mm of wear on a cutting die, as opposed to a number
of hours or days. Degradation state can inform RUL
predictions, but it is a feature that can be confirmed
immediately rather than a forecasting problem.

3) Classification Model To Predict Failure Within a Pre-
decided Time Frame - It can be extremely difficult
to create a model capable of accurately analyzing
the full life of a machine. However, often the main-
tenance team only needs to know whether there is
a risk that the machine will fail in the near future.
For this, it is best to use a classification model to
predict whether a machine will fail within N days
or cycles. Similarly to RUL prediction, such a model
requires both static and historical data. Also similarly
to RUL prediction, you must properly characterize,
attribute and label the events that occurred during
the machine’s operation. This classification technique,
unlike a regression model, does not necessarily assume
gradual degradation of the machine, due to the fact that
here we do not predict the exact time, but only look
for an appropriate time frame. Therefore, classification
models provide an opportunity to account for multiple
types of failure within a single model (for this purpose,
the model should be considered a multi-class problem).
In order to build such a model, it is necessary to have
data with appropriate labels assigned to different types
of failure, and a sufficient number of instances of each
type of failure occurring in order to properly train the
model.

4) Flagging Anomalous Behaviour - This technique
proves extremely useful when dealing with mission-
critical systems, where the number of failure events is
limited. This means that there will be a limited number
of failures that the team is able to analyze in order to
build a model. Not all incidents are tagged, recorded or
otherwise available. The goal is to use data to identify
normal behavior and distinguish it from anomalous
behavior which can lead to failure. Can be thought of
as a semi-supervised/unsupervised version of failure
classification.

5) Fault Diagnosis / Root Cause Analysis - Similar to
failure classification, but instead of predicting failure
within a certain time frame, the model classifies the
root cause of a failure that has already occurred. It may
also provide recommendations of corrective actions to
take.

In conclusion, the model should be selected depending on
the data you have and the type of output you want. The
most important thing is to initially understand the data,
the problem and the conditions under which the machine
operates in order to enable correct analysis and desired
results. This chapter was written based on the information
contained in this article.

IV. CASE STUDIES OF LITERATURE ABOUT
APPLICATIONS OF PREDICTIVE MAINTENANCE

This chapter summarizes a number of different articles on
predictive maintenance applied in various scientific fields.
The purpose of this research was to analyze various experi-
ments in terms of the problem that was studied, the models
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used, and the organizational context under which the models
were built and developed.

We selected 10 research papers (some of them use datasets
from the AutonLab PMx GitHub Repository, which is de-
scribed in the last section of this paper). The titles are as
follows:

1) Predictive Maintenance, its Implementation and Latest
Trends [1]

2) Predictive Maintenance for General Aviation Using
Convolutional Transformers [2]

3) On Construction of Early Warning Systems for Predic-
tive Maintenance in Aerospace Industry [3]

4) Predictive Maintenance for Aircraft Components Using
Proportional Hazard Models [4]

5) Predictive Maintenance in Aviation Failure Prediction
from Post-Flight Reports [5]

6) A Research Study on Unsupervised Machine Learning
Algorithms for Early Fault Detection in Predictive
Maintenance [6]

7) IoT-Based Predictive Maintenance in Manufacturing
Sector [7]

8) Investigating Strategies and Parameters to Predict
Maintenance of an Elevator System [8]

9) A Comparative Study of State-of-the-Art Machine
Learning Algorithms for Predictive Maintenance [9]

10) Prediction of Failures in the Air Pressure System of
Scania Trucks using a Random Forest and Feature
Engineering [10]

Each of the above articles delves into the essence of
predictive maintenance in detail. We will try to bring out
the most important elements covered.

A. Case study of: ”Predictive Maintenance, its Implementa-
tion and Latest Trends”

This research paper, authored by Sule Selcuk [1], exam-
ines various methods, techniques and trends used in PMx
and offers suggestions for the implementation of predictive
maintenance programs in factories, among others. The author
emphasizes in his article the essence of such programs,
which help to detect early signs of damage/failure and then
initiate maintenance procedures in a timely manner. The
paper classifies and describes 5 Predictive Maintenance tech-
niques: process parameter measurements, vibration analysis,
oil analysis, thermal analysis, and acoustic analysis.

The first technique described is process parameter mea-
surements, where parameters such as process efficiency, heat
loss, temperature, motor current, fluid pressure, humidity and
flow rate are measured, among others. Relevant here are any
abnormal changes in the values of these parameters, changes
in the rate of production as well as product quality. All
these aspects can provide information about the health of
the system.

The next technique described is vibration analysis, which
is also one of the most popular techniques used in predictive
maintenance. It is most often used in rotating or recipro-
cating equipment to obtain information about the state of
the system. Quite often, emerging and increasing vibrations

can indicate the progressive failure of the components in
question, and due to the difficulty of interpretation, the use
of artificial neural networks in this technique often comes
to the rescue. For example, by having a benchmark of a
healthy system as a reference and then comparing it to other
benchmarks, it is possible to detect and identify problems of
the component under investigation.

Another technique described by the researcher is oil
analysis, which uses data on the oils and lubricants used
to obtain valuable information about the condition of the
machine, as well as the condition of the oil or lubricant itself.
This technique can be divided into 2 types: particle wear
analysis, which is used to verify the condition of mechanical
components, and oil analysis, which is used to verify that
the lubricant has not degraded. These two types of analysis
can provide important information on the condition of the
system and are particularly valuable for analyses performed
on diesel engines, due to the opportunity to identify defects
in the rotating components that make up the engine structure.

Another technique is thermal analysis (thermography),
which uses the relationship between temperature and the
wavelength of light to make temperature changes visible. It
is a widely used technique to detect mechanical or electrical
problems in which there are some temperature anomalies.
Thermography can be used to study the relative or absolute
temperature of a given system.

The last technique described is acoustic analysis. In this
technique, sound is measured - if there are any changes in
sound from the recorded reference sound, this indicates wear
or deterioration of components. Sound can provide important
information about the health of the system.

Another topic covered by the article’s author is the Com-
puterized Maintenance Management System (CMMS). This
is software that integrates and manages information related
to activities that concern maintenance (all kinds of data
collection, data processing, decision-making, maintenance
planning, control procedures, reporting and much more).
In addition, the system monitors the backlog, determine
priorities, and plans decisions effectively. Several different
computational tools such as a knowledge base, neural net-
works or logic and fuzzy networks have been developed for
decision-making.

Regarding the implementation of Predictive Maintenance,
the author of the article has touched on important infor-
mation that is crucial to the correct operation of PMx-
related programs. Not only should attention be paid to
selecting the most important components to monitor, but
it is also important to specify the parameters that would
indicate deterioration of the components under study, select
the appropriate predictive maintenance technique, locate the
sensors and set a critical threshold value for each sensor, and
select the appropriate CMMS to manage the maintenance
program.

The last aspect that the author addressed was research ar-
eas that support predictive maintenance work. These include
E-maintenance, tele-maintenance, Internet of Things(IoT),
and radio-frequency identification(RFID). Each of these ar-
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eas in its own unique way makes predictive maintenance a
more efficient, cost-effective and acceptable field for indus-
tries of all kinds.

Undoubtedly, the author has ardently presented the im-
portant aspects of the field of predictive maintenance, which
make it one of the most important elements of the work
of many plants and factories. The paper describes how
PMx contributes to the reliability of the operation of many
machines and components, improving safety and productivity
while reducing unnecessary costs, such as those associated
with unplanned maintenance.

B. Case study of: ”Predictive Maintenance for General
Aviation Using Convolutional Transformers”

This research paper is written by Hong Yang, Aidan
LaBella, and Travis Desell [2]. These researchers conducted
a detailed analysis using the database that comes from the
NGAFID-MC (National General Aviation Flight Informa-
tion Database, Maintenance Classification). This is a novel
benchmark in terms of difficulty, number of samples and
sequence length, and can be accessed in the GitHub repos-
itory described in section V. This dataset consists of over
7500 labeled flights of Cessna 172S, representing over 11500
hours of per-second flight data recorded from 23 sensors.
The sensors used measure engine RPM, oil temperature, oil
pressure, gasket temperature, airspeed, pitch, roll, and outside
air temperature.

The main problem the researchers addressed was classify-
ing whether flights are problematic (i.e., those that resulted
in forced and unscheduled maintenance) or non-problematic
(i.e., post maintenance). The essence of the task was to be
able to detect those features that are relevant to classification.

The following models were selected to conduct the anal-
ysis:

1) Conv-MHSA (Convolutional Multi-Headed Self Atten-
tion),

2) two CLSTM models (Convolutional Long Short Term
Memory Networks) – the first one is Conv-LSTM and
the second one is EX-Conv-LSTM,

3) VAE-Conv GRU (Convolutional GRU Variational Auto
Encoders).

Each of them was characterized by certain distinctive
features. For example, in the context of applying algorithms
to MTS (Multivariate Time Series), the MHSA model has a
lot of pros that gives it an advantage over LSTM models.
In particular, the MSHA model has demonstrated the ability
to model long-term relationships in time series data. In this
experiment, the researchers used Conv-MHSA to reduce the
temporal resolution from 4096 to 512. Using Conv-LSTM,
on the other hand, allows for extracting the feature from
the sequence before the LSTM layers and reducing MTS
temporal resolution.

The last model, VAE-Conv-GRU, which uses convolutions
to reduce the temporal resolution, has been chosen for
anomaly detection in MTS data. After training the models,
the researchers observed that training Conv-MHSA has some
significant computational advantages over all other models.

When evaluating using area under the curve score for
Precision-Recall (PR) and Receiver Operating Characteristic
(ROC), VAE-Conv-GRU had the worst performance, while
the Conv-MHSA models perform better than the Conv-
LSTM models. Moreover, The VAE-Conv-GRU Model is
unable to predict pre or post maintenance. The researchers
concluded that Conv-MHSA models perform much better
than Conv-LSTM models on this dataset. Moreover, some
attention has also been paid to augmentation; 3 extensions
(cutout, mixup and cutmix) should be evaluated against
different MTS augmentation methods and models. To sum-
marize the researchers’ achievements, the project provides
an opportunity for NGAFID to not only give the user access
to time-series data and perform various analyses, but also
calculate and display the probability that a flight will require
maintenance. This article has provided a lot of valuable
information about NGAFID and the application of various
algorithms to MTS. In addition, it proved that differentiating
between pre and post maintenance flights can provide a
significant benefit to the domain of general aviation.

C. Case study of: ”On Construction of Early Warning Sys-
tems for Predictive Maintenance in Aerospace Industry”

Predictive maintenance and PHM (Predictive Health Man-
agement) play a key role in ensuring reliability and efficiency
in the aviation industry. PHM methods provide an oppor-
tunity to predict and prevent possible failures, help reduce
maintenance costs and increase fleet utilization. There are, of
course, many problems to be faced when building a properly
functioning and trustworthy predictive maintenance model.

In this chapter, attention will be paid to an article by E. V.
Burnaev [3]. The problem the author faced is constructing a
predictive model for early warning systems for diagnostics
maintenance in the aerospace industry. The author aimed to
predict the occurrence of rare failures based on the use of
a new methodology that takes into account the properties of
different technical systems and the specific requirements of
applications.

The experiment aimed to develop algorithms for predicting
the types of engine failures of passenger aircraft. For the
experiment, the researcher used telemetry data from an
A380 passenger aircraft, in which certain defects are present,
changing the statistical properties of the data. These can be
detected by using anomaly detection methods. Therefore, in
the experiment, the author decided to include the following
steps in the analysis of telemetry data to build early warning
systems for predictive maintenance:

1) Identification of Subsystems - based on the detailed
description of the data structure and measured param-
eters, clustering was carried out, which divided the
feature space into groups of parameters related to the
engine and a group of parameters related to the entire
aircraft structure.

2) Detection of Anomalies – different methods are used
to uncover structural changes in dependence patterns,
simple extreme values, or any other abnormality.
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3) Alarm construction – combining simple series of bi-
nary anomalies into composite alarm signals.

4) Event Matching – 2 possible approaches can be used
to identify signals which are precursors to failure or
warning events. These events mostly do not occur, and
when they do, these signals happen a short time prior
to such events.

5) Warning signal synthesis - related to possible feature
failures, constructed by pooling relevant joint anoma-
lies together.

6) Leave-one-object-out validation – this has goal of
testing the stability of predictive patterns of anomalies
extracted from the data. It is achieved by estimating the
necessary parameters for the selected anomaly sources
on the pooled sample of all but one object, and then
test running the resulting early warning system on the
left-out object.

Based on the mentioned methods, a detailed analysis of
telemetry data from the Airbus A380 was carried out. It is
worth noting that the constructed early warning models are
based on a combination of several ”simple” models; these
either detect anomalies in the behavior of parameters from
the aircraft’s engine group, or parameters related to the entire
aircraft structure. This provides an opportunity to determine
which changes in parameters should cause an alarm. This
enables maintenance engineers to find the causes of failures
more quickly. It is not possible to achieve similar accuracy
rates when using traditional machine learning methods (such
as random forests, gradient boosting over decision trees, and
neural networks) to build predictive models.

D. Case study of: ”Predictive Maintenance for Aircraft
Components Using Proportional Hazard Models”

The research paper summarized in this subsection was
written by Wim J.C. Verhagen and Lennaert W.M. De Boer
[4]. The main goal of this project was to improve the
statistical reliability of assessment maintenance by incorpo-
rating the effect of operational factors. These factors were
identified and assessed for their ability to reduce the number
of unscheduled occurrences (like failures). Operational and
maintenance real-world data was used for the experiment,
which was then analyzed for potential factors that could
have an impact on adverse actions that may occur during
aircraft maintenance. Moreover, time-independent and time-
dependent Proportional Hazard Models were applied for the
purpose of generating reliability estimates. The experiment
itself consists of 5 blocks:

1) Program initiation – to initiate the program and prepare
for subsequent reliability and modeling steps.

2) Flight Identification – intended to help address the
following problem: ”the heavier the operational use of
components, the higher the probability of component
failure”. Regarding to the mentioned problem, the task
for this block is to identify flights which might have
an impact on unexpected component failure.

3) Data Analysis - there are 2 different approaches used
to identify the operational factors that may have an

impact on the component failure: the first one is the
analysis of extreme values and the second one is the
analysis of the maximum difference.

4) Reliability Modeling – by standard statistical approach,
the researchers apply a set of reliability models in order
to analyze the component dataset. In order to determine
the impact of operational factors on reliability behavior
over time, 2 variants of the Proportional Hazard Model
were used: Time-independent and Time-dependent pro-
portional hazard models (PHM).

5) Future Predictions - the generation of expected failure
time using reliability models established in the previ-
ous step.

In order to approach the previously mentioned problem,
the researchers used 2 techniques: Extreme Value Analysis
(EVA) and Maximum Difference Analysis (MDA). Each of
these techniques identifies operational factors which were
abnormally high during the flights and ultimately led to
component failure.

The goal of the EVA technique is to narrow down the
number of potentially related flights as much as possible
and assign a flight to an encountered failure based on the
occurrence of extreme values. To some extent, the technique
can identify which operational factors were far too high. EVA
analysis leads to the optimization of one flight variable at a
time, while looking for optimal values in both the positive
and negative directions. When optimizing in the positive
direction, flights with certain observation values below the
mean are ”penalized” by being assigned a negative value;
the same applies when optimizing flights in the negative
direction, if flights with observation values above the mean
are recorded. This increases the probability that the selected
flights may have experienced similar extremities in opera-
tional variables.

MDA is important for time-independent proportional haz-
ard models, that focus on mean values during a component’s
fail cycle. Successful execution of the EVA and MDA
techniques provide an opportunity to select flights associated
with failures including a limited list of operational factors
most likely to cause these failures.

Nine components with under-average performance have
been selected by the researchers for the experiment. The
researchers’ analysis of the selected components showed that
in order to reduce the rate of unplanned removals, many
improvements can be made to current reliability practices.

The researchers concluded that during the time modeling,
most of the components were better represented by normal,
log-normal, logistic Weibull and gamma distributions, as
opposed to the standard exponential distribution that is
currently used by the operator involved in this experiment.
In addition, they concluded that reliability models of more
advanced complexity with the presence of variables could
reduce the number of failures occurring by 10 to 90 percent
without incurring additional costs. Such an effect is achiev-
able if one adjusts the frequency of events associated with
scheduled maintenance, and also uses predicted values of
variables for future operations to assess the probability of
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failure at the time considered. By doing so, and thus adding
scheduled maintenance, there is potential to avoid unplanned
failures and associated costs.

Through the reprocessed experiment described in this
paper, it appears possible to identify operational factors
that have a significant impact on the potential for failure.
Statistical models in two versions of operational variables -
time-dependent and time-independent – proved to be suitable
for reliability estimation. The researchers concluded that the
results of the analysis showed the tendency of the models to
outperform those that are time-based in terms of accuracy.

E. Case study of: ”Predictive Maintenance in Aviation:
Failure Prediction from Post Flight Reports”

This subsection will summarize the article authored by
Panagiotis Korvesis, Stephane Besseau, and Michalis Vazir-
giannis [5]. The researchers conducted an experiment, using
data collected over a period of 7 years from a fleet of 60
aircraft. The main problem they aimed to tackle is event
prediction – developing a warning system that would notify
aircraft engineers well in advance of impending aircraft
failures. This system would provide an opportunity to guar-
antee a time reserve for preparing appropriate maintenance
actions. Thus, this is an experiment to try to predict aircraft
failures using data from post-flight reports, which can have
a significant impact on the effectiveness of measures taken
in the field of predictive maintenance.

For the purposes of the experiment, methods were used
that perform well in predicting future failures, or hard-to-
predict events that directly affect the decision for unsched-
uled maintenance. The chosen method for the experiment
was a time-to-failure regression model, which outputs a risk
function based on the present events and quantifies the risk
of an upcoming failure. In developing and dual-imaging the
predictive model, the researchers performed 3 methods: pre-
processing, training/validation and testing/deployment. For
training the random forest model and selecting the appropri-
ate parameters, the researchers used 5-fold cross validation
on the training set.

A Support Vector Machine (SVM) was used for classifi-
cation. Positive and negative instances were then created. In
predictive maintenance, it is important that false positives be
as few as possible (even if this involves a reduction in pre-
diction), as they result in additional, unnecessary processes
that come with a certain cost and risk. Hence, the researchers
decided to perform an evaluation at the episodic level, where
a comparison was made between the SVM method and RFR
(Random Forest Regression). The researchers concluded that
RFR outperforms the SVM baseline method, which was
found to have very poor performance.

As a result, avoiding false positives turned out to be
impossible, which could be caused by the intervention of
engineers that affected the target event, by performing actions
that prevented its occurrence. Depending on the decision
threshold set (the determination of which is important to
obtain the best predictive results), different prediction values
were obtained. In summary, in this article, the researchers

presented a method for predicting future events from event
logs in the context of predictive maintenance. The results
clearly show that this method outperforms other commonly
used baseline approaches (such as SVM). Moreover, this
method has proven that it is possible to make predictions
based solely on flight reports, which is a huge step forward
in predictive maintenance for aviation.

F. Case study of: ”A Research Study on Unsupervised
Machine Learning Algorithms for Early Fault Detection in
Predictive Maintenance”

This subsection will describe an article written by Nagved
Amruthnath and Tarun Gupta [6]. The researchers selected
a database containing data taken from a vibration sensor
located in an exhaust fan, and then performed the matching
of various machine learning algorithms. One of the aims for
creating a project regarding fault classification is to show
how important well-developed early failure detection can
be; this eventually may significantly minimize catastrophic
machine failures. The researchers defined fault detection
as a process of identifying the abnormal behaviour of a
subsystem; any deviation from standard behavior can be
considered a failure. In order to analyze the problem and
conduct an experiment towards fault detection using a bench-
mark for vibration monitoring data, the following algorithms
were used: Principle Component Analysis (PCA) T2 statistic,
Hierarchical clustering, K- Means clustering, C- Means, and
Model-based clustering. The code written to carry out this
experiment was created by the researchers using a statistical
tool called R-programming.

In the course of conducting the analysis, it was discovered
that when the trend line of the analyzed data approaches
a certain value (in this case it was 60 observations), this
indicates the occurrence of a failure. The researchers’ main
goal, therefore, was to conduct experiments using various
algorithms to detect these failures in advance. Very important
in such experiments is the proper selection of features,
because if done inappropriately, the accuracy of the result
will be greatly reduced. For that purpose, the first algorithm
used by the researchers was PCA T2 statistic. This is an
algorithm that does a great job of reducing dimensionality
while preserving most of the information in the dataset. It is
an algorithm that identifies patterns in the data and indicates
both similarities and differences. The T2 statistic index, a
measure of the variation of each sample within the PCA
model, was also used. This type of statistic might be used for
values measured against the threshold and any other values
above it. The results received from this analysis allowed
the researchers to conclude that the appearance of faults
can be detected even after 41 observations. This leads to
the conclusion that early detection of failures would make
it easier for maintenance teams to monitor the subsequent
changes and take appropriate corrective action.

The third algorithm chosen for the project is clustering
analysis, which is one of the unsupervised machine learning
methods. One of the known methods of that type is hierar-
chical clustering, which researchers decided to use for this
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analysis. In this method it is important to know how many
clusters can be formed, because it would help to understand
the different states of the data and present the data more
accurately. For this purpose, the researchers used the elbow
method and the nbClust package. The final result of this
method was to group the data into 3 states: normal, warning
and defective.

The next algorithms discussed in the experiment are K-
Means clustering and C-Means. K-Means is one of the
more popular unsupervised learning algorithms in machine
learning. The task of this algorithm is to divide a dataset into
predetermined clusters based on distance. The researchers
chose to use Euclidean distance. C-Means clustering involves
matching each data point to each cluster to some degree. The
results obtained using these algorithms are the same as those
obtained through hierarchical clustering.

The last model used was the Gaussian Mixture Model
(GMM). It is commonly used when modeling data coming
from groups that may differ from each other, although the
Gaussian Distribution can model data points within the same
group as well. In this experiment, the Gaussian finite mixture
model (fitted by EM algorithm) is an iterative algorithm,
where some initial random estimate starts and updates each
subsequent iteration until convergence is detected. Taking
into consideration everything that has been done so far,
the researchers began with a hypothesis that there were 2
states in the data, healthy and unhealthy. By using PCA and
T2 statistic, the researchers were able to detect faults 31
observations ahead. On the other hand, relying solely on data
charts, it was only possible to observe trends 11 observations
ahead, which makes the use of the two methods all the more
effective. On the other hand, when unsupervised clustering
algorithms were added, it yielded much more than the results
obtained from the T2 statistic.

Through the use of the elbow method and the nbClust
package, it was determined that the optimal number of clus-
ters is 3. Based on the results obtained and matching the data
to the corresponding hierarchical clusters, K-Means and C-
means, almost the same results were obtained. 3 states were
also identified: one state was healthy (due to its calibration
with healthy data), the second state was warning, while the
third state was defective. The final model was developed
using a Gaussian finite mixture fitted model, which was fitted
using the EM algorithm. The purpose of this type of model
was to identify optimal clusters and classify observations into
groups accordingly.

In summary, the main objective of the research was to
benchmark various existing algorithms in machine learn-
ing for early error detection using unsupervised learning.
Looking at the results, the researchers concluded that the
T2 statistic performs better than the GMM method. The
advantage of the T2 statistic is that even without domain
information, it is possible to identify an error or critical con-
dition, which cannot be achieved using clustering analysis.
However, in clustering analysis, having some information
about the data, it is possible to assign a healthy, warning
or critical label to the clusters, which makes this method

better than T2 statistics when it comes to detecting different
levels of defects.

G. Case study of: ”IoT based Predictive Maintenance in
Manufacturing Sector”

The following subsection will discuss the article authored
by Shikhil Nangia, Sandhya Makkar, and Rohail Hassan [7].
This article refers to one of the areas used in predictive main-
tenance: the Internet of Things (IoT). IoT sensors provide
an opportunity for intelligent management in manufacturing
plants by enabling autonomous information exchange, which
can translate into more accurate business decisions. Given
that this is quite an important topic in the field of predictive
maintenance, the authors of the article decided to develop
an architecture for IoT-based predictive maintenance. The
project was created based on a case study from the auxiliary
automotive industry, with the aim of demonstrating a model
that would predict sudden failures in industrial machinery,
making production and maintenance cycles intelligent. Such
sensors can significantly assist manufacturing industries in
predicting machine failures to enable an appropriate response
before the failure occurs.

An important aspect of this article is the IoT-based Pre-
dictive Maintenance Architecture proposed by the authors. It
consists of 5 components, which include:

• IoT sensors, which are used in order to monitor and
further collect real-time data.

• Digital Signal, which is concerned with converting
analog data to digital form in order to use it for analysis.

• Data Storage and Transfer, where previously-converted
digital data is stored in a secure manner.

• Edge/Fog/Cloud Computing, where predictive mainte-
nance algorithms are processed.

• Predictive maintenance for failure prediction - this is
the last step and involves designing a predictive main-
tenance algorithm.

The database is derived from a proxy of automotive com-
ponents, such as motors, rotors and heat exchangers, whose
failure brings the entire assembly line to a halt. It is therefore
important to predict the failure of these components in order
to avoid such situations and thus improve product quality
and save energy spent on machine work. It was decided
to implement predictive maintenance techniques on heat
exchangers, whose function is to cool extemporaneously in
extremely high-temperature synthetic fluids flowing out of
the assembly line. This was done in an effort to reduce the
number of problems caused by continuous downtime due to
clogged lines.

The experiment consisted of 6 phases, during which
the data was properly prepared and divided into test and
training sets, and then machine learning algorithms were
implemented to create a predictive maintenance model. After
the output data is analyzed, it is evaluated based on the
predictive accuracy of the machine learning algorithms. To
model the data and trigger alarms on a prediction of failure,
tools such as Microsoft Azure ML Studio (Software), Tibco
Statistica (Software), SAS Visual Data Mining and Machine

132



learning (Software), Google AI platform (Software) and
open-source software like R and Python can be used. For the
algorithms used, the project’s authors chose to use Machine
Learning’s (ML) binary classification, modeling the model
using algorithms such as Support Vector Machine (SVM),
Random Forest and Boosted Classification Trees (C&RT).

The error rate was determined by predicting the output
results of all three algorithms used. If 2 of the 3 algorithms
predict machine failure, the result is the occurrence of
failure. The results obtained by the researchers from the
application of the aforementioned algorithms on the analyzed
data indicate that (C&RT) has minimal error in predicting
machine failures, and thus was considered the optimal model.

H. Case study of: ”Investigating Strategies and Parameters
to Predict Maintenance of an Elevator System”

In this chapter we will focus on the article whose authors
are: Jasmine Awatramani, Gaayan Verma, Nitasha Hasteer,
and Rahul Sindhwani. This research paper is part of the
Smart Innovation, Systems and Technologies book series [8].
In the paper, attention has been given to the elevator industry,
as this industry, like many others, requires constant monitor-
ing and regular maintenance to ensure adequate safety. In
order to save costs and improve safety, the researchers de-
cided to study the optimal maintenance policy for the elevator
system. The researchers focused primarily on diagnostic and
prognostic techniques, managing scheduled tasks with access
to limited data, and predicting the RUL (Remaining Useful
Life) of the machine.

The construction of the fault consists of a large number
of different components, each of which has a certain impact
on the proper operation of the machine. Such components
include, for example, Ball-bearings present in the driving
pulley of the elevator. The authors of the article decided
to focus their attention on these, as well as the readings
from vibration and humidity sensors. The first analysis of
the database showed a steady decline in RPM. When they
reach a certain critical value, this is a sign that the elevator is
the most vulnerable to failure. In addition, from the analysis
of vibration sensors, it is possible to determine the health of
the elevator motor.

In the following part, the authors made the classification
and for this purpose they decided to use the Random Forest
method. In this technique, by using a large number of
decision trees, the final category of the test object can be
classified. Ultimately, each of the analyzed samples takes
one of 3 classes: Good (0), Fair (1), and Poor (2). Af-
ter classifying all the samples and assigning them to the
corresponding classes, the researchers obtained a score of
91.5%, which shows the high accuracy of the classification.
In the end, the researchers concluded that the ball bearing
feature proved to be more significant in the analysis than the
vibration feature, which may have been due to the frequent
fluctuation of vibration readings in the studied dataset.

In conclusion, the authors of the article conducted an
experiment to predict the maintenance of an elevator system.
They demonstrate that PMx provides an opportunity not only

to prevent future accidents, but also to save the lives of many
people who could become accidental victims of a sudden
machine failure.

I. Case study of ”A Comparative Study of State-of-the-Art
Machine Learning Algorithms for Predictive Maintenance”

The analyzed article was created by Luis Silvestrin, Mark
Hoogendoorn and Ger Koole [9].

The dataset used to generate the analysis has been down-
loaded from UCI website and is available under the following
link: UCI data set. The data applies to the condition assess-
ment of a hydraulic test rig based on multi-sensor data, where
4 types of faults with several grades of severity that impede
the selective quantification are distinguished.

In this project, the main task the researchers decided to
tackle was to test the application of deep learning meth-
ods such as LSTM (Long Short-term Memory) and TCN
(Temporal Convolutional Networks) in scenarios with scarce
sensor data and then compare the results obtained with sim-
pler machine learning models with feature engineering (like
Random Forest and Decision Tree). The researchers decide
to use Hydraulic System sensor dataset in order to evaluate
the performance of different machine learning techniques
in a real-life predictive maintenance scenario. There were
3 different Machine Learning techniques used in order to
perform the desired analysis: Random Forest, Decision Tree
and K-nearest neighbors combined with simple (time and
frequency-based) features extracted from the sensors. The
prediction target for the experiment was the internal pump
leakage (what might be labeled as: no leakage, weak leakage,
and severe leakage, giving the results in 3 different distinct
classes). For the purpose of training the algorithms, the
research group decided to divide the dataset into training and
test data. The hyperparameters of the various algorithms were
optimized based on experiments conducted on the training
set.

Turning to the techniques used in the experiment, in the
case of Decision Tree, the researchers decided to use the
Gini impurity considering this as a form of criterion for
selecting the allocation attribute for each node of the tree.
For the Random Forest, the researchers built 10 decision
trees with the same criterion as for the Decision Tree. In
the technique called the k-nearest neighbor, the classifier
was trained using k value equal to 1, making it the nearest
neighbor classifier. All the algorithms used were compared
based on the classification error obtained on the test set.

The results of the analysis are different for the traditional
machine learning algorithms and the deep learning methods.
The second group of methods which consist of TCN and
LSTM present a higher classification error compared to the
baseline machine learning algorithms. Eventually it turned
out that compared to the LSMT in the performed tasks,
the TCN has obtained a better performance with fewer
parameters.

When it comes to the traditional machine learning algo-
rithms, both the Random Forest and an ensemble of Decision
Trees show lower error compared to a single tree which has
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similar performance as K-nearest neighbors. Moreover, these
methods might learn with fewer examples than deep learning
methods.

This provides a kind of confirmation that, compared to
deep learning methods (LSTM and TCN) which do not
use future engineering, traditional machine learning methods
combined with simple feature engineering techniques (such
as Random Forest or Decision Tree) can be a very good
choice for analyses where the amount of data is limited.

J. Case study of ”Prediction of Failures in the Air Pressure
System of Scania Trucks using a Random Forest and Feature
Engineering”

The next and final article discussed, is written by Christo-
pher Gondek, Daniel Hafner, and Oliver R. Sampson [10] and
concerns predicting air pressure system failures in Scania
trucks. The authors decided to use Random Forest and
Feature Engineering to perform an analysis whose results
would enable them to minimize the cost of maintaining the
air pressure system in these trucks.

The experiment carried out is part of the Industrial Chal-
lenge for IDA 2016, the intention of which was to be able
to predict failures even before they occur in the Air Pressure
System (APS) in Scania trucks which would simultaneously
mean reducing maintenance costs. To perform this exper-
iment, the researchers decided to use feature creation on
histograms. Of the 171 columns in the database, one column
is a class column. The database had 60,000 rows, of which
1,000 belonged to the positive class. A total of 7 histograms
were created, each with 10 bins, whose analysis, according
to the researchers, showed that each histogram indicated
the age of the Air Pressure System. To visually inspect
and analyze the database, the researchers used the following
methods: Box plots to get an overview of the variance of
the values; Correlation matrices for identifying features that
correlate; Scatter plots to see how the classes are spread;
and Radar charts to recognize outliers. For the experiment
conducted on the histograms prepared for this, two distance
functions were used: - 2-distance, which is a binary com-
parison of the observed value with the expected value. -
Earth Mover’s Distance - gives the opportunity to transform
one histogram into another. Both of these functions were
used by researchers to calculate distances to four different
distributions, such as Mean distribution of the positive and
negative examples, Normal distribution and Mirrored normal
distribution. In order to negate the strong correlation of the
above distances with the bin sum, the authors decided to
normalize the histograms by their sum. Finally, the calculated
features yielded the creation of 282 dimensions (without the
class column, due to their potentially strong correlation). The
result was feature selection: first the researchers ranked the
features according to their expressiveness and then tested the
performance of sets of features that differed in size. Once
the features were properly ranked, the researchers moved
on to calculating the cost of the predictive model using
a varying number of dimensions. To do this, they trained
Random Forest and made class predictions using 10-fold

cross-validation and calculated average costs. This analysis
allowed the researchers to make some conclusions, namely
that not all dimensions are needed, which slowed down the
reduction of a certain number of dimensions - which also
automatically reduces the costs associated with the study.
Training the Random Forest algorithms had an important
purpose. The problem was that the cost of a false negative is
50 times higher than that of a false positive and Random
Forest algorithms usually try to minimize the prediction
error, assuming that all errors have an equally high cost.
To solve the problem, the researchers decided to establish
prediction confidence thresholds for each subset of features,
which were further modified by 1 percent. After analyzing
the results of the method used, the researchers found that
for most cases the best threshold was 95 percent. After the
analyses, the researchers came to the common conclusion
that undoubtedly, conducting this type of data analysis in the
field provides an opportunity to strengthen and significantly
improve the effectiveness over regular inspections of each
truck up to the point of failure. It is extremely important
for any company to forecast failures, preventing them from
occurring, as this definitely strengthens the level of safety and
significantly reduces the costs associated with an unexpected
failure.

K. Summary of case studies

To sum up all the case studies of the chosen articles,
undoubtedly every article contains different but also essential
thoughts, analysis, and information related to predictive
maintenance. The first discusses the latest trends and im-
plementations in PMx. The next 4 articles are strictly about
implementation of predictive models using datasets from the
aviation. Due to the fact that we don’t have access to the
datasets used in some of these, we thought that it would be
best to summarize the articles to provide some information
about using aviation datasets to create PMx models. The
next article is from the machine industry and uses a dataset
taken from a vibration sensor in an exhaust fan to show
how important well-developed early failure detection can be.
The next article is about IoT-based predictive maintenance.
The article and dataset in it is from the auxiliary automo-
tive industry, attempting to create a model to enable the
prediction of sudden failures in industrial machinery. The
seventh article is related to the elevator industry and aims to
predict the remaining useful life of the machine. The next
article is related to hydraulic systems, using the sensor data
of a hydraulic test rig in order to predict the internal pump
leakage. It examines different machine learning techniques
and deep learning methods and then compares the results.
The last article is from the Scania trucks industry and
analyzes the trucks’ air pressure system, in order to predict
the damage of the system and minimize the costs related to
unforeseen repairs as much as possible.

V. GITHUB REPOSITORY DESCRIPTION

For this project, one of the biggest tasks was to create
a GitHub repository for a large collection of Predictive
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Maintenance benchmark datasets found on the internet.

Fig. 1. GitHub repository view

At the moment, the repository contains 26 databases on
various topics. Below we present a short description of all
datasets included in repository:

1) Prediction of downtime duration of a factory in the
field of Predictive Maintenance [11] – this dataset
might be used to predict the downtime duration of
various factories, which can result in identifying the
factories that are most prone to downtime.

2) CNC Mill Tool Wear – this dataset can be used in the
following experiments [12]:

• Tool wear detection: you can use supervised binary
classification to identify worn and unworn cutting
tools. 18 experiments were conducted with an
unworn tool, whereas 10 were run with a worn
tool.

• Detection of inadequate clamping: in this case, the
data would be used in order to detect the condition
when a workpiece is not being held in the vise with
sufficient pressure to pass visual inspection. The
experiments were run with the pressure values of
2.5, 3 and 4 bar. Moreover this data could also be
used to detect the conditions at which a critical
point occurs which would prevent the machining
operation from completing.

3) Diesel Engine Faults [13]– the dataset could be used
for fault diagnosis in Diesel engines, through the
analysis of the variation of the pressure curves inside
the cylinders and the torsional vibration response of
the crankshaft.

4) Electrical Fault Detection and Classification [14] –
this dataset consists of a collection of line currents
and voltages for different fault conditions. The faults
on electrical power system transmission lines are
supposed to be first detected and then be classified
correctly and should be cleared as fast as possible. The
protection system used for a transmission line can also
be used to initiate the other relays to protect the power
system from outages. A good fault detection system
provides an effective, reliable, fast and secure relaying
operation.

5) Fighter Aircraft Flight Logs [15]– this dataset consists
of data collected from flight logs from 3 aircraft from
the same fleet. It can be used to create a predictive
maintenance model in order to predict possible failures
that may happen to the aircraft components based on
the sensor measurements and their comparison to the
threshold values.

6) Gas Emissions from Gas Turbines [16]– the dataset
contained in this folder might be used to predict the
possible gas emissions (NO, COx) from a gas turbine.
This could be further used to create a predictive model
that would predict when emission values would exceed
the permissible standards, which would provide an
opportunity to plan maintenance in advance to avoid
exceeding the permitted emission threshold.

7) Gearbox Fault Diagnosis [17] - This dataset might be
used to cover the basics for Predictive Maintenance
in industrial facilities in order to effectively predict
the potential failure of the gearbox. This would enable
maintenance to be planned well in advance, avoiding
unplanned downtime of the machine.

8) HDD Data [18] – This data comes from different hard
drives. It can be used in order to predict the potential
failure of the hard drives.

9) Hydraulic System Sensor [19] - This data is taken from
the sensors of hydraulic test equipment to evaluate its
technical condition. Can be used to perform condition
monitoring of a hydraulic rig.

10) Li-ion Battery Aging [20] – This dataset might be used
in order to develop prognostic algorithms. The aim
is to be able to manage the uncertainty (caused by
differentials between the same state-of-life for 2 cells
at the same cycle index) which is representative of ac-
tual usage, and make reliable predictions of Remaining
Useful Life in both the End-of-Discharge (EOD) and
End-of-Life (EOL) contexts.

11) Machine PMx Classification [21] - This dataset con-
tains synthetic data that has been created for real
predictive maintenance purposes in the industry field.
The purpose of this dataset is to predict machine failure
and type.

12) Machinery Faults Datasets [22] – This dataset is com-
posed of 1951 multivariate time-series acquired by
sensors on a SpectraQuest’s Machinery Fault Simula-
tor (MFS) Alignment-Balance-Vibration (ABVT) and
enables prediction of induction motor faults.
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13) Maintenance of Naval Propulsion Plants [23] - The
dataset consists of records taken from a sophisticated
simulator of Gas Turbines and can be used to in-
vestigate the problem of performing Conition-Based
Maintenance through the use of Data-Driven Models.

14) One Year Industrial Component Degradation [24] - The
purpose of this dataset is to present the component
degradation process over the course of a year. Based
on such analysis you would be able to check if the
component has been replaced at some point, you might
check if the wear can be accurately predicted, and
you might make a prediction of the RUL (Remaining
Useful Life) in order to determinate the maintenance
windows.

15) PMx IoT Sensor [21] - The database is derived from
a proxy of automotive components, such as motors,
rotors and heat exchangers, whose failure brings the
entire assembly line to a halt. It is therefore important
to predict the failure of these components in order to
avoid such situations in the future and thus improve
product quality and save energy spent on machine
work.

16) PMx for GA [2] – This is dataset for predictive
maintenance for General Aviation. The main prob-
lem that might be taken into consideration while us-
ing this dataset is classifying whether the flights in
question fell into the problematic (i.e., those that re-
sulted in forced and unscheduled maintenance) or non-
problematic (i.e., post maintenance) categories. The
dataset can be used in order to create models that could
detect the features that are relevant to classification.

17) Plant Fault Detection [25] - The dataset is about fault
detection and prognostics in industrial plant monitor-
ing. The aim of this dataset is to provide the ability to
create a model to detect plant faults.

18) Predictive Maintenance Fault Classification – This
dataset can be used to train different types of models
for fault diagnosis in supervised learning (such as
SVM, random forest, k-nearest neighbour and H2O’s
AutoML model).

19) Predictive Maintenance for Aircraft Machine and Com-
ponents [26] – The aim of this dataset is to predict
failures due to certain components of a machine in a
24 hour period.

20) Predictive Maintenance from the Elevator industry [27]
– This dataset comes from the elevator industry and
can be useful in performing analysis of elevator doors
that may raise the amount of equipment life cycles and
reduce unplanned stops.

21) Production Plant Data for Condition Monitoring [28]-
The dataset has been created in order to help predict the
condition of an important component within produc-
tion lines. This condition is essential for the function
of the plant and the resulting product quality.

22) Robot Execution Failures [29]- This dataset was col-
lected, defined and evaluated in order to improve
classification accuracy. It consists of force and torque

measurements on a robot after failure detection.
23) Scania Trucks Air Pressure System Failure Prediction

[30] – This dataset can be used to create a predictive
maintenance model to investigate the condition of
trucks’ air pressure system.

24) Solar Power Generation [31]– This dataset might be
used to enable prediction of the power generation for
next couple of days, identifying the need for panel
cleaning/maintenance and identifying faulty or sub-
optimally performing equipment.

25) Turbofan engine degradation system [32]– This is
a dataset that can be used in order to predict the
remaining useful life of a turbofan aircraft engine.

26) Pump sensor data for PM [33] - The aim of this
dataset is to help detect any possible anomalies in
pump behaviour, in order to stop the pump before
it breaks down and more effectively manage critical
components

Each of the corresponding folders in the repository con-
tains a README file and 2 subfolders: dataset and docu-
mentation.

• The dataset subfolder contains data needed for research
and analysis purposes.

• The documentation subfolder consists of the sources file
containing links, citations and references to the original
website from which the dataset has been downloaded,
to the different articles relating to the dataset, and code
that might be useful for working with this dataset.

• The README file contains a description of the dataset.
The repository is available here. Everyone in need of pre-
dictive maintenance data can use the repository without any
restrictions.

VI. METHODS TO SEARCH FOR PREDICTIVE
MAINTENANCE DATASETS AND ARTICLES

To find the datasets, we searched a number of different
websites with databases from various fields to find those that
are applicable to predictive maintenance. Anyone who would
like to expand their knowledge in the field of predictive
maintenance, or would like to try their hand at finding other
databases, may find the following websites very useful:

1) Kaggle - databases and discussions, code
2) UCI Machine Learning Repository - databases
3) Google scholar browser - science documents
4) Researchgate - science documents
5) IEEE Data Port - databases and articles
6) GitHub - databases, code
7) Emerald - science documents
8) ScienceDirect – science documents
9) Medium - articles, often with code analysis

10) Datasearch - databases
11) NASA Open data portal - databases
12) Springer Link - scientific documents
13) ProQuest - library with research documents
14) Towards Data Science – science documents
Each of these sites contains a wealth of valuable resources

that can prove very useful in your search for information
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in various scientific fields, but especially in the field of
predictive maintenance.

Our search for materials and databases made use of
the above sites. UCI, Kaggle, GitHub and DataSearch are
extremely helpful in sourcing various databases, many of
which also come with a brief description or related articles.
Kaggle and GitHub very often additionally contain code
written as part of the analysis performed on the database
in question. The other sites mentioned above provide an
invaluable source of all kinds of existing articles in the field.
After typing the phrase ”predictive maintenance” (with other
added keywords to tighten the scope if need be), we get a
wide range of articles of interest. This opens the door to
many interesting articles that are related to the chosen topic.

VII. CONCLUSIONS

Taking into account all of the articles examined here, it
can be deduced that access to necessary data, the method of
machine learning used, and the method of organizing and se-
lecting data varies depending on the type of project, field and
component/device. The methods which give the best results
for any one experiment are very diverse and it is impossible
to unambiguously determine which method is universal and
works best, because each database, each component, sensor,
and device is undeniably characterized by uniqueness. This
makes each experiment require different choices of methods
which give the most effective and accurate results of the
analysis carried out.
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Survival Analysis on Chest Radiographs with Deep Learning

Mingzhu Liu1, Chirag Nagpal2, Artur Dubrawski3

Abstract— Chest radiography is a common diagnostic imag-
ing test. An automated detector would improve workflow
prioritization and clinical decision, thus supporting large-scale
screening. Most of the existing methods focus on the binary
outcomes for patients, i.e. all-cause mortality. In this work, we
implement and compare different models that utilize time-to-
event and censor indicators for survival analysis. The models
consist of a convolutional neural network model and a survival
model. The architectures take a chest radiograph as input and
predict long-term mortality.

Index Terms— Computer Vision

I. INTRODUCTION

Chest radiography is a common diagnostic imaging test.
The demand for it worldwide is growing rapidly [1]. It is
used for identifying various diseases, such as pneumonia,
pneumothorax, and heart failure. However, chest radiographs
could be hard even for physicians to interpret without the
assistance of radiologists [2]. Therefore, a model that pre-
dicts mortality of patients could help with clinical decision
making.

Despite the importance of chest radiography, there has
been limited research on predicting survival with it. Deep
learning involves the use of neural networks to learn patterns
existing in data. There has been extensive research on detect-
ing abnormalities in chest radiographs using deep learning,
but little research on applying existing survival models to
chest radiographs has been done.

Survival analysis involves estimating the time T until an
event E occurs. When an event is observed, E is equal to 1,
and T is the time-to-event. When it is censored, E is equal to
0, and T is the time to the last contact with the patient. In this
paper, we study the probability that a patient survives some
time t, given covariates or explanatory variables Z. This is
expressed as P(T > t|Z). The risk of a patient not surviving
time t is 1−P(T > t|Z).

In this work, we propose multiple models that use a
convolutional neural network (CNN) and a survival model
to predict survival probabilities using chest radiographs. We
also compare their performance using various metrics. We
expect that the CNN learns a lower-dimensional representa-
tion of chest radiographs, and the survival model learns the
survival probability based on the representation.
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2Chirag Nagpal is with the Language Technologies Institute,
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II. RELATED WORKS

A. Deep Learning with Chest Radiographs

Efforts have been made for learning lower-dimensional
representations of chest radiographs using CNNs. CheXNet
[3] is a DenseNet121 model [4] that predicts probabilities of
14 diseases present in a chest radiograph. Similarly, CheXaid
[5] is a DenseNet121 model that uses chest radiographs
for diagnosis of tuberculosis for patients infected with HIV.
Besides the probability of tuberculosis present in the image,
the model outputs six additional covariates, such as age and
white blood cell count. A DenseNet model is used in [6]
as an encoder that takes a chest X-ray image as input and
learns a representation of the input. Long short-term memory
is used as a decoder that takes the representation as input and
learns the probabilities of 14 pathologies.

CXR-risk CNN [7] was the first to use deep learning on
chest radiographs to predict patient risk. It uses an Inception-
v4 architecture to predict risk score (very low, low, moderate,
high, and very high). The risk scores indicate the risk of
long-term all-cause mortality.

B. Survival Analysis

Multiple models for survival analysis exist, such as Cox
Proportional Hazards [8], Deep Survival Machines [9], and
Deep Cox Mixtures [10].

1) Cox Proportional Hazards: Cox Proportional Hazards
(CPH) makes the proportional hazards assumption that the
ratio between two hazards is constant over time [8]. The
hazard λ (t) as a function of some time t is defined as the
probability that given a patient survives t, the patient will
not survive t +δ , and δ approaches 0 (Equation 1).

λ (t) = lim
δ→0

P(t +δ > T ≥ t|T ≥ t)
δ

(1)

In DeepSurv [11], the risk function ĥθ (x) of an individ-
ual’s covariates x is estimated by multi-layer perceptron,
where θ is its weights. The loss function is the negative
log partial likelihood, Equation 2, where R(Ti) is the set of
patients who have not experienced the event at time Ti.

LCPH(θ) =− ∑
i:Ei=1

(
ĥθ (xi)− log ∑

j∈R(Ti)

eĥθ (x j)

)
(2)

2) Deep Survival Machines: Deep Survival Machines
(DSM) [9] is a parametric neural network model, without
the assumption of proportional hazards. The distribution of
survival times conditioned on input covariates is modeled as
a mixture of k distributions. The distributions are required to
have closed-form cumulative distribution function solutions.
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The representation of input features, such as radiologists’ im-
pressions and demographic information, are acquired by us-
ing multilayer perceptron. From the representation, weights
and parameters of the distributions are learned. The distribu-
tion of survival times are estimated from the k distributions.

III. METHODOLOGY

Our models contain an encoder and a survival models. In
Subsection A, we introduce the encoder. In Subsection B,
we introduce survival models. In the rest of this section, we
introduce our models.

A. Encoder

We use a CNN model from the TORCHXRAYVISION
Python package [12]. It contains DenseNet121 models
trained on various chest X-ray datasets, such as CheXpert and
MIMIC-CXR. The inputs to the models are grayscale chest
X-ray images and outputs from the models are prbabilities
of 18 pathologies present in the input image, which we refer
to as radiologists impressions or concepts.

We use the densenet121-res224-all model in the
package. All outputs of this model are trained, whereas for
other models, not all outputs are meaningful because some
targets do not exist in the dataset. We finetuned the trained
model on our dataset.

Binary cross entropy loss, Equation 3, is used. The weight
wn for a concept n is calculated by the inverse of the
proportion of positive labels.

Lencoder =−∑
n

wn (yn logσ(xn)+(1− yn) log(1−σ(xn)))

(3)

B. Survival Models

Survival models take concepts and demographic data as
inputs and output survival probabilities. We experiment with
DSM, CPH, and a binary survival model. We use the binary
survival model as a baseline. The models are from the
AUTON-SURVIVAL package [13].

Given a time horizon, the binary survival model takes
concepts and demographic data as inputs and outputs one
score. We ignored all data points with a time-to-event less
than the specified time horizon and a censor indicator equal
to 0. All patients survive the given time horizon belong to the
positive class. The loss function is the binary cross entropy
loss in Equation 3, where wn = 1. During inference time, we
obtain the predictions of the model on the training dataset.
We split the predictions into a certain number of bins. For
data in each bin, we fit a Kaplan–Meier estimator using time-
to-event and censor indicator. For each data point in the test
dataset, the survival probability is estimated by the prediction
of the corresponding Kaplan–Meier estimator.

C. Ground-truth concepts + survival models

Model architecture is illustrated in Fig. 1. We use ground-
truth (GT) radiologists’ impressions and demographic data
as inputs to the survival models.

survival model survival probabilitydemographic data

concepts

Fig. 1: Ground-truth concepts + survival model

D. Independent Models

Model architecture is illustrated in Fig. 2. We use chest
radiographs as inputs to the encoder, and trained the encoder
using ground-truth radiologists’ impressions. We use the
trained encoder, and obtained predicted concepts on chest
radiographs. We use the predictions and demographic data
to train survival models.

chest radiograph encoder

survival model

survival probabilitydemographic data

concepts

Fig. 2: Independent model

E. Jointly trained Models

Model architecture is illustrated in Fig. 3. We build one
model that consists of an encoder, a multi-layer percecptron,
and a survival model. A chest radiograph is the input to the
encoder and the output is a vector that represent the concepts.
We concatenate the concepts and demographic data, and pass
them to the multi-layer percecptron. The output of the multi-
layer percecptron is the input to the survival model. The loss
function is Equation 4, a sum of concept loss and survival
loss, where concept loss is a binary cross entropy loss
(Equation 5) that compares predicted concepts and ground-
truth radiologists’ impressions, and survival loss is the loss
of the survival model.

L joint = αLconcepts +Lsurvival (4)

Lconcepts =−∑
n

wn (yn logσ(xn)+(1− yn) log(1−σ(xn)))

(5)
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chest radiograph

encoder

survival model

survival probability

demographic data

Fig. 3: Jointly trained models

1) End-to-End models: End-to-end models are jointly
trained models when α = 0. This means we do not train
the models based on ground truth radiologists’ impressions.
Instead, we only train the models based on time-to-event and
censor indicators.

2) Concept bottleneck models: Inspired by [14], we build
concept bottleneck models by setting α ̸= 0. This means we
train the models based on both ground truth radiologists’
impressions and time-to-event and censor indicators.

IV. EXPERIMENTS

A. Dataset

Data from the Prostate, Lung, Colorectal, and Ovarian
Cancer Screening Trial (PLCO) [15] is used in this study.
In this study, we use chest radiographs, radiologist’s impres-
sions, demographic data, time-to-death, and censor indicator.
Demographic data includes data such as sex, race, and age.
Radiologist’s impressions indicates whether abnormalities
exist, such as pleural fluid and COPD.

Each image is in grayscale and preprocessed as follows.
Each image is resized to be 256 by 256 pixels. For images
used for testing the model, they are cropped into four
corners and the central crop. Predictions are the mean of the
predictions of each crop. For images used for training the
model, they are cropped at a random position. The resulting
images are 224 by 224 pixels.

There are 89643 data points in total, and they are split
into 60% training, 20% validation, and 20% test.

B. Evaluation Metrics

We evaluate the performance of models using brier score,
concordance index, area under the receiver operating char-
acteristic curve (AUC), and expected calibration error (ECE)
on 2-year, 5-year, and 10-year time horizons.

1) Brier score: Brier score measures the average squared
distance between the actual survival probability and predicted
survival probability at a given time horizon. Brier score is
given in Equation 6, where N is the number of data points,
ft is the predicted probability of the outcome, ot is the actual
outcome. Larger Brier score indicates greater error.

BS =
1
N

N

∑
t=1

( ft −ot)
2 (6)

2) Concordance index based on inverse probability of
censoring weights: Concordance index measures how well
the predicted probabilities are ranked. Each pair of data is
compared in terms of time-to-event and risk probability.

For each pair of patients i and j, their predicted risk scores
are ηi and η j respectively, and their ground-truth time-to-
event are Ti and Tj. We consider the following situations for
each pair.

If they are both censored, we ignore this pair.
If they are both not censored, they are a concordant pair if

ηi > η j and Ti < Tj, and they are a discordant pair if ηi > η j
and Ti > Tj.

If Ti is censored but Tj is not, we consider the following
situations. If Ti < Tj, we ignore this pair. If Ti > Tj, they are
a concordant pair if ηi < η j, and they are a discordant pair
if ηi > η j.

Concordance index is given in Equation 7, where nc is
the number of concordant pairs, and nd is the number of
discordant pairs.

C =
nc

nc +nd
(7)

Concordance index based on inverse probability of cen-
soring weights [16] uses Kaplan-Meier estimator to estimate
the censoring distribution, and weights are applied to each
pair based on the inverse of it.

3) AUC: Receiver operating characteristic (ROC) curve
is plotted as the true positive rate v.s. the false positive
rate (recall) when different thresholds are applied. AUC
is the area under the curve. A greater AUC indicates that
predictions are well-ranked, meaning that the model gives
positive samples higher scores than negative samples.

4) ECE: Calibration measures how well predicted proba-
bilities match true probabilities. Larger ECE indicates larger
miscalibration. ECE is presented in Equation 8. Dataset is
split into B bins, and for data in each bin (Xb), a prediction
is made by a Kaplan Meier estimator (KM) fitted using data
in the bin. An error is calculated by the absolute value of
the difference between the prediction and the mean of the
risk scores (rb). ECE is calculated by the weighted sum of
the error.

ECE =
B

∑
b=1

nb

N
|KM(Xb)−mean(rb)| (8)

C. Implementation Details

All experiments were run on NVIDIA RTX A6000, with
PYTHON 3.9.12 and PYTORCH 1.11.0.

We performed hyperparameter search. The best indepen-
dent models were the ones with lowest validation survival
loss. The best jointly trained models were the ones with
lowest validation brier score. For CPH and binary models, we
searched for layer sizes in [[], [64], [64,64], [128], [128,128]].
For DSM models, besides layer sizes, we searched for
the number of underlying distributions ks in [2,3,4,6] and
temperatures in [1,100,500,1000]. For concept bottleneck
models, we searched for αs in [10−1,10−2,10−3,10−4]. The
best configurations are presented in Table I.
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Adam optimizer with a learning rate of 3∗10−4 was used
for all models. The distribution for all DSM models was
Weibull distribution. The batch size for independent survival
models was 128. The training batch size for jointly trained
models and independent encoders was 128, and validation
batch size was 64. Jointly trained models and independent
encoders were trained for 10 epochs, with patience equal to
3.

layer size k temperature α

GT + sur-
vival

DSM [64] 3 500
N/ACPH [] N/A N/Abinary []

predicted
concepts +
survival

DSM [64] 4 1
N/ACPH [64] N/A N/Abinary []

end-to-end
DSM [64] 4 1

N/ACPH [64] N/A N/Abinary []

concept bot-
tleneck

DSM [64] 4 1 10−1

CPH [64] N/A N/A 10−1

binary [] 10−3

TABLE I: Hyperparameter configurations

D. Results

Test performance of ground-truth concepts + survival mod-
els are presented in Table II. Test performance independent
models are presented in Table III. Test performance of end-
to-end models are presented in Table IV. Test performance
of concept bottleneck models are presented in Table V.

Brier Score Concordance Index

2-year 5-year 10-year 2-year 5-year 10-year

DSM 0.0141 0.0421 0.1036 0.7541 0.7466 0.7356
CPH 0.0141 0.0423 0.1042 0.7512 0.7427 0.7318
Binary 0.0141 0.0424 0.1039 0.7514 0.7456 0.7343

AUC ECE

2-year 5-year 10-year 2-year 5-year 10-year

DSM 0.7561 0.7522 0.7516 0.0056 0.0081 0.0118
CPH 0.7533 0.7483 0.7474 0.0034 0.0076 0.0130
Binary 0.7534 0.7514 0.7501 0.0042 0.0126 0.0199

TABLE II: Test performance of ground-truth concepts +
survival models

We compare the performance of ground-truth concepts +
survival models and independent models in Fig. 4. Inde-
pendent models are better than models using ground truth
concepts with respect to all metrics except ECE of binary
and CPH models on 2-year horizon and CPH models on 5-
year horizon. In general, binary models perform worse than
their DSM and CPH counterparts.

We compare the performance of jointly trained models
and independent models in Fig. 5. In general, binary models
perform worse than their DSM and CPH counterparts. Joint
DSM and CPH models perform better than their independent
counterparts in terms of AUC and concordance index, sug-
gesting that the models are good at ranking the samples.

Brier Score Concordance Index

2-year 5-year 10-year 2-year 5-year 10-year

DSM 0.0140 0.0411 0.1001 0.7719 0.7686 0.7494
CPH 0.0140 0.0413 0.1007 0.7727 0.7660 0.7480
Binary 0.0140 0.0416 0.1009 0.7574 0.7625 0.7463

AUC ECE

2-year 5-year 10-year 2-year 5-year 10-year

DSM 0.7742 0.7749 0.7659 0.0054 0.0062 0.0083
CPH 0.7749 0.7722 0.7644 0.0048 0.0088 0.0120
Binary 0.7593 0.7687 0.7627 0.0046 0.0107 0.0145

TABLE III: Test performance of independent models

Brier Score Concordance Index

2-year 5-year 10-year 2-year 5-year 10-year

DSM 0.0141 0.0412 0.1006 0.7795 0.7711 0.7534
CPH 0.0140 0.0411 0.1001 0.7775 0.7713 0.7543
Binary 0.0141 0.0425 0.1060 0.7256 0.7243 0.7071

AUC ECE

2-year 5-year 10-year 2-year 5-year 10-year

DSM 0.7817 0.7775 0.7704 0.0056 0.0078 0.0173
CPH 0.7797 0.7776 0.7711 0.0028 0.0067 0.01639
Binary 0.7272 0.7293 0.7204 0.0066 0.0180 0.0483

TABLE IV: Test performance of end-to-end models

However, in terms of ECE, joint DSM and CPH models
perform worse, suggesting that the predictions are not well
calibrated.

End-to-end models and concept bottleneck models achieve
comparable performance. As [14] suggests, concept bot-
tleneck models are powerful in that humans are able to
intervene on the model. For instance, if an radiologist does
not agree with the predicted survival probability, he/she could
examine predicted concepts, change those that he/she thinks
are wrong, and see what survival probability the model gives.

E. Future Work

Our model can be used to perform counterfactual pheno-
typing, where groups of individuals are identified that belong
to underlying clusters and demonstrate heterogeneous treat-
ment effects [17]. This may provide insights into measuring
the effects of an intervention.

V. CONCLUSION

In this paper, we propose models that take chest radio-
graphs as inputs and output survival probabilities. We com-
pare their performance in terms of Brier score, concordance
index, AUC, and ECE.

For further work, we will apply bootstrapping and obtain
confidence intervals of model performances.
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Brier Score Concordance Index

2-year 5-year 10-year 2-year 5-year 10-year

DSM 0.0141 0.0411 0.0100 0.7780 0.7701 0.7567
CPH 0.0140 0.0409 0.0991 0.7772 0.7697 0.7557
Binary 0.0141 0.0425 0.1066 0.7164 0.7168 0.7007

AUC ECE

2-year 5-year 10-year 2-year 5-year 10-year

DSM 0.7802 0.7765 0.7567 0.0069 0.0080 0.0124
CPH 0.7794 0.7761 0.7726 0.0031 0.0056 0.01489
Binary 0.7180 0.7217 0.7137 0.0090 0.0178 0.0494

TABLE V: Test performance of concept bottleneck models
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Less Is More: A Robust Visual Inertial Odometry with Active Feature
Selection

Muhan Lin1, Shibo Zhao2 and Sebastian Scherer2

Abstract— It is a usual practice for visual odometry and
SLAM to track several hundreds of points in real time.
Although this practice has a good performance on high-end
desktop PCs, it is difficult to apply this practice to some mobile
platforms with limited computation resources, such as VR,
Micro UAV and multi-camera system. Additionally, noisy points
may decrease the accuracy of visual odometry and SLAM.
Therefore, fewer but more informative features can boost both
efficiency and accuracy. In order to solve this problem, we
propose a new criterion for the active feature selection of VIO
and then incorporate this method into an advanced VIO system,
TP-TIO [1]. The new system was tested in the mmpug datasets
[2], which were extracted in a long and dark corridor. The
residuals can be reduced to 56.23% of the ones generated by
the original TP-TIO without increasing the processing time and
CPU usage of tracking, which is visualized in Fig 1.

Fig. 1. The estimated trajectory without and with the active feature
selection (threshold = 700). The vehicle starts from the starting point, goes
for a long distance, goes back on the same route and returns to the starting
point. Large drifts are shown in the picture above, which is generated by
the original TP-TIO, while the drifts are very small in the picture below,
which is generated by the improved TP-TIO. The noisy point cloud is also
cleared to a large degree.

Index Terms— Computer Vision for Automation, Localiza-
tion, Mapping

I. INTRODUCTION

Visual inertial odometry (VIO) works as an effective
method of estimating poses with high accuracy. It estimates
states by integrating the feature tracking on camera images
and the motion information from the Inertial Measurement
Unit (IMU). VIO generally consists of the front end, which
detects and tracks feature points, and the back end, which
is responsible for mapping and pose estimation. The typical

1Muhan Lin is with the Department of Electronic and Information
Engineering, Computer Engineering, The Chinese University of Hongkong,
Shenzhen, China. 119010177@link.cuhk.edu.cn

2Shibo Zhao and Sebastian Scherer is with the Air
Lab, Carnegie Mellon University, Pittsburgh, PA 15213
shiboz,basti@andrew.cmu.edu

VIO works include VINS-mono [3] and the ORB-SLAM
series [4] [5] [6] which show high accuracy.

However, when the algorithms are tested in some challeng-
ing environments of TUM-VI Benchmark [7], the residuals
can increase dramatically, implying the lack of robustness.
One reason of this problem is that more flawed or uninfor-
mative features are involved in the estimation in challenging
environments. The noisy points can stain the estimation
results of VIO. In addition, the large number of features
makes the VIO systems hard to be applied to micro mobile
equipment, which lacks high-end CPU and GPU to cope
with the high computational demands. Therefore, we desire
to choose features actively according to the quality of the
features.

This work proposes a new feature selection method for
VIO tracking based on quantifying intensity changes around
the feature point [8], as intensity changes can render the
confidence of features. This work then incorporates this
method into TP-TIO, leveraging the advantages of both
selection and adding points. The complete workflow chart of
the new system is proposed. This algorithm is tested in the
mmpug datasets [2], which were collected in a dark and long
corridor. We changed the selection threshold and analyzed
the algorithm in accuracy, the tracking time per frame, the
CPU usage of tracking, and the number of filtered points.
The estimation residual can be decreased to 56.23% of that
from the original TP-TIO without increasing the processing
time and CPU usage of tracking, increasing the robustness
considerably. It is visualized by Fig 1.

II. RELATED WORK
A. Efficient Feature Extraction and Tracking

The front-end of VIO need to sample image points,
detect features and track all feature points. The enormous
computation complexity contributes to the trade-off between
processing speed and CPU usage. [9] proposes a novel
map simplification and a decoupled back-end optimization
method, significantly reducing the computation complexity.
The speed is increased to a large degree, whereas its CPU
utilization sometimes is relatively high, which is not less
than that of VINS-mono, and ORB-SLAM [10]. To cope
with this problem of high CPU usage, VINS-mono restricts
the number of tracked feature points, but this may sacri-
fice the accuracy of pose estimation and make the system
less scalable for the multi-camera group. Another popular
solution is to adopt the graphics processing unit (GPU).
There are some concerning mature libraries, including Vision
Programming Interface (VPI) developed by NVIDIA [11]
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and CUDA Visual Library (VILIB) [12]. However, this may
increase the hardware requirements and costs for vehicles,
thus shrinking the application scenarios.

B. Robust VIO

Extracting more informative points is a good way to
increase robustness of VIO. [13] supports the multi-camera
system to avoid the accidental poor performance of one
camera. However, the method may increase the computation
amount. The reasons are that the pose estimator needs to
process each pixel of each keyframe to get features and map
points in the front end and the triangulation, and a large
number of feature points leads to a large map and the large
size of the matrices solved by the optimization algorithm in
the back end.

TP-TIO [1] is a robust thermal inertial odometry (TIO)
system integrating deep learning and TIO. This system can
also be used as VIO because of the same working theory.
Although TIO has a more stable performance than VIO
in visual-degraded environments, the gradients of intensity
in thermal images are too small and difficult to process.
The deep learning method proposed in TP-TIO overcomes
this problem by extracting more informative features and
makes the system more robust. The resulted feature selection
scheme gets influenced by the photometric changes least.
Nonetheless, this system makes a trade-off between robust-
ness and the computation amount, as a considerable number
of features need to be extracted in the deep learning stage.
After selecting the most informative features, the computa-
tion amount can be reduced without sacrificing robustness
by using smaller but more informative feature sets.

C. Active Feature Extraction

The basic idea of active feature selection is to give
each feature a weight, which will be small if the point
cannot offer much effective information, like the features
extracted from white walls. In this way, useless features and
flawed features which can be caused by broken cameras and
excessive exposure can be filtered. Covariance propagation
is the fundamental way to weight the confidence of features,
whose mathematical support is offered by [14]. Based on
this concept, several works on feature selection have been
published. [15] proposes the Good Line Cutting method for
selecting good line features, but this may not be robust
enough for environments like grasslands. [16] formulates
weights for the estimated relative poses, which will not be
directly involved in weighting features. [17] weights features
with stochastic gradients and incorporates the weights of all
features in optimization. Nevertheless, this method does not
filter out the flawed points. Therefore, it may not be able
to reduce the CPU usage of the whole system significantly.
Additionally, the pose estimation residuals caused by the
mistaken feature points may only be decreased but not wiped
out. The hybrid VIO [18] and the Good Feature Matching
[19], based on which [20] is derived, weight each feature
points and select the best feature subset for local mapping.
[18] uses the tracking length of each feature as their weights,

but the tracking length is influenced by the motion route.
Therefore, even if the vehicle observes the same point in
the same direction and at the same distance, the weight
derived by the hybrid VIO can differ as long as the route is
distinct. The Good Feature Matching computes the feature
uncertainty based on the reprojection errors. However, the
existing VIO system involves several optimization strategies
to reduce reprojection errors. The feature weights designed to
be computed in the front end may not be the actual weights
after some optimization in the back end.

III. METHODOLOGY
A. The Active Feature Selection

This work utilizes the ThermalPoint method to detect
features and selects features out of the results, as this
method gets influenced by the photometric changes least.
It can thereby extract more stable features. The selection
criterion is developed from the analysis of the intensity
changing speed of features in [8], which is stated here first.
The basic idea is to utilize the intensity gradient with respect
to the x and y direction. We format M as the covariance
matrix of intensity gradients, and then get its singular values
λ1, λ2 by the Singular Value Decomposition.

Ix =
∂I

∂x
(1a)

Iy =
∂I

∂y
(1b)

M =
∑[

I2x IxIy
IxIy I2y

]
(1c)

=R−1

[
λ1 0
0 λ2

]
R (1d)

The maximum singular value λmax quantifies the largest
intensity differences between the current point and the pixels
around it. The ellipse centered at the analyzed feature point
in Fig. 2 visualizes the intensity changing speeds at this point
in all directions. The intensity of all the points on the ellipse’s
edge is considered the same. The lengths of the half axes are
the path lengths for which the point needs to go to have the
intensity on edge. Therefore, the two halves of the short axis
represent the direction in which the intensity changes fastest,
while the two halves of the long axis are the direction of
changing slowest. The size of the short half axis should be
composed by (λmax)

−0.5, the inverse of the most significant
changing speed. Similarly, the size of the long half axis is
related to (λmin)

−0.5. (To determine the uncertainty, only
the scale but not the speed direction is considered at this
point, so we always mean the absolute values of singular
values by default when we mention λ in this paper.) We
propose to quantify the uncertainty with (λmax)

−0.5, the
length of the short half axis. The uncertainty degree can
thereby be visualized as circles with a radius of (λmax)

−0.5.
Large circles stand for great uncertainty. The reason why we
choose the maximum singular value but not the minimum
one is shown in Fig. 3. The red point in the center of this
patch is the analyzed one. The intensity changing speed in the
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Fig. 2. The ellipse visualizing the intensity changing speeds at the analyzed
point in all directions

Fig. 3.

y direction Iy is always 0, thus always being the minimum.
The minimum singular value hence is 0. However, Ix is of
a considerable scale, making the maximum singular value
considerably large. As a result, this edge feature with high
confidence can be selected if selecting with the maximum
singular value, while it will be ignored if selecting with the
minimum singular value. For this sake, we should always
use the largest intensity differences between the point and
the pixels around it to evaluate the confidence of this feature.
When selecting points, we set a threshold, and all the points
with (λmax)

−0.5 larger than they are filtered out. We have
obtained the optimal threshold for (λmax)

−0.5, 750, after
several experiments. The details are shown in the result part.

B. Incorporate the Active Feature Selection Scheme into TP-
TIO

Fig. 4 is the overview of the new system proposed by
this work. Our main contribution is the stages colored
orange, which are merged with the baseline, TP-TIO. We
first examine all stages of TP-TIO here to find a reasonable
place for insertion. As shown by the flow chart in Fig. 4, the
front end of TP-TIO mainly consists of three stages. After
feeding a new infrared camera image into TP-TIO, IMU
preintegration is executed, followed by photometric tracking
if the image is not the first one. The system then extracts fea-
tures with the deep learning module ThermalPoint, detecting
and feeding the extra features into the photometric tracking

stage. Meanwhile, the tracker sends the tracking results to
the back end. The results are used in triangulation. The PnP
method is then executed to obtain the relative poses of the
consecutive frames. These poses are finally optimized with
the Local Bundle Adjustment (LBA).

The feature detection should be the stage where the
number of features increases dramatically. Therefore, the
feature selection is expected to happen after this stage. The
tracking and the triangulation need to process each feature
point, so the number of features impacts the computation
amount of these two stages. Additionally, these two stages
involve the history image points into trajectory estimation. If
more noisy points enter these stages, the estimation accuracy
will decrease. It is thereby desirable to have the feature
selection before them. Therefore, we should insert the active
feature selection into the red loop, as shown in Fig. 4.
Because the tracking stage abandons the points which are
in the last frame but cannot be tracked from the current
frame, we select features after tracking and right before the
deep learning module and the triangulation. Otherwise, the
system will waste time computing singular values for points
that will be abandoned immediately. In addition, the system
can decide the threshold for feature selection according to
the current number of features if the feature filter is put at
this position. It is to avoid excessive filtering in some cases
that the features have become very few after abandoning
points which cannot be tracked in the current frame. Based
on all the analysis above, the complete workflow chart can
be obtained, as shown in Fig. 4.

IV. RESULTS

The new system was tested in the mmpug [2] datasets,
which were collected in a long and dark corridor, a challeng-
ing environment for VIO. In the dataset, the vehicle starts
from the starting point, goes for a long distance, and reaches
a point p after several turns. Then it goes back on the same
route and returns to the starting point. Such a special route
helps us evaluate the estimation accuracy by examining the
drifts between the routes to and from p and the distance
between the starting and ending points. All the tests were
conducted on the computer Oryx Pro with the CPU Intel(R)
Core(TM) i7-9750H CPU @ 2.60GHz. We compared the
performance of the original TP-TIO system and the new TP-
TIO system with distinct thresholds for feature selection to
evaluate the algorithm and choose the optimal threshold.

Fig. 5 shows the real-time outputs of the tracking with
feature selection. The signs of the points tracked for more
than ten frames are colored red, while other points are
colored red. Crosses mark the rejected points, most of which
are from the white walls, thus being less informative than
others, as shown in Fig. 5. The algorithm successfully re-
moves most of the useless feature points extracted from white
walls. The accepted points are marked with circles, whose
radius size is quantified with the ceiling of

√
λ−0.5
max + 1. The

algorithm suggests that the radius size should increase as the
uncertainty increases. It can be seen from Fig. 5 that the radii
of edge points are relatively small and slightly larger than
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Fig. 4. The system overview. The TP-TIO is combined with active feature selection proposed by this work.

those of corner points. The points extracted from other places
have large radii. This result is consistent with the fact that
the features with low uncertainty are corner and edge points
and the uncertainty of edge points is larger than that of edge
points. Therefore, the active feature selection makes sense.

Fig. 5. The real-time output of the new system. The rejected points and the
accepted points have been marked. The size of the circle radius represents
the uncertainty of the accepted points

We tested the feature selection with thresholds of λ−0.5
max

being 600, 650, 700, 750, and 800, respectively, and then
compared it to the original TP-TIO. The comparisons are
in terms of the residuals, the tracking time, the CPU usage
of tracking, and the number of points filtered out. The
results are plotted in Fig. 6. As we expected, more points
were filtered out with the higher threshold. Additionally, the
processing time and the CPU usage of tracking, which is
also responsible for computing singular values and selecting
points, have few changes with and without active feature se-
lection. It implies that the additional computation on singular
values and selection in the tracking part will not increase the

computation burden. However, with the optimal threshold,
which should be 750 from the experiment results shown in
Fig. 6, the residual quantified by the distance between the
starting and ending points can decrease to 56.23%, almost
half of that of the original TP-TIO. In Fig. 1, we can see
the considerable residual reduction implied by the slight
drift between the route to and from p. The robustness has
significantly increased. Additionally, it can be seen in Fig.
1 that the noisy point cloud around the estimated route is
cleared to some considerable degree compared to the noisy
point cloud generated in the original TP-TIO.

Fig. 6. The evaluation of the new system in terms of residuals, tracking
time, CPU usage, and the number of filtered points

V. CONCLUSIONS

A robust information-driven VIO system based on active
feature selection is realized in this work. We propose a new
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feature selection criterion and incorporate it into the TP-TIO
system to utilize the ThermalPoint, leveraging the strengths
on increasing robustness of removing noisy and useless
points and adding more informative points. In the experi-
ments on challenging datasets, we successfully increased the
accuracy and robustness. The optimal threshold for selecting
features is also obtained in experiments.

VI. FUTURE WORK

The threshold of selection is given by users right now.
Therefore, the performance of this selection now depends
on the fixed threshold obtained from experiments. It may be
helpful to use the adaptive threshold based on the current
feature number, which can assist the selection algorithm in
adapting to environments better.
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Learning Vehicle Dynamics through Interactions for Off-Road Driving

Parv Maheshwari1, Samuel Triest2, Wenshan Wang2 and Sebastian Scherer2

Abstract— In practical tasks such as off-road driving, robots
need to understand the physical properties of the world to
deal with its complexity. The aim of our work is to enhance
the performance of the vehicle model of a modified Yamaha
Viking ATV, by learning from its interactions with an ever-
changing environment. We show that this results in increased
model fidelity in challenging scenarios such as loose soil,
traversing over vegetation, etc. We perform traditional offline
system identification for our vehicle model combined with
two approaches for online system identification - a traditional
approach and a novel learning-based method. We then move on
to compare the accuracy of these vehicle models on real-world
data.

Index Terms— Model Learning for Control, Field Robots,
Autonomous Vehicle Navigation

I. INTRODUCTION

For off-road navigation, robots often have to perform
aggressive maneuvers on rough terrain. Not only this, but the
vehicle needs to adapt to changing environments and terrain.
Hence there is a need for a robust and adaptive vehicle model
which would allow the predicted future state of the robot to
be as close as possible to the ground truth. In history, such
an adaptive model is achieved by using system identification.

System identification aims to find a set of parameters (P )
to best describe the vehicle model on the basis of given
information. To the best of the authors’ knowledge, even
though there are no direct works on parameter estimation
of vehicle models in the off-road driving domain, the past
works show promising results of system identification in
various other applications. These applications are not just
restricted to on-road driving [1] as [2] leverages real-world
data for modeling an industrial car-like tractor. There also
exists use cases of system identification in both aerial [3]
and underwater vehicles [3], [4]. In literature, mainly the
works on system identification and parameter estimation of
vehicle models can be categorized into offline and online
approaches.

We formulate the problem of traditional system identifi-
cation similar to [5] which encourages the use of traditional
offline approaches like using the least squares methods to
estimate the value of the unknown parameters. We use a
gradient-based optimizer [6] to minimize our loss.

While the offline approaches have seemed to work fairly
well in the past, to identify the parameters when no prior
information is provided about them, some recent works like
[7], [8] explicitly show the advantage of online approaches
over using the offline approaches in real-life.

1 Department of Mathematics at Indian Institute of Technology
Kharagpur

2 Robotics Institute at Carnegie Mellon University

Fig. 1. We perform system identification for a Customized Yamaha Viking
ATV while traversing through various environments.

For traditional online system identification, we use the
same methodology as its offline variant. Our motivation to
continue using the least squares formulation with gradient
descent for online system identification similar to the offline
variant comes respectively from [9] and [10].

While the possibility and application of classical ap-
proaches have been well explored for system identification in
both online and offline variants, on the other hand, learning-
based approaches for system identification are quite uncom-
mon. One of them is [11] which combines images from
the front camera along with vehicle dynamics to learn the
coefficient of friction that is used in the vehicle model. While
this approach takes into account the future surroundings, it
does not leverage the history of the vehicle’s trajectory in
any form, which can especially help a lot in determining the
terrains that the vehicle has traversed on and most likely still
traversing on.

With this motivation in this paper, we present a learning-
based approach for online system identification which lever-
ages the recycling history of the trajectory that the vehicle
has already followed. This is done using a novel architecture
for the neural network which uses the current parameters of
the vehicle model along with a trajectory history to output
an individual Gaussian distribution for each parameter. We
further evaluate our approaches on real-world data collected
similar to [12] using our testing platform as shown in Fig. 1.
The result of this experiment shows that our learning-based
approach is more adaptive and robust than both the online
and offline variants of the traditional system identification.

The remainder of this paper is organized as follows. In
Section II, we provide background on our vehicle model
along with defining our aim. In Section III, we discuss the
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details of various approaches to System Identification. In
Section IV, we present the description of our testing platform
and explain about setting an experiment to measure the
robustness of our approaches. In Section V we analyze the
results of our experiment. Finally, in Section VI, we give
concluding remarks and mention scopes for future work.

II. PROBLEM DESCRIPTION

Our primary focus is to design a vehicle model that
accurately models the vehicle’s dynamics taking into account
its interactions with the real-world environment. We have
used the 2 Wheel drive mode on the ATV which allows
us to fundamentally formulate our vehicle modeling as a
Kinematic Bicycle Model(KBM) as shown in Figure 2. Here,
at ith timestep, the KBM state (X) consists of Xi = [pxi , pyi ,
θi, vi, δi] where pxi , p

y
i represent the position coordinates, θi

is the yaw of the vehicle, vi is the vehicle’s velocity and δi is
the steering angle. The control input (U ) at the ith timestep
is represented by Ui which consists of [v̇i, δ̇i] representing
the acceleration and steering rate respectively. If the vehicle
is moving at velocity vi and rotating around an Instantaneous
Centre of Rotation (ICR) with a steering of δi, the general
vehicle dynamics can be represented as Equation 1.

f(Xi, Ui) = Ẋi =


vi ∗ cosθi
vi ∗ sinθi

(vi tan δi)/L
v̇i
δ̇i

 (1)

Fig. 2. Geometry of the bicycle model. The distance between the wheels
is called wheelbase.

Now, at the ith timestep, the next predicted state Xi+1

can be denoted as Xi+1 = h(Xi, Ui) and can be calculated
using combination of Equations 1 and 3 as f in Equation 2.
For an improved estimate of the states, we use the 4th order

Runge-Kutta method instead of Euler discretization.

h(Xi, Ui) = Xi +
1

6
(k1 + 2k2 + 3k3 + k4) (2a)

k1 = ∆t ∗ f(Xi, Ui) (2b)

k2 = ∆t ∗ f(Xi +
k1
2
, Ui) (2c)

k3 = ∆t ∗ f(Xi +
k2
2
, Ui) (2d)

k4 = ∆t ∗ f(Xi + k3, Ui) (2e)

where ∆t is the resolution for the time step
Here we consider a modified version of the Kinematic

Bicycle model where we provide throttle (Ti) and steering
set point (δtargeti ) as actions. We define-

v̇i = Kt ∗ Ti −Kb ∗ vi −Kf

δ̇i = Kd ∗ (δtargeti − δi)
(3)

where P = (Kt,Kb,Kf ,Kd) represents the set of pa-
rameters for our vehicle model. Here, Kt accounts for
the effect of throttle on acceleration, Kb ∗ vi is used to
incorporate the engine braking of the vehicle as defined
by [13], Kf represents the frictional force on the vehicle
and Kd represents the proportional gain of the lower level
steering controller. Our aim is to predict and estimate these
parameters to increase the robustness and adaptive behavior
of the vehicle model. These parameters can be estimated
using system identification as further explained in Section
III-B

III. METHODOLOGY

A. Data Collection

We have collected 30 minutes of off-road driving data in
form of multiple discontinuous rosbags where each rosbag
consists of multiple 5-second trajectories. This dataset aims
to incorporate scenarios like acceleration, deceleration, turn-
ing, and special scenarios where the vehicle is traversing
over vegetation and small rocks. These scenarios help us to
find the right parameter as these cover different conditions
where the effect of throttle, engine braking, and friction can
influence the trajectory of the vehicle.

We have tried avoiding slopes while collecting data be-
cause as shown in Equation 3, v̇i does not incorporate
the effect of gravitational force, in the acceleration of the
longitudinal velocity, which is non-negligible on slopes.

B. General System Identification

Here we estimate the classical vehicle model on the basis
of the trajectory that the vehicle has followed. This is done
by using a sequence of KBM states along with the actions as
ground truth represented by GT 1:N and U1:N−1 respectively.
Here GTi and Ui represents the vehicle’s current state and
the commanded action at ith timestep. Then the predicted
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trajectory (S2:N ) can be calculated as shown in Equation 4.

S2:N = g(GT1, U1:N−1) where,

g(GT1, U1:N−1) =


h(GT1, U1)

h(h(GT1, U1), U2)
...

h(h(. . . h(GT1, U1) . . .), UN−1)

 (4)

Given the ground truth and predicted trajectory, we calculate
the loss as

L = (GT 2:N − S2:N )2 (5)

We can perform system identification in two modes - offline
or online.

C. Offline System Identification

We perform system identification to predict a set of values
for the parameters in our vehicle model. This set can be
represented as P o = (Ko

t ,K
o
b ,K

o
f ,K

o
d) which in general

can best describe the model. This is not done in real-time
but rather performed on the dataset (Section III-A). For this
mode, we minimize L to optimize the parameters set P by
using the Adam optimizer [6]. The initial value of parameters
can be arbitrarily set in this case.

D. Online System Identification

The online system identification similar to the offline
system identification works on the history of the trajectory
but unlike in the offline mode, the online mode uses real-
time history to provide an updated set of parameters -
P t = (Kt

t ,K
t
b,K

t
f ,K

t
d) at a time t. This is done because

while P o tries its best to represent the model in general, the
online system identification works to provide history-specific
parameters in real-time. For example, given the vehicle is
traversing over pebbles and rocks, the frictional force which
acts in the vehicle would be higher than what it would face
while traversing over areas covered with vegetation. Hence
the online system identification node would convey a higher
value for Kt

f to the vehicle model than Ko
f . This helps us to

increase the model accuracy in comparison to using a fixed
set of parameters over different terrains and environments.
The online system identification module conveys P t to the
vehicle model used by our local motion planning module as
explained in Section III-F.

We have implemented Online system identification using
two methods -

• Traditional Method - Similar to offline mode, we use
[6] to minimize L for estimating P t. Since the online
system identification module has to update parameters
in real-time, it is desirable for it to run at a frequency
matching the frequency of the limiting observation. In
our case, the limiting observation is the current position
of the steering wheel which is received at 6 Hz. But due
to the time taken in the forward and backward pass of a
gradient-included rollout of a 5-second trajectory, in the
current capacity, it is only possible to run the traditional
method for a single epoch in real-time even after which
this method can only run at 2 Hz.

• Learning Based Method - In this method, we use a
neural network as shown in Figure 3 to predict the
parameters when a history of trajectory and the current
vehicle model parameters are fed into the network.
Since our neural network can predict in real-time with
almost little latency, we are able to use this method at
a comparable rate to the limiting observation.

E. Learning-Based Online System Identification

1) Parameter Extraction: To train our architecture, we
first extract out labels for P t by using offline system
identification on individual trajectories instead of using the
entire collection of all the trajectories as done in the offline
mode. To speed up the parameter extraction process while
not hindering the accuracy of the extracted labels, we warm
start the initial parameters for each trajectory with the final
parameters of the last trajectory while using P o as the initial
parameters for the first trajectory for each individual rosbag.

2) Training of the architecture: As shown in Fig. 3, we
represent the history of the trajectory represents the trajectory
in the same KBM state space X , as explained in Section II,
by processing a 5 seconds sequence of Odometry data com-
bined with the position of the steering wheel. This KBM state
history is first passed through a Wavenet encoder [14] which
outputs a latent observation, which then is concatenated with
the current parameters of the vehicle model. This concate-
nated input is passed through a multilayer perceptron (MLP)
which outputs the mean and standard deviation of individual
Gaussian distributions for the next set of parameters which
are then selected by randomly sampling from the outputted
distribution.

F. Local motion Control

We use MPPI [15] as a trajectory optimizer which provides
us a local trajectory in form of a series of actions. We use
our vehicle models to rollout sample trajectories in MPPI
while optimizing for the following loss function -

J = C(Wpos) + (1v>=vvmax
)(ev−vmax − 1) ∗ (Kpenalty)

(6)
where, Wpos is the position of the vehicle on the costmap,
C(p) is the value of the costmap at the pth position, vmax is
the maximum allowed velocity for the vehicle and Kpenalty

is the speed penalty term usually kept as very high - for
example - 108

IV. EXPERIMENTAL SETUP

A. ATV Platform

Similar to [12], various exteroceptive and Proprioceptive
sensors were used to collect real-time data. We use a forward-
facing Carnegie Robotics Multisense S21 stereo camera that
provides us long-range high-resolution stereo RGB and depth
images. For raw inertial measurements and estimates of
position and velocity, a NovAtel PROPAK-V3-RT2i GNSS
unit is used. As an addition to the sensors used in [12], we
also use a forward-facing Velodyne LiDAR which provides
us with laser scans of range up to 40m. All sensors and servos
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Fig. 3. Learning-based online system identification. We have used M=5.

were connected through ROS on an onboard computer. We
have also relayed the joystick control inputs to the servos for
the driver to manually operate the vehicle through a joystick.
The sensors are integrated similar to Fig. 3 in [12].

Data from these sensors and servos are fed into our
systems pipeline as shown in Fig. 4 to record the following
data -

1) Robot Action: Actions a = (µt, µs) were two-
dimensional and corresponded to desired throttle and steering
positions. Throttle commands took values between 0 and 1,
with 1 corresponding to wide open throttle. Steering com-
mands took values between-1 and 1, with -1 corresponding
to a hard left turn. The commands were executed by the
servos using PID position control.

2) Robot Pose: As an improvement to [12], instead of just
using the raw measurements given by GNSS, we instead
the raw measurements along with the laser scans, to run
Super Odometry [16] which helps us achieve a more robust
state estimation than the raw measurements from GNSS.
We express the robot pose in the form of a concatenated
position vector p = (x, y, z), quaternion orientation q =
(qx, qy, qz, qw), linear velocity v = (vx, vy, vz) and angular
velocity w = (wx, wy, wz). This is an improvement to [12]
as we also consider linear and angular velocity and not just
the position and the orientation vectors

3) Images: At each timestep, two RGB images were
recorded from the onboard stereo camera.

4) Local Terrain Maps: : Similar to [12], we generate a
local top-down view height map Mh ∈ R(w × h× 2) (two
channels to represent the minimum height and maximum
height) and a local RGB map Mc ∈ R(w×h× 3) using the
stereo images from the Multisense S21 sensor and using the
Stereo and Lidar Mapping Nodes. The cost maps generated
from applying a lethal height threshold over the heightmaps

maps are then used as explained in Section III-F.

B. Vehicle Model Accuracy

The vehicle models have been evaluated for their model
accuracy on the data collected for system identification
as mentioned in Section III-C. The performance has been
measured in terms of the mean errors in all the individual
elements in the KBM state and all of them combined. The
results of this experiment have been reported in Table I.

V. RESULTS
As explained in Section III-D, to run the traditional online

system identification in real time - we are only able to
perform a single epoch of optimization over the previous
labels. As expected this leads to a disturbance in loss L
but since the offline optimization had already reached local
minima to generally express the vehicle model, a single
epoch results mostly in a downgrade of the performance
rather than an improvement. This can be seen from Table
I.

We further noticed that running many more optimization
epochs (30 - 50) over an individual trajectory results in a P t

which is more accurate than P o for that particular trajectory.
With this motivation, we trained a neural network architec-
ture and expected the performance, in general, of the vehicle
model with Learning-based Online System Identification to
be better than the other two models. This hypothesis is also
confirmed from Table I.

VI. CONCLUSION AND FUTURE WORK

We present various methods of system identification along
with a novel neural network to overcome the low-frequency
output of the traditional online methods. We have also
verified the accuracy of these models on real-world off-
road data. Moving on, along with using the existing dataset,
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Fig. 4. Our complete Navigation stack. Here the dotted lines are only valid if the End-to-End learning-based vehicle model is used. Remove if not
explaining learning based model

TABLE I
MEAN LOSSES FOR VARIOUS VEHICLE MODELS FOR INDIVIDUAL ELEMENTS IN THE STATE X AND ALL COMBINED

Model Type Lall Lx Ly Lθ Lv Lδ

KBM without Online System Identification 0.4285 1.4304 0.1251 0.0074 0.5790 0.0007

KBM with Traditional Online System Identification 0.5004 1.7164 0.1342 0.0075 0.6426 0.0011

KBM with Learning-based Online System Identification 0.3189 0.8585 0.1389 0.0073 0.5896 0.0002

we would also be using the entire TartanDrive Dataset [12]
which is a dataset containing more than 5 hours of off-road
driving data. This would not only help us achieve a more
robust estimation of both the offline system identification
and learning-based online system identification.

We are also motivated to incorporate additional input
modalities like forward-facing terrain maps in our learning-
based online system identification to also use the terrain
features in the prediction of the model parameters. This
would also shift the paradigm of the current online system to
a more predictive-reactive approach rather than only reactive
as it would use a map of the surroundings it has to traverse
in the future while also using a history of states. Along with
this future works can also incorporate the effect of gravity
in our vehicle models. This would help our vehicle model to
be more robust to changes in the pitch of the vehicle while
it is traversing slopes.
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Blind Pedestrian Localization and Reorientation at Urban Crosswalks
via UWB device

Rayna Hata1, Isaac K. Isukapati2, Zachary B. Rubinstein2, Stephen F. Smith2

Abstract— Urban mobility and navigation through signalized
intersections pose a challenge for vision impaired pedestrians.
Constant vehicle noises, unclear crosswalk guides and cues,
and the lack of sufficient time on the signal make cross-
ing these intersections extremely difficult. PedPal, a mobile
application, addresses these problems by personalizing the
crossing experience for its users through real-time connectivity
with the intersection’s traffic control system. On one side,
connectivity allows the user to communicate crossing intent
to the intersection, and on the other PedPal keeps the user
informed of the current crossing state. As the user crosses
the intersection, PedPal utilizes Bluetooth beacons installed
at each corner to track user progress and recognize when
the crossing has been completed. Although the localization
accuracy of these beacons has proven insufficient for more
advanced tracking functions such as monitoring the user’s
position within the crosswalk, newer Ultra Wide Band (UWB)
radio technology offers Centimeter-level accuracy, and provides
new opportunities for enhancing the intersection crossing safety
features of the PedPal app. In this paper we pursue this
possibility. We assume that UWB beacons are installed at each
corner of the intersection, and focus on the problem of detecting
pedestrian movement outside of the crosswalk. Using distance
measurements provided by the UWB beacons over time, we
propose a localization and reorienting algorithm to ensure that
the pedestrian will get to their destination safe and efficiently.
A SUMO simulation model was developed to evaluate both
algorithmic components. The localization method was found
to provide high accuracy, differing by only 0.003% from the
ground truth, and the reorienting algorithm was shown to
consistently result in successful crossing within the crosswalk.

Index Terms— Blind-Vision Impaired (BVI), Ultra Wide-
Band (UWB),Urban Crosswalks, Blind-Pedestrian Navigation,
Path Prediction

I. INTRODUCTION

Walking as a method of transportation is often overlooked
as being a challenge, yet for those in the blind/vision-
impaired (BVI) community, walking, especially in urban
settings, can prove to be a difficult task. A survey sent to
1,123 members of the Association for the Education and Re-
habilitation (AER) of Blind’s orientation and mobility team
found that ninety-eight percent of respondents expressed that
difficulty in knowing when to start crossing. Lack of aids
such as audio cues or loud background noises interfere with
the pedestrian’s ability to know when the crossing signal
turns green.Furthermore, in the survey, ninety-seven percent
of their respondents stated that they had difficulty keeping

1 Rayna Hata is with the department of Computer Science, Colby College,
Waterville,ME USA rhata23@colby.edu

2Isaac Isukapati, Zachary Rubinstein, and Stephen Smith are with
the Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA
(isaack,zbr,sfs)@cs.cmu.edu

straight path on a crosswalk. Sixty-six of the respondents of
the survey said that they have trouble figuring out where the
destination corner is. [1]

Vision-impaired pedestrians employ a range of methods
to help cope with the challenges of crossing signalized
intersections, including the use of a white cane, a guide dog,
and/or cues learned through Orientation and Mobility (O&M)
training (e.g., detecting the presence of textured concrete
or gauging the sound of oncoming vehicles [2]). However,
not everyone has access to a guide dog for reasons such as
expenses, allergies, or availability, and the presence of other
pedestrians, increased traffic noise, or other unpredictable
factors complicate the use of various crossing cues in urban
settings.

Additional physical infrastructure is also often added to in-
tersections to provide crossing assistance to vision-impaired
pedestrians. Such installments include noise emitting signals
that alert the pedestrian when the signal is green and textured
curb ramps to direct the pedestrian into the intersection.
But, these installments cannot guarantee that the pedestrian
will not drift out of the crosswalk as they move across
the intersection. Furthermore, both pedestrians and O&M
specialists find that looking for the curb ramp can cause more
harm than good at times. While looking for the ramp, the
pedestrian may get misaligned with the intersection and thus
veer off in a different direction when crossing. [3]

Given the limitations of existing methods and infrastruc-
ture in supporting pedestrians with disabilities, research has
turned attention in recent years to the use of smartphones
as an assistive device. Through auditory [4] and haptic
[5] feedback, text-to-speech features, and other accessibility
features, it is felt that human-computer interactions will allow
the vision-impaired community to more effectively and more
safely navigate and explore the world. Several recent research
efforts have focused specifically on the development of
smartphone apps that exploit emerging “connected vehicle”
technology to enhance pedestrian safety when crossing inter-
sections. [6], [7], [8]. The PedPal safe intersection crossing
app [8], [9], for example, has demonstrated that real-time
connectivity can be used to personalize the pedestrian’s
crossing experience, allowing the user to communicate how
much time is needed to safely cross to the traffic signal
control system, and continuously using information received
from the traffic control system to keep the user aware of the
current crossing state. It has also demonstrated basic tracking
capabilities as the user crosses, which until recently have
been limited by localization accuracy issues.

In this paper, we consider the problem of extending
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PedPal’s basic tracking capabilities to enable detection of
and reaction to pedestrian movement outside of the cross-
walk. Specifically, we propose a method of localizing and
tracking pedestrian movement within the crosswalk through
the use of ultra wide-band (UWB) radio beacons. UWB
signals in outdoor line of sight (LOS) settings have an
accuracy up to 2 to 3 cm [10], which offers tremendous
sensing advantage over predecessor Bluetooth beacon and
smartphone localization technologies, and is sufficient to
accurately track a pedestrian. Using multiple UWB beacons
positioned at each intersection corner and communicating
with the PedPal app, we implement a pedestrian localization
algorithm to triangulate the pedestrian’s current location
as well as determine if they are drifting away from the
bounds of the crosswalk. If the algorithm determines that the
pedestrian is drifting to the outer bounds, then a reorienting
algorithm is applied to guide the pedestrian back to the center
of the crosswalk to ensure safe crossing.

II. BACKGROUND

A. PedPal

As indicated above, the starting point for our research
is PedPal [8], [9], a smartphone app designed to promote
safe intersection crossing for pedestrians with disabilities.
PedPal utilizes emerging “connected vehicle” technology
to communicate directly with the traffic control system at
the intersection, and to actively influence its behavior to
enhance safety. Most basically, PedPal knows the speed at
which its user travels (e.g., using a white cane or a walker),
and communicates this crossing constraint along with the
user’s chosen crossing direction to ensure that when the user
receives the crossing signal, sufficient time will be allocated
for crossing. Reciprocally, the app receives standard Ded-
icated Short Range Radio (DSRC) MAP and SPaT (Signal
Timing and Phase) messages from the intersection to provide
crossing options to the user and continual information about
the current crossing state to prepare and inform the user
about when it is time to cross. PedPal also actively monitors
the crossing progress of its user through the intersection,
and if it is detected that the user is crossing slower than
expected (e.g., stumbles in a pothole and is slow getting
up) then PedPal will request that the traffic signal system
dynamically extend the green time to compensate. Pedpal
also broadcasts its user’s presence in the crosswalk to any
approaching connected vehicles. Finally, for certain disabled
pedestrians (such as motorized wheelchair users) PedPal
can communicate expected arrival time information to the
next intersection for purposes of streamlining intersection
crossing time.

PedPal’s functional capabilities are achieved by integrating
the app with two distinct infrastructure technologies. First,
PedPal is designed to inter-operate with Surtrac, a decentral-
ized, real-time adaptive traffic signal control system [11],
[12]. Within a Surtrac deployment, a processor is placed
at each signalized intersection. At each intersection, a new
traffic signal timing plan that minimizes the cumulative delay
of all currently sensed traffic approaching the intersection

is computed in real-time. Whenever a new timing plan is
generated, the intersection then communicates to its down-
stream neighbors what traffic it expects to be sending their
way (according to the plan), providing a basis for network-
level coordination. Surtrac has been shown to lower average
vehicle travel times by 25%, average number of stops by
30% and average amount of idle time by 40%. [11]. Surtrac
is designed to incorporate multi-modal traffic flows, and
as such, it is straightforward to factor pedestrian crossing
demands into the signal timing plans that are generated.

The above mentioned capabilities provided by PedPal rely
rather heavily on an ability to accurately determine when
user’s have arrived at a given intersection corner. In this
regard, the native localization capability of the smartphone
(in this case an Apple iPhone) has proved to be less than ade-
quate. This has led to introduction of a second infrastructure
technology, a set of fixed-position Bluetooth beacons located
at each corner of the intersection. With this addition, it has
been possible to use geo-fencing to provide the basic ability
to recognize corners, and, for short crossing segments, this
translates into some ability to track user crossing progress.

B. Movement to UWB beacons

The advent of UWB technology, however, has funda-
mentally changed the localization landscape. Some early
experimentation with Apple AirTag technology indicated the
potential for order of magnitude improvement in the ability
to accurately determine object distances from the phone app,
and more recent work with PedPal has utilized UWB technol-
ogy to dramatically improve detection of arrival intersection
corners and estimation of progress made toward crossing a
particular street segment. For our initial experimentation in
the field, a set of 4 Apple iPhones (Model 11 and above)
have been utilized as initial UAB corner“beacons” at the
intersection of Highland Avenue and Centre Avenue in the
east end of Pittsburgh PA (see Figure 2). The ability to
continuously exchange distance information between these
UWB corner beacons and the PedPal app was established
using Apple’s Nearby Interaction framework1, and initial
experimentation has shown the ability to detect both arrival
at intersection corners and the completion of crossing trips
with a few centimeter accuracy up to a distance of 60 feet
(the longest leg of the test intersections. Next steps will be
to explore incorporation of 3rd party UAB beacons that are
emerging on the market and support Nearby Interaction.

III. DETECTING AND REACTING TO MOVEMENT
OUTSIDE OF THE CROSSWALK

Given the observed localization accuracy that is achievable
with the use of UWB corner beacons, we consider their
use in providing a more advanced tracking capability that
relates directly to pedestrian safety, that of detecting and
responding to pedestrian movement outside of the crosswalk.
We can expect the MAP message received by the PedPal
app from the intersection to provide the precise coordinates

1https://developer.apple.com/documentation/nearbyinteraction
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of the crosswalk to be traversed. Thus, the challenge is one
of situating the pedestrian within this physical space and
prediction of the pedestrian’s current trajectory. Accordingly,
our solution is broken into two algorithmic components.
Algorithm 1 involves localization of the pedestrian within
the crosswalk. Algorithm 2 then predicts the pedestrian’s
future path, and, if it is determined to be drifting out of the
crosswalk, the pedestrian is alerted to take corrective action.

Algorithm 1: Pedestrian Localization Process
A⃗← vector representing Geo locations of anchors
d′i,ρ ← distance between pedestrian and anchor i
P′i,ρ ← predicted Geo location of pedestrian w.r.t
anchor i
P⃗′← vector representing predicted geo-locations of
pedestrian from each anchor
while The Crossing is incomplete do

Compute ̸ A, ̸ B using d,d1,ρ ,d2,ρ
Estimate P′i,ρ from each anchor
Set P̂ as average of P′1,ρ & P′2,ρ
Call Path Prediction and Reorientation

end

Given a crossing episode between corner 1 and corner 2,
Algorithm 1 periodically receives d′1,ρ and d′2,ρ , the current
distance readings between the pedestrian and each anchor
respectively, throughout the pedestrian crossing. These dis-
tances along with the distance between the beacons (d) are
used to geo-locate pedestrian (P′i,ρ ) with respect to each
anchor. These calculations can be simply carried out using
cosine rule as shown in Figure 1:

cos (A) = (d2+d′1,ρ
2−d′2,ρ

2)/(2∗d′1,ρ *d′2,ρ ) (1)

cos (B) = (d2+d′2,ρ
2−d′1,ρ

2)/(2∗d′1,ρ *d′2,ρ ) (2)

The final geo-location of the pedestrian is computed as the
average of (P′1,ρ , P′2,ρ ).

Next, we forecast the pedestrian’s future path in order to
determine if she is drifting out of the crosswalk. The heart
of this algorithm is to determine and react quickly to the
possibility of the pedestrian drifting out into the intersection.
In order to do so, we must estimate and predict the next
movements with reference to their initial pose estimate.

The pedestrian’s initial pose estimation O⃗0
ρ is set as the

reference coordinate against the succeeding pose estimations
O⃗k

ρ to obtain the slope m j
ρ,k at step k. Step k indicates the

number of readings taken in since the pedestrian started
the crossing. The slope indicates the orientation that the
pedestrian walks in relative to their original starting point
at the beginning of the crossing.

If there is a change in the slope, it can be assumed that
there is a change in the direction the person is walking in.
However, it is necessary to compile multiple slope calcula-
tions to accurately predict if the pedestrian is drifting towards

Fig. 1. : This is a geometrical representation of the anchor and the
pedestrian’s location. The black line is the distance from anchor 1 to anchor
2. The blue line shows the distance between anchor 1 and the pedestrian,
and the blue line shows the distance between anchor 2 and the pedestrian.
In order to predict the pedestrian’s location, we use angle 1 and angle 2 in
equation 1 and 2.

the outer bounds of the crosswalk. Hence we use a heap
queue Q to store j consecutive slope calculations. By taking
the median value of Q, we can ensure that no outlier can
throw off the prediction of the slope.

The median taken after collecting j slope calculations is
subsequently used as a reference slope for determining if the
pedestrian is straying. Thus, at each step k after the first j
points, the oldest median is removed from the queue and the
new slope between the pedestrian’s initial pose estimation
and the current pose estimation is added to the heap queue.
After the slope is added, we compute the new median of
the queue and compare that with the original median. It is
important to use the reference slope as using any other slope
will determine the pedestrian’s direction from that slope.

If the new median is outside the threshold bounds, then
there is indication that the pedestrian is not walking in a
straight line towards the end of the crosswalk, and can
no longer safely complete the crossing. If this movement
continues, there is a high probability that pedestrian will
leave the bounds of the crosswalk.

However, it is critical not to give instructions to the
pedestrian until we can be sure that an outlier did not cause
the reading. Therefore, we will continue to observe and
not interfere until the pedestrian’s slope is outside of the
threshold for more than τ time steps. If that is true, then
we start instructing the pedestrian to turn in the opposite
direction of the slope. If the current median is larger than
the threshold, then we will instruct the pedestrian to turn
right. If the median is less than the threshold, then we will
instruct the pedestrian to turn left.

The algorithm continues to localize and monitor the
orientation of the pedestrian until the crossing has been
completed. However, once the slope is within the threshold
again, the algorithm determines that the pedestrian is back
in the bounds of the crosswalk, and thus will stop giving
instructions.
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Algorithm 2: Path Prediction and Reorientation Pro-
cess
O⃗0

ρ ← pedestrian’s initial pose estimation
O⃗k

ρ ← pedestrian’s pose estimation at step k
mk← slope of (O⃗k

ρ , O⃗
0
ρ)

Q← heap queue containing slopes of last j steps
m0

ρ ← initial pedestrian orientation (median of Q
after first j steps)
m j

ρ,k← pedestrian orientation at step k based on last
j steps
M⃗t ← threshold bounds of median
τ ← consecutive number of steps m j

ρ,k is outside
threshold bounds
τmax← max allowed number of steps for m j

ρ,k to be
outside threshold bounds
At each step k do:

compute mk & update Q;
set median of Q as m j

ρ,k;
if m j

ρ,k /∈ M⃗t then
τ++

end
if τ == τmax then

start correction
end

IV. EVALUATION

A. SUMO Simulation Framework

In order to visualize the pedestrian’s movements and
accurately reflect traffic conditions, the localization and path-
planning algorithm is implemented in the Simulation of
Urban Mobility (SUMO) software. SUMO is an open source
continuous traffic simulation package that allows for the
multi-modal simulation of urban traffic that displays the
movements of vehicles and pedestrians on road structures
imported via open-street maps. To simulate an intersection
where the SURTRAC system is already deployed, we im-
ported the intersection of South Highland Avenue and Centre
Avenue in Pittsburgh, PA (see Figure 2).

Fig. 2. : A google earth image of Centre Ave. and Highland Ave.,
Pittsburgh,PA. In this image, Centre Ave is the horizontal line and Highland
Ave. is the vertical line.

Fig. 3. : SUMO Visual of Pedestrian Path. The dotted line indicates the
ideal pedestrian path.

Sumo’s Traffic Control Interface (TracI) allows for manip-
ulating pedestrians and vehicles as the simulation progresses.
Using TracI, multiple pedestrian crossing scenarios with
the pedestrian drifting toward the edge of the crosswalk
were generated to mimic the potential movements of a
blind pedestrian. As mentioned in the introduction, multiple
factors, such as a reaction to traffic noise or an incorrect
setup at the start of the intersection, can cause those in the
BVI community to drift towards the edge of the crosswalk.

To manipulate and estimate the pedestrian’s coordinates,
our tracking procedure monitors and controls several pa-
rameters used by SUMO to drive the simulation, including
pedestrian coordinates in (x,y) format, the angle that the
pedestrian is facing, the pedestrian’s speed, and the time step
of the simulation (advancing in 100-millisecond intervals).
Each of these parameters reflect data that would be accessible
to PedPal in the field through its settings and underlying
smartphone sensors.

Other crucial data streams that PedPal would be receiving
from the UWB devices positioned at intersection corners in
the field are the distances from each anchor beacon over
time. As UWB device functions do not exist in SUMO, we
manually compute what the smartphone would be receiving
as distances from each of the UWB anchors. This is done by
computing three euclidean distances at each point in time:

• d1,ρ = Euclidean distance between anchor 1 and pedes-
trian

• d2,ρ = Euclidean distance between anchor 2 and pedes-
trian

• d = Euclidean distance between the UWB anchors

However, these distance calculations assume no signal noise
and are thus not a realistic representative of readings that
would be received in the field. Therefore, each distance
between the anchors and the pedestrian is pushed through
a noise model to emulate a real-world scenario.

The noise level added to the actual distance will in-
crease or decrease as the pedestrian progresses along the
intersection. This is reflective of the increase and decrease
in noise as the smartphone gets further away or closer to
a given UWB device. If the actual distance is more than
half the length of the Euclidean distance between the two
anchors, then a random δs of a range between 0.05-0.1m is
added. If the distance is less, then a random δs of a range
between 0.0-0.05m is added. The algorithm will take in the
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following new distances as the actual measurement between
the pedestrian and the anchors, which is the equivalent of
what the smartphone would be receiving as the distances
between the pedestrian and the anchor in the field:
• d′1,ρ = Euclidean distance between anchor 1 and pedes-

trian
• d′2,ρ = Euclidean distance between anchor 2 and pedes-

trian
In the scenarios used in this simulation to evaluate the

algorithm, the pedestrian starts the crossing in the correct
direction but drifts towards the upper bounds of the cross-
walk. This is used to emulate a scenario in which a factor
such as noise or other pedestrians causes the person to start
turning in the wrong direction. We determined the algorithm
to be a success if it was able to do the following:
• Accurately predict the pedestrian’s location with respect

to the ground truth
• Detect when the pedestrian started to drift
• Reorient the pedestrian in the correct direction

B. Results

Using the localization method described in Section III, it
can be seen that the our algorithm’s estimation of the pedes-
trian’s location is on target with the ground truth. Figure 4
shows the plot of each of the pedestrian location estimates.
The plot of the average of estimated X, Y coordinates
from A1 and A2 is plotted in yellow, and the ground truth
coordinates are plotted in blue. The estimated X coordinate
showed an average of 0.018% error from the ground truth,
and the estimated Y coordinate showed an average of 0.027%
error from the ground truth.

Fig. 4. : Plotting of the Coordinates. In this figure, the blue line shows the
plot of the X,Y coordinates for the ground truth and the orange line shows
the predicted X,Y coordinate of the pedestrian using the average of the two
coordinate points from anchor 1 and anchor 2. The green line indicates the
upper bound of the crosswalk and the plot shows the pedestrian’s trip before
the reorienting algorithm is applied. The path of the pedestrian has not been
corrected in this graph.

The path predictor algorithm was shown to successfully
predict when the pedestrian was drifting toward the upper
or lower boundaries of the crosswalk, and in each case to
then signal the pedestrian to move in the opposite direction
back toward the middle of the crosswalk, until the pedestrian
reaches an acceptable movement slope relative to the original
slope. Figures 5 and 6 represent two boundary tests that we

ran. In Figure 5, the orange path represents the complete
trip of the pedestrian before the correction algorithm is
run. In this scenario, the pedestrian is drifting towards the
lower bound, and without correction, they will leave the
crosswalk to the right. The blue line shows the pedestrian’s
path when the path prediction and reorientation are applied
to their walk. Each point on the line indicates a step that
the pedestrian takes. The orange and blue lines follow the
same path until the algorithm detects that the pedestrian is
drifting toward the lower bounds of the crosswalk. Upon
detection, the algorithm signals the pedestrian to reorient, in
this case sending single vibration signals to advise movement
left and allow for a successful crossing. Figure 6 shows
the alternative case where the pedestrian drifts towards the
crosswalk’s upper bound, and the pedestrian is directed (via
two vibration signals) to move right to correct.

Fig. 5. Recognition and Correction of pedestrian drifting right

Fig. 6. Recognition and Correction of pedestrian drifting left.

V. RELATED WORK

A. GPS tracking

GPS tracking is a common alternative to Bluetooth and
UWB tracking. GPS tracking can potentially address the
issue of determining if the pedestrian is out of the crosswalk’s
bounds. In one study, GPS readings are used to access the
pedestrian’s coordinates, and a satellite image of the location
is pulled into a crosswalk detection framework to guide the
user toward the intersection. While this method is helpful
for real-time positioning of a pedestrian’s location, the paper
mentions that due to factors such as image acquisition
problems or GPS accuracy, the localization accuracy cannot
be narrowed down to cm. [13] Furthermore, this method
assumes no ability for the mobile device to communicate
directly with the traffic signal. Thus, while the satellite can
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guide the pedestrian to the desired crosswalk, it cannot notify
the pedestrian of the state of the crosswalk, nor can it guide
them during the crossing.

B. Indoor UWB Localization

UWB localization has been productively used in various
settings, including the tracking of unmanned aerial vehicles
[14], the tracking of objects in a factory environment to
increase automation and efficiency [15], and the tracking
of pedestrians indoors. One proposed method tracked a
pedestrian in an indoor setting by exploiting a fusion of
UWB sensors and inertial measurement units (IMU) sensors
attached to the pedestrian’s foot [16]. This method allows
for error correction of the tracking measurements caused by
non-line of sight instances. While this method effectively
tracks the location of the pedestrian, it has not been tested
in outdoor environments, and the number and placement of
sensors required do not allow for seamless integration in the
pedestrian’s life.

C. Smartphone Based Tracking

Smartphones as assistive devices have increased over the
years as smartphone capabilities have advanced. Applications
such as BlindHelper [17] utilize smartphones to help blind
pedestrians navigate their surroundings. BlindHelper is a
smartphone-based application that takes location informa-
tion, and traffic light status from the phone using GPS signals
and outputs commands for the pedestrians to follow. The
phone is connected via Bluetooth to a keypad that allows
pedestrians to easily select their routes and a sonar distance
meter to detect obstacles. This device allows for accurate
tracking with an accuracy of up to 0.11m. However, the
BlindHelper requires the pedestrian to hold several devices
in their hand at once. This can often be inconvenient as their
hands are not free to carry their belongings or hold anything.

D. Pedestrian to Infrastructure Communication

Pedestrian-to-infrastructure (P2I) communication is a cru-
cial way to achieve connectivity between the smartphone
and the signal. Smart Walk Assistant (SWA) [7] allows for
WiFi communication between a smartphone and a roadside
unit. The P2I connection implemented in SWA enables users
to send a pedestrian signal request to the traffic signal
controller and receive the traffic signal status. SWA also
has a pedestrian-to-vehicle (P2V) communication that sends
the location, speed, and heading of a vehicle to predict
any conflicts between the pedestrian and approaching ve-
hicles. PedPal similarly relies on P2I communication for
optimization of signal timing plans at the intersection, but
additionally employs UWB beacons to provide the types of
safety applications considered in this paper.

VI. CONCLUSION AND NEXT STEPS

Precise localization is crucial when giving direction to
those with visual impairments to obtain their trust in the
assistive device. PedPal’s goals are to localize the pedestrian,
predict her path, and quickly respond to detected drift outside
of the crosswalk during crossing.

Field tests conducted using UWB devices that have been
mounted at corners of a signalized intersection have been
shown to provide a reliable basis for localizing and track-
ing a smartphone being carried by an intersection crossing
pedestrian. Given this assumption, we proposed an algorithm
for detecting pedestrian movement outside of the crosswalk
and for providing corrective advice when this movement is
detected. An initial evaluation of the effectiveness of this
algorithm was performed within a SUMO simulation envi-
ronment. Results show that our algorithm is quite effective,
and when compared to the ground truth coordinates measured
in the simulation, prediction of pedestrian coordinates over
time relative to known crosswalk boundary locations showed
great accuracy. Our path prediction algorithm was able
to successfully recognize when the pedestrian had moved
outside of the crosswalk or was about to (depending on how
the crosswalk boundary offsets were specified). Upon recog-
nition of this circumstance, our reorientation algorithm was
shown to provide helpful user advice without overwhelming
the user.

Next steps include both generalizing the set of assumptions
made in this initial evaluation and testing the approach
in the field at real-world intersections. Our current Sumo
simulation model moves the pedestrian, assuming they will
start to drift out of the crosswalk in the middle of their
trip. But that is not the only trajectory that might lead to
a pedestrian moving outside of the bounds of the crosswalk.
We want to also address scenarios where the pedestrian is
not properly aligned and pointing in the right direction at
the outset of crossing. In order to do so, we will need to
incorporate the phone’s inertial measurement unit (IMU) data
into the pedestrian path prediction algorithm to understand
their original orientation.
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Abstract— Multi-agent robotic systems are increasingly oper-1

ating in real-world environments in close proximity to humans,2

yet are largely controlled by policy models with inscrutable3

deep neural network representations. We introduce a method4

for incorporating interpretable concepts from a domain expert5

into models trained through multi-agent reinforcement learning,6

by requiring the model to first predict such concepts then utilize7

them for decision making. This allows a human operator to8

both query the resulting concept policy models to obtain a9

decision making rationale, as well as intervene in the event10

concepts are predicted incorrectly. We show that this yields11

improved interpretability and training stability, with benefits to12

policy performance and sample efficiency in a simulated and13

real-world cooperative-competitive multi-agent game.14

Index Terms— Multi-Agent Reinforcement Learning, Inter-15

pretable Machine Learning16

I. INTRODUCTION17

With burgeoning adoption in fields such as autonomous18

driving, service robotics, and healthcare, multi-agent robotic19

systems are increasingly operating in real-world environments.20

The actions of these systems have a tangible and significant21

impact, particularly so when operating in close proximity22

to humans. While we expect such systems to exhibit safe23

and accurate behavior, errors are inevitable, and in such24

circumstances it is vitally important that the agents are able25

to explain their behavior to human operators. Operators can26

then ascertain whether the agent is operating erroneously –27

thus requiring intervention – or correctly but in a non-obvious28

manner.29

However, state-of-the-art multi-agent systems are often30

controlled by deep neural network models trained with rein-31

forcement learning techniques [1]. While these methods have32

shown great ability to generate effective and generalizable33

models, they do so at the expense of interpretability, and the34

models often remain inscrutable to human operators [2]. This35

poses a significant risk, especially in end-to-end models,36

where a rationale cannot be readily determined for why37

a model produced a certain decision, let alone provide a38

mechanism for intervening and correcting the rationale should39

it be incorrect. Such a mechanism is particularly important40

for robotic systems where we often encounter shifts in41

data distributions, such as when transferring policies from42

simulated environments to the real world, leading to model43

errors. These errors are exacerbated in multi-agent systems,44

where errors in each individual agent are compounded and45

produce large errors in environment dynamics.46

In this paper, we propose a general method for learning47

interpretable policies – concept policy models – for multi-48

agent reinforcement learning (MARL). Our approach is49

predicated on the insight that we can leverage domain50

knowledge from an expert in order to regularize the model51

and influence what information is encoded from observations.52

We organize this domain knowledge into a set of interpretable53

concepts and enforce the constraint that the model is able54

to predict these concepts from observations, after which55

the concepts are used to predict policy actions. Concepts56

are semantically meaningful labels that can be extracted57

from observations, such as the presence of a concrete or58

abstract feature in an observation, e.g., the existence of a59

tree or the intention of a human. Crucially, we find that60

the regularization imposed by the concept information helps61

stabilize the training process, and as a result leads to improved62

performance and sample efficiency.63

A typical end-to-end neural network policy model maps64

observations to actions. Our approach inserts an intermediate65

concept layer, as shown in Fig. 1 which is required to predict66

concepts from observations. While this yields an interpretable67

model [3], it also imposes the assumption that the set of68

concepts are sufficient for policy inference. To ease this69

constraint, we introduce a scalable residual layer which passes70

additional information to the subsequent policy layers while71

ensuring it remains decorrelated with the concepts. We posit72

that the interpretability of the model is proportional to the73

capacity of the residual layer; intuitively, the more residual74

information available, the less the model may rely on the75

concepts. We show that this can result in a trade-off between76

interpretability and accuracy, given the expressivity of the77

concepts. Our contributions are as follows, we78

• Introduce a general method for learning concept policy79

models in MARL utilizing expert domain knowledge,80

enabling a human operator to understand a policy’s81

decision rationale and improving accuracy, sample82

efficiency, and training stability.83

• Develop two specific formulations based on this method:84

soft-concept models and hard-concept models, and85

empirically show the trade-off between accuracy and86

interpretability.87

• Formulate an intervention methodology and show how88

this can be used to offset model errors in general and89

in transfer learning (sim-to-real) scenarios.90

• Empirically show that our proposed approach produces91

interpretable, intervenable MARL policy models which92

exceed the accuracy of baseline MARL policies in a93

simulated and real-world game of ”tag”, between two94
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Fig. 1: Concept policy models predict a set of interpretable concepts from observations, which are then used along with an
(optional) residual to predict a policy action. A domain expert may intervene and provide corrective concept values to the
policy if mis-predicted.

teams of 2, 3, and 5 robots each.1

II. RELATED WORK2

Interpretability in supervised learning: Intepretability3

has been extensively studied within the field of supervised4

learning [4], which can be largely grouped into two categories:5

the explicit creation of an intrinsically interpretable model,6

or the post-hoc transformation of an uninterpretable model7

to an interpretable one. The former case typically revolves8

around considering interpretable classes of models – decision9

trees [5], [6], linear models [7], [8], or rule-based methods [9],10

[10] for example – and developing algorithms for these11

models. In the latter case, uninterpretable models are either12

transformed into interpretable ones [11]–[13], or interpretable13

models are extracted from an uninterpretable model for the14

purpose of explaining a model’s decision rationale [14], [15].15

Concept models often fall into the transformation case, and16

have been studied within the context of transforming a set of17

uninterpretable feature embeddings into a set of interpretable18

concepts [3], [16], [17]. A recent approach [18] similarly uses19

concepts, but rather than directly predicting such concepts it20

attempts to align the internal model representation to coincide21

with them.22

Interpretability in reinforcement learning: As in su-23

pervised learning, interpretability for reinforcement learning24

largely falls into the two categories of intrinsically inter-25

pretable models and post-hoc transformations. However, there26

is an additional line of work in which methods are devised27

to explain aspects particular to the Markov decision process28

model employed by RL methods. Some approaches have29

focused on interpretable representation learning [19], [20]30

and hierarchical decompositions [21], while others have opted31

to tackle MDP-specific explanations such as an interpretable32

reward signal [22] or action explanation [23], [24]. However,33

to the best of our knowledge, concept-related methods have34

not yet been explored in an RL setting, let alone MARL.35

III. PRELIMINARIES36

Multi-Agent Reinforcement Learning: We model the37

MARL problem as a decentralized partially observable38

Markov decision process (Dec-POMDP) [25]. A Dec-POMDP39

is defined as a tuple ⟨S,U , P,R,Z, O, n, γ⟩ in which S is40

the state space, U shared action space, P the state transition41

function, R the shared reward function, Z the observation42

space, O the observation function, n the number of agents, and43

γ the discount factor. For a given time step, the environment44

has a state s ∈ S and each agent a ∈ {a0, . . . , an} samples45

a partial observation za ∈ Z according to the observation46

function O(s, a) ∈ Z . The agents simultaneously sample47

an action ua ∈ U inducing a state transition according48

to P (s′|s,u) ∈ [0, 1]. Each agent receives a reward ra49

according to the shared reward function R(sa,ua) ∈ R50

with a discount factor γ ∈ [0, 1]. We follow a centralized51

training and decentralized execution approach (CTDE), thus52

learning a central policy πθ(ua|za) ∈ [0, 1] parameterized by53

θ by maximizing the discounted expected cumulative reward:54

Et[
∑

t γ
tR(sa,ua)].55

Multi-Agent Proximal Policy Optimization: Multi-Agent
Proximal Policy Optimization (MAPPO) [26] is a straight-
forward extension to standard PPO [27] under the CTDE
assumption in which we learn a single actor, πθ, and a single
critic, Vϕ, parameterized by θ and ϕ respectively. When
sampling from the environment, each agent executes the
same learned policy with their individual observations and
actions. As with all policy gradient methods, PPO seeks to
compute the policy gradient by differentiating the following
objective function:

L(θ) = Êt[logπθ(ua|za)Ât], (1)

where Â is the estimated advantage function. PPO extends this56

objective function by adaptively clipping the update gradient57

and applying an entropy bonus to the policy to encourage58

exploration. If the value function and policy function share59

parameters, i.e., θ = ϕ, then the objective function must also60

include the value function loss.61

IV. CONCEPT POLICY MODELS62

We propose a method for learning concept policy models,63

which integrates domain knowledge from an expert in the64

form of concepts into a neural network policy model. These65

concepts are intended to serve two purposes: they are useful66
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predictors for the desired policy behavior and as such can1

serve as the basis of a decision rationale, and they can be2

corrected in real-time by an expert if mis-predicted by the3

policy in order to induce correct behavior. The expert provides4

an oracle function V (·) which can be used to predict a ground5

truth concept vector of size j given an observation from an6

agent a, v = V (za) where v ∈ Rj . Concepts may be either7

continuous or discrete, and represent interpretable features8

which are assumed to be relevant to the task at hand. As9

an example, let us consider a cooperative-competitive multi-10

agent game in which two teams of agents play a game of11

”tag” during which one side must prevent the other from12

reaching a specific location. In this game, an expert might13

identify a specific feature such as the relative location of the14

nearest opposing team member, or a more abstract feature15

such as the opposing team’s strategy as a concept.16

A. Policy Concept and Residual Layers17

We integrate this concept information into an end-to-end
neural network policy model πθ(ua|za) which predicts the
probability for agent a taking action ua given the observation
za and parameters θ. This is accomplished by inserting an
intermediate layer cθc(·) of size j into the network to estimate
the concept vector, dividing the network into two parts: π1

θ1(·)
representing the portion of the network before the new layer,
and π2

θ2(·) representing the portion of the network after the
new layer, such that

π(ua|za) = π2
θ2(c(x)+ r(x)) where x = π1

θ1(ua|za) (2)

and r(·) is a residual layer of size k designed to pass through
non-concept information and the concept layer acts as a
concept predictor, such that v̂ = c(x). In our proposed concept
policy model, π1

θ1 : R|z| → Rh acts as a feature encoder
mapping an observation to a feature embedding. The newly
inserted concept layer serves as a bottleneck such that c(·) :
Rh → Rj maps the feature embedding to a concept vector,
while the residual layer r(·) : Rh → Rk maps the feature
embedding to a residual vector. The final policy layer π2

θ2(·) :
Rj+k → R|u| maps the aggregated concept and residual
vectors to a policy action. We train the concept layer c(·) by
imposing an additional auxiliary loss Lc(θ) in the objective
function optimized by MAPPO:

L(θ) = Êt[logπθ(ua|za)Ât]− Lc(θ) where,

Lc(θ) =

j∑
i=0

Lc
i (θ) and Lc

i (θ) =

{
FL(vi, v̂i) if discrete
MSE(vi, v̂i) if continuous.

(3)

This loss is summed over each concept: mean squared18

error (MSE) is used for continuous concepts, and focal loss19

(FL) [28] for discrete concepts. The focal loss is a cross-20

entropy variant designed for class imbalanced situations which21

are likely to occur in our concept setting, as some concepts22

may be significantly rarer than others. In our above example23

with the strategy concepts, some strategies may be much24

less likely to occur than others, for instance. Note that for25

multi-class discrete concepts, a single abstract concept may26

consist of multiple nodes, and we refer to this as a concept27

group. In the strategy case, suppose an agent team may only28

execute one of strategy A, B, or C at a time, thus these three29

concepts represent a single concept group and so when we30

pass the discrete concepts through a softmax activation in31

order to calculate the focal loss we do so in a group-wise32

manner.33

The goal of the residual layer is to pass through information34

from π1
θ1(·) that is not captured by the concept vector. Without35

the residual, the concept vector must sufficiently represent36

the observation so that π2
θ2 accurately infer the agent’s action37

from concepts alone (a strict assumption in practice). We38

define two concept policy model variants: hard concept39

policy models which contain no residual (k = 0), and soft40

concept policy models which do (k > 0).41

By examining the concept layer activations, a human42

operator can query the predicted concepts v̂ and understand43

what concepts the policy model used for prediction. However,44

we conjecture that there is an inherent trade-off between the45

size of the residual layer k and the interpretability of these46

activations. While a full interpretability analysis is outside47

the cope of this work, we posit that the greater the residual48

dimension, the less that π2
θ2(·) must rely on the concept vector,49

i.e., there is a larger amount of non-concept information on50

which to base its prediction – which follows that k is inversely51

proportional to interpretability.52

B. Concept and Residual Whitening53

In order to constrain the residual r(·) such that it does not
encode information related to the concepts, we decorrelate the
neuron activation vectors via whitening. Given a matrix X ∈
Rb×j+k consisting of the activations from the concatenated
concept and residual vectors over a mini-batch of b samples,
we aim to produce a whitened matrix X′ with ZCA whitening
via iterative normalization [29]

X′ = DΛ− 1
2 DT (X − µx) (4)

where D and Λ are the eigenvectors and eigenvalues of54

X respectively. Iterative normalization uses an iterative55

optimization technique to incrementally whiten the matrix56

X, where the hyperparameter T dictates the number of57

optimization iterations. This gives us the flexibility of only58

partially decorrelating the residual and whitening layers, if59

desired, by setting T to a smaller value, e.g., T = 2. In60

practice, we find that performing fewer iterations is often61

necessary to stabilize the training process, as a higher T62

tends to increase the stochastic normalization disturbance and63

leads to reduced training efficiency [29], which is particularly64

noticeable in a MARL setting. At each training iteration, we65

first perform whitening then backpropagate our computed66

gradients, thus allowing us to decorrelate the concept and67

residual layers without requiring an additional optimization68

step as in prior work [18].69

C. Policy Intervention70

In addition to querying the predicted concepts v̂, a human71

operator may also decide to intervene when these predictions72
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are incorrect. This can be achieved by explicitly overwriting1

the concept layer node activations (or softmax activations for2

discrete concepts) with the appropriate values. We denote3

the modified concepts as v̄ which leads to the following4

intervened concept policy model: πθ(ua|za, v̄) = π2
θ2(v̄ +5

r(x)). This policy intervention corrects prediction errors in6

the feature encoder π1
θ1(·). We find that these sorts of errors7

are particularly prevalent when transferring robot policies8

from simulation to the real world due to different observation9

distributions, and show that policy interventions are effective10

at reducing such errors in Sec. VI. Similar to interpretability,11

we hypothesize that intervention effectiveness is inversely12

proportional to the size of the residual k; we cannot intervene13

on the residual layer activations so any resulting errors will14

persist. While our empirical results hint in this direction, we15

save a full exploration for future work.16

V. EXPERIMENTAL SETUP17

We show that our proposed concept policy models achieve18

high policy success rates and concept accuracy, in addition19

to improved training stability and sample efficiency, over20

standard MARL models in a cooperative-competitive multi-21

agent game of ”tag” previously described in Sec. IV. We22

empirically analyze our approach in both simulated and real-23

world versions of this game, and explore its strengths and24

weaknesses especially with respect to interventions and sim-25

to-real transfer in Sec. VI.26

A. Tag Game27

In our game, two teams of agents compete with each other28

in which one team attempts to reach a specified goal location29

while the other team defends it and attempts to keep them30

away, which we refer to as the attacking and defending team31

respectively. An agent from each team may ”tag” an agent32

from the opposing team as long as it lies within a given33

proximity and is facing the opposing agent, removing the34

tagged agent from play. The attacking team wins if any agent35

is able to reach the goal location, while the defending team36

wins if the attacking agents are all tagged or the maximum37

number of time steps elapses. Each team consists of the38

same number of agents, and we vary this number between39

2, 3, and 5. This environment allows for complex behaviors40

in which attackers and defenders may employ coordinated41

strategies in order to out-maneuver the other team to win,42

and provides a suitable scenario for testing both specific and43

abstract concepts.44

Observation and Action Space: The observations are a45

set of extracted features consisting of the positions, velocities,46

orientations and tagged status of all agents. Actions consist of47

accelerating forward or backward by a fixed amount, rotating48

left or right by a fixed offset, and tagging.49

Reward: Our environment is a modified version of For-
tAttack [30]. We have simplified the reward function by
removing penalties to encourage policy exploration, resulting
in a reward of the form

R(sa, ua) = −ROri. −RMiss −RTagged −RLose +RTag +RWin,
(5)

where ROri. is a penalty for not facing an opponent, RMiss50

is a penalty for missing a tag, RTagged is a penalty for being51

tagged, RLose is a penalty for losing, RTag is a reward for52

tagging, and RWin is a reward for winning. Several of these53

are shaping terms in order to improve sample efficiency,54

which we found to be necessary for efficient convergence55

rates in the absence of expert demonstrations.56

Strategy: Furthermore, we restricted our game such that57

only the defending team’s policy is trained via MARL. While58

it is a straightforward extension to train both an attacker and59

defender policy iteratively, we opted to restrict the attacking60

team to sampling strategies from a fixed policy distribution to61

better investigate the effects of our concept policy model on62

performance. We sample attacker strategies from a distribution63

consisting of three ”types” with equal probabilities, {random,64

left, right}, where the attackers execute random actions, move65

towards the goal by sweeping along the left side of the66

environment, and move towards the goal by sweeping along67

the right, respectively. Given a sampled team level strategy,68

each agent then sampled an individual policy with noise from69

a further distribution, so as to generate stochastic policies.70

Concepts: We utilized the following concepts: {Range,71

Strategy, Target, Orientation, Position}, in which Range is72

a boolean concept indicating whether the opposing agent73

specified by Target is within tagging range, Strategy is a74

categorical concept mapping to the above team-level strategies,75

Target is a categorical concept indicating an opposing agent76

that should be pursued, and Orientation and Position are77

continuous concepts encoding the relative orientation and78

position of each opposing agent, respectively. The hard79

concept policy models are trained with the full set of concepts,80

while the soft models only employ a subset consisting of81

{Range, Strategy, Target}.82

Real-world Equivalent: The real-world version of our83

tag game is played in a 2v2 scenario on a 6′ × 6′ play84

area, with four Khepera IV [31] robots. Policies are trained85

in the simulation environment, then executed in the real-86

world environment; no additional training and no few-shot87

conditioning is employed. The robot positions and orientations88

are extracted from a Vicon [32] motion capture system and89

converted into the model’s expected observation format. The90

real-world version of the game exhibits significant differences91

in the dynamics between the simulated robots and the real-92

world robots – particularly in velocities, accelerations, and93

even control – presenting a challenging environment for sim-94

to-real. Further, tagged agents disappear in simulation while95

the real-world agents are driven out of the play area, providing96

a temporary obstacle.97

B. Concept Policy Models and Baselines98

We trained a hard and soft concept model for 10M time99

steps for each scenario – 2v2, 3v3, and 5v5 – along with a100

standard policy model without concepts. Each model consists101

of a series of fully connected layers, recurrent layers, and the102

iterative normalization layer applied over the concatenated103

concept and residual layers, with full details given in the104

supplementary material. The concept dimension j for each105
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Setup Model WR Intervened WR Range Strategy Target Orientation Position

Si
m

ul
at

io
n

2v
2

Soft 51% 55% 0.03 0.04 0.24
Hard 83% 84% 0.04 0.07 0.2 0.10 0.11
Base 34%

3v
3

Soft 55% 57% 0.03 0.10 0.17
Hard 74% 80% 0.03 0.13 0.23 0.11 0.14
Base 16%

5v
5

Soft 32% 40% 0.02 0.25 0.48
Hard 78% 86% 0.03 0.14 0.13 0.11 0.21
Base 31%

R
ea

l

2v
2

Soft 10% 0% 0.02 0.88 0.02
Hard 25% 95% 0.04 0.81 0.01 3.33 0.08
Base 35%

TABLE I: The win rate (WR) and concept errors for our proposed models (Soft and Hard) and a baseline without concepts
(Base). The Hard model is trained over all concepts, the Soft model over a subset, and the Base model with none. The Win
Rate is the standard win rate of the policy when the policy is executed, while the Intervened Win Rate (Intervened WR) is
the win rate when an expert intervenes over all concepts. Range, Strategy, and Target are discrete concepts and as such the
error shown is the error in accuracy score, while Orientation and Position are continuous and indicate mean squared error.
Orientation is in radians and Position is a unit-less value in [−1, 1].
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Fig. 2: Left: training curves showing win rate vs iterations over 5 random training seeds for each tested model type in a 2v2
scenario. Right: a sequence of episode steps showing the concept activations for agents on the defending team (green).
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Fig. 3: A sequence of steps from a single episode during
a policy execution in the real-world. The blue circle is the
attacking team’s (red) goal while the defending team (green)
attempts to stop them.

hard model differ for each scenario due to the number of1

agents: j = 13, j = 18, and j = 28 for 2v2, 3v3, and 5v52

respectively. The concept dimensions for the soft models are3

j = 9, j = 12, and j = 18 for 2v2, 3v3, and 5v5. For the4

soft models, we additionally provide a residual layer with5

dimension k = 23, k = 52, k = 78 for 2v2, 3v3, and 5v5,6

respectively, leading to a combined bottleneck size of 32, 64,7

and 96. The baseline model lacks a concept layer (j = 0)8

and has a full-width residual k = 128. Residual layers sizes9

and other hyperparameters are given in the supplementary10

material and were chosen through extensive hyperparameter11

optimization.12

VI. RESULTS13

The win rates and concept accuracy errors for the defending14

team in both simulation and real-world are shown in Table III.15

These values are computed by training two seeds with the best16

set of hyperparameters found during optimization, then rolling17

out each policy for 100 evaluation episodes in simulation,18

and 20 in real-world.19

Simulation: We first observe that both concept policy20

model variants out-perform the baseline model in each21

scenario, with the hard concept model outperforming the22

others by a large margin. This in itself is unsurprising, given23

that the concepts were hand-designed so as to provide a24

sufficient amount of information for the policy, and the25

hard concept policy model heavily regularizes the learned26

model such that it learns this information. The decreased27

performance in the soft model is due to the fact that it is28

only trained with a subset of concepts, notably lacking both29
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the Orientation and Position, and consequently the residual1

struggles to fully encode this information on its own. Due2

to the importance of these concepts, the performance suffers.3

The baseline model also significantly under-performs both4

of our proposed models, indicating that it struggles to learn5

appropriate features in the absence of regularization. The6

intervened win rate follows when an expert intervenes and7

sets the correct concept value when a concept is incorrectly8

predicted by the model. This results in an improved win rate,9

particularly in the 3v3 and 5v5 scenarios, which is reasonable10

given that these are more complex environments, and as can11

be seen in Table III, yield increased concept errors. Figure 212

shows the training curves for the three model types in a13

2v2 scenario and clearly demonstrate the improved training14

stability offered by the hard concept model. Conversely, the15

soft concept models exhibit increased performance over the16

baseline models at the cost of decreased stability.17

Real-world: In the real-world environment shown in Fig. 3,18

we can immediately see that the win rates are drastically19

reduced for the concept policy models, but surprisingly not20

for the baseline model. Qualitatively, we have observed21

that this is because the baseline model became trapped22

in a local minima and learned a policy which was semi-23

performant and independent of the actions of the opposing24

team. The baseline policy resulted in the defenders driving in25

circles around the goal while continuously tagging. This is26

clearly a sub-optimal behavior as it only reaches a 40% win27

rate in both simulation and the real-world, but it indicates28

the difficulty which standard MARL policies face when29

attempting to learn meaningful feature embeddings. The other30

interesting result from this experiment is the massive gain31

in performance by the hard model when interventions occur,32

and similarly the complete lack of improvement when the33

soft model is intervened. We can draw two insights from this:34

the distribution shift from the simulated to the real world35

environment is largely contained within the feature extractor,36

which is compensated for by the interventions in the hard37

model; and that the Orientation and Position concepts are by38

far the most important as when we are unable to intervene39

on them and correct for dynamics errors as in the soft model,40

performance fails to improve.41

Concept Ablations: Next, we examine ablated hard42

concept policy models which are only trained over a subset43

of concepts in the 2v2 simulated scenario. The results are44

shown in Table II and further support the evidence that45

the Orientation and Position concepts are by far the most46

important with respect to the win rate. In the simulation47

environment, the win rate drops to 23% in the absence of48

those concepts, while in the real-world environment it drops49

to 27%. Note that the only difference between the hard model50

and the soft model with the RST concept set is the presence of51

a residual layer; when this residual is present and allowed to52

encode additional information the win rate is nearly doubled53

to 51% as in the soft model in Table III.54

Intervention Ablations: We performed an ablation over55

the set of intervened concepts, with the results shown in56

Table II. We can first observe that ignoring interventions57

over the Orientation and Position concepts does not affect58

the win rate, likely because the associated errors for those59

concepts is already low as shown in Table III. As we intervene60

over fewer and fewer concepts, the win rate further drops;61

however, paradoxically the win rate drops to below the base62

win rate without any interventions at all. In the real-world63

we observe the opposite effect where intervening over a64

larger set of concepts always improves the win rate. This is65

especially so for the Orientation and Position concepts which66

account for a nearly 45% increase in the win rate alone,67

allowing us to conclude that not only are these concepts68

important, but that the distribution shift in the observation69

data from simulation to real particularly affects this concept.70

2v2
Win Rate

3v3
Win Rate

All 83% 74%
RST 23% 27%

RTOP 80% 69%
OP 80% 72%

Simulation
Win Rate

Real
Win Rate

All 84% 95%
RST 84% 20%

RTOP 81% 50%
OP 78% 80%

TABLE II: Top:
Concept ablations
in the 2v2 and 3v3
simulated scenario
when only a subset of
concepts are trained.
Bottom: Intervention
ablations in the 2v2
scenario when only
a subset of concepts
are intervened over.
All consists of all
concepts, RST =
{Range, Strategy,
Target}, RTOP =
{Range, Target, Ori.,
Pos.}, and OP =
{Ori., Pos.}.

Limitations: In order to analyze71

the performance of our model for72

a single team of agents, we have re-73

stricted the variability in our environ-74

ment and reduced the complexity of75

possible behaviors. In the future, we76

would like to evaluate asymmetric77

team compositions and learn a policy78

for the attackers. We have also only79

considered low-dimensional inputs80

in our experiments, and although we81

expect our approach to scale well82

to rich input representations such as83

images, since concept models have84

been traditionally applied in vision85

domains, this remains an open ques-86

tion. Additionally, we would like to87

expand the complexity of our real-88

world environments by incorporating89

additional robots.90

VII. CONCLUSION91

In this work we have introduced92

concept policy models for Multi-93

Agent Reinforcement Learning94

which incorporate domain95

knowledge from an expert in96

the form of concepts. We have97

developed a general framework in98

which concepts may be optionally99

augmented with residual information100

in order to ease the restriction that101

they fully express the information102

necessary for policy prediction, and103

show that this results in concept104

policy models which fall along a spectrum of regularization:105

hard concept models in which no residual is allowed, and106

soft concept models in which it is. We empirically show107

that this regularization greatly stabilizes training and results108

in improved accuracy and sample efficiency, and crucially,109

allows a human operator to query the model for its concept110

activations which provide an interpretable rationale for111

the policy’s decisions. We further show that when the112

operator intervenes and corrects incorrect concept predictions,113
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we can improve policy accuracy and partly compensate1

for distribution shifts, particularly in sim-to-real transfer2

scenarios.3
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PMLR, 10–15 Jul 2018, pp. 4218–4227. [Online]. Available:112

http://proceedings.mlr.press/v80/rabinowitz18a.html113

[78] D. Hughes, A. Agarwal, Y. Guo1, and K. Sycara1, “Inferring non-114

stationary human preferences for human-agent teams,” 2020.115

[79] S. Barrett, A. Rosenfeld, S. Kraus, and P. Stone, “Making116

friends on the fly: Cooperating with new teammates,”117

Artificial Intelligence, October 2016. [Online]. Available:118

http://www.sciencedirect.com/science/article/pii/S0004370216301266119

[80] A. I. Goldman et al., “Theory of mind.”120

[81] C. L. Baker, R. Saxe, and J. B. Tenenbaum, “Action understanding121

as inverse planning,” Cognition, vol. 113, no. 3, pp. 329–349, 2009.122

[82] T. Shu and Y. Tian, “M3rl: Mind-aware multi-agent management123

reinforcement learning,” in 7th International Conference on Learning124

Representations (ICLR), 2019.125

[83] J. Jara-Ettinger, “Theory of mind as inverse reinforcement learning,”126

Current Opinion in Behavioral Sciences, vol. 29, pp. 105–110, 2019.127

[84] J. Mendez, S. Shivkumar, and E. Eaton, “Lifelong inverse reinforce-128

ment learning,” in Advances in Neural Information Processing Systems,129

2018, pp. 4502–4513.130

[85] D. Ramachandran and E. Amir, “Bayesian inverse reinforcement131

learning.”132

[86] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-133

forcement learning,” in Proceedings of the twenty-first international134

conference on Machine learning, 2004, p. 1.135

[87] A. Y. Ng, S. J. Russell, et al., “Algorithms for inverse reinforcement136

learning.”137
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APPENDIX42

Range: The range concept indicates whether an agent is43

within range of another agent and facing it, where the range44

is within 0.8 map units and the angle is within π
5 radians.45

This value is a one-hot encoded value (within range or not46

within range) for each opposing agent, such that the total47

number of output nodes for this concept is 2n where n is48

the number of agents on the opposing team.49

Strategy: The strategy concept indicates what team-level50

strategy the attacking team is following: left, right, or random.51

The strategy refers to the actions that an attacking team52

will take; a left strategy indicates that agents will follow53

a trajectory along the left side of the map leading to the54

objective, a right strategy indicates that agents will follow55

a trajectory along the right side of the map, and random56

indicates that agents will execute random actions. This57

concept is one-hot encoded and requires p output nodes,58

where p is the number of strategies – 3 in this work.59

Target: The target concept indicates which agent on the60

opposing team an agent is currently targeting. The goal of61

this concept is to overcome the issue of oscillating targets,62

e.g., if an agent is equally close to multiple agents this can63

lead to oscillating behavior where the ego agent is unsure64

which other agent to pursue, and flips between them as65

the distance changes. During training, the targeted agent66

is initially selected to be the closest opposing agent and is67

only updated when that agent has been tagged. As with the68

range concept, this is a one-hot encoded value with 2n output69

nodes.70

Orientation: The orientation concept is a continuous value71

representing the relative angle offset between an agent to72

each other agent on the opposing team. This value consists73

of n nodes where n is the number of agents on the opposing74

team.75

Position: The position concept is a continuous value76

representing the relative Euclidean distance between an agent77

and each other agent on the opposing team. This value consists78

of n nodes where n is the number of agents on the opposing79

team.80

Models are trained using a centralized-training-81

decentralized-execution approach, where a single policy is82

trained for all agents, and then executed individually for83

each agent during rollouts. True concept values are provided84

during training via an oracle function V (·) and used to85

compute the corresponding auxiliary loss, as well as the true86

concept values for intervention during intervened evaluation87

rollouts. Attacker strategies during training are sampled with88

equal probability from the set {left, right, random}, with89

sampled Left and Right strategies shown in Fig. 7. The90

random strategy is utilized to encourage the defenders to91

develop strategies in which they are free to pursue individual92

attackers, as opposed to remaining stationary near the93

objective. All policies were trained for 10M timesteps, after94

which the best policy checkpoint was taken – necessary95

since some models experienced forgetting and instability.96

Extensive hyperparameter optimization was performed, with97
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the selected hyperparamters shown in Table V.1

Table III is an expanded table showing the concept errors2

for each model in each scenario type with the addition of3

the standard error, indicating fairly consistent predictions.4

Table IV shows the win rate and intervened win rates for each5

model in each scenario type, with the addition of showing6

statistical significance. These win rates are computed over 1007

evaluation episodes in simulation, and 20 episode evaluations8

in the real-world. The bolded value represents which model9

achieves the highest significant win rate for a given scenario10

type, with significance determined by the Fisher exact test11

and a p < 0.05. In the case of interventions, the only model12

which exhibits statistically significant improvement to the13

win rate after intervention is the 2v2 hard concept policy14

model, increasing from 25% to 95% – largely due to the15

small number of evaluation policy rollouts (20). We note16

that while the soft concept policy’s intervened win rate may17

not be a statistically significant decrease, it is an interesting18

observation that interventions do not increase the win rate.19

We conjecture that this is because the residual layer encodes20

observation information which is affected by the distributional21

shift from simulation to the real-world, and despite being able22

to intervene over a subset of the concepts that are encoded, this23

is not enough to overcome the distribution gap. Furthermore,24

Table IV indicates that the intervened hard concept policy25

model yields an improved win rate in the real world than the26

simulation. This is an interesting outcome, and we conjecture27

that this is due to the real-world dynamics making it easier for28

the defenders to win assuming correct concept predictions. For29

example, the attackers can move and turn faster in simulation30

as they are not subject to real-world physics, and this makes31

it harder for the defenders to tag them.32
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Fig. 4: Action distribution when intervening on the Range
concept. Interventions are performed over the 3v3 hard
concept policy model in simulation over 100 episodes. The
Range concept is intervened such that the resulting value is
always True or False, regardless of what the correct value is.
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Fig. 5: Intervening on the Strategy concept for the 3v3 hard
concept policy model in simulation. Each point is the average
position of all the defenders as an episode progresses, where
lighter values indicate earlier in the episode, averaged over
100 episodes.

Figure 4 shows the distribution of concept policy actions33

when concepts are intervened so as to always predict the34

same value, regardless of being correct or not. The goal of35

such an experiment is to produce a meaningful difference36

in the distribution of actions produced by the policy; if the37

defenders always predict False for the Range concept for38

example, we would expect that they would perform the tag39

action fewer times than if Range was always True. As seen in40

Fig. 4, this appears to hold and we can see that the frequency41

of the tag action is noticeably higher when Range is set to42

always be True. We conjecture that the influence of Range43

being True is much higher than False due to the concept44

itself being imbalanced – it is False far more often than True.45

As a result, the concept being True is more informative and46

can be directly associated to the act of tagging more readily47

than False.48

Similarly, Fig. 5 shows the average position of all defenders49

during the course of an episode when the Strategy concept50

is intervened so as to take different values. When Strategy is51

set to always predict Left, we can see this yields an average52

position left of the No Intervention case, while Right yields53

an average position to the right of No Intervention. Intuitively,54

this shows that the defending agents act in response to the55

predicted Strategy, i.e., if the attackers are following a left56

strategy then the defenders move to the left to intercept.57
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Fig. 6: The common model architecture shared by all models,
which vary only in j and k.

The common model architecture shared by all models is58

shown in Fig. 6, varying only in the size of the concept and59

residual layers (as described in the main paper). The observa-60

tions of each agent in the opposing team are stacked and fed61

through a series of FC layers. This is then passed through a62

recurrent LSTM layer to capture temporal information, and63
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Setup Model Range Strategy Target Orientation Position

Si
m

ul
at

io
n

2v
2

Soft 0.03 ± 0.0032 0.04 ± 0.0060 0.24 ± 0.012
Hard 0.04 ± 0.0040 0.07 ± 0.0066 0.2 ± 0.012 0.10 ± 0.0071 0.11 ± 0.014
Base

3v
3

Soft 0.03 ± 0.0029 0.10 ± 0.0085 0.17 ± 0.0109
Hard 0.03 ± 0.0031 0.13 ± 0.098 0.23 ± 0.012 0.11 ± 0.0071 0.14 ± 0.0014
Base

5v
5

Soft 0.02 ± 0.0022 0.25 ± 0.012 0.48 ± 0.013
Hard 0.03 ± 0.0021 0.14 ± 0.012 0.13 ± 0.0097 0.11 ± 0.0063 0.21 ± 0.0142
Base

R
ea

l

2v
2

Soft 0.02 ± 0.0068 0.88 ± 0.010 0.02 ± 0.021
Hard 0.04 ± 0.0074 0.81 ± 0.025 0.01 ± 0.0059 3.33 ± 0.21 0.08 ± 0.0091
Base

TABLE III: The concept errors (mean and standard error) for our proposed models (Soft and Hard) and a baseline without
concepts (Base). The Hard model is trained over all concepts, the Soft model over a subset, and the Base model with none.
Range, Strategy, and Target are discrete concepts and as such the error shown is the error in accuracy score, while Orientation
and Position are continuous and indicate mean squared error. Orientation is in radians and Position is a unit-less value in
[−1, 1]. Errors are computed over 100 episode rollouts for each model for simulated, and 20 rollouts for real-world.

Setup Model WR Intervened WR

Si
m

ul
at

io
n

2v
2

Soft 51% 55%
Hard 83% 84%
Base 34%

3v
3

Soft 55% 57%
Hard 74% 80%
Base 16%

5v
5

Soft 32% 40%
Hard 78% 86%
Base 31%

R
ea

l

2v
2

Soft 10% 0%
Hard 25% 95%
Base 35%

TABLE IV: The win rate and intervened win rate for each
model in each scenario type. The best performing model for
each scenario type (according to Fisher exact with p < 0.05)
is highlighted in bold.

then split into the concept and residual layers. Whitening is1

performed via iterative normalization over the concatenated2

concept and residual layers, which are then passed into the3

policy and value heads consisting of more fully connected4

layers. Each group of (2x 128) fully connected layers are5

followed by a ReLU activation, with the group-wise softmax6

following the concept layer after the IterNorm for discrete7

concepts only. The auxiliary loss Lc(θ) is computed over the8

concepts after the IterNorm layer.9

Learning Rate Schedule 1e-3 at t=0 to 1e-4 at t=10M
Entropy Schedule 0.1 at t=0 to 0.01 at t=10M

LSTM Max Sequence Length 50
Batch Size 10240

SGD Minibatch Size 1600 (Seq. Length × 32)
Concept Loss Coeff. 10

T 2
Optimizer Adam
β1, β2 0.9, 0.999

TABLE V: Hyperparameters used for each model type.

The hyperparameters used for each model during training10

are given in Table V. The learning rate and entropy values11

used a linear scheduler where the values were decreased as12

training progressed.13
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Fig. 7: Sampled attacker strategies from the Left and Right
strategies. Lighter points indicate agent positions earlier in the
episode. The objective is at the top of the screen. Attackers
randomly spawn in the lower half of the environment.
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Hearing Touch: Using Contact Microphones for Robot Manipulation
.

Shaden Alshammari1, Victoria Dean2, Tess Hellebrekers3, Pedro Morgado4, Abhinav Gupta2

Figure: example for the audio recording during a chopping task

Abstract— Humans use all of their senses to comprehend their
immediate physical environment, including how sound and
action interact. However, microphones have not been widely
used as a tactile sensor in robotics, whereas visual and other
sensors have. Using contact microphones, which record high
frequency vibrations by coming into contact with solid objects,
we investigate contact audio as an alternative tactile modality.
Because it can cross domains more effectively than vision, audio
modality is more robust. Additionally, it can accurately capture
interactions with various objects and materials. We investigate
the use of contact microphones as a sensor in tasks centered
around the kitchen.

Index Terms— tactile manipulation, audio in robotics, task
classification.

I. INTRODUCTION

Humans manipulate objects using all of their senses,
including sound and touch: audio can indicate whether or
not the door has been unlocked or an egg has been prop-
erly cracked. Prior work has shown that humans can use
auditory feedback alone to categorize types of events and
infer continuous aspects of these events, such as the length
of a wooden dowel being struck [1]. However, microphones
remain underexplored in robotics, especially their potential
as tactile vibration sensors.

In this work, we investigate contact audio as an alternative
tactile modality for complex manipulation tasks that are

1 Massachusetts Institute of Technology
2 Robotics Institute, Carnegie Mellon University
3 Meta AI Research
4 University of Wisconsin-Madison

challenging from vision alone. Contact microphones record
vibrations of anything in direct contact at a high-frequency
(1000 times higher frequency than the next common tactile
sensor [2]). This makes them well-suited to use as tac-
tile sensors when interacting with objects in manipulation.
Furthermore, contact audio is immune to many aspects of
environment variation that vision is plagued by, such as
lighting and color variation, making it promising for transfer
learning and multi-task settings that are common in robotics.

We mount the contact microphones on a robot gripper
and gather data on a chopping task (see Fig. III).Then,
we extract a representation from both audio and video.
We implement real-robot experiments using the k-nearest
neighbors algorithm. We compare the performance of the
robot with and without using audio.

II. RELATED WORK

A. Audio in computer vision

There is a strong correlation between objects, actions and
sounds. For example, Owens et al. propose the task of pre-
dicting the sound an object makes when scratching various
objects based on silent videos, and develop an algorithm that
generates the audio [3]. Moreover, it is important to learn
representations based on both video and audio for action
classification. Morgado et al. develop a contrastive learning
approach Audio-Visual Instance Discrimination with Cross-
Modal Agreement (AVID) to learn audio-visual representa-
tions from video and audio [4].
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Fig. 1. Contact microphones setup

III. CONTACT MICROPHONES AS TACTILE
SENSORS

A contact microphone, or a piezo microphone records
high frequency vibrations when coming into contact with
solid objects. Contact microphones only capture sound that
is carried by object in contact which doesn’t include air
vibrations unlike typical air microphones. They can be used
for a variety of tasks, including amplifying the sound from
acoustic musical instruments and triggering electronic sam-
ples. They can also record sound in difficult settings, such
as underwater or under high pressure.

Contact microphones are feasible for robots as tactile
sensors because they can precisely record interactions with
different objects and materials. They also can effectively
cross domains unlike vision, which depends on a variety of
factors like lightning. Lastly, their price is extremely low
(about $1 for a piece). For our tasks, we attach contact
microphones to two types of objects: glove (see figure III)
and a robot gripper.

IV. EXPERIMENTAL SETUP

A. Chopping task

We investigate the impact of using contact microphones
in learning chopping tasks. We fix contact microphones on
robot grippers and a knife on top of them. Then, while
chopping a plastic carrot with two designated chopping areas,
we collected audio, visual, and action data for the robot.

B. Dataset details

We collect a dataset using the glove microphone for the 8
tasks described below over different settings.

Fig. 2. task examples collected using the contact microphones on the glove

Fig. 3. average tasks signals after prepossessing with 95% confidence
interval

task number of examples total time
Tear Aluminum Foil 118 78.17s

Stir Ice Water 79 50.99s
Open Fridge 59 38.52s
Shake Pepper 86 55.19s

Grind Salt 80 54.90s
Twist Open Jam Jar 46 29.93s

Close Ziploc 283 188.91s
Drop Ice 54 35.33s

V. METHODS

We are interested in two types of tasks: classification and
robot manipulation. For task classification, we have a dataset
of more than 800 examples on a kitchen centric tasks (see
table above). For task classification, we use two approaches:
the first is shallow neural networks since our dataset is
relatively small and the audio data is low dimensional after
the prepossessing. The second approach is by fine-tuning a
multimodal model on the AVID representation.

For robot manipulation, we collected 12 examples of a
chopping task on a franka arm robot which has contact
microphones attached to its gripper. The data consists of
audio clips, video, and robot actions. We use the k-nearest
neighbors (k-NN) regression for manipulation. We consider
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Fig. 4. task classification pipeline

L2 as a distance metric over multiple representations. The
first representation is simply using FFT for 1-second clips
and pooling 100 parts of it uniformly. The second represen-
tation is extracted from the trained classifier described above.

VI. RESULTS

A. Classification

We classified the dataset collected using the glove as
described in IV-B. The audio and video clips have been
converted to 1-second clips. For the MLP model, the audio
signal is prepossessed using Fast Fourier Transform (FFT).
The table below shows the classification accuracy for differ-
ent models

model input modality accuracy
MLP (3 layers) audio only 63%

AVID fine-tuning audio only 74%
AVID fine-tuning video only 96%
AVID fine-tuning audio & video 100%

B. Manipulation

We collect tele-operated demonstrations and create a
dataset with the recorded contact audio and images. At test
time, we use the k-nearest neighbors (KNN) algorithm to
infer which part of the demonstrations most closely matches
the current audio-visual context in an embedding space, and
these nearest neighbors can be used to select actions. VI-B
visualizes the nearest neighbors throughout a trial using two
embedding spaces: audio-only with fast fourier transform
(left) and a neural network trained on a classification task
with audio-visual input. The figure shows that the nearest
neighbors retrieved by FFT are more commonly in chop-
ping regions (denoted by audio peaks) than their classifier
embedding counterparts, perhaps due to information loss in
the latter’s embedding. In future work, we aim to extend
these results to a broader set of policy learning methods,
embedding spaces, and tasks.

VII. CONCLUSION

In this work, we studied contact audio as an alternate
tactile modality for complicated manipulation tasks . For
future work, an audio-visual representation for the tasks.
We also want to experiment other manipulation learning
techniques such as imitation learning.
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Fig. 5. KNN functions as a manipulation policy mapping the current audio-visual context to closest points from demonstrations. We color-code the test
trial (top) and show each segment’s three closest neighbors (bottom).
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Active Probing and Influencing Human Behaviors Via Autonomous
Agents

Shuangge Wang1, Yiwei Lyu2, John M. Dolan3

Abstract— Autonomous agents (robots) face tremendous chal-
lenges while interacting with heterogeneous human agents in
close proximity. One of these challenges is that the autonomous
agent does not have an accurate model tailored to the specific
human that the autonomous agent is interacting with, which
could sometimes result in inefficient human-robot interaction
and suboptimal system dynamics. Developing an online method
to enable the autonomous agent to learn information about the
human model is therefore an ongoing research goal. Existing
approaches position the robot as a passive learner in the
environment to observe the physical states and the associated
human response. This passive design, however, only allows the
robot to obtain information that the human chooses to exhibit,
which sometimes doesn’t capture the human’s full intention.
In this work, we present an online optimization-based probing
procedure for the autonomous agent to clarify its belief about
the human model in an active manner. By optimizing an
information radius, the autonomous agent chooses the action
that most challenges its current conviction. This procedure
allows the autonomous agent to actively probe the human
agents to reveal information that’s previously unavailable to
the autonomous agent. With this gathered information, the
autonomous agent can interactively influence the human agent
for some designated objectives. Our main contributions include
a coherent theoretical framework that unifies the probing
and influence procedures and two case studies in autonomous
driving that show how active probing can help to create better
participant experience during influence, like higher efficiency
or less perturbations.

I. INTRODUCTION

It is imperative for robots to behave reactively in a human-
present environment because all safety specifications ought
to be met. An autonomous vehicle, for instance, should
yield to a human vehicle trying to nudge in front of it;
a reconnaissance drone should avoid adversarial behaviors.
Robots, however, are usually not designed to behave purely
in a reactive manner because it makes them too conservative.
Consider a scenario of autonomous driving (Fig. 1) where the
human vehicle is traveling in the outer lane (lower), but at a
fast enough speed that it’s better, for efficiency purposes, to
switch to the inner lane (upper). Many human drivers don’t
have the awareness to make this transition because they are
usually egocentric, even subconsciously, in that they would
rather remain in their current lane unless blocked by some
other vehicles. Some works, therefore, have proposed to use

1Shuangge Wang is with the Ming Hsieh Department of Electrical and
Computer Engineering, University of Southern California, Los Angeles, CA,
90089 USA. Email: larrywan@usc.edu

2Yiwei Lyu is with the Department of Electrical and Computer Engi-
neering, Carnegie Mellon University, Pittsburgh, PA 15213 USA. Email:
yiweilyu@andrew.cmu.edu

3John M. Dolan is with the Robotics Institute, Carnegie Mellon Univer-
sity, Pittsburgh, PA 15213 USA. Email: jdolan@andrew.cmu.edu

Human Vehicle Autonomous Vehicle

Fig. 1: Both vehicles currently travel to the right in the outer lane
(lower). Autonomous vehicle (yellow) intends to influence human
vehicle (orange) with intention to drive fast to inner lane (upper).

autonomous vehicles to influence the fast human vehicles to
drive in the inner lane by blocking them.

Since such influence is exerted in close proximity, the
autonomous agent needs an accurate human model. Although
techniques like Inverse Reinforcement Learning (IRL) can
produce a generally reasonable model, this falls short when
an autonomous agent is interacting with a human in close
proximity because the model may not capture characteristics
specific to the human agent that the robot is interacting with.
For instance, in Fig. 1, the autonomous vehicle is interested
in, rather precisely, the desired travel velocity of the human
vehicle, and each human differs from another in their desired
velocities.

Existing online approaches tackle this problem by po-
sitioning the autonomous agent as a passive observer, in
which it observes the environmental states and their asso-
ciated human response and then chooses the model that best
explains this correlation. The issue with this design is that
the autonomous agent is passive, so it only has access to
information that the human agent chooses to exhibit. Hence,
the autonomous agent can only make decisions based on
the human information that’s readily available. In Fig. 1 for
instance, a passive autonomous vehicle would presume the
human vehicle intends to travel at most as fast as itself,
whereas in reality the human could want to drive faster, only
to be blocked by the autonomous vehicle.

In this work, we enable autonomous agents to leverage
their own actions to estimate the human internal model by
actively interacting with the human agent to reveal more
information. Rather than relying on passive observations, the
autonomous agent can actually account for the fact that the
human will react to its actions, so the autonomous agent
can ”probe”, i.e., select the actions that will trigger human
reactions that in turn will best challenge its initial belief.
By probing iteratively, the autonomous agent converges to
an increasingly accurate human model. Then, based on the
probed information, the autonomous agent can actively influ-
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ence other agents for some designated objectives, like higher
efficiency or better driving experience. Our key contributions
in this work are: 1) a coherent theoretical framework that
unifies the probing and influencing procedures; 2) a proven
solvable trajectory-planning optimization with reasonably
mild assumptions; 3) two case studies as application exam-
ples in the domain of autonomous driving with numerical
simulations used to demonstrate the precision of probing
results and efficacy in creating better participant driving
experience during influence.

II. RELATED WORK

Human behavior, in general, is determined by an internal
model that the autonomous agent cannot directly access [1],
[2]. Such an internal model might characterize human’s
intentions, preferences, objectives, strategies, etc. To exert
the influence, an autonomous agent would have to interact
with different human agents in close proximity, who are
heterogeneous agents that differ significantly in their internal
models. Works in robotics and perception have focused
on estimating these internal models using algorithms based
on observations of human’s actions, such as intent-driven
behavior prediction [3]–[9], IRL [10]–[14], hidden model
prediction [15], affective state estimation [16], and activity
recognition [17]. Although the human model derived from
the above methods performs generally reasonably, it might
not capture specific characteristics of the human agent that
the autonomous agent is interacting with. The autonomous
agent, therefore, needs an online procedure to learn the model
specially tailored to the human agent that the autonomous
agent is interacting with.

Some online approaches frame this problem as a Partially
Observable Markov Decision Process (POMDP) [18]–[20],
in which the autonomous agent represents the human’s intent
through a parametric model, inferred through Markovian or
Bayesian estimation of the hidden parameters of the internal
models from observations of the physical states of the
world [21]–[24]. In this paradigm, the autonomous agent is
mainly a reactive agent present in the environment to merely
observe, which hugely sacrifices the the robot’s personal
agency to initiate action to actively reveal information about
the human.

Some existing works enable active probing for interactive
motion planning by incorporating a heuristic active infor-
mation gathering objective, e.g., information entropy, into
the autonomous agent’s trajectory optimization framework
for human value function parameter estimation [25], [26].
Building upon this work, we allow the autonomous agent to
optimize the information radius, i.e., the cohesion between
two beliefs, relative to its latest belief of the human model,
so instead of having a fixed reference belief like in [26] the
autonomous agent aims to maximize the information radius
relative to a dynamic reference, its current belief, at every
time iteration.

III. THEORY

A. Human-Robot Joint Dynamics

For all notations below, we use subscripts to denote the
time step and superscripts to capture the attributes’ ownership
(human or robot). In a human-robot joint system, we define
the state vector as st ∈ Rn, the robot’s input vector as uR

t ∈
UR ⊆ RmR

, confined to admissible control space UR, the
human’s input vector as uH

t ∈ UH ⊆ RmH
, confined to

admissible control space UH, and finally the discrete-time
control-affine dynamics of the joint system as

st+1 = f(st) +MR(st)u
R
t +MH(st)u

H
t (1)

where f : Rn → Rn captures the non-linear autonomous
dynamics and MR : Rn → Rn×mR

and MH : Rn →
Rn×mH

are state-dependent input transformation matrices
for robot and human respectively [25].

B. Belief Update

The autonomous agent possesses a belief of φ that char-
acterizes the human agent’s utility function rHφ : Rn → R.
For driving scenarios, a typical φ could characterize the
desired velocity of the human vehicle, and a typical rHφ
would include features like safety and speed. We generalize
the autonomous agent’s belief by proposing a non-parametric
representation which can approximate a wider range of
distributions. At time t, belief of φ is defined as belt with
finite domain space Φ. The autonomous agent updates this
belief via a particle-filtering recursion [27]

belt+1(φ) ∝ belt(φ) · p(uH
t |st, uR

t , φ), ∀φ ∈ Φ (2)

where the conditional probability is obtained through a soft-
max operation based on the Boltzmann model of exponential
likeliness of human actions with greater utility [9], [13]

p(uH
t |st, uR

t , φ) =
erHφ (f(st)+MR(st)u

R
t +MH(st)u

H
t )∑

ũH
t ∈UH erHφ (f(st)+MR(st)u

R
t +MH(st)ũ

H
t )

(3)
in which UH is discretized for softmax normalization. The
complete belief update algorithm is shown in algorithm 1.

Algorithm 1 Belief Update
Input: belt, st, uR

t , uH
t

1: η ← 0
2: for all φ ∈ Φ do
3: r ← er

H
φ (f(st)+MR(st)u

R
t +MH(st)u

H
t ) {Boltzmann}

4: r̃ ←
∑

ũH
t ∈UH er

H
φ (f(st)+MR(st)u

R
t +MH(st)ũ

H
t )

5: belt+1(φ)← belt(φ) · rr̃ {belief update}
6: η ← η + belt+1(φ)
7: end for
8: for all φ ∈ Φ do
9: belt+1(φ)← belt+1(φ)

η {belief normalization}
10: end for
11: return belt+1
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C. Probing

The motivation behind probing is to allow the autonomous
agent to actively interact with the human agent to reveal
more information that was previously unavailable, meaning
that the autonomous agent should choose actions that best
challenge its current belief at every time step. Quantitatively,
the autonomous agent chooses actions that maximize the in-
formation radius between its current belief and the projected
belief if such actions are to be executed.

We introduce the Jensen-Shannon divergence (JSD) as
a measure of information radius to quantify the cohesion
between two beliefs, bela and belb [28], [29]

DJS[bela, belb] =
DKL

[
bela : bela,b

]
+DKL

[
belb : bela,b

]
2

(4)
where DKL denotes the Kullback–Leibler divergence
(KLD) [30], [31] and bela,b is the arithmetic mixture of bela
and belb

DKL[bela : bela,b] = E
φ∼bela

log

(
2 · bela(φ)

bela(φ) + belb(φ)

)
(5)

At state st, the autonomous agent predicts how the human
agent, characterized by φ, will react to its action uR

t using

Q(st, u
R
t , φ) = argmax

ũH
t ∈UR

rHφ (f(st)+MR(st)u
R
t +MH(st)ũ

H
t )

(6)
We solve the probing problem using Model Predictive

Control (MPC) with finite horizon T , in which the au-
tonomous agent chooses a sequence of actions that optimizes
the JSD between the current belief and the projected belief
on the horizon

max
uR
0:T−1

E
φ∼bel0

T−1∑
t=0

DJS[bel0, belt+1]−DJS[bel0, belt] (7a)

s.t. s0 = st, bel0 = belt (7b)

uH
t = Q(st, u

R
t , φ) (7c)

st+1 = f(st) +MR(st)u
R
t +MH(st)u

H
t (7d)

belt+1(φ) ∝ belt(φ) · p(uH
t |st, uR

t , φ) (7e)

To ensure solvability, we prove that DJS, which maps to
[0,∞) in theory, is upper bounded in optimization (7).

Proof. Boundedness:
We first make a slight assumption that bel0 is bounded

and has compact support, hence

sup
φ∈Φ

bel0(φ) <∞∧ inf
φ∈Φ

bel0(φ) > 0 (8)

which helps to substantiate the boundedness of KLD [32].
We will initialize the belief such that condition (8) is satisfied
in section IV.

For induction hypothesis, we assume that ∀a ∈
{0, . . . , T−1}, supφ∈Φ bela(φ) <∞. Since p(uH

t |st, uR
t , φ)

maps to an image of (0, 1), using condition (8) as base case,
we have

sup
φ∈Φ

bela(φ) < 1 <∞, ∀a ∈ {0, . . . , T} (9)

By similar induction technique, we have

inf
φ∈Φ

bela(φ) > 0, ∀a ∈ {0, . . . , T} (10)

Hence, we have extended condition (8) to

sup
φ∈Φ

bela(φ) <∞∧ inf
φ∈Φ

bela(φ) > 0, ∀a ∈ {0, . . . , T}

(11)
Therefore, ∀a ∈ {0, . . . , T}, ∃s̄ = supφ∈Φ bela(φ) such

that 0 < s̄ < ∞. Similarly, ∀a, b ∈ {0, . . . , T}, ∃i =
infφ∈Φ bela(φ) + belb(φ) such that 0 < i <∞.

Therefore, by equation (5), we have ∀a, b ∈ {0, . . . , T}

DKL[bela : bela,b] = E
φ∼bela

log

(
2 · bela(φ)

bela(φ) + belb(φ)

)
≤ E

φ∼bela
sup
φ∈Φ

log

(
2 · bela(φ)

bela(φ) + belb(φ)

)
≤ log(2 · s̄)− log(i) <∞

(12)
By symmetry, DKL[belb : bela,b] < ∞ can be easily

proved using the same technique, which together concludes
the boundedness of JSD.

We propose a dynamic-programming-based approach to
optimize equation (7). Although the computational complex-
ity grows exponentially with respect to the state dimension,
we argue that successfully reasoning about human-robot
interactions over a short horizon does not require a full-
fidelity model of the joint dynamics, so highly informative
insights can still be obtained tractably via approximation. We
define the value function of executing n consecutive controls
starting from time k as

V (k, n) = E
φ∼bel0

k+n−1∑
t=k

DJS[bel0, belt+1]−DJS[bel0, belt]

(13)
The value function on the horizon therefore satisfies

V (0, T ) = E
φ∼bel0

k−1∑
t=0

DJS[bel0, belt+1]−DJS[bel0, belt]

+ E
φ∼bel0

T−1∑
t=k

DJS[bel0, belt+1]−DJS[bel0, belt]

= V (0, k) + V (k, T − k), ∀k ∈ {0, . . . , T}
(14)

which shows that the path-dependency fits a Bellman opti-
mality equation [33].

Therefore, an optimal value function and control policy
can be obtained in polynomial time by backtracking the
Hamilton–Jacobi–Bellman (HJB) equation [34]

V (t, T − t) = max
uR
t ∈UR

{
V (t, 1) + V (t+ 1, T − t− 1)

}
(15)

Following this policy, the autonomous agent interactively
probes the human agent and gradually converges its belief
until the change of JSD is too small. The autonomous agent
then chooses φ̂, which could be a linear combination of all
φ ∈ Φ weighted by their bel(φ) or simply the most likely
φ ∈ Φ, as the human model parameter.
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D. Influence
We characterize an influence as a sequence of atomic

objectives, each with a utility function, that accounts for a
major influence if all executed in order, and we delegate the
responsibility of planning these atomic objectives to some
high-level planner. For each objective, we incorporate φ̂ into
the utility function for both robot and human.

max
uR
0:T−1

T−1∑
t=0

rRφ̂(st+1)
(16a)

s.t. s0 = st (16b)

uH
t = Q(st, u

R
t , φ̂) (16c)

st+1 = f(st) +MR(st)u
R
t +MH(st)u

H
t (16d)

Similarly, this optimization problem can be solved using
HJB recursion in polynomial time.

IV. SIMULATION

In this section, we present two car-following-based sce-
narios in which probing and influencing can be used to
facilitate better participant experience and optimality for
human drivers. Both scenarios start with the human vehicle
following the autonomous vehicle.

A. Ground Truth
To generate the ground truth trajectories for the human-

driven vehicle, we use the intelligent driver model
(IDM) [35]–[37], which is known to accurately imitate
human driving behaviors.

uH = umax

[
1−

(
vH

vdes

)4

−
(

ddes
xR − xH

)2
]

(17)

in which

ddes = dmin + τgap · vH −
vH · (vH − vR)

2
√
amax · bpref

(18)

where superscripted notations are system dynamics and
subscripted notations are constant parameters. We assume
that the vehicles will maintain their driving style, so the
constant parameters above are static over time. Without loss
of generality, we also use IDM to model other background
vehicles in the environment.

B. Exploitation and Exploration
To balance exploitation and exploration, the autonomous

vehicle alternates between 5 s of passive observation and 5 s
of active probing. We also set the MPC horizon to 5 s. Thanks
to the boundedness of JSD, we can add a safety objective,
λ · rRsafe(st+1), on the autonomous agent’s optimization to
enforce some safety features, and we choose λ empirically.

C. Human Model
The autonomous vehicle models the human underlying

utility using a combination of features, namely desired
headway and desired velocity. For each scenario, we choose
|Φ| = 30 such that each φ ∈ Φ maps to a distinct desired
velocity or desired headway, and we initialize them to a
uniform distribution, which satisfies condition (8).

(a) Phase 1 (b) Phase 2 (c) Phase 3

Fig. 2: Phase 1: Autonomous vehicle maintains velocity. Phase 2:
Autonomous vehicle decreases velocity to block the human vehicle.
Phase 3: Human vehicle merges due to blocking. All vehicles are
traveling upwards.

D. Scenario 1: Influence fast drivers to switch lane

Consider a two-lane highway (Fig. 2a) with an inner
lane (left) and an outer lane (right). Here, we cause the
autonomous vehicle to actively probe the desired velocity of
the human vehicle. If the human vehicle exhibits the intention
to travel at a high velocity, the autonomous vehicle will
perform a series of maneuvers to help the human vehicle
merge to the inner lane in the widest gap between the
background vehicles. While approaching the widest gap, the
autonomous vehicle slows down to block the human vehicle
(Fig. 2b), and the human vehicle switches lanes shortly after
that (Fig. 2c).

We choose the IDM parameters as umax = 0.73m/s2,
bpref = 1.67m/s2, vdes = 25m/s, τgap = 1.5 s, and
dmin = 2m. We start the car-following scenario with relative
headway of 100m, the autonomous vehicle and the human
vehicle both traveling at 20m/s. We also included a passive
observing approach to compare as a baseline. Fig. 3 is a
snapshot of the belief from two approaches taken every 10 s.

By 50 s, the active approach’s peak happens at φ19, which
maps to a desired velocity of 23.56m/s, which is close to the
IDM parameter, vdes, of 25m/s. In comparison, the passive
observation baseline peaks at φ16 that maps to 19.86m/s,
which is very far from the ground truth. This is because
the passive approach suffers from no exploration to trigger
human reaction, so the autonomous vehicle will assume the
human vehicle intends to travel only as fast as itself.

Leveraging this probed information, the autonomous vehi-
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Fig. 3: Belief Snapshot

Fig. 4: Velocity Deviation

Fig. 5: Cumulative Absolute Control

(a) Phase 1 (b) Phase 2 (c) Phase 3

Fig. 6: Phase 1: Autonomous vehicle merges first. Phase 2: Au-
tonomous vehicle slows down to create gap for human vehicle.
Phase 3: Human vehicle merges. All vehicles are traveling upwards.

cle can set a cutoff, 23m/s in our simulation for instance, to
influence the humans with high desired velocity to drive in
the inner lane. According to Fig. 4, the influence brought
about 20.04% increase in the human vehicle’s velocity,
whereas the passive approach wouldn’t be able to initiate
the influence procedure at all because it does not try to
reveal information that the human is not showing, hence
the autonomous vehicle becomes more and more wrongly
convinced that the human vehicle intends to travel only as
fast as 19.86m/s. According to Fig. 5, the influence intro-
duces a bounded perturbation, about 15.68m/s of cumulative
absolute control, on average background vehicles, which
could be easily attenuated with autonomous vehicles using
flow stopper techniques [38], [39].

E. Scenario 2: Helping human to switch lane

Consider a scenario like Fig. 6a, in which the lane the
autonomous and human vehicle currently occupy is about
to end, either due to traffic, construction, or lane merge.
Both vehicles, therefore, have to switch to the left lane,
which is occupied by some background vehicles. Assume
the headway gaps between the background vehicles are too
narrow for humans while traveling at such a high speed.
Fortunately, autonomous vehicles are capable of performing
the switching. The autonomous vehicle, therefore, helps the
human vehicle to switch lanes by first probing the desired
headway of the human vehicle around a specific velocity, in
this case 20m/s. The autonomous vehicle will then switch
lanes and slow down to create enough gap based on the
probed headway (Fig. 6b). Finally, the human vehicle can
merge into the lane with ease (Fig. 6c).

181



Fig. 7: Belief Snapshot

Fig. 8: Velocity Deviation

We choose the IDM parameters as umax = 0.73m/s2,
bpref = 1.67m/s2, vdes = 20m/s, τgap = 1.5 s, and dmin =
2m. Similarly, we initialize the road condition to the same
condition as the previous scenario, and we include a passive
observing approach to compare as a baseline.

Fig. 7 is a snapshot of the belief from two approaches
taken every 10 s. By 70 s, the probability for the active
approach peaks at φ4, which maps to a desirable headway
around 48.27m, whereas that of passive approach peaks at
φ9, which maps to a desirable headway around 108.62m.
For reference, according to data from the Next Generation
Simulation for US Highway 101 [40], the average headway
for cars traveling around 20m/s is about 42.18m. Although
not absolutely precise, the active approach generates a much
more accurate profile than the passive approach does.

Based on the probed information, the autonomous vehicle
can proceed to create a gap for the human vehicle. For
comparison, we simulated a baseline where the autonomous
vehicle is passive during the information gathering process,
so the autonomous vehicles would have to slow down to

Fig. 9: Cumulative Absolute Control

create a wider gap, inducing larger perturbations on the
background vehicles. According to Fig. 9, the cumulative
absolute control for all three types of vehicles in the active
approach is significantly lower than that in the passive
approach. The reductions in perturbation are respectively
40.36%, 14.33%, and 37.66% for autonomous, human, and
background vehicle. According to Fig. 8, the active approach
generates less extreme velocity deviation for all three types
of vehicles in general, which helps to reduce the intensity
and propagation of traffic wave [41].

Moreover, our baseline is under the assumption that the
autonomous vehicle would overtake under this scenario.
Without active probing, the autonomous vehicle is more
likely to behave quite conservatively, so it will most likely
wait until all of the background vehicles have passed to
switch lanes. This subjects the autonomous and human vehi-
cles to almost a complete stop and a wait time that depends
on the number of consecutive closely spaced background
vehicles behind, meaning that the deviation will continue
to increase if there is no large gap. Our active probing and
influencing approach, on the other hand, is agnostic to this
condition because the autonomous vehicle creates its own
lane-change opportunity.

V. CONCLUSIONS

In this work, we present an active probing approach for
an autonomous agent to actively interact with a human agent
to reveal information about a human’s underlying utility
and to clarify its belief of the human internal model. Our
simulation results in autonomous driving demonstrate how
the gathered information can be leveraged to increase driver
experience and overall optimality compared to a passive
learning baseline method. Future work could include de-
signing optimization that combines probing and generating
adversarial trajectories so that no prior learning is needed.
It could also be worthwhile to relax the assumption that the
human model is static and to empower the autonomous agent
to actively learn the human model’s adaptation policy.
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Toward Multi-Robot Perception Planning for Filming and
Reconstructing Groups of Moving Actors

Skyler Hughes1 Micah Corah2 and Sebastian Scherer2

Abstract— Multi-robot scene reconstruction with multiple
moving targets remains a challenging problem in the field of
aerial multi-robot planning. Particularly difficult is the task of
reconstructing groups of people splitting and merging. State
of the art methods often rely on pre-set formations, limiting
adaptability in cluttered environments, as well as the ability for
the system to explore a wider space of solutions. In addition,
state of the art methods typically do not include reconstruction,
view quality, and inter-robot collision avoidance into account
when planning. This work seeks to formulate the problem of
multi-view reconstruction of groups of people as a perception
planning problem. We solve this—and achieve suboptimality
guarantees—using a combination of value iteration to optimize
views for individual robots and sequential submodular maxi-
mization methods to coordinate the team. We present a novel
submodular objective for cinematography/reconstruction. We
demonstrate single robot planning in a simplified setting and
provide a planning framework for future use.

Index Terms— Multi-Robot Systems, Submodular maximiza-
tion, UAV, greedy planning, perception planning

I. INTRODUCTION

The use of unmanned aerial vehicles (UAVs) has grown
continually in recent years, and they are widely useful as
mobile sensing and camera platforms. UAVs provide the
ability to position a camera anywhere in 3D space, opening
up the door to many possibilities across cinematography,
inspection, and search and rescue. In many of these ap-
plications, it is desirable to acquire multiple view points
of the same object at the same time through the use of
multiple UAVs. Across these applications the need for teams
of robots that are capable of both moving target tracking as
well as achieving diversity in view points for cinematic or
reconstruction purposes is growing.

Use of UAV’s in applications such as filming sports,
unscripted performances, and study of animal groups remain
challenging for current techniques. Group cinematography
for unscripted scenes with groups of moving targets proves
difficult due to the challenges in multi-robot coordination,
defining appropriate objectives, and system constraints. Mod-
ern systems are capable of tracking a single target with a
single robot, as well as multiple robots tracking a single
target [1], but lack multi-target capability. This has produced
systems capable of coordinating multiple robots in cluttered

2 Skyler Hughes is with the Department of Physics and Department of
Computer Science at New Mexico Institute of Mining and Technology, NM,
USA

2 Micah Corah and Sebastian Scherer are with the AirLab, Robotics
Institute, Carnegie Mellon University, Pittsburgh, PA, USA

This work is supported by the National Science Foundation under grant
no. 2024173.

environments that are able to track single targets with di-
versity in viewpoint for pose reconstruction [1]. Methods
like these often rely on formations that simplify the planning
process and ensure good performance in canonical situations
such as [1], [2]. Attempts to break from these limitations
have come in the form of learning based methods [3],
which produce focus on keeping a target in view, without
a view quality metric. Multi-drone tracking of single actors
in highly cluttered environments has been demonstrated [2],
but focuses on single target tracking and collision avoidance,
not view point diversity or coverage. These systems generally
offer limited flexibility in formations and do not yet consider
how to optimize camera views for the purpose of high-fidelity
reconstruction of moving targets.

In sensor planning schemes submodular maximization has
proven to be a powerful technique for solving informative
planning problems such reconstruction, coverage, and track-
ing [4–6], but few works seek to provide realistic sensor
models or objectives for the purpose of filming or recon-
structing moving targets. Roberts et al. [6] utilize objective
submodularity and is capable of global multi-view coverage
optimization for static building reconstruction. Corah [4]
utilize submodularity and related mathematical properties
to derive a number of efficient multi-robot coordination
schemes built on top of submodularity [4], but focuses on
settings other than reconstruction.

In this work we introduce a method that pairs perception
planning methods with cinematic objectives to coordinate
multiple UAVs and provide view-diverse tracking objectives
for multiple moving targets. We leverage submodularity
in our objective formulation along with sequential greedy
planning to achieve bounded sub-optimality guarantees on
performance. Our framework produces planning solutions
that maximize an intuitive view quality metric that captures
view-diversity, target coverage, and target size reconstruction
objectives. Sequential planning and a carefully constructed
objective function allow us to avoid exponential complexity
in planning common in multi-agent problems.

II. PROBLEM FORMULATION

Consider a team of N robots with states xr,t ∈ Xr where
Xr is a subset of the special euclidean group SE(2) at time
t. With a set of actions ur,t ∈ Ur,t where Ur,t is the finite
space of actions available to robot r at time t.

Given a prior distribution of targets (which may be time
varying) Yt, we seek to maximize the submodular quality
metric ξ Eq. 2, for a sequence of actions over the fixed plan-
ning horizon of a L-step look ahead for multiple coordinated
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Fig. 1. System concept showing multiple UAVs covering a number of targets from multiple view angles. UAVs are represented with squares, and blue
semicircles representing the coverage zones of the sensor model. Blue lines indicate paths through the grid, and red dashed circles indicate the movement
range D.

R1

R2

First UAV

t0

t0

Send Plan

Second UAV

Fig. 2. Sequential planning with submodular cinematic objective. UAV’s
coordinate to achieve multiple views of the target.

robots.
The state space is discretized into a 2D grid and 8 sensor

facing angles. We refer to the sensor direction has the
heading of an agent.

A. Motion Model

State transitions are governed by the following motion
model.

xr,t+1 = fr(xr,t, ur,t) (1)

where fr permits state transitions within euclidean distance
D. The transition model also updates the current set of

f ◦
d

f ◦

d

f ◦ = π/2 f ◦ = 3π/2

Fig. 3. UAV sensor model, with two different values of f◦ both facing
east

available actions Ur,t, in order to preserve the distance
constraints and boundary conditions. The set of available
actions may grow or shrink depending on the location of
the state of interest, especially near grid boundaries.

B. Sensor Model

Agents receive observations capable of sensing targets
in its environment, and receiving observations based on its
current state and the state of the environment. Agents are
able to sense targets within a distance d and within angle
f◦/2 of the agent’s heading where f◦ is the field of view of
the view cone sensor. Heading is discretized into 8 cardinal
directions. Rotation clock-wise(CW) or counter-clock-wise
(CCW) constitute the actions capable of changing heading.

An agent with d = ∞ and f◦ = 360◦ would be able to
observe the entire environment at all times. Sensible values
of d and f◦ are chosen based on typical capabilities of real
world systems. Fig. 3 showcases the sensor model with two
values of f◦.
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Fig. 4. Target Representation

View-Diversity Coverage

Large Target Size

Fig. 5. Summary of desired qualities we capture with our objective.

C. Target Representation

Targets are represented by polygons in the 2D plane. Each
target y is parameterized by the tuple (c⃗y, Fy, sy) where c⃗y
is the 2D position of the target, Fy is the set of faces that
compose the target, and sy is the apothem of the target. Each
face f ∈ Fy also has associated with it a normal vector η⃗f
that will be utilized in the objective definition 6. See Fig. 4.

D. Objective Functions

We seek to express the following behaviors with our
objective formulation.

• View Diversity - UAVs should arrange themselves such
that multiple views of the target(s) are visible.

• Maximum target size - UAVs should position them-
selves such that targets have a large size on the image
sensor.

• Maximum target coverage - UAVs should attempt to
have all targets in view at all times.

These behaviors are summarized in Fig. 5.
We capture these qualities by maximizing the objective

Q over a sequence of actions in the finite time horizon
t ∈ [0...T ] for all robots, given a prior target distribution
(which may be time varying) Yt. This yields the overall
quality metric ξ.

ξ =
T∑

t=1

max
ur,t∈Ur,

Q(ur,t) (2)

We define objective Q as:

Q(ur,t) =
∑
yi∈Yt

ϕy(ur,t). (3)

Where ϕy represent the total view quality over the set
of targets. In order to achieve bounded sub-optimality guar-
antees afforded by using submodular maximization [5], we
seek a submodular and monotonic objective function. Such
a function ϕ is demonstrated in 4:

ϕy(ur,t) =
∑
f∈Fy

√
γf (ur,t) (4)

Where γ accumulates the sensing quality for a particular
face f of a target across all robots.

Let the distance between the position of the robot Pr and
the location of a particular face f on target y be defined:

⃗dr,f = (c⃗y + s⃗f )− P⃗r (5)

γf (Ur,t) =
∑

r∈Ur,t

αINVIEWf (ur,t)
dr,f · η⃗f
||dr,f ||3

(6)

Where || · || is the 2-norm, INVIEWf returns one if the
face f would be detected by taking the action ur,t at time
t by robot r, and zero otherwise, and α is the number of
pixels per unit area at one meter.1

E. Planning Approach

Singh et al. [7] were the some of the first to develop se-
quential planning methods for multi-robot sensing problems
based on submodular maximization. Submodular maximiza-
tion is a class of approximation algorithms for solving a
variety of monotone and submodular maximization problems
that show up frequently in robotics. As presented in [4] it can
be applied to a wide range of problems that can be modeled
by a suitable partition matroid.

We propose a similar architecture as in [4] utilizing
sequential greedy assignment for multi-robot coordination.
In these algorithms, each robot plans sequentially using an
optimal single robot planner to maximize an objective. Co-
ordination in this manner provides performance guarantees
for overall system performance given that the single robot
planner is optimal and the objective function is submodular
and monotonic [4].

III. METHODS

A. Single Robot Planner

We propose the use of a value iteration algorithm to suffice
as the single robot planner as previously used in [8, 9]. To
accomplish this we model the problem as a markov decision
process with the movement and sensor models presented. For
our experiments we utilize a simple coverage objective that
provides a fixed reward for each target INVIEW. The solver
was implemented in Julia using POMDPS.jl [10].

1Referring to (4), α will have no effect on the objective except as a
scaling factor.
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Fig. 6. Move distance comparison. Computed trajectory for a single robot (denoted by view cones). Target locations are represented by large blue circles.
We can see that the algorithm achieved a lower Bellman residual in the D = 2 case.

Several qualitative experiments were performed to evaluate
the trajectories produced by the solver. In all trials the agent
starts in the location (1,1) facing north in a 30x30 grid.
Static targets are placed in small clusters at various locations
throughout the grid. The optimal policy (π∗) is found using
the value iteration solver [10], until Bellman residual (ϵ) is
less than 1× 10−6.

We also compare trajectories for different values of the
movement constraint D. See Fig. 7.

IV. RESULTS

A. Single Robot Planner

The single robot planner was demonstrated to solve the
MDP formulation of the problem and successfully produce
valid trajectories as shown in figures 6-7. From this we gather
some observations.

• Bellman residuals (ϵ) converged to less than 1 × 10−6

for all experiments.
• Solver converged after 90 iterations on average.
• Computation time increased dramatically with increases

in movement distance D.
• Planner correctly prioritizes the largest groups.
• Planner has no provision for total coverage and never

leaves highest reward cluster.

V. CONCLUSIONS

We have demonstrated an optimal single robot planner
for the motion and sensing models described in a grid
setting. The optimality is evidence by the convergence of
the value iteration algorithm and the low Bellman residuals.
The algorithm demonstrated here satisfies the optimality
requirement needed by submodular maximization in order
to provide bounded-suboptimality of the entire path [5].
However the algorithm as implemented is computationally

Fig. 7. Computed trajectory for a single robot (denoted by view cones).
Target locations are represented by large blue circles. Plan quickly converges
to the largest of the available groups, maximizing coverage across the view
cone.

intensive, lacks machinery for total target coverage, and does
not used the proposed cinematic objective.

In the future, we intend to implement the perception
objective described in Sec. II-D as an improvement to the
coverage objective demonstrated in the the results. We will
also integrate that single-robot planner with greedy multi-
robot coordination as proposed. We plan to compare the
performance of our method against representative formation
planners such as in [1] using reconstruction metrics such as
chamfer distance. To facilitate this we will utilize AirSim as
a rendering component of the planning pipeline.
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Spatio-temporal Motion Planning for Autonomous Vehicles with
Trapezoidal Corridors and Bézier Curves

Srujan Deolasee1, Qin Lin2, and John M. Dolan3

Abstract— Motion planning in dynamic environments is one
of the key modules in autonomous driving systems. Safety-
guaranteed motion planning is critical for self-driving cars to
generate collision-free trajectories. A layered motion planning
approach with decoupled path and speed planning is widely
used for this purpose. This approach is prone to be subop-
timal in the presence of dynamic obstacles. Spatial-temporal
approaches deal with path planning and speed planning simul-
taneously; however, the existing methods only support simple-
shaped corridors like cuboids, which restrict the search space
for optimization in complex scenarios. We propose to use
trapezoidal prism-shaped corridors for optimization, which sig-
nificantly enlarges the solution space compared to the existing
cuboidal corridors-based method. Finally, a piecewise Bézier
curve optimization is conducted in our proposed corridors.
This formulation theoretically guarantees the safety of the
continuous-time trajectory. We validate the efficiency and ef-
fectiveness of the proposed approach in numerical simulations.

Index Terms— Autonomous vehicle navigation, Motion and
Path Planning

I. INTRODUCTION

Autonomous vehicles are promising to revolutionize trans-
portation systems and change how people travel. The vehicle
continuously interacts with other agents on the road, like the
surrounding cars, pedestrians, ongoing constructions, etc. To
interact with these participants, a self-driving car adjusts its
path and speed over time based on perception information.
This task is modelled using a trajectory optimization problem
satisfying safety and dynamic feasibility constraints, while
giving importance to comfort. However, solving the original
constrained optimization problem is intractable in real-time.

To respond to other road participants and to fulfill the
real-time performance requirement, two major trajectory-
generation frameworks are proposed in the literature: spatio-
temporal planning [1]–[3] and path-speed decoupled plan-
ning (also called layered planning) [4]–[6]. These two ap-
proaches share the same hierarchical ideas, i.e., finding a
heuristic solution as a reference first and optimizing to refine
it later.

Spatio-temporal planning considers spatial and temporal
maneuvers simultaneously. The spatial parameters are given
using two dimensions. A third time dimension is used as
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Fig. 1: Example of yielding scenario and its S−L−T graph

the predicted trajectory is time-profiled and can be gen-
erated as a series of spatio-temporal obstacles. Thus, the
search and optimization processes are completed in a three-
dimensional space. Correspondingly, the layered planning
decoupled method decomposes a 3D planning problem into
two stages: path planning and speed planning. In the first
stage, path planning is executed to generate a path to avoid
static, oncoming, and low-speed obstacles. In the second
stage, we generate a speed profile along the path to keep a
safe distance from dynamic obstacles which block the formed
path. It can be argued that the layered planning approach
offers more flexibility in both path and speed optimization in
the sense that a lot of trajectories are generated for choosing
the best option. However, this approach is not optimal
with the appearance of dynamic obstacles. Conversely, the
direct 3D optimization methods attempt to find the optimal
trajectory by theoretically exploring all the convex feasible
space. Hence, an optimal trajectory is found even in the
presence of dynamic obstacles. The most common approach
to speed planning is to use an S − T graph for describing
the relationship between station and time. This method does
not consider the lateral direction directly, which is why we
perform a direct optimization in the 3D S − L− T space.

One of the most important parts of motion planning for
autonomous vehicles is ensuring safety in continuous time
space, i.e., safety between any two consecutive sampling
timesteps must be guaranteed. Many existing speed planning
methods use discrete time instants to impose safety con-
straints. However, this technique does not assure safety over
the whole planning horizon. While refining the time interval
solves this problem, it leads to more decision variables,
higher computation costs, and a lack of theoretical guarantee.
To address this problem, the spatial corridor (i.e., convex
free-space) is widely applied in trajectory generation. We
are motivated by these efforts to further extend the spatial
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corridor to the spatio-temporal domain to cope better with
dynamic obstacles. The convex hull property of Bézier
polynomials is leveraged to enforce that the continuous
trajectory always falls into a safe region. In addition, such
an optimization problem’s solution space is enlarged via our
proposed trapezoidal-prism shaped corridors.

The main contributions of our work can be briefly de-
scribed as follows:

1) We propose an efficient convexification algorithm to
construct 3D convex-feasible regions consisting of
trapezoidal-prism shaped corridors.

2) We provide a sufficient condition on coefficients of the
Bézier polynomials to guarantee the trajectory’s safety
in trapezoidal-prism corridors theoretically. Compared
with existing cuboidal corridors [1], the condition is
relaxed and the solution space is significantly enlarged,
which leads to a higher chance of finding an optimal
solution.

The remainder of this paper is structured as follows. We
review related works in Sec. II. We introduce necessary
notations and background materials on the S−L−T graph
for speed planning and Bézier polynomials in Sec. III. The
3D convex safe region construction is presented in Sec. IV.
In Sec. V, we present our optimization formulation. The
simulation results and analysis can be found in Sec. VI. We
make concluding remarks in Sec. VII.

II. RELATED WORKS

A. Speed Planning for Autonomous Vehicles

Speed planning techniques can be classified into three
categories: 1) search and optimization; 2) sampling lattices
and selecting the minimum-cost trajectory; 3) approximated
optimization. The first method searches for the best candidate
speed profile and optimizes the curve for smoothness. This
method is commonly adopted for optimality and efficiency.
Xu et al. first presented a method of selecting the best
lattice solution and conducting a post-optimization [5]. The
Baidu EM motion planner uses dynamic programming for
search and piecewise monomial polynomials for optimization
[7]. In [8], based on a reference speed profile generated
by a heuristic search, the trajectory is optimized using
Piecewise-Jerk Speed Optimization with vehicle dynamics as
constraints. Yang et al. project the collision-free constraints
in the 3D spatio-temporal domain to the 2D space domain
[9]. For the second category, different speed lattices are
sampled and combined with path lattices. The generated local
spatial-temporal trajectories are evaluated and the one with
minimum cost is selected. Related works can be found in
[4]–[6]. Most works in the first and the second categories
conduct search and optimization directly in the S − T
graph. For the third category, a vehicle dynamic model is
directly considered in a sequential optimization problem. Liu
presents a novel slack convex feasible set algorithm [10].
Some control-related optimization methods also fall in this
category, such as model predictive control (MPC) [11] and
constrained iterative linear quadratic regulator (CiLQR) [12].

The advantage of these approaches is that they mitigate
the planning and control inconsistency problem, since the
dynamic model has already been considered in the planning
layer. However, the disadvantage is the high computation
cost. Our proposed planner fulfills the real-time requirement,
as discussed further in Sec. VI.

B. Corridor generation for Autonomous Vehicles

The spatial corridor (i.e., convex free-space) is widely
applied in trajectory generation. Zhu et al. propose a convex
elastic smoothing algorithm which can generate a collision-
free “tube” around the initial path [13]. Erlien et al. consider
not only spatial information but also vehicle dynamics to
construct the convex tube [14]. Both of these works, however,
generate the corridor in a static environment and cannot deal
with dynamic obstacles. Liu et al. find a convex feasible
set around the reference trajectory and leverage the convex
feasible set to accelerate the non-convex optimization [15].
However, the computation complexity is still prohibitively
high for real-time applications. [16] propose the use of
trapezoidal corridors for convexifying 2D space in the S−T
graph. Zhang et al. present a general convex spatio-temporal
corridors-based approach in [17]. Xu et al. propose using
a modified vertical cell decomposition approach for speed
planning in [18]. Even though these works consider the pres-
ence of dynamic obstacles, they plan the trajectory in a 2D
space, which hinders their performance in complex scenarios.
Ding et al. use the spatiotemporal semantic corridor (SSC)
method to uniformly express obstacles and traffic rules in the
3D S−L−T space [1]. However, restricting the shape of the
corridors to simple cuboids drastically limits the search space
for optimization in complex scenarios. Our proposed method
of extending trapezoid-shaped 2D corridors in S − T to 3D
S−L−T space significantly enlarges the solution space for
trajectory optimization. This enables us to extend the spatial
corridor to the spatio-temporal domain to cope with dynamic
obstacles, while meeting the real-time requirement.

C. Bézier Polynomials-Based Planning

In [19], Werling et al. use a quintic monomial polynomial
for both the longitudinal and lateral direction based on
optimal control theory. However, the quintic monomial poly-
nomial is not suitable for the optimization for the following
two reasons: 1) one segment of the polynomial only has
limited representation ability and may fail to represent a
highly constrained maneuver, and 2) the monomial basis
polynomial is not well suited to problems with complex
configuration space obstacles and dynamical constraints. In
previous works on monomial basis polynomial trajectories
[7], [19], the constraints are only enforced/checked on a
finite set of sampled points. However, this method may fail to
detect collision between the other sampled points, and thus
cannot provide any guarantee on safety and feasibility. In
[20], a smooth and continuous speed profile is computed
by proper curve concatenation without optimization and
dynamic obstacles. In the area of unmanned aerial vehi-
cles (UAVs), Bézier polynomials combined with rectangular
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corridors are widely used [21], [22]. Ding et al. borrow
this idea and propose to use similar approaches for motion
planning of unmanned ground vehicles (UGVs) [1]. Using
the piecewise Bézier curve for two-dimensional trajectory
(i.e., the longitudinal direction s(t) and lateral direction
l(t)) along the reference lane helped mitigate the above-
mentioned limitations. The reason for using the piecewise
Bézier curve is its convex hull property and hodograph
property [21]. However, due to dynamic traffic participants,
the safe regions of UGVs are time-varying and different from
scenarios considered for UAVs. Accordingly, corridors for
Bézier curves are also time-varying, and the common convex
hull property does not hold. Therefore, it becomes non-
trivial to directly transfer corridor construction methods from
UAVs to UGVs. For the S-T graph of UGVs, the boundaries
of obstacles are usually straight lines or parabolic curves,
since the accelerations of obstacles are usually assumed
to be constant over the planning horizon. For UAVs, the
obstacles can be represented as circles, rectangles, and poly-
gons, therefore rectangular corridors are easily generated by
cube inflation. The challenges lie in generating collision-free
convex corridors and enforcing Bézier curves in these time-
dependent corridors for safety. In our work, we propose to
use time-dependent trapezoidal prism-shaped corridors and
give sufficient conditions to enforce Bézier curves in these
time-dependent corridors for safety. It is theoretically proved
that the trapezoidal prism-shaped corridors can enlarge the
solution space for improved optimization.

III. S − L− T GRAPH AND TRAJECTORY
REPRESENTATION

In this section, we briefly introduce necessary background
materials on the S − L− T graph, Bézier polynomials, and
trajectory representations using piecewise Bézier polynomi-
als.

A. S − L− T Graph

Speed planning decides when an autonomous vehicle
should reach a point from a planned path. To do so, a speed
profile can be generated to map timestamps to space. Werling
et al. transformed the problem of structured road trajectory
planning from the Cartesian to the Frenet coordinate system
[19]. A Frenet frame is a dynamical reference frame con-
structed from a reference lane along the road. Typically, a
route planner is used for generating the reference lane. Since
human-like driving behavior can typically be decoupled into
lateral movements and longitudinal movements, modeling the
free-space in these two directions is a more natural repre-
sentation than modeling free-space in Cartesian coordinates.
This 3D space can be represented with an S −L− T graph
which consists of the longitudinal direction S, the lateral
direction L, and the time T . The longitudinal and lateral
directions are with respect to a Frenet frame. Finding the
optimal trajectory in a Frenet frame is essentially a 3D
constrained optimization problem.

In the decoupled speed planning approach, S − T and
S − L graphs have been used to depict a scenario on the

road. The S − L graph describes the longitudinal coordi-
nate against the lateral coordinate, while the S − T graph
illustrates the change of longitude with respect to time. The
vehicle’s trajectory is then determined by combining both the
graphs. Similarly, the S − L− T graph represents all traffic
participants’ positions, including the ego vehicle and the
surrounding vehicles, simultaneously in all three dimensions.
The predicted stations of dynamic obstacles can also be
projected.

B. Representing Dynamic Agents in S − L− T graph

As an example, in Fig. 1a, we take the case of two dynamic
obstacles moving with constant speeds for simplicity. The
scenario is described as follows: Vehicle A and the ego
vehicle are driving in a lane which has a static obstacle (e.g.:
a construction site) in its lane after some distance along the
road. Thus, both of them need to change their lanes. The car
C, however, is in a safe lane and continues driving straight
with constant velocity. We assume that car A has constant
longitudinal and lateral velocities for simplicity. We observe
that the blue volume denoting each obstacle in the S−L−T
graph is a parallelepiped having a non-zero slope 1) in four
planes if lateral velocity is non-zero (e.g.: car A), and 2) in
two planes if lateral velocity is zero (e.g.: car C). The side
length of the parallelogram along the S axis is equal to the
length of the vehicle plus half the length of the ego vehicle
to give a safety region, and that along the L axis is the width
of the vehicle plus the safety region. The station profile of
the ego vehicle on the S−L−T graph reflects its distances
from obstacles with respect to time and its decisions such
as yielding, overtaking, following, etc. To ensure safety, the
feasible space of the speed curve should not have any overlap
with the regions projected by obstacles. The solution space
is non-convex in general. Constructing corridors in case 1 is
challenging, as four faces have non-zero slope.

In this work, we propose an over-approximation of the
obstacles like car A in Fig. 1b, and representing them as
perfect parallelepipeds, as in obstacles like car C. To prevent
any compromise of safety, the over-approximation adds some
volume on any two opposite faces having non-zero slopes so
as to make their slopes zero in the newly constructed polyhe-
dron. The faces chosen for the over-approximation step are
decided by a simple minimization of the volume of search
space compromised in the process. Intuitively, if the lateral
velocity is less than the longitudinal velocity of the vehicle,
the corresponding faces are chosen for over-approximation,
as can be seen in Fig. 2. The over-approximation enables us
to leverage 2D corridor construction algorithms and extend
them to 3D. This ensures the complexity of the algorithm
is low enough for the algorithm to be feasible for real-time
planning. More details about this process are covered in Sec.
IV.

C. Bézier Polynomials and Properties

A Bézier polynomial is a polynomial function represented
by linear combinations of Bernstein bases. The nth-order

191



Bézier polynomial is written as

B(t) = c0b
0
n(t) + c1b

1
n(t) + · · ·+ cnb

n
n(t) =

n∑
i=0

cib
i
n(t)

where the Bernstein bases satisfy bin(t) = Cn
i · ti · (1−

t)n−i, t ∈ [0, 1]. The coefficients of the polynomial ci(i =
0, 1, . . . , n) are also called control points. Compared to
monomial polynomials, Bézier curves have the following
properties:

• The time interval is defined on t ∈ [0, 1].
• The Bézier polynomial starts at control point B(0) = c0

and ends at B(1) = cn.
• Convex hull property: The Bézier curve B(t) is

confined within the convex hull of control points. The
convex hull property is suitable for the problem of con-
straining the curve in a convex free-space. Specifically,
the Bézier curve B(t)) is guaranteed to be entirely
confined in the convex hull supported by the control
points c. In other words, by constraining c inside the
convex free-space, the resulting curve is guaranteed to
be collision-free.

• Hodograph property: The hodograph property facili-
tates constraining high-order derivatives of the Bézier
curve, which is useful for enforcing dynamical con-
straints. By the hodograph property, the derivative of
B(t), Ḃ(t), can also be written as a Bézier polyno-
mial with control points c1i = n · (ci+1 − ci) , i =
0, 1, . . . , n−1. In this way, we are also able to calculate
arbitrary derivatives of B(t). Similarly, control points of
dl+1B(t)
dtl+1 and dlB(t)

dtl
satisfy cl+1

i = (n− l)
(
cli+1 − cli

)
.

By applying the convex hull property to the derivative
Bézier curve, the entire dynamical profile of the original
curve B(t) can be confined within a given dynamical
range.

D. Trajectory Representation using Bézier Polynomials

To mitigate the numerical instability issue, piecewise
Bézier polynomials with lower orders are used instead of
using a high-order Bézier polynomial for the whole planning
horizon. Each piece of the trajectory is associated with one
trapezoidal-prism corridor. Note that B(t) is defined on a
fixed time interval [0, 1]. For a whole trajectory with m+ 1
pieces, in each piece [Tk, Tk+1] (k = 0, 1, . . . ,m), we use a
scaling transformation and translation transformation in the
time domain to map it into the interval [0, 1] [13]. Then, the
whole piece-wise trajectory in one dimension σ ∈ {s, l} can
be represented as

fσ(t) =



h0B0

(
t−T0

h0

)
, t ∈ [0, T1]

h1B1

(
t−T1

h1

)
, t ∈ [T1, T2]

...

hmBm

(
t−Tm

hm

)
, t ∈ [Tm, Tm+1] .

where hi is the scaling transformation factor and Ti is the
translation transformation factor for i = 0, 1, . . . ,m with
setting T0 = 0.

IV. CORRIDOR GENERATION

Since the speed optimization problem is non-convex, it
is infeasible to solve it directly during online planning. As
explained before, a convexification algorithm is needed to
construct convex corridors for solving the optimization. In
this section, we cover the corridor construction procedure in
greater details. A reference trajectory is often used to provide
a warm start to the optimization process. Having a feasible
reference trajectory is important for the next optimization
problem as we penalize the deviation from the references in
our cost function. In this work, we use simple piecewise
functions for generating valid reference waypoints in the
configuration space of the ego vehicle.

A. Piecewise Convex Safe Regions Representations

One of the main challenges of motion planning is that
the free space is nonconvex. Suppose the whole safe re-
gion is divided into m + 1 pieces with time intervals
[T0, T1] , . . . , [Tm, T ] and T = Tm+1, with each interval
corresponding to a convex safe region. The details of such
a convexification algorithm will be introduced in the next
section. The k-th convex safe region in S−L−T space can
be represented as

Sk = { (ti, si, li) |

pk0 + hkp
k
1

ti − Tk

hk
≤ si ≤ pk0 + hkpk1

ti − Tk

hk
,

lbeg ≤ li ≤ lend,

ti ∈ [Tk, Tk+1] }

where si and li are the longitudinal and lateral coordinates
of the ith control point respectively, pk0 , p

k
1 are bias and skew

of the lower bound and pk0 , p
k
1 are those of the upper bound.

hk denotes the length of the k-th time interval and satisfies
hk = Tk+1 − Tk, k = 0, 1, . . . ,m.

Then, the whole safe region is the union of a set of
piecewise-safe sub-regions: S = S0 ∪ · · · ∪ Sm. The speed
planning is safe if ∀t0 ∈ [0, T ], s (t0) ∈ S, l (t0) ∈ S, which
is equivalent to for t0 ∈ [Tk, Tk+1] , s (t0) ∈ Sk, l (t0) ∈
Sk, k = 0, 1, . . . ,m, i.e.,

pk0 + hkp
k
1

t0 − Tk

hk
≤ s (t0) ≤ pk0 + hkpk1

t0 − Tk

hk

lbeg ≤ l (t0) ≤ lend

B. Construction of Piecewise-Convex Safe Regions

Algo. 1 outlines the 3D trapezoidal corridor genera-
tion process. The original non-convex space with over-
approximated dynamic agents is sliced along the L axis at
the starting or ending L coordinates of any obstacles in the
S−L−T graph. This gives us 3D chunks of the non-convex
space which can be projected in a 2D S − T graph without
the loss of any search space. E.g.: In Fig. 2a, any slices at
L coordinates in the range [1, 3) will give us the 2D S − T
cross section as seen in Fig. 2c. Similarly, any slice at an L
coordinate between [3, 6.7) will give us the S − T graph as
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(a) S − L− T graph (b) bird’s eye view with over-
approximation (red)

(c) S − T graph for l ∈ [1, 3) (d) S − T graph for l ∈ [3, 6.7)

Fig. 2: Scenario in Fig. 1b after over-approximating car A

seen in Fig. 2d. The inputs to Algo. 1 are an array of upper
and lower bounds in the S and L direction with respect to
the ego vehicle and the road. The size of these arrays (i.e.,
the number of slices) depends on the number of obstacles in
the environment and their representation in the S − L − T
graph. For each slice, we have lower and upper bounds on
the S axis with respect to the ego vehicle. They are measured
over a time horizon with discrete time interval ∆. For each
slice, we construct 2D convex corridors in the corresponding
S − T graph. In this work, we adopt a trapezoidal corridor
generation algorithm [16] for constructing the 2D convex
corridors. The modified algorithm is presented as Algo. 2.

Algo. 2 outlines the construction of 2D piecewise-convex
safe regions in any given S − T cross-section along the
L axis. The lower and upper bounds in the S direction
serve as inputs to this algorithm. We refer readers to [16]
for further details about the working of Algo. 2. As a
subroutine in Algo. 3, SingleRegionCalculate() computes
the region’s bias and skews of the lower bound and the
upper bounds. In the loop of Algo. 2 (Lines 4-15), two
consecutive meta-pieces are evaluated iteratively. If they can
form a new skew (of upper bound or lower bound) that differs
significantly from the previous region (see the condition in
Line 7, Algo. 2), a new single region will be established.
A key modification in our work is that in the subroutine
SingleRegionCaculate(), we also initialize the upper and
lower boundaries of the regions in the L direction (Algo. 3.
Lines 6,7). Our over-approximation step and the design of
Algorithm 1 guarantee that these boundaries are the same
for all 2D convex regions generated by algorithm 2. Thus,
we essentially get 2D trapezoidal-shaped corridors dragged
along the L axis to form 3D trapezoidal prism-shaped convex
corridors.

Finally, RegionSplit() is used to check the length of each
2D convex region. If it is above a user-defined threshold (e.g.,

1 s in our experimental setting), it will be split into multiple
sub-regions, for which the time intervals are all below the
threshold. This refinement operation aims to avoid underfit-
ting. Conversely, the abstraction operation RegionMerge()
aims to merge the small regions into a larger one, which
aims to avoid overfitting and speed up the process.

This step of 2D corridor generation is repeated for all
distinct boundaries in our S−L−T graph (Line 2, Algo. 1).
The initialization of bounds along the L axis ensures that we
get 3D trapezoidal-shaped convex corridors. Since the length
of the corridors in the L direction is given by the starting
or ending of the obstacles in the S − L − T space, we can
guarantee the safety of all the corridors generated using Algo.
1. Note that for the space divided by obstacles, we select
the unique space enclosing the comfort-optimal reference
trajectory. This step is performed by the SelectCorridors()
method. This completes our 3D corridor generation process.
Constructing trapezoidal corridors in the 2D cross-sections
of our S − L− T graph ensures that the 3D corridors have
enlarged solution space as compared to the cuboidal corridor
generation presented in [1].

Algorithm 1: Piecewise 3D Convex Regions Gener-
ation
Input:
obs, lbs[obs], ups[obs], lbl[obs], upl[obs], nums,∆

Output: 3D Region
Initialize: for i← 0 to obs do

corridor =
Convexify2D(lbs[i], ubs[i], lbl[i], ubl[i], nums,∆)
new corridor.append(corridor)

end
final corridor = SelectCorridors(new corridor)
Return final corridor

V. PIECEWISE BÉZIER POLYNOMIAL
OPTIMIZATION

In this section, we discuss more about the limitations of
using the cuboidal corridors. We then discuss the safety
enforcement in our trapezoidal prism-shaped corridors. The
formulation of quadratic optimization using the newly de-
signed convex solution space is introduced thereafter.

A. Limitations of Safety Enforcement in Cuboidal Corridors

As discussed previously in Sec. III C, the convex hull
property of the Bézier curves is used to enforce that the
trajectory in the S − L − T graph stays in the safe region
S. We first formally define a corridor for our trajectory
generation:

Definition V.1. Let the coefficients of the Bézier Polynomial
be ci ∈ Ω, i = 0, 1, . . . , n. Here, each control point has two
dimensions - {S,L}. These control points lying in the safe
region S form a subset Scor ⊆ S. Then, the subset is called
a corridor.
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Algorithm 2: Convexify2D
Input: lbs, ubs, lbl, ubl, nums,∆
Output: regions
Initialize: regions[0], i = 0, j = 1 /* i and j

are counters for meta-pieces and
resulting convex regions,
respectively */

SingleRegionCalculate(region, 0, lbs[0], ubs[0], lbs[1],
ubs[1], lbl, ubl)

regions.append(region)
for i← 2 to nums− 1 do

lskew = (lbs[i]− lbs[i− 1])/∆ /* lower
bound’s skew for two
consecutive meta-pieces */

uskew = (ubs[i]− ubs[i− 1])/∆ /* upper
bound’s skew */

if ||lskew − regions[j − 1].lskew|| >
ϵ or ||uskew− regions[j− 1].uskew|| > ϵ then

regions[j − 1].tend = i
regions[j − 1].t =
(regions[j−1].tend−regions[j−1].tbeg)∗∆
SingleRegionCalculate(region, j, lbs[i], ubs[i],
lbs[i+ 1], ubs[i+ 1], lbl, ubl)

regions.append(region)
j ← j + 1

end
end
regions[j − 1].tend = nums− 1
regions[j − 1].t =
(regions[j − 1].tend − regions[j − 1].tbeg) ∗∆
RegionSplit(regions)
RegionMerge(regions)
Return regions

Ding et al. presented the construction of cuboidal corridors
in the 3D S−L−T graph in [1]. Constraints of the control
points of cuboidal corridors are given by the following
proposition:

Proposition V.1. If a trajectory has control points in each
time interval satisfying cki ∈ Ωk

cub = {ck|pk0 + hkp
k
1 ≤

ck,s ≤ pk0 , l
k
beg ≤ ck,l ≤ lkend, i = 0, 1, . . . , n, k =

0, 1, . . . ,m}, f(t) is guaranteed to be safe, and the upper
bounds and lower bounds form cuboidal corridors Scub.

The proof of safety enforcement in rectangular corridors
can be found in [16], and can be easily extended to another
dimension L.

The problem of using cuboidal corridors in the S−L−T
graph is that when the bounds of corridors in the S direction
meet pk

0
+ hkp

k
1 > pk0 , there is no feasible solution of the

optimization problem and the planner will fail. In order to
avoid this case, the time intervals of the k-th corridors should
satisfy hk ≤ pk

0−pk
0

pk
1

.
In [1], Ding et al. proposes a seed generation and cube

inflation method to adjust time intervals. However, this

Algorithm 3: Single Region Caculate
Input:
region, j, lbs[i], ubs[i], lbs[i+ 1], ubs[i+ 1], lbl, ubl

Output: region /* updated region */
region.tbeg = j
region.lskew = (lbs[i+ 1]− lbs[i])/∆
region.lbias = lbs[i]
region.uskew = (ubs[i+ 1]− ubs[i])/∆
region.ubias = ubs[i]
region.lbeg = lbl
region.lend = ubl

method will generate a significant number of corridors and
optimized variables, which leads to a high computation cost.
In addition, if ∃ pk1 > 0 or pk1 > 0 the safe regions are not
fully covered by cuboidal corridors. As a result, constraints
on control points to enforce the station curve in cuboidal
corridors are overtightened with reduced solution space (see
the illustrations in Fig. 3(a) and 3(c) for examples of this in
2D). In the next subsection, we will introduce the safety
enforcement for our proposed trapezoidal-prism corridors
with enlarged solution space.

B. Safety Enforcement in Trapezoidal-Prism Corridors

The sufficient conditions of control points ci to keep
the longitudinal and the lateral trajectory safe and in our
proposed trapezoidal-prism corridors are built upon the fol-
lowing lemma.

Lemma V.1. Let M ∈ R(n+1)×(n+1) denote the transition
matrix from the Bernstein basis

{
b0n(t), b

1
n(t), . . . , b

n
n(t)

}
to the monomial basis

{
1, t, t2, . . . , tn

}
. We have Mi,0 =

1, 0 ≤ Mi,j ≤ 1, i = 0, 1, . . . , n, j = 0, 1, . . . , n.

The proof can be found in [16].
We leverage the following theorem meant for 2D trape-

zoidal corridors to construct 3D trapezoidal prism-shaped
corridors.

Theorem V.1. For a trajectory, if it has control points in
each time interval satisfying cki ∈ Ωk, where Ωk = {ck|pk0 +
hkp

k
1Mi,1p

k
1 ≤ ck,si ≤ pk0+hkpk1Mi,1, l

k
beg ≤ ck,li ≤ lkend, i =

0, 1, . . . , n, k = 0, 1, . . . ,m}, f(t) is guaranteed to be safe.
The upper and lower bounds in the S and L directions help
form a trapezoidal prism-shaped corridor Strp.

The proof for the 2D case of the above theorem can
be found in [16], and can be easily extended to another
dimension L.

In Theorem 1, conditions on csi are pk0 + hkp
k
1Mi,1p

k
1 ≤

ck,si ≤ pk0 + hkpk1Mi,1. Compared to the safety enforce-
ment in cuboidal corridors in Proposition 1, we have pk0 +

hkp
k
1Mi,1 ≤ pk0 + hkp

k
1 and pk0 + hkpk1Mi,1 ≥ pk0 . The

advantage of having trapezoidal corridors is twofold: i) By
the proof of pk0 + hkp

k
1Mi,1p

k
1 ≤ ck,si ≤ pk0 + hkpk1Mi,1,

the lower boundaries are guaranteed to be smaller than the
upper boundaries all the time. Recall that for the rectangular
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corridors, we need to always check hk ≤ pk
0−pk

0

pk
1

; ii) The con-
straints are relaxed, therefore the solution space is enlarged
compared with the rectangular corridors (see the illustration
for the comparison in Fig. 3).

C. Trajectory Optimization Formulation

The objective function is established as

J = Js + Jl

Js = w1

∫ T

0

(s(t)− sr(t))
2
dt+ w2

∫ T

0

(ṡ(t)− vrs)
2
dt

+ w3

∫ T

0

s̈(t)2 dt+ w4

∫ T

0

...
s (t)2 dt+ w5 (s(T )− sr(T ))

2

Jl = w6

∫ T

0

(l(t)− lr(t))
2
dt+ w7

∫ T

0

(
l̇(t)− vrl

)2
dt

+ w8

∫ T

0

l̈(t)2 dt+ w9

∫ T

0

...
l (t)2 dt+ w10 (l(T )− lr(T ))

2

(1)
where sr(t) and lr(t) are the reference longitudinal and lat-
eral trajectories, and vrs and vrl are the reference velocities in
the two directions. For Js and Jl: The first term penalizes the
deviation from the reference. The second one penalizes the
deviation between the actual and reference speed. The third
and fourth terms penalize acceleration and jerk, respectively.
The last term penalizes the deviation of the ending station
from the reference. We used Optuna [23] for tuning all the
10 parameters for one scenario. These weights were further
adjusted manually to solve the optimization of all the various
scenarios tested.

The optimization considers the following constraints:
• Boundary Constraints: The piecewise curve starts from

fixed position, speed, and acceleration, i.e.,

c0,li h
(1−l)
k =

dlf(t)

dtl

∣∣∣∣
t=0

, l = 0, 1, 2,

where ck,li is the control point for the lth-order deriva-
tive of the k-th Bézier curve. Note that ck,li has two
dimensions: {S,L}.

• Continuity Constraints: The piecewise curve must be
continuous at the connected time points for position,
speed, and acceleration.

ck,ln h
(1−l)
k = ck+1,l

0 h
(1−l)
k+1 , l = 0, 1, 2, k = 0, 1, . . . ,m−1

• Safety Constraints: With our proposed trapezoidal-prism
corridors, safety constraints for the longitudinal dimen-
sion of the control point can be given as

pk0+hkp
k
1Mi,1 ≤ ck,0i ≤ pk0+hkpk1Mi,1, k = 0, 1, . . . ,m

and those for the lateral dimension of the control point
can be given as

lbeg ≤ ck,0i ≤ lend

• Physical Constraints: The physical constraints under
consideration include the limit of a vehicle’s velocity,

acceleration, and jerk. We can use the hodograph prop-
erty of a Bézier curve to calculate velocity, acceleration,
and jerk. The constraints are given by

βk,1 ≤ ck,li ≤ βk,1

βl ≤ ck,li ≤ βl, l = 2, 3

where k = 0, 1, . . . ,m and it follows that ck,l+1
i = (n−

l)
(
ck,li+1 − ck,li

)
. The upper bounds βk,1 are determined

by speed limits on road and centripetal acceleration
constraints. Let acm be the maximum acceleration per-
mitted and κk the maximum curvature of the path
for t ∈ [Tk, Tk+1] (see [24] for details). The lateral
acceleration constraints are given by

ck,li ≤ βk,1 =

√
acm
κk

.

The bounds on longitudinal and lateral accelerations and
jerks are constant for different pieces of speed profiles.

Then, the trajectory optimization process can be formulated
as a quadratic programming (QP) problem as

P : min
c

1

2
cTQcc+ qT

c c+ const

s.t. Aeqc = beq

Aiec ≤ bie.

We refer readers to the appendix for the detailed formulation
process. This problem can be solved in real-time by a modern
solver such as OSQP [25].

VI. SIMULATIONS AND RESULTS ANALYSIS

The experiments done to validate our approach assume
that the poses of the surrounding vehicles can be predicted.
Our framework has been implemented using C++11. All
simulations are carried out on a personal computer with a
quad-core 2.60GHz Intel i10-10750H processor.

A. Numerical Simulations

We conduct numerical simulations to validate the opti-
mality and the low failure rate of the proposed approach
compared to Bézier polynomials with cuboidal corridors.
The planning horizon is 7 s. Different road scenarios are
considered as follows:

1) Merging into another lane due to road construction:
Consider the scenario in Fig. 1. We project different stations
of the vehicles onto the S − L − T graph. The initial
velocity and the acceleration of the ego vehicle are vs(0) =
7.0 m/s, vl(0) = 0.0 m/s and as(0) = 0 m/s2, al(0) =
0 m/s2, respectively.

Fig. 3a and Fig. 3b show Bézier curves generated by
using cuboidal (red) and trapezoidal-prism (green) corridors
for the scenario presented in Fig. 1. Although both the
trajectories look similar, acceleration plots in longitudinal
and lateral direction can be used to compare the two so-
lutions. From Fig. 3e, we can conclude that the maximum
acceleration required for our method is less than that needed
by the cuboidal corridors approach. The superiority of using
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(a) (b)
Generated trajectory using both methods (green:

trapezoidal, red: cuboidal)

(c) Longitudinal Acceleration pro-
files

(d) Lateral Acceleration profiles

(e) Longitudinal Velocity profiles (f) Lateral Velocity profiles

Fig. 3: Piecewise Bézier polynomial and its dynamic profile

trapezoidal corridors is more clear from Fig. 3c, which
records the lateral acceleration of both the methods. We
observe that our approach yields a smoother acceleration
plot with minimal jerk and the lower maximum acceleration.
We also test the maximum initial conditions of both the
methods for the same scenario to show the effect of the
enlarged search space. While using trapezoidal corridors,
we could generate a trajectory for as = 2 m/s2, vs =
10.5 m/s, al = 1.2 m/s2, vl = 2 m/s where the bounds
on longitudinal acceleration were [−3.0, 2.0]m/s2 and those
on lateral acceleration were [−2.0, 2.0] m/s2. Using the
cuboidal corridors method failed to generate a trajectory for
these initial conditions and was only successful when the
initial velocity in the longitudinal direction was reduced to
9 m/s.

2) Overtaking a low speed vehicle in front: In addition
to studying just merging into another lane, we also test our
planner on overtaking a slowly moving car in front by lane
changing twice (second time to merge back into the original
lane of the ego vehicle). In layered planning techniques, these
kinds of scenarios are typically tackled by considering the
obstacle to be static for a few seconds. Hence, this approach
proves to be conservative. Through our experiments with our

(a) Longitudinal acceleration (b) matplotlib animation

direct optimization approach, we concluded that within the
comfort-optimal limits for acceleration and jerk, the planner
cannot find a complete trajectory for a time horizon of
7 s, but was successful when we increased the horizon to
10 s. The differences in the longitudinal acceleration graphs
between the two corridor generation techniques can be seen
in Fig. 4a. Clearly, using the trapezoidal corridors generates
a trajectory with much lower acceleration by utilizing the
extra search space. Here, the vehicle in front is assumed to
be moving with vs = 5 m/s and the ego vehicle’s initial
condition is vs = 7.0 m/s. We visualize this scenario using
matplotlib animations as seen in Fig. 4b.

B. Qualitative Results

To verify that our proposed method can automatically
adapt to different traffic configurations other than yielding
and overtaking on straight roads, we choose to verify our
planner on an unprotected left turn scenario at an intersec-
tion. As shown in Fig. 4a, we assume that there are two cars
coming from the front which obstruct the ego vehicle from
making a left turn without yielding to them. As seen in Fig.
4b, our planner could successfully find a trajectory while
meeting all the safety and dynamic feasibility constraints for
the entire time horizon of 7 s. Since the ego vehicle needs to
yield to the cars in front, we also tested the maximum initial
velocity (vs = 1 m/s) and acceleration (as = 0.5 m/s)
in the longitudinal direction for this case. If the distance
between Car A and Car B is sufficient for the ego vehicle
to go in between them, our planner finds the corresponding
trajectory (Fig. 4c). In this scenario, the additional search
space obtained by trapezoidal corridors is not used at all, as
the trajectory passing through the enlarged search space can
only result in a lane change which was not desired. Hence,
both the trajectories obtained are the same and overlap each
other, as seen in Fig. 4.

C. CommonRoad Simulations

The simulations in this part are conducted using the
CommonRoad [26] toolbox. It is a platform providing inter-
active simulated and non-interactive real traffic data. A given
scenario is considered ”solved” when the ego vehicle reaches
the desired goal region while satisfying all the constraints.
We demonstrated how the bird’s-eye view simulation of the
lane change scenario presented in Fig. 1 will look for our
planner. The results can be seen in Fig. 5. In this case,
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(a) ego vehicle is shown in blue with the corresponding
reference trajectory

(b) (c)

Fig. 4: Unprotected Left Turn at an Intersection- trajectories
obtained from both corridor construction methods (green:
trapezoidal, red: cuboidal) are identical

replanning was only carried out once after the first horizon
was about to end. CommonRoad’s in-built Route P lanner
is used to generate a reference trajectory for the planner.
Future work involves implementation of replanning at every
time step (0.1 s in this case), and testing the planner on
different scenarios from the CommonRoad benchmark suite.

VII. CONCLUSION

In this paper, we investigate speed planning for au-
tonomous vehicles. We propose a novel convexification al-
gorithm for generating safety corridors in the S − L − T
space. We show that our method of trapezoidal prism-shaped
corridors enlarges the solution space as compared to the
existing cuboidal corridors-based method. We provide the
sufficient conditions of control points in the trapezoidal
corridors to provably guarantee the safety of trajectories
represented by Bézier polynomials. Finally, we formulate
the trajectory optimization as a QP problem. The numerical
simulations show that the proposed approach is superior in
terms of optimality and low failure rates. Further, we also
test our planner’s qualitative performance. Matplotlib and
CommonRoad are used to visualize the trajectory obtained
by our planner. Future work includes using a dynamic
programming-based approach to generate a comfort-optimal
reference trajectory in the S−L−T space. We believe that
such a reference trajectory will provide a better warm start
to our convex optimization problem than the existing usage
of piecewise functions.

(a)
t =
0 s

(b)
t =
2 s

(c)
t =
4 s

(d)
t =
7 s

(e)
t =
9 s

(f) t =
12 s

Fig. 5: CommonRoad Simulation for ”Merging into another
lane due to road construction” scenario. The ego vehicle is
shown in green, and the other cars are shown in blue. The
construction site (static obstacle) is shown in red.

APPENDIX

A. QP Formulation

This part illustrates how to formulate the Bézier polyno-
mial optimization as a QP problem. First, we express the
Bézier curve as a polynomial. Since the general equation for
both S and L coordinates is the same, we only show the
simplification for the polynomial for longitudinal direction
sk(t):

sk(t) = hk

n∑
i=0

cki b
i
n

(
t− Tk

hk

)
= hk

n∑
i=0

pki

(
t− Tk

hk

)i

= hkfk

(
t− Tk

hk

)
,

where fk(t) =
∑n

i=0 p
k
i t

i, k = 0, 1, . . . ,m is a polyno-
mial curve. Let M ∈ R(n+1)×(n+1) denote the transition
matrix from the Bernstein basis

{
b0n(t), b

1
n(t), . . . , b

n
n(t)

}
to

the monomial basis
{
1, t, t2, . . . , tn

}
. Then, we have ck =

Mpk with ck =
[
ck0 , . . . , c

k
n

]T
and pk =

[
pk0 , . . . , p

k
n

]T
.

According to lemma 1, it holds that |M | > 0 and M is
invertible. Hence, if the objective function can be written as

J =
m∑

k=0

[(
pk
)T

Qkpk + qkpk
]
+ const ≥ 0,
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where Qk is positive definite and known, then we have

J =



c0s
...

cms
c0l
...

cml



T

M
−TQ0M−1 0

. . .
0 M−TQmM−1




c0s
...

cms
c0l
...

cml



+

q
0

...
qm


M

−1 0
. . .

0 M−1




c0s
...

cms
c0l
...

cml


+ const

Qc is also a positive-definite matrix. Since the constraints are
all linear in c, the optimization problem is a QP problem.

Next we will illustrate that equation (1) holds and how
to calculate Qk and qk. We first calculate some terms to
achieve the cost function J . To begin with, it holds that∫ Tk+1

Tk

(
dls(τ)

dτ l

)2

dτ =

∫ hk

0

(
dls (τ + Tk)

dτ l

)2

dτ

=
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0

(
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dtl

(
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dτ

)l
)2

dτ

=
1

h2l−3
k

∫ 1

0

(
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dtl

)2

dt

As for
∫ 1

0

(
dlfk(t)

dtl

)2
dt, it follows that∫ 1

0

(
dlfk(t)

dtl

)2

dt =

∫ 1

0

∑
i≥l,j≥l

pki p
k
j t

i+j−2l dt

=
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i≥l,j≥l

i(i− 1) · · · (i− l)j(j − 1) · · · (j − l)
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We also have
∫ 1

0
tfk(t)dt =

∑
i

1
i+2p

k
i ,
∫ 1

0
fk(t)dt =∑

i
1

i+1p
k
i . Suppose Js =

∑5
i=1 wiJi, the terms of Js satify

J1 =
∑m

k=0
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Tk
(sk(t)− ak (t− Tk)− bk)

2
dt

=
m∑
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J2 =
m∑

k=0
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ṡk(t)
2 dt− 2vr

∫ T

0

ṡ(t)dt+ const

=
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k=0
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∫ 1
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ḟk(t)
2 dt− 2vrs(T ) + const

J3 =
m∑

k=0

1

hk

∫ 1

0

f̈k(t)
2 dt, J4 =

m∑
k=0

1

h3
k

∫ 1

0

...
f k(t)

2 dt

J5 = (s(T )− sr(T ))
2
= s(T )2 − 2sr(T )s(T ) + const

Then we can arrive at equation 18 by replacing integral terms
and using Js =

∑5
i=1 wiJi.

Similarly, we can show the same results for Jl, and
formulate the QP problem.
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Learning a Gating Function for Discrete Lossless Sparse
Communication in Multi-Agent Systems

Stephane Hatgis-Kessell1, Seth Karten2, Dana Hughes2, Katia Sycara2

Abstract— Communication is essential for multi-agent coop-
eration, both for teams comprised of entirely artificial agents
and teams with human agents. In addition to learning what to
communicate, learning when to communicate may improve a
team’s performance and allow for communication budget con-
straints when bandwidth is limited. Recent work in addressing
this decentralized sparse budget problem sacrifices performance
and sample efficiency in order to constrain communication,
or seeks to remove uninformative communication through
manual analysis rather than reason about when it is best to
communicate. We investigate how to learn a gating function
that adheres to a sparse communication budget while only
removing uninformative communication. By using discrete com-
munication vectors, and taking into account previously received
communications, we are able to learn a gating function that
reasons about when it is best to communicate. Our proposed
method is comparable to the current state of the art in terms
of sample efficiency, and increases the range of lossless sparse
budgets in cooperative multi-agent tasks where communication
is essential for good performance.

Index Terms— Autonomous Agents, Multi-Robot Systems,
Reinforcement Learning, Emergent Communication

I. INTRODUCTION

There are many important tasks that require teams of
robots to learn to work together. Communication between
teammates can greatly aid such cooperation. When oper-
ating in partially observable environments, communication
becomes necessary for multi-agent teams to successfully
complete their designated task. Through emergent commu-
nication, agents may learn a communication protocol that is
apt for solving a task in conjunction with learning how to
successfully complete the task. This formulation presents the
challenge of learning what to communicate and how to use
received communication to achieve a goal. This paradigm
has successfully been applied to multi-agent reinforcement
learning [1]–[3]. These works, however, assume that all
agents may communicate with each other continually. Such
an assumption cannot hold in the real world, where agents
may be subject to bandwidth constraints.

Consequently, a new challenge arises; learning when
to communicate in order to adhere to a communication
budget. Learning when to communicate, while simultane-
ously learning what to communicate and how to use such
communications, presents an exceedingly difficult training
challenge. Doing so in a decentralized framework requires
agents to reason about what communications may actually
be useful to their teammates. Previous methods that attempt
to address this decentralized sparse budget problem trade off

1University of Texas at Austin
2Robotics Institute, Carnegie Mellon University

communication sparsity with task performance, suffer from
high variance and instability while training [4]–[6], or require
a manual analysis of what communications are important [7].

In this work we seek to restrain communication without
loss in task performance by learning a decentralized gating
function that both removes uninformative communication
and reasons about when it is best to communicate.

We refer to communications that can be removed without
any loss in performance as null communications. These
communications come in many forms. If an agent does
not have any meaningful information to communicate, its
outputted communication may be akin to random noise. On
the other hand, communication may be generally informative
but not necessary at a given time. Our goal is to remove such
communications through gating.

Our first contribution is utilizing a vector quantized vari-
ational autoencoder (VQ-VAE) [8] to discretize communi-
cation. Discrete communications are more interpretable by
humans [9], and allow us the control the range of possible
communications. The VQ-VAE has been shown to produce
more meaningful communications than other methods for
discretizing communications in multi-agent reinforcement
learning [9]. This technique may lead to better human-agent
teaming performance in future work.

Our second contribution is a learned, decentralized gating
function that decides whether each agent should communi-
cate or not. Our proposed gating function takes into account
what an agent already knows and uses this to decided
if the proposed communication may be beneficial to the
agents teammates. Through the proposed gating function
we decrease the number of null communications emitted by
all agents, and increase the range of sparse communication
budgets for which there is no loss in task performance when
compared to prior art.

II. BACKGROUND

A. Reinforcement Learning

Reinforcement learning concerns learning what to do
in order to maximize a reward signal. The reward signal
defines what a learning agents goal is, and in maximizing
this reward the agent will successfully have completed its
designated task. Reinforcement learning can be characterized
as addressing two challenges: trial-and-error search, where
the learning agent must try out different actions and observe
their affects, and delayed reward, where an action taken may
decide the reward incurred at a later time.

A policy defines how the learning agent behaves in a
given state by mapping the state to an action that the agent
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will execute. A value function specifies the expected future
reward from any given state, where a discount may be applied
at each step into the future to lessen the affect of future
rewards. Both the policy and value function must by learned
by the agent, however, the former may be derived from the
latter and vice versa. In learning a policy and value function,
a reinforcement learning agent learns how to behave so as to
complete its sole objective: maximizing the reward signal.

B. Multi-Agent Reinforcement Learning

This work falls within the bounds of cooperative multi-
agent reinforcement learning (MARL), where teams of
agents must learn to work together in order to complete a
task. Like much of the prior art in this area [6] [4] [2], we
parameterize each agents policy as a deep neural network and
use a policy gradient update to optimize for the task reward.
Specifically, this work uses REINFORCE [10] to update each
agents parameters and estimate state values, however, other
policy gradient algorithms may be used as a substitution.
We seek to extend the capabilities of cooperative agents by
enabling them with communication.

C. Variational Autoencoders

A variational autoencoder (VAE) seeks to encode an
input, x, into a latent variable, z, which may then be
decoded back into the original input. The encoder network
learns the parameters, θ for the distribution qθ(z|x), which
the latent variable z may then be sampled from. Note that
z cannot be directly sampled from this distribution, but
is instead sampled using the reparameterization trick [11].
The prior, p(z) is assumed to be N(0, 1). The decoding
distribution with parameter ϕ, pϕ(x|z), is also learned so as
to reconstruct the original input from z. In order to learn
the parameters for qθ(z|x) and pϕ(x|z), the following loss
is minimized:

loss(θ, ϕ) = Ez∼qθ(z|x)[logpϕ(x|z) +KL(qθ(z|x)||p(z))]

The first term of the loss above measures how well x
can be reconstructed from z. The second term of the loss
measures how much information is lost when using q to
approximate p. We use a variation of the variational au-
toencoder, the VQ-VAE, to generate discrete communication
vectors that represent each agents observation.

III. RELATED WORK

A. Emergent Communication

Prior work has shown that communication can signifi-
cantly increase team performance with regards to multi-agent
reinforcement learning. In partially observable environments
communication may be essential to achieving a goal. Learn-
ing communication vectors while simultaneously learning to
complete a task has proven to be successful in a variety of
partially observable problems [4]. Some approaches focus
on learning continuous communication vectors [4] [5] [6].
Inspired by human communication, other approaches focus
on learning discrete communication vectors [7] [1] [12],

which is the approach that we take in this paper. Prior work
has learned discrete communication protocols by represent-
ing communications as one-hot vectors [12]. In doing so,
however, all generated communications are orthogonal and
of equal distance to each other. This greatly reduces the
effectiveness of such communications. IMGS-MAC [7] dis-
cretizes continuous representations via ProtoNet, a decision
theoretic framework that builds off techniques from the nat-
ural language processing community. Instead, we utilize the
VQ-VAE framework which has been shown to produce more
meaningful communications than discrete prototypes [9].

B. Decentralized Communication

In decentralized communication, communication protocols
must be learned without a centralized scheduler. Each agent
must individually communicate to its teammates. In contrast
to centralized communication this poses a more realistic and
robust solution, but significant new training challenges. To
alleviate some of these problems we adopt the centralized
training decentralized execution paradigm, where all agents
are trained in a centralized fashion to increase stability
and performance, but, at evaluation time, all agents are
decentralized and operate independently from each other.
This is the same approach taken by IMGS-MAC [7] and
IC3Net [4].

C. Sparse Budget Problem

Bandwidth limitations pose a serious problem to commu-
nicating agents, where much of the prior art has assumed
that agents are able to engage in continual communication.
To address this, some previous work has focused on adher-
ing to communication bandwidth constraints by introducing
an information bottleneck, or by improving communication
compression. Doing so, however, may decrease the informa-
tion present in communication vectors. For many domains,
it is clear when communication is necessary and when it is
not, so naturally learning this notion should be desired.

Learning a communication gating function [4] [6] [7],
which decides when an agent should communicate, has
shown promising results in addressing the sparse budget
problem, and allows for decentralized execution. Prior meth-
ods, however, suffer from high variance and instability while
training and are still unable to remove uninformative com-
munications. Methods that utilize a communication gating
functions are most similar to ours, and we hope to extend
and improve them. Of these methods our paper focuses on
comparing our model against IC3Net [4] and IMGS-MAC
[7].

[13] learns a globalized gating function which is success-
fully able to reduce communication without a loss in perfor-
mance, however, this model requires centralized execution
which we avoid.

IMGS-MAC successfully removes all uninformative com-
munication, and is thus capable of reducing the communi-
cation frequency without incurring a loss in performance.
This methodology, however, requires manually identifying
uninformative communication in the first place, and then
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using a table lookup function to remove them in later trials.
We position our work as attempting to automate this process
through a gating function, where recognizing and removing
such uninformative communications should be learned by the
agent itself.

IV. PROBLEM SETUP

When learning emergent communication for multi-agent
reinforcement learning, we formulate the problem as a
decomposed, partially observable Markov decision process
with communication (Dec-POMDP-Comm). Each agent is
only able to partially observe the environment, so agents
must communicate their observations to each other in order
to perform well. Agent i does this at time step t by transmit-
ting the communication vector cit, which encodes information
about agent i’s observation at time step t. Also at time step
t, agent i receives communications cjt , ..., c

n
t from all other

agents.
Formally, we define this problem with the tuple

(S,A, C, T ,R,O, ω, γ). S is the set of all states and A is
the set of all actions for agents 1..n, including task specific
actions and the action of whether to communicate or not.
C is the set of all communications for all agents, and T
specifies the joint environment transition dynamics such that
T : S × Ai, ...,An → S. The set of all partially observable
observations is defined by ω, and the mapping of the state
and joint actions to each agents observation is given by O
such that O : Ci, ..., Cn → ω. R is the reward function, and
γ is the discount factor.

Our goal is to learn how to behave, what to communicate,
and when to communicate. Optimizing for these objectives
simultaneously presents a difficult training challenge, and in
practice can be unstable and cumbersome. Because of this
we adopt the training paradigm of [7] by training our model
in two stages. The model is first trained to learn what to
communicate and how to behave, assuming no bandwidth
constraints (ie: a communication budget of 1). Next, we
apply fine-tuning to train the gating function for any budget.
This has been shown to reduce variance and the amount of
data needed.

Our training objective is illustrated below, which is built
off the objective introduced by IMGS-MAC [7].

maxπ→S×C E[
∑

t∈T
∑

i∈N (γR(s, a) + λ1U(xi
t, c

i
t)− λ2||ciAV G − b||22)]

By maximizing γR(s, a) for each agent, we are ensuring
that each agent learns to maximize reward and thus how to
behave. The term λ1U(xi

t, c
i
t) encourages learning a good

communication protocol that is grounded in the ground truth
state space, and therefore what to communicate. Finally,
maximizing λ2||ciAV G − b||22) encourages each agent to
adhere to communication budget b and in turn learn when to
communicate. More detail is described in section V.C.

V. METHODOLOGY

We now introduce the methodology of our paper. First, we
describe the general architecture for sending communications

and using received communications to generation actions.
Here we introduce our first core contribution, the VQ-VAE
to descritize communications. Next we detail our second
core contribution, the learned gating function, which decides
whether an agent should communicate or not. Finally, we
describe the training objective that we seek to realize.

A. Communication Architecture

We build our architecture off of IC3Net [4] and IMGS-
MAC [7]. The full details are shown in figure 1. First, each
agents observation xi, is provided to an LSTM and linear
layer to produce an encoded observation, x̂i.

Next, this encoded observation is discretized into a com-
munication vector using a VQ-VAE [8] model. As in a
standard VAE, the latent representation c is sampled from
q(c|x̂) but here q is a categorical distribution. The VQ-
VAE is parameterized with K embedding vectors, c, in the
latent space. Each of these embedding vectors is a unique
communication that may be sent. The encoded observation,
x̂, is mapped to the closest embedding vector, c, and this is
used as the agents communication. In doing so, we are able
to map the observation embedding, x̂, to one of K possible
communications resulting in discrete communication while
also maintaining a distribution q(c|x̂) for all sent communi-
cations. The variational aspect of this approach may allow for
later analysis of each communications entropy during gating,
and the discrete aspect moves the emergent communication
protocol closer to human interpretability.

The resulting communication vector is passed through
a gating function, which returns a zero-vector if the
agent has decided not to communicate and the original
communication,ci, otherwise. This gating function is de-
scribed in detail in the next section.

Finally, all communications are sent out, and all agents
receive the communications from their teammates. These
received communications are concatenated with the agents
own observation embedding, passing through a linear layer,
and then serve as input to the action and value heads.
These heads output the agents intended next action and the
corresponding predicted value.

The forward pass is entirely decentralized. When training,
a centralized decoder is utilized to reconstruct the original
state from all agents emitted communication vectors. REIN-
FORCE is also used to compute the policy gradient update
from the outputted actions. Each agents observation encoder
and decoder is then updated accordingly.

B. Gating

Intuitively, we would like each agent to reason about
whether its proposed communication will be useful given
what the agent already knows. To this end, each agent has
its own decentralized gating function.

First the agents proposed communication, cnt , as well
as the last received communications from all other agents,
c1t−i, ..., c

n−1
t−j , serve as input to a single linear layer. The

log-Softmax of the output of this layer, z′, is then used to
sample from a Gumbel-Softmax distribution [14] to produce
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Fig. 1. Overview of the complete communication and behaviour architec-
ture.

the gating action, w. Sampling the gating action from a
Gumbel-Softmax distribution allows us to sample from a
categorical distribution without breaking the gradient signal.
The Hadamard product between w and cnt is then outputted
by the function.

The scheme is illustrated in figure 2. This sampled gating
action is used by REINFORCE to update the gating function
parameters. The output of the gating function is then the
Hadamard product between the gating action and the inputted
communication vector, which results in either the inputted
communication vector if the agent decides to communicate
(wi = 1) or a zero vector if the agent has decides not to
communicate (wi = 0).

Fig. 2. Overview of the gating architecture.

C. Objective

objective should go in problem setup I disagree with this
only because there is a lot of technical description that
rests on the methedology section needed to fully understand
the objective. I do, however, describe the objective in plain
English in the problem setup. Plain english can be repeated.
The formalization should be in the problem setup section.
Papers often rephrase and repeat info since they are not
always read in order. If I were looking to see what formal
problem you are solving, and that info is not in the problem
setup, that is a red flag. fix.

We build on the objective introduced by IMGS-MAC [7],
where we optimize the total expected reward for all agents
while simultaneously learning a good communication
protocol and communication policy. This objective is shown
below.

maxπ→S×C E[
∑

t∈T
∑

i∈N (γR(s, a) + λ1U(xi
t, c

i
t)− λ2||ciAV G − b||22)]

Where λ1U(st, c
i
t) measures the quality of the generated

communication vector for agent i such that

U(st, c
i
t) = −log(p(st|cit)− ||sg(q(z|st))− cit||22 + β||q(z|st)− sg(cit)||22

The first term is the reconstruction loss between the com-
munication vector cit and the original state st. The second
term aims to move the communication vector, cit, closer to the
encoder output q(z|st). We apply a stop gradient, denoted as
sg(.), to prevent the gradient here from updating the encoders
distribution. Finally, the third term encourages the encoder
to commit to a communication vector.

The last term of the objective, λ2||ciAV G−b||22)], measures
the difference between the average rate of communication
and the budget, thereby enforcing the bandwidth constraints.

The parameters λ1 and λ2 are tuned at training time.

VI. EXPERIMENTS

A. Setup

We train and evaluate our model in a blind traffic junction
setting, where communication is essential for good perfor-
mance. In this setting, multiple agents must navigate to
a predefined goal without colliding. All agents can only
partially observe the environment, however, and have no
knowledge of where the other agents are. Therefore, agents
must communicate their positions to their teammates in order
to avoid collisions and successfully navigate intersections.

The traffic junction environment is comprised of discrete
cells with specified entry and exit cells for each agent. Agents
are spawned at entry cells randomly, and the rate at which
they spawn as well as the number of cells in the environment
is defined by each difficulty level. While in the environment,
the agent may only execute one of two actions: start or stop.
If agents collide then the episode terminates in failure.

In the easy level of traffic junction, there are 7 cells that
form a two-way intersection, and a maximum of 5 agents at
any given time. For easy traffic junction the model is trained
with 1 processes using a batch size of 500. Results were
averaged over 10 gradient updates for each back propagation
step. We used an RMSProp optimizer with a learning rate of
0.001. Unless stated otherwise, the model is always evaluated
across 5,000 episodes. Each episode has a length of 20 steps,
and we refer to an episode as being successful if there are
no collisions.

Our training paradigm begins with training the model
with non-sparse communication (b=1). Results for this first
stage are shown below in table 1, where a model converges
to a solution when it consistently achieves a success rate
of 97% or above. These results indicate that our method is
comparable in terms of sample efficiency and performance
to IMGS-MAC, and is significantly more performant than
IC3Net.
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Easy Traffic Junction
Model Number of Epochs Until

Convergence
IMGS-MAC 495 ±2
IC3Net > 600
Ours 500 ±5

TABLE I
NUMBER OF EPOCHS UNTIL EACH MODEL CONSISTENTLY ACHIEVES

≥ 97% SUCCESS WHEN TRAINED WITHOUT SPARSE COMMUNICATION

(b = 1).

B. Sparsity Analysis

We now seek to minimize the amount of communication
without loss in performance. This enacts the second stage of
the training paradigm, where we use the model trained with
non-sparse communication and update its gating functions
parameters to minimize the sparse communication penalty,
λ2||ciAV G − b||22, while maximizing the sum of agents re-
wards.

We perform this procedure for a range of budgets from b =
0.9 to b = 0.1, and for each seed select b∗ such that it is the
minimum budget that has not incurred a loss in performance
at evaluation time. We define a loss in performance for a
given seed more formally below, where µsuccess,b=x is the
mean success at evaluation time for a model trained with
budget x, µsuccess,b=1 is the mean success at evaluation time
for the model trained without sparse communication, and
SEsuccess,b=1 is the standard error of success for the model
trained without sparse communication.

µsuccess,b=x < µsuccess,b=1 − 2SEsuccess,b=1

Our model is able to reduce the minimum lossless budget
when compared to IMGS-MAC, and does so without any
manual analysis of learned communication protocol. That
being said, our model is higher in variance and less stable.
This can be seen in table 2.

Easy Traffic Junction
Model Min Budget b∗

IMGS-MAC 0.815 ±0.00469
Ours 0.640 ±0.37736

TABLE II
MINIMUM SPARSE BUDGET b∗ WITH LOSSLESS PERFORMANCE.

OBSERVE THAT OUR MODEL IS ABLE TO INCREASE THE RANGE OF

LOSSLESS SPARSE BUDGETS. THE IMGS-MAC MIN BUDGET USES YOUR

METHODOLOGY RATHER THAN THE IMGS-MAC METHODOLOGY. NOT

SURE IF THIS A FAIR COMPARISON. YOU NEED TO LIST THE NULL

COMMUNICATION ANALYSIS METHOD TOO TO HAVE A FAIR

COMPARISON.

Ideally, when gating communication in order to increase
sparsity, the model should be learning to identify and remove
null communications. To evaluate this claim, we seek to
identify outputted null communications. The process to do
this is as follows.

For each of the K possible communications, c1, ..., cK , we
evaluate the trained model, allowing the agents to emit all
communications except for the designated communication
ci. If there is no loss in performance when omitting this
communication it is considered a null communication. We
then count the number of null communications emitted
during evaluation time when all K possible communications
are permitted.

Following this analysis our results in table 3 indicate
that the model is somewhat successful at removing null
communications. While we are able to reduce the number
of null communications emitted by each agent, we do not
totally eliminate them.

Easy Traffic Junction
% null communications
when b = 1

% null communications
when b = b∗

0.459 ±0.27234 0.275 ±0.26838

TABLE III
MINIMUM SPARSE BUDGET b∗ WITH LOSSLESS PERFORMANCE.

OBSERVE THAT OUR MODEL IS ABLE TO INCREASE THE RANGE OF

LOSSLESS SPARSE BUDGETS.

VII. CONCLUSION AND FUTURE WORK
In this work we have built upon prior art by proposing a

modified gating function and a methodology for discretizing
communication using the VQ-VAE framework. When com-
pared to prior work, our model reduces the range of lossless
communication budgets in a partially observable, multi-
agent environment where good communication is paramount.
While our proposed methodology is comparable to prior
work in terms of sample efficiency, significant improvements
can be made in future work by exploring different commu-
nication architectures. We also hope to create a more in-
formed gating function that looks at the relative information
between proposed communications and previously received
communications, further addressing the decentralized sparse
budget problem. Finally, a natural extension to the problem
of learning when to communicate is learning with whom
to communicate, which may further increase the range of
lossless communication budgets. With regard to the broader
impact of this work, learning good discrete communica-
tion protocols and learning when such communications are
necessary may greatly increase the capabilities of human-
agent teams, where humans are subject to cognitive load
constraints. Such work may also benefit teams comprised
entirely of agents, where sending communications may be
risky due to possible security breaches or general bandwidth
constraints.
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The microDelta: A 3D-printed micro-scale Delta robot

Steven Man1, Sukjun Kim2, and Sarah Bergbreiter2

Abstract— Delta robots are suitable for assembly, mobility,
and stability tasks such as 3D printing and pick-and-place
applications for their precision and speed. When integrated
with Two-Photon Polymerization (TPP) fabrication techniques,
we are able to design and fabricate compliant Delta mecha-
nisms on the micro-scale, which provides 3-degrees of freedom
(DOF) motion. Although some microelectromechanical systems
(MEMS) can operate out of plane and have more than 3-
DOF, but the design and fabrication processes to achieve such
results involve complex procedures like layer bonding and
alignment since most semiconductor processes only create 2D
features. We use 3D printed torsional comb-drive actuators
to provide revolute input into our Delta mechanism. The
manufacturing process of the micro-robot uses gold sputtering
to functionalize the polymer structures and isotropic etching
to release structures from the underlying substrate. Using this
process, we demonstrate a 3D printed micro-robotic system that
includes mechanisms, and actuation for the first time.

Index Terms— 3D-Printing, Compliant Joints and Mecha-
nisms, Mechanism Design, Micro/Nano Robots, Microactuator
Parallel Robots, Two-Photon Polymerization (TPP)

I. INTRODUCTION

3D printing technology allows for design and fabrica-
tion of micro-robots while offering minimal post-processing
complexity [1]. Micro-robots are important for a variety of
manipulation tasks at small scales with high precision.

The milliDelta [2] pushed the limits of smart compos-
ite microstructures (SCM) technology and demonstrated its
ability to manufacture millimeter scale robotics with high-
precision and 3-DOF. However, the need for manual assem-
bly makes the process of creating sub-millimeter robots with
this method difficult and complex. On the other end of the
spectrum, the MEMS community has long been able to make
sub-micron, 2D-extruded features on micro-scale robots [3]
using CMOS (complementary metal-oxide semiconductor)
and MEMS techniques in the cleanroom; still, it is difficult
to create 3-DOF motion due to the planar nature of most
cleanroom fabrication processes like photo-lithography, thin-
film deposition, and etching.

We introduce microDelta, a 3D-printed micro-scale Delta
robot. It uses actuators built upon the torsional comb-drive
actuator (TCDA) [4] manufactured in the same method. Pin
joints on traditional Delta mechanism have been replaced
with flexural joints so the entire robot can be printed at
once without assembly as well as being free from backlash.
The 3D-printing process is followed by dry-etching of the

1 Steven Man is with the College of Engineering, University of California
Santa Barbara, CA, USA

2 Sukjun Kim and Sarah Bergbreiter are with the Department of Mechan-
ical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA

substrate and metal sputtering to rapidly produce usable
robots.

Fig. 1. The microDelta next to a grain of rice. It has a circular footprint
of less than 3 mm in diameter and a resting platform height of 1.3 mm.
When actuated, the platform can be lowered to 900 µm

II. DESIGN

The microDelta robot is designed using 3D computer-
aided design (CAD) software (SolidWorks) where the main
design considerations stem from the desired structural re-
quirements such as mechanism compliance as well as elec-
trical characteristics like actuator torque at a given voltage.
An isometric view is presented in Fig. 2 where the flexible
joints and actuator parameters are labeled.

A. Torsional Comb-Drive Actuator

The actuator consists of round combs with torsional
springs attached symmetrically. The overall design principles
are similar to the TCDA [4], with minor changes to adapt to
the need to rotate in both clockwise and counterclockwise
directions (Fig. 2), doubling the maximum angular displace-
ment. With removal of the center beam, individual comb
fingers could collapse during fabrication so three spars are
added on top to prevent such failure. The torque that the ac-
tuator can generate depends on the number of comb fingers,
the area between overlapping fingers, and the gap between
two fingers; their relationship is outlined in section III-A. By
varying the geometry of comb fingers or torsional springs,
we control the actuator’s voltage-displacement relationship.

B. Flexure-Based Delta Mechanism

The 3-DOF Delta mechanism consists of three kinematic
loops between two parallel plates. Each loop contains a
base arm, pinned at the base, connecting to a parallelogram

206



B

R

t

g

w

d

Lcs

wcs

tcs

Lh/p

wh/p

th/p

A

Llower

Lupper

Sbase       

Paralleogram linkage
Base linkage 
Flexible joints
End  e�ector 
Torsional  actuators     

C

Fig. 2. The microDelta: a 3D-printed micro-scale Delta robot. This robot is 3D-printed using two-photo polymerization and driven by 3D comb-drive
actuators. (A) The design of the torsional flexural joints aligns the centers of parallelogram joints (rotates along the red arrows) with the centers of the
hinge joints (rotates along the blue arrow). (B) The critical dimensions in designing a torsional comb-drive actuator. (C) Geometric dimensions of hinge
and parallelogram flexures. All labeled dimensions are listed in Table I, for flexure geometries, subscript h represents hinge joints (connects between cyan,
blue, and red-label components) while p represents parallelogram joints (connects blue-label components)

linkage through a universal joint, connected to the end-
effector plate through another universal joint (Fig. 2). Like
the milliDelta, our design replaced the robot’s universal joints
with revolute flexure joints. The pin joint on the stationary
plate is replaced with actuators such that the center of the
torsional spring is coaxial with the center of the supposed
pin joint location. For the milliDelta in [2], center axes of
the revolute flexure hinge joints do not intersect the paral-
lelogram joints; the microDelta resolves this misalignment
by inserting an offset in the link in contact with both of
the flexure joints (See Fig. 2A), which illustrates that 3D-
printing can overcome design constraints posed by SCM.
Certain design considerations that must be examined when
printing with TPP is outlines in section IV.

All design parameters are for both actuator, flexural joints,
and mechanism linkage are listed in Table I.

III. MODELING

A. Actuator Modeling

The TCDA is driven by the electrostatic force between op-
positely charged objects. The analytical relationship between

torque (T ) generated by the actuator and applied voltage (V )
as derived in [4] is:

T =
1
2

N f ε0 εr

(
2 R t − t2

g

)
V 2 (1)

where N f is the number of moving comb fingers, ε0 is
the vacuum permittivity, εr is the relative permittivity of air,
R is the outer radius of comb fingers, t is the thickness of
the comb fingers (difference in radius between the inner and
outer arc of the finger), and g is the gap between two adjacent
comb fingers (see Fig. 2B).

B. Delta Mechanism Kinematics and Quasi-statics

The kinematics of Delta mechanisms have been widely
studied since its conception. Given conventional Delta robots
with pin joints, forward and inverse position kinematic
solutions from [5] would suffice in providing basic insight on
how to drive each revolute actuation input at the base. How-
ever, due to stiffness inherent to microDelta’s revolute flexure
joints, and the actuator’s open-loop configuration, driving any
of the three actuators with some non-zero torque would result
in internal resistance torque, as well as displacement, at all
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TABLE I
The microDelta’s design parameters. Electrostatic actuator and Delta

mechanism’s geometric dimensions.

The microDelta’s Parameters
Actuator Mechanism

N f 30 Sbase 3606 µm
R 235 µm Llower 579 µm
t 180 µm Lupper 1020 µm
w 15 µm Lh 150 µm
g 10 µm wh 75 µm
d 10 µm th 3.95 µm

Lcs 400 µm Lp 150 µm
wcs 24.2 µm wp 75 µm
tcs 2.71 µm tp 3.79 µm

three actuators, the coupled behavior will be analyzed in a
quasi-static state where all joint stiffness must be taken into
account. In this case, flexure joints will be modeled as linear
torsional springs as a pseudo-rigid-body model of a small
length flexural pivot [6]:

Tjoint = k joint∆θ (2)

where joint torque (Tjoint ) generated through spring deflec-
tion (∆θ ) with stiffness (k joint = EI

L , where E, I, and L are
the Young’s modulus, second moment of area, and length of
the flexural joints).

We used MATLAB’s Simscape Multibody software to
model the joints. Geometric parameters of the mechanism
such as linkage length and joint angles are provided by the
3D CAD model. 1-DOF revolute joints were positioned at
each fixture, each joint’s stiffness were determined by its
geometry, as well as verified during actuator and mecha-
nism characterization procedures outlined in section V-B.
Kinematic loop constraints are enforced at the end-effector
platform. To actuate the microDelta, we used the inverse
kinematic equations with the end-effector position as input
and obtained the required angular position of the three
actuators. We then input actuator deflections as constants into
the Multibody simulation and recorded actuator torques as
outputs. Actuator input voltages were then converted from
actuator torques using Eq. (1).

IV. FABRICATION

The microDelta is printed with Nanoscribe Photonic Pro-
fessional GT+ using Dip-In Laser Lithography (DiLL) and a
negative photoresist (IPS, Nanoscribe) on a silicon substrate
(Fig. 3A). After the photoresist was developed by propylene
glycol methyl ether acetate (PGMEA, Sigma-Aldrich) the
sample was cleaned in isopropyl alcohol (IPA, VWR) and
air-dried in room temperature. The silicon substrate was then
dry-etched with XeF2 (SPTS Xactix, Xetch) to release the
moving combs and the torsional springs (Fig. 3B). Finally, 50
nm of gold was sputter deposited over the actuator to make

the structure electrically conductive (Perkin Elmer, 2400-8L),
see Fig. 3C.

Si 

IP-S

Gold

(A) 3D printing with TPP (B) XeF2 etch

(C) Gold sputter deposition

Fig. 3. Fabrication process of microDelta. (A) Desired actuator and
mechanism structures are printed on a silicon substrate using TPP. (B) The
silicon substrate is etched with XeF2 to release hanging structures after
developing the print and removing supports. (C) Gold is sputtered over the
entire 3D structure.

When designing for fabrication, supports were inserted
in the design and manually removed afterwards to prevent
rigid bodies between compliant joints from drifting apart
during printing and stage movement. Typically supports are
designed to interface the surfaces of the supported part
through a 2 µm diameter circle to allow removal with
minimal damage while capable of resisting drifting. Another
design consideration is to ensure the structural stability of
comb fingers and its resistance to stiction caused by surface
tension of IPA during development and drying, when fingers
have high aspect ratio cross-sections, they tend to collapse to
neighboring fingers on either side and increasing the widths
w and gap g (Fig. 2B) would prevent such failure modes.

Actuators used in microDelta differs from previous TCDA
[4] in that gold was sputtered over the polymer instead of alu-
minum. Gold-deposition provides better side-wall coverage
when compared to aluminum, which succumbs to shadow-
masking and are unable to cover features under other over-
hanging structures. Although gold is more easily deposited
across the surfaces of the 3D-printed structures, certain
features with interior notches (Fig. 2B) take advantage of the
coverage-limiting techniques used in [7] to insulate features
from each other and the substrate, achieving the required
electrical isolate between voltage terminals. The notch has a
vertical gap d of 10 µm and the notch offsets inward for 25
µm.

V. RESULTS
A. Experimental Setup

To actuate the microDelta, an Arduino controls a digital-
analog converter (DAC) chip (LTC2637, Analog Devices)
whose output voltages are then amplified by an operational
amplifier (HV265, Microchip). The actuator terminals are
probed under the probe station (S-250-6, Signatone) with a
custom made multi-probe needle manipulator (see Fig. 4),
where the amplified voltage actuates the TCDA. Using a
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Fig. 4. Isometric view of the microDelta with multi-needle setup. The
custom multi-needle manipulator connects the voltage signal to the actuator
via probing the electrical contact pads. The camera sits on the microscope
objective (not in view) directly above the sample

DSLR camera (D850, Nikon), the motion of the actuator
platform was captured and analyzed with motion analysis
software (TEMA T2020, Image Systems). Desired paths are
discretized and corresponding torques at each actuators are
obtained using MATLAB as mentioned in section III-B.

B. Stiffness Characterization and Calibration

The flexural joint stiffnesses of the microDelta were
initially modeled using geometric and material properties
during design, assuming ideal fabrication results. Before
further testing, the actuator and Delta mechanism stiffness
were characterized by recording angular displacement at the
base when a voltage sweep is applied to a single actuator
(see Fig. 5). For the actuator only case, a standalone TCDA
was tested and the cross-shaped torsional spring (Fig. 2B)
of the actuator was measured to be 7.46 nNm/rad. We then
tested the inner and outer actuators of a single TCDA that
is a part of the microDelta. The result illustrates that the the
actuator experiences inner and outer resistance symmetrically
and linearly for displacements less than 23◦. Such linearity
allows us to calibrate the difference in stiffness (due to
manufacturing error) between the 3 legs by linearly scaling
the input voltage signal.

The primary calibration procedure involves following the
lines trajectory (see Fig. 6) which includes linear motion
of both inner and outer actuator motion for all three arms.
From empirical data collected in Fig. 5, we observe the over-
extension cause by our modeling underestimating the inner
and outer actuation resistance in the uncalibrated path in Fig.
6. More importantly, each of the three lines have different
lengths, meaning an actuator-specific multiplier proportional
to their length error should be assigned to the voltage signal.
To find the coefficient, we multiply each actuator’s input
voltage by

√
tra jectory length

actual length , since displacement is linearly

Fig. 5. Actuator and Delta mechanism stiffness characterization. Delta
inner and outer model curves were obtained using the Simscape Multibody
model while actuator, Delta inner, and Delta outer tests were performed
using voltage sweeps.

related to voltage squared (Fig. 5).

Fig. 6. Line trajectory tracing. Comparison between before and after
actuator-specific calibration procedure. Improving the RMS accuracy by 3
times

C. Workspace and Trajectory

Desired trajectories were converted to end-effector posi-
tions and actuator input voltage signals were obtained as
mentioned in section III-A. The position of the top platform
is measured during operation and Fig. 7 shows the actual
path traced by microDelta as compared to the kinematic
model, where the RMS precision accuracy are listed in table
II. The traced path closely resembles the programmed path,
demonstrating the precise motion of compliant mechanisms

Fig. 8 illustrates the theoretical workspace of microDelta
with a volume of 0.0016 mm3. A slice of the workspace (red,
upper figure) is converted to a trajectory (blue, lower figure)
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Fig. 7. Circle and star trajectory tracing. No further calibrations were
attempted beyond the initial line pattern scaling process.

TABLE II
Trajectory following results. RMS precision and accuracy are calculated

over five cycles of data recorded at 60 fps.

Trajectory Frequency
(Hz)

RMS Precision
(µm)

RMS Accuracy
(µm)

Circle 0.2 2.51 3.97
Star 0.2 4.65 2.98

Lines 0.2 11.02 5.34

and the calibrated following result is also plotted. Note that
the theoretical workspace is the 2D surface boundary of
actuator displacement sweep of ±8◦, where the actuator is
able to operate at voltages well below dielectric breakdown.
Fabrication procedures that deposits oxide or insulating ma-
terials may increase the dielectric breakdown voltage and
thus the safe workspace of microDelta.

VI. CONCLUSION

This work has demonstrated the ability for additive man-
ufacturing at micro-scale to produce micro-robots with re-
peatability and precision. The unique size and workspace
of this robotic system allows for micro-pick-and-place tasks
with limited footprint, novel legged micro-robots, and haptics
applications. Future directions of this work include closed-
loop feedback control of the actuators to ensure accurate
motion against creep, a time-dependent, visco-elastic strain.
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Guaranteed Parameter Uncertainty Estimation Using Interval Analysis
for Robust Safety-Critical Control

Teodor Tchalakov1, Qin Lin2, and John M. Dolan3

Abstract— Robust control Lyapunov functions (CLFs) and
control barrier functions (CBFs) use the largest bounds of
parameter uncertainties to achieve robust safety-critical control,
but the literature has proposed the bounds be manually
tuned. This tuning problem requires balancing large uncer-
tainty bounds in robust controllers that produce aggressive
behavior against small uncertainty bounds that violate ro-
bustness. We present an over-approximate model parameter
uncertainty estimation method for applications in robust CLF-
CBF quadratic programming (QP) controllers using interval
analysis. This work expands upon the set inversion via interval
analysis (SIVIA) algorithm, which can be used offline to find
bounds on parameter uncertainties from system observations.
We improve the efficiency of SIVIA for finding the largest
verified parameter intervals with an over-approximate heuristic
search that uses system identification to provide initial guesses.
The identification of model uncertainties can enable the life-
long operation of robust safety-critical systems. We test our
approach’s accuracy and efficiency in comparison to SIVIA on
an adaptive cruise control scenario with a robust CLF-CBF-QP
controller.

Index Terms— Parameter Uncertainty Estimation, Set
Inversion, Autonomous Driving, Robust Control

I. INTRODUCTION
Safety-critical systems require solving for verifiable con-

trols that abide by safety constraints. A common method
for provable safe control is control barrier functions (CBFs).
CBFs require an accurate system model whose dynamics
often need to have carefully identified parameters. If the
parameters of the nominal/identified model are not represen-
tative of the true model when the controller is deployed, then
the safety of the system can be violated [1]. In autonomous
cars, the true model parameters change over time due to
either environmental changes such as friction with the road
or internal changes like the total mass of the car due to
cargo being taken out or put in. Any effort to measure the
real time model parameters will include uncertainty due to
measurement noise. To handle model uncertainties, recent
developments of robust control Lyapunov functions (CLFs)
paired with CBFs in quadratic programming (QP) controllers
have provided a framework to include uncertainties in a CLF-
CBF-QP design that guarantees safety given a model’s largest
bounded uncertainty [2]. This work recommends that the

1Teodor Tchalakov is with the Department of Electrical and Computer
Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801,
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3John M. Dolan is with the Robotics Institute, Carnegie Mellon Univer-
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upper uncertainty bounds be manually tuned, however, tuning
requires choosing between a large uncertainty bound that will
create an aggressive controller and a small uncertainty bound
that might not contain all the true model uncertainties and
therefore violate safety.

In this paper, we investigate using model observations to
solve for feasible parameter sets and then find a model’s
largest uncertainty bounds. Our approach expands upon the
set inversion via interval analysis (SIVIA) [3] algorithm,
which solves for feasible parameter sets offline. We propose
solving for the minimally bounding intervals of a feasible
parameter set in an over-approximate manner to improve
computational efficiency for applications in robust CLF-
CBF-QP controllers. Our search method uses heuristics
and system parameter identification guesses to motivate the
search towards regions of feasible parameters.

The rest of the paper is organized as follows. Section II
reviews other approaches to model uncertainty in CLF-CBF-
QP controllers and previous work in improving the efficiency
of SIVIA. Section III provides background on CLF-CBF-QP,
interval analysis, and SIVIA parameter estimation. Section
IV proposes our over-approximate approach. Section V ap-
plies our approach to an adaptive cruise control scenario.
Section VI outlines a future framework for parameter uncer-
tainty estimation.

II. RELATED WORKS

Alongside the optimal robust safety-critical control
method of [2] that uses predefined bounded uncertainties,
other methods use statistical representations of model un-
certainty and Bayesian neural networks such as Gaussian
processes [4]–[6] to learn robust safety controllers. While
[4]–[6]’s approaches enable the system to adapt its model
online, the learning-based approaches assume that its model
uncertainty distributions are Gaussian and learned model
does not computationally scale well with state-dimension.
These learning methods also require a large collection of
quality data for training. Other learning methods such as that
in [7] use reinforcement learning to learn model uncertainty
online from observations and create a robust CLF-CBF-QP
controller. It is possible for [7] to not converge on the true
model uncertainties during online reinforcement learning due
to early violations of safety constraints resulting in premature
failure.

In SIVIA [3] the model parameter estimation problem
is defined as solving a set inversion problem for a feasi-
ble parameter set from system observations with bounded
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uncertainties. This method guarantees convergence on fea-
sible parameter sets by a recursive search using bisection.
However, [3]’s computing time increases exponentially with
the number of parameters and is therefore not capable of
running online to provide a robust CLF-CBF-QP controller
from [2] a continuously updated uncertainty bound. Ef-
forts in [8], [9] improve the computational efficiency of
the set inversion problem using Taylor Models to solve
for approximate parameter bounds and [8] uses domain
reduction techniques to create simple strategies to avoid
recomputing Taylor models. While these methods reduce the
computational time of solving for feasible parameter sets, the
search time is not fast enough for real time estimation. In
comparison to SIVIA’s interval based set representation, [8],
[9] use ellipsoids and Taylor models to represent feasible
parameter sets more generally while maintaining tightness.
The problem of choosing a small subset of measurements
from sequential system measurements is exploited in [10]
to reduce the number of observations used when computing
feasible parameter sets. [10] uses heuristics to order past
measurements by their importance to solving for the feasible
parameter set which results in a decrease in computation.

III. BACKGROUND

A. Input-Output Linearization of True and Nominal Models

Consider a control affine nonlinear system that represents
the true model dynamics

ẋ = f(x) + g(x)u,

y = h(x),
(1)

where x ∈ Rn is the system state, u ∈ Rm is the control
input, and y ∈ Rm is the output of the system. To input-
output linearize the system we differentiate the output y
until the control input u appears explicitly. Most mechanical
system dynamics have a relative-degree of 2, but we will
outline the input-output linearization for any relative-degree
r. Therefore the vector of the outputs for a relative-degree
of r is

y(r) = Lr
fh(x) + LgL

r−1
f h(x)u, (2)

where the functions Lr
fh and LgL

r−1
f h are the rth-order Lie

derivatives [11]. Hence, y(r) is the vector of rth derivatives
of each output in y, and (2) indicates that no input in u
appears at lower than the rth derivative of each output. If
LgL

r−1
f h is invertible, then

u(x, µ) = uff (x) + (LgL
r−1
f h(x))−1µ, (3)

where uff (x) is the feed-forward control input:

uff (x) = −(LgL
r−1
f h(x))−1Lr

fh(x), (4)

and µ ∈ Rm is the auxiliary input. This control law results
in the input-output linearized system y(r) = µ, and a state
transformation of Φ : x → (η, z) can be defined, where:

η = [h(x)⊤, Lfh(x)
⊤, ..., Lr−1

f h(x)⊤]⊤ (5)

z ∈ Z,Z = {x ∈ Rn|η(x) ≡ 0} (6)

This transformation enables the closed-loop dynamics of the
system to be represented as a linear time-invariant system on
the transverse coordinates η, and the zero-dynamics manifold
Z. The true dynamics input-output linearized system is then:

f̄(η) = Fη, ḡ(η) = G

η̇ = Fη +Gη

µ = −Kη

(7)

with F ∈ Rmr×mr and G ∈ Rmr×m:

F =


0 Im . . 0
0 0 Im . 0
. . .
0 . . . Im
0 . . . 0

 , G =


0
.
.
0
Im

 , (8)

When the input-output linearized system of the true model
is unknown, the dynamics get designed using the nominal
vector fields f̃(x), g̃(x) and the precontrol law (3) gets
reformulated as

ũ(x, µ) = ũff (x) + (Lg̃L
r−1

f̃
h(x))−1µ, (9)

where
ũff (x) = −(Lg̃L

r−1

f̃
h(x))−1Lr

f̃
h(x). (10)

Then substituting in ũ(x, µ) from (9) into (2) yields

y(r) = µ+∆1(x) + ∆2(x)µ, (11)

where

∆1 := Lr
fh(x)− LgL

r−1
f h(x)(Lg̃L

r−1

f̃
h(x))−1Lr

f̃
h(x)

∆2 := LgL
r−1
f h(x)(Lr−1

f̃
h(x))−1 − Im.

(12)
Likewise the dynamics of η from (7) now take the form:

η̇ = (Fη +G∆1(η, z)) +G(Im +∆2(η, z))µ (13)

If ∆1 and ∆2 are 0 then the uncertainty is zero and
the nominal model correctly describes the true transverse
dynamics of (7). Using the relationship between the true and
nominal model allows us to bound the effects of uncertainty
and to construct a robust CLF-CBF-QP controller as defined
in [2], which uses the largest ∆1 and ∆2 values to provide
guaranteed safety and stability for bounded uncertainty. It is
suggested in [2] that the ∆1 and ∆2 values be manually
defined based on the expected uncertainty of the system.
Even though a safety controller does not have access to the
true model which is required to solve for ∆1 and ∆2 exactly,
we study the effects of how the resulting ∆ values from
guaranteed parameter uncertainty estimation can be applied
to the robust CLF-CBF-QP controller.

B. Interval Analysis

1) Intervals and Boxes: An interval is a closed and
bounded set of real numbers that describe all points within
the interval [x] ∈ R :

[x] = [x−, x+] = {x|x− ≤ x ≤ x+} (14)

212



Multiple intervals can be used together in an interval vector
or box to describe Rn as a cartesian product of its R intervals
that is denoted as IRn:

[x] = [x−
1 , x

+
1 ]× [x−

2 , x
+
2 ]× ...× [x−

n , x
+
n ] (15)

2) Minimal Inclusion Function: A minimal inclusion
function is defined for a function f : Rn → Ry denoted
as [f ], such that [f ] : IRn → IRy where the result [x] =
[{f(x)|x ∈ [x]}] minimally bounds the output of the f over
an input interval vector.

3) Minimally Bounded Model Uncertainty: The maxi-
mum values of ∆1 and ∆2 from equation (12) can be
solved efficiently in a minimally bounded way using the
minimal inclusion function on the nominal model’s vector
fields f̃(x) and g̃(x) and evaluating the minimal inclusion
function with interval vectors that contain all of a model’s
feasible parameters.

C. Set Inversion via Interval Analysis

SIVIA [3] is a recursive bisection search algorithm that
solves the following problem of set inversion:

P = {p ∈ Rn|f(p) ∈ Y } = f−1(Y ), (16)

where f : Rn → Rm, P ⊂ Rn, and Y ⊂ Rm. This set
inversion algorithm can be applied to parameter estimation
as shown in Fig. 1 by assigning P as the set of unknown
parameters, [f ] as the inclusion function of a model f ,
and Y as the observation space which consists of model
measurements and their associated measurement uncertainty
intervals. To validate if a parameter is a feasible parameter,
the inclusion function of the model using the parameter guess
must result in boxes that are consistent with all observations.

For instance, if a model f has an observation function
y = h(x, u, p) where x ∈ Rn is the system state, u ∈ Rm is
the control input, p ∈ Rv are the unknown parameters, and
y ∈ Rm is the measurement of the system, then an inclusion
function can be defined for each system measurement. The
state and control input measurements can be written as
intervals [x] and [u] if there is uncertainty in the system
input. Likewise an interval [p] can be used as a parameter
guess to evaluate a set of parameters together.

Fig. 1: Red boxes are feasible, Yellow are undetermined, and
Blue are infeasible.

To converge upon the feasible parameters as outlined
in Algorithm 1, SIVIA begins with an initial search box

[x](0) ⊂ P. This initial box is then evaluated on the
observations of the system to check whether the resulting
inclusion function [f ]([p])] produces a box for one of three
cases inside of the observation space Y as outlined in Fig. 1:
(1) [x] is fully enclosed in Y and will be completely counted
as a valid set of parameters, (2) is partially enclosed in Y
and will need to continue to be searched by bisection, (3)
the interval is does not intersect with Y and will therefore
not be included in the set of parameters. Termination of the
search in a box will happen if a feasible or infeasible box is
found or an undetermined box reaches a width (the largest
interval dimension) that is less than ϵ, at which point the
desired accuracy has been met.

Algorithm 1: SIVIA
Input : [x](0),f ,Y ,ϵ
Output: Lin, Lundetermined, Lout

1 L = {[x](0)}
2 pop [x] from L
3 if [f ]([x]) ⊂ Y , push [x] into Lin

4 else if [f ]([x]) ∩ Y = 0, push [x] into Lout

5 else if width([x]) < ϵ, push [x] into Lundetermined

6 else, bisect [x] and push to L
7 if L ̸= 0, go to 2

IV. BOUNDING SIVIA

A. Over-approximately Bounding Feasible Parameters

The exponential computational requirements of SIVIA
limit it from being applied online. For this reason we propose
Bounding SIVIA, which modifies SIVIA to focus on guar-
anteeing an over-approximation of feasible parameters that
are minimally bounded by a box as outlined in Algorithm
2. While finding the smallest box that encloses a feasible
parameter set can be achieved after running SIVIA without
modification, we exploit the problem structure to skip regions
during the search that are within a growing box and therefore
seek to benefit in decreased computational time. We also
propose motivating the search towards regions that contain
the bounding feasible parameters by applying heuristics to
our algorithm’s search order. Our method will contain all
feasible parameters as it only changes the order in which
SIVIA evaluates boxes and skipped regions do not effect
the convergence of the algorithm as the recursive evaluation
of an individual box that is the result of bisection does not
depend on any other boxes.

B. System Parameter Identification Initial Guess

The SIVIA algorithm begins with a large predefined search
space which it can quickly reduce the volume of as it
bisects, but SIVIA has difficulty evaluating the boundaries
between feasible and infeasible quickly [3]. To motivate the
search to find regions that will grow the enclosing box,
a heuristic that uses an initial guess is used as a starting
point to search for a possible location that might contain
feasible parameter sets. If being applied offline, any general
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Algorithm 2: Bounding SIVIA
Input : [x](0),f ,Y ,ϵ,heuristic
Output: Lin, Lundetermined, Lout, LargestBox

1 L = {[x](0)}
2 LargestBox = [empty]
3 pop [x] from L
4 if [f ]([x]) ⊂ Y , push [x] into Lin, LargestBox =

LargestBox ∪ [x]
5 else if [f ]([x]) ∩ Y = 0, push [x] into Lout

6 else if width([x]) < ϵ, push [x] into Lundetermined

7 else, bisect [x] and exclude [x] if in LargestBox
otherwise push [x] to L

8 sort L based on heuristic
9 if L ̸= 0, go to 2

(a) SIVIA (b) Bounding SIVIA

Fig. 2: Bounding SIVIA skips regions as the search grows the
largest box of the feasible parameters, while SIVIA checks
all regions.

system model-fitting technique such as least-squares fitting or
gradient-based optimization [12] will produce good guesses
if there is a variety of data. However, online model regression
for system identification requires solving problems of data
assimilation where there might not be enough data to fit with
respect to a state variable or the clustering of samples can
produce regions of high weight in the regression process
while ignoring others. For this paper, we assume that an
accurate system parameter identification has been made near
the true model parameters. We recommend exploring for
online use, any dual estimation Kalman filter such as [13].

C. Heuristics-Based Search

The goal is to find the smallest box enclosing all parame-
ters that are consistent with measurements of the system.
The Bounding SIVIA algorithm does not need to check
boxes that are already inside the current union of already
valid parameters, as this would not increase the size of the
smallest box enclosing all parameters. Therefore we can
remove those boxes as we are bisecting. This means that it
would be best to find boxes that are far away from each other
such that the largest feasible box grows. Once a heuristic
is decided, the order in which the available search spaces
are explored in Algorithm 1 can be sorted based on the

heuristic as they are added. A heuristic can be combined with
a system identification guess to make a nearest and farthest
box heuristic based off the distance between the box and
the guess. This distance can be calculated as a geometric
distance from the guess and the box centroid, where the
centroid is computed as the vector containing the averages
of each interval dimension along a box. We also investigate
using a simple volume heuristic that is the product of the
ranges of a box’s intervals.

V. ADAPTIVE CRUISE CONTROL SCENARIO NUMERICAL
EVALUATION

A common problem concerning robust CLF-CBF-QP con-
trollers is in car safety. We will use the following modelled
scenario of adaptive cruise control (see Fig. 3) to demon-
strate interval analysis on finding the largest ∆s and apply
our bounded SIVIA approach. We define the dynamics as
follows:

Fig. 3: Adaptive Cruise Control Scenario

x = [p, v, z]⊤ ∈ R3 (17)

ẋ =

 v
−Fr(v)/m
vlead − v

+

 0
1/m
0

u = f(x) + g(x)u (18)

Fr(v) = f0 + f1v + f2v
2 (19)

h(x) = z − Th(v)− .5(v − v2lead)/(cdg) (20)

where m, f0, f1, and f2 are unknown parameters and
represent the car’s mass and the wheel resistance respectfully.
h(x) defines the safety requirement of the car as maintain a
headway T seconds behind the leading vehicle based on the
velocity of the car and its ability to slow down to the lead
vehicle’s speed.

Our numerical experiment to test the computational effi-
ciency of our approach is done with a simplified version of
the adaptive cruise control scenario that has only the m and
f0 parameters as unknown while the rest are known. We eval-
uate SIVIA and Bounding SIVIA with all heuristics on 10
simulated data sets of 300 uniformly sampled measurements
where the error of the output acceleration and input velocity
of the system from equation (18) have a standard deviation
of 1/30 per each units. SIVIA and Bounding SIVIA then had
their accuracy value ϵ set to 10 and the assumed measurement
error be bounded by .1 for acceleration and velocity. We
present performance metrics for the average convergence
time and the number of boxes evaluated till convergence.
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Fig. 4: Nominal vs Robust Bounding SIVIA Adaptive Cruise Control Scenario. Nominal model parameters: m = 1155, f0 =
.05, f1 = 5, f2 = .25. True model parameters: m = 1650, f0 = .1, f1 = 5, f2 = .25.

TABLE I: Bounding SIVIA and Heuristic Performance

Bounding SIVIA
Heuristic (n=10) Average Time Average Evaluations

(s) (Boxes)
None 7.03 216

Volume 5.31 120
Nearest 7.44 208
Farthest 5.92 147

SIVIA [3]
Baseline 9.79 340

A. Results

Our experiment was run on a 2021 M1 Macbook Pro
and implemented in Python using the PyIbex library [14].
The results in Table I show that adding a heuristic will help
improve the bounded search efficiency when compared to
using no heuristic and that skipping search regions decreases
the number of boxes evaluated on average from 340 boxes
to a worst case of 216 boxes and improves the average
computation time by 28.1%. Although searching from the
center outwards from the system identification guess did not
perform as well as searching from outwards in. Because these
values are still on the order of seconds, our algorithm did
not speed up the computation enough for application in real
time safety-critical motion planning.

We can then apply Bounding SIVIA’s minimally enclos-
ing feasible parameter box by solving for the largest ∆
bounds as outlined in Sec. III-B3 for the adaptive cruise
control scenario. For the particle example in Fig. 4, the
bounds for m and f0 found by Bounding SIVIA are [m] =
[1544.75, 1773.85] and [f0] = [91.8, 74.224] while the true
model parameters were m = 1650 and f0 = .1. Fig. 4
demonstrates that compared to a nominal model without
robust uncertainty assumptions, the velocity tracking stability
of the robust safety controller is closer to the target veloc-
ity. Likewise both controllers maintain the relative safety
distance. It is therefore possible that Bounding SIVIA can

tune a CLF-CBF-QP controller to behave without aggressive
changes in velocity or relative safety distance as expected
for overly large ∆s.

VI. DISCUSSION

A. Explicitly Learned Feasible Parameters

We have discovered many areas that the problem of
guaranteed parameter uncertainty estimation can be modified
to improve run time performance. In this section we would
like to outline a new approach that utilizes more exact and
efficient set representations, skips the necessity to search a
parameter space by intersecting undetermined parameter sets
to find feasible parameter sets. This new approach is done
by explicitly computing a dataset of undetermined feasible
parameter sets at any desired granularity using SIVIA offline,
fitting a constrained polynomial zonotope [15] tightly over
each undetermined feasible parameter set, and then training a
neural network to learn the mapping of a system’s input and
outputs with associated uncertainty bounds to a constrained
polynomial zonotope. Then online, the measurements of the
system can be passed to the neural network to compute
the approximate constrained polynomial zonotope and all
of the undetermined feasible parameter sets can then be
intersected to find the true feasible parameter set. The main
challenges of this approach are creating a training dataset
for a given model and uncertainties when the model is high
dimensional, tuning the neural network to balance between
accuracy and evaluation speed, creating a method to fit a
constrained polynomial zonotope over a list of intervals from
SIVIA’s results, and finding an efficient manner to sample or
compute a model’s ∆ values from the feasible parameter
set represented by the intersected constrained polynomial
zonotope.

VII. CONCLUSION

Our approach can identify the smallest box that includes
all parameters but it is not able to do it online. The ap-
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plication of this guaranteed approach to higher dimensional
unknown parameter systems will require a more effective
algorithmic search that can scale efficiently. In future works
we would like to explore the use of more tightly bounding
polytope representations and computing the problem offline
to then solve for the intersection of feasible parameters
online. We would also like to experimentally evaluate this
approach on a physical system and investigate its perfor-
mance on rapidly changing model parameters.
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Detecting and classifying bus stop trash cans using camera-equipped
public transit vehicles

Tim Storm1 and Christoph Mertz2

Abstract— Trash cans are a central tool in managing the
disposal of trash in urban areas, but require human supervision
to ensure regular emptying. It is difficult to manage a large
number of waste bins spread across a whole city, which presents
an opportunity for computer vision technology to identify cans
that require attention without human intervention.
Previous work has leveraged a camera-equipped bus to deploy
a single deep learning based computer vision model to detect
trash cans along the path of the bus and classify their fill
level. We improve upon their work by presenting a multi-stage
pipeline that combines their detection model with a separate,
second model trained purely for classification. The detector
will identify and cut out trash cans from an image, which
will then be classified as either “Empty”, “Full” or “having
a garbage bag next to it”. Our approach significantly increases
the overall accuracy and precision for both tasks, as calculated
by the commonly used COCO metrics. Additionally, we present
a lightweight variant of our detection model, which can be run
on the bus itself, where only limited computational resources
available. This enables us to actually deploy our system in a
near real-time setting.

Index Terms— Computer Vision for Transportation, Intel-
ligent Transportation Systems, Environment Monitoring and
Management, Object Detection, Segmentation and Categoriza-
tion

I. INTRODUCTION

The comprehensive report ”What a Waste 2.0” published
in 2018 estimates that by 2050 waste generation rates will
outpace population growth by a factor of two, which will
pose large challenges in the solid waste management sector,
especially in low-income countries [1].
This is a considerable point of costs in many cities: Accord-
ing to that same report, solid waste management takes up
to 19 percent of a city’s budget, depending on the area. On
average 60 to 70 percent of total operational costs can be
accounted to the task of waste collection.
Even in high-income areas waste collection typically relies
on designated garbage pickup schedules and human super-
vision, but these methods are highly inflexible in adjusting
to short-term trends and scaling to large areas. These can be
serious problems when demand for garbage collection grows,
as cities and population increase in size.
Planning-based systems can help in determining effective
routes to help garbage disposal companies attend to the
trash cans that actually need to be emptied, but they require
information about the state of trash cans in an area.

1Tim Storm is with University of Paderborn, Paderborn, Germany
tistorm@mail.upb.de

2Christoph Mertz is with the NavLab, Robotics Institute, Carnegie Mellon
University, Pittsburgh, PA, USA cmertz@andrew.cmu.edu

To address this problem, we implement a system 1, which
uses camera-equipped public transport buses to continuously
monitor trash cans along a bus route. This approach utilizes
existing infrastructure and ensures reasonably accurate mea-
surements through regular traversal of the same areas.
We aim to deploy this system on the BusEdge platform [2].
BusEdge controls a number of sensors and safety cameras
on the bus itself and allows accessing and working with the
resulting data without any additional hardware, by offloading
the computational load to a nearby Cloudlet instead.
In particular we are presenting a three-stage detection-and-
classification pipeline, which is able to detect trash cans
along the side of the road and estimate their fill level based
on their outward appearance, while respecting the resource
restrictions imposed by BusEdge.
To do so, we apply multiple computer vision models based
on the ResNet architecture [3] trained with Detectron2, an
open source library that provides a number of state-of-the-art
object detection algorithms [4].
This is a continuation of previous work [5], which proposed
this pipeline and implemented parts of it. We provide an
analysis of commonly accepted metrics like precision and
recall, and show how our changes improve the previous
results.
Once deployed our pipeline can assist an employee of the
bus company by automatically providing an overview of all
existing trash cans, monitoring their fill level over time and
suggesting bus stops where trash cans are or will soon be
too full.

II. RELATED WORK

A. IoT-based Trash level monitoring

In order to improve effective emptying of waste containers
a number of Internet of Things (IoT) solutions have been
proposed [6]–[9], that aim to build ”smart” trash cans,
equipped with sensors and a network connection, which
allow for reliable remote monitoring. These systems can
track trash levels much more accurately than a computer
vision approach, but they have the distinct disadvantage of
requiring specialized hardware.
This makes retrofitting a city with such devices a tedious
endeavor and requires additional maintenance, which makes
scaling up difficult.
Our approach uses existing public infrastructure, which
makes deployment easier and more flexible.

1All code is available on https://github.com/timlst/riss-trash-detection
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B. Computer vision for trash detection
In the past there have been many attempts to utilize

computer vision methods to fight increased pollution, both
in terms of localizing and classifying it. [10], [11]
Machine learning techniques such as Support-vector ma-
chines (SVMs) [12] or Convolutional Neural Networks
(CNNs) [13], [14] were used to detect littering in both urban,
as well as aquatic enviroments [15]. The TACO [16] data set
offers a good starting point for detecting waste left in nature.
Other research directions include classifying trash to help
with recycling [17], [18].
While such methods certainly help with improving municipal
cleanliness, they do not account for waste, that has been
properly disposed of and that is ready for collection.

C. Deep Learning in computer vision
In recent times convolutional neural networks have been

out-performing more classical computer vision algorithms,
which has shifted the field towards heavy use of deep
learning based methods.
A number of frameworks [4], [19], [20] at varying degrees of
abstraction have opened up the field by providing pre-trained
models for different architectures and applications.
The task of object detection in particular allows for a wide
range of combinations: We will be using the Faster R-CNN
architecture of the R-CNN family [21]–[23], a two-stage
detector with an emphasis on accuracy, readily available
within our framework of choice - Detectron2 [4]. Depending
on the application, many different backbones can be used for
feature extraction. A common choice are entries from the
ResNet family [3], but other choices such as Inception [24],
[25] or combinations of the two [26] exist.
These architectures, while highly accurate, tend to be quite
slow, which is unsuitable for mobile and embedded devices.
This has created other approaches with an emphasis on speed
and efficiency. These range from more efficient backbones
like the MobileNets family [27] to a class of single-stage
detectors like SSD [28], YOLO [29] or RetinaNet [30], that
aim for (near) real-time application.

III. OVERVIEW
We propose a three-stage pipeline in order to detect trash

cans in a real-time context: On-the-edge preselection, Trash
can detection and Trash can classification. The pipeline is
designed to be deployed on the BusEdge platform proposed
by [2]. This section largely recaps the previous work by [5].

A. BusEdge
BusEdge [2] provides a framework for us to work with

data collected by sensors on a common public transportation
bus. This includes information such as images from exterior
cameras, GPS, acceleration etc. Notably the bus itself is
equipped with a computer not capable of (and not designed
to) executing computationally intensive tasks. Instead a typi-
cal BusEdge pipeline uses only lightweight filters that run on
the bus itself. Data that passes through the filter is then sent
to a more capable ”cognitive engine” via wireless network,
where a thorough analysis is possible.

B. On-the-edge preselection

The large amount of incoming data from the cameras
makes it infeasible to consider every frame equally. Instead
we want to concentrate our efforts on a promising subset of
all incoming data.
The largest limitation in this context are the limited compu-
tational resources available: The limited bandwidth requires
us to perform this preselection on the bus itself, since we
cannot pass all images onto the cloudlet server.
We can address this issue by applying a lightweight detection
model to roughly detect possible trash cans and then analyze
the candidates more precisely later. Instead of being very
precise, we are aiming for high recall at this stage. This
leaves us with images that may contain a trash can, while
discarding the ones that clearly do not. The whole step has
to be performed reasonably fast, even with the lack of a
dedicated graphics processing unit (GPU) typically available
in a machine learning setting, so that the whole pipeline can
run in near real-time.
For that reason, we want to look at efficient models specially
designed for the deployment on mobile devices such as
MobileNets [27] to account for the bus’ hardware limitations.

C. Detection

Our main goal in this stage is to accurately detect and
localize trash cans, regardless of their trash level, in the
previously identified images.
This step will be performed on the cloudlet server, which
is why we can apply more complex and computationally
expensive models like RetinaNet [30] or ResNet [3] to
achieve highest possible accuracy.
Previous experiments [5] have shown that, while architec-
tures like Faster R-CNN are able to both localize and classify,
the overall accuracy decreases heavily when relying on a
combined model.
That is why we cut out the identified bounding boxes and
feed them into a separate final stage instead.

D. Classification

The final stage of our pipeline is responsible for classifying
the cropped images into three separate categories:
Trash cans that do not visibly contain trash will be con-
sidered empty for our purposes, as they are not in need of
immediate attention. Trash cans that do visibly contain trash
are considered (soon-to-be) full for our purposes. Since the
bus camera can only see the outside of the cans, visible
trash is an indicator of reaching maximum capacity. That
means they will be ready to be emptied in the near future
and are therefore of interest to the bus company. Our third
class covers trash cans with a garbage bag in their immediate
vicinity, regardless of their trash level, as garbage bags are
indicative of a can that needs immediate attention, since trash
is piling up beyond the contents of the can. To account for
this class the cropped out bounding boxes are extended into
all directions to include the surrounding area.

Since we can rely on human assistance for ambiguous
images, we will assign a fourth class for predictions that fall
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Fig. 1: Proposed detection and classification pipeline

below a certain confidence threshold. Under the (reasonable)
assumption that a human operator will always be accurate,
this option presents a trade-off between human effort and
overall performance by relying on the operator’s judgement
for all predictions under the threshold.

E. Notifcation

In order for the proposed pipeline to be useful to the bus
company, an additional stage is required: The responsible
party has to be notified about the location of trash cans,
which we deem to need attention. The BusEdge platform
offers GPS data, which will be used for this purpose.
Our system provides all the necessary information for such
an application to be built on top of it.

IV. METHODOLOGY

A. Data sets

1) Regarding existing data sets: We adapted existing data
sets [31], [32] from previous work [5] for our purposes:
The data sets consist of 14,981 images of which 2682 images
contain 3909 annotations. In the first case, the annotations
assign a single label to every object of interest, whereas in
the second case, they distinguish between ”Full”, ”Empty”
and ”Garbage Bag”.
It has to be noted, that the annotations used here do not
distinguish between between domestic (movable) trash cans
and permanently installed trash cans. We used the full
provided data set for training purposes, but since we are
mainly interested in permanent installations at bus stops, we
disregard any failure cases related to other trash cans in our
analysis (unless explicitly stated otherwise).

2) Detection data set: To train and test our detection
models, we used the unaltered data set, as available at [31].

3) Classification data set: To train and evaluate our classi-
fication model, we had to make a few changes to the provided
data set [32]. Since this task does not expect bounding
boxes, we cut out the annotated bounding boxes from the
existing images to use instead. To account for the ”Garbage

Bag” label, we extended the given bounding box by 25%
horizontally and 10% vertically in each direction. If this
extended bounding box contained a garbage bag annotation
we assigned the appropriate ”garbage bag” label, falling back
to the original annotation otherwise.
This method produced a number of images not even clas-
sifiable by humans, which is why we then filtered out all
images smaller than 32 pixels in either dimension (consid-
ered ”small” by COCOeval [33]) For the reasons outlined in
paragraph IV-A.1, we mainly look at a variant of our test
set, which only contains bus stop trash cans.

B. Model training

We used our data sets as described in the previous section
to finetune models from the ResNet family [3], as well as
the MobileNet family [27]. All used models have been pre-
trained on the ImageNet [34] data set.

1) Detection: Our server-side detector was trained using
the Resnet101+FPN backbone for Faster R-CNN as proposed
in [35], available within the Detectron2 model zoo [4],
which we trained for approximately 30,000 iterations, while
evaluating the validation set every 1,000 iterations.
The bus-side detector relies on the same architecture, but we
compare different, simpler backbones capable of running on
mobile devices, including Resnet18+FPN and MobilenetV2.

2) Classification: Our classifier is based on Resnet101
again: We only replaced the final fully-connected layer with a
smaller fully-connected layer to account for our three classes.
We also applied the Softmax function, so that the output
becomes a probability vector.
We trained this model for around 10 epochs.

C. Evaluation

1) Detector: We report COCO-style metrics [33], as well
as a precision-recall curve to evaluate the performance of our
detection models.
Our use case needs only a very rough localization within an
image, which is why we give special attention to the metrics
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at an Intersection over Union (IoU) value of 50%. For the
bus case we additionally benchmark the inference time in a
CPU-only setting averaged across multiple runs.

2) Classifier: To evaluate classification performance, we
provide overall precision and recall values for our three
desired classifications on the bus stop-only test data. These
are be partially visualized in a confusion matrix to highlight
possible failure cases.
Additionally we compared these metrics given different
confidence thresholds for human intervention as described
in section III-D.
Calculating the CLASS-BALANCED-ACCURACY [36] allows
us to a give a single, comparable value here, while accounting
for the class imbalance of the data set.

V. RESULTS

A. Server-side Detection

When applied to our test set, we achieved an overall
average precision of 78.3% at an overall average recall of
85.0%. The precision increased to 89.2% when looking at
IoU 0.50.
We also saw a significant increase of over twenty percentage
points across all categories, compared to the Retinanet model
presented by [5] (see Table I).

The precision-recall curve shows promising results across
all threshholds (see blue curve in Figure 2). This becomes
even more apparent, if we limit ourselves to large (greater
than 96 by 96 pixels) bounding boxes (see orange curve in
Figure 2). These are especially interesting to us, since we
expect to get close-up images of all bus stop trash cans when
driving past them.

Fig. 2: Better model performance in the especially valuable
”large” case

However there is a small amount of trash cans that we
never manage to detect. By looking at these images, we
managed to identify a failure cases: Occlusion.
We expect each trash can to appear in full view at least once,
but as Figure 3 shows this may not always the case.

Fig. 3: Occluded trash can (green bounding box) is only
visible for a single frame. In the next recorded frame
(bottom), the bus has already passed the trash can.

B. Bus-side detection

Finetuning both backbones showed that the Resnet18
backbone surpassed the MobileNets-V2 variant in all our
core categories (see table I): While there was a slight
difference in inference time between the two, the difference
is not large enough to make up for the additional accuracy.

A look at the precision recall curve (Figure 4) shows excel-
lent performance of our lightweight model, when considering
”large” trash cans, rivaling the recall of the server model with
only slightly lower precision.

Fig. 4: Lightweight model performs exceptionally well in
”large” case, even compared with the server-side detector
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TABLE I: Resnet18 achieves higher results across the board

Backbone AP AP50 APm APl Inference (on CPU) Inference (on GPU)
Resnet101-FPN 78.3% 89.2% 84.16% 88.55% 3111ms 152ms

RetinaNet 44.2% 67.4% 57.3% 79.2% N/A N/A
Resnet 18-FPN 50.13% 74.41% 61.28% 77.09% 604ms 34ms
MobileNetsV2 35.09% 55.36% 49.68% 62.58 % 556ms 37ms

By applying the model as a pre-selector at a threshold of
0.5, our combined data set of 14981 individual frames was
cut down to a set of 2191 candidate frames (approximately
14.6%), while retaining close to 95% of all large instances.

C. Classification

Evaluating the classifier on our reduced test set (only
including bus stops), we see great results in the Garbage
Bag and Empty category, with the weakest performance in
the Full category (see table II).

This equates to an BALANCED-ACCURACY of 0.904.

TABLE II: Performance of our classifier on the reduced test
set

Label Precision Recall Support
Empty 98.52% 98.52% 270

Full 86.96% 90.91% 22
Garbage Bag 98.90% 97.83% 92

The confusion matrix (Fig. 5) highlights this: Full trash
cans are mistakenly identified as empty around ten percent of
the time. While these are acceptable results, the bus company
is especially interested in these trash can.

Fig. 5: One tenth of full trash cans are falsely predicted to
be empty.

We found that the results can be improved by applying
a minimum confidence threshold (as described in section
III-D). We found the best results at a threshold of 87% (see
Figure 6): With human intervention, we are able to correctly
identify all full trash cans, while barely affecting the results

Fig. 6: A threshold of 87% allows us to find all full trash
cans.

in the other categories. This translates to an improved
BALANCED-ACCURACY score of 0.953. As a trade-off we
required the operator’s judgement for 15 images, which
accounts for around 4 percent of all 384 images in the data
set.

We found a similar trend when applying the classifier to
the full test set (including every kind of trash can), but saw a
significant increase in the fraction of misidentified full cans,
where the confidence threshold proved to be less effective
(see Appendix Figure 7). While there is a definite area of
improvement, it serves as evidence, that our approach can
be adapted for other kinds of waste containers.

VI. CONCLUSIONS AND FUTURE WORK

We presented a three stage pipeline for detecting and
classifying trash cans, designed for deployment in an edge-
computing context. Our model significantly outperforms
previous results presented on this problem and the results
indicate satisfying results in a real-world application. We also
provide evidence, that our results may generalize to a wider
variety of waste containers.
So far we have not tested our system in actual deployment.
While we have tried to account for the limited resources,
further experimentation is still required. Depending on the
results we may want to consider other architectures such as
SSD [28] or YOLO [29] in the pre-selection step.
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VII. APPENDIX

(a) The proportion of full trash cans falsely identified
as empty is more than doubled when applied to the full
data set, while the other categories perform similarly.

(b) Applying the same threshold as 6 does not yield
nearly as strong of an improvement.

(c) Increasing the threshold even more only marginally
improves the rate of misidentifcations but heavily in-
creases the number of ”Unsure” classifications

Fig. 7: Confusion matrices for classification on full test set
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Discovery of Heterogeneous Treatment Effects from Landmark Clinical
Trials for Cardiovascular Disease

Van Le1

Mentors: Chirag Nagpal2, Artur Dubrawski2

Abstract— Treatment effects may vary because of the dif-
ferences in the response characteristics to the interventions of
different patients. These characteristics include demographics,
phenotypic health characteristics and/or medical history. The
presence of treatment effect heterogeneity is, however, often
excluded in the evaluation process of Randomized Clinical
Trials (RCTs). In this paper, we utilize the existing Deep Cox
Mixtures with Heterogeneous Effects (CMHE) model [1] to study
the heterogeneous treatment effects in three RCTs namely
Prevention of Events with Angiotensin Converting Enzyme
Inhibition (PEACE) Trial [2], Action to Control Cardiovascular
Risk in Diabetes - Lipid Study (ACCORD) [3] and Lipid-
Lowering Treatment to Prevent Heart Attack Trial (ALLHAT)
[4]. This paper shows that the examined clinical trials were
more efficient to certain subgroups of patients with specific phe-
notypes, thus demonstrating the importance of the discovery of
heterogeneous treatment effects. This paper would be beneficial
to the stakeholders including doctors and policymakers when
deciding on the type of treatment customized for each patient.

Index Terms— Machine Learning for Healthcare, Health
Informatics, Personalized Treatment

I. INTRODUCTION

As of August 2022, there are 423,077 randomized clin-
ical trials (RCTs) conducted worldwide [5]. Each year, the
National Institute of Health spends about USD 41.7 billion
in medical research [6]. These trials play a vital role in
research development of new drugs and implementation
of new treatments to patients. However, 400,000 is just a
fraction of million trials not registered nor published after
concluding that the treatments ineffective. It is possible
that the conclusions in the treatment effect in those trials
are not considering the differences among patients. If we
can show that there are, in fact, two groups of patients
which received enhanced/diminished treatment effects from
the interventions, we can personalize the treatment and those
”ineffective” trials are not just a waste of time and resources.

Each patient in the study sample has different demographic
characteristics, baseline physiology, and/or medical history
which may affect the treatment outcomes. Despite this het-
erogeneity, the results shown in many studies implicitly were
based on the assumption that the patient’s characteristics are
the same across the population. It is understandable that the
researchers want to give a conclusion at a population-level.

1Van Le studies at Hollins University, Roanoke, VA, USA
levh@hollins.edu

2Chirag Nagpal and Artur Dubrawski are with the Auton Lab, School
of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
{chiragn,awd}@andrew.cmu.edu

However, this may prove to be a double-edged sword when
the phenogroups (subgroups of patients based on phenotypes)
are not discovered and discussed.

It is in the best interest of patient safety and treatment
outcomes to figure out which groups they are in order
to guide more precise therapies that result in customized
treatment plan. Given that there are more than 400,000
clinical trials available, further research should be done to
determine the specific features that make a patient benefit
more or less from a special treatment.

To identify subgroups or cohorts of people that show
heterogeneous effects to an intervention in the presence
of censored outcomes, we use a logical method in this
study called Deep Cox Mixtures with Heterogeneous Effects
(CMHE). CMHE is a part of the auton-survival, an open-
source package for regression, counterfactual estimation,
evaluation and phenotyping with censored time-to-event [7].
This model has been verified in its original paper with the
evaluation on three datasets discussed in the Related Works
section.

This paper also applies some other functions in the
auton-survival to plot Kaplan-Meier curves, preprocess and
transform data collected at baseline, calculate hazard ratio
in the studies, and predict the treatment effects. By fitting
the model to the preprocessed data collected at baseline,
CMHE will discover the features of the patients that affect
the outcome of the interventions and group the patients into
two subsets: harmed group benefits more from the control or
standard treatment while benefited group benefits more from
the experimental or intensive treatment. After that, Decision
Tree Classifier will take charge of the classification process
where actionable phenotypes are discovered. Thus, when
doctors have the baseline characteristics of a new patient,
they can utilize the information provided to determine which
kind of treatment the patient would most likely benefit from.

In summary, this work applies the CMHE model of the
auton-survival package to three large landmark clinical trials
that were originally carried out to assess the efficacy of
medical interventions to reduce risk of adverse cardiovas-
cular outcomes among patients, and helps with assigning
patients to specific treatment group. The CMHE plays the
most important role in separating patients into phenogroups
before the set of important confounding features are revealed
with the application of Decision Tree Classifier models. We
propose to reveal the counterfactual phenotypes, thus demon-
strating the need of discovering heterogeneous treatment
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effects in RCTs.
Deep Cox Mixtures with Heterogeneous Effects

has been released as part of the open-source package,
auton-survival and is available at autonlab.github.io/auton-
survival/models/cmhe.

II. RELATED WORKS
This section highlights prior works in the discovery of

treatment effect heterogeneity. Several approaches for auto-
mated assessments of heterogeneous treatment effects have
been proposed by different research groups within the ma-
chine learning for healthcare field. This section highlights
the efficacy of CMHE model which was demonstrated in the
original paper by evaluating its performance on two landmark
RCTs:

• Antihypertensive Treatment to Prevent Heart At-
tack Trial (ALLHAT) [8]: The Hypertension Study
of ALLHAT Trial was to evaluate the performance of
a calcium channel blocker or an angiotensin-converting
enzyme inhibitor in reducing the incidence of coronary
heart disease (CHD) or myocardial infarction (MI) or
other cardiovascular disease (CVD) events as compared
to treatment with a diuretic. The conclusion in their
primary publication is that thiazide-type diuretics, the
cheaper treatment, outweigh its competitors in pro-
tecting patients from one or more major forms of
CVD. Thus, diuretics are recommended for first-step
antihypertensive therapy. CMHE, however, identified
that older patients with decreased renal function and
fewer baseline cardiac diseases will gain more benefits
from the chlorthalidone treatment. On the other hand,
amlodipine or lisinopril treatment were revealed to be
more effective to patients with higher baseline seated
blood pressure (systolic and diastolic), lower weight and
body mass index, higher baseline kidney function, and
are Black and/or non-Hispanic.

• Action to Control Cardiovascular Risk in Diabetes
(ACCORD) - Glycemia Trial [9]: The Glycemia Trial
of ACCORD was to establish the effectiveness of inten-
sive therapy in targeting normal glycated hemoglobin
levels, thus decreasing the number of cardiovascular
events in patients with type 2 diabetes who had either
established CVD or additional cardiovascular risk fac-
tors. In the primary publication, it was concluded that
as compared with standard therapy, the use of intensive
therapy to target normal glycated hemoglobin levels for
3.5 years increased death rate and did not considerably
reduce major cardiovascular incidences. Again, with the
application of CMHE, it was discovered that enhanced
treatment effects could have been seen in patients with
worse baseline kidney function (estimated glomerular
filtration rate (GFR) < 79.9 mL/min, urine creatinine
< 42.9 mg/dL), higher baseline fasted glucose levels,
and without a clear history of cerebrovascular disease.

The aforementioned paper also connected their findings
with current literature and available information that explain
the correlation between the phenotyping process and baseline

features of patients. The performance of the model at differ-
ent time horizons was also evaluated in the form of brier
score and time dependent concordance index. This helped
reinforce the validity and performance of the examined
model.

III. METHODOLOGY

In this paper, we used the auton-survival package and
its CMHE model to extract the two phenogroups with
enhanced or diminished treatment effects. After that, we
used a Decision Tree Classifier to identify the features that
affected the treatment outcomes.

A. Preprocess Data

Data preprocessing is one of the most crucial parts of
this project. The accuracy of our model heavily depends
on the accurate transformation of raw data into understand-
able format. All features used in the clinical trials were
recorded at baseline when an initial measurement of each
patient’s conditions including their demographic and clinical
characteristics were taken. Features were separated into
numerical and categorical features, and preprocessed with
a built-in class from auton-survival named Preprocessor.
Because there are missing data in the original datasets, this
Preprocessor class is helpful in data imputation, which is the
substitution of estimated values for missing or consistentdata
items. It also does data scaling to rescale numerical features
i.e. normalize their range for the sake of model application.
All confounding features are listed in the APPENDIX. For
all datasets, we used all features recorded at baseline of the
trials.

B. Instantiate and Fit CMHE Model

After preprocessing the feature data, we instantiated the
CMHE model with appropriate set of hyperparameters and
fitted it using stochastic Expectation Maximization [10].

C. Returns The Estimated Latent Treatment Effect Group ϕ
Given The Confounders X

After instantiating the model, we got the estimated latent
treatment effect variable ϕ given the confounding features.
This latent group ϕ mediated the treatment effect. At this
step, each patient is assigned two probabilities of treatment
effect corresponding to the two interventions, treatment or
control. If the patient has higher probability of event-free
survival in the control group, s/he will be assigned to the
Harmed Group. Otherwise, s/he will be assigned to the
Benefited Group. After this step, we got the hazard ratio
and 95% confidence interval of hazard ratio for each group.
The hazard ratio is equivalent to the odds that an individual
in the group with the higher hazard reaches the endpoint (i.e.
outcome in Table I) first. Thus, in a clinical trial examining
time to disease resolution, it represents the odds that a treated
patient will resolve symptoms before a control patient. In
other words, the higher the hazard ratio, the higher chance
of the treated patient’s healing first. This pattern is verified
in our summary statistics (see Tables II and III).
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Dataset Outcome Treatment Control Hazard Ratio Event Rate N

PEACE Primary End Point Trandolapril Placebo 0.96 ± 0.08 7.97 % 8,290
ALLHAT CHD Death Plus Nonfatal MI Pravastatin Placebo 0.89 ± 0.09 7.74 % 10,355
ACCORD Primary End Point Lipid Fibrate Lipid Placebo 1.08 ± 0.18 8.96 % 5,518

TABLE I: Summary statistics of the datasets used in the paper

D. Discover Actionable Phenotypes of Patients

Finally, we applied Decision Tree Classifier models on the
data to get the features that affected treatment outcomes. The
numerical data used in this step are data before normaliza-
tion so that it is interpretable. The classifications based on
features of patients are shown in the APPENDIX. The depth
of each tree is limited to 5 to provide better generalization.

IV. EXPERIMENTS

In our experiments, we consider data from three landmark
clinical trials including PEACE, ACCORD Lipid Therapy
Trial and ALLHAT Lipid Study originally conducted to
determine the optimal treatment for reducing risk from
cardiovascular diseases. These datasets were chosen because
in their primary publications, no statistically significant dif-
ference is shown between the event-free survival probabilities
of patients in two groups: treatment versus control. See
APPENDIX.

A. Data sets

• Prevention of Events with Angiotensin Converting
Enzyme Inhibition (PEACE) Trial: The PEACE clin-
ical trial was constituted to establish the appropriate
intervention between 4 mg trandolapril per day (treat-
ment) and matching placebo (control) for patients with
stable coronary artery disease and normal or slightly
reduced left ventricular function. Patients were enrolled
over a seven-year period with a median follow up time
of 4.8 years. The complete study involved 8,290 partic-
ipants older than 50 years of age. 4,158 of participants
were assigned to the intensive arm, while 4,132 were
assigned to the standard arm.

• Lipid-Lowering Treatment to Prevent Heart Attack
Trial (ALLHAT) - Lipid Study: The ALLHAT Lipid
Study was to determine whether pravastatin or usual
care is better at reducing all-cause mortality in older,
moderately hypercholesterolemic, hypertensive partic-
ipants with at least one additional CHD risk factor.
Patients aged 55 and above were enrolled over a nine-
year period with a mean follow up time of 4.8 years. The
study involved 10,355 patients, 5,170 of which were
randomized to pravastatin while 5,185 received usual
care.

• Action to Control Cardiovascular Risk in Dia-
betes (ACCORD) - Lipid Therapy Trial: The AC-
CORD Lipid Therapy Trial was conducted to determine
whether a combination of a statin plus a fibrate or statin
monotherapy would protect patients from the risk of
CVD. Subjects were those with type 2 diabetes mellitus
who were at high risk for CVD. Patients were enrolled

over a five-year period with a mean follow up time of
4.7 years. 2,765 of 5,518 patients with type 2 diabetes
who were being treated with open-label simvastatin
were randomly assigned to receive masked fenofibrate
or while the remaining 2,753 received placebo.

B. Figures and Tables

See APPENDIX for additional information.

Dataset Hazard Ratio Event Rate N

PEACE 1.19 ± 0.16 33.1 % 2,640
ALLHAT 1.19 ± 0.20 64.3 % 7,076
ACCORD 1.67 ± 0.39 46.7 % 2,460

TABLE II: Summary Statistics of Harmed Groups in Each
Dataset

Dataset Hazard Ratio Event Rate N

PEACE 0.86 ± 0.09 66.9 % 5,650
ALLHAT 0.54 ± 0.10 35.7 % 3,279
ACCORD 0.73 ± 0.18 53.3 % 2,818

TABLE III: Summary Statistics of Benefited Groups in Each
Dataset

C. Interpretation

• PEACE Trial: Among all patients, 5,650 (68.15%)
were more likely to benefit from Trandolapril (Hazard
Ratio: 0.86 ± 0.09), demonstrating decreased long-term
mortality. On the contrary, 2,640 patients (31.85%) were
apparently harmed with the same treatment (HR: 1.19
± 0.16) showing increased long-term risk. The classifier
revealed patients with a history of smoking and lower
SBP and DBP benefit more from Trandolapril.

• ALLHAT Lipid Study: Among all patients, 3,279
(31.67%) were more likely to benefit from Pravastatin
(Hazard Ratio: 0.54 ± 0.10), demonstrating decreased
long-term mortality. On the contrary, 7,076 patients
(68.33%) were apparently harmed with the same treat-
ment (HR: 1.19 ± 0.20) showing increased long-term
risk. Features such as low total cholesterol and high
weight would make patients more suitable to be treated
with pravastatin while patients with high baseline high-
density lipoprotein (HDL) Cholesterol, total cholesterol
and lower blood pressure should be given usual care.

• ACCORD Lipid Therapy Trial: Among all patients,
2,818 (51.07%) were more likely to benefit from Lipid
Fibrate (Hazard Ratio: 0.73 ± 0.18), demonstrating
decreased long-term mortality. On the contrary, 2 pa-
tients (48.93%) were apparently harmed with the same
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(a) PEACE Original Paper: Cumulative Inci-
dence of the Primary End Point, According to
Treatment Group
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(b) PEACE Phenogroups
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(a) ALLHAT Lipid Study Original Paper: Coro-
nary Heart Disease Death Plus Nonfatal Myocar-
dial Infarction
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(b) ALLHAT Lipid Phenogroups

0 2 4 6 8
Time (Years)

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Ev
en

t-F
re

e 
Su

rv
iv

al
 P

ro
ba

bi
lit

y

Harmed group
Pravastatin
Usual Care

0 2 4 6 8
Time (Years)

0.80

0.85

0.90

0.95

1.00

Ev
en

t-F
re

e 
Su

rv
iv

al
 P

ro
ba

bi
lit

y

Benefited group
Pravastatin
Usual Care

(a) ACCORD Lipid Therapy Trial Original Pa-
per: Primary Outcome
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(b) ACCORD Lipid Phenogroups
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treatment (HR: 1.67 ± 0.39) showing increased long-
term risk. With the application of CMHE and Decision
Tree Classifier, several baseline features describing the
phenogroup with diminished or enhanced treatment
effect from Lipid Fibrate were discovered. Lipid Fibrate
seemed to benefit patients who have lower baseline
seated diastolic blood pressure, HDL cholesterol and
serum creatinine. In contrast, patients with lower base-
line glomerular filtration rate, potassium or decreased
evidence of cardiovascular disease (lower systolic blood
pressure) would receive better protection from cardio-
vascular events from lipid placebo.

V. LIMITATIONS

For PEACE dataset, we had to use forward selection to
select the features that had the most impacts on the treatment
effects. The reason is CMHE model was overfitting if it
was fitted on all feature data recorded at baseline. For all
experiments, we splitted the datasets into train and testing
pieces to evaluate the performance of CMHE before running
Classifier to discover the phenotypes.

VI. CONCLUSIONS

We applied a novel survival model to different trials and
identified a patient subgroup whose outcomes could improve
with treatment, even though population level on-average
analysis shows no desirable effects. We propose that more
research into major clinical trials be conducted to determine
the application of the discussed model and provide clinicians
with information on how to customize treatment based on
each patient’s characteristics.

VII. APPENDIX

Additional tables and figures are included on the following
page.

ACKNOWLEDGMENT

This material is based upon work supported by Carnegie
Mellon University’s Center for Machine Learning for Health-
care. Thank you to Carnegie Mellon University, the Auton
Lab and Robotics Institute for this research opportunity. A
special thanks to the Auton Lab and my mentors—Chirag
Nagpal and Dr. Artur Dubrawski—for their mentorship and
guidance throughout this research journey. I also want to
thank Ms. Rachel Burcin and Dr. John Dolan for their work
to help make the RISS program possible.

REFERENCES

[1] C. Nagpal, M. Goswami, K. Dufendach, and A. Dubrawski, “Coun-
terfactual phenotyping with censored time-to-events,” arXiv preprint
arXiv:2202.11089, 2022.

[2] P. T. Investigators, “Angiotensin-converting–enzyme inhibition in sta-
ble coronary artery disease,” New England Journal of Medicine, vol.
351, no. 20, pp. 2058–2068, 2004.

[3] A. S. Group, “Effects of combination lipid therapy in type 2 diabetes
mellitus,” New England Journal of Medicine, vol. 362, no. 17, pp.
1563–1574, 2010.

[4] C. D. Furberg, J. T. Wright, B. R. Davis, J. A. Cutler, M. Alderman,
H. Black, W. Cushman, R. Grimm, L. J. Haywood, F. Leenen, et al.,
“Major outcomes in moderately hypercholesterolemic, hypertensive
patients randomized to pravastatin vs usual care: the antihypertensive
and lipid-lowering treatment to prevent heart attack trial (allhat-llt),”
Journal of the American Medical Association, vol. 288, no. 23, pp.
2998–3007, 2002.

[5] “Home - ClinicalTrials.gov,” https://clinicaltrials.gov/.
[6] “Budget National Institutes of Health (NIH),”

https://www.nih.gov/about-nih/what-we-do/budget.
[7] C. Nagpal, W. Potosnak, and A. Dubrawski, “auton-survival: an open-

source package for regression, counterfactual estimation, evaluation
and phenotyping with censored time-to-event data,” arXiv preprint
arXiv:2204.07276, 2022.

[8] P. H. A. Trial, “Major outcomes in high-risk hypertensive patients,”
Jama, vol. 288, no. 23, pp. 2981–2997, 2002.

[9] A. to Control Cardiovascular Risk in Diabetes Study Group, “Effects
of intensive glucose lowering in type 2 diabetes,” New England journal
of medicine, vol. 358, no. 24, pp. 2545–2559, 2008.

[10] C. Nagpal, S. Yadlowsky, N. Rostamzadeh, and K. Heller, “Deep cox
mixtures for survival regression,” in Machine Learning for Healthcare
Conference. PMLR, 2021, pp. 674–708.

[11] C. Nagpal, D. Wei, B. Vinzamuri, M. Shekhar, S. E. Berger, S. Das,
and K. R. Varshney, “Interpretable subgroup discovery in treatment
effect estimation with application to opioid prescribing guidelines,”
in Proceedings of the ACM Conference on Health, Inference, and
Learning, 2020, pp. 19–29.

Name Mean Standard Error

Seated Systolic Blood Pressure 135.10 0.32
Seated Diastolic Blood Pressure 78.77 0.18

TABLE IV: Summary Statistics of Numerical Features of
Patients in Harmed Groups in PEACE Trial at Baseline

Name Mean Standard Error

Seated Systolic Blood Pressure 123.92 0.20
Seated Diastolic Blood Pressure 72.77 0.13

TABLE V: Summary Statistics of Numerical Features of
Patients in Benefited Groups in PEACE Trial at Baseline

Name Mean Standard Error

Seated Systolic Blood Pressure 142.76 0.16
Seated Diastolic Blood Pressure 83.95 0.11

Age 66.33 0.09
Total Cholesterol 222.04 0.32

Glucose 109.64 0.35
Weight (LBS) 186.23 0.47
Height (INC) 66.51 0.05

HDL Cholesterol 46.28 0.15
LDL Cholesterol 145.55 0.26

Triglycerides 146.91 0.77
BMI 29.69 0.67

TABLE VI: Summary Statistics of Numerical Features of
Patients in Harmed Groups in ALLHAT Trial at Baseline
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Name Mean Standard Error

Seated Systolic Blood Pressure 149.74 0.22
Seated Diastolic Blood Pressure 84.09 0.18

Age 66.48 0.13
Total Cholesterol 227.32 0.46

Glucose 161.24 1.35
Weight (LBS) 176.49 0.65
Height (INC) 64.61 0.06

HDL Cholesterol 50.15 0.27
LDL Cholesterol 145.45 0.36

Triglycerides 162.59 1.48
BMI 29.85 0.10

TABLE VII: Summary Statistics of Numerical Features of
Patients in Benefited Groups in ALLHAT Trial at Baseline

Name Mean Standard Error

Seated Systolic Blood Pressure 134.05 0.35
Seated Diastolic Blood Pressure 71.99 0.20

Age 64.39 0.13
Total Cholesterol 183.18 0.78

Heart Rate 69.86 0.22
Potassium 4.46 0.01

Fasting Plasma Glucose 162.32 0.95
HDL Cholesterol 37.92 0.16
LDL Cholesterol 104.08 0.64

Triglycerides 212.58 2.35
VLDL Cholesterol 40.99 0.40

Alanine Transaminase 28.00 0.29
Creatine Phosphokinase 133.00 2.05

Serum Creatinine 0.93 0.00
Estimated Glomerular Filtration Rate 87.46 0.47

Urine Albumine 14.99 0.75
Urine Creatinine 1.07 0.01

Urine Albumin/Creatinine Ratio 15.35 0.75

TABLE VIII: Summary Statistics of Numerical Features of
Patients in Harmed Groups in ACCORD Trial at Baseline

Name Mean Standard Error

Seated Systolic Blood Pressure 133.25 0.32
Seated Diastolic Blood Pressure 75.33 0.19

Age 61.35 0.12
Total Cholesterol 167.82 0.63

Heart Rate 74.31 0.22
Potassium 4.48 0.01

Fasting Plasma Glucose 185.91 1.00
HDL Cholesterol 38.31 0.14
LDL Cholesterol 97.31 0.54

Triglycerides 162.53 1.57
VLDL Cholesterol 32.16 0.30

Alanine Transaminase 27.04 0.23
Creatine Phosphokinase 139.31 2.08

Serum Creatinine 0.92 0.00
Estimated Glomerular Filtration Rate 91.95 0.39

Urine Albumine 4.94 0.20
Urine Creatinine 1.40 0.01

Urine Albumin/Creatinine Ratio 3.96 0.17

TABLE IX: Summary Statistics of Numerical Features of
Patients in Benefited Groups in ACCORD Trial at Baseline
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(b) Distribution of Patients
in Benefited Group by Sex
in PEACE
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(a) Distribution of Patients
in Harmed Group by
Smoke Status at Baseline
in PEACE
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(b) Distribution of Patients
in Benefited Group by
Smoke Status at Baseline
in PEACE
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(a) Distribution of Patients
in Harmed Group by Sex in
ALLHAT
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(b) Distribution of Patients
in Benefited Group by Sex
in ALLHAT
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(a) Distribution of Patients
in Harmed Group by
Smoke Status at Baseline
in ALLHAT
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(b) Distribution of Patients
in Benefited Group by
Smoke Status at Baseline
in ALLHAT
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(a) Distribution of Patients
in Harmed Group by Eth-
nicity in ALLHAT

White Non-Hispanic Black Non-Hispanic White Hispanic Black Hispanic Other
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(b) Distribution of Patients
in Benefited Group by Eth-
nicity in ALLHAT

Black Non-Hispanic White Non-Hispanic Other White Hispanic Black Hispanic
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(a) Distribution of Patients
in Harmed Group by His-
tory of Diabetes in ALL-
HAT
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(b) Distribution of Patients
in Benefited Group by His-
tory of Diabetes in ALL-
HAT

No Yes
Baseline History of Diabetes
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(a) Distribution of Patients
in Harmed Group by His-
tory Use of Aspirin in ALL-
HAT

No Yes Don't know
Baseline History Use of Aspirin
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(b) Distribution of Patients
in Benefited Group by His-
tory Use of Aspirin in ALL-
HAT

No Yes Don't know
Baseline History Use of Aspirin
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(a) Distribution of Patients
in Harmed Group by His-
tory of Estrogen Supple-
mentation in ALLHAT
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Baseline History of Estrogen Supplementation
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(b) Distribution of Patients
in Benefited Group by His-
tory of Estrogen Supple-
mentation in ALLHAT
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(a) Distribution of Patients
in Harmed Group by His-
tory of Congenital Heart
Defects in ALLHAT
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(b) Distribution of Patients
in Benefited Group by His-
tory of Congenital Heart
Defects in ALLHAT
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(a) Distribution of Patients
in Harmed Group by Sex in
ACCORD
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(b) Distribution of Patients
in Benefited Group by Sex
in ACCORD
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(a) Distribution of Patients
in Harmed Group by Race
in ACCORD
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(b) Distribution of Patients
in Benefited Group by Race
in ACCORD
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(a) Distribution of Patients
in Harmed Group by Base-
line Smoke Status in AC-
CORD

No Yes
Baseline Smoke Status
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(b) Distribution of Patients
in Benefited Group by
Baseline Smoke Status in
ACCORD
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(a) Distribution of Patients
in Harmed Group by Base-
line History of Myocardial
Infarction in ACCORD

No Yes
Baseline History of Myocardial Infarction
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(b) Distribution of Patients
in Benefited Group by
Baseline History of
Myocardial Infarction in
ACCORD
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(a) Distribution of Patients
in Harmed Group by Base-
line History of Stroke in
ACCORD
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Sketch-to-image synthesis using semantic priors

Vihaan Misra1, Peter Schaldenbrand2 and Jean Oh3

Abstract— Recent developments in text-to-image synthesis
have shown some substantial and intriguing progress for gener-
ating images with simply a natural language input. While these
methods produce seemingly relevant as well as high-quality
images, a clear divide can be seen in terms of giving the user
more control over what they actually want to see. Sketches,
can communicate visual data in a more natural form than
text especially relating to the composition of an image and
concept design. Current sketch-to-image translation methods
lack generalizability, control over the style of the image, and
content control via additional language input. Through this
work, we propose a method for rewriting pre-trained General
Adversarial Network(GAN) models by incorporating sketch and
text inputs from the user. Furthermore, we use a cross-domain
adversarial loss paired with Contrastive Language-Image Pre-
Training(CLIP) loss to ensure that the generated images match
the sketch and text input given by the user whilst retaining
good visual quality. This approach also reduces the need for
training computationally expensive models through a form of
remodelling of off-the-shelf GAN models. We will evaluate our
method through user studies to show that employing a sketch
and text input pair considerably increases the appropriateness
of the generated images and gives the user more supervision
over the resulting output.

Index Terms— Deep Learning Methods, Visual Learning

I. INTRODUCTION

“The drawing shows me at one glance what might be
spread over ten pages in a book” - Ivan Turgenev [1]

It is commonly known that an image can express infor-
mation more efficiently than spoken or written language as
seen in common expressions such as ”A picture is worth
a thousand words” and ”A poet would be overcome by
sleep and hunger before being able to describe with words
what a painter is able to depict in an instant” ([2], [3]).
While only a few words forming a description may lack
enough detail to completely describe an image, it has become
a common task in Machine Learning to translate natural
language descriptions in to images ([4]–[7]). This task has
been enabled by large-scale text and image paired datasets
[8] leading to models which can robustly encode visual and
language information into the same latent representation [9].
While the quality and visual-language consistency of these
models has improved vastly in recent years, such new models
still lack a number of essential components to generating
visual content accurately:

1Vihaan Misra is with the Department of Electrical Engineer-
ing, Netaji Subhas University of Technology, New Delhi, India
vihaan.ee19@nsut.ac.in

2Peter Schaldenbrand and Jean Oh are with the Robotics Institute,
Carnegie Mellon University, Pittsburgh, Pennsylvania, USA pschalde,
hyaejino@andrew.cmu.edu

1) Controlling the output: These models generate
images entirely from text inputs. This means that if the
user wishes to make changes, they can only do so either
by altering their text input or rephrasing it entirely
commonly referred to as Prompt Engineering. While
making broader changes pertaining to style and color
can be done easily through text, making finer changes
like poses, structure and arrangement is challenging.
This restricts the user’s ability to make graphic changes
to the produced output as it is governed by their skills
to articulate the desired changes and the model’s ability
to understand natural language cues.

2) Scalibility: Such text-to-image models can only
provide a small number of outputs. A user creating
artwork might want a set of such categories of images.
For example, say the user wants a collection of images
of elephants in specific situations like with its trunk
high up, sitting or facing right. To do so, they would
either need to textually particularize the details or pro-
duce a sizable dataset and train a generative network
on it. Along with gathering the dataset, employing the
generative approach also necessitates spending a sig-
nificant amount of computational power and resources
for the model’s training.

3) Generalizability: Large and unstructured datasets
have a strong negative impact on approaches that use
generative models. These models perform admirably
in terms of photorealism on carefully curated datsets,
particularly when it comes to human faces. But in
highly diverse datasets like the ImageNet [10], their
performance is proven to be sub-par [11]. As a result,
it restrains the current approaches to function with
certain types of images, such as faces, cats, and horses,
and a new model must be trained specifically for that
class.

In this paper, we propose a novel architecture that tackles
the aforementioned drawbacks and improves on existing
baselines in the task of user-guided image synthesis. We use
a textual prompt and hand-drawn sketches from the user as
inputs to create a generative model that can create natural and
suitable images. To achieve this, we use a StyleGAN-XL
[12] based model, guided by Contrastive Language-Image
Pre-Training(CLIP) [9] and Learned Perceptual Image Patch
Similarity(LPIPS) [13] based loss to create customized Gen-
erative Adversarial network(GAN) [14] models that match
the user inputs.

The significance of hand-drawn sketches in directing im-
age synthesis has been emphasized ever since Shi-Min Hu’s
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Sketch2Photo [15]. Sketches are an attractive form of control
because they are simple and abstract enough that nearly
anyone can generate and edit one, but equivalent actions in
the picture domain require a higher level of creative ability
and/or expensive training.

There are seven elements of visual art: space, shapes, lines,
colors, form, texture, and value([16], [17]). Most literature
on affecting the style of images, such as neural style transfer
[18] can control color and textures well but lack changes to
compositional elements such as space and shape. State-of-
the-art text-to-image synthesis models can control the colors
and textures of the image via the language prompt, but
it is challenging or impossible to describe compositional
information via language. This is why a sketch input is
necessary for a model to properly generate art with control
over all 7 elements of art.

Moreover, to further facilitate intuitive text-based semantic
image manipulation and maintain human perception of image
quality, we use the CLIP and LPIPS guided loss functions.
We use this method to create modified generative models
that can produce new samples as well as interpolate between
the generated images. Our method gives extensive control to
the user over the output of the model to obtain the desired
image. We further carry out experiments and user-studies to
establish the validity of our contributions.

II. RELATED WORK

A. Text-based Image Synthesis

Recent advancements in text-to-image synthesis have
shown to produce very high resolution images. Generative
approaches ([19]–[22]) mainly follow the use of Generators
and Discriminators which are trained together while compet-
ing with one another. The generator learns to produce a target
output whilst the discriminator learns to distinguish true data
from the output of the generator. Further, conditional GANs(
[23]–[26]) are also used for text to image generation. These
models produced high-quality outputs on select classes e.g.
cats and flowers. Other methods([27]–[29]) use a Vector
Quantized (VQ) variational autoencoders to compress the
picture into a low-dimensional discrete latent space and
match the density of hidden variables. Auto Regressive
models [30] treat an image as a sequence of pixels and
have been used for image generation([27], [31], [32]). With
powerful transformer networks and extensive text-image pair
datasets, methods like([4], [33], [34]) have made significant
progress in image relevancy and quality in the text-to-image
synthesis.

B. Sketch-based Image Retrieval and Synthesis(SBIR)

Utilizing hand-drawn drawings to obtain pictures has been
a prevalent field of study. Although Sketch Based-Image
Retrieval(SBIR)([35]–[38]) was originally developed for a
category-level environment([39]–[41]), it has recently under-
gone a fine-grained transition to better capture the intrinsic
fine-grained qualities of drawings([42]–[44]). Recent SBIR
networks have followed the Deep Neural Network approach(
[35]–[37], [39], [41], [45]). Moreover, sketch-image pair

datasets([46]–[51]) have facilitated the creation of generative
networks that translate sketches to image outputs([46], [52],
[53]), along with several sketch-based editing models([54],
[55]).

C. Model Fine-Tuning

Recent studies use Transfer Learning to fine-tune the
weights of a pretrained generator and discriminator pair
in order to train a GAN network on a new dataset([10],
[56]). Furthermore, in order to prevent overfitting, several
approaches involving like limiting the weight changes of the
network([57]–[62]) and data augmentation([63]–[66]) were
used. We follow a very similar approach to Sketch Your Own
GAN [67], wherein we create a customized GAN model for
given sketch inputs from the user. We further improve on
their method in terms of using a StyleGAN-XL generator
instead of a StyleGAN-2 that is pretrained on the ImageNet
dataset. This increases the model’s generalizability and elim-
inates the requirement for pretrained StyleGAN models for
each desired class. In addition, we provide semantics-aware
losses to steer text-based adjustments and maintain high-
resolution image quality(explained in later sections).

III. METHOD

Our approach is an optimization problem in which a gen-
erative neural network is optimized to satisfy three criteria.
The images that the generator produces must (1) fit the sketch
given as input, (2) look photographic, and (3) must match
the text description of the image. The parameter space is the
fine-tuning of a pretrained generator model. The generator
model must be capable of producing images described in the
text description and depicted in the sketch. For this reason,
we use the StyleGAN-XL model which has been trained on
ImageNet dataset which contains 1000 different categories
of image contents.

A. Sketch Control

In order to alter the generator model to produce im-
ages that fit the sketch, we utilize a pretrained image-to-
sketch [68] model following methodology from [67]. In
each iteration, the generator produces a batch of images.
These generated images can be converted into sketches then
compared to the input sketch. We utilize a discriminator
model for comparing the input sketches and the sketches
of the generated images.

B. Language Control

Images produced by the generator are encoded using a
pretrained image-text encoder, CLIP. These encodings are
compared to the encodings of the input text prompt using
cosine distance. This forms a loss value, which when de-
creased, ensures that the generated images are similar to the
text description.

Prior to encoding the generated images with CLIP, the im-
ages are augmented with random perspective shift, cropping,
and color normalization. This step is necessary for acquiring
a robust loss signal that can be back-propagated through the
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Fig. 1. Training procedure. Our training consists of three major components. (a) Lsketch: the sketch discriminator classifies between fake and user
sketches. A pretrained mapping network P [68]is used to translate the output of our model G to a fake sketch. (b) Ltext: the text-guiding power of CLIP
[9] is leveraged for calculating a semantics-based loss. (c) Limage: the image discriminator Dx classifies between fake and real images. Real images are
sampled from the training set of the original model G.

pretrained CLIP model and is common in other text-to-image
methods ([6], [7], [69]).

C. Image Quality

To ensure that the images produced by the generator are
photographic in appearance, we draw from traditional image
GAN literature. The generated images are compared to a data
set of real photographs using a discriminator model.

To bridge the gap between sketch training data and the
image generative model, we introduce a cross-domain adver-
sarial loss to encourage the generated images to match the
sketches Y. Before passing into the discriminator, the output
of the generator is transferred into a sketch by the pretrained
image-to-sketch network F

Optimization Equation

L = Lsketch + λimage Ltext + λtextLtext

with λimage controlling the importance of the image reg-
ularization term and λtext controlling the semantics term.
These regularization terms decide the importance being given
to the user sketch and text inputs. The user can alter the
value of these terms in order to decide which input to give
more weightage to in accordance with the image they want
to create.

We aim to learn a new set of weights G (z; θ′), with the
following minimax objective:

θ′ = argmin
θ′

max
DX ,DY

L

IV. RESULTS

We evaluate our method’s performance using human-
based perception metrics and numerical metrics. We also
demonstrate new creative capabilities enabled by the flexible
controllability of our approach. We utilise PhotoSketch [68]
to convert the cat photos from the LSUN dataset [70], then
manually choose groups of 30 sketches with comparable
forms and positions to serve as the user input, as illustrated
in Figure 2. We manually select an additional 2,500 photos
that correspond to the input sketches to determine the target
distribution. Out of 10,000 candidate photos, we choose
the ones with the closest chamfer distances [56] to the
specified inputs. Only the 10 chosen sketches are available
to the model; the sets of 2,500 genuine photos serve as
representations of the actual but unseen target distributions.

V. DISCUSSION

We propose a new approach to the sketch-to-image as
well as the text-to-image domains, which have recently seen
a variety of novel methods aimed at increasing the image
quality and relevancy to the input text. While some of
the methods do incorporate image editing techniques, they
still lack a sense of giving the user a more generalized
control over the output of the model. Our method overcomes
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Fig. 2. Each row shows uncurated samples generated from a model trained on sample sketches from Quickdraw [71]. Same noise z is used and truncation
ψ = 0.5 is applied to each model.

the domain gaps between sketches, texts and the generator
parameter space to create a pipeline that can synthesize an
infinite number of unique images using just one or more
hand-drawn sketches. Additionally, the user can select the
regularisation terms to determine the significance of the
sketch or text input. This provides the users the freedom to
choose if they want the sketch to be given more weight than
the written description or vice-versa. Thus, our approach of
using off-the-shelf GAN models and giving the user more
control over the training process by using text and sketch
inputs leads to a higher favorability of our approach in human
evaluations and objective metrics. The results in Figure 2
show that the StyleGAN-XL produces lower quality images
as compared to [67]. The advantage of using the StyleGAN-
XL generator, however, is that it can be used to create edited
images across all the categories of Imagenet. This increases
the generalizability of our approach because it means that
it is not constrained to the smaller categories that existing
GAN models are trained on.

However, plenty of room for improvement remains for our
method. Significant changes introduced in StyleGAN-3 and
StyleGAN-XL architectures pose many challenges. Central
among these is the disentanglement of its latent spaces and
the ability to accurately invert and edit real images. Figuring
out a better algorithm to traverse this latent space can hugely
improve the quality of our outputs. Another drawback of our
current approach is that since our models require more than
30K training iterations, tweaking a model in real-time is not
achievable. Moreover, because our approach needs access to
the original model’s training data, it might not be suited for
situations where the training data is not readily available.

VI. FUTURE WORK
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Safe and Efficient Multi-agent Reinforcement Learning via Dynamic
Shielding

Wenli Xiao1, Yiwei Lyu2, John M. Dolan3

Abstract— Multi-Agent Reinforcement Learning (MARL)
discovers policies that maximize reward but do not have safety
guarantees during learning or deployment phases. Recent works
on safe RL approaches focus on single-agent scenarios, which
are not scalable for multi-agent tasks. Furthermore, normal
decentralized approaches usually incur high coordination costs
when agents interact (i.e., agents may behave conservatively
and get stuck in place when close to others). In this paper,
we propose an adaptive algorithm to achieve safe and efficient
MARL by leveraging shielding to monitor unsafe actions and
refactoring the shields frequently to mitigate coordination
overhead. A shield is a reactive system running in parallel
with the environment to monitor and correct agents’ behavior.
Our algorithm, dynamic shielding, synthesizes multiple shields
in a decentralized fashion, in which each shield monitors a
subset of agents. The core idea is that the shields are not
fixed during learning; instead, each shield can merge with
other shields or split into multiple shields. Shields can merge
to monitor agents jointly when multiple agents are gathered
in one area; they can also split up to monitor agents in
decentralized fashion as agents spread out. Theoretically, our
approach ensures safe MARL during the training and execution
phases. Our approach reduces coordination costs significantly.
We provide experiments to demonstrate that our approach leads
to less conservative behaviors than the existing approaches. Our
approach also significantly outperforms the existing approaches.

Index Terms— Reinforcement Learning, Formal Methods in
Robotics and Automation, Multi-Robot Systems

I. INTRODUCTION

Multi-Agent Reinforcement Learning (MARL) [1], [2] is
a promising approach to obtain learning control policies
for multi-agent decision-making tasks such as transporta-
tion management [3], [4], motion control [5], [6], and au-
tonomous driving [7]–[9]. However, applying MARL meth-
ods in safety-critical autonomous systems (e.g., autonomous
driving cars) can cause havoc due to the lack of formal
safety guarantees. In addition, traditional MARL approaches
with behavior penalties (i.e., giving a negative reward for
unsafe actions) cannot ensure safety in practice [10], [11].
Therefore, there is a significant challenge to developing
safe MARL systems that are provably trustworthy [2],
[10]. Recently, there has been much research in notions
of safety [11]–[15]. For example, Linear Temporal Logic
(LTL) [16] is a specification language used for formal

1The author is with the School of Science and Engineering, the Chinese
University of Hong Kong, Shenzhen. This work was completed when Wenli
Xiao served as an intern in the Robotics Institute Summer Scholar at
Carnegie Mellon University. wenlixiao@link.cuhk.edu.cn

2The author is with the Department of Electrical and Computer Engineer-
ing, Carnegie Mellon University. yiweilyu@andrew.cmu.edu

3The author is with the Robotics Institute, Carnegie Mellon University.
jmd@cs.cmu.edu

Fig. 1: The differently colored circles denote multiple agents,
and the black arrows are desired actions. Traditional de-
centralized shielding (upper) takes extra steps in waiting
for coordination near the border of shields, while proposed
dynamic shielding (lower) efficiently takes action.

verification to ensure that an automation system always stays
in safety states [17]. A recent work [15] adopts LTL as a
safety specification language in single-agent Reinforcement
Learning (RL) via synthesizing a shield to monitor the RL
agent. The shield is a lightweight system running along
with the RL agent, which monitors actions selected by the
RL agent and rejects any unsafe actions according to the
given safety specification. The shield has provable safety
guarantees for the lifetime of the RL process (i.e., the training
and deployment phases). Factored shielding [11] adapts
the shielded learning method to multi-agent scenarios in a
decentralized fashion. Compared with centralized shielding,
which uses one shield to monitor the states and actions of all
agents, factored shielding synthesizes multiple shields, and
each shield monitors a subset of the agents’ state space.

For multi-agent safe reinforcement learning, there is
a dilemma: centralized approaches have limited scalabil-
ity [11], while fully decentralized methods cause coordina-
tion overhead. Agents become stuck waiting for coordination
when they get closer to one another due to the lack of
information sharing in decentralized approaches. For in-
stance, Figure 1 shows a scenario in which factored shielding
causes extra coordination overhead. In this paper, we propose
a novel safe and efficient MARL framework in a mixed
decentralized manner, which dynamically uses shielding to
ensure safety and mitigate conservative behaviors.

Specifically, our main contributions are threefold: Firstly,
we propose a novel shield framework - dynamic shielding,
which enables robots collaboratively to ensure safety. There
are initially multiple shields, which concurrently monitor
different agents. When there is a high risk of conservative be-
havior (e.g., agents move together), the shields could choose
to merge with others. The merged shield can leverage the
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state information of multiple agents to mitigate unnecessary
coordination overhead. When agents move apart from each
other, the merged shield can split into multiple shields to
monitor agents. We also present an effective shield synthesis
approach in section V, named k-step look ahead shield. Our
method prunes the unnecessary computation of traditional
shield synthesis approaches [11], [15] and delegates the
computation complexity to the online algorithm, which can
synthesize shields in real-time.

In addition, we showcase the effectiveness and perfor-
mance of our shielding approach through experiments. We
study the navigation problem on six different maps in the grid
world [18] and a cooperative environment in the Multiple
Particle Environment [19] (MPE). Our approach outperforms
all the other benchmarks in terms of reward and minimal
steps with a guarantee of safety.

II. RELATED WORKS

A. Safe Multi-agent Reinforcement Learning

Safe RL methods can be classified into two cate-
gories [12]: 1) The first is optimization criterion-based meth-
ods, which modify the RL objective functions. For example,
SNO-MDP [20] tackles the safe RL problem using a con-
strained Markov decision process. 2) The second is based
on modifying the exploration process to avoid undesirable
actions, which incorporates extra domain-specific knowledge
(e.g., guidance and demonstration) into the training process.
Our dynamic shielding algorithm falls into the second cat-
egory. Shielding was introduced to single-agent RL in [15],
and was adapted to multi-agent settings in [11]. In this
work, we propose a novel shielding framework for MARL
by addressing challenges such as coordination overhead and
scalability issues in the multi-agent setting.

B. Linear Temporal Logic and Safety Specification

In this paper, we use Linear Temporal Logic (LTL) [16] to
write safety specifications. LTL is a widely used specification
language in safety-critical systems [21], [22], which can
express complex requests at a high level. For example, LTL
has been used to express complex task specifications for
robotic planning and control [23], [24]. Several works [25]–
[27] develop reward shaping techniques that translate logical
constraints expressed in LTL to reward functions for RL.
However, [11] has empirically demonstrated reward shap-
ing cannot ensure safety in MARL. The shield synthesis
technique based on solving two-player safety games was
developed in [28] for enforcing safety specifications written
by LTL, which synthesizes the shield to a local file before
running the system (offline). We modify the two-player game
and propose an online method to synthesize shields in real-
time (in section V).

III. PRELIMINARIES

We start by introducing Multi-agent Reinforcement Learn-
ing, Shielding, and Safety Games with Linear Temporal Logic
specification, upon which our algorithm builds.

A. Multi-Agent Reinforcement Learning (MARL)

We focus on the n-player Markov Games defined by a tu-
ple

(
N ,S,

{
Ai

}
i∈N ,

{
ri
}
i∈N ,P, γ

)
, where N = {1...n}

is the set of n agents, S denotes the state space jointly
observed by all agents, Ai is the action space of agent i,
ri is the reward function of agent i, P : S × A → ∆(S)
denotes the transition probability, and γ is the discount factor.
We assume the initial state s1 follows a fixed distribution
ρ ∈ ∆(S). At each time step t, the agents observe state st,
take actions at,i ∈ Ai in the environment simultaneously, and
receive rewards rt,i ∈ Ri. Then the state of the environment
moves to st+1. The objective of each agent i is to learn a
control policy πi which maximizes the expected cumulative
reward E

[∑∞
t=0 γ

tRi (st, at, st+1)
]
. MARL algorithms can

be categorized into three different types based on the de-
pendence of individual agent performance on other agents’
choices, including cooperative, competitive, and mixed set-
tings. We use MARL algorithms with mixed settings in our
experiment, and discuss the details in Section VI.

B. Linear Temporal Logic as Safety Specification

We consider Linear Temporal Logic [16] (LTL) to express
safety specifications. LTL is an extension of propositional
logic, which has long been used as a tool in the formal
verification of programs and systems. The syntax of LTL
is given by the following grammar [29]:

φ := p|¬p|φ1 ∨ φ2| ⃝ φ|φ1Uφ2

where p is an atomic proposition. The temporal operators
are next ⃝φ, which indicates φ is true in the next suc-
ceeding state, and until φ1Uφ2 indicating φ1 is true until
the state where φ2 is true. From these operators, we can
define True ≡ ϕ ∨ ¬ϕ, False ≡ ¬True, implication
φ ⇒ ψ := ¬φ ∨ ψ, eventually ⋄φ := TrueUφ, and
always □φ := ¬ ⋄ ¬φ. We use LTL formulas to express
safe specifications. For example, □¬collision denotes that
collision should never happen. We consider translating the
LTL safety specification into a safe language accepted by a
deterministic finite automaton (DFA) [30]. In addition, we
extend the definition of safe RL in [15] to MARL in the
following way:

Definition 1. Safe MARL is the process of learning optimal
policies for multiple agents while satisfying a temporal logic
safety specification ϕs during the learning and execution
phases.

C. Formal Safety Guarantee with Shield

Fig. 2: Enforcing safety specification via shield.
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Our method builds upon a prior method called Shield [11],
[28], which ensures safety properties at runtime. Shield
(Fig. 2) monitors the control input of agents and corrects any
unsafe control input instantaneously. A Shield should have
two properties: 1) Minimal interference. Namely, shields
only correct the action if it violates the safety rule. 2)
Correctness. Shields should distinguish every unsafe action
and refine it with safe actions. Our method uses the Shield
framework to ensure safety, and we provide theoretical proof
of safety in section IV.

We represent the shield using a finite-state reactive
system. According to the formulation in [11], a finite-state
reactive system is a tuple S = (Q, q0,ΣI ,ΣO, δ, λ), where
ΣI and ΣO are the I/O alphabets, Q is the state set, q0 ∈ Q
denotes the initial state, δ : Q × ΣI → Q is a transition
function, and λ : Q × ΣI → ΣO is an output function.
Given the symbolic abstraction of the control input (i.e.,
input trace) σI = x0x1 . . . ∈ Σ∞

I , the system S generates
the trajectory of states (i.e., output trace) σO = S (σI) =
λ (q0, x0)λ (q1, x1) . . . ∈ Σ∞

O , where qi+1 = δ(qi, xi) for
all i ≥ 0.

We synthesize the shield by solving a two-player safety
game [28], a game played by the MARL agents and the envi-
ronment, where the winning condition is defined by the LTL
safety specification. MARL agents should comply with all
safety specifications all of the time in order to win the game.
A two-layer game is a tuple G = (G, g0,ΣI ,ΣO, δ, win)
with a finite set of game states G, the initial state g0 ∈ G,
a complete transition function δ : G × ΣI × ΣO → G,
and win as a winning condition. In every state g ∈ G,
the environment first chooses an input action σI ∈ ΣI , and
then the MARL agents choose a joint action (in abstraction
symbol) σO ∈ ΣO. Then the game moves to the next state
g′ = δ(g, σI , σO), and so forth. The resulting trajectory
of game states ḡ = g0, g1, ... is called a play. A play is
won if and only if win(ḡ) is true. We describe the detailed
procedure of synthesizing shields via solving the two-player
safety game in section V.

Fig. 3: The large squares denotes shields, and the dashed
arrows are desired actions of agents. Shield 1 conservatively
judges agent 2 cannot successfully enter shield 2, thus
rejecting Agent 1’s action.

IV. TACKLING SAFE AND EFFICIENT MULTI-AGENT
REINFORCEMENT LEARNING VIA DYNAMIC SHIELDING

In this section, we first describe how traditional shielding
methods cause learning to be inefficient. Then, we present
our method for safe and efficient MARL learning.

A. Conservative Behavior and Coordination Overhead

For multi-agent systems, centralized approaches always
fail when the number of agents increases. For example,
centralized shielding for MARL fails empirically for two-
agent scenarios [11]. Fully decentralized shielding sepa-
rates the whole state space into exclusive subspaces and
synthesizes a shield to monitor a subspace. For example,
factored shielding [11] computes multiple shields based on a
factorization of the joint state space observed by all agents.
However, this approach causes conservative behavior (i.e.,
agents stuck in place) when agents move across the border
of shields due to the information isolation between shields.
Specifically, as shown in Figure 3, the shield would reject
agents’ actions even for those are essentially valid. As a
consequence, the MARL system needs higher coordination
overhead, say extra steps, when agents have interaction. In
section VI, we empirically demonstrate that the coordination
overhead caused by conservative behaviors leads to sub-
optimal policies for MARL agents.

B. Dynamic shielding

Algorithm 1: Dynamic Shielding
Input: A list of shields S = {s1, s2, ..., sm}, MARL

agents’ joint action at = (a1t , a
2
t , ...a

n
t ) and

joint state st = (s1t , s
2
t , ..., s

n
t ), a constant

penalty for unsafe actions p
Output: Safe joint action āt, punishment pt, shield

new shield
1 /* Clustering: divide agents into groups

by some methods */

2 new shield = cluster agents(st, at)
3 for all group in i ∈ {1, ...,m′} do
4 for all shield j ∈ {, ...,m} do
5 if new shield[I].group == sj .group
6 and sj .duration ! = 0 then
7 new shield[i].recompute = False
8 new shield[i].shield = sj .shield
9 end if

10 end for
11 end for
12 /* Re-construct shields */

13 for all group in i ∈ {1, ...,m} do
14 if new shield[i].recompute == True then
15 new shield[i].reCompute()
16 end if
17 end for
18 /* Shielding */

19 āt = safe action output by new shield
20 for all agent in i ∈ {1, ..., n} do
21 if āit ̸= ait then
22 pit = p
23 end if
24 end for
25 return barat, pt, new shield
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Fig. 4: Safe MARL with dynamic shielding

To mitigate the coordination overhead caused by conser-
vative behaviors, we propose dynamic shielding, a decen-
tralized shield framework for the traditional MARL process.
Dynamic shielding has two important features: 1) Dynamic
shielding dynamically constructs shields based on agents’
real-time states; 2) Dynamic shielding can perform two extra
operations, namely, merge and split. The merge operation
uses multiple shields’ information to construct a larger shield,
which temporarily removes the border between shields.
Therefore, the merged shield has enough information to dis-
tinguish whether actions are safe, and eventually mitigate the
conservative behavior. On the other hand, the computation
complexity in shield synthesis increases along with the shield
size. The split operation helps decrease computation costs
when agents locate sparsely. Figure 4 shows the diagram of
dynamic shield construction. Initially, we construct distinct
shields for each agent, which monitor agents’ reachable
states in the next k steps. If agents try to move to states
outside the shield, the shield will recompute to establish
a monitor on agents’ future possible states. When agents
gathering together has the possibility of collision, shields will
merge to jointly monitor the action using locomotion and
dynamics of multiple agents. When agents are more sparse,
the merged shield will split to save computation.

We summarize dynamic shielding in algorithm 1. There
are three phases: 1) clustering, 2) shield reconstruction,
and 3) shielding. In the clustering phase (LINE 2-11), the
algorithm clusters agents into groups by their current state.
For example, in robot navigation tasks, if some agents are
close by, the algorithm will put them in the same group,
otherwise in separate groups. Agents in the same group
should merge shields to avoid conservative behaviors. Then,
in the shield re-construction phase (LINE 13-17), shields will
merge with other shields or split into multiple smaller shields
based on the results of clustering. In addition, some expired
shields might recompute according to agents’ state change.
In the shielding phase (Lines 19-23), every shield will do
shielding concurrently, which rejects agents’ unsafe actions
and replaces them with safety actions. Lastly, the MARL

agents will be given an extra penalty for unsafe actions.
Our method faces the challenge that it degrades to cen-

tralized shielding for edge scenarios. For example, when all
agents gather together, all decentralized shields will merge
together into a single centralized shield. We propose a new
way of shield synthesis in Section V and provide experiments
in Section VI to demonstrate that even in the worst case, our
method is still more scalable than centralized shielding.

V. SYNTHESIZE SHIELD IN REAL-TIME

In this section, we present our shield synthesis method
– k-step look ahead shield, a variant of traditional shield
synthesis [28]. We also give theoretical proof to show that
our method guarantees safety.

A. k-step look ahead shield

We assume the state space has been converted into a sym-
bolic abstraction given by a DFA Ae = (Qe, qe0,Σ

e, δe, F e).
We translate the LTL safety specification into another DFA
AS =

(
QS , qS0 ,Σ

S , δS , FS
)
. We formulate a two-player

game G = (G, g0,Σ1,Σ2, δ
g, F ) by combining Ae and

AS . Instead of solving the game G directly, we add extra
time constraints t ≤ k, where t ∈ denotes the time step
from constructing the shield, and k is a hyper-parameter that
denotes the maximum steps of the game. The modified game
is then

Gk =
(
Gk, g0

′,Σ1,Σ2, δ
g ′, F k

)
(1)

where the state space Gk = G × {1...k}, the initial state
g0

′ = (g0, t = 1), the transition function δg ′(gt, t) =
(δg(gt), t+1), and the winning condition F k = F ∧(t ≤ k).
We can solve the two-player safety game Gk and compute the
winning region W ⊆ F k, using the method in [28]. We then
construct the k-step look ahead shield by translating Gk and
W to a reactive system S = (QS , q0,S ,ΣI,S ,ΣO,S , δS , λS).
The shield has the following components: QS = Gk,
q0,S = q0

′, ΣI,S = L × A, ΣO,S = A, δS(gk, (l, a)) =
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δ
(
gk, (l, λS(g, (l, a)))

)
for all gk ∈ G, l ∈ L, a ∈ A, and

λS(g, l, a) =


a if δk(gk, (l, a)) ∈W

a′ if δk(gk, (l, a)) /∈W for some arbitrary
default a′ with δk

(
gk, (l, a′)

)
∈W.

Our shield synthesis bears a resemblance to the classic
shield synthesis [11], [15], which also synthesizes shields
by solving the two-player game. The main difference is our
method only predicts a subset of future state space, whereas
previous methods enumerate all possible states along the
planning horizon. This leads to the major benefit of our
method, that for tasks that state spaces too large to com-
pute in advance, our algorithm still works efficiently while
previous methods fail.

B. Safety Guarantee

We show that dynamic shielding with k-step look ahead
shielding can guarantee safety for MARL agents.

Proposition 1. Given a trace s0a0s1a1 · · · ∈ (S × A)ω

jointly produced by MARL agents, the dynamic shielding,
and the environment, state-action pair (st, at) is safe at every
time step regarding definition 1.

Proof: Firstly, the procedure in algorithm 1 ensures
each agent is monitored by a shield at each time step,
and this shield at least monitors the states of agents in
the next k steps (otherwise, the shield will re-compute).
Then the remaining proof is the same as the correct-
ness of centralized shielding in [11]. For any agents un-
der shield S = (Q, q0,ΣI ,ΣO, δ, λ), there is a corre-
sponding run q0q1, ...qm ∈ (S × A)ω , where m ≤ k
is the duration before reconstructing this shield. By con-
structing the shield, we have the environment abstraction
DFA Ae and the safety specification DFA As. We can
project the run q0, q1, ...qm of the shield S onto a trace
qs0(f(s0), a0)q

s
1(f(s1), a1)...q

s
m(f(sm), am) on As. Since

we construct the shield from the winning region of the two-
player safety game, every state qsi (f(si) visited by agents
along the trace should be a safe state in As. The shield
S ensures the safety specification defined in As is never
violated. Therefore, the joint state-action pair (st, at) is safe
for every MARL agent at every step.

VI. EXPERIMENTS

In this section, we empirically evaluate the performance
of our proposed safe MARL framework (Algorithm 1) and
compare it with other benchmarks. We apply our algorithm
to six benchmark problems in the gridworld (Fig 5) and
a cooperative environment of MPE (Fig 6). We compare
the proposed algorithm with CQ-Learning [31], CQL with
factored shielding, DDPG [32], and MADDPG [19]. We
implement algorithms using Python and synthesize shields
via Slugs [33]. For each experiment, we evaluate algorithms
in both training and testing phases. To mitigate the outliers,
we conduct all experiments in 20 independent runs and
average the results.

Fig. 5: Different gridworld environments. Dots are agents,
stars denote targets, and black blocks are obstracles.

Fig. 6: Adapted simple spread MPE environment. The en-
vironment is unbounded but agents will be given a penalty
when moving far from the center of the map.

Experiment Setup. Figure 5 shows six maps of grid world
benchmark environments adapted from [34]. Each map has
two agents learning to navigate while avoiding obstacles
in the environment. Each agent has the action space A =
{stay, up, down, left, right}. We assign a unique target to
each agent. Once an agent reaches its target, it stays there
until all agents reach their goals. We set sparse goal-reaching
rewards for this task, namely, giving −1 living penalty, −10
collision penalty, and +100 for arriving the target.

Figure 6 shows a cooperative navigation task adapted from
MPE [19] simple spread environment. The goal is for agents
to cooperate and reach their target while avoiding collisions.
This task is more difficult than the gridworld in two aspects:

1) The state space is continuous and unbounded.
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Map \Algorithm CQL + Dynamic shielding (Proposed) CQL + Factored shielding CQL w/o Shielding
Reward Collision Reward Collision Reward Collision

Pentagon 88 0 85 0 88 266
CIT 80 0 73 0 79 447
MIT 79 0 74 0 61 180
CMU 64 0 39 0 47 184

TABLE I: Results compare the CQ-learning, CQ-learning with factored shielding, and CQ-learning with dynamic shielding.

2) Agents have more complicated dynamics, such as
momentum and acceleration.

Each agent has the action space

A = {stay, up, down, left, right, brake},

from which the action controls acceleration. For example,
when an agent performs stay, it moves at its original
velocity. We use brake to simulate braking in the real world,
where the agent exerts a large deceleration in the opposite
direction of velocity until it fully stops. The brake action
obeys the law of kinematics; for example, an agent moving
at a higher speed needs a longer distance to brake down. Each
agent receives a reward that is inversely proportional to the
distance with its target and a −1 penalty for any collision.

Conservative Behavior Evaluation. We integrate CQ-
learning with factored shielding and proposed dynamic
shielding. At this stage, we apply them to four of the grid-
world environments (Fig 5). We evaluate algorithms using
the metrics such as maximum rewards, collision counts,
and episode steps during the training phase. Results in
table I show that factored shielding and dynamic shielding
can guarantee collision-free learning in all maps. Moreover,
dynamic shielding obtains better policies with higher rewards
compared to factored shielding and no shielding. Figure 8
shows agents using proposed dynamic shielding need fewer
steps to reach the target than factored shielding. Besides,
dynamic shielding policy eventually has comparable per-
formance as CQ-learning without intervention, which we
consider as the ground truth regarding the steps to reach the
target. Therefore, the proposed dynamic shielding mitigates
the conservative behaviors while ensuring safety.

Scalability Evaluation. At this stage, we evaluate the
performance of the proposed dynamic shielding when the
state space scales up. We integrate DDPG and MADDPG
with dynamic shielding and apply them to the adapted MPE
environment shown in Fig 6. Factored shielding fails in this
unbounded environment since we cannot synthesize shields
for the entire state space. Figure 8b shows dynamic shield-
ing can guarantee no collision during the training process.
Whereas DDPG and MADDPG constantly have collisions
even at the end of training. Figure 8a shows the episode
rewards per training step (i.e. episode). At convergence,
MADDPG with dynamic shielding and DDPG with dynamic
shielding have the highest reward than vanilla MADDP and
DDPG without shielding. The learning curves in Figure 8a
demonstrate that proposed dynamic shielding improves the
performance of MARL. In the future, we will evaluate the
performance of the proposed algorithm when the number of
agents scales up.

(a) CMU (b) MIT

(c) Pentagon (d) CIT

Fig. 7: Experiment results on gridworld.

(a) Episode reward (b) Episode collision

Fig. 8: Experiment results on MPE.

VII. CONCLUSIONS

This paper presents a novel approach to safe MARL
via dynamic shielding. Our proposed method minimally
interferes with the MARL framework to ensure the safety
specification defined by LTL expressions. We also propose
an effective technique to synthesize shields in real-time and
provide theoretical proof of a safety guarantee. Besides,
we conduct extensive experiments to demonstrate our al-
gorithm is better than other shielding approaches regarding
efficiency and improves learning performance in complex
environments.
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[2] K. Zhang, Z. Yang, and T. Başar, “Multi-agent reinforcement learn-
ing: A selective overview of theories and algorithms,” Handbook of
Reinforcement Learning and Control, pp. 321–384, 2021.

[3] L. Okdinawati, T. M. Simatupang, and Y. Sunitiyoso, “Multi-agent
reinforcement learning for value co-creation of collaborative trans-
portation management (ctm),” International Journal of Information
Systems and Supply Chain Management (IJISSCM), vol. 10, no. 3,
pp. 84–95, 2017.

[4] I. Arel, C. Liu, T. Urbanik, and A. G. Kohls, “Reinforcement learning-
based multi-agent system for network traffic signal control,” IET
Intelligent Transport Systems, vol. 4, no. 2, pp. 128–135, 2010.

[5] A. Perrusquı́a, W. Yu, and X. Li, “Redundant robot control using
multi agent reinforcement learning,” in 2020 IEEE 16th International
Conference on Automation Science and Engineering (CASE). IEEE,
2020, pp. 1650–1655.

[6] C. Yu, X. Wang, and Z. Feng, “Coordinated multiagent reinforcement
learning for teams of mobile sensing robots,” in Proceedings of the
18th international conference on autonomous agents and multiagent
systems, 2019, pp. 2297–2299.

[7] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “Safe, multi-
agent, reinforcement learning for autonomous driving,” arXiv preprint
arXiv:1610.03295, 2016.

[8] S. Bhalla, S. Ganapathi Subramanian, and M. Crowley, “Deep multi
agent reinforcement learning for autonomous driving,” in Canadian
Conference on Artificial Intelligence. Springer, 2020, pp. 67–78.

[9] M. Zhou, J. Luo, J. Villella, Y. Yang, D. Rusu, J. Miao, W. Zhang,
M. Alban, I. Fadakar, Z. Chen, et al., “Smarts: Scalable multi-agent
reinforcement learning training school for autonomous driving,” arXiv
preprint arXiv:2010.09776, 2020.

[10] Z. Qin, K. Zhang, Y. Chen, J. Chen, and C. Fan, “Learning safe multi-
agent control with decentralized neural barrier certificates,” arXiv
preprint arXiv:2101.05436, 2021.

[11] I. ElSayed-Aly, S. Bharadwaj, C. Amato, R. Ehlers, U. Topcu, and
L. Feng, “Safe multi-agent reinforcement learning via shielding,” arXiv
preprint arXiv:2101.11196, 2021.

[12] J. Garcıa and F. Fernández, “A comprehensive survey on safe rein-
forcement learning,” Journal of Machine Learning Research, vol. 16,
no. 1, pp. 1437–1480, 2015.

[13] M. Pecka and T. Svoboda, “Safe exploration techniques for reinforce-
ment learning–an overview,” in International Workshop on Modelling
and Simulation for Autonomous Systems. Springer, 2014, pp. 357–
375.

[14] M. Hasanbeig, A. Abate, and D. Kroening, “Cautious reinforcement
learning with logical constraints,” arXiv preprint arXiv:2002.12156,
2020.

[15] M. Alshiekh, R. Bloem, R. Ehlers, B. Könighofer, S. Niekum, and
U. Topcu, “Safe reinforcement learning via shielding,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1, 2018.

[16] A. Pnueli, “The temporal logic of programs,” in 18th Annual Sympo-
sium on Foundations of Computer Science (sfcs 1977). ieee, 1977,
pp. 46–57.

[17] K. Y. Rozier, “Linear temporal logic symbolic model checking,”
Computer Science Review, vol. 5, no. 2, pp. 163–203, 2011.

[18] F. S. Melo and M. Veloso, “Learning of coordination: Exploiting
sparse interactions in multiagent systems,” in Proceedings of The
8th International Conference on Autonomous Agents and Multiagent
Systems-Volume 2, 2009, pp. 773–780.

[19] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” Neural Information Processing Systems (NIPS), 2017.

[20] A. Wachi and Y. Sui, “Safe reinforcement learning in constrained
markov decision processes,” in International Conference on Machine
Learning. PMLR, 2020, pp. 9797–9806.

[21] R. Alur, Principles of cyber-physical systems. MIT press, 2015.
[22] C. Baier and J.-P. Katoen, Principles of model checking. MIT press,

2008.
[23] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-

based reactive mission and motion planning,” IEEE transactions on
robotics, vol. 25, no. 6, pp. 1370–1381, 2009.

[24] A. Ulusoy, S. L. Smith, X. C. Ding, C. Belta, and D. Rus, “Optimality
and robustness in multi-robot path planning with temporal logic
constraints,” The International Journal of Robotics Research, vol. 32,
no. 8, pp. 889–911, 2013.

[25] A. K. Bozkurt, Y. Wang, M. M. Zavlanos, and M. Pajic, “Control
synthesis from linear temporal logic specifications using model-free
reinforcement learning,” in 2020 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2020, pp. 10 349–10 355.

[26] E. M. Hahn, M. Perez, S. Schewe, F. Somenzi, A. Trivedi, and
D. Wojtczak, “Omega-regular objectives in model-free reinforcement
learning,” in International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 2019, pp. 395–412.

[27] M. Hasanbeig, A. Abate, and D. Kroening, “Cautious reinforcement
learning with logical constraints,” arXiv preprint arXiv:2002.12156,
2020.

[28] B. Könighofer, M. Alshiekh, R. Bloem, L. Humphrey, R. Könighofer,
U. Topcu, and C. Wang, “Shield synthesis,” Formal Methods in System
Design, vol. 51, no. 2, pp. 332–361, 2017.

[29] C. Baier and J.-P. Katoen, Principles of model checking. MIT press,
2008.

[30] O. Kupferman and M. Y. Vardi, “Model checking of safety properties,”
Formal methods in system design, vol. 19, no. 3, pp. 291–314, 2001.

[31] Y.-M. De Hauwere, P. Vrancx, and A. Nowé, “Learning multi-agent
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Container Invariant Classification of Substrates Using Spectroscopy

Wesley Lewis1, Kavya Puthuveetil2, Akhil Padmanabha2, Zackory Erickson2

Abstract— Material classification can provide robots with
data that can better inform how they should interact with
objects in their environment. Particularly in human-robot
interaction, this information may be vital for successful task
completion. Material recognition becomes a challenge with
current approaches such as visual or haptic sensing when a
material is within a container that is opaque or when two
materials are visually indistinguishable from one another. This
paper shows how Near-Infrared (NIR) Spectroscopy enables
the estimation of substrates encased in containers. We collect a
dataset of spectral measurements from 36 household substrates
(foods and medicine) in containers made from materials such as
silicon, plastics, and glass using a miniaturized NIR Spectrom-
eter. We train and compare three different classifiers on this
data using Stratified K-fold and Leave-One-Group-Out cross
validation.

I. INTRODUCTION

Robots need to understand the objects in their environment
to make informed decisions that prevent errors in manipula-
tion of those object or materials, particularly when handling
liquids and/or working around people. Many previous works
have presented methods for materials classification including
tactile sensing, computer vision, and spectroscopy [1].

In a household, people frequently deal with materials that
are inside of containers. These containers may be opaque
or the materials inside these containers may be impossible
to identify visually, making it challenging for robots to
identify materials in their environment using vision alone.
In this work, we explore how NIR Spectroscopy can enable
material classification in these scenarios where vision or
tactile sensing may fail.

Spectroscopy is the measurement of electromagnetic ra-
diation in matter. A spectrometer, the primary tool used in
spectroscopy, measures the amount of light reflected from
a substrate. The light waves create a frequency spectrum
and are used to identify a material. This paper will utilize a
subsection of spectroscopy called Near-infrared spectroscopy
(NIRS), which only measures light from the near-infrared
region of the electromagnetic spectrum.

Using a is the Mantispectra Spectrapod, shown in Fig. 1.
We collect a dataset of spectral measurements of various
substrates in containers of different colors, materials, opacity,
and geometry. Once the data was collected, we trained a sup-
port vector machine (SVM), Multilayer Perceptron (MLP),

1Wesley Lewis studies computer science at the University Of Virginia,
Charlottesville, USA wjl4jj@virginia.edu

2Kavya Puthuveetil, 2Akhil Padmanabha, 2Zackory Erickson are
with the Robotic Caregiving and Human Interaction Lab, Carnegie
Mellon University, Pittsburgh, PA, USA {zerickson, kavyap,
akhilpad}@andrew.cmu.edu

Fig. 1. Mantispectra Spectrapod in enclosure

and Random Forest and validated our models using Stratified
K-fold and Leave-One-Group-Out Cross Validation.

In this work we make the following contributions:
• We introduce an approach for substrate classification

that is invariant to container type
• We provide a dataset of spectral measurement from a

variety of household substrates (liquid/solid) in various
containers

• We train three different classifiers on the collected
dataset and evaluate their performance via Stratified
K-fold Cross Validation for substrate invariant classifi-
cation and Leave-One-Group-Out Cross Validation for
generalization

II. RELATED WORK

A. Spectroscopy

NIR spectroscopy is a spectroscopic technique that uses
electromagnetic radiation in the 700 to 2,500 nm range
(between visible red light and the mid-infrared region) to
analyze structural and compositional characteristics of sam-
ples [2]. This technique has been well demonstrated for
commercial use in agriculture, pharmaceuticals, food quality
assurance, and recyclable classification, favored for its non-
destructive nature and low sample preparation. [2], [3]. Prior
research has shown how robots can leverage near-infrared
spectroscopy to classify household objects [1], [4]. In this
work, we use a miniaturized NIR spectrometer (Mantispectra
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Spectrapod) which has a sensing range of 850 to 1700 nm
and is notable for its cost effectiveness and potential to be
integrated into a robot’s end effector [5], [6].

B. Material Recognition

Material recognition techniques generally fall into two
different categories: tactile sensing and computer vision.
For tactile sensing systems, haptic sensors provide force,
temperature, temperature, and vibrational data that can be
used to classify materials. Gelsight sensors [7] have even
been demonstrated in viscosity and volume estimation for
classification of liquids [8]. Tactile sensing approaches
require direct contact with object being classified. For vi-
sual systems, the most common system of classification is
computer vision.

Prior work has shown how spectroscopy is promising for
household material classification [1] and how NIR spec-
troscopy can be combined with high-resolution texture imag-
ing for a multi-modal classification approach that leverages
the strengths of both techniques [4]. In this work, we pursue
NIR spectroscopy for substrate classification since spectral
signals can provide unique compositional information for
materials that are otherwise visually indistinguishable. Ad-
ditional NIR is capable of penetrating through containers,
allowing for substrate sensing in more natural human envi-
ronments where containers may vary in opacity

Fig. 2. List of substrates. First column is solids and the second column is
liquids

III. DATASET

In this section, we describe our methods and materials
used for dataset collection, including the spectrometer used
and selected substrates and containers. We also describe our
approach for standarizing the data before use in classifier
training.

A. Spectrometer

In this paper we use a handheld NIR spectrometer called
the Spectrapod from Mantispectra to capture spectral mea-
surements Fig. 1. The spectrometer measures light spectra
from wavelengths of 850-1700 nm. Spectral measurements
are represented as a 16 bit array where each pixel has a
different wavelength response [5]. The Mantispectra Spec-
trapod comes in an enclosure with optics and illumination
embedded in the case.

B. Data Collection

Before collecting data from a full array of substrates
and containers, we first evaluated which container materials
produce unique spectral signals, indicating that they may be
suitable for sensing substrates inside the container. Our initial
experiments found that metals produce identical, constant
spectral signals regardless of the type of metal. This showed
that, broadly, metals are too reflective and that NIR is
unlikely to be able to penetrate through metal containers.
Based on these findings, we exclude all metal containers
from our substrate-container data collection phase.

In our selection of various substrates, we considered
various commnon solid and liquid household foods, cleaning
supplies, and over-the-counter medication. Some of the se-
lected substrates are indistinguishable visually, for example,
cow’s milk and almond milk (Fig. 3). We also select a variety
of containers that have different color, geometry, opacity,
and thickness. In total, our dataset consists of spectral mea-
surements from 16 containers, 20 liquid substrates, and 16
solid substrates. Fig. 2 shows the complete list of substrates
and Fig. 4 shows a complete list of containers and their
characteristics.

After taking spectral measurements of the container while
empty, we then take measurements of each substrate inside
each container. The cuvette is an exception and only contains
liquid substrates due to its size. During the data collection
process, we hold the container within 1 cm of the spectrome-
ter take ten consecutive measurements for each sample. From
all the samples combined, we take 5760 measurements.

C. Standardization

Once the data is collected, the data is standardized using
the following equation:

Scalspec =
Sspec − D̄spec

L̄spec − D̄spec
(1)

L̄spec refers to the measurement taken from the white block
provided by Mantispectra, as seen in Fig. 5, which represents
maximum reflectivity, D̄spec refers to the measurement taken
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Fig. 3. A: a photocurrent by channel plot of almond milk between four containers, pet, red silicone, blue glass, and cuvette. B: a photocurrent by channel
plot of milk between four containers, pet, red silicone, blue glass, and cuvette.

Fig. 4. Containers and opacity

in a dark room with nothing directly in front of the spectrom-
eter. Sspec refers to a spectral signal for a particular sample
and Scalspec refers to the standardized result.

IV. EVALUATION

We train and compare three different models, SVM, Ran-
dom Forest, and MLP, on the collected dataset to classify
the substrate given a measurement of a substrate in some
container. We evaluate these classifiers via two cross valida-
tion approaches, Stratified K-fold and Leave One Group Out.
In Stratified K-Fold Cross Validation,we assess container
invariant classification accuracy. In Leave One Group Out
Cross Validation we to assess generalization.

Fig. 5. Mantispectra Spectrapod with LED on taking a measurement of
the included white block for white standardization

A. SVM

We implement a simple SVM using Scikit-learn. The
classifier has a Radial basis function kernel. The results for
Stratified K-fold using SVM shows the model can estimate
containers it has seen before with an accuracy of 81.51
percent. On the other hand, results for LOGO using SVM
show that the model is not good at guessing from containers
it has not seen before. The accuracy is 6.53 percent.

B. MLP

We implement an MLP using Keras. For the MLP, we used
the Adam optimizer and categorical cross-entropy loss. We
used four hidden layers and Rectified Linear Unit activation
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Fig. 6. Confusion matrix for SVM Leave one group out. Only using liquids

for all but the last layer. For the last layer, we used Softmax
activation. The number of nodes in each layer decreased such
that the first three layers had 5000, 1500, 1000 nodes respec-
tively and the last layer had a single node. The results for
Stratified K-fold using MLP and white-black standardization
shows the model can estimate containers it has seen before
with an accuracy of 55 percent. The MLP with Stratified K-
fold verification produced the lowest accuracy. The results
for LOGO using MLP and white-black standardization show
that the model is not good at generalizing to containers it
has not seen before. The accuracy is 2.36 percent. Like the
Stratified K-fold accuracy, the MLP LOGO accuracy is also
the lowest.

C. Random Forest

Lastly, we implement a simple Random Forest using
Scikit-learn’s. The results for Stratified K-fold using Random
Forest and white-black standardization shows the model can
estimate containers it has seen before with an accuracy of
78.80 percent. On the other hand, results for LOGO using
Random Forest and white-black standardization show that
the model is not good at guessing from containers it has not
seen before. The accuracy is 9.13 percent.

V. FUTURE WORK
For future works, we first plan on further standardizing

our data collection phase by building an enclosure for taking
measurements in to reduce the impact of ambient light. We
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Fig. 7. Plot of almond milk using all containers

Fig. 8. Models (SVM, MLP, Random Forest) and Accuracies: Stratified K-Fold and Leave-One-Group-Out

expect these changes to improve our current signal-to-noise
ratio. We also plan on introducing a second spectrometer to
increase the electromagnetic sensing range we collect data
from. We plan to introduce the Hamamatsu C12880MA,
which has a spectral range of 340 to 850 nm, covering the
some spectra of visible light not captured by the Spectrapod
which has a sensing range of 850 to 1700 nm. Lastly,
We plan on having a real-world demonstration where the
spectrometers will be integrated onto the end effect of a
Stretch RE1 mobile manipulator from Hello Robot.

VI. CONCLUSION

This paper investigates whether NIR Spectroscopy can be
used to classify substrates in a way that is invariant to the
substrates in containers. We present a dataset of spectral
measurements from different combinations of 36 substrates
and 16 containers. We train three classifiers to investigate
whether we can estimate substrates between previously seen
containers and whether those same classifiers can generalize
to new, unseen containers. Evaluating our classifiers using
Stratified K-fold Cross Validation, We find that it is possi-
ble to estimate across containers, with SVM achieving the
highest accuracy. However, evaluation via Leave-One-Group-
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Out Cross Validation shows that generalization is not yet
promising, indicating the need for future work towards this
goal.
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Optimality vs. Efficiency in Globally Constrained Path Planning
Problems

William N. Scott1

Abstract— Within the field of robotics, various algorithms
have emerged to compute the optimal solution for the shortest-
path problem (SPP). We are motivated to use these algorithms
to address the growing issue of navigation in congested set-
tlements within South Africa. These communities are densely
populated with minimal critical infrastructure for municipal
services such as roads or electricity. Consequently, emergencies
like fires or floods cause extensive damage to these communities.
To better assess these algorithms’ efficiency and optimality
to solve globally constrained path-planning problems, we test
three existing algorithms to simulate their behavior in urban
environments. All algorithms extend the basic A* search to
compute the optimal path by minimizing an objective function
subject to a single global constraint.

The algorithm’s performance was measured separately, with
time as a dependent or independent dimension, compared
against the Constrained A* (CA*) search developed for re-
planning with a global constraint [1]. We achieved optimality
in the search when planning in a 2D grid world with time
as an independent variable. Our findings communicate that a
simplistic A* search planning in (x,y) would serve as the most
efficient algorithm to realize urban planning with a constraint,
setting up a discussion for efficiency over optimality in path-
planning problems with a global constraint.

Index Terms— Motion and Path Planning
Task and Motion Planning

I. INTRODUCTION

The motivation for our work relates to the growing is-
sue of rapid urbanization in the expanding communities
of South Africa. To address the immediate demand for
shelter, numerous communities establish housing structures
independent of the government. These communities lack
sufficient infrastructure for municipal services, compounding
the damages done by emergencies such as fires, floods,
assaults, and illness. We can model the issue of traversing
these communities to deliver crucial resources as a shortest-
path problem: with a singular agent attempting to navigate
a cluttered environment to reach a goal state subject to a
global constraint.

The shortest path problem (SPP) in robotics exists with
several variations that require an optimal solution. The opti-
mization issue can be assumed as minimizing or maximizing
a cost or objective function, such as distance traveled or
time elapsed [1]. We often require these optimal solutions
to conform to a specific local or global constraint unique
to our problem definition. We define a local constraint as
an operation able to be computed within a singular step
of the solution. In contrast, a global constraint must be

1William Scott is a Senior Computer Engineering Student interning with
The Robotics Institute as a R.I.S.S. scholar at Carnegie Mellon University,
5000 Forbes Ave, Pittsburgh, PA. wscott2@andrew.cmu.edu

evaluated over the entire solution to satisfy the restriction.
We can evaluate local constraints with minimal overhead
or increased complexity. However, the typical approach for
evaluating global constraints entails the addition of another
variable/dimension to track each constraint, ending the cur-
rent search iteration upon a constraint violation. Conse-
quently, the introduction of one or multiple global constraints
can rapidly expand the complexity of our search.

Fig 1. highlights the effect of a global constraint on our
solution path. Fig. 1 (a) shows the optimal solution for the
given culdesac map with a global-constraint limiting the path
size to a maximum of 70 steps. As we continually increase
our global constraint, demonstrated in Fig. 1 (b) and Fig.
1 (c), the solution path follows the innate behavior of the
A* search to compute the least-cost route, indicated by dark
blue regions on the map. This innate behavior relates to the
principle concept of the A* search of expanding the next
minimum cost state on the graph.

II. BACKGROUND

A. Related Work

We accredit Logan’s ABC algorithm as one of the first
complete and formal assessments of this problem [2]. The
ABC algorithm exists as a generalized A* search with the
capability to manage multiple global constraints, but only a
minimal set of constraints return an optimal solution.

During the creation of the re-planner Constrained D*
(CD*) algorithm, Anthony Stentz developed the preliminary
Constrained A* (CA*) algorithm [1]. This more basic version
of CD* calculates the most efficient path once, subject to
a constraint. The subject of our focus will be the CA*
algorithm since we wish to minimize computational power
and retrieve an effective solution expeditiously.

B. Variable Dependence

To better conceptualize the problem and our testing
methodology, we identify the difference between indepen-
dent and dependent variables in search algorithms. Inde-
pendent variables are the criteria we use to differentiate
between the states, or grid cells, on a map. In a discrete
environment, we can choose to categorize a cell only through
its position about the x and y-axis. Alternatively, we adopt an
implementation that specifies a cell with relation to its x and y
coordinates and time t, representing the timestamp for when
a robot visits a location. Dependent variables are spaces of
memory allocated outside the state definition to help compute
different metrics unique to a given path planning problem.
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Fig. 1. A*: Increasing Global Constraint

These variables typically assist with evaluating cost metrics
or pruning future potential cells for the robot to visit.

III. PROBLEM STATEMENT

A. A* Search with Global Constraint

We venture to derive a mathematical representation of our
path planning problem with a global constraint. Consider a
cell, s, defined with independent variables (x,y,t) correspond-
ing to the orientation of the cell in 2D space, and the time
our robot views the cell, respectively. Let Π represent any
path between two arbitrary cells in our grid space.

Π = {si−2, ..., si} (1)

Let ΠX represent the optimal solution from our start
position, denoted by sstart , to the goal state, sgoal, via a
set of cells.

ΠX = {sstart, ..., sgoal} (2)

Let c(ΠX) denote the cost function we wish to optimize
in our A* search where c(Πi−1,Πi) represents the action
cost for the robot to traverse to an arbitrary cell on the
path, Πi, from any valid previous position, Πi−1, on a
4-connected grid. Let us assume c(Π) is optimized when
minimizing the overall cost, measured by the total accrued
cost by the robot traversing the optimal path c(ΠX). Finally,
let n represent the number of steps in a given path with T
as the global constraint limiting the path size. We introduce
a global constraint into our calculations by optimizing our
cost function subject to an value of n within our budget T.

c(ΠX) = Σn
i c(Πi−1,Πi) S.T n ≤ T (3)

B. Constrained A* Search

At the algorithm’s core, CA* operates identical to an A*
search with dependent time in reference to the cell definition,
s, and management of the OPEN list. Let f0 represent the
objective function to be optimized, synonymous with c(ΠX)
above. Let f1 denote the global constraint imposed onto
the problem, assume the same limit on the path length as
before, n ≤ T . CA* attempts to find an optimal solution by
minimizing a composite function, f(Π, w) composed of f0,
f1, and an adjustable scalar value w [1].

f(Π, w) = f0 + w ∗ f1 (4)

The algorithm performs a binary search over the weight w,
from minimum and maximum values provided by the user,
to find a w value that is just large enough to satisfies the
global constraint.

IV. TESTING METHODOLOGY

Three closely related algorithms were realized in our
research: two variations of the A* search — time-dependent
and independent — and the CA* algorithm. These algorithms
were implemented with hash tables in C++ to allow for
memory management and ensure computational efficiency.
All implicit A* searches performed by the various algorithms
utilized a reserve Dijkstra search as the underlying heuristic
function to help approximate the cost of the least-cost path to
the goal state. Cost refers to an expenditure of time, energy,
or resources the robot uses on its journey. We interpret
yellow regions on the map as ”high cost” areas, denoting
an increased difficulty to traverse the area. The dark blue
regions represent the lowest cost regions on the map, with
purple indicating a median value. In our context, we interpret
these costs as the difficulty for an emergency responder to
traverse a given space due to debris or any stationary obstacle
not absolutely obstructing the agents’ movement.

Furthermore, we ran the algorithms on 2D grid maps
modeling urban environments: Berlin, Boston, and Paris,
from Nathan Sturtevant’s MovingAI benchmark database.
We chose these maps to test the algorithms’ performance
across multiple environments to precisely gauge their base-
line performance. These maps were processed through a first-
order Gaussian filter to randomly assign cost values to every
individual cell.

V. RESULTS

We began with realizing a rudimentary A* search in
(x,y,t). This A* search operates with time as an independent
variable, pruning all sub-optimal paths by discarding cells
previously visited by the algorithm later in time. In con-
junction with A*’s minimum heuristic check, this algorithm
guarantees optimality and completeness. This algorithm will
serve as the baseline to compare the performance of the CA*
algorithm and A* search with time measured dependently.

In reference to Table I, we see the run-time of the least-
cost path vastly out performs the run-time of the shortest
path solution, realized through a global constraint on the path
length. We expect this behavior as the Dijkstra heuristic we
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Fig. 2. Least Cost Path vs. Shortest Path in Urban Environment

TABLE I
A*: INDEPENDENT TIME

Map Solution
Path

Run-
Time
(sec)

Path
Length

Path
Cost

Cells
Ex-

panded
Berlin least-

cost
.00653 409 9750 411

Berlin shortest 19.25 338 13890 2091488
Boston least-

cost
.0068 489 14730 491

Boston shortest 36.41 448 25300 3884688
Paris least-

cost
.0079 566 32710 568

Paris shortest 33.41 443 41470 3408124

use provides the precise cost to transition from our goal state
to any cell on the graph. Consequently, the algorithm need
only to expand the cells along the least-cost path in order to
reach the goal state, shown in Fig. 2(a,b,c) by the light blue
line underneath the solution path. We highlight the difference
between the computation efforts to calculate the least-cost
path against the shortest-path in Fig. 2 (d,e,f). These figures
provide a visualization of all the cells expanded by the A*
algorithm to find all the potential solutions subject to our
global constraint. The quantitative number of expansions are
provided in column six of Tables I, II, and III respectively.

The next stage consisted of modifying our existing A*
search to operate with time as a dependent variable, reference
Table II. We developed an A* search with dependent time as

TABLE II
A*: DEPENDENT TIME

Map Solution
Path

Run-
Time
(sec)

Path
Length

Path
Cost

Cells
Ex-

panded
Berlin least-

cost
.00572 409 9750 410

Berlin shortest .00573 409 9750 410
Boston least-

cost
.0062 489 14730 490

Boston shortest .00598 489 14730 490
Paris least-

cost
.00692 566 32710 567

Paris shortest .00681 566 32710 567

an intermediate step to build towards the CA* algorithm. We
must acknowledge our environment does not consist of any
dynamic obstacles, so the difference between an A* with
time measured independently versus dependently will be
negligible. Our findings reaffirm this notion as the respective
solution paths between the two algorithms were found to be
identical. However, by planning exclusively in (x,y)-space
we reduce the dimensions of the algorithm by one, greatly
improving the run-time of our shortest path solution across
all maps. In this exchange for faster performance, the A*
search with dependent time would not ensure completeness
given the presence of dynamic obstacles.

We realized the Constrained A* algorithm as the final
stage of our research, in reference to Table III. In order to
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TABLE III
CONSTRAINED A*

Map Solution
Path

Run-
Time
(sec)

Path
Length

Path
Cost

Cells
Ex-

panded

W

Berlin least-
cost

2.49 409 9750 410 0

Berlin shortest 15.84 339 23149 22935 37.49
Boston least-

cost
2.67 489 14730 490 0

Boston shortest 23.19 447 313563 46293 664.76
Paris least-

cost
1.47 566 32710 567 0

Paris shortest 22.11 422 114819 44163 179.9

calculate the least-cost path, CA* must complete multiple
calls to the embedded A* algorithm to allow the binary
search to reach the minimum w of zero, corresponding to
optimizing only f0 in (4). In contrast, the binary search over
W decreases run-time for the shortest path calculation in
relation to our A* search with independent time.

VI. CONCLUSIONS & FUTURE WORK

Our findings communicate a standard A* search planning
only in (x,y)-space would be the most time efficient algorithm
for planning in an urban environment. We observed the
binary search for the optimal W value in the CA* algorithm
significantly impairs the speed of our search. We understand
the search for the most optimal and complete solution with
an A* algorithm planning in (x,y,t) drastically increases our
run-time with the introduction of a global constraint.

Future work in this field relates to overcoming the chal-
lenge of incorporating multiple path constraints within a sin-
gular objective function. Perez-Berquist and Stentz suggest
a promising approximation algorithm, K2, to address path-
planning problems with multiple global or local constraints
[3].
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Evaluation of AutoML Systems on OpenML Binary-Classification Tasks

Xinchen Yang1, Jieshi Chen2 and Artur Dubrawski2

Abstract— The Automated Machine Learning (AutoML) Sys-
tem has powered data scientists and domain experts with
its efficient model discovery capabilities and helped address
shortages of qualified data scientists. Widely used AutoML
Systems include the AutonML developed by the Auton Lab
at Carnegie Mellon University (CMU), H2O AutoML, Auto-
Sklearn, etc. Various performance evaluations have been done
on these AutoML systems. However, as AutoML systems get
updated with improved model searching ability and newly
added functionalities, we need to obtain a new map to depict the
performance of the AutoML systems. Motivated by this goal,
we conducted experiments to evaluate the performance of 4
popular AutoML systems, including AutonML, H2O AutoML,
TPOT and AutoGluon, on 177 OpenML binary-classification
tasks, using Area Under the Curve (AUC) of the Receiver
Operating Characteristic (ROC) curve as the evaluation metric.
We analyzed the experimental data from various aspects,
including the relative rankings of the AutoML systems, training-
testing performance discrepancies, relationship between the
performance of AutoML systems and dataset characteristics,
and the winning algorithms used by each AutoML system.

Index Terms— AutoML, OpenML, model selection

I. INTRODUCTION

An automated machine learning (AutoML) pipeline is a
combination of a series of steps of data preprocessing, feature
selection, model and parameter tuning, etc. Each pipeline
can be regarded as a well-defined classifier or regressor
that takes machine leaning (ML) tasks as input and yield
the predication values as the output. An AutoML system
has many such pipelines in its search space. When given a
ML task, an AutoML system will look for pipelines in its
search space, apply these pipelines to the task and rank the
performance of the pipelines according to a selected metric
(accuracy, AUC, etc). We want to know whether a designed
AutoML system can find the best pipelines given a ML task.
In this sense, an AutoML system can be regarded as a ”huge”
machine learning model. For each task given to an AutoML
system, its performance is represented by the performance of
the best pipeline it returns —- the pipeline with the highest
evaluation score on the AutoML’s leaderboard of its searched
pipelines.

Multiple open-source AutoML systems are available to use
now and they are evolving rapidly. Here is a list of a few of
them:

(1) AutonML: AutonML is an open-source AutoML sys-
tem developed by CMU Auton Lab [1] using DARPA D3M

1Xinchen Yang is with the Department of Electrical and Computer
Engineering, New York University, 6 MetroTech Center, Brooklyn, NY,
USA xy2332@nyu.edu

2Jieshi Chen and Artur Dubrawski, PhD, are with the Auton Lab,
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA
jieshic@andrew.cmu.edu, awd@cs.cmu.edu

ecosystem, aiming at power data scientists with efficient
model discovery and advanced data analytics. AutonML
takes the training data as input, then conducts several opera-
tions including featurization, fitting and prediction, and val-
idation. AutonML outputs a leaderboard of ranked pipelines
and the pipelines on the leaderboard can be used to make
predictions on the testing data.

Fig. 1. AutonML workflow

(2) H2O AutoML: Presented by LeDell and Poirier [2],
H2O AutoML is an open-source, highly scalable, fully-
automated AutoML framework. H2O AutoML uses a com-
bination of fast random search and stacked ensembles to
achieve competitive results. H2O AutoML has an easy-to-use
interface by providing simple wrapper functions that perform
a large number of modeling tasks in order to save time for
the user.

(3) Tree-Based Pipeline Optimization Tool (TPOT): TPOT
is an open-source genetic programming-based AutoML
framework introduced by Olson and Moore [3]. The goal
of TPOT is to automate the pipeline building process by
combining tree representation of pipelines with stochastic
search algorithms. TPOT makes use of the Python-based
scikit-learn library. .

(4) AutoGluon-Tabular: AutoGluon-Tabular is an open-
source AutoML framework that utilizes the technique of
ensembling multiple models and stacking them in multiple
layers presented by Erickson [4]. The multi-layer combina-
tion of many models makes AutoGluon an AutoML that can
produce results very quickly with still good results, which
can serve the practical uses well.

In this paper, we evaluated the predication performance
of 4 AutoML systems: AutonML, H2O AutoML, TPOT and
AutoGluon on 177 OpenML binary-classification tasks. Our
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goal is to compare the relative performance of these AutoML
systems, identity whether there are relationships between the
performance of AutoML systems and certain factors such as
time budget and datasets characteristics. We also would like
to know whether the top pipelines of those AutoML systems
towards the same dataset are different in their selection of
core algorithms or not.

II. RELATED WORK

Research has been conducted on the evaluation of AutoML
methods and frameworks. Many developers of the existing
AutoML systems conducted an evaluation on their AutoML
system against other AutoML systems when they introduced
their works. For example, the inventors of H2O AutoML,
LeDell and Poirier, evaluated H2O AutoML against several
other AutoML systems on the OpenML AutoML bench-
mark, which contains 44 classification tasks, proving the
effectiveness of the H2O AutoML [2]. Olson and Moore
introduced TPOT and benchmarked TPOT’s performance
on a set of 150 supervised classification tasks and found
that it significantly outperforms a basic machine learning
algorithm in 21 tasks and has a minimal degradation only
on 4 tasks. It is all accomplished without domain knowledge
or tedious manual efforts, which shows a great promise of
GP-based AutoML systems [3]. In addition, Erickson, who
presented AutoGluon-Tabular, evaluated AutoGluon-Tabular
on a suite of 50 classification and regression tasks from
Kaggle and the OpenML AutoML Benchmark against several
other AutoML platforms, showing the robustness and high
performance of AutoGluon-Tabular. AutoGluon-Tabular was
also showed to be a time-saving AutoML system in their
experiment compared to others [4].

Comprehensive surveys have also been done on the evalu-
ation of the AutoML systems. For example, Zoller and Huber
evaluated the performance of a set of methods of algorithm
selection and hyperparametr optimization and 6 AutoML
frameworks (TPOT, Hyperopt-sklearn, Auto-Sklearn, Ran-
dom Search, ATM, H2O AutoML) on 137 OpenML datasets
[5]. Ferreira conducted empirical evaluations of 8 AutoML
tools on 12 OpenML datasets and compared the best scores
achieved by the AutoML tools with the best OpenML public
results, confirming the potential of AutoML tools to fully
automate the manual efforts on model selection and hyper-
parameter tuning [6]. Truong evaluated a selected subset of
AutoML tools on nearly 300 OpenML datasets, observing
that most AutoML tools are able to obtain reasonable results
in terms of their performance across many datasets, but there
is no ”perfect” tool that can outperform all others on a
plurality of tasks yet [7].

Tools and platforms have been introduced to facilitate the
evaluation and analysis of the AutoML frameworks. For ex-
ample, Milutinovic introduced an standardized, open-source
machine learning framework, D3M, upon which AutoML
systems can be evaluated with their strengths and weaknesses
exposed. Milutinovic also demonstrated the viability of the
D3M framework through the evaluations of 8 AutoML
systems upon it [8]. The AutonML system developed by the

Auton Lab at Carnegie Mellon University (CMU) is built
upon the D3M framework.

III. METHODS

Experiments are set up to answer the following questions:
(1) What is the performance difference of the AutoML

systems compared to each other?
(2) What is the performance difference of the AutoML

systems under different time budgets?
(3) What is the performance difference of the AutoML

systems evaluated on datasets with different characteristics?
(4) What is the main contributor to the discrepancies be-

tween the performance of AutoML systems, core algorithm
selection or other factors?

To answer the questions above, we evaluated 4 AutoML
systems: AutonML, H2O AutoML, TPOT and AutoGluon,
on 177 OpenML binary classification tasks. Datasets are se-
lected with varied dimensionalities and number of instances.
Experiments were run separately on 3 machines, tagged as
”Lab Server”, ”Desktop” and ”NYU”. All of them are 8-
core Linux Machines. First, each dataset is randomly split
into training and testing data, with 75% of the original data
used as the training data and 25% used as the testing data.
Next, the same training and testing data on each task are
passed as input to each of the AutoML systems. The metric
used to measure the performance of the AutoML systems is
AUC. Each AutoML system will look for plausible machine
learning pipelines in its search space and rank them accord-
ing to the training score in AUC. For each AutoML system,
the Top 1 pipeline on its leaderboard is used to predict on
the testing data, representing the AutoML system that finds
it. We set up 3 experimental groups with the time budget to
be 60 seconds, 600 seconds and 1200 seconds respectively.
The same evaluation process is repeated within the 3 groups
only with altered time budget.

IV. RESULTS

After running the experiments, we collected the train and
test prediction score of the AutoML systems on the 177
datasets under 3 different time budgets and analyzed the
experimental data from several aspects.

A. Performance of AutoML Systems over Time Budget

To illustrate the performance of AutoML systems over
different time budget, we compared the relative rankings of
the performance of the AutoML systems on the test data
under the time budget of 60 seconds, 600 seconds, and 1200
seconds, as shown in Figure 2. For each data point, its X-
coordinate denotes the time budget of the experiment and
its Y-coordinate is obtained by averaging the performance
rankings of its corresponding AutoML system across all
datasets, with corresponding 95% confidence intervals.

In Figure 2, AutoGluon shows to be an AutoML system
with good performance, getting the first place under the
time budget of 60 seconds and 600 seconds, and getting the
second place under the time budget of 1200 seconds. The
average rank of AutonML is rather stable across different
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Fig. 2. Average Rank of Test AUCs per AutoML

time budgets. The average rank of TPOT increases as the
time budget increases. In addtion, we can observe that
the performance of AutonnML, TPOT, and AutoGluon are
relatively close to each other, while the performance of
H2O AutoML apparently lags behind. As the time budget
increases, H2O AutoML even shows a bigger disadvantage
towards other AutoML systems.

TABLE I
RANK STATISTICS ON TEST DATA PER TIME BUDGET, AVERAGED

ACROSS N=177 DATASETS, ± STANDARD ERROR OF THE MEAN

60 seconds 600 seconds 1200 seconds
AutonML 2.44±0.15 2.48±0.15 2.45±0.15
H2O AutoML 2.74±0.15 2.84±0.15 2.88±0.15
TPOT 2.47±0.16 2.37±0.16 2.32±0.16
AutoGluon 2.35±0.16 2.31±0.15 2.34±0.15

B. Training-Testing Performance Discrepancies

To illustrate the relationship between the training and
testing performance of the AutoML systems, we make a plot
to compare the performance metric (absolute AUC score)
from the testing data versus those from the training data as
shown in Figure 3. For each data point, its X-coordinate
is obtained by averaging the training performance (based
on AUC score) of its corresponding AutoML across all
time budgets on a specific dataset. Similarly, for each data
point, its Y-coordinate is obtained by averaging the test
performance (based on AUC score) of its corresponding
AutoML across all time budgets on the same dataset. We
also include the diagonal line y = x to denote the ideal
scenario when the test prediction score is equal to the train
prediction score.

We use R-squared (R2) score as a metric to evaluate
the degree of consistency between training AUC scores and
testing AUC scores across all datasets per AutoML system.
We can observe that AutonML, H2O AutoML, TPOT and
AutoGluon achieve a R2 score of 0.76, 0.63, 0.39, and 0.54
respectively. It shows that, compared to the other AutoML
systems, AutonML has a stronger correlation between its

Fig. 3. Average AUC of testing data versus average AUC on Training data
per Dataset

test prediction score and train prediction score, which is a
desired feature. We hope that the data points can get as close
to the line y = x as possible, because we want the train
performance of the AutoML systems can serve as a good
indicator of the test performance of the AutoML systems.
Here, we can observe that TPOT have many data points that
stray far away from the line y = x, with a test performance
far worse than the train performance, which indicates that
TPOT may suffer from an over-fitting problem on some data
tasks.

C. Relationship Between AutoML System Performances and
Dataset Characteristics

We are interested in how the characteristics of the datasets,
in particular, dimensionality and number of instances, affect
the performance of the AutoML systems.

To illustrate the relationship between the performance of
the AutoML systems and the dimensionality of the datasets,
we divide the whole range of dimensionality into distinct
”buckets” using an interval of 10. Within each dimensionality
”bucket”, we average the test prediction scores over all time
budgets over all datasets for each AutoML to obtain a data
point. The results are shown in Table II and Figure 4.

Similarly, to illustrate the relationship between the perfor-
mance of the AutoML systems and the number of instances
of the datasets, we divide the whole range of number of
instances into distinct ”buckets” using an interval of 1000.
Within each ”bucket” of number of instances, we average the
test prediction scores over all time budgets over all datasets
for each AutoML to obtain a data point. The results are
shown in Table III and Figure 5.

Regarding the relationship between the performance of
AutoML systems and the dimensionality of datasets, we
can see that H2O AutoML remains in a lagging position
almost over all dimensionalities, as shown in Figure 4, which
is consistent to its state of falling behind in its average
rank across datasets over different time budgets. As the
dimensionalities increase, the average rank of AutonML
climbs up first, reaching its peak when the dimensionality

258



Fig. 4. Average Rank per AutoML on Test Predictions across Datasets
within Different Dimensionality Groups

Fig. 5. Average Rank per AutoML on Test Predicitions accross Datasets
within Different Groups of Number of Instances

is within the range of [40,50), then falls down, forming
the shape of a parabola. However, we are not sure whether
this pattern can reveal certain relationships between the
performance of AutonML and the dimensionality of datasets.
We are not certain whether this pattern is representative,
either. For TPOT and AutoGluon, no obvious relationships
between their performance and the dimensionality of datasets
can be found for now.

Regarding the relationship between the performance of
AutoML systems and the number of instances, Figure 5
shows that AutoGluon has an upward trend in terms of its
relative ranking as the number of instances increases. When
the the number of instances is greater than or equal to 6000,
AutoGluon apparently prevails over other AutoML systems.
TPOT, on the other hand, achieves high relative ranks when
the dataset is small (e.g. with number of instances less than
3000), but suffers from a significant drop in terms of its
relative ranking on the 17 datasets with more than 8000
instances. No definitive conclusion has been found on the
relationship between the relative performance of AutonML
and number of instances of the dataset, yet. However, H2O

AutoML seems to have a lift in its raltive ranking from its
lagging position when the number of instances of the dataset
is greater than or equal to 6000.

TABLE II
AVERAGE RANK PER AUTOML ON TEST PREDICTIONS ACROSS N=177

DATASETS WITHIN DIFFERENT DIMENSIONALITY GROUPS

Dimensionality Number of Tasks AutonML H2O AutoML TPOT AutoGluon
[0,10) 96 2.37±0.14 2.69±0.12 2.38±0.14 2.56±0.14

[10,20) 33 2.66±0.14 2.83±0.10 2.61±0.13 1.90±0.13
[20,30) 13 2.62±0.13 3.17±0.09 1.87±0.13 2.35±0.16
[30,40) 10 2.48±0.11 3.10±0.10 2.33±0.10 2.08±0.14
[40,50) 5 2.07±0.12 3.00±0.15 2.57±0.18 2.37±0.15
[50,60) 8 2.27±0.16 3.00±0.10 2.52±0.14 2.21±0.13
[60,70) 6 2.67±0.14 2.92±0.14 2.81±0.16 1.61±0.05
[70,80) 2 3.17±0.12 2.83±0.02 2.33±0.00 1.67±0.10
[80,90) 0 NaN NaN NaN NaN
[90,100) 0 NaN NaN NaN NaN

[100,110) 2 2.83±0.12 2.83±0.02 1.33±0.05 3.00±0.10
[110,120) 1 1.00±0.00 3.67±0.00 2.00±0.00 3.33±0.00
[120,∞) 1 1.67±0.00 3.67±0.00 1.17±0.00 1.83±0.00

TABLE III
AVERAGE RANK PER AUTOML ON TEST PREDICTIONS ACROSS N=177

DATASETS WITHIN DIFFERENT GROUPS OF NUMBER OF INSTANCES

Number of Instances Number of Tasks AutonML H2O AutoML TPOT AutoGluon
[0,1000) 107 2.32±0.14 2.71±0.12 2.39±0.13 2.58±0.13

[1000,2000) 30 2.49±0.12 3.21±0.08 1.98±0.11 2.32±0.14
[2000,3000) 9 2.35±0.14 3.43±0.08 1.96±0.09 2.26±0.13
[3000,4000) 3 2.67±0.17 3.11±0.10 2.56±0.13 1.67±0.04
[4000,5000) 3 2.39±0.11 2.33±0.07 3.39±0.08 1.89±0.08
[5000,6000) 3 2.89±0.10 3.78±0.05 1.5±0.06 1.83±0.13
[6000,7000) 1 3.67±0.00 2.00±0.00 3.33±0.00 1.00±0.00
[7000,8000) 4 3.75±0.06 2.96±0.10 1.88±0.08 1.42±0.07
[8000,9000) 3 2.61±0.18 2.22±0.05 3.50±0.10 1.67±0.14
[9000,∞) 14 2.89±0.11 2.43±0.10 3.29±0.14 1.39±0.10

D. Pipeline Algorithm Exploration

1) Frequency of Winning Algorithms: In order to illustrate
the distribution of winning algorithms of each AutoML
system, we collect the core algorithm used by the top
AutoML on each data task at each time budget. When there
is a tie, we treat all the AutoML systems that can achieve the
highest test prediction score as the ”top” AutoML system.
We make bar plots to show the frequency of the first-place
algorithms for each AutoML system in Figure 6 and the
percentage frequency of the first-place algorithms for each
AutoML system in Figure 7.

We can see from the percentage frequency plots that
AutonML has very stable winning core algorithms over
varied time budgets. The same eight core algorithms have
ever made AutonML win across varied time budgets and
their percentage splits across varied time budgets are close
to each other. ”gradient boosting” is the algorithm that helps
AutonML win most, taking a share between 20% and 30%
of the winning algorithms of AutonML across all time
budgets. There are several other noticeable points as well.
For example, for H2O AutoML, it starts with exploring a
few algorithms when the time budget is limited, including
XGBoost, DeepLearning, and Gradient Boosting Machine
(GBM). As the time budget increases, H2O AutoML explores
more types of algorithms and uses them to win. However,
as the time budget continues to increase, H2O AutoML
returns to its original choice of algorithms. For TPOT, we
can see that it is the AutoML system that has the largest
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number of distinct winning algorithms (over 10 distinct
winning algorithms under any time budget), which suggests
that TPOT may try a large number of different algorithms,
and some of the algorithms may not be in use by other
AutoML systems. This diversity may provide TPOT an edge
in its searching of good algorithms and pipelines. Actually,
TPOT turns out to be a frequent winning AutoML system in
this experiment. Together with AutoGluon, TPOT never falls
out of the first two places in terms of winning frequency,
and they have significantly more winnings than AutonML
and H2O AutoML. For AutoGluon, we can observe that
its winning algorithms are very stable across varied time
budgets. ”WeightedEnsemble L2” and ”CatBoost” are the
Top 2 most frequent winning algorithms of AutoGluon and
each of their shares is significantly larger than the share
of any other winning algorithm. ”WeightedEnsemble L2” is
the most frequent winning algorithm under any time budget
and its edge over ”CatBoost” in frequency is significant,
which is consistent to the fact that AutoGluon uses the
technique of ensembling several other models to produce its
own prediction models. Together with TPOT, AutoGluon is a
frequent winning AutoML system over AutonML and H2O
AutoML.

TABLE IV
ABSOLUTE FREQUENCY AND PERCENTAGE FREQUENCY OF WINNING

ALGORITHM FOR EACH AUTOML SYSTEM OVER EXPERIMENTS OVER

N=177 DATASETS (TIME BUDGET = 60 SECONDS)

AutonML H2O AutoML TPOT AutoGluon Total
gradient boosting 14 / 24.14% 0 8 / 12.31% 0 22 / 9.61%
extra trees 13 / 22.41% 1 / 2.50% 7 / 10.77% 0 21 / 9.17%
ada boost 9 / 15.52% 0 0 0 9 / 3.93%
sgd 0 0 0 0 0
bagging 5 / 8.62% 0 0 0 5 / 2.18%
mlp 5 / 8.62% 0 7 / 10.77% 0 12 / 5.24%
random forest 4 / 6.90% 0 6 / 9.23% 0 10 / 4.37%
XGBoost 4 / 6.90% 13 / 32.50% 10 / 15.38% 1 / 1.52% 28 / 12.23%
logistic regression 4 / 6.90% 0 3 / 4.62% 0 7 / 3.06%
DeepLearning 0 8 / 20.00% 2 / 3.08% 2 / 3.04% 12 / 5.24%
GBM 0 14 / 35.00% 8 / 12.31% 0 22 / 9.61%
GLM 0 1 / 2.50% 0 0 1 / 0.44%
DRF 0 2 / 5.00% 0 0 2 / 0.87%
GaussianNB 0 1 / 2.50% 3 / 4.62 % 0 4 / 1.75%
MultinomialNB 0 0 2 / 3.08% 0 2 / 0.87%
BernoulliNB 0 0 0 0 0
XGBClassifier 0 0 1 / 1.54% 0 1 / 0.44%
DecisionTreeClassifier 0 0 2 / 3.08% 0 2 / 0.87%
WeightedEnsemble L2 0 0 0 43 / 65.15% 43 / 18.78%
LightGBMLarge 0 0 0 0 0%
CatBoost 0 0 0 17 / 25.76% 17 / 7.42%
LightGBM 0 0 0 1 / 1.52% 1 / 0.44%
KNeighborsDist 0 0 6 / 9.23% 0 6 / 2.62%
LightGBMXT 0 0 0 2 / 3.03% 2 / 0.87%
ToTal 58 / 100.00% 40 / 100.00% 65 / 100.00% 66 / 100.00% 229 / 100.00%

TABLE V
ABSOLUTE FREQUENCY AND PERCENTAGE FREQUENCY OF WINNING

ALGORITHM FOR EACH AUTOML SYSTEM OVER EXPERIMENTS OVER

N=177 DATASETS (TIME BUDGET = 600 SECONDS)

AutonML H2O AutoML TPOT AutoGluon Total
gradient boosting 15 / 26.79% 4 / 9.09% 14 / 20.00% 0 33 / 13.69%
extra trees 9 / 16.07% 1 / 2.27% 21 / 30.00% 0 31 / 12.86%
ada boost 5 / 8.93% 0 0 0 5 / 2.07%
sgd 0 0 0 0 0
bagging 5 / 8.93% 0 0 0 5 / 2.07%
mlp 6 / 10.71% 0 10 / 14.29% 0 16 / 6.64%
random forest 6 / 10.71% 0 4 / 5.71% 0 10 / 4.15%
XGBoost 3 / 5.36% 5 / 11.36% 0 2 / 2.82% 10 / 4.15%
logistic regression 7 / 12.5% 1 / 2.27% 1 / 1.43% 0 9 / 3.73%
DeepLearning 0 9 / 20.45% 0 4 / 5.63% 13 / 5.39%
GBM 0 22 / 50.00% 0 0 22 / 9.13%
GLM 0 0 0 0 0
DRF 0 0 0 0 0
GaussianNB 0 0 3 / 4.29% 0 3 / 1.24%
MultinomialNB 0 0 1 / 1.43% 0 1 / 0.41%
BernoulliNB 0 0 0 0 0
XGBClassifier 0 0 1 / 1.43% 0 1 / 0.41%
DecisionTreeClassifier 0 1 / 2.27% 3 / 4.29% 0 4 / 1.66%
WeightedEnsemble L2 0 0 0 43 / 60.56% 43/ 17.84%
LightGBMLarge 0 0 0 0 0
CatBoost 0 0 0 20 / 28.17% 20 / 8.30%
LightGBM 0 0 0 0 0
KNeighborsDist 0 1 / 2.27% 12 / 17.14% 0 13 / 5.39%
LightGBMXT 0 0 0 2 / 2.82% 2 / 0.83%
Total 56 / 100.00% 44 / 100.00% 70 / 100.00% 71 / 100.00% 241 / 100.00%

TABLE VI
ABSOLUTE FREQUENCY AND PERCENTAGE FREQUENCY OF WINNING

ALGORITHM FOR EACH AUTOML SYSTEM OVER EXPERIMENTS OVER

N=177 DATASETS (TIME BUDGET = 1200 SECONDS)

AutoML AutonML H2O AutoML TPOT AutoGluon Total
gradient boosting 13 / 22.41% 0 17 / 23.29% 0 30 / 12.66%
extra trees 11 / 18.97% 0 20 / 27.40% 0 31 / 13.08%
ada boost 8 / 13.79% 0 0 0 8 / 3.38%
sgd 0 0 0 0 0
bagging 5 / 8.62% 0 0 0 5 / 2.11%
mlp 6 / 10.34% 0 11 / 15.07% 0 17 / 7.17%
random forest 4 / 6.90% 0 6 / 8.22% 0 10 / 4.22%
XGBoost 2 / 3.45% 11 / 26.83% 0 2 / 3.08% 15 / 6.33%
logistic regression 9 / 15.52% 0 1 / 1.37% 0 10 / 4.22%
DeepLearning 0 10 / 24.39% 0 4 / 6.15% 14 / 5.91%
GBM 0 20 / 48.78% 0 0 20 / 8.44%
GLM 0 0 0 0 0
DRF 0 0 0 0 0
GaussianNB 0 0 3 / 4.11% 0 3 / 1.27%
MultinomialNB 0 0 1 / 1.37% 0 1 / 0.42%
BernoulliNB 0 0 0 0 0
XGBClassifier 0 0 1 / 1.37% 0 1 / 0.42%
DecisionTreeClassifier 0 0 3 / 4.11% 0 3 / 1.27%
WeightedEnsemble L2 0 0 0 37 / 56.92% 18 / 15.61%
LightGBMLarge 0 0 0 0 0
CatBoost 0 0 0 19 / 29.23% 19 / 8.02%
LightGBM 0 0 0 0 0
KNeighborsDist 0 0 10 / 13.70% 0 10 / 4.22%
LightGBMXT 0 0 0 3 / 4.62% 3 / 1.27%
Total 58 / 100.00% 41 / 100.00% 73 / 100.00% 65 / 100.00% 237 / 100.00%

2) Performance Discrepancies versus Core Algorithm
Discrepancies: In order to explore whether the performance
discrepancies is contributed by the difference in the selection
of the core algorithm or not, we pick up one AutoML system,
AutonML, into study in particular. We focus on the data
tasks that AutonML did not win. In order to investigate the
algorithm distribution on these tasks, we make heat maps
of the algorithms used by the winning AutoML versus the
algorithms used by AutonML. If there is a tie over the
Top 1 AutoML system, we take all of them and their core
algorithms as well into consideration. The result is shown in
Figure 8. The count in each grid denotes the frequencies that
AutonML did not get the first place with its corresponding
algorithm and another AutoML system got the first place
with its corresponding algorithm.

Several observations are as below. There is a prominent
grid: ”WeightedEnsemble L2”-”gradient bossting”. It has a
value of 16, 15, 12 under the time budget of 60 seconds, 600
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Fig. 6. Frequency of First Place Algorithm of each AutoML Fig. 7. Percentage Frequency of First Place Algorithm of each AutoML
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seconds, and 1200 seconds respectively, which means that
there are 16, 15, 12 times when AutonML did not win using
the algorithm of ”gradient bossting” while another AutoML
system won using the algorithm of ”WeightedEnsemble L2”
under the time budget of 60 seconds, 600 seconds and
1200 seconds respectively. It shows that AutonML has a
tendency to utilize the ”gradient boosting” algorithm, but
this individual algorithm often failed to beat the ensemble
technique. In addition, ”WeightedEnsemble L2” also counts
for many times of AutonML not getting the first place in
total, which are 43, 43 and 37 times respectively under the
time budget of 60 seconds, 600 seconds and 1200 seconds.
Several other major algorithms that tend to evade AutonML
as winning algorithms include ”DeepLearning”, ”GBM”,
”extra trees” and ”gradient boosting”. We noticed that under
the time budget of 600 seconds and 1200 seconds, there are
2 additional prominent grids: ”extra trees”-”extra trees”, and
”gradient boosting”-”gradient boosting”. The value of grid
”extra trees”-”extra trees” are 7 and 5 respectively under the
time budget of 600 seconds and 1200 seconds. The value
of grid ”gradient boosting”-”gradient boosting” are 4 and
5 respectively under the time budget of 600 seconds and
1200 seconds. It shows that other AutoML systems may beat
AutonML by factors other than pipeline core algorithm se-
lection, such as data processing or model parameter selection
when the time budget is large.

V. CONCLUSION

We evaluated the performance of 4 AutoML systems on
177 OpenML binary-classification tasks, using AUC as the
evaluation metric. We analyzed the experimental data from
several aspects, including the relative rankings of the Au-
toML systems, training-testing performance discrepancies,
relationship between the performance of the AutoML sys-
tems and the dataset characteristics, and the core algorithms
used by each AutoML system that can help it win. We show
that AutoGluon achieved the highest average rank among the
4 AutoML systems being evaluated under the time budget
of 60 seconds and 600 seconds, while TPOT achieved the
highest average rank under the time budget of 1200 seconds.
We find that AutonML has the strongest correlation between
its test prediction score and train prediction score, which
indicates better generalization of the predictive models. No
definitive conclusion has been found regarding the rela-
tionship between the performance of the AutoML systems
and dimensionality of the datasets yet. However, there may
exist certain relationships between the performance of the
AutoML systems and number of instances of the datasets.
For example, according to the experimental results on the
177 datasets, the relative performance of AutoGluon goes in
an upward trend as the number of instances of the dataset
increases, while TPOT generally performs relatively better
on smaller datasets than larger ones. Lastly, we showed the
absolute frequency and the percentage frequency of winning
algorithms of each AutoML system. In addition, we used
AutonML as an example to study how algorithm selection
can contribute to performance discrepancies. We identify

Fig. 8. Heat Maps of Top AutoML Core Algorithm versus AutonML Core
Algorithm when AutonML did not Get the First Place 262



several algorithms that AutonML tend to miss but grabbed
by other AutoML systems to get the first place, such as
the ensemble technique. We showed that both the pipeline
algorithm selection and other factors can contribute to the
performance discrepancies among the AutoML systems.

However, our research still has some limitations. For ex-
ample, our selection of data tasks contains too many datasets
with small dimensionalities and number of instances and
only a few datasets with large dimensionalities or number of
instances. Therefore, the performance lift of AutoGluon over
large datasets may not be representative. In the future, we
hope to incorporate more datasets with large dimensionality
or number of instances into our evaluation process. In addi-
tion, we solely focus on OpenML binary-classification tasks
for now. In the future, we hope to expand our experiment
to multi-class classification tasks and regression tasks to see
how the AutoML systems behave in these types of tasks. We
also like to test AutoML systems on datasets from sources
other than OpenML and observe their behaviors over these
tasks.

VI. APPENDIX

Please See Table VII attached for summary of average
train prediction scores and test prediction scores of the Au-
toML systems across time budgets. See Table VIII attached
for a description of data tasks that the 4 AutoML systems
have been evaluated upon.
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TABLE VII
AVERAGED TRAIN PREDICTION SCORE AND TEST PREDICTION SCORE OF THE AUTOML SYSTEMS ACROSS TIME BUDGETS

OpenML ID AutonML Train AutonML Test H2O Train H2O Test TPOT Train TPOT Test AutoGluon Train AutoGluon Test
0 1013 0.7254 0.4167 0.7647 0.6919 0.9035 0.4621 0.9 0.505
1 823 0.9984 0.9983 0.9999 0.9986 0.9662 0.967 0.9993 0.9987
2 799 0.9634 0.9647 0.9965 0.9654 0.9903 0.9617 0.9735 0.9701
3 1004 1.0 1.0 0.9998 1.0 1.0 0.9992 1.0 1.0
4 842 0.7298 0.88 0.7618 0.68 0.9467 0.8133 0.85 0.8
5 1006 0.9131 0.9662 0.9618 0.9255 0.9943 0.8407 1.0 0.9676
6 737 0.9255 0.9176 0.9548 0.9163 0.9845 0.9333 0.9279 0.9307
7 740 0.9579 0.9786 0.9954 0.9786 0.9984 0.982 0.9751 0.9812
8 1220 0.6927 0.7053 0.7387 0.7062 0.6733 0.6709 0.7055 0.7159
9 757 0.8819 0.8484 0.981 0.8342 0.9997 0.846 0.974 0.8308
10 792 0.9743 0.9858 0.9945 0.9792 0.9974 0.9888 0.9977 0.9841
11 1011 0.9862 0.9846 0.9997 0.9861 0.9963 0.9799 1.0 0.9801
12 803 0.9774 0.982 0.9988 0.9812 0.9922 0.9836 0.979 0.9848
13 13 0.6388 0.6707 0.9321 0.6651 0.7727 0.7434 0.8602 0.7536
14 15 0.9915 0.9977 0.9933 0.9975 0.9967 0.9977 1.0 0.9981
15 37 0.8203 0.8548 0.836 0.8367 0.8941 0.8619 0.8368 0.8747
16 43 0.6639 0.7668 0.7119 0.6966 0.718 0.7412 0.7966 0.7632
17 50 0.9967 0.9997 1.0 1.0 1.0 1.0 1.0 1.0
18 333 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
19 334 0.9998 1.0 1.0 0.9972 1.0 1.0 1.0 1.0
20 335 0.9934 0.9877 0.9987 0.9755 0.9998 0.9936 0.9959 0.9812
21 346 0.7182 0.8 0.6404 0.6222 0.797 0.8333 0.7333 0.8667
22 444 0.7301 0.863 0.9161 0.8296 0.8863 0.9346 0.8889 0.8704
23 448 0.9378 0.6625 0.9986 0.7392 0.9854 0.6775 1.0 0.59
24 450 0.9951 0.9935 0.9678 0.9738 1.0 0.9869 1.0 0.9803
25 451 0.9914 0.9893 0.9965 0.9943 0.9961 0.9979 0.9978 0.994
26 464 0.9221 0.9645 0.9258 0.9655 0.9666 0.9746 0.9583 0.9746
27 472 0.845 0.775 0.9582 0.7597 0.8792 0.7833 1.0 0.8083
28 476 0.9697 1.0 0.996 0.9889 0.9106 0.9 1.0 0.9667
29 479 0.8833 0.9296 0.9853 0.9 0.9455 0.9222 0.9091 0.9333
30 949 0.8371 0.734 0.8098 0.7099 0.967 0.7974 0.8531 0.7814
31 1037 0.8994 0.9108 0.9439 0.9101 0.9161 0.9071 0.9177 0.9095
32 1566 0.8232 0.9103 0.9984 0.9976 1.0 0.9978 0.9989 0.987
33 744 0.9282 0.9465 0.9989 0.9674 1.0 0.9571 0.93 0.93
34 1558 0.9065 0.8795 0.9966 0.8801 0.959 0.8831 0.9181 0.8934
35 1024 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
36 23499 0.7153 0.6951 0.7968 0.6668 0.8403 0.6638 0.9853 0.6873
37 1167 0.6303 0.6833 0.7449 0.649 0.6531 0.6822 0.6182 0.6829
38 1511 0.9627 0.9673 0.9826 0.9551 0.9895 0.9563 0.9778 0.9704
39 1524 0.9155 0.9289 0.9784 0.8958 0.9419 0.9449 0.9415 0.9067
40 890 0.8823 0.9013 0.8869 0.7632 1.0 0.9013 1.0 0.8092
41 1455 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
42 1473 0.5644 0.5298 0.925 0.6825 0.8971 0.5595 0.8846 0.5833
43 1463 0.9202 0.7833 0.969 0.8122 0.9718 0.6366 0.9773 0.77
44 1495 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
45 40714 0.1806 0.1562 0.5648 0.3542 0.9722 1.0 0.6667 0.8125
46 41538 0.5032 0.6824 0.7632 0.4881 0.9816 0.5528 0.5189 0.5702
47 42638 0.8712 0.835 0.9318 0.8269 0.9672 0.8385 0.9233 0.8436
48 40669 1.0 1.0 0.9994 1.0 1.0 1.0 1.0 1.0
49 40681 1.0 1.0 0.9996 0.9961 1.0 1.0 1.0 1.0
50 40690 0.9999 1.0 0.9999 0.9979 1.0 1.0 1.0 0.9993
51 724 0.9229 0.9325 0.9965 0.8941 0.9965 0.9396 0.9694 0.9502
52 731 0.8201 0.6806 0.802 0.6829 0.8892 0.6875 0.9643 0.6806
53 729 0.9308 1.0 0.9962 0.9762 1.0 1.0 1.0 1.0
54 730 0.9847 0.9934 0.9998 0.9626 0.9997 0.9926 1.0 0.9778
55 726 0.8587 0.8929 0.9393 0.8052 0.9995 0.9416 0.9444 0.8279
56 767 0.9533 0.9372 0.988 0.9048 0.9699 0.9138 0.9984 0.9369
57 764 0.9157 0.9609 0.9909 0.9112 0.9816 0.9316 0.9604 0.9276
58 765 0.9783 0.931 0.9885 0.9439 0.9925 0.9569 0.9344 0.9057
59 790 0.9601 0.8958 0.994 0.9028 0.994 0.9306 1.0 0.9167
60 795 0.5192 0.5002 0.7443 0.5366 0.6927 0.4993 0.632 0.4597
61 865 0.6932 0.3542 0.6836 0.2917 0.8164 0.3542 0.9286 0.3958
62 864 0.7268 0.821 0.8446 0.8766 0.9372 0.3457 0.85 0.7037
63 867 0.8188 0.858 0.9516 0.9115 0.9442 0.8786 0.8906 0.821
64 899 0.9446 0.9077 0.9163 0.8385 0.9807 0.8692 1.0 0.8923
65 905 0.7778 1.0 0.8768 0.8571 0.9555 0.9841 0.875 0.9524
66 900 0.5454 0.516 0.8533 0.5537 0.9411 0.4286 0.6742 0.476
67 942 0.7135 0.5119 0.6364 0.4444 0.8523 0.4683 0.875 0.5476
68 944 0.8297 0.7981 0.9898 0.7691 0.8988 0.7883 0.899 0.7963
69 945 0.8858 0.8846 0.9375 0.7778 0.9979 0.8632 1.0 0.8077
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OpenML ID AutonML Train AutonML Test H2O Train H2O Test TPOT Train TPOT Test AutoGluon Train AutoGluon Test
70 946 0.6668 0.4583 0.9128 0.468 0.9324 0.5639 0.4694 0.4625
71 967 0.9763 0.9704 1.0 0.969 0.9999 0.9762 0.9748 0.9733
72 961 0.8487 0.8457 0.8514 0.8066 0.9693 0.8719 0.8489 0.8634
73 968 0.9525 0.8447 0.9495 0.8724 0.9702 0.8773 0.9758 0.8835
74 960 0.3239 0.6029 0.6867 0.4788 0.7291 0.4396 0.625 0.6324
75 996 0.9032 0.9276 0.9999 0.8947 0.999 0.8975 0.95 0.9227
76 997 0.9988 1.0 0.9985 0.9961 1.0 0.9994 0.9995 0.9984
77 1025 0.9703 0.9413 0.9885 0.9575 0.8562 0.8056 0.9836 0.9174
78 739 0.7202 0.7167 0.8919 0.6556 0.9943 0.5389 0.8 0.8167
79 733 0.9835 0.9889 0.9974 0.9947 0.9917 0.9894 1.0 0.9884
80 784 0.8509 0.8881 0.9938 0.8928 0.9749 0.8666 0.9636 0.8462
81 777 0.9065 0.9444 0.9779 0.9259 0.9773 0.8704 0.9167 0.8889
82 782 0.9861 1.0 0.998 1.0 0.9993 1.0 1.0 1.0
83 875 0.9435 1.0 0.9942 0.9854 0.9948 0.9941 1.0 0.8669
84 916 0.9113 0.7564 0.8914 0.7233 1.0 0.8354 0.9815 0.7821
85 895 0.9197 0.9473 0.9655 0.939 0.9723 0.9275 0.9451 0.9395
86 974 0.9317 0.9925 0.9579 0.9883 0.9641 0.9908 0.9394 0.94
87 754 0.9538 0.92 0.8353 0.87 0.9939 0.9444 1.0 0.8733
88 811 0.9823 0.9315 0.9964 0.9353 0.9971 0.8964 1.0 0.9522
89 747 0.9983 0.9653 0.9962 0.9769 0.9998 0.9816 1.0 0.9918
90 714 0.6244 0.377 0.6515 0.5192 0.7269 0.4584 0.7024 0.5397
91 955 0.7779 0.9 0.7088 0.7949 0.9993 0.8082 0.8917 0.7508
92 748 0.8248 0.9106 0.9975 0.8646 0.8386 0.8348 0.881 0.7545
93 719 0.8019 0.6957 0.9956 0.5749 1.0 0.6981 0.8556 0.558
94 1075 0.7375 0.8125 0.9088 0.5417 0.8935 0.2708 0.7778 0.2812
95 814 0.9262 0.9408 0.9998 0.9349 0.9995 0.9502 0.9744 0.9359
96 776 0.9377 0.8976 0.9999 0.9231 1.0 0.9526 0.9111 0.9127
97 911 0.9439 0.9628 1.0 0.9449 0.9997 0.9619 0.9972 0.951
98 886 0.6847 0.6871 0.9899 0.6272 0.9873 0.6494 0.7956 0.6812
99 796 0.9995 1.0 0.9976 0.9989 1.0 1.0 1.0 1.0
100 774 0.5631 0.5652 0.6265 0.5311 0.5243 0.4977 0.5797 0.5251
101 893 0.641 0.9167 0.6116 0.6556 0.884 0.5722 0.7667 0.8778
102 906 0.5293 0.4084 0.9256 0.4671 0.9992 0.433 0.5787 0.5392
103 884 0.9595 0.9262 0.9959 0.9373 0.9998 0.9624 0.9502 0.9654
104 894 0.9931 1.0 0.9989 1.0 0.9948 1.0 1.0 1.0
105 770 0.9995 1.0 1.0 1.0 1.0 1.0 1.0 1.0
106 870 0.9634 0.9612 0.9993 0.9438 0.9953 0.9731 0.9879 0.9449
107 749 0.9652 0.9463 0.9962 0.9764 0.9979 0.9858 0.9915 0.9799
108 1014 0.5554 0.5447 0.7281 0.4906 0.6218 0.4956 0.6293 0.4792
109 947 0.9042 0.869 0.9998 0.9373 0.9892 0.9141 0.9095 0.8142
110 841 0.9938 0.9996 0.9998 0.9987 0.9998 0.9995 0.998 0.9992
111 1005 0.8954 0.9041 0.9984 0.8602 1.0 0.9243 0.9307 0.8612
112 950 0.9252 0.9988 0.9355 0.915 0.9997 0.9946 1.0 0.9975
113 907 0.5073 0.4803 0.8244 0.5547 0.639 0.4565 0.6433 0.5821
114 874 1.0 0.9545 1.0 1.0 1.0 0.9545 1.0 1.0
115 750 0.6023 0.7786 0.7227 0.6032 1.0 0.6641 0.7037 0.6636
116 848 0.898 0.7619 1.0 0.7381 1.0 0.4444 1.0 0.6429
117 1049 0.9381 0.9435 0.9944 0.9332 0.9939 0.9381 0.9676 0.951
118 847 0.943 0.9336 0.9661 0.9363 0.9684 0.9338 0.9621 0.9387
119 316 0.8581 0.9503 0.9922 0.8662 0.9589 0.9269 0.9782 0.903
120 910 0.9734 0.981 0.9988 0.9789 0.9998 0.9819 0.9834 0.9809
121 904 0.9394 0.9653 0.9998 0.9608 0.9983 0.9558 0.9586 0.9628
122 930 0.8049 0.8502 0.9014 0.8346 0.9572 0.8553 0.8582 0.8546
123 958 1.0 0.9998 1.0 0.9982 1.0 0.9997 1.0 0.9999
124 1019 0.9998 0.9998 0.9998 0.9991 1.0 0.998 1.0 0.9997
125 723 0.9558 0.9662 0.9992 0.965 1.0 0.9778 0.9703 0.9602
126 734 0.9562 0.9559 0.9913 0.9593 0.9561 0.9529 0.9596 0.9599
127 4154 0.9586 0.8352 0.9971 0.7659 0.9996 0.8235 1.0 0.6971
128 1056 0.9387 0.8858 0.9849 0.8327 0.9985 0.8941 0.9946 0.9173
129 1002 0.8469 0.863 0.9027 0.8672 0.9141 0.8745 0.8622 0.8754
130 845 0.9522 0.9437 0.9972 0.9434 0.9994 0.9624 0.9753 0.9582
131 1020 0.9979 0.9994 0.9992 0.9981 1.0 0.9998 1.0 0.9997
132 971 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
133 44 0.9851 0.9886 0.9992 0.989 0.9978 0.9869 0.9897 0.9889
134 979 0.9599 0.9654 0.9992 0.958 1.0 0.9667 0.9758 0.965
135 718 0.961 0.9309 0.9993 0.9396 0.9979 0.9631 0.9895 0.9379
136 715 0.9707 0.9672 0.9999 0.9698 0.999 0.9758 0.9875 0.9745
137 761 0.9817 0.9821 0.996 0.9828 0.9985 0.9829 0.986 0.9854
138 1453 0.8137 0.8574 0.9871 0.7733 0.9878 0.858 0.8369 0.8397
139 821 0.948 0.9536 0.9861 0.9576 0.9339 0.9336 0.9599 0.9608
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140 31 0.7937 0.7683 0.9925 0.7483 0.9871 0.7363 0.8413 0.7633
141 1504 1.0 1.0 1.0 0.9998 1.0 1.0 1.0 1.0
142 849 0.9511 0.9523 0.9992 0.944 0.995 0.9619 0.9657 0.9596
143 1068 0.8455 0.897 0.871 0.8038 0.9959 0.9118 0.87 0.8849
144 1022 0.999 0.9983 0.9999 0.9973 1.0 0.9998 1.0 0.9997
145 981 0.9484 0.9498 0.9891 0.9581 0.9567 0.9423 0.9637 0.9603
146 1487 0.9165 0.919 0.99 0.9348 1.0 0.9387 0.913 0.9444
147 1471 0.9789 0.988 0.9998 0.9934 1.0 0.9956 0.998 0.9981
148 995 0.9986 0.9998 0.9984 0.998 1.0 0.9994 1.0 0.9978
149 143 0.9951 0.9956 0.9966 0.9964 0.9943 0.9945 0.9972 0.9964
150 3 0.9985 0.9995 1.0 0.9998 0.9999 0.9996 1.0 0.9999
151 1496 0.9961 0.9965 1.0 0.9967 0.9978 0.9977 0.9943 0.9968
152 1461 0.9241 0.9257 0.9672 0.9326 0.9287 0.901 0.9404 0.9366
153 751 0.9629 0.9658 0.9984 0.9458 0.9965 0.9676 0.9822 0.9532
154 1067 0.8164 0.8264 0.9642 0.8085 0.9867 0.8427 0.7992 0.826
155 722 0.9985 0.999 1.0 0.9995 0.9977 0.9936 0.9994 0.9997
156 802 0.8737 0.8971 0.999 0.9143 0.9999 0.9117 0.8875 0.9228
157 1547 0.7126 0.698 0.7162 0.6886 0.8978 0.6772 0.6661 0.7274
158 913 0.9683 0.9872 1.0 0.9859 1.0 0.9888 0.9963 0.9905
159 976 0.9994 0.9998 0.9996 0.9993 1.0 0.9999 0.9997 0.9999
160 953 0.9936 0.9915 0.9999 0.9892 1.0 0.9896 0.9922 0.9908
161 993 0.993 0.9886 0.9998 0.99 0.9979 0.9897 0.9941 0.9902
162 752 0.9571 0.9566 0.9987 0.9602 0.9683 0.9496 0.9678 0.9691
163 1018 0.8942 0.9003 0.9079 0.8999 0.9496 0.8982 0.9015 0.8989
164 1050 0.8425 0.8559 0.9725 0.8293 0.977 0.8485 0.85 0.8354
165 797 0.9586 0.9657 0.9996 0.9571 1.0 0.9646 0.9779 0.9663
166 806 0.9589 0.9642 0.9999 0.9577 1.0 0.9678 0.9565 0.9563
167 866 0.9631 0.9759 0.9985 0.9663 0.9996 0.9784 0.9671 0.9657
168 837 0.9703 0.9779 1.0 0.9785 1.0 0.9819 0.984 0.9804
169 897 0.9996 0.9994 1.0 0.998 1.0 0.9996 1.0 0.9987
170 903 0.978 0.967 0.9995 0.9632 0.9998 0.9764 0.9767 0.9609
171 1494 0.9233 0.9347 0.9887 0.9172 0.9936 0.9346 0.9306 0.9309
172 917 0.9646 0.9749 0.9999 0.9782 0.9989 0.9755 0.982 0.9785
173 983 0.7576 0.7871 0.9074 0.7754 0.8441 0.7892 0.7925 0.7934
174 977 0.9998 0.9998 1.0 0.9999 0.9999 0.9998 1.0 1.0
175 1021 0.9909 0.9921 0.9966 0.9925 0.9988 0.9943 0.9942 0.9956
176 980 0.9983 0.9997 0.9999 0.9986 1.0 0.9999 1.0 0.9999
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TABLE VIII
DATA TASKS DESCRIPTION

OpenML ID Computing Machine No. of Features No. of Instances
0 1013 Lab Server 3 138
1 823 Lab Server 9 20640
2 799 Lab Server 6 1000
3 1004 Lab Server 61 600
4 842 Lab Server 11 60
5 1006 Lab Server 19 148
6 737 Lab Server 7 3107
7 740 Lab Server 11 1000
8 1220 Lab Server 10 39948
9 757 Lab Server 22 528
10 792 Lab Server 6 500
11 1011 Lab Server 8 336
12 803 Lab Server 6 7129
13 13 Desktop 10 286
14 15 Desktop 10 699
15 37 Desktop 9 768
16 43 Desktop 4 306
17 50 Desktop 10 958
18 333 Desktop 7 556
19 334 Desktop 7 601
20 335 Desktop 7 554
21 346 Desktop 5 50
22 444 Desktop 4 132
23 448 Desktop 4 120
24 450 Desktop 5 264
25 451 Desktop 6 500
26 464 Desktop 3 250
27 472 Desktop 4 87
28 476 Desktop 6 50
29 479 Desktop 10 92
30 949 Desktop 5 559
31 1037 Desktop 15 4562
32 1566 Desktop 101 1212
33 744 Desktop 6 250
34 1558 Desktop 17 4521
35 1024 Desktop 35 2796
36 23499 Desktop 10 277
37 1167 Desktop 9 320
38 1511 Desktop 9 440
39 1524 Desktop 7 310
40 890 Desktop 8 108
41 1455 Desktop 7 120
42 1473 Desktop 10 100
43 1463 Desktop 6 100
44 1495 Desktop 7 250
45 40714 Desktop 6 32
46 41538 Desktop 7 246
47 42638 Desktop 8 891
48 40669 Desktop 7 160
49 40681 Desktop 7 128
50 40690 Desktop 10 512
51 724 Desktop 4 468
52 731 Desktop 5 96
53 729 Desktop 4 44
54 730 Desktop 6 250
55 726 Desktop 6 100
56 767 Desktop 4 475
57 764 Desktop 4 450
58 765 Desktop 4 475
59 790 Desktop 3 55
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OpenML ID Computing Machine No. of Features No. of Instances
60 795 Desktop 4 662
61 865 Desktop 3 100
62 864 Desktop 8 60
63 867 Desktop 3 130
64 899 Desktop 6 92
65 905 Desktop 3 39
66 900 Desktop 7 400
67 942 Desktop 4 50
68 944 Desktop 10 130
69 945 Desktop 7 76
70 946 Desktop 3 88
71 967 Desktop 9 406
72 961 Desktop 8 285
73 968 Desktop 4 365
74 960 Desktop 9 90
75 996 Desktop 10 214
76 997 Desktop 5 625
77 1025 Desktop 6 400
78 739 Desktop 8 62
79 733 Desktop 7 209
80 784 Desktop 4 140
81 777 Desktop 8 47
82 782 Desktop 3 120
83 875 Desktop 4 100
84 916 Desktop 6 100
85 895 Desktop 3 222
86 974 Desktop 5 132
87 754 Desktop 6 100
88 811 Desktop 3 264
89 747 Desktop 5 167
90 714 Desktop 5 125
91 955 Desktop 6 151
92 748 Desktop 6 163
93 719 Desktop 8 137
94 1075 Desktop 9 130
95 814 Desktop 3 468
96 776 Desktop 6 250
97 911 Desktop 6 250
98 886 Desktop 8 500
99 796 Desktop 8 209

100 774 Desktop 4 662
101 893 Desktop 6 73
102 906 Desktop 8 400
103 884 Desktop 6 500
104 894 Desktop 6 66
105 770 Desktop 7 625
106 870 Desktop 6 500
107 749 Desktop 6 500
108 1014 Desktop 5 797
109 947 Desktop 5 559
110 841 Desktop 10 950
111 1005 Desktop 10 214
112 950 Desktop 5 559
113 907 Desktop 8 400
114 874 Desktop 6 50
115 750 Desktop 8 500
116 848 Desktop 6 38
117 1049 NYU 38 1458
118 847 NYU 15 6574
119 316 NYU 117 2417
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OpenML ID Computing Machine No. of Features No. of Instances
120 910 NYU 11 1000
121 904 NYU 51 1000
122 930 NYU 34 1302
123 958 NYU 20 2310
124 1019 NYU 17 10992
125 723 NYU 26 1000
126 734 NYU 41 13750
127 4154 NYU 31 14240
128 1056 NYU 39 9466
129 1002 NYU 56 7485
130 845 NYU 11 1000
131 1020 NYU 65 2000
132 971 NYU 77 2000
133 44 NYU 58 4601
134 979 NYU 41 5000
135 718 NYU 101 1000
136 715 NYU 26 1000
137 761 NYU 22 8192
138 1453 NYU 38 1077
139 821 NYU 17 22784
140 31 NYU 21 1000
141 1504 NYU 34 1941
142 849 NYU 26 1000
143 1068 NYU 22 1109
144 1022 NYU 241 2000
145 981 NYU 69 10108
146 1487 NYU 73 2534
147 1471 NYU 15 14980
148 995 NYU 48 2000
149 143 NYU 17 131072
150 3 NYU 37 3196
151 1496 NYU 21 7400
152 1461 NYU 17 45211
153 751 NYU 11 1000
154 1067 NYU 22 2109
155 722 NYU 49 15000
156 802 NYU 19 1945
157 1547 NYU 21 1000
158 913 NYU 11 1000
159 976 NYU 15 9961
160 953 NYU 61 3190
161 993 NYU 61 7019
162 752 NYU 33 8192
163 1018 NYU 57 8844
164 1050 NYU 38 1563
165 797 NYU 51 1000
166 806 NYU 51 1000
167 866 NYU 51 1000
168 837 NYU 51 1000
169 897 NYU 16 1161
170 903 NYU 26 1000
171 1494 NYU 42 1055
172 917 NYU 26 1000
173 983 NYU 10 1473
174 977 NYU 17 20000
175 1021 NYU 11 5473
176 980 NYU 65 5620
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ELVIS: Efficient Line Detection and Tracking for Visual Servoing

Yash Jangir1, Junyi Geng2 and Sebastian Scherer3

Abstract— In this work, we investigate Visual Servoing for
Aerial Manipulation using a fully actuated multirotor in
GPS denied and indoor environments based only on onboard
processing and sensing for state estimation and servoing of
multirotor. Our work focuses on developing a robust and
reliable line detection and tracking approach for visual servoing
systems. Our approach is designed to provide target surface
edge line information in image space to controllers, which
can use such information for efficient control strategies. Our
approach uses a stereo camera to track wall edges and lines
effectively in image space. We use depth images to calculate
surface normals and effectively detect and track the target
surface. We further use image segmentation to detect lines
and edges only near the target surface in RGB images. Due
to the surface selection, we significantly reduce the size of
the RGB image to be processed, resulting in less processing
time and better results. We keep track of the equation of
lines in image space as the multirotor moves in 3D space and
couple this system with a specialized pixel error-based control
strategy that enables precise servoing. The line detection is
tested on a Realsense D435 Stereo camera with Robot Operating
System(ROS) for interaction tasks near a wall.

Index Terms— Visual Servoing, Stereo Vision, Aerial
Robotics, Depth Image

I. INTRODUCTION

Aerial Manipulation is a growing subject of interest as
it combines the capabilities of UAVs(Unmanned Aerial Ve-
hicles) with manipulation-based robots. There are numer-
ous advantages of using UAVs capable of physical inter-
action with surrounding objects. It enables UAVs to per-
form challenging tasks such as bridge inspection, power
line inspection, painting and deburring, etc., in hard-to-
reach environment areas. Much research has been conducted
on developing effective control strategies for fully-actuated
multirotor with manipulators; these take the aid from off-
board state estimation methods, which heavily depend on
the surrounding environment. In GPS-denied environments,
it becomes a very challenging task to servo through the
environment with high precision. Visual servoing is a very
explored area of research as it provides methods to use visual
sensor information for feedback to controllers for such tasks
[1] This is similar to muscle-eye collaboration for organ-
ism body control. Although extracting and filtering useful
visual information is a very tedious task that requires high
processing power and time, this can effectively eliminate
off-board information requirements from RTK GPS, motion

1Yash Jangir with Birla Institute of Technology and Science, Pilani, Goa
Campus, India =f20190526@goa.bits-pilani.ac.in

2Junyi Geng with Robotics Institute, Carnegie Mellon University, Pitts-
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capture system, ground station, and off-board processing or
communication with the vehicle. Visual servoing particularly
becomes challenging for UAV applications near walls and
bridges due to continuous texture-less surfaces and fewer
features for constant processing. In this paper, we have for-
mulated an approach for such cases using minimal features
near walls and bridges that are always available. We can use
them to provide feedback to controllers for effective control
near such surfaces.

The remainder of this paper is organized as follows: In
Section II, the related work on visual servoing for different
tasks and different vehicles is presented the adopted termi-
nology and assumptions are presented. Section III refers to
the Methodology of the Image Based Visual Servoing(IBVS)
approach, while Section IV presents the Experimentation,
and the results are discussed. Conclusions are drawn in
section V, and future work is discussed in section VI.

II. RELATED WORK

In recent years there has been a lot of advancement in the
application of visual servoing. It has been used in various
autonomous robots and for other use cases.

Some works have used Visual servoing for landing in
quadrotors. In [2], visual servoing has been used to au-
tonomously land a UAV on a moving vehicle with the
circular or elliptical pattern on the top directly in the image
space, whereas [3] also uses Image-based Visual Servoing
to detect and land VTOL UAV on a moving vehicle with
an adaptive sliding mode controller. In [4], a deep learning-
based architecture is used to detect landing sites and supply
pixel coordinates in image space to servo and land. In [5],
the road following for small aircraft has been achieved by
tracking road lane features and using the same for landing
autonomously.

Other works focus on using visual servoing for hovering
tasks. [6] uses a color-based tracking algorithm to hover over
a ground target. In [7], An adaptive image-based visual servo
(IBVS) control for a quadrotor helicopter is proposed with
a similar focus on features in image space.

Similar approaches have also been used for Visual ser-
voing in Manipulators, [8] for example, presents an online
image-based visual servoing (IBVS) controller for a 6-
degrees-of-freedom (DOF) robotic system based on the ro-
bust model predictive control (RMPC) method. [8] discusses
some general visual servoing-based approaches for all types
of unmanned vehicles, which can be coupled with different
controllers to achieve stable performance.

For Visual Servoing in aerial manipulation, [9] for in-
stance, real-time tracking of power conductors using a
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Quadrotor Unmanned Air Vehicle has been achieved. The au-
thors have proposed two approaches for image-based visual
servoing solving control is directly solved in the 2D image
space. They used an Image-Based Visual Servoing (IBVS)
formulation combined with a Linear Quadratic Servo (LQ-
Servo) in the first approach. They estimated the vehicle’s
partial pose concerning the lines to perform servoing in the
second approach. [10] bypasses the bottleneck of time de-
lays in signal propagation between perception and actuation
modules and presents a method for estimating the perception-
action time delay and its active compensation based on the
predicted motion of the manipulator end-effector. [11] takes
inspiration from agile, fast-moving birds for visual servoing
for aerial grasping and perching. They present mathematical
models and algorithms for motion planning and control,
required to incorporate similar capabilities in quadrotors
equipped with a monocular camera.

III. PROBLEM FORMULATION

In an unknown environment, we don’t effectively know
how many edges, lines, and surfaces we would encounter.
This creates a challenging task of selecting the significant
lines or features the controller needs for effective servoing.
Detecting these lines while analyzing full RGB images of
high resolution creates a bottleneck in the processing and
detection part, which affects the control strategy as feedback
is received slowly.

In our use case, we need to servo near a wall or walls of
a bridge. We formulate our situation by taking the example
of a UAV near a White Board or a wall where too many
features may or may not be available, but some edges are
available. Fig.1 show the white board in open space.

Fig. 1. This picture shows the target lines around the board in Purple

IV. METHODOLOGY

Our approach consists of leveraging the depth image to
calculate surface normals. We find the surface normals using
the depth gradient method and then apply Median filter and
Bilateral filter to perform hole filling in the normal image.
We also use a temporal filter on normal images which is a
sliding window which performs averaging over the window.

We initialize a surface and find boundaries of the target
surface as a bounding box. We assume that we can initialize
one point on the surface that we are tracking in the camera

frame as pixel value. We use simple 8 direction search around
the initial surface point selected to find surface boundary. We
keep updating the new initial point as the centeroid of old
bounding box and track the surface using that.

Further we use this bounding box to segment the surface
part in the RGB image. On this smaller image we use a
bilateral filter, canny edge detection and probabilistic Hough
Transform algorithm to detect lines only near the target
surface. This approach decreases our computation and helps
us use depth information as a filter for rejecting lines and
edges, which are present in the open scene. This is further
passed to a Final Processing stage which uses temporal
filtering, low pass filtering and averaging of lines on basis
of slope to get stable lines. Fig.2 shows a high level block
diagram of the system. Each step has been described in detail
further below.

Fig. 2. This picture shows the target lines around the board in Purple

A. Depth Image Filtering and Surface Normal Generation

The raw depth image received has several different noises.
Firstly, the depth image has a high salt and pepper noise due
to continuously changing pixel values. Secondly, there are a
lot of points for which the depth information is not received,
and hence they create holes in the depth image. Further,
overall smoothing of the depth image is also required. For
this purpose, we pass the depth image with simple filters to
get a better image.

We pass the image through a Median Filter [12] to reduce
salt and pepper noise in the depth image. This filter replaces
each pixel value with the median of neighboring pixels. After
that, The depth image is passed through a Gaussian filter
[13] to further smooth out the depth image. Thresholding is
performed on the depth image to remove disturbances from
far away and too close points.

We calculate the surface normal vectors using depth data.
Consider the camera frame’s 3D points to be (X, Y, Z). We
define (u,v) in the image plane given by Equation 1, where Z
is the pixel depth, fx and fy are focal lengths of the camera,
and Cx and Cy are cameras intrinsic. We calculate the normal
vector using equations 1-4, where n⃗ is the normal vector.

u =
x

z
· fx + cx

v =
y

z
· fy + cy

(1)
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n⃗′ =

(
∂z

∂x
,
∂z

∂y
, 1

)
n⃗ =

n⃗′

∥n⃗′∥

(2)

∂z

∂x
=

∂z

∂u
· fx
z

≈ ∆z

∆u
· fx
z

(3)

∂z

∂y
=

∂z

∂v

fy
z

≈ ∆z

∆v
· fy
z

(4)

After finding the surface normals, we add each normal
image to a buffer of a predefined temporal sliding window
we also replace all the holes in the image by zeros. We
further then average the sliding window to perform image
hole filling. Assigning holes to zeros instead of normal of
infinite depth surface stops the holes from effecting the
average. Once we complete the averaging we re-assign all the
holes back to infinite depth surface normal value. We pass
the normals to the surface detection and tracking module.

Fig. 3. Aligned Depth image to RGB image by Realsense D435

B. Surface detection and Tracking

We assume that the target surface is initially at the center
of the camera frame, which helps initialize our starting
point of the search on the target surface. We then scan
in eight directions in a straight line around the point until
we find a different normal vector in each direction in the
image space to find eight boundary coordinates around the
surface, comparing the average value of surface normal on
each step with the last step. We know that the centroid of
these points will lie on the target surface, assuming that
camera displacement is not very high. So, we update the
new search point for the following image as the centroid
of the boundary points. We then take the bounding box
using these points around the surface. This strategy helps
in continuous detection and tracking of the surface. Fig.4
shows the bounding box generated in normal image using
our algorithm.

C. Line Detection

In this step, we use a depth-aligned RGB image to detect
lines. We first use the bounding box detected from the
Surface detection and Tracking algorithm to segment the

Fig. 4. Surface scanning and tracking with bounding box

target surface part of an image. We use a suitable extra border
strip around the bounding box for better edge detection. The
Surface RGB image is passed from a canny edge detector
[14] which gives a binary image. This image is then passed
with Probabilistic Hough Transform [15]. Hough Transform
detects straight lines. The lines detected in the image are
then used for final processing.

D. Final Processing

We first find out the equation of edge lines of the wall,
which are visible in image space. These can be denoted as :

λi = 0 (5)

where i ∈ [0, n] where n is number of lines. Further, each
line equation can be denoted in the standard form of line as
equation 6.

αX + βY + γ = 0 (6)

Where α, β, and γ are line parameters to be found out
for each line while X and Y are pixel points in image space
lying on the line.

We target to get any 2 points[(x1, y1), (x2, y2)] on this
line to find α, β using two point form of line. We group the
lines on basis of slope and intercept. We then average the
line groups. This set of average lines is provided as feedback
and plotted on the RGB image. This gives us the significant
edges of the surface accurately.

Fig. 5. Overview of the System
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Fig. 6. Testing with Fully Actuated UAV on right edge of surface

Fig. 7. Testing with Fully Actuated UAV on central bottom of surface

V. IMPLEMENTATION AND EXPERIMENTATION

We have used a Real-sense D435 stereo camera with
ROS(Robot Operating System) for experimentation. The
python code is run on an Intel i7 9th Gen 3.6Ghz CPU
with about 16 GB RAM. No discrete GPU is utilized to
process the images. We use the ROS package for the real
sense to get aligned depth to the RGB image. We have
used the OpenCV2 [16] library for implementing Gaussian
Filters, Median Filters, Canny Edge Detection, and Proba-
bilistic Hough Transform. We use the same library for image
transformation segmentation and format conversion. The
whole implementation is of algorithm and surface normal
calculations have been written in Python3 using Scipy [17]
and Numpy [18] libraries. We directly experiment using the
real sense rather than using a simulation environment.

VI. CONCLUSION AND RESULTS

We tested our algorithm in open scene on target surface
Fig. 8 show the all lines without our system and Fig.9 show
the results of our algorithm. Fig.5 shows step wise results of
the system. We tested our implementation with Realsense
D435 mounted on a fully actuated UAV. Our algorithm
working in air to provide visual feedback for the controller.
Fig.6 and Fig.7 show the UAV moving while Fig.10 and
Fig.11 show the results of our algorithm in flight. The final
rate of line parameter supply is 23Hz while visualizing the
lines on RGB. The rate of feedback without visualization
libraries is 24Hz.

Fig. 8. Raw Lines

Fig. 9. Final Results Line Detection with our approach

Fig. 10. Realtime Line detection on UAV at Servoing right edge of surface

Fig. 11. Realtime Line detection on UAV at central bottom of surface

We complete the objective of line detection with high
accuracy and a very high rate. Our approach provided a
simple yet elegant line detection and tracking solution for
Image-based visual servoing.

VII. FUTURE WORK

The depth image received is unstable, with much filtering
required. We want to make the system more reliable by
incorporating decimation and spatial and temporal filtering.
We also plan to add a separate pipeline that can also pin
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parallel can use all available features by using Oriented
FAST and Rotated BRIEF(ORB) with Fast Library for Ap-
proximate Nearest Neighbors (FLANN) for feature detection
and matching with a Random sample consensus(RANSAC)
which will also help in tracking and filtering outliers and
also give camera displacement in an image frame.
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Model Pruning for Efficient Object Tracking

Yucong Chen1, Yaoyu Hu2 and Sebastian Scherer2

Abstract— There is a trend of utilizing deep learning algo-
rithms on autonomous aircraft for situational awareness and
decision-making. However, the performance of these deep learn-
ing models is restricted due to the limited onboard computation
constraint and the real-time requirement. We take the visual-
based object tracking model as an example and apply model
pruning to reduce model complexity for better efficiency. While
deep learning models are often thought to benefit from their
large number of computational parameters, we find that many
of them are non-essential but consume a lot of computing
resource and time. The pruned model has significantly reduced
number of parameters, making it capable of being deployed on
an aircraft for efficient real-time inference. At the same time,
the light version of the model still has comparable performance
to the original one. Model pruning generally improves the
usability of deep learning algorithms on autonomous aircraft.

Index Terms— Object Detection, Segmentation and Catego-
rization; Model Pruning

I. INTRODUCTION

Object tracking is one of the fundamental tasks for au-
tonomous aircraft. In some scenarios, the aircraft needs to
identify and track other flying objects it encounters and re-
route its path to avoid collisions [1]. With the development
of the object detection methods [2]–[4], people start to
utilize the powerful object detection methods and then apply
tracking algorithms to the detected objects, which is called
tracking-by-detection [5]–[7].

Early tracking algorithms without detection were simple
and fast beacuse they focused on the interest points only. De-
spite the significant improvement in accuracy, the detection-
based tracking algorithms using deep neural networks cost
much more power and time. The heavy computational cost
leads to difficulties of deploying the model on mobile com-
puters on board [8].

On the other side, deep neural networks are often thought
to be over-parameterized. There are some parameters of a
large-scale model that are redundant to our goal [9]. How-
ever, a larger model still benefits from the higher probability
of getting a set of well-learned parameters. Due to the
imperfection of the initialization, if we use a small model to
remit the computational cost in the first place, the accuracy
will generally degenerate.

Model pruning, on the other hand, has been acknowledged
as a good compromise to it. Due to the good parameters
initialization inherited from the original model, the pruned
model can easily reach the comparable performance of the
original one, and at the same time, has a small computational
cost [9].

1 ShanghaiTech University, Shanghai, China
2 Carnegie Mellon University, Pittsburgh, PA, USA

To this end, we introduced model pruning techniques into
the workflow of object tracking by pruning the original
model pretrained on the Airborne Object Tracking (AOT)
dataset [10]. After the pruning, we conducted fine-tuning
and performance evaluation on our self-collected dataset.
The results demonstrate that model pruning can signifi-
cantly improve the usability of object tracking algorithms
on computation-constrained robot platforms.

II. RELATED WORK

A. Efficient Object Detection and Tracking

Object detection algorithms represented by YOLO series
[2], [11]–[13], Faster R-CNN [14] and attention-based meth-
ods like [15] have been playing a remarkable role in many
fields. Moreover, recent work proposed frameworks that do
not require designing a set of anchor boxes [3], [4], [7], as
our model takes this approach.

The application and usability of object tracking on flying
drones has also been explored in previous researches [16],
[17].

B. Model Compression via Pruning

The need of model pruning comes from two aspects: over-
fitting and high computational cost of over-parameterized
models. For example, Denil et al. [18] showed how a network
might be effectively rebuilt using just a tiny subset of its
initial parameters. However, since we do not know how to
initialize the subset of the parameters, model pruning is
here to find a way to select this subset after the primary
training. Researchers have verified the effectiveness of model
pruning [9] and have proposed a series of pruning techniques
[19]–[22]. Other methods to imporve the efficiency include
knowledge distillation [23] and neural architecture search
[24]–[26], which are more complex and require additional
prior information compared to model pruning. As a result,
we use model pruning as the compression method in our
model.

III. METHODOLOGY

The overall workflow can be divided into three parts:
train the original model, perform pruning algorithms and
fine-tune the model until we get satisfactory performance.
The following is the detailed information about the tracking
framework and the pruning techniques we used.

A. Model Overview

The model we used for object tracking is illustrated in
Fig. 1. The model consists of a motion estimation stage,
a detection and tracking stage and some post-processing
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Fig. 1. Model Overview

modules. The input is two frames of a video stream, and
the first stage estimates the motion of camera between the
two frames and the second stage is the primary part to do
object detection and tracking. The tracked items are then
passed to the post-processing modules to generate the final
results, which can guide the aircraft to avoid collisions and
re-route its path.

TABLE I
TIME PROFILE OF THE MODEL

Stages Time per frame
Motion Estimation ∼ 0.03s
Detection & Tracking ∼ 0.12s
Post-processing ∼ 0.00s

The time profile of the model is shown in TABLE I
generated by the inference time on AOT dataset. We can
see that the Detection & Tracking stage is the most time-
consuming part of the model, which means that it is the
bottleneck worth to optimize. The main part of this stage is
the detection model. The architecture of it is derived from
the HRNet [27], [28] and we use the HRNet-32 that has 30
million parameters. Therefore, we apply model pruning to
the detection model to maximize the gain from it.

B. Pruning Techniques

We used Neural Network Intelligence (NNI) [29] as the
toolbox to perform model pruning.

The pruning method we take is to select a subset of
the convolutional filters inside each layer. The selection
precedure can be performed by many strategies. Here we
take the strategy that uses the L1-norm of the filter weights
as a metric to select them:

xi =


xi
1

xi
2
...
xi
n

 (1)

‖xi‖1 =
n∑

j=1

|xi
j | (2)

Where xi is the flattened tensor of the ith filter. The basic
assumption of using norm as the metric is that, filters with
larger weights (and so larger norms) are more important than

others. The ‘more important’ means that they have larger
impacts to the model so we may prefer to keep them.

Fig. 2 demonstrates the pruning workflow. For each layer,
we have different weights for each filter, here we use single
numbers to represent the weights (instead of showing the 4-
D tensors). The pruner will then take the weights as input,
and then choose the pre-defined number of filters with the
largest L1-norms of their weights. Specifically, the way that
pruner selects the filters is generating a mask and then do
multiplication with the filter weights. After that, some of
the filters will become zero vectors and then the ‘speed up’
module will remove them to get the smaller set of filters.

Once we finish pruning the model, the number of param-
eters will be reduced so that we have a lower computational
cost. Now that we are using a subset of the original model
parameters to do the inference, we need to fine-tune the
pruned model (i.e. do a short term training) to force the
pruned model to adapt to the dataset, making it compensate
for the negative effects from pruning.

IV. EXPERIMENTS

A. Datasets

We used two datasets for our experiments: the Airborne
Object Tracking (AOT) dataset [10] and our self-collected
sequences on flying aircraft. A sample visualization of the
both datasets is shown in Fig. 3.

1) AOT Dataset: The AOT dataset is a collection of flight
sequences captured by high-resolution cameras mounted on
aerial vehicles, proposed in the challenge [30]. Two aircrafts
fly prearranged encounters while being sensor-equipped in
order to produce certain sequences. Each frame is an image
of 2448× 2048 resolution. We used this dataset to train the
original model.

2) Self-collected Dataset: This dataset contrains eighteen
sequences of flying aircrafts. The videos are captured by
our own flying aircrafts and its resolution is 2432 × 2048.
The dataset is much smaller than the AOT dataset. We used
splits of this dataset to fine-tune the pruned model and do
the evaluation.

B. Experiment Details

We set up five experiments under different pruning set-
tings. They are the original model, the models with the
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Fig. 2. Pruning Workflow

(a) AOT dataset

(b) Self-collected dataset

Fig. 3. Frames with detected item

sparsity of 0.25, 0.50, 0.75 and 0.90. The sparsity represents
the intensity of the pruning. For example, if the sparsity is
0.25, then we will remove 25% of the filters in each layer.

Firstly the original model was trained on the entire AOT
dataset. This training procedure was performed on one
NVIDIA V100-32 GPU and it took about one week to finish.
We set the bath size to 16 and we resized the input to quarter
resolution due to the memory limitation.

The four pruned models were then derived from the
original model. We performed the fine-tuning to all of the
five models on the self-collected dataset for 15 epochs.
The validation curves were successfully converged during
the fine-tuning. We split the 18 sequences to be training,
validation and test datasets with the proportion of 13 : 2 : 3,
we used the validation set to make sure that our fine-tuning
procedure will not make the models overfitting. The fine-
tuning procedure was performed on four NVIDIA V100-32
GPU in parallel with full resolution input.

C. Evaluation Metrics

As we focusing on the detection task, we used the mean
IOU [31], Precision, Recall and F1-score as the performance
metrics. In our self-collected data, We make sure that there
is at most one object in each frame.

mean IOU =
1

n

∑
i

Intersection(GTi, outputi)
Union(GTi, outputi)

(3)

where n is the number of frames in the sequence.

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1-score =
Precision× Recall
Precision + Recall

(6)

The way to define the trune positive is that the IOU
between the bounding boxes of ground truth and the output
is larger than 0.5.



Fig. 4. Performance of each pruned model and the original model

Fig. 5. Computational cost of each pruned model and the original model

As for the consumption metrics, we profile the inference
FPS, Kernel Execution Time (the actual computation time
on GPU) and Peak Memory Usage of the model.

D. Results

The results of the performance can be found in Fig. 4.
As we can see, the precision goes down as the sparsity

increases, which means that the model becomes less capable
of detecting the objects. The precision drops rapidly when
the sparsity goes from 0.75 to 0.90. The recall and F1-score
also drop as the sparsity increases, but we can find that
when the sparsity is 0.75, they become better. The mean
IOU even shows that the model with the sparsity of 0.75 is
better than the original model (i.e. the sparsity of 0.00). This
phenomenon may come from the decrease of the overfitting.

These four curves overall indicate that the performance of

the pruned model stays stable as the sparsity located in the
range of 0.00 to 0.75.

The consumption of each can be seen in Fig. 5. It is clear
that the inference speed goes up as we increase the pruning
intensity. Also, we can see that the memory usage has been
significantly dropped after the pruning.

V. DISCUSSIONS

With the above results, we can find that 0.75 is a turning
point for the model performance, and there is almost no
performance decrease from the original model to the model
with a sparsity of 0.75. The results suggest that the majority
of the parameters of our original model are not essential
for the goal. We can even remove 3/4 of the parameters
safely and still achieve the comparable performance. At the
same time, the increase of the sparsity directly leads to the
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improvement of inference efficiency so that we can benefit
from both time and memory usage.

Under this settings, we can choose the pruned model with
the sparsity of 0.75 as the one that balances the performance
and the efficiency best.

To this end, we have shown that model pruning will be
able to increase the potential of the tracking model to be
deployed on board.
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Primal-Dual Augmented Lagrangian Solver for Model Predictive
Control

Zhengyu Fu1, Kevin Tracy2, and Zachary Manchester2

Abstract— Recently, augmented Lagrangian (AL) has been
increasingly used as a model predictive control (MPC) solver
to handle constrained problems speedily. With sufficiently large
penalties, augmented Lagrangian exhibits a fast convergence
rate theoretically. However, in practice, the penalized prob-
lem becomes increasingly ill-conditioned as the penalties are
increased, making the sub-optimization problems more and
more difficult to solve at each iteration. This paper proposes
a novel primal-dual formulation of augmented Lagrangian
that can greatly mitigate the aforementioned numerical issue
and speed up the convergence. Instead of minimizing the
primal augmented Lagrangian directly, the proposed optimizes
a strategically constructed dual problem. We show that the
contracted dual problem is equivalent to the original problem
but has a significantly better numerical condition. With such
a formulation, primal-dual augmented Lagrangian (PDAL)
is compatible with a more aggressive penalty update and
converges to the optimum more quickly. We compare the
proposed method against existing MPC solvers over a trajectory
optimization problem of a 4D double integrator.

Index Terms— Optimization and Optimal Control

I. INTRODUCTION

Model predictive control (MPC) provides a systematic
approach to control complex under-actuated robotic systems
with state and input constraints [1]. The main step of every
MPC iteration is to solve a finite horizon, discrete optimal-
control problem (OCP) in the following form

minimize
z

1
2z

THz + hT z

subject to Gz = g,
Cz ≤ c,

(1)

where z ∈ Rn is the decision variable; H ∈ Sn+ is a positive
semi-definite cost matrix; a vector h ∈ Rn; a linear equality
matrix G ∈ Rp×n and a linear inequality matrix C ∈ Rq×n.

The solution methods for (1) have been studied for many
years and several methods have been proposed [2]–[4].
For example, the interior-point method approximates the
inequality constraints with parameterized barrier functions,
and solves a sequence of equality constraints with Newton’s
method; see [5] for details. However, when the objective
function is changed, the optimal solution of the previous
problem is far from the central path of the new problem
[6], making it hard to warm start and cannot benefit from
the similarities of consecutive MPC iterations.

1Zhengyu Fu is with the Division of Integrative Systems and Design,
Hong Kong University of Science and Technology, Hong Kong, China.
zfuaj@connect.ust.hk

2Kevin Tracy and Zachary Manchester are with The Robotics
Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
{ktracy,zacm}@cmu.edu

Unlike the interior-point method which requires all inter-
mediate solutions to be strictly feasible, penalty methods
penalize constraint violation by absorbing constraints into
the objective function [7]. To better approximate the original
constrained problem, one common approach is to gradually
increase penalty weights until reaching a satisfactory con-
straint tolerance. However, penalty methods usually suffer
from the well-known numerical ill-conditioning issue [8] and
will not be able to converge to the optimum before being ill-
conditioned.

The primal augmented Lagrangian approach tries to over-
come the aforementioned ill-conditioning problem by aug-
menting an extra term to the objective to estimate the
Lagrangian multiplier associated with the constraint [7]. An
unconstrained problem with fixed penalty weights and dual
variables is solved in the inner loop and penalty weights
are explicitly off-loaded to the augmented multiplier during
the dual update in the outer loop. Though penalty weights
do not have to grow unbounded before a solution within a
given tolerance is found, the condition number of the KKT
matrix associated with the unconstrained problem will still
grow as the penalty is kept increasing for better constraint
satisfaction.

Recently, first-order methods have received increasing at-
tention in MPC. Such methods use only the first-order infor-
mation to compute the optimal solution iteratively. For exam-
ple, the alternating direction method of multipliers (ADMM)
[4] first splits problems into smaller pieces and updates
primal variables by optimizing the augmented Lagrangian.
The dual variables are updated by dual ascent. Compared
to second-order methods, first-order methods are generally
cheap to compute per iteration and have inherent numerical
stability due to the absence of the Hessian. However, their
convergence rate is typically sub-linear compared to the
linear convergence rate of augmented Lagrangian.

To address the ill-conditioning issue that remains in the
primal augmented Lagrangian, we propose a primal-dual
augmented Lagrangian formulation by introducing several
additional dual variables. In contrast to the primal method,
the proposed method has better numerical properties and
does not impose any requirement on the rank of the gradient
of the constraints.

In the remainder of the paper: Section II reviews the
background of the optimality condition and the augmented
Lagrangian. Section III presets the proposed method in
details. Comparisons between the proposed method and other
state-of-art MPC solvers are shown in Section IV. Finally, a
discussion of the future directions is summarised in Section
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V.

II. BACKGROUND

A. Optimality conditions

The Lagrangian of (1) is usually written as:

L(z, λ, µ) =1

2
zTHz + hT z

+ λT (Gz − g) + µT (Cz − c).
(2)

And the first-order necessary conditions for optimality,
also known as the KKT conditions, are as the following:

Hz + h+GTλ+ CTµ = 0 (3)
Gz − g = 0 (4)
Cz − c ≤ 0 (5)

µ ≥ 0 (6)

(Cz − c)Tµ = 0 (7)

Particularly, (3) is referred to as the stationary condition
and (7) is known as the complementary condition. If a set
of primal and dual variables satisfy the KKT conditions, a
local optimal solution is found.

B. Augmented Lagrangian method

Suppose to solve (1) with the augmented Lagrangian
method, a wide range of penalty functions can be used to
penalize the constraint violation. In this paper, we focus
on the quadratic penalty which is natural and also widely
used. By adding two sets of penalties with a penalty weight
ρ ∈ R+, the augmented Lagrangian is defined as:

Lρ(z, λ, µ, ρ) =
1

2
zTHz + hT z

+ λT (Gz − g) +
ρ

2
(Gz − g)T (Gz − g)

+ µT (Cz − c) +
ρ

2
(Cz − c)T Iµ(Cz − c)

(8)

where Iµ is a diagonal selection matrix zeroing out the
inactive constraints by the following logic:

Iµ(i, i) =

{
1 (µi > 0) ∨ ([Cz − c]i > 0)

0 otherwise.
(9)

Augmented Lagrangian follows a two-level nested loop
procedure to solve the problem. It first minimizes the aug-
mented Lagrangian with respect to the primal variable z in
the inner loop and then updates the dual variables and the
penalty in the outer loop. An outline of this algorithm is
listed below:

1) Minimize the augmented Lagrangian with respect to z
while keeping the dual variables and penalty constant:

z∗ = min
z

Lρ(z, λ, µ) (10)

2) Update the dual variables:

λ = λ+ ρ(Gz∗ − g) (11)
µ = max(0, µ+ ρ(Cz∗ − c)) (12)

3) Update penalty:

ρ = ρϕ (13)

When minimizing (10), the primal augmented Lagrangian
applies Newton’s method directly to an unconstrained mini-
mization problem. The stationary condition of the minimiza-
tion problem is defined as:

∇zLρ(z, λ, µ) =Hx+ h+

+GT
[
λ+ ρ(Gx− g)

]
+ CT

[
µ+ ρIµ(Cx− c)

]
= 0

(14)

And the Gauss-Newton hessian (omit any second-order
information of the constraints) of augmented Lagrangian can
be constructed as:

Hgn = H + ρGTG+ ρCT IµC, (15)

And the regularized Newton step is calculated as

∆z = −(Hgn + ϵI)−1(∇zLρ(z, λ, µ)) (16)

As the penalty weight ρ appears in the hessian, it is clear
that the hessian becomes increasingly ill-conditioned as the
penalty increases, degrading the quality of the Newton step.

III. PRIMAL-DUAL AUGMENTED LAGRANGIAN
METHODS

A. Formulation

The primal-dual augmented Lagrangian method seeks to
solve the ill-conditioning issue aroused in the primal method
by replacing part of the augmented Lagrangian with extra
dual variables y ∈ Rp and w ∈ Rq . Let

y = λ+ ρ(Gz − g) (17)
w = µ+ ρIµ(Cz − c) (18)

The stationary condition (14) thus can be rewritten as

∇zLρ(z, λ, µ) = Hz + h+GT y + CTw = 0, (19)

Rearranging (17) and (18), the optimality conditions for
the unconstrained minimization of the augmented Lagrangian
can be written as the following system of equations:

Hz + h+GT y + CTw = 0 (20)

Gz − g +
1

ρ
(λ− y) = 0 (21)

Iµ(Cz − c) +
1

ρ
(µ− w) = 0 (22)
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Note that the rearrangement (21) and (22) is performed
strategically so that only the reciprocal of the penalty weight
shows up.

The Newton step for the system of equations above can
be defined as the following:

∆z
∆y
∆w

 = −

H + ϵI GT CT

G − 1
ρI 0

IµC 0 − 1
ρI

−1

rgn (23)

where ϵI is a diagonal regularization for the primal
variables; rgn is the residual vector defined as the following:

rgn =

Hz + h+GT y + CTw
Gz − g + 1

ρ (λ− y)

Iµ(Cz − c) + 1
ρ (µ− w)

 (24)

Compared to the primal method, this system does not
become ill-conditioned as the penalty weight increases,
because the weight does not appear in the KKT matrix.
Only the reciprocal (i.e. − 1

ρ ) shows up at the diagonal
entries associated with the dual variables serving as a dual
regularization naturally. By adding ϵI to the cost hessian, the
KKT matrix is always invertible. And thus, we do not impose
any requirement on the rank of the constraint gradient.

B. Symmetric KKT matrix

Though the KKT matrix of (23) has a significantly better
numerical condition, it is not symmetric and thus slow to
factorize. To construct a symmetric quasi-definite matrix, the
stationary condition (20) is revised.

To facilitate the derivation, a lemma and its proof are
presented first.

Lemma 1. Given a vector µ ∈ Rq
≥0, a selection matrix Iµ

that follows the definition of (9),

Iµµ = µ (25)

Proof: Suppose for an index n of the inequality
constraint set C, one sufficient condition for Iµ(n, n) being
1 is µn > 0. As µn ∈ R≥0,

Iµ(i, i)µn =

{
µn µn > 0

0 µn = 0
(26)

And thus, it proves the lemma.
In addition, as the matrix Iµ has either 0 or 1 on the

diagonal, it is easy to verify that:

I2µ = Iµ (27)

Following (25) and (27), the multiplication of the selection
matrix Iµ and the dual variable w of the inequality con-
straints can be written as

Iµw = Iµµ+ ρI2µ(Cz − c)

= µ+ ρIµ(Cx− c)

= w

(28)

which is equal to the dual variable itself.
With (28), we are ready to revise the stationary condition

of the primal-dual augmented Lagrangian to be the follow-
ing:

Hz + h+GT y + (IµC)Tw = 0 (29)

And the resulting Newton step becomes the following:

∆z
∆y
∆w

 = −

H + ϵI GT (IµC)T

G − 1
ρI 0

IµC 0 − 1
ρI

−1

rgn (30)

C. Termination criteria

We define the primal residual rprimal and the dual residual
rdual as:

rprimal =

[
Gz − g

max(Cz − c, 0)

]
(31)

rdual = Hz + h+GTλ+ CTµ (32)

The proposed method stops when the norms of the resid-
uals are less than some pre-defined tolerances ϵprimal > 0
and ϵdual > 0, namely:

||rprimal||∞ ≤ ϵprimal, ||rdual||∞ ≤ ϵdual (33)

And tolerances are set as:

ϵprimal = ϵprimal abs + ϵrel||rprimal||∞ (34)
ϵdual = ϵdual abs + ϵrel||rdual||∞ (35)

(36)

IV. NUMERICAL EXPERIMENT

In this section, we will compare our solution with other
existing methods discussed above over a trajectory optimiza-
tion problem without inequality constraints. Specifically, a
trajectory optimization problem of a 4D double integrator
is benchmarked against OSQP [9] that uses the ADMM,
HPIPM [10] that uses the interior-point method, and the
proposed method.

A. System dynamics

We consider solving an instant MPC problem of stabilizing
a 4D double-integrator. The horizon is then receded by
altering the numerical values of the corresponding entries
when new information is available. The state xt ∈ R8 is
a column vector representing the positions and velocities at
time t along four orthogonal axes. The control input ut ∈ R4

represents the acceleration at time t along the four axes. The
continuous dynamics is discredited with the second-order
Runge-Kutta method; see [11] for details. And the resulting
discrete dynamics is defined as:

xt+1 = Axt +But (37)
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A =

[
I4×4 ∆tI4×4

0 I4×4

]
, B =

[
∆t2I4×4

∆tI4×4

]
(38)

B. Parameter selection

We use quadratic costs for states and inputs. The state
costs Q = diag([11×4,

1
1011×4]), R = diag([.3, .3, .3, .3])

are set for all knots. Both the absolute primal tolerance
ϵprimal abs and the absolute dual tolerance ϵdual abs are set to
be 1e−6. The relative tolerance ϵrel is chosen to be 1e−12.
The penalty weight ρ starts from 10 and is enlarged by 2
every iteration. The overall trajectory contains 50 knots in
total. With the sampling time ∆t chosen to be 0.1s, the total
duration is 5s.

C. Results

The absolute solving time of different methods on the
problem described above is summarized in table I. And figure
1 shows the normalized solving time with respect to the
absolute solving time of OSQP.

TABLE I
SOLVE TIME

OSQP PDAL HPIPM
Time [ms] 0.459 0.242 0.043

Normalized solve time1

0.52723

0.093682
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Fig. 1. Normalized solve time

The proposed method outperforms the OSQP by almost a
factor of two, but is still significantly slower than HPIPM.
We speculate that it is because of the BLASFEO [12],
a linear algebra library co-designed with HPIPM and is
highly optimized for embedded optimization. We are re-
implementing the proposed method based on BLASFEO.

V. CONCLUSIONS

In this paper, we present a novel primal-dual formulation
of the augmented Lagrangian which has a significantly better
numerical condition than the primal formulation. Without

deliberately optimizing the used linear algebra library, the
primal-dual augmented Lagrangian has already beaten some
state-of-art solvers and demonstrated great potential in the
model predictive control. We will continue improving the
numerical implementation of the proposed method and hope-
fully, more promising results will come out in the future.
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